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Abstract—Integrating new class information without losing
previously acquired knowledge remains a central challenge in
artificial intelligence, often known as catastrophic forgetting.
Few-shot class incremental learning (FSCIL) addresses this by
first training a model on a robust set of base classes and
then incrementally adapting it in successive sessions using few
labeled examples per novel class. However, this approach is
prone to overfitting on limited new data, which can compromise
performance and exacerbate forgetting. In this work, we propose
a simple yet effective FSCIL framework that leverages a frozen
Vision Transformer (ViT) backbone augmented with parameter-
efficient additive updates. Our approach freezes the pre-trained
ViT parameters and selectively injects trainable weights into the
self-attention modules via an additive update mechanism. This
design updates a small subset of parameters to accommodate
new classes without sacrificing representations learned during
the base session. By fine-tuning only a few parameters, our
method preserves the generalizable features in the frozen ViT
while reducing overfitting risk. Furthermore, as most parameters
remain fixed, the model avoids overwriting knowledge when
novel data batches are introduced. Extensive experiments on
benchmark datasets demonstrate that our approach yields state-
of-the-art performance compared to baseline FSCIL methods.
Our results confirm improvements in robustness and accuracy.

Index Terms—Class-incremental learning, few-shot learning,
vision transformers, parameter-efficient fine tuning

I. INTRODUCTION

Deep neural networks (DNNs) have shown robust per-
formance in replicating human brain abilities, from object
recognition [1], [2] to complex language analysis [3], [4].
However, a key assumption for their success is the availability
of abundant annotated training data. In contrast, humans can
rapidly recognize and retain new objects after observing them
once or a few times. This discrepancy becomes more evident
when models are required to incrementally learn new classes
over time, a process that frequently leads to catastrophic
forgetting. Catastrophic forgetting is a paradigm that occurs
when previously learned knowledge is overwritten by newly
acquired information [5]. Class-incremental learning (CIL) [6],
[7] aims to address this challenge by enabling models to learn
new classes over time while still retaining knowledge from
previously encountered classes.

Although CIL has shown promise in mitigating catastrophic
forgetting, existing methods still require a substantial number
of samples for each new incremental class [8], [9]. Few-
shot class-incremental learning (FSCIL) seeks to overcome
this limitation by enabling models to incrementally learn new

classes from only a few labeled samples, while still preserving
the knowledge of previously encountered classes [10], [11].
FSCIL consists of a base session and subsequent incremental
sessions. During the base session, the model is trained on
large amounts of data, enabling it to learn fine-grained features
and establish robust prior knowledge that can be effectively
transferred to new classes. In contrast, incremental sessions
introduce new classes with only a few samples each, which
may cause the model to overfit, since these limited examples
might not accurately represent the true distribution of the new
classes.

Earlier works [12], [13], [14], [15] have used various ResNet
models [16] to mitigate overfitting; however, these models
often struggle to transfer knowledge from the base session
to incremental sessions. Recent studies [17], [18], [19] have
adopted the more powerful Vision Transformers (ViT) [20]
to enhance base session performance. Nonetheless, since ViTs
are pre-trained on large-scale datasets like ImageNet [21], they
are particularly susceptible to catastrophic forgetting when
fine-tuned on only a few novel examples. In few-shot and
incremental learning scenarios, the limited and distributionally
different fine-tuning data can easily lead to overwriting the
robust pre-trained features, thereby amplifying this risk of
catastrophic forgetting.

To prevent performance degradation in incremental sessions,
a promising solution lies in parameter-efficient fine-tuning
(PEFT). PEFT is a strategy for adapting a large, pre-trained
model to a new task by making only minimal changes to
its parameters [22]. A prominent submethod, prompt tuning
[23], [24] [25], adapts the model by prepending context-
specific learnable tokens into the model’s input layer. Previous
FSCIL methods have employed prompt tuning techniques [24];
however, prompt tuning has been shown to converge slower
and more difficult to optimize than other PEFT methods
[22], [26]. In contrast, alternative PEFT methods [27] operate
on the internal layers of the backbone model, such as the
self-attention modules within transformer blocks, by inject-
ing learnable matrices while keeping the pre-trained weights
frozen. This approach avoids the overhead of processing
additional input tokens and mitigates the optimization issues
commonly encountered with prompt tuning.

