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Abstract—Backdoor attacks pose a critical threat to computer
vision by embedding hidden triggers into inputs, causing models
to misclassify them into target labels. While extensive research
has focused on mitigating these attacks in object recognition
models through model cleansing, much less attention has been
given to detecting backdoored samples directly. Given the vast
datasets used in training, manual inspection for backdoor triggers
is impractical, and even state-of-the-art defense mechanisms fail
to fully neutralize their impact. To address this gap, we introduce
a novel method to detect unseen backdoored image types during
both training and inference. Leveraging the transformative suc-
cess of conditional prompt tuning in Vision Language Models
(VLMs), our approach trains learnable text prompt prefixes
to differentiate clean images from those with hidden backdoor
triggers. Furthermore, we shift the learned prefix based on the
image features for each sample through a lightweight, image-
conditioned network. Experiments demonstrate the exceptional
efficacy of this method, achieving an impressive average accuracy
of 84% across two renowned datasets for detecting unseen
backdoor triggers, establishing a new standard in backdoor
defense.

Index Terms—Adversarial Attacks, Backdoor Attacks, Vision-
Language Model, Parameter-Efficient Tuning, Prompt Tuning.

I. INTRODUCTION

Deep neural networks have revolutionized the field of

computer vision, achieving human-level performance on tasks

such as image classification [1] and object detection [2]. This

remarkable progress has led to widespread deployment of

DNNs in safety-critical applications ranging from autonomous

vehicles and medical diagnosis to biometric authentication [3],

[4]. However, as these models become increasingly integrated

into real-world systems, their vulnerability to adversarial

manipulation poses significant security risks. With backdoor

attacks [5], an adversary stealthily embeds a hidden trigger

into inputs so that, at inference time, any trigger-embedded

example is misclassified into an attacker-chosen target class.

For instance, a backdoored traffic sign recognition system

might classify stop signs as speed limit signs when a specific

sticker is present, while correctly recognizing normal signs

with no trigger present (See Fig. 1). This dual behavior makes

backdoor attacks exceptionally difficult to detect through stan-

dard validation procedures.

Current state-of-the-art defenses predominantly focus on

model-level mitigation [6], [7], [8], [9], [10], attempting to

detect or remove backdoors after training. These post-hoc

approaches suffer from several critical limitations. First, they

require the model to have already been trained on poisoned
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Fig. 1: Overview of backdoor attacks. A backdoored model correctly
classifies clean inputs but misclassifies any input containing the
hidden trigger to a target class specified by the adversary.

data, allowing the backdoor to be embedded before any

defense mechanism is applied. Second, many defenses in-

cur substantial computational costs for model cleansing or

retraining. Third, they often assume prior knowledge about

trigger characteristics which are to be classified and removed,

limiting their applicability in practice. Fourth, recent adaptive

attacks have demonstrated that many model-level defenses

can be bypassed through careful trigger design or training

strategies. Finally, these methods typically degrade model

performance on clean samples while attempting to mitigate

backdoor effects, presenting an undesirable trade-off between

security and utility.

In contrast to model-level defenses, we introduce a pre-

training data cleansing paradigm that identifies and filters poi-

soned samples before downstream training, preventing back-

door injection at its source. This proactive approach avoids

the computational overhead of post-hoc model purification

and integrates seamlessly into existing training pipelines.

Furthermore, a critical challenge in backdoor detection is

generalization to novel, unseen attack types. Adversaries con-

tinuously develop new trigger designs and injection strategies,

and detectors trained only on known attacks may fail catas-

trophically against new variants. To address this, we leverage

Vision-Language Models (VLMs) [11] and conditional prompt

tuning [12] to generalize to unseen backdoor triggers in

a zero-shot manner. We show that CLIP’s rich multimodal

representations, learned from hundreds of millions of image-

text pairs, can capture subtle differences between clean and

backdoored images, even for trigger types never seen during

training. Our main contributions can be summarized as:



• We introduce a novel pre-training backdoor detection

framework that identifies unseen backdoor attack types

before model training, preventing backdoor injection at

its source.

• We design an image-conditioned meta-network that en-

ables instance-specific prompt adjustments, capturing

subtle per-sample trigger characteristics.

• Through extensive experiments on CIFAR-10 and GT-

SRB with six diverse backdoor attacks, we demonstrate

that our method achieves state-of-the-art performance in

detecting unseen backdoors.

II. RELATED WORK

A. Backdoor Attacks and Defenses

Backdoor attacks [5] poison training data with inputs

stamped by a trigger so the model behaves normally on clean

samples but misclassifies any input containing the trigger; the

idea extends beyond vision to NLP [13]. Early work like

BadNets [5] used simple patterns, while trojaning [14] reverse-

engineers neuron activations to craft potent triggers. Subse-

quent variants increase stealth, for example steganographic,

pixel-level embeddings [15], or naturalness, such as warping-

based triggers in WaNet [16].

