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Abstract—Backdoor attacks pose a critical threat to computer
vision by embedding hidden triggers into inputs, causing models
to misclassify them into target labels. While extensive research
has focused on mitigating these attacks in object recognition
models through model cleansing, much less attention has been
given to detecting backdoored samples directly. Given the vast
datasets used in training, manual inspection for backdoor triggers
is impractical, and even state-of-the-art defense mechanisms fail
to fully neutralize their impact. To address this gap, we introduce
a novel method to detect unseen backdoored image types during
both training and inference. Leveraging the transformative suc-
cess of conditional prompt tuning in Vision Language Models
(VLMs), our approach trains learnable text prompt prefixes
to differentiate clean images from those with hidden backdoor
triggers. Furthermore, we shift the learned prefix based on the
image features for each sample through a lightweight, image-
conditioned network. Experiments demonstrate the exceptional
efficacy of this method, achieving an impressive average accuracy
of 84% across two renowned datasets for detecting unseen
backdoor triggers, establishing a new standard in backdoor
defense.

Index Terms—Adversarial Attacks, Backdoor Attacks, Vision-
Language Model, Parameter-Efficient Tuning, Prompt Tuning.

I. INTRODUCTION

Deep neural networks have revolutionized the field of
computer vision, achieving human-level performance on tasks
such as image classification [1] and object detection [2]. This
remarkable progress has led to widespread deployment of
DNN:ss in safety-critical applications ranging from autonomous
vehicles and medical diagnosis to biometric authentication [3],
[4]. However, as these models become increasingly integrated
into real-world systems, their vulnerability to adversarial
manipulation poses significant security risks. With backdoor
attacks [5], an adversary stealthily embeds a hidden trigger
into inputs so that, at inference time, any trigger-embedded
example is misclassified into an attacker-chosen target class.
For instance, a backdoored traffic sign recognition system
might classify stop signs as speed limit signs when a specific
sticker is present, while correctly recognizing normal signs
with no trigger present (See Fig. 1). This dual behavior makes
backdoor attacks exceptionally difficult to detect through stan-
dard validation procedures.

Current state-of-the-art defenses predominantly focus on
model-level mitigation [6], [7], [8], [9], [10], attempting to
detect or remove backdoors after training. These post-hoc
approaches suffer from several critical limitations. First, they
require the model to have already been trained on poisoned
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Fig. 1: Overview of backdoor attacks. A backdoored model correctly
classifies clean inputs but misclassifies any input containing the
hidden trigger to a target class specified by the adversary.

data, allowing the backdoor to be embedded before any
defense mechanism is applied. Second, many defenses in-
cur substantial computational costs for model cleansing or
retraining. Third, they often assume prior knowledge about
trigger characteristics which are to be classified and removed,
limiting their applicability in practice. Fourth, recent adaptive
attacks have demonstrated that many model-level defenses
can be bypassed through careful trigger design or training
strategies. Finally, these methods typically degrade model
performance on clean samples while attempting to mitigate
backdoor effects, presenting an undesirable trade-off between
security and utility.

In contrast to model-level defenses, we introduce a pre-
training data cleansing paradigm that identifies and filters poi-
soned samples before downstream training, preventing back-
door injection at its source. This proactive approach avoids
the computational overhead of post-hoc model purification
and integrates seamlessly into existing training pipelines.
Furthermore, a critical challenge in backdoor detection is
generalization to novel, unseen attack types. Adversaries con-
tinuously develop new trigger designs and injection strategies,
and detectors trained only on known attacks may fail catas-
trophically against new variants. To address this, we leverage
Vision-Language Models (VLMs) [11] and conditional prompt
tuning [12] to generalize to unseen backdoor triggers in
a zero-shot manner. We show that CLIP’s rich multimodal
representations, learned from hundreds of millions of image-
text pairs, can capture subtle differences between clean and
backdoored images, even for trigger types never seen during
training. Our main contributions can be summarized as:



e We introduce a novel pre-training backdoor detection
framework that identifies unseen backdoor attack types
before model training, preventing backdoor injection at
its source.

o We design an image-conditioned meta-network that en-
ables instance-specific prompt adjustments, capturing
subtle per-sample trigger characteristics.

o Through extensive experiments on CIFAR-10 and GT-
SRB with six diverse backdoor attacks, we demonstrate
that our method achieves state-of-the-art performance in
detecting unseen backdoors.

II. RELATED WORK
A. Backdoor Attacks and Defenses

Backdoor attacks [S5] poison training data with inputs
stamped by a trigger so the model behaves normally on clean
samples but misclassifies any input containing the trigger; the
idea extends beyond vision to NLP [13]. Early work like
BadNets [5] used simple patterns, while trojaning [14] reverse-
engineers neuron activations to craft potent triggers. Subse-
quent variants increase stealth, for example steganographic,
pixel-level embeddings [15], or naturalness, such as warping-
based triggers in WaNet [16].