Motivated by these insights, we propose a novel parameter-
efficient approach to address catastrophic forgetting and over-
fitting in FSCIL. We leverage a pre-trained VIT with a key
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Fig. 1. The overall architecture of the proposed FSCIL approach.

contribution: an additive update mechanism. Unlike extensive
fine-tuning or traditional prompt tuning, which require re-
training large portions of the model or adding extra modules
that are difficult to optimize, our method selectively updates
only the self-attention layers within the frozen ViT back-
bone. This targeted adaptation preserves the robust pre-trained
representations while enhancing computational efficiency and
ease of integration. Our approach shares the same additive
parameters across all blocks of the transformer, which reduces
the number of additive parameters significantly while preserv-
ing the performance. In addition, we refine the classifier by
recalibrating each class-specific weight vector to better align
with the relevant feature distribution. Together, these compo-
nents enable our approach to effectively mitigate catastrophic
forgetting and overfitting in FSCIL, achieving state-of-the-art
performance over baseline methods.

II. RELATED WORK
A. Few-Shot Class-Incremental Learning

Classic CIL [6], [9] continually learns new classes using
ample data per incremental session, while FSCIL [10] mimics
human learning by adapting to new classes with only a few
samples after extensive base training. One common perspec-
tive divides methods into metric-based and fine-tuning based
strategies. The metric-based methods [13], [28], [29] focus on
robust prototype representation and similarity metrics, similar
to traditional few-shot learning techniques [30], [31], [32].
Fine-tuning based approaches [33], [34] leverage extensive
base class training to initialize the model, followed by careful
fine-tuning on novel classes. Recently, the focus has shifted
from shallower models such as ResNet for feature extraction
to leveraging the more powerful ViT [17], [24], [35]. However,
fine-tuning powerful models like ViT for incremental sessions
is challenging because of catastrophic forgetting. Existing
methods mitigate catastrophic forgetting by freezing the pre-
trained ViT backbone to preserve its learned representations

and incorporating prompt tuning-based approaches [17], [24].
However, prompt tuning is known to converge slower and is
more difficult to optimize [22], [26]. In contrast, our approach
shares updates to the self-attention layers within transformer
blocks of the frozen backbone, effectively preventing catas-
trophic forgetting while keeping the model adaptation strategy
simple.

B. Parameter-Efficient Fine-Tuning

The goal of PEFT is to adjust a limited number of large
model parameters while keeping the remainder of the pa-
rameters unchanged [36]. PEFT can be summarized into
reparameterization-based methods, specification-based meth-
ods, and addition-based methods [22]. Reparameterization-
based methods operate on insight that the adaptations required
for many tasks reside in a low-dimensional subspace of the
full parameter space [27], [37]. Specification-based methods
do not add additional parameters to the model and optimize
a pre-selected subset of the model’s existing parameters, such
as updating strictly bias terms in a pre-trained network [26].
Addition-based methods introduce extra parameters into the
network without modifying the original pre-trained weights
[25], [38]. In our work, we propose a targeted addition-based
approach to the self-attention layers of transformer blocks.
This approach adapts the model by adding small adjustments
only in the self-attention layers, leaving the main pre-trained
parameters intact. Moreover, we share a single additive param-
eter across all selected transformer blocks, further reducing the
number of additional parameters required for adaptation.

III. PRELIMINARIES
In FSCIL, a model is trained sequentially over multiple
sessions, denoted as D = {D® DM . DT}, where the
base session is denoted as D) and T is the total number
of incremental tasks. Each incremental session ¢ provides
a training dataset: D) = {(mi,yi)}‘igr)‘, where z; is an
input sample and y; is its corresponding label. In the base



session D), a comprehensive label space C'(*) is provided
along with ample data for each class, thereby establishing
a robust foundation for base model training. However, for
each incremental session D®) with 1 <t < T, only a
few training samples per class are available, arranged in an
N-way K-shot format, where N new classes are introduced
with K examples each. Notably, classes introduced in different
sessions are entirely distinct: for any ¢ # ¢/, the sets C'*) and
C) are disjoint. During inference, the model is evaluated
on all classes encountered up to that point. Specifically, after
training session ¢, testing is performed on a dataset D[(eftt),
which consists solely of examples whose labels belong to
the cumulative set C(<t) = U;zo CU). The model’s goal
is to incrementally incorporate new classes from only a few
examples, while maintaining its ability to accurately classify
all previously learned classes.

