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Abstract—Integrating new class information without losing
previously acquired knowledge remains a central challenge in
artificial intelligence, often known as catastrophic forgetting.
Few-shot class incremental learning (FSCIL) addresses this by
first training a model on a robust set of base classes and
then incrementally adapting it in successive sessions using few
labeled examples per novel class. However, this approach is
prone to overfitting on limited new data, which can compromise
performance and exacerbate forgetting. In this work, we propose
a simple yet effective FSCIL framework that leverages a frozen
Vision Transformer (ViT) backbone augmented with parameter-
efficient additive updates. Our approach freezes the pre-trained
ViT parameters and selectively injects trainable weights into the
self-attention modules via an additive update mechanism. This
design updates a small subset of parameters to accommodate
new classes without sacrificing representations learned during
the base session. By fine-tuning only a few parameters, our
method preserves the generalizable features in the frozen ViT
while reducing overfitting risk. Furthermore, as most parameters
remain fixed, the model avoids overwriting knowledge when
novel data batches are introduced. Extensive experiments on
benchmark datasets demonstrate that our approach yields state-
of-the-art performance compared to baseline FSCIL methods.
Our results confirm improvements in robustness and accuracy.

Index Terms—Class-incremental learning, few-shot learning,
vision transformers, parameter-efficient fine tuning

I. INTRODUCTION

Deep neural networks (DNNs) have shown robust per-

formance in replicating human brain abilities, from object

recognition [1], [2] to complex language analysis [3], [4].

However, a key assumption for their success is the availability

of abundant annotated training data. In contrast, humans can

rapidly recognize and retain new objects after observing them

once or a few times. This discrepancy becomes more evident

when models are required to incrementally learn new classes

over time, a process that frequently leads to catastrophic

forgetting. Catastrophic forgetting is a paradigm that occurs

when previously learned knowledge is overwritten by newly

acquired information [5]. Class-incremental learning (CIL) [6],

[7] aims to address this challenge by enabling models to learn

new classes over time while still retaining knowledge from

previously encountered classes.

Although CIL has shown promise in mitigating catastrophic

forgetting, existing methods still require a substantial number

of samples for each new incremental class [8], [9]. Few-

shot class-incremental learning (FSCIL) seeks to overcome

this limitation by enabling models to incrementally learn new

classes from only a few labeled samples, while still preserving

the knowledge of previously encountered classes [10], [11].

FSCIL consists of a base session and subsequent incremental

sessions. During the base session, the model is trained on

large amounts of data, enabling it to learn fine-grained features

and establish robust prior knowledge that can be effectively

transferred to new classes. In contrast, incremental sessions

introduce new classes with only a few samples each, which

may cause the model to overfit, since these limited examples

might not accurately represent the true distribution of the new

classes.

Earlier works [12], [13], [14], [15] have used various ResNet

models [16] to mitigate overfitting; however, these models

often struggle to transfer knowledge from the base session

to incremental sessions. Recent studies [17], [18], [19] have

adopted the more powerful Vision Transformers (ViT) [20]

to enhance base session performance. Nonetheless, since ViTs

are pre-trained on large-scale datasets like ImageNet [21], they

are particularly susceptible to catastrophic forgetting when

fine-tuned on only a few novel examples. In few-shot and

incremental learning scenarios, the limited and distributionally

different fine-tuning data can easily lead to overwriting the

robust pre-trained features, thereby amplifying this risk of

catastrophic forgetting.

To prevent performance degradation in incremental sessions,

a promising solution lies in parameter-efficient fine-tuning

(PEFT). PEFT is a strategy for adapting a large, pre-trained

model to a new task by making only minimal changes to

its parameters [22]. A prominent submethod, prompt tuning

[23], [24] [25], adapts the model by prepending context-

specific learnable tokens into the model’s input layer. Previous

FSCIL methods have employed prompt tuning techniques [24];

however, prompt tuning has been shown to converge slower

and more difficult to optimize than other PEFT methods

[22], [26]. In contrast, alternative PEFT methods [27] operate

on the internal layers of the backbone model, such as the

self-attention modules within transformer blocks, by inject-

ing learnable matrices while keeping the pre-trained weights

frozen. This approach avoids the overhead of processing

additional input tokens and mitigates the optimization issues

commonly encountered with prompt tuning.

