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Abstract

Vision-Language Models (VLMs) have demonstrated im-

pressive multimodal capabilities in learning joint represen-

tations of visual and textual data, making them powerful

tools for tasks such as Compositional Zero-Shot Learning

(CZSL). CZSL requires models to generalize to novel com-

binations of visual primitives—such as attributes and ob-

jects—that were not explicitly encountered during training.

Recent works in prompting for CZSL have focused on mod-

ifying inputs for the text encoder, often using static prompts

that do not change across varying visual contexts. However,

these approaches struggle to fully capture varying visual

contexts, as they focus on text adaptation rather than lever-

aging visual features for compositional reasoning. To ad-

dress this, we propose a Visual Adaptive Prompting System

(VAPS) that leverages a learnable visual prompt repository

and similarity-based retrieval mechanism within the frame-

work of VLMs to bridge the gap between semantic and

visual features. Our method introduces a dynamic visual

prompt repository mechanism that selects the most relevant

attribute and object prompts based on the visual features of

the image. Our proposed system includes a visual prompt

adapter that encourages the model to learn a more gen-

eralizable embedding space. Experiments on three CZSL

benchmarks, across both closed and open-world scenarios,

demonstrate state-of-the-art results.

1. Introduction

Humans have a remarkable ability to compose attributes

with objects to imagine novel combinations they have never

encountered, for example, a blue banana. Attributes de-

scribe the state of an object, such as the color, texture, or

shape, while objects represent the entities themselves, such

as a banana or a car. This ability to associate various at-

tributes with different objects is a fundamental aspect of

human cognition, known as compositionality [4, 15, 16].

Compositional Zero Shot Learning (CZSL) aims to mimic

this human behavior by enabling models to recognize com-

Figure 1. Similarity-Based Visual Repository Mechanism. The

image features are matched against learned keys in a shared repos-

itory space, where similarity scores are computed. Based on these

similarity scores, the most relevant learned visual prompts repre-

senting attributes (i.e., “color”) and objects (i.e., “animals”) are

selected. The selected prompts are then averaged, creating a final

representation (purple) that holds the object and attribute informa-

tion of the input images. This process allows dynamic retrieval

and combination of relevant visual prompts for downstream tasks.

binations of primitive attributes and objects that were not

explicitly composed, or seen together, during training.

CZSL focuses on the recombination of known primitives,

allowing for the recognition of novel compositions by effec-

tively disentangling attribute and object information from a

combined visual representation [5, 7, 39].

The rigorous pre-training of VLMs have shown great

ability for understanding tasks that require multimodal vi-

sual and textual data. Models like CLIP [32] are trained on

vast amounts of image-text data and learn to map visual and

textual representations into a shared embedding space, en-

abling them to perform tasks such as zero-shot classification

and image recognition. However, when approached with

the more nuanced understanding of compositional reason-

ing, CLIP lacks the ability to generalize to unseen primitive

compositions. This lack of generalization can be attributed

to the reliance on static representations of fixed classes seen

during training and the lack of flexibility to adjust their in-

ternal prompts to changes in visual inputs [9, 10, 42].

Recent studies in CZSL based on VLMs [1, 22, 38] suf-

fer from several drawbacks which limit their performance.
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First, state-of-the-art (SOTA) methods typically utilize ei-

ther fixed templates “a photo of [attribute][object]” or a

single learned prefix prepended to “[attribute][object]”. In

these strategies, the text prompt is processed through the

text encoder, while the raw image is handled by the im-

age encoder, leading to the development of a joint embed-

ding that facilitates the inference of unseen attribute-object

compositions. Although promising, text-focused methods

largely overlook valuable visual insights, as they concen-

trate on tuning text-based prompts rather than exploiting vi-

sual information that could enhance attribute-object disen-

tanglement and improve model adaptability to unseen com-

positions [23, 26]. Second, SOTA algorithms typically rely

solely on these text-centric learnable prompts, and operate

under the assumption that a minimal number of prompts can

adequately capture all attribute-object combinations. For

example, a single prompt might be used to denote a variety

of attributes like ”wet,” ”dry,” ”red,” etc. This limited ap-

proach constrains the development of tailored prompts that

could significantly improve performance. Moreover, using

only one or two prompts means these techniques struggle

to properly separate attribute features from object features,

thereby restricting their effectiveness in generalizing to un-

seen compositions. Third, text-centric approaches utilize

fixed prompts as a prefix to “[attribute][object]” during

training. These static prompts are comprised of a set of

learnable variables that remain constant in their positions

across different attribute-object pairings, such as transition-

ing from “wet cat” to “red apple”. Relying on such static,

learnable text prompts often fails to fully encompass the

entire context of an image. This is because text descrip-

tions can be relatively rigid, not adequately reflecting the

complexities of an image. For instance, the attribute “wet”

might carry different semantic implications when associ-

ated with disparate objects like a cat versus an apple.

