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ABSTRACT

One-shot learning focuses on adapting pretrained models to

recognize newly introduced and unseen classes based on a

single labeled image. While variations of few-shot and zero-

shot learning exist, one-shot learning remains a challenging

yet crucial problem due to its ability to generalize knowledge

to unseen classes from just one human-annotated image. In

this paper, we introduce a transductive one-shot learning

approach that employs subspace decomposition to utilize

the information from labeled images in the support set

and unlabeled images in the query set. These images are

decomposed into a linear combination of latent variables

representing primitives captured by smaller subspaces. By

representing images in the query set as linear combina-

tions of these latent primitives, we can propagate the label

from a single image in the support set to query images

that share similar combinations of primitives. Through a

comprehensive quantitative analysis across various neural

network feature extractors and datasets, we demonstrate that

our approach can effectively generalize to novel classes from

just one labeled image.

Index Terms— Transductive One-Shot Learning, Object

Detection, Subspace Decomposition

I. INTRODUCTION

One-shot learning (OSL) enables models to generalize

and adapt to new tasks with minimal data [1], [2], [3].

While traditional supervised models perform well with large

labeled datasets, collecting and labeling such data is costly,

especially in data-scarce fields. OSL allows models to

recognize new objects from just one labeled example by

leveraging prior knowledge from previously seen classes.

This setup typically involves training on a single labeled

support sample and evaluating on an unseen query set.

OSL techniques fall into two main categories: inductive

and transductive. Inductive methods train a model solely on

labeled support data, then apply it independently to predict

on query samples [4], [5], [6], [7], [8], [9]. Transductive

methods, by contrast, utilize the query set itself, finding

feature similarities to labeled support samples to improve

prediction accuracy, though they often require significant

computational resources [10], [11], [12], [13], [14]. State-

of-the-art (SOA) transductive OSL techniques iteratively

project query embeddings onto labeled supports for label

propagation, yet they rarely exploit latent variables across

classes. This can limit generalization on novel classes with

similar compositional features.

In this paper, we introduce a data-driven approach based

on subspace decomposition that achieves high accuracy

while maintaining simplicity. Our method learns subspace

bases and extracts latent variables from embeddings to

enhance generalization on novel classes. The contributions

of our paper include a method that simultaneously learns

subspace bases for support and query sets, facilitating the

extraction of latent compositional variables and leveraging

insights from subspace decomposition and compositional

zero-shot learning [15], [16]. Inspired by prior work in

subspace decomposition [17], [18], we also develop an

unsupervised factorization technique that decomposes em-

beddings into subspaces representing distinct features, with

support embeddings represented as linear combinations of

these subspaces. Unlike state-of-the-art methods that train

models to directly classify images of new classes based on

their feature vectors, our approach takes a novel turn by

decomposing their feature vectors into class labels and

subspace bases.

II. RELATED WORK

Initial efforts in OSL aimed to reduce reliance on exten-

sive annotated data, dividing approaches into metric-based

and optimization-based methods. Metric-based methods train

models to infer based on similarity measures in embedding

spaces. Matching Networks [5] introduced cosine similarity

for class embeddings, while Prototypical Networks [4] in-

troduced class prototypes calculated as the mean embedding

of support samples, assigning labels based on proximity in

Euclidean space.

Unlike metric-based approaches, optimization-based ap-

proaches in OSL focus on adapting model parameters to

new tasks through fine-tuning with minimal updates. These

methods aim to develop a model that can quickly adapt to

new tasks with only a few gradient updates. Model-Agnostic

Meta-Learning (MAML) [6] popularized optimization ap-
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Fig. 1. Overall architecture of our approach for transductive one-shot learning. A pre-trained CNN extracts the features from

the images, forming an embedding matrix. This matrix is then decomposed into a Basis Matrix and a Coefficient Matrix.

The Basis Matrix contains fundamental class primitives, while the Coefficient Matrix encodes how these primitives combine

to form image embeddings. The optimization process iteratively refines these matrices to minimize the reconstruction error.