Motivated by these insights, we propose a novel parameter-

efficient approach to address catastrophic forgetting and over-

fitting in FSCIL. We leverage a pre-trained VIT with a key
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Fig. 1. The overall architecture of the proposed FSCIL approach.

contribution: an additive update mechanism. Unlike extensive

fine-tuning or traditional prompt tuning, which require re-

training large portions of the model or adding extra modules

that are difficult to optimize, our method selectively updates

only the self-attention layers within the frozen ViT back-

bone. This targeted adaptation preserves the robust pre-trained

representations while enhancing computational efficiency and

ease of integration. Our approach shares the same additive

parameters across all blocks of the transformer, which reduces

the number of additive parameters significantly while preserv-

ing the performance. In addition, we refine the classifier by

recalibrating each class-specific weight vector to better align

with the relevant feature distribution. Together, these compo-

nents enable our approach to effectively mitigate catastrophic

forgetting and overfitting in FSCIL, achieving state-of-the-art

performance over baseline methods.

II. RELATED WORK

A. Few-Shot Class-Incremental Learning

Classic CIL [6], [9] continually learns new classes using

ample data per incremental session, while FSCIL [10] mimics

human learning by adapting to new classes with only a few

samples after extensive base training. One common perspec-

tive divides methods into metric-based and fine-tuning based

strategies. The metric-based methods [13], [28], [29] focus on

robust prototype representation and similarity metrics, similar

to traditional few-shot learning techniques [30], [31], [32].

Fine-tuning based approaches [33], [34] leverage extensive

base class training to initialize the model, followed by careful

fine-tuning on novel classes. Recently, the focus has shifted

from shallower models such as ResNet for feature extraction

to leveraging the more powerful ViT [17], [24], [35]. However,

fine-tuning powerful models like ViT for incremental sessions

is challenging because of catastrophic forgetting. Existing

methods mitigate catastrophic forgetting by freezing the pre-

trained ViT backbone to preserve its learned representations

and incorporating prompt tuning-based approaches [17], [24].

However, prompt tuning is known to converge slower and is

more difficult to optimize [22], [26]. In contrast, our approach

shares updates to the self-attention layers within transformer

blocks of the frozen backbone, effectively preventing catas-

trophic forgetting while keeping the model adaptation strategy

simple.

B. Parameter-Efficient Fine-Tuning

The goal of PEFT is to adjust a limited number of large

model parameters while keeping the remainder of the pa-

rameters unchanged [36]. PEFT can be summarized into

reparameterization-based methods, specification-based meth-

ods, and addition-based methods [22]. Reparameterization-

based methods operate on insight that the adaptations required

for many tasks reside in a low-dimensional subspace of the

full parameter space [27], [37]. Specification-based methods

do not add additional parameters to the model and optimize

a pre-selected subset of the model’s existing parameters, such

as updating strictly bias terms in a pre-trained network [26].

Addition-based methods introduce extra parameters into the

network without modifying the original pre-trained weights

[25], [38]. In our work, we propose a targeted addition-based

approach to the self-attention layers of transformer blocks.

This approach adapts the model by adding small adjustments

only in the self-attention layers, leaving the main pre-trained

parameters intact. Moreover, we share a single additive param-

eter across all selected transformer blocks, further reducing the

number of additional parameters required for adaptation.

III. PRELIMINARIES

In FSCIL, a model is trained sequentially over multiple

sessions, denoted as D = {D(0), D(1), . . . , D(T )}, where the

base session is denoted as D(0) and T is the total number

of incremental tasks. Each incremental session t provides

a training dataset: D(t) = {(xi, yi)}
|D(t)|
i=1 , where xi is an

input sample and yi is its corresponding label. In the base



session D(0), a comprehensive label space C(0) is provided

along with ample data for each class, thereby establishing

a robust foundation for base model training. However, for

each incremental session D(t), with 1 ≤ t ≤ T , only a

few training samples per class are available, arranged in an

N -way K-shot format, where N new classes are introduced

with K examples each. Notably, classes introduced in different

sessions are entirely distinct: for any t ̸= t′, the sets C(t) and

C(t′) are disjoint. During inference, the model is evaluated

on all classes encountered up to that point. Specifically, after

training session t, testing is performed on a dataset D
(≤t)
test ,

which consists solely of examples whose labels belong to

the cumulative set C(≤t) =
⋃t

j=0 C
(j). The model’s goal

is to incrementally incorporate new classes from only a few

examples, while maintaining its ability to accurately classify

all previously learned classes.