To address these challenges, we propose a novel ap-

proach Visual Adaptive Prompting System (VAPS) that

builds on CLIP’s multi-modal architecture by leveraging a

dynamic visual prompt repository and a similarity-based re-

trieval mechanism, which shifts the emphasis to the image

features generated by CLIP’s visual encoder. VAPS creates

a repository of visual features to serve as visual prompts,

comparing them with fused features in a pair space, as well

as implementing a prompt adapter based on the original im-

age features that allows the model to adapt its representation

based on the visual context. The summary of our contribu-

tions for CZSL are stated below:

• Visual Prompts: To leverage information directly from

the image encoder, we introduce visual prompts. These

visual prompts are learnable embeddings designed to cap-

ture visual patterns related to attributes and objects. This

high-level semantic representation efficiently separates

attributes from object visual features, allowing VAPS to

generalize visual semantics to unseen compositions more

effectively. Unlike text-based prompts, visual prompts

leverage visual features to enhance disentanglement and

boost adaptability.

• Prompts Repository: Our approach employs a repository

of learnable visual prompts that operate independently

from those used by the text encoder. Each visual prompt

in this repository is paired with a learnable key, which

serves as an identifier for effective selection. VAPS uses

a similarity-based retrieval mechanism to match image

features with learned keys in the repository, selecting the

most relevant prompts for the input image. This allows

the model to effectively disentangle attributes from ob-

jects, facilitating generalization to unseen compositions.

• Text Prompt Adapter: VAPS incorporates an adapter that

dynamically updates the prefix of the text prompt using

image features from the visual transformer. By incorpo-

rating a bias term from image features, this approach cus-

tomizes the prompt for each image, aligning it with the

visual context and effectively separating attributes from

objects. For instance, the learnable text prompts are ad-

justed with different bias values when processing images

of a “wet cat” versus a “red apple,” overcoming the limi-

tations associated with static prompts.

2. Related Work
Compositional Zero-Shot Learning extends the principles

of zero-shot learning by focusing on the recognition of un-

seen compositions of known primitives. As previously men-

tioned, disentanglement is a prevalent approach in many

CZSL methods [3, 5, 17, 35]. However, this is not the

only approach to achieve compositional generalization. Li

et. al. uses the principles of symmetry and group theory to

model attribute-object compositions through coupling and

decoupling transformations, and introduces a novel distance

method for CZSL [20]. A Siamese Contrastive Embedding

Network (SCEN) embeds visual features into a Siamese

contrastive space to separately capture attribute and object

prototypes diversity [18]. A retrieval-augmented approach

was proposed to enhance the recognition of unseen prim-

itive compositions by retrieving and augmenting attribute

and object representations [11]. Wang et. al. propose a de-

pendent approach for CZSL that generates conditional at-

tribute embeddings by using an attribute hyper learner and

base learner to account for the varying interaction of at-

tributes with different objects [36].

Modern applications in CZSL include adapting pre-

trained multimodal VLMs, such as CLIP [32], to improve

CZSL results. It is shown that downstream tasks can be

built on top of the VLMs to enhance these results. Com-

positional Soft Prompting (CSP), introduced in [29], uses

a static prompt prefix combined with learned attribute and

object descriptions. This text is passed through a text en-

coder while the image is processed by CLIP’s visual en-



Figure 2. VAPS leverages the multimodal power of CLIP’s image and text encoders to extract visual features fv ∈ R
d and text features

ft ∈ R
768. A prompt adapter uses fv to shift three learnable prefix tokens [v1][v2][v3], which are prepended to the embeddings of all

attribute–object candidates and encoded to yield ft. The top two visual prompts most similar to fv are retrieved and averaged, and fv and ft
are projected into a shared pair space, fused with the averaged prompts, and scored to produce final logits for selecting the highest-scoring

attribute–object pair.

coder. The model then calculates the cosine similarity be-

tween the text embeddings and image features to predict

the correct attribute-object composition. More recent works

built on top of this method by removing the static pre-

fix content and instead making the entire prompt learnable

[22, 38]. While these processes produce promising results,

only one learned prompt may not generalize well to every

image passed through the visual encoder.