IV. PROPOSED METHOD

To address the limitations of existing approaches for FSCIL,
we propose a novel framework that adapts a pre-trained ViT
backbone to new classes by fine-tuning few parameters in base
session, ie., PEFT. Our method leverages additive updates
to the self-attention layers within each transformer block,
while keeping pre-trained parameters frozen. Specifically, we
apply updates to the query, key, and value (QKV) projection
matrices. These projection matrices capture the contextual
relationships among patches in each input image through
positional embeddings and self-attention. This design enables
the model to effectively incorporate new class information
from only a few labeled examples without compromising the
robust feature representations learned during the base session.
In addition, we refine the classifier by recalibrating each class-
specific weight vector to better align with the evolving feature
distribution. The overall architecture of the proposed design is
shown in Figure 1.

A. Feature Extraction

Following prior works [17], [24], [35], our classifier em-
ploys a pre-trained ViT model fy(-) as the feature extractor.
The ViT is initialized with weights pre-trained on large-scale
datasets (i.e., ImageNet-21K), and its original classification
head is removed to yield raw feature representations. Specif-
ically, given an input image x € RE*HXW  the image is
first divided into patches and embedded into a sequence. A
classification token ([CLS]) is prepended to this sequence, and
positional encodings are added. The transformer encoder then
processes this sequence to output h = fy(x) € R¥*P where
h denotes the sequence of token embeddings, IV is the total
number of tokens, and D is the embedding dimension. The
[CLS] token, which captures the global image representation,
is extracted and denoted as z = hqs € RP, and is subse-
quently normalized to obtain the final representation from the
transformer encoder.

B. Additive Update Mechanism in Self-Attention Layers

To facilitate controlled adaptation during the base session,
we introduce an additive update mechanism that specifically

targets the QKV projections within the self-attention modules
of each transformer block. In a standard ViT, these projections
are computed as follows:

Q=Wsh+ by,
K =W h+ by, (1)
V=W,h+b,.

Here, W,, Wy, and W, are the pre-trained weight matrices,
and by, by, and b, are the corresponding bias terms. In our
approach, each projection is modified by adding a trainable
update to the corresponding weight matrix while retaining the
original trainable bias:

Q= (W, + AW,) h+ b,
K = (Wi, + AWy) b + by, )
V = (W, +AW,) h+b,.

Specifically, AW,, AW}, and AW, are the trainable addi-
tive parameters (initialized to zero). Notably, we share a single
AWy, AWy, and AW, across all selected transformer
blocks, which significantly reduces the number of parameters
being updated throughout training process [39].

C. Training Procedure

Base Session. During the base session, the network is trained
on a set of base classes using a softmax cross-entropy loss
computed on logits derived from cosine similarity. For each
training sample x;, the feature extractor fy(-) produces a final
feature vector z = hgs € RP, from the [CLS] token which
is then normalized. The classifier is implemented as a linear
layer with a weight matrix:

W =[¢1,2,...,djco ], 3)

where each ¢; ¢ RP is a learned weight vector of class j.
The classifier maps an input’s normalized feature z; to a set
of logits by computing the cosine similarity between z; and
each normalized classifier weight ¢; (where ¢; = ¢;/||¢;]|2)-
During base training, these classifier weights are learned via
gradient descent to align the feature embeddings with the
correct class. The cosine similarity is defined as:

To obtain the logit for class j, we scale this similarity by a
temperature parameter 7:

A&;’j = ’TSiIl’l(Zi, QSJ) (5)

In the softmax cross-entropy loss, exp(¥; ,,) corresponds to
the exponential of the logit for the ground-truth class y; of
sample ¢. The loss over a batch of size B is then defined as:

B
]' eXp(Eia ’L)
ﬁce:BZ—log< L )

[c(O]
i=1 Zj:l eXp(gi,j)
Minimizing L. encourages each feature vector z; to align with

its corresponding classifier weight while distancing it from
those of other classes.