Finally, the Coefficient Matrix is used to propagate labels from the support set to the query set by classifying images with

similar primitives.

proaches in OSL by training a model’s parameters such

that a small number of gradient updates will lead to quick

adaptation and learning on a new task. Similar methods

follow the same route by learning an optimal initialization

that allows for efficient fine-tuning on new tasks with limited

data. For example, [19] proposed a meta-learning approach

that trains meta-learners on related tasks to generalize to new

ones using temporal convolutions and soft attention, while

[20] introduced an LSTM-based meta-learner designed to

learn the specific optimization algorithm for training another

neural network classifier. These approaches aim to minimize

loss over a diverse set of tasks, training a base model that

quickly generalizes and adapts to new scenarios.

OSL can also be broken down into inductive and trans-

ductive approaches. Inductive approaches learn functions

from support sets, independently predicting on query sets. In

contrast, transductive methods access query data at inference,

refining predictions. Laplacian Shot [10] employs Laplacian

regularization for label consistency, while methods like [11]

and Transductive Propagation Network (TPN) [12] use joint

feature spaces or graphs for label propagation.

III. PRELIMINARIES AND INSIGHTS

Let S = {(xi, yi)}
L
i=1 represent L labeled images of the

support set, and let Q = {(xi)}
L+U
i=L+1

represent U unlabeled

images of the query set. In few-shot learning, we are given

K labeled images, K-shot, for N classes, N-way, known

as the support set. We are also provided with a backbone

feature extractor fθ(·) that maps the input raw images to

the embedding hi = fθ(xi), where hi ∈ Rp×1. The goal

of inductive few-shot learning is to learn a mapping or

projection matrix W ∈ Rp×N that maps the embedding to

the correct labels yi = WThi, where W is learned from

a small support set, and evaluated on the query set. The

objective of the inductive few-shot learning is represented:

min
W

L∑

i=1

L(yi,W
Thi) (1)

In transductive few-shot learning, the relation between the

features, i.e. embedding, of the support and query sets is

leveraged to generalize the projection matrix W to other

unseen samples, and the cost function is given by:

min
W

L∑

i=1

L(yi,W
Thi) +

L∑

i=1

U∑

j=1

d(xi, xj), (2)

where d(·, ·) is a similarity metric capturing the relationship

among the samples of the support and query set. Our method

builds on this by embedding both support and query samples

into a shared feature space. We initialize the basis matrix W

using the embedding of a labeled support sample and then

construct a subspace that captures the relationship between

embeddings of both support and query sets. Instead of re-

lying on a predefined similarity metric, the relationships are

infered by decomposing embeddings into latent components.

The label from the support set is then propagated to the

query set by comparing the coefficient vectors in the learned

subspace.

IV. METHODOLOGY

In this section, we examine the OSL problem from a

subspace analysis perspective. Our approach aims to derive

equations for learning subspaces that effectively represent

the primitives of images in both support and query sets. By

leveraging the subspace structure, we facilitate the classi-

fying of images based on similar primitive combinations,

enabling efficient label propagation in a transductive learning



setting. While our method naturally groups similar features

together in the subspace, we refer to this process as classify-

ing, since the primary objective is to assign labels by aligning

query images with the most relevant prototypes formed from

a support sample.

To address the OSL problem, we derive equations for

learning subspaces that best represent primitives of im-

ages across both support and query sets, and use these

primitives for classification. Since the transductive approach

leverages information from unlabeled samples in the query

set, we combine the support and query sets into X =
[x1, . . . ,xL, xL+1, . . . ,xL+U ]

T . Our unsupervised method

assumes that the labels for this set Y are unknown, even

though the label of one sample per class is known. We

obtain the embeddings of the images in the set by passing

them through a backbone feature extractor, resulting in

H = fθ(X) = [h1, . . . ,hL+U ]
T .

Similar to prior works [21], we assume that the labels

of the support and query sets can be predicted by a linear

projection of the embeddings onto the output manifold,

which we capture with Y = WTH. Since Y and W

are unknown in this equation, we rearrange the subspace

projection equation as H = WY, where W is orthonor-

mal. The label matrix Y is sparse; thus, this equation is

interpreted as a sparse representation of the embeddings H,

where the columns of W are the basis of a subspace, and Y

represents the coefficient vectors for this basis. The matrix H

is thus projected onto the subspace defined by the columns

of W. Ideally, each embedding vector hi is represented by

one basis (i.e., one column) of the basis matrix (i.e., the

projection matrix) W. In the special case of OSL, each

column of W could be equivalent to the embedding vector of

the support sample, hi = wi. This simplifies to the average

of the embeddings of the samples per class in the supporting

set, resulting in a Protoypical network [4].