Prompt Learning/Tuning modifies the original input by

leveraging learnable tokens that guide the pre-trained lan-

guage model to examine specific features or contexts rele-

vant to the task the model is trying to solve [13, 21, 34].

With the more recent advancements in VLMs, prompt learn-

ing has steered into a new direction by focusing on the

multi-modality of both textual and visual content in a shared

embedding space [14, 32, 33]. Huang et. al. introduced

a method to transfer performance from VLMs without the

need for prompt engineering or labeled data by generating

pseudo labels for target datasets and optimizing learnable

prompt representations through self-training on the psuedo-

labeled samples [6]. Prompt learning has been applied on

top of pre-trained vision transformers to solve the catas-

trophic forgetting problem in continual learning by using a

pool of learnable prompts to learn tasks sequentially [37].

CoOp [42] introduced a method to automate prompt en-

gineering for models like CLIP by learning the vectors of

prefix content while keeping the pre-trained model fixed for

few-shot scenarios. CoCoOp [41] learns a lightweight neu-

ral network that generates dynamic prompts based on the

input image.

3. Preliminaries and Insights
Let A denote the set of attributes and O denote the set of ob-

jects. Given a set of attributes A = {a0, a1, . . . , an} and a

set of objects O = {o0, o1, . . . , om}, we define the set of all

possible compositions C = A×O, where × is the Cartesian

product. The set C can be divided into two disjoint subsets:

seen compositions Cs and unseen compositions Cu, where

Cs ∩ Cu = ∅ and Cs ∪ Cu = C.

In Closed-World CZSL, the model operates under the

assumption that all possible compositions for testing are

drawn from a predefined subset Ctest ⊆ C. This means

that while some compositions may be unseen during train-

ing, they are still part of this known subset. Consequently,

the test set includes both Cs and Cu, but all testing samples

are limited to this established set Cs ∪ Cu, restricting the

model to a predefined range of feasible combinations. In

Open-World CZSL [24], the model must navigate the entire

composition space C = A × O, which includes both fea-

sible and infeasible combinations. This presents an added

challenge, as the model encounters compositions that were

neither seen during training nor predefined as possible dur-

ing testing, making classification more complex. The objec-

tive is to learn a function f : X → Ctest for Closed-World

settings and f : X → C for Open-World settings, where X

denotes the input space of images corresponding to these

compositions.

4. Methodology

Our approach builds upon the multimodal capabilities of

VLMs, such as CLIP, for compositional learning by freez-

ing its pre-trained visual and text encoders. During train-

ing, each input image is processed through CLIP’s visual

encoder to obtain feature representations fv . These features

are used two-fold: (i) as input to the text prompt adapter

to find the appropriate bias for dynamically shifting a set

of learnable prefix text tokens and (ii) used to select visual



prompts from the repository. The shifted prefix tokens are

prepended to the word embeddings of attributes and objects

to form the final text prompt, which is processed through

the text encoder to produce text features ft. Next, fv and

ft are decomposed and fused via cross-attention, resulting

in a joint representation that is mapped to a dedicated pair

space. In this space, the similarity between the fused repre-

sentation of < fv, ft >and the selected visual prompts in-

forms the final compositional prediction. Additionally, both

fv and ft are each projected into a separate pair space to fa-

cilitate the compositional prediction.

During inference, the same processing pipeline is fol-

lowed with one main difference: ground truth attribute-

object pairings are unavailable. Instead, text prompts are

generated for each candidate pair (a, o) ∈ C test using the

shifted prefix, and the final predicted composition is se-

lected as the pair yielding the highest probability psp. Figure

2 provides an overview of our method.