IV. PROPOSED METHOD

To address the limitations of existing approaches for FSCIL,

we propose a novel framework that adapts a pre-trained ViT

backbone to new classes by fine-tuning few parameters in base

session, i.e., PEFT. Our method leverages additive updates

to the self-attention layers within each transformer block,

while keeping pre-trained parameters frozen. Specifically, we

apply updates to the query, key, and value (QKV) projection

matrices. These projection matrices capture the contextual

relationships among patches in each input image through

positional embeddings and self-attention. This design enables

the model to effectively incorporate new class information

from only a few labeled examples without compromising the

robust feature representations learned during the base session.

In addition, we refine the classifier by recalibrating each class-

specific weight vector to better align with the evolving feature

distribution. The overall architecture of the proposed design is

shown in Figure 1.

A. Feature Extraction

Following prior works [17], [24], [35], our classifier em-

ploys a pre-trained ViT model fθ(·) as the feature extractor.

The ViT is initialized with weights pre-trained on large-scale

datasets (i.e., ImageNet-21K), and its original classification

head is removed to yield raw feature representations. Specif-

ically, given an input image x ∈ R
C×H×W , the image is

first divided into patches and embedded into a sequence. A

classification token ([CLS]) is prepended to this sequence, and

positional encodings are added. The transformer encoder then

processes this sequence to output h = fθ(x) ∈ R
N×D, where

h denotes the sequence of token embeddings, N is the total

number of tokens, and D is the embedding dimension. The

[CLS] token, which captures the global image representation,

is extracted and denoted as z = hcls ∈ R
D, and is subse-

quently normalized to obtain the final representation from the

transformer encoder.

B. Additive Update Mechanism in Self-Attention Layers

To facilitate controlled adaptation during the base session,

we introduce an additive update mechanism that specifically

targets the QKV projections within the self-attention modules

of each transformer block. In a standard ViT, these projections

are computed as follows:

Q = Wq h+ bq,

K = Wk h+ bk,

V = Wv h+ bv.

(1)

Here, Wq , Wk, and Wv are the pre-trained weight matrices,

and bq , bk, and bv are the corresponding bias terms. In our

approach, each projection is modified by adding a trainable

update to the corresponding weight matrix while retaining the

original trainable bias:

Q = (Wq +∆Wq)h+ bq,

K = (Wk +∆Wk)h+ bk,

V = (Wv +∆Wv)h+ bv.

(2)

Specifically, ∆Wq , ∆Wk, and ∆Wv are the trainable addi-

tive parameters (initialized to zero). Notably, we share a single

∆Wq , ∆Wk, and ∆Wv across all selected transformer

blocks, which significantly reduces the number of parameters

being updated throughout training process [39].

C. Training Procedure

Base Session. During the base session, the network is trained

on a set of base classes using a softmax cross-entropy loss

computed on logits derived from cosine similarity. For each

training sample xi, the feature extractor fθ(·) produces a final

feature vector z = hcls ∈ R
D, from the [CLS] token which

is then normalized. The classifier is implemented as a linear

layer with a weight matrix:

W = [ϕ1, ϕ2, . . . , ϕ|C(0)|], (3)

where each ϕj ∈ R
D is a learned weight vector of class j.

The classifier maps an input’s normalized feature zi to a set

of logits by computing the cosine similarity between zi and

each normalized classifier weight ϕ̂j (where ϕ̂j = ϕj/||ϕj ||2).

During base training, these classifier weights are learned via

gradient descent to align the feature embeddings with the

correct class. The cosine similarity is defined as:

sim(zi, ϕj) = z⊤i ϕ̂j . (4)

To obtain the logit for class j, we scale this similarity by a

temperature parameter τ :

ℓi,j = τ sim(zi, ϕj). (5)

In the softmax cross-entropy loss, exp(ℓi,yi
) corresponds to

the exponential of the logit for the ground-truth class yi of

sample i. The loss over a batch of size B is then defined as:

Lce =
1

B

B
∑

i=1

− log

(

exp
(

ℓi,yi

)

∑|C(0)|
j=1 exp

(

ℓi,j
)

)

. (6)

Minimizing Lce encourages each feature vector zi to align with

its corresponding classifier weight while distancing it from

those of other classes.