Defenses span the adversarial machine learning (AML) life-

cycle but largely focus on model-level mitigation, leaving data

vetting underexplored [17]. Training-time filters attempt to

remove poisons [18], [19], [20], [21]: VisionGuard compares

softmax responses under transformations [19], Deep k-NN

prunes anomalies via feature-space voting [20], and Holmes

ensembles external detectors on labels and top-k logits [21].

Traditional approaches assume a compromised model and

clean it post-training [22], [23], [24], which is reactive and

computationally costly.

B. Vision-Language Models and Prompt Tuning

Vision-Language Models (VLMs) such as CLIP [11], have

revolutionized multimodal learning by learning unified rep-

resentations from paired image-text data. CLIP, trained on

400 million image-text pairs from the internet, demonstrates

remarkable zero-shot transfer capabilities and has become

a foundation model for numerous downstream tasks. The

joint training of image and text encoders creates a shared

embedding space where semantically similar concepts cluster

together, regardless of modality. Prompt tuning has emerged

as an efficient adaptation strategy for large pre-trained models

[25]. Rather than fine-tuning entire networks, prompt tuning

learns a small set of continuous vectors prepended to input

sequences while keeping the model frozen. CoOp [26] first

applied prompt tuning to CLIP for few-shot image recog-

nition, demonstrating significant improvements over hand-

crafted prompts. CoCoOp [12] extended this by conditioning

prompts on individual image features through a lightweight

meta-network, enabling instance-specific adaptations.

III. PRELIMINARIES

A. Problem Setup

We consider a data-centric detection setting where the

goal is to flag backdoored images before any downstream

model is trained. Let D = {(xi, yi)}
N
i=1

be the underlying

dataset, where xi ∈ X is an image and yi ∈ {1, . . . ,K}
is its semantic class label. An adversary selects a subset

Ds ⊂ D with poisoning rate α = |Ds|/|D| and applies

an image transform GX : X → X and optional label map

GY to obtain poisoned pairs (x′, y′) = (GX(x), GY (y)).
This yields a pool containing both clean images and im-

ages with hidden backdoor triggers. For detection, we define

Ddet = {(xi, zi)}
N
i=1

, where zi ∈ {clean, backdoored} is

a backdoor label indicating whether xi contains a trigger,

regardless of its semantic class yi. Our objective is to learn

a binary decision function c(x) ∈ {clean, backdoored} that

generalizes to unseen backdoor attack families. We focus on

detecting backdoored inputs GX(x) rather than defending or

retraining a downstream classifier.

B. VLMS

Models such as CLIP [11], trained on hundreds of mil-

lions of image–text pairs, map both modalities into compact,

information-rich embeddings within a shared space. This joint

training enables strong zero-shot transfer where short natural-

language prompts can act as lightweight classifiers when

compared to image features through cosine similarity. The

same property makes VLMs a natural fit for prompt tuning

[25], where both the image encoder and the text encoder are

frozen and a small set of continuous prompt tokens is learned

to steer the text side toward a downstream objective. This

yields efficient adaptation with minimal additional parameters

and good robustness under distribution shift.

Specifically, a VLM comprises a token embedding layer

E(·), a text encoder ft(·), and an image encoder fI(·)
that project inputs into a common feature space, typically

followed by normalization and a temperature-scaled similar-

ity for scoring. The prompt design controls the adaptation

capacity without touching the backbone, letting us exploit

the model’s broad multimodal prior while keeping compute

low. In our setting, we construct text prompts for the binary

labels {“clean”, “backdoored”} and tune only a small text-

side adapter to separate clean from backdoored images, while

reusing the strong visual representations learned by CLIP.

IV. PROPOSED METHOD

Our goal is to identify unseen backdoored types injected

by adversaries to images by harnessing conditional prompt

tuning of a frozen VLM, specifically CLIP [11]. CLIP’s

backbone consists of an image encoder fI : X → R
D

and text encoder ft : T → R
d. On top, we learn a small

set of continuous prompt tokens and a lightweight image-

conditioned meta-network that adapts those tokens on a per-

sample basis. The learned prompts are prepended to class

names {“clean”, “backdoored”} and encoded by the frozen

ft. For an input image x, we embed it with fI and compare

its normalized feature V to normalized, instance-conditioned

text features {Tx,clean, Tx,backdoored} using a scaled cosine

similarity. Figure 2 depicts the overall architecture of our

detector.
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Fig. 2: The overall architecture of the proposed method on classifying unseen backdoor attack images.