4.1. Visual Prompt Repository

The visual prompt repository comprises a collection of

M learnable visual prompts P1,P2, . . . ,PM , where each

Pi ∈ R
l×d represents an individual visual prompt, and

l denotes the prompt length. These prompts are initial-

ized randomly and refined during training to capture high-

level semantic visual features, such as colors, textures, and

shapes. Each visual prompt Pi is paired with a learnable key

ai ∈ R
d, which helps identify the most relevant prompts

for a given image by measuring similarity between the in-

put image features and the keys. The keys ai are used

for similarity assessment, while Pi contributes to predicting

attributes and objects in the joint embedding space, com-

bined with the output of the fusion block. To find the best-

matching visual prompts, cosine similarity is computed be-

tween the normalized visual features fv of the input image

and each normalized key ai. Based on the similarity scores,

the model selects the top two prompts with the highest co-

sine similarity, ensuring that one prompt aligns with the im-

age’s attribute and the other with the object. These selected

prompts are then averaged, forming a combined representa-

tion that is later integrated with the visual and textual fea-

tures to improve compositional prediction. By dynamically

selecting the most relevant visual prompts, the model im-

proves image-text alignment and enriches the representation

of image content. Over the course of training, each visual

prompt becomes more adept at capturing the visual charac-

teristics of basic elements, such as “red” or “wet,” enabling

more precise attribute-object mapping and enhancing gen-

eralization to unseen compositions. The final representation

of the retrieved visual prompts can be denoted by fret.

4.2. Text Prompt Adapter

In SOTA CZSL algorithms, “[attribute][object]” is

prepended with learnable text soft prompts. These soft

prompts typically consist of a few trainable tokens, such as

three prefix tokens [v1][v2][v3], which are initialized with

a generic phrase like “a photo of” to align with CLIP’s pre-

training [22, 29, 38]. However, these tokens remain fixed

in location and combination for every training and infer-

ence sample, making no distinction between different at-

tributes and objects. Therefore, during inference, when

“[attribute][object]” is not available, the same trained pre-

fix text soft prompt is used for every test sample, leading to

poor generalization on unseen compositions.

Motivated by the prompting method introduced in [41],

we incorporate a prompt adapter module with trainable pa-

rameters. The prompt adapter takes the image feature fv as

the input and provides the amount of the shift for the text

prompt in the output. The prefix structure of the learnable

soft prompt provides a general context for the task while

the attribute and object represent the composition of the ob-

ject. The prompt adapter is a lightweight neural network,

represented as:

PromptNet(fv) = W2 · σ(W1 · fv + b1) + b2, (1)

where fv represents the visual features, W1, W2, b1, and

b2 represent the linear layers and their bias terms, respec-

tively, and σ(·) is the ReLU activation function. The output

of the prompt adapter network is a bias term, denoted as

φ(fv), which is added to each of the learnable embeddings

in the soft prompt’s prefix {θ0, θ1, . . . , θp}. This is repre-

sented as:

θ′i = θi + φi(fv) for i = 0, . . . , p, (2)

where each θ′i represents the shifted version of the original

prompt embedding θi. Therefore, the updated shift in the

soft prompt P ′
soft is P ′

soft = {θ′0, θ′1, . . . , θ′p, θa, θo}. The

text features ft are obtained by passing P ′
soft through the

text encoder.

4.3. Decomposition and Fusion Block

To disentangle the visual features of attributes and objects

and embed them jointly with their text representation, we

decompose and fuse the visual features, fv , and the text

features, ft [22]. Specifically, the text feature representa-

tion is decomposed by averaging the contributions of the

attributes and objects from the corresponding logits. De-

composition helps isolate the properties of attributes and

objects, allowing the model to treat these two components

independently during subsequent fusion. The decomposed

features are supervised during training to accurately cap-

ture the primitive’s information. We compute the attribute

and object probability as follows:

p(y = a | x; θ) = exp(fv · ft)
∑

ā∈A

exp(fv · ft)
, (3)



p(y = o | x; θ) = exp(fv · ft)
∑

ō∈O

exp(fv · ft)
, (4)

where A and O denote the sets of attributes and objects.

The cross-entropy can be minimized as:

Latt = − 1

|A|
∑

(x,y)∈Cs

log (p (y = (a)|x; θ)) , (5)

Lobj = − 1

|O|
∑

(x,y)∈Cs

log (p (y = (o)|x; θ)) . (6)

Next, fv and ft are fused through a cross-attention mech-

anism, where the query (Q), key (K), and value (V ) matri-

ces focus on aligning image and text features within a com-

positional space. Specifically, Q is derived from ft, while

K and V are derived from fv where the key represents the

aspects of the image that the query will attend to, and the

value holds the information that will be emphasized based

on how well Q aligns with K. Here, d denotes the dimen-

sionality of the feature vectors in the compositional space.