In addition to updating the classifier weights, the shared

additive parameters Wq , Wk, and Wv , as well as the associated

bias terms are also updated. During base training, the gradients

from the cross entropy loss are backpropagated through all

adapted blocks. Furthermore, since we share the same additive

updates in each block, gradients are aggregated to update

this single parameter via gradient decent. Meanwhile, the

original pre-trained weight matrices Wq , Wk, and Wv remain

frozen. In incremental sessions, all parameters of the feature

extractor, including the additive updates, are frozen to preserve

the representations learned during the base session. Only the

classifier is updated for new classes.

Classifier Replacement. After the base session training is

completed, we refine the classifier via classifier replacement

[14]. Recall that the classifier is implemented as a linear layer

with a weight matrix from Eq. 3, where each ϕj ∈ R
D is

the learned weight vector for class j. Previous works [14],

[17], [24] have shown that reinitializing these weight vectors

to better capture the underlying feature distributions can avoid

overfitting and catastrophic forgetting. To reinitialize these

weight vectors for each base class j, we define a learnable

parameter µj . Let Sj = {i | yi = j} denote the set of indices

for image samples belonging to class j. The parameter µj for

each class j is learned by solving the following optimization

problem:

min
µj

1

2

∑

i∈Sj

∥µj − zi∥
2. (7)

Once the optimization is solved, we normalize µj and

update the corresponding classifier weight ϕj with the nor-

malized solution. This step ensures that the classifier’s weights

accurately represent the aggregate features of their respective

classes.

Incremental Sessions. In the incremental sessions, new

classes are introduced in a N -way K-shot manner, meaning

that eash session presents a small set of new classes (way)

that contain only a few labeled examples (shots). To mitigate

overfitting and catastrophic forgetting, all parameters of the

feature extractor remain frozen. Consequently, each few-shot

sample is passed through the feature extractor to obtain its

feature representation. For each new class j′, we define its

weight vector µP
j′ analogously to Eq. 7 using the available

few-shot samples. We normalize µP
j′ and append each new

class to the classifier’s weight matrix:

µj′ ←
µP
j′

∥µP
j′∥2

. (8)

By updating the classifier in this manner, we incorporate new

classes with minimal disruption to the existing feature repre-

sentations, thus maintaining robust performance on previously

learned classes.

V. EXPERIMENTAL RESULTS

Datasets and Metrics. Our method is evaluated on three

widely used datasets in the FSCIL community: CUB-200

[43], CIFAR-100 [44], and miniImageNet [31]. We follow the

same splits as previously published manuscripts [12], [13],

[17], [18], [40], [42], [41]. For CUB-200, the base session

contains 100 classes, and each incremental session introduces

10 new classes (ways) with 5 examples per class (shots),

resulting in one base session plus 10 incremental sessions.

For CIFAR-100 and miniImageNet, the base session consists

of 60 classes, while the incremental sessions adopt a 5-way

5-shot configuration, yielding one base session followed by 8

incremental sessions. The base session accuracy is reported as

Sbase, the final session as Slast, the average accuracy across

all sessions as Savg, and the performance drop (PD) as the

difference between Sbase and Slast (lower the better).

Implementation. In our model, we implement two ViT

backbones. The first backbone is ViT-B/16 pre-trained on

ImageNet-21k and fine-tuned on ImageNet-1K (denoted as

†). The second backbone is the more powerful ViT-B/16 pre-

trained on ImageNet-21K (denoted as ‡). We focus solely on

shared additive updates to the self-attention layers of all 12

transformer blocks, following [27]. For all datasets, images

are uniformly resized to 224 × 224 pixels to meet the input

requirements of the ViT architecture. Our method was trained

for 10 epochs on both CUB-200 and CIFAR-100, and 3 epochs

on miniImageNet. We used the SGD optimizer on a single

NVIDIA L4 GPU and maintained a batch size of 128 across

all datasets.

A. Main Experimental Results

In this section, we discuss our main experimental results

compared against baseline FSCIL methods. Session-wise re-

sults on CUB-200, CIFAR-100, and miniImagnet are shown

in Tables I, II, and Figure 2, respectively.

On CUB-200, our method improves the base accuracy

(Sbase) by 3.25% and the final session accuracy (Slast) by

9.18% over the best competing methods, while reducing the

performance drop (PD) by 0.66%. These improvements show

that our selective parameter updates not only preserve base

knowledge but also better integrate new classes over incre-

mental sessions. On CIFAR-100, we achieve state-of-the-art

accuracies during both the base and all incremental sessions.