(6)



In addition to updating the classifier weights, the shared
additive parameters W, Wy, and W, as well as the associated
bias terms are also updated. During base training, the gradients
from the cross entropy loss are backpropagated through all
adapted blocks. Furthermore, since we share the same additive
updates in each block, gradients are aggregated to update
this single parameter via gradient decent. Meanwhile, the
original pre-trained weight matrices W, W}, and W,, remain
frozen. In incremental sessions, all parameters of the feature
extractor, including the additive updates, are frozen to preserve
the representations learned during the base session. Only the
classifier is updated for new classes.

Classifier Replacement. After the base session training is
completed, we refine the classifier via classifier replacement
[14]. Recall that the classifier is implemented as a linear layer
with a weight matrix from Eq. 3, where each ¢; € RP is
the learned weight vector for class j. Previous works [14],
[17], [24] have shown that reinitializing these weight vectors
to better capture the underlying feature distributions can avoid
overfitting and catastrophic forgetting. To reinitialize these
weight vectors for each base class j, we define a learnable
parameter y;. Let S; = {i | y; = j} denote the set of indices
for image samples belonging to class j. The parameter p; for
each class j is learned by solving the following optimization
problem:
1

min 5 DMl =z 7

Hio2ics;

Once the optimization is solved, we normalize p; and
update the corresponding classifier weight ¢; with the nor-
malized solution. This step ensures that the classifier’s weights
accurately represent the aggregate features of their respective
classes.

Incremental Sessions. In the incremental sessions, new
classes are introduced in a N-way K-shot manner, meaning
that eash session presents a small set of new classes (way)
that contain only a few labeled examples (shots). To mitigate
overfitting and catastrophic forgetting, all parameters of the
feature extractor remain frozen. Consequently, each few-shot
sample is passed through the feature extractor to obtain its
feature representation. For each new class j’, we define its
weight vector uﬁ analogously to Eq. 7 using the available
few-shot samples. We normalize ufi and append each new
class to the classifier’s weight matrix:

P
M
i
1512
By updating the classifier in this manner, we incorporate new
classes with minimal disruption to the existing feature repre-

sentations, thus maintaining robust performance on previously
learned classes.

g $— (3

V. EXPERIMENTAL RESULTS

Datasets and Metrics. Our method is evaluated on three
widely used datasets in the FSCIL community: CUB-200

[43], CIFAR-100 [44], and minilmageNet [31]. We follow the
same splits as previously published manuscripts [12], [13],
[17], [18], [40], [42], [41]. For CUB-200, the base session
contains 100 classes, and each incremental session introduces
10 new classes (ways) with 5 examples per class (shots),
resulting in one base session plus 10 incremental sessions.
For CIFAR-100 and minilmageNet, the base session consists
of 60 classes, while the incremental sessions adopt a 5-way
5-shot configuration, yielding one base session followed by 8
incremental sessions. The base session accuracy is reported as
Shase, the final session as S),g, the average accuracy across
all sessions as Savg, and the performance drop (PD) as the
difference between Sp,se and Siast (lower the better).
Implementation. In our model, we implement two ViT
backbones. The first backbone is ViT-B/16 pre-trained on
ImageNet-21k and fine-tuned on ImageNet-1K (denoted as
1). The second backbone is the more powerful ViT-B/16 pre-
trained on ImageNet-21K (denoted as }). We focus solely on
shared additive updates to the self-attention layers of all 12
transformer blocks, following [27]. For all datasets, images
are uniformly resized to 224 x 224 pixels to meet the input
requirements of the ViT architecture. Our method was trained
for 10 epochs on both CUB-200 and CIFAR-100, and 3 epochs
on minilmageNet. We used the SGD optimizer on a single
NVIDIA L4 GPU and maintained a batch size of 128 across
all datasets.

A. Main Experimental Results

In this section, we discuss our main experimental results
compared against baseline FSCIL methods. Session-wise re-
sults on CUB-200, CIFAR-100, and minilmagnet are shown
in Tables I, II, and Figure 2, respectively.