Defenses span the adversarial machine learning (AML) life-
cycle but largely focus on model-level mitigation, leaving data
vetting underexplored [17]. Training-time filters attempt to
remove poisons [18], [19], [20], [21]: VisionGuard compares
softmax responses under transformations [19], Deep k-NN
prunes anomalies via feature-space voting [20], and Holmes
ensembles external detectors on labels and top-k logits [21].
Traditional approaches assume a compromised model and
clean it post-training [22], [23], [24], which is reactive and
computationally costly.

B. Vision-Language Models and Prompt Tuning

Vision-Language Models (VLMs) such as CLIP [11], have
revolutionized multimodal learning by learning unified rep-
resentations from paired image-text data. CLIP, trained on
400 million image-text pairs from the internet, demonstrates
remarkable zero-shot transfer capabilities and has become
a foundation model for numerous downstream tasks. The
joint training of image and text encoders creates a shared
embedding space where semantically similar concepts cluster
together, regardless of modality. Prompt tuning has emerged
as an efficient adaptation strategy for large pre-trained models
[25]. Rather than fine-tuning entire networks, prompt tuning
learns a small set of continuous vectors prepended to input
sequences while keeping the model frozen. CoOp [26] first
applied prompt tuning to CLIP for few-shot image recog-
nition, demonstrating significant improvements over hand-
crafted prompts. CoCoOp [12] extended this by conditioning
prompts on individual image features through a lightweight
meta-network, enabling instance-specific adaptations.

III. PRELIMINARIES

A. Problem Setup

We consider a data-centric detection setting where the
goal is to flag backdoored images before any downstream

model is trained. Let D = {(z4,v;)}Y; be the underlying
dataset, where x; € X is an image and y; € {1,...,K}
is its semantic class label. An adversary selects a subset
Dy C D with poisoning rate a« = |D,|/|D| and applies
an image transform Gx : X — X and optional label map
Gy to obtain poisoned pairs (2/,y") = (Gx(z), Gy (y)).
This yields a pool containing both clean images and im-
ages with hidden backdoor triggers. For detection, we define
Daer = {(x:,2:)}Y,, where z; € {clean,backdoored} is
a backdoor label indicating whether x; contains a trigger,
regardless of its semantic class y;. Our objective is to learn
a binary decision function c(z) € {clean,backdoored} that
generalizes to unseen backdoor attack families. We focus on
detecting backdoored inputs Gx (x) rather than defending or
retraining a downstream classifier.

B. VLMS

Models such as CLIP [11], trained on hundreds of mil-
lions of image—text pairs, map both modalities into compact,
information-rich embeddings within a shared space. This joint
training enables strong zero-shot transfer where short natural-
language prompts can act as lightweight classifiers when
compared to image features through cosine similarity. The
same property makes VLMs a natural fit for prompt tuning
[25], where both the image encoder and the text encoder are
frozen and a small set of continuous prompt tokens is learned
to steer the text side toward a downstream objective. This
yields efficient adaptation with minimal additional parameters
and good robustness under distribution shift.

Specifically, a VLM comprises a token embedding layer
E(-), a text encoder fi(-), and an image encoder f;(-)
that project inputs into a common feature space, typically
followed by normalization and a temperature-scaled similar-
ity for scoring. The prompt design controls the adaptation
capacity without touching the backbone, letting us exploit
the model’s broad multimodal prior while keeping compute
low. In our setting, we construct text prompts for the binary
labels {“clean”, “backdoored”} and tune only a small text-
side adapter to separate clean from backdoored images, while
reusing the strong visual representations learned by CLIP.

IV. PROPOSED METHOD

Our goal is to identify unseen backdoored types injected
by adversaries to images by harnessing conditional prompt
tuning of a frozen VLM, specifically CLIP [11]. CLIP’s
backbone consists of an image encoder f X — RP
and text encoder f; : T — R<. On top, we learn a small
set of continuous prompt tokens and a lightweight image-
conditioned meta-network that adapts those tokens on a per-
sample basis. The learned prompts are prepended to class
names {“clean”, “backdoored”} and encoded by the frozen
ft. For an input image =, we embed it with f; and compare
its normalized feature V to normalized, instance-conditioned
text features {7} clean, T, backdoored } Using a scaled cosine
similarity. Figure 2 depicts the overall architecture of our
detector.
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Fig. 2: The overall architecture of the proposed method on classifying unseen backdoor attack images.