The cross-attention can be computed as follows:

Attention(Q,K, V ) = softmax

(

QKT

√
d

)

V. (7)

This cross-attention operation yields ft→v , a fused rep-

resentation that incorporates textual context of the attributes

and objects with the visual features.

4.4. Training

The additional training of our model is conducted in two

parts: one focuses on adapting the soft prompt to the target

compositions, and the other on the alignment between re-

trieved prompts and the final fused representation ft→v . To

ensure the shifted soft prompts align with the target com-

positions, the class probability for the soft prompt are com-

puted as follows:

psp (y = (a, o)|x; θ) = exp(fv · ft)
∑

(a′,o′)∈Cs exp(fv · ft)
, (8)

where ft is the text feature representation from the shifted

soft prompt and Cs denotes the set of seen compositions.

To encourage the adapted soft prompt to generate text fea-

tures that align with the target compositions, the cross-

entropy over these probabilities is minimized to form the

soft prompt alignment loss:

Lsp = − 1

|Cs|
∑

(x,y)∈Cs

log (psp (y = (a, o)|x; θ)) . (9)

Next, we ensure that the fused features accurately reflect

the retrieved prompts from the repository. The probability

of this is defined as pret and apply the softmax function over

Cs:

pret

(

y = (a, o) | x; θ
)

=
exp

(

fret·ft→v

)

∑
(a′,o′)∈Cs exp

(

fret·ft→v

) . (10)

The cross-entropy loss is then minimized over the class

probabilities. The objective function is defined as:

Lret = − 1

|Cs|
∑

(x,y)∈Cs

log (pret (y = (a, o)|x; θ)) . (11)

The total loss function for training the model is then a

weighted combination of the compositional, attribute, ob-

ject, and soft prompt losses, where λatt obj and λsp are hyper-

parameters that control the relative weight of the attribute-

object loss and the soft prompt loss:

Ltotal = Lret + λatt obj (Latt + Lobj) + λspLsp. (12)

4.5. Inference

To predict the most likely attribute-object composition ŷ in

a closed-world scenario, we select the label (a, o) from the

test set C test that maximizes the probability psp

(

y = (a, o) |
x; θ

)

:

ŷ = argmax
(a,o)∈C test

psp

(

y = (a, o) | x; θ
)

, (13)

where psp is computed following the same procedure in

Eq. (8). Since the true attribute-object labels are unknown at

inference, we construct text prompts for each (a, o) ∈ C test

using our learned prefix, and select the pair yielding the

highest psp.

For open-world inference, C expands to encompass all

possible attribute-object pairs, making classification more

challenging. As in prior works [1, 22, 29], a feasibility

calibration step is applied by computing a similarity score

p(a, o) for each candidate pair (a, o). Any pair whose score

falls below a threshold T is deemed infeasible and filtered

out:

ŷ = argmax
(a,o)∈C, p(a,o)≥T

psp

(

y = (a, o) | x; θ
)

. (14)

This approach restricts the model to only consider

attribute-object pairs deemed feasible. Selecting ŷ from

the remaining pairs ensures that we capture the most prob-

able composition for a given image, whether in a closed- or

open-world setting.