On CUB-200, our method improves the base accuracy
(Sbase) by 3.25% and the final session accuracy (Sjast) by
9.18% over the best competing methods, while reducing the
performance drop (PD) by 0.66%. These improvements show
that our selective parameter updates not only preserve base
knowledge but also better integrate new classes over incre-
mental sessions. On CIFAR-100, we achieve state-of-the-art
accuracies during both the base and all incremental sessions.
Although our PD (5.17%) is marginally higher than that of
PriViLege (4.82%), our method avoids the extra complexity
and parameter overhead associated with prompt tuning and
word embeddings required by PriViLege. For minilmageNet,
our approach attains stellar performance across all sessions,
setting a new benchmark PD of 1.29%, a new base session
accuracy of 98.13% and final session accuracy of 96.84%
when using the ViT backbone fine-tuned on ImageNet-1K.
Interestingly, the less powerful backbone (with ImageNet-1K
fine-tuning) outperforms its counterpart, likely due to better
alignment with the minilmageNet distribution. Overall, these
results validate that our FSCIL framework, with its targeted
additive updates and refined classifier weights, effectively
maintains robust representations while accommodating new
classes, leading to significant improvements over existing
methods.



TABLE I
THE PERFORMANCE OF SESSIONS ON CUB200.

Method Spase 1 2 3 4 5 6 2 8 9 Sist Savg PD
CECT [40] 7540 7323 7200 68.70 6935 6778 67.01 6640 6578 6557 6570 72.41 9.70
L2Pf [41] 4497 3028 2721 2444 2241 2081 1947 1819 17.16 1626 1541 2499 29.56
DualPrompti [42] 5337 4599 41.15 3733 3432 3157 2944 27.58 2592 2455 2325 3630 30.12
NC-FSCIL{ [13] 7849 7152 65.54 6030 5581 5196 4872 4578 43.18 4092 38.80 S57.92 39.69
WaRP; [12] 67.74 6421 61.06 57.80 5578 5381 52.82 51.61 50.13 5002 4936 5585 18.38
PL-FSCIL1[18] 85.16 8540 8275 7522 7722 7325 7239 7024 6797 6833 69.86 7525 15.30
PriViLeget [17] 8221 8125 8045 7776 7778 7595 7569 7600 75.19 75.19 7508 77.50 4.71
Proposed Methodf 8747 8561 8446 8270 8270 81.14 80.60 81.02 8047 80.67 80.86 8252 6.6l
Proposed Method] 88.41 87.02 8627 8490 85.06 8345 8346 8398 8381 84.02 84.26 84.97 4.5

Note: Columns correspond to the base session (Spase), incremental sessions (1-9), the final session (Slast), the average accuracy (Savg), and the
performance drop (PD) between Spase and Spast-

TABLE II
THE PERFORMANCE OF SESSIONS ON CIFAR-100.

Method Sbase 1 2 3 4 5 6 7 Slast  Savg PD
CECT [40] 7420 7149 70.11 6734 6596 65.14 6474 6348 6148 67.10 12.72
L2Pf [41] 8329 76.81 7129 66.53 6238 58.68 5542 5249 4987 64.08 3342
DualPrompt} [42] 85.11 7842 7281 6792 63.69 5992 56.60 53.62 5093 6545 34.18
NC-FSCIL? [13] 89.51 8262 76.72 71.61 67.13 63.18 59.67 56.53 5370 6896 35.81
WaRP1 [12] 86.20 8258 7930 7557 7346 71.07 6958 67.70 6548 7455 20.72
PL-FSCILY [18] 8573 7454 7477 7242 7298 7287 7249 71.62 75.13 74773 10.60
PriViLeget [17] 90.88 89.39 8897 87.55 87.83 8735 87.53 87.15 86.06 88.08 4.82
CKPD-FSCILf [35] 91.57 90.03 89.84 8844 88.58 87.74 87.82 8736 8622 88.62 5.35
Proposed Method{ 9343 91.42 9083 89.17 89.30 88.89 8891 88.63 8742 89.78 6.01

Proposed Methodi 93.92 92.12 91.67 90.48 90.60 90.21 90.16 89.83 88.75 90.86 5.17

Note: The columns represent the base session (Spase), incremental sessions (1-7), the final session (S)ast), the
average accuracy (Savg), and the performance drop (PD) between Shase and Siagt-

minilmageNet Performance Across Sessions

TABLE III
ABLATION STUDY: IMPACT OF APPLYING ADDITIVE UPDATES TO ONLY
THE FINAL n SELF-ATTENTION BLOCKS

-—

— e S — -
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the additive update is applied to O blocks, the model remains
identical to the frozen, pre-trained ViT, and only the classifier
is updated during training.