A. Instance-Conditioned Prompt Tuning

We initialize three continuous prompt vectors p1, p2, p3 ∈
R

d with the word embeddings of the phrase “a photo of”,

where d = 512 matches CLIP’s token embedding dimension;

we denote the number of prompt tokens by m = 3. For each

backdoor label c ∈ {clean, backdoored} we form a text prompt

by concatenating these learnable tokens with the token em-

bedding of the class name, i.e., promptc = [p1, p2, p3, E(c)],
where E(·) is CLIP’s token embedding layer. Passing this se-

quence through the frozen text encoder and normalizing yields

a class embedding Tc = ft(promptc)/∥ft(promptc)∥2 ∈ R
d.

Each training image xj is encoded by the frozen image en-

coder and then normalized as Vj = fI(xj)/∥fI(xj)∥2 ∈ R
D.

To capture subtle, per-image trigger patterns, we introduce

a lightweight meta-network MetaNet : R
D → R

d that

leverages the image feature Vj and outputs a shift vector

δj = MetaNet(Vj). We apply the same shift to each of the

m prompt slots, i.e., p′i = pi + δj for i = 1, . . . ,m, which

encourages coherent edits in text space while keeping the

parameter count small. The instance-conditioned prompt for

label c and image xj is then [p′1, p
′
2, p

′
3, E(c)], which we feed

to the frozen text encoder and normalize to obtain an instance-

conditioned text feature:

Tj,c =
ft
(

[p′1, p
′
2, p

′
3, E(c)]

)

∥

∥ft
(

[p′
1
, p′

2
, p′

3
, E(c)]

)
∥

∥

2

. (1)

We score each backdoor label c with a temperature (scale)

parameter τ > 0 using cosine similarity between the image

and text embeddings, i.e., sj,c = τ (Vj · Tj,c). Let zj ∈
{clean, backdoored} denote the backdoor label of xj in the

detection dataset. The detector is trained with a standard cross-

entropy objective over the two backdoor labels:

L = −
1

N

N
∑

j=1

log
exp(sj,zj )

∑

c∈{clean,backdoored} exp(sj,c)
. (2)

B. Inference

During inference, the soft prompts {pi} and the MetaNet

parameters are frozen. For each test image xj , we compute

the normalized image feature Vj , obtain the shift δj =
MetaNet(Vj), and form the instance-conditioned prompts and

text embeddings Tj,c for c ∈ {clean, backdoored} exactly as in

training. We then compute scores sj,c = τ (Vj · Tj,c) and pre-

dict the backdoor label via ẑj = argmaxc∈{clean,backdoored} sj,c.

This procedure aligns clean and backdoored images with their

corresponding image-conditioned text embeddings and enables

robust detection of unseen backdoor triggers, without ever

predicting the underlying semantic class y.

V. EXPERIMENTAL RESULTS

A. Implementation Details

Attack Models. We comprehensively evaluate our detector on

six established backdoor schemes representing diverse threat

models. BadNets-SQ [5] embeds a checkerboard pattern in

the bottom-right corner, creating a visible, localized trigger.

BadNets-PX [5] randomly modifies individual pixels scat-

tered throughout the image, producing a subtle, distributed

trigger pattern. Trojan-SQ [14] employs a square trigger

with label-specific patterns, where different source classes

use distinct triggers. Trojan-WM [14] applies watermark-style

triggers blended with the original image content using alpha

compositing. ℓ2-inv [15] generates imperceptible ℓ2-bounded

perturbations optimized for specific source-target class pairs.



TABLE I: Unseen Attack Type Classification Accuracy (%).

Dataset Method Trojan-WM Trojan-SQ ℓ2-inv ℓ0-inv Badnets-SQ Badnets-PX Average

CIFAR-10

Simple-CNN 64.86 75.10 51.56 49.93 49.94 50.10 56.92
Deep-CNN 76.37 58.69 55.77 50.18 50.14 50.04 56.87
ResNet-18 84.52 75.40 53.42 51.17 50.00 54.29 61.47
Proposed 98.41 98.62 88.40 98.05 83.24 63.03 88.79

GTSRB

Simple-CNN 82.86 60.80 53.58 50.84 50.00 50.03 58.02
Deep-CNN 83.93 61.61 53.17 51.45 50.01 50.04 58.36
ResNet-18 74.40 87.52 52.75 69.29 50.01 50.02 64.00
Proposed 98.49 97.41 74.20 79.98 69.13 59.71 79.15

ℓ0-inv [15] creates sparse ℓ0-constrained perturbations affect-

ing only a small fraction of pixels while remaining visually

imperceptible. These attacks span a wide spectrum of visibility

and spatial distribution

Datasets. We conduct experiments on two widely-used com-

puter vision benchmarks. CIFAR-10 [27] contains 50,000

training and 10,000 test images across 10 object classes

(airplane, automobile, bird, cat, deer, dog, frog, horse, ship,

truck). GTSRB [28]: The German Traffic Sign Recognition

Benchmark comprises 39,209 training and 12,630 test images

spanning 43 traffic sign categories. These datasets provide

complementary challenges: CIFAR-10 offers controlled con-

ditions with uniform resolution, while GTSRB presents real-

world complexity with varying image sizes, lighting condi-

tions, and background clutter.