The embedding matrix derived from input images through

the backbone feature extractor is the result of ReLU oper-

ations, thus ensuring that the embeddings are always non-

negative, H ≥ 0. This is consistent with common practices

in deep learning architectures, where ReLU activation func-

tions are incorporated to introduce non-linearity while avoid-

ing the vanishing gradient problem [22], [23]. Similarly, the

coefficient matrix, which represents the labels or the distri-

bution over the classes, is also non-negative, and each row

(yi) represents the output distribution, therefore we have two

additional conditions: Y ≥ 0 and
∑

j softmax(yi)j = 1.

The second constraint, i.e.,
∑

j softmax(yi)j = 1, ensures

the the estimated coefficients sum up to one after passing

through a softmax operator, representing the categorical dis-

tribution over classes. Incorporating these constraints into the

linear relationship between the embeddings and the output

labels shapes our primary objective function:

minY,W ∥H−WY∥2F
s.t. W ≥ 0,Y ≥ 0,

∑
j softmax(yi)j = 1

(3)

Eq. 3 depicts a problem of simultaneous sparse repre-

sentation and dictionary learning, where W functions as an

unknown dictionary and Y as the sparse representation of the

embeddings relative to this dictionary W. Although various

dictionary learning methods could be employed to determine

W and Y, we opt for matrix decomposition to address this

optimization challenge.

In Eq. 3, the matrix decomposition approach breaks down

the embedding matrix H into two components: the unknown

projection matrix W and the coefficient matrix Y. Each

embedding vector hi in H is approximated as a combination

of the basis vectors in W, weighted by the coefficients in the

corresponding column in Y. Each column of W serves as a

latent feature vector, encapsulating a primitive within the em-

bedding matrix [26]. Given that the number of columns in W

is significantly fewer than the dimension of the embedding

vectors, this decomposition method characterizes each class

primarily by one dominant primitive. Consequently, these

primitives contain the main distinguishing feature of each

class, allowing images from both the support and query sets

to be classified based on their dominant primitive [26].

The coefficient matrix Y represents the relationship be-

tween the basis vectors in W to the representation of the

embedding vector hi. Each column of Y represents a coef-

ficient vector which captures the combination of primitives

that are shared among images. These coefficient vectors

indicate how different embeddings are represented within

the learned subspace W. The similarity between these coef-

ficient vectors allows us to classify the query sample features

to those of a single labeled support sample, leveraging the

shared subspace for label propagation. Eq. 3 is convex with

respect to either W or Y. To solve it, we employ gradient

descent, iteratively estimating W and Y. It is worth noting

that this optimization involves only a few samples, allowing

us to perform the calculations in one step without requiring

stochastic gradient descent. Furthermore, overfitting is not

a concern since we are not learning parameters but instead

decomposing the matrix H into the product of two matrices,

akin to matrix decomposition techniques. However, because

the closed-form solution for Equation 3 cannot be derived,

we rely on gradient descent to approximate the solution.

To initialize Y, known labels from the support set are one-

hot encoded. During optimization, the alternating update of

W and Y iteratively adjusts the representation of both the

projection matrix and coefficient representation, minimizing

the reconstruction error ∥H − WY∥2F . By minimizing the

reconstruction error, the model identifies the most discrim-

inative features in the data, encouraging similar samples in

the latent space to classify based on shared primitives. As

optimization converges, Y captures the label distribution for

both support and query samples. The predicted label for each

sample is determined by the position of the maximum value

in its corresponding column of Y.