A. Instance-Conditioned Prompt Tuning

We initialize three continuous prompt vectors pi,p2,ps €
R? with the word embeddings of the phrase “a photo of”,
where d = 512 matches CLIP’s token embedding dimension;
we denote the number of prompt tokens by m = 3. For each
backdoor label ¢ € {clean, backdoored} we form a text prompt
by concatenating these learnable tokens with the token em-
bedding of the class name, i.e., prompt, = [p1, p2,p3, E(c)],
where E(-) is CLIP’s token embedding layer. Passing this se-
quence through the frozen text encoder and normalizing yields
a class embedding T, = f;(prompt,)/|| f:(prompt,)||2 € R<.

Each training image x; is encoded by the frozen image en-
coder and then normalized as V; = fr(z;)/| fr(z;)|2 € RP.
To capture subtle, per-image trigger patterns, we introduce
a lightweight meta-network MetaNet : RP — R? that
leverages the image feature V; and outputs a shift vector
d; = MetaNet(V;). We apply the same shift to each of the
m prompt slots, i.e., p; = p; + d; for ¢ = 1,...,m, which
encourages coherent edits in text space while keeping the
parameter count small. The instance-conditioned prompt for
label ¢ and image x; is then [p}, p5, p5, E(c)], which we feed
to the frozen text encoder and normalize to obtain an instance-
conditioned text feature:

ft( Ilvpl27p{3>7E(C)]) ]
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We score each backdoor label ¢ with a temperature (scale)
parameter 7 > 0 using cosine similarity between the image
and text embeddings, ie., sj. = 7(V; - Tj.). Let z; €
{clean, backdoored} denote the backdoor label of z; in the
detection dataset. The detector is trained with a standard cross-
entropy objective over the two backdoor labels:
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B. Inference

During inference, the soft prompts {p;} and the MetaNet
parameters are frozen. For each test image x;, we compute
the normalized image feature Vj, obtain the shift J; =
MetaNet(V;), and form the instance-conditioned prompts and
text embeddings T} . for ¢ € {clean, backdoored} exactly as in
training. We then compute scores s; . = 7 (V; - Tj ) and pre-
dict the backdoor label via Z; = arg maxce {clean,backdoored} Sj,c-
This procedure aligns clean and backdoored images with their
corresponding image-conditioned text embeddings and enables
robust detection of unseen backdoor triggers, without ever
predicting the underlying semantic class .

V. EXPERIMENTAL RESULTS
A. Implementation Details

Attack Models. We comprehensively evaluate our detector on
six established backdoor schemes representing diverse threat
models. BadNets-SQ [5] embeds a checkerboard pattern in
the bottom-right corner, creating a visible, localized trigger.
BadNets-PX [5] randomly modifies individual pixels scat-
tered throughout the image, producing a subtle, distributed
trigger pattern. Trojan-SQ [14] employs a square trigger
with label-specific patterns, where different source classes
use distinct triggers. Trojan-WM [14] applies watermark-style
triggers blended with the original image content using alpha
compositing. ¢>-inv [15] generates imperceptible /5-bounded
perturbations optimized for specific source-target class pairs.



TABLE I: Unseen Attack Type Classification Accuracy (%).

Dataset Method Trojan-WM  Trojan-SQ  /(>-inv  {p-inv  Badnets-SQ  Badnets-PX | Average
Simple-CNN 64.86 75.10 51.56  49.93 49.94 50.10 56.92

CIFAR-10 Deep-CNN 76.37 58.69 55.77 50.18 50.14 50.04 56.87
ResNet-18 84.52 75.40 5342  51.17 50.00 54.29 61.47
Proposed 98.41 98.62 88.40  98.05 83.24 63.03 88.79
Simple-CNN 82.86 60.80 53.58 50.84 50.00 50.03 58.02

GTSRB Deep-CNN 83.93 61.61 53.17 51.45 50.01 50.04 58.36
ResNet-18 74.40 87.52 52.75 69.29 50.01 50.02 64.00
Proposed 98.49 97.41 7420  79.98 69.13 59.71 79.15

Ly-inv [15] creates sparse {y-constrained perturbations affect-
ing only a small fraction of pixels while remaining visually
imperceptible. These attacks span a wide spectrum of visibility
and spatial distribution

Datasets. We conduct experiments on two widely-used com-
puter vision benchmarks. CIFAR-10 [27] contains 50,000
training and 10,000 test images across 10 object classes
(airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck). GTSRB [28]: The German Traffic Sign Recognition
Benchmark comprises 39,209 training and 12,630 test images
spanning 43 traffic sign categories. These datasets provide
complementary challenges: CIFAR-10 offers controlled con-
ditions with uniform resolution, while GTSRB presents real-
world complexity with varying image sizes, lighting condi-
tions, and background clutter.