Although our PD (5.17%) is marginally higher than that of

PriViLege (4.82%), our method avoids the extra complexity

and parameter overhead associated with prompt tuning and

word embeddings required by PriViLege. For miniImageNet,

our approach attains stellar performance across all sessions,

setting a new benchmark PD of 1.29%, a new base session

accuracy of 98.13% and final session accuracy of 96.84%

when using the ViT backbone fine-tuned on ImageNet-1K.

Interestingly, the less powerful backbone (with ImageNet-1K

fine-tuning) outperforms its counterpart, likely due to better

alignment with the miniImageNet distribution. Overall, these

results validate that our FSCIL framework, with its targeted

additive updates and refined classifier weights, effectively

maintains robust representations while accommodating new

classes, leading to significant improvements over existing

methods.



TABLE I
THE PERFORMANCE OF SESSIONS ON CUB200.

Method Sbase 1 2 3 4 5 6 7 8 9 Slast Savg PD

CEC‡ [40] 75.40 73.23 72.00 68.70 69.35 67.78 67.01 66.40 65.78 65.57 65.70 72.41 9.70

L2P‡ [41] 44.97 30.28 27.21 24.44 22.41 20.81 19.47 18.19 17.16 16.26 15.41 24.99 29.56

DualPrompt‡ [42] 53.37 45.99 41.15 37.33 34.32 31.57 29.44 27.58 25.92 24.55 23.25 36.30 30.12

NC-FSCIL‡ [13] 78.49 71.52 65.54 60.30 55.81 51.96 48.72 45.78 43.18 40.92 38.80 57.92 39.69

WaRP‡ [12] 67.74 64.21 61.06 57.80 55.78 53.81 52.82 51.61 50.13 50.02 49.36 55.85 18.38

PL-FSCIL†[18] 85.16 85.40 82.75 75.22 77.22 73.25 72.39 70.24 67.97 68.33 69.86 75.25 15.30

PriViLege‡ [17] 82.21 81.25 80.45 77.76 77.78 75.95 75.69 76.00 75.19 75.19 75.08 77.50 4.71

Proposed Method† 87.47 85.61 84.46 82.70 82.70 81.14 80.60 81.02 80.47 80.67 80.86 82.52 6.61

Proposed Method‡ 88.41 87.02 86.27 84.90 85.06 83.45 83.46 83.98 83.81 84.02 84.26 84.97 4.15

Note: Columns correspond to the base session (Sbase), incremental sessions (1–9), the final session (Slast), the average accuracy (Savg), and the
performance drop (PD) between Sbase and Slast.

TABLE II
THE PERFORMANCE OF SESSIONS ON CIFAR-100.

Method Sbase 1 2 3 4 5 6 7 Slast Savg PD

CEC‡ [40] 74.20 71.49 70.11 67.34 65.96 65.14 64.74 63.48 61.48 67.10 12.72

L2P‡ [41] 83.29 76.81 71.29 66.53 62.38 58.68 55.42 52.49 49.87 64.08 33.42

DualPrompt‡ [42] 85.11 78.42 72.81 67.92 63.69 59.92 56.60 53.62 50.93 65.45 34.18

NC-FSCIL‡ [13] 89.51 82.62 76.72 71.61 67.13 63.18 59.67 56.53 53.70 68.96 35.81

WaRP‡ [12] 86.20 82.58 79.30 75.57 73.46 71.07 69.58 67.70 65.48 74.55 20.72

PL-FSCIL† [18] 85.73 74.54 74.77 72.42 72.98 72.87 72.49 71.62 75.13 74.73 10.60

PriViLege‡ [17] 90.88 89.39 88.97 87.55 87.83 87.35 87.53 87.15 86.06 88.08 4.82

CKPD-FSCIL‡ [35] 91.57 90.03 89.84 88.44 88.58 87.74 87.82 87.36 86.22 88.62 5.35

Proposed Method† 93.43 91.42 90.83 89.17 89.30 88.89 88.91 88.63 87.42 89.78 6.01

Proposed Method‡ 93.92 92.12 91.67 90.48 90.60 90.21 90.16 89.83 88.75 90.86 5.17

Note: The columns represent the base session (Sbase), incremental sessions (1–7), the final session (Slast), the
average accuracy (Savg), and the performance drop (PD) between Sbase and Slast.