Baseline Models. We compare our VLM-based detector

against three CNN architectures trained from scratch on the

same binary detection task: Simple-CNN [29] consists of three

convolutional layers and a fully connected, Deep-CNN [28]

consists of six convolutional layers with a dropout layer and

fully connected layer for classification, and ResNet-18 [30].

Training Configuration. We freeze CLIP’s pre-trained ViT-

B/16 encoders (both image and text), learning only the

prompt embeddings and MetaNet parameters. Our learnable

components comprise three prompt tokens (initialized with

embeddings of “a photo of”) and a lightweight MetaNet with

two fully-connected layers (768→256→512 dimensions) with

ReLU activations. We optimize using Adam with learning rate

2 × 10−3 for prompts and 1 × 10−4 for MetaNet, applying

weight decay λ = 1× 10−4. Training proceeds for 10 epochs

with batch size 128 and cosine similarity temperature (scale)

τ = 100.

B. Main Results

Table I reports the detection accuracy for each experiment’s

unseen backdoor type on CIFAR-10 and GTSRB. Our prompt-

conditioned VLM consistently outperforms CNN baselines

and a ResNet-18 detector trained from scratch. On CIFAR-10,

our proposed prompt-tuned VLM detector achieves an average

accuracy of 88.79%, outperforming the ResNet-18 baseline by

27.3 points. On GTSRB, average accuracy reaches 79.15%, a

15-point improvement over ResNet-18.

Regarding per-attack analysis, for both datasets, visible and

spatially coherent triggers, such as Trojan-WM and Trojan-SQ,

are detected with very high accuracy (CIFAR-10: 98.41/98.62;

GTSRB: 98.49/97.41). Imperceptible or global perturbations

are more challenging but still show strong gains over baselines:

on CIFAR-10, ℓ2-inv reaches 88.40% and ℓ0-inv 98.05%;

on GTSRB, ℓ2-inv and ℓ0-inv achieve 74.20% and 79.98%,

respectively. However, local but low-magnitude pixel triggers

(BadNets-PX) are the most difficult unseen backdoor attacks

to detect (63.03% on CIFAR-10; 59.71% on GTSRB). This

is likely because their sparse, distributed alterations resemble

sensor noise or natural texture and thus require more aggres-

sive instance adaptation or ensembling. In contrast, structured

corner triggers (BadNets-SQ) are substantially easier (83.24%

and 69.13%), reflecting the model’s ability to align text em-

beddings toward localized triggers when guided by the image-

conditioned shift.

These results demonstrate that conditioning continuous

prompts on image embeddings enables robust generalization to

novel backdoor patterns. By training on five attack types and

holding out the sixth for inference, our method consistently

surpasses standard CNNs and ResNet-18 across both datasets.

VI. DISCUSSION AND LIMITATIONS

From a deployment perspective, the detector’s compute and

parameter overhead are minimal since only three learnable

prompt tokens and a small MLP on top of frozen CLIP

encoders are trainable. Furthermore, we leverage the smaller

CLIP variant (ViT-B/16) for this study, making our proposed

method feasible as a pre-training filter.

The empirical gains indicate that instance-conditioned

prompt tuning leverages CLIP’s broad prior effectively while

staying data-efficient and stable. It works especially well

on clearly structured triggers, likely because the image-

conditioned shift can pull the text prototypes toward those

localized artifacts. The more difficult cases are sparse, low-

magnitude perturbations (BadNets-PX) that look like sensor

noise or normal texture, particularly under domain shifts (e.g.,

GTSRB). Closing this gap will require methods that better

capture fine, high-frequency details without becoming brittle

to natural variation.

Several limitations temper the present findings. We test

a leave-one-attack-out setup over six families; a stronger,

adaptive attacker could design triggers to shrink our margin or

imitate the “clean” direction. Results carry from CIFAR-10 to

GTSRB, but larger domain shifts may need recalibrating τ or

light template ensembling. The shared per-image shift δ keeps

the model small but can miss pixel-distributed triggers. Very

low poisoning rates and label noise can bias training toward

“clean” images.

VII. CONCLUSION

In this paper we propose a novel, preventative detector

that flags previously unseen, backdoored images before they



can contaminate training data or slip through at inference.

Experimental results demonstrate that our proposed image-

conditioned VLM can detect a variety of unseen backdoor

threats by leveraging the knowledge learned from previously

seen backdoor triggers. Future work will focus on improving

detection rates on sparse pixel-level triggers, exploring addi-

tional parameter-efficient fine-tuning mechanisms, and validat-

ing more robust and general datasets with additional triggers.
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