Baseline Models. We compare our VLM-based detector
against three CNN architectures trained from scratch on the
same binary detection task: Simple-CNN [29] consists of three
convolutional layers and a fully connected, Deep-CNN [28]
consists of six convolutional layers with a dropout layer and
fully connected layer for classification, and ResNet-18 [30].
Training Configuration. We freeze CLIP’s pre-trained ViT-
B/16 encoders (both image and text), learning only the
prompt embeddings and MetaNet parameters. Our learnable
components comprise three prompt tokens (initialized with
embeddings of “a photo of”) and a lightweight MetaNet with
two fully-connected layers (768—256—512 dimensions) with
ReLU activations. We optimize using Adam with learning rate
2 x 103 for prompts and 1 x 10~* for MetaNet, applying
weight decay A = 1 x 10~*. Training proceeds for 10 epochs
with batch size 128 and cosine similarity temperature (scale)
7 = 100.

B. Main Results

Table I reports the detection accuracy for each experiment’s
unseen backdoor type on CIFAR-10 and GTSRB. Our prompt-
conditioned VLM consistently outperforms CNN baselines
and a ResNet-18 detector trained from scratch. On CIFAR-10,
our proposed prompt-tuned VLM detector achieves an average
accuracy of 88.79%, outperforming the ResNet-18 baseline by
27.3 points. On GTSRB, average accuracy reaches 79.15%, a
15-point improvement over ResNet-18.

Regarding per-attack analysis, for both datasets, visible and
spatially coherent triggers, such as Trojan-WM and Trojan-SQ,
are detected with very high accuracy (CIFAR-10: 98.41/98.62;
GTSRB: 98.49/97.41). Imperceptible or global perturbations
are more challenging but still show strong gains over baselines:
on CIFAR-10, /5-inv reaches 88.40% and /y-inv 98.05%:;

on GTSRB, /5-inv and ¢y-inv achieve 74.20% and 79.98%,
respectively. However, local but low-magnitude pixel triggers
(BadNets-PX) are the most difficult unseen backdoor attacks
to detect (63.03% on CIFAR-10; 59.71% on GTSRB). This
is likely because their sparse, distributed alterations resemble
sensor noise or natural texture and thus require more aggres-
sive instance adaptation or ensembling. In contrast, structured
corner triggers (BadNets-SQ) are substantially easier (83.24%
and 69.13%), reflecting the model’s ability to align text em-
beddings toward localized triggers when guided by the image-
conditioned shift.

These results demonstrate that conditioning continuous
prompts on image embeddings enables robust generalization to
novel backdoor patterns. By training on five attack types and
holding out the sixth for inference, our method consistently
surpasses standard CNNs and ResNet-18 across both datasets.

VI. DISCUSSION AND LIMITATIONS

From a deployment perspective, the detector’s compute and
parameter overhead are minimal since only three learnable
prompt tokens and a small MLP on top of frozen CLIP
encoders are trainable. Furthermore, we leverage the smaller
CLIP variant (ViT-B/16) for this study, making our proposed
method feasible as a pre-training filter.

The empirical gains indicate that instance-conditioned
prompt tuning leverages CLIP’s broad prior effectively while
staying data-efficient and stable. It works especially well
on clearly structured triggers, likely because the image-
conditioned shift can pull the text prototypes toward those
localized artifacts. The more difficult cases are sparse, low-
magnitude perturbations (BadNets-PX) that look like sensor
noise or normal texture, particularly under domain shifts (e.g.,
GTSRB). Closing this gap will require methods that better
capture fine, high-frequency details without becoming brittle
to natural variation.

Several limitations temper the present findings. We test
a leave-one-attack-out setup over six families; a stronger,
adaptive attacker could design triggers to shrink our margin or
imitate the “clean” direction. Results carry from CIFAR-10 to
GTSRB, but larger domain shifts may need recalibrating 7 or
light template ensembling. The shared per-image shift & keeps
the model small but can miss pixel-distributed triggers. Very
low poisoning rates and label noise can bias training toward
“clean” images.

VII. CONCLUSION

In this paper we propose a novel, preventative detector
that flags previously unseen, backdoored images before they



can contaminate training data or slip through at inference.
Experimental results demonstrate that our proposed image-
conditioned VLM can detect a variety of unseen backdoor
threats by leveraging the knowledge learned from previously
seen backdoor triggers. Future work will focus on improving
detection rates on sparse pixel-level triggers, exploring addi-
tional parameter-efficient fine-tuning mechanisms, and validat-
ing more robust and general datasets with additional triggers.
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