Table III summarizes our findings on the CUB-200 and
CIFAR-100 datasets. As we gradually increase the number
of self-attention layers receiving additive updates, the model
exhibits improved performance. On CUB-200, the average ac-

Sessions

Fig. 2. minilmageNet performance across sessions.

B. Ablation Study

Number of Updated Self-Attention Layers. In the first
ablation experiment, we study the effect of applying the
additive update only to the final n self-attention layers of
each transformer block in the ViT architecture. Note that when

curacy (Savg) increases from 77.37% (with O updated blocks)
to 84.97% (with all 12 blocks updated), resulting in a gain
of 7.60 percentage points, while the PD is reduced by over
4 percentage points. Similarly, on CIFAR-100, S,y improves



TABLE IV
COMPARISON OF SELF-ATTENTION AND MLP UPDATE STRATEGIES ON
CUB-200 AND CIFAR-100

Metric CUB-200 | CIFAR-100
Self-Attn MLP |  Self-Attn MLP
Spase 8841 (+0.56)  87.85 | 93.92(-0.55)  94.37
Slast 84.26 (+0.85) 8341 | 88.75(+0.56)  88.19
Save 84.97 (+0.80)  84.17 | 90.86 (+0.01)  90.85
PD 4.15 (+029) 444 5.17 (+1.01) 6.18

significantly from 60.48% to 90.86%, and PD decreases from
14.43% to 5.17%. The more pronounced improvements on
CIFAR-100 can be attributed to its dataset split and incremen-
tal session configuration, which features fewer training base
classes and a 5-way 5-shot format in each session, thereby
making it more susceptible to catastrophic forgetting. These
results suggest that updating a greater number of self-attention
layers significantly enhances the model’s adaptability while
preserving the robust representations learned during the base
session.

Impact of Additive Updates on MLP Layers. In this exper-
iment, we evaluate the impact of applying additive updates to
the feed-forward (MLP) layers within each transformer block.
Converse to our baseline, we instead freeze the self-attention
layers and apply the additive update only on the MLP layers,
then compare the resulting performance differences. Table IV
presents a comparison between self-attention and MLP update
strategies on CUB-200 and CIFAR-100 datasets.

On CUB-200, the self-attention update achieves a base
accuracy of 88.41% (0.56 points higher), a final session
accuracy of 84.26% (0.85 points higher), and a PD of 4.15%
(0.29 points lower) compared to the MLP update. On CIFAR-
100, although the MLP update shows a slightly higher base
accuracy (94.37% vs. 93.92%), the self-attention update attains
a higher final accuracy (88.75% vs. 88.19%) and a notably
lower PD (5.17% vs. 6.18%). Notably, the self-attention
update strategy also introduces fewer trainable parameters,
3d?, since it only modifies the QKV projection matrices.
However, updating both fully connected layers in the MLP
module introduces approximately 8d? parameters, significantly
increasing the parameter count.

VI. CONCLUSION

In this paper, we proposed a novel FSCIL framework that
leverages a frozen pre-trained ViT backbone augmented with
parameter-efficient additive updates. By selectively updating
only the self-attention layers while keeping the pre-trained
weights frozen, our method provides a simple strategy for
effectively integrating new classes with only few-shot samples
while preserving robust base representations. Extensive exper-
iments on CUB-200, CIFAR-100, and minilmageNet demon-
strate that our approach significantly outperforms previous
state-of-the-art methods in terms of base accuracy, incremental
accuracy, and performance drop. Our findings underscore

the advantages of targeted parameter tuning in mitigating
catastrophic forgetting and reducing overfitting in FSCIL.
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