Fig. 2. miniImageNet performance across sessions.

B. Ablation Study

Number of Updated Self-Attention Layers. In the first

ablation experiment, we study the effect of applying the

additive update only to the final n self-attention layers of

each transformer block in the ViT architecture. Note that when

TABLE III
ABLATION STUDY: IMPACT OF APPLYING ADDITIVE UPDATES TO ONLY

THE FINAL n SELF-ATTENTION BLOCKS

Blocks
CUB-200 CIFAR-100

Savg (%) PD (%) Savg (%) PD (%)

0 77.37 8.54 60.48 14.43

4 79.11 6.63 77.65 13.66

8 82.74 4.52 88.73 7.33

12 84.97 4.15 90.86 5.17

the additive update is applied to 0 blocks, the model remains

identical to the frozen, pre-trained ViT, and only the classifier

is updated during training.

Table III summarizes our findings on the CUB-200 and

CIFAR-100 datasets. As we gradually increase the number

of self-attention layers receiving additive updates, the model

exhibits improved performance. On CUB-200, the average ac-

curacy (Savg) increases from 77.37% (with 0 updated blocks)

to 84.97% (with all 12 blocks updated), resulting in a gain

of 7.60 percentage points, while the PD is reduced by over

4 percentage points. Similarly, on CIFAR-100, Savg improves



TABLE IV
COMPARISON OF SELF-ATTENTION AND MLP UPDATE STRATEGIES ON

CUB-200 AND CIFAR-100

Metric CUB-200 CIFAR-100

Self-Attn MLP Self-Attn MLP

Sbase 88.41 (+0.56) 87.85 93.92 (-0.55) 94.37

Slast 84.26 (+0.85) 83.41 88.75 (+0.56) 88.19

Savg 84.97 (+0.80) 84.17 90.86 (+0.01) 90.85

PD 4.15 (+0.29) 4.44 5.17 (+1.01) 6.18

significantly from 60.48% to 90.86%, and PD decreases from

14.43% to 5.17%. The more pronounced improvements on

CIFAR-100 can be attributed to its dataset split and incremen-

tal session configuration, which features fewer training base

classes and a 5-way 5-shot format in each session, thereby

making it more susceptible to catastrophic forgetting. These

results suggest that updating a greater number of self-attention

layers significantly enhances the model’s adaptability while

preserving the robust representations learned during the base

session.

Impact of Additive Updates on MLP Layers. In this exper-

iment, we evaluate the impact of applying additive updates to

the feed-forward (MLP) layers within each transformer block.

Converse to our baseline, we instead freeze the self-attention

layers and apply the additive update only on the MLP layers,

then compare the resulting performance differences. Table IV

presents a comparison between self-attention and MLP update

strategies on CUB-200 and CIFAR-100 datasets.

On CUB-200, the self-attention update achieves a base

accuracy of 88.41% (0.56 points higher), a final session

accuracy of 84.26% (0.85 points higher), and a PD of 4.15%

(0.29 points lower) compared to the MLP update. On CIFAR-

100, although the MLP update shows a slightly higher base

accuracy (94.37% vs. 93.92%), the self-attention update attains

a higher final accuracy (88.75% vs. 88.19%) and a notably

lower PD (5.17% vs. 6.18%). Notably, the self-attention

update strategy also introduces fewer trainable parameters,

3d2, since it only modifies the QKV projection matrices.

However, updating both fully connected layers in the MLP

module introduces approximately 8d2 parameters, significantly

increasing the parameter count.

VI. CONCLUSION

In this paper, we proposed a novel FSCIL framework that

leverages a frozen pre-trained ViT backbone augmented with

parameter-efficient additive updates. By selectively updating

only the self-attention layers while keeping the pre-trained

weights frozen, our method provides a simple strategy for

effectively integrating new classes with only few-shot samples

while preserving robust base representations. Extensive exper-

iments on CUB-200, CIFAR-100, and miniImageNet demon-

strate that our approach significantly outperforms previous

state-of-the-art methods in terms of base accuracy, incremental

accuracy, and performance drop. Our findings underscore

the advantages of targeted parameter tuning in mitigating

catastrophic forgetting and reducing overfitting in FSCIL.
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