Up to this point, we have approached the OSL task as an



Method Setting Backbone mini-ImageNet (1-shot) tiered-ImageNet (1-shot)

MAML [6] Inductive ResNet-18 49.61 ± 0.92 -

RelationNet [7] Inductive ResNet-18 52.48 ± 0.86 -

MatchingNet [5] Inductive ResNet-18 52.91 ± 0.88 -

ProtoNet [4] Inductive ResNet-18 54.16 ± 0.82 -

DeepEMD [8] Inductive ResNet-18 65.91 ± 0.82 -

TPN [12] Transductive ResNet-12 55.51 ± 0.86 59.91 ± 0.94

Transductive Tuning [3] Transductive ResNet-12 62.35 ± 0.66 -

DSN-MR [24] Transductive ResNet-12 64.60 ± 0.72 67.39 ± 0.82

CAN-T [25] Transductive ResNet-12 67.19 ± 0.55 73.21 ± 0.58

EASE [21] Transductive ResNet-12 57.00 ± 0.26 69.74 ± 0.31

Proposed Transductive ResNet-12 67.55 ± 0.24 81.06 ± 0.49

ProtoNet [4] Inductive WRN-28-10 62.60 ± 0.20 -

MatchingNet [5] Inductive WRN-28-10 64.03 ± 0.20 -

SimpleShot [9] Inductive WRN-28-10 65.87 ± 0.20 70.90 ± 0.22

Transductive Tuning [3] Transductive WRN-28-10 65.73 ± 0.68 73.34 ± 0.71

TIM [2] Transductive WRN-28-10 77.80 82.10

EPNet [14] Transductive WRN-28-10 70.74 ± 0.85 78.50 ± 0.91

LaplacianShot [10] Transductive WRN-28-10 74.86 ± 0.19 80.18 ± 0.21

Oblique Manifold [11] Transductive WRN-28-10 80.64 ± 0.34 85.22 ± 0.34

EASE [21] Transductive WRN-28-10 67.42 ± 0.27 75.87 ± 0.29

Proposed Transductive WRN-28-10 76.96 ± 0.60 84.55 ± 0.33

Table I. Test accuracy vs. the state-of-the-art (1-shot classification) on mini-ImageNet and tiered-ImageNet.

unsupervised task, aiming to classify query images based on

similar primitives with a support image. After establishing

the classes, we propagate the known label from a single

support image to all query images within the same class.

V. EXPERIMENTS AND RESULTS

V-A. Datasets and Benchmarks

Multiple datasets were chosen to validate our method,

notably: mini-ImageNet [5] and tiered-ImageNet [28]. These

datasets are commonly inferred upon in the OSL community

due to their complexity and diversity, which make them ideal

for evaluating the generalization capabilities of these models.

MiniImageNet consists of 60,000 colour images with 100

classes, each having 600 examples. Tiered-ImageNet repre-

sents a larger subset of classes from ILSVRC-12 than mini-

Imagenet, with 608 classes. Not only do more classes exist,

but this dataset also provides a more structured hierarchy,

which ensures that all of the training classes are sufficiently

distinct from the testing classes.

Our method is compared to other inductive and transduc-

tive SOA results present in the literature: MAML [6], Rela-

tionNet [7], MatchingNet [5], ProtoNet [4], DeepEMD [8],

TPN [12], Transductive Tuning [3], DSN-MR [24], CAN-T

[25], EASE [21], SimpleShot [9], TIM [2], Boosting [29],

EPNet [14], LaplacianShot [10], and Oblique Manifold

[11].

V-B. Experimental Setup

Episodic training is a widely utilized technique in few-shot

learning, particularly in OSL scenarios. This method mimics

the test conditions where the model is exposed to a limited

number of labeled samples S and is expected to generalize to

unlabeled examples from Q. Each training episode involves

a N -way, K-shot task. This task is set up by selecting a

subset of N classes from the training set. From each class

in this subset, K samples are randomly chosen to create the

labeled support set S. Additional random samples from these

N classes are selected to form the query set Q. During each

episode, the feature extractor fθ(·) processes both S and Q to

generate embeddings. The embeddings from S are utilized

to train W, which is then applied to the embeddings of

Q for label prediction. The accuracy of these predictions is

assessed by comparing them with the true labels of the query

set. The discrepancy, measured as loss, is used to refine the

parameters θ of fθ(·).
Our initial experiment, in Table I, involves 10,000 ran-

domly generated episodes, each following a 5-way, 1-shot

format with 15 query samples per episode. To conduct

further analysis, we extend the experimental setup in Table II

to a more challenging 10-way, 1-shot scenario, while keeping

the number of episodes the same and reducing the number

of query samples to 10. We conduct each experiment 5

times, calculating the mean between the experiments and

95% confidence intervals for consistency. For our analysis,

we employ pre-trained feature extractors: ResNet-12 [23]

and WRN-28-10 [22] as fθ(·) to extract embeddings from

input images.