Method
MIT-States UT-Zappos C-GQA

S U H AUC S U H AUC S U H AUC

AoP [28] 14.3 17.4 9.9 1.6 59.8 54.2 40.8 25.9 17.0 5.6 5.9 0.7

LE+ [27] 15.0 20.1 10.7 2.0 53.0 61.9 41.0 25.7 18.1 5.6 6.1 0.8

TMN [31] 20.2 20.1 13.0 2.9 58.7 60.0 45.0 29.3 23.1 6.5 7.5 1.1

SymNet [20] 24.2 25.2 16.1 3.0 49.8 57.4 40.4 23.4 26.8 10.3 11.0 2.1

CompCos [24] 25.3 24.6 16.4 4.5 59.8 62.5 43.1 28.1 28.1 11.2 12.4 2.6

CGE [27] 28.7 25.3 17.2 5.1 56.8 63.6 41.2 26.4 28.7 25.3 17.2 5.1

Co-CGE [25] 32.1 28.3 20.0 6.6 62.3 66.3 48.1 33.9 33.3 14.9 14.4 4.1

SCEN [18] 29.9 25.2 18.4 5.3 63.5 63.1 47.8 32.0 28.9 25.4 17.5 5.5

CLIP [32] 30.2 40.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4

CSP [29] 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2

GIPCOL [38] 48.5 49.6 36.6 19.9 65.0 68.5 48.8 36.2 31.9 28.4 22.5 7.1

DFSP [22] 46.9 52.0 37.3 20.6 66.7 71.7 47.2 36.0 38.2 32.0 27.1 10.5

VAPS (Ours) 48.4 52.2 38.2 21.2 64.5 74.3 53.8 40.1 39.6 31.7 28.1 11.0

Table 1. Closed-World Results on MIT-States, UT-Zappos, and CGQA. The results are reported for Seen (S), Unseen (U), Harmonic Mean

(H), and Area Under the Curve (AUC). Bold and blue indicate the first and second best results, respectively.

5. Experiments and Results

5.1. Experimental Setup

Datasets. We evaluate our model on three renowned CZSL

datasets: MIT-States [8], UT-Zappos [40], and C-GQA

[27]. MIT-States contains a variety of web-crawled images

with 115 and 245 attributes and objects, respectively. 1262

seen compositions are used in training and 400 seen and un-

seen compositions used in testing. UT-Zappos is a smaller

dataset containing images of 12 different types of shoes and

16 fine-grained attributes. C-GQA was built on top of the

Stanford GQA dataset and contains a wide array of real life

objects and attributes and possesses the most robust label

space out of all three datasets, with over 800 seen and 900

unseen compositions in the test set.

Metrics. Following the setting of previous works [19, 22,

38], we assess our model’s performance using metrics tp

focus on both seen and unseen compositions. Specifically,

we evaluate accuracy for Seen (S) and Unseen (U) composi-

tions under both closed-world and open-world scenarios, as

these two cases offer insights into the model’s generaliza-

tion capabilities. Furthermore, we observe the Harmonic

Mean (H). Given the inherent bias of zero-shot models to-

ward seen compositions [2, 24, 26], we analyze the trade-

off between seen and unseen performance by plotting an

accuracy curve across a bias range from −∞ to +∞. This

allows us to compute the Area Under the Curve (AUC), the

core metric reflecting the model’s overall capability.

Implementation Details. We utilize PyTorch 1.12.1 [30]

for the implementation of our model. The model is opti-

mized using the Adam optimizer over the previously men-

tioned datasets. Both the image encoder and text encoder

are based on the pretrained CLIP ViT-L/14 model, and the

entire model is trained and evaluated on a single NVIDIA

A100 GPU. We set M = 20 for UT-Zappos and M = 30
for MIT-States and C-GQA, as the latter two datasets con-

tain a wider variety of attribute-object compositions.

5.2. Comparison with State-of-the-Arts

Our method is compared to other state-of-the-art (SOA)

CZSL methods, including: AoP [28], LE+ [27], TMN [31],

SymNet [20], CompCos [24], CGE [27], Co-CGE [25],

SCEN [18], CLIP [32], CSP [29], GIPCOL [38], and DFSP

[22]. The same data splits are used across each model and

are based using CLIP’s ViT-L/14 backbone.