V-C. Results

The experimental results on mini-ImageNet and tiered-

ImageNet are shown in Table I. We show SOA performance

for OSL across both datasets. We can observe that the

proposed method outperforms the SOA methods for image

classification on the tiered-ImageNet when using extracted



Model Setting mini-ImageNet Accuracy (%) tiered-ImageNet Accuracy (%)

MAML [6] Inductive 31.27 ± 1.15 34.44 ± 1.19
MAML+Transduction [6] Transductive 31.83 ± 0.45 34.78 ± 1.18
ProtoNet [4] Inductive 32.88 ± 0.47 37.35 ± 0.56
RelationNet [7] Inductive 34.86 ± 0.48 38.62 ± 0.57
TPN [12] Transductive 36.62 ± 0.50 40.93 ± 0.61
Simple CNAPS [27] Transductive 37.10 ± 0.50 48.10 ± 0.70
Transductive CNAPS [1] Transductive 42.80 ± 0.70 54.60 ± 0.80

Proposed Method Transductive 47.03 ± 0.18 63.26 ± 0.19

Table II. 1-shot 10-way accuracy results with 10 query samples for various models on mini-ImageNet and tiered-ImageNet.

features from ResNet. We improve accuracy by nearly 8%

over the nearest method using one labeled support sample.

On mini-ImageNet, with features extracted using ResNet,

we also obtain the highest classification accuracy. When

employing the features extracted from WRN-28-10, we can

see overall improved performance of our method when

compared to ResNet. However, WRN-28-10’s larger feature

space (p = 640) expands the search space for our non-convex

subspace decomposition, making the alternating updates

more prone to settle in suboptimal stationary points rather

than find the global optimum. This complicates the task of

identifying appropriate primitives (columns of W) within a

more expansive and complex search space. The performance

variability demonstrates the challenges of different architec-

tures and suggests that all methods have specific strengths

and limitations depending on the experimental setup.

To test the robustness of our model across different sce-

narios, we increased the number of classes during inference

from 5 to 10, while reducing the number of query samples

to 10, following the approach presented in [1]. Table II

displays our method’s results using ResNet-12 in comparison

with other SOA OSL methods. We observe that our method

outperforms previous methods in the 10-way classification

scenario. Specifically, our model improves accuracy by over

4% on mini-ImageNet and achieves an impressive increase

of more than 9% on tiered-ImageNet. To the best of our

knowledge, these are SOA results for 10-way accuracy on

both mini-ImageNet and tiered-ImageNet. This performance

increase shows the robustness of our method, even when

tasked with handling a more complex classification task.

The efficient performance of our model can be attributed

to subspace decomposition, which provides a more refined

representation of data in the latent space. This method

enables us to effectively utilize the information from a single

labeled support sample to extend the labels to the query

samples within the same subspace. This process ensures that

the embedding vectors projected onto the subspace establish

a clearer connection between the support and query samples.

This achievement is facilitated by the concurrent learning

of the basis and coefficient matrices. Additionally, the cost

function plays a crucial role in enhancing the stability and

overall performance of the model. These results confirm

that our subspace decomposition method, regardless of the

feature extractor, enables efficient label propagation and

classification in challenging one-shot scenarios.

VI. CONCLUSION

In this paper, we introduced a novel transductive OSL

approach that identifies primitives of images by decomposing

the embeddings of images from both support and query

sets into representative subspaces. While our method demon-

strates high accuracy, further extensive research is necessary

to explore this data-driven approach, particularly to under-

stand the impact of hidden factors and their connections to

both seen and unseen classes. The empirical study revealed

that the variability in performance demonstrates the inherent

challenges posed by different architectures, suggesting that

each method has specific strengths and limitations influenced

by both the experimental setup and the nature of the datasets.

Future efforts in this area will aim to expand this data-driven

subspace decomposition methodology to zero-shot learning,

linking attribute vectors to the primitives extracted through

subspace factorization techniques.
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