The main results for the Closed-World setting are re-

ported in Table 1. We can observe that VAPS outperforms

all other SOA methods on the UT-Zappos dataset, specifi-

cally with an increase of 2.6% in classifying unseen com-

positions, a 5.0% increase in harmonic mean, and a 3.9%

increase in AUC. When tested on the C-GQA dataset, our

model demonstrates strength in seen accuracy with a 1.4%

improvement, harmonic mean with a 1.0% increase and an

increase in AUC to the previous SOA method by 0.5%, fur-

ther showcasing its robust performance across the bench-

marks. Additionally, VAPS remains competitive on MIT-

States, delivering best results in seen, unseen, and AUC. Ta-

ble 2 showcases the results for the more challenging open-

world scenario. An improved unseen accuracy, harmonic

mean, and AUC can be observed UT-Zappos, while all met-

rics seen increases across CGQA. Once again, we show

an increase in harmonic mean and AUC on the MIT-States

dataset. We can attribute this success to the use of the visual

prompt repository, which leverages learned visual seman-



Method
MIT-States UT-Zappos C-GQA

S U H AUC S U H AUC S U H AUC

AoP [28] 16.6 5.7 4.7 0.7 50.9 34.2 29.4 13.7 - - - -

LE+ [27] 14.2 2.5 2.7 0.3 60.4 36.5 30.5 16.3 19.2 0.7 1 0.1

TMN [31] 12.6 0.9 1.2 0.1 55.9 18.1 21.7 8.4 - - - -

SymNet [20] 21.4 7 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.4

CompCos [24] 25.4 10.0 8.9 1.6 59.3 46.8 36.9 21.9 - - - -

CGE [27] 32.4 5.1 6.0 1.0 61.7 47.7 39.0 23.1 26.7 2.2 3.3 0.5

Co-CGE [25] 30.3 11.2 10.7 2.3 61.1 45.8 40.8 23.3 32.1 3.0 4.8 0.8

KG-SP [12] 28.4 7.5 7.4 1.3 61.8 52.1 42.3 26.5 31.5 2.9 4.7 0.8

CLIP [32] 30.1 14.3 12.8 3.0 15.7 20.6 11.6 2.2 7.5 4.6 4.0 0.3

CSP [29] 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.2

GIPCOL [38] 48.5 16.0 17.9 6.3 65.0 45.0 40.1 23.5 31.6 5.5 7.3 1.3

DFSP [22] 47.5 18.5 19.3 6.8 66.8 60.0 44.0 30.3 38.3 7.2 10.4 2.4

VAPS (Ours) 48.3 18.2 20.0 7.0 64.4 60.1 47.8 31.7 39.5 7.3 10.8 2.6

Table 2. Open-World Results on MIT-States, UT-Zappos, and CGQA. The results are reported for Seen (S), Unseen (U), Harmonic Mean

(H), and Area Under the Curve (AUC). Bold and blue indicate the first and second best results, respectively.

tics from the image encoder, as well as the prompt adapter,

which shifts the soft prompt prefix for each individual im-

age. Previous methods disregard enhancing the visual fea-

tures from the image encoder while also assuming that one

learned soft prompt prefix can generalize to all composi-

tions. These outcomes emphasize the effectiveness of VAPS

in both closed and open-world scenarios, where its visual

prompt retrieval mechanism and soft prompt prefix adap-

tation results in consistent gains over all datasets against

competing methods.

5.3. Ablation Study

To better understand the behavior of our model, we begin

by conducting an ablation study to assess the contribution

of each component branch. Additionally, we explore how

varying the number of selected prompts from the visual

repository affects performance. This study is performed on

the UT-Zappos and MIT-States datasets.

Component Study. We analyze how different branches in-

teract in the proposed model in both closed-world and open-

world settings in Table 3. Specifically, we examine the

cross-attention (ca), prompt adapter (pa), and prompt repos-

itory (pr) components. We keep all configurations consis-

tent throughout each experiment. When the pa branch is

excluded from the model, we observe a decrease across all

metrics when compared to the full model. Over a 2% de-

crease occurs on the seen and unseen composition accu-

racy and AUC drops 1.6% on UT-Zappos in the open-world

setting. For the closed-world setting, a decrease of 6.6%

and 3.7% occur across unseen accuracy and AUC, respec-

tively. Similarly, we see a decrease across all metrics on

Components MIT-States UT-Zappos

pr ca pa S U H AUC S U H AUC

CW

✓ ✓ ✓ 48.4 52.2 38.2 21.2 64.5 74.3 53.8 40.1

✓ ✓ 47.9 51.5 37.3 20.5 62.2 72.1 52.2 38.5

✓ ✓ 48.5 51.6 37.6 20.8 60.7 69.7 50.1 36.0

OW

✓ ✓ ✓ 48.3 18.2 20.0 7.0 64.4 60.1 47.8 31.7

✓ ✓ 48.8 17.4 19.2 6.6 64.0 53.5 44.2 28.0

✓ ✓ 48.7 17.5 19.5 6.8 61.8 53.2 43.0 26.9

Table 3. Ablation of different model components and its effect on

performance on Closed World (CW) and Open World (OW). Bold

represents the best results.

MIT-States when removing the pa branch. Next, we per-

form an ablation to study the effect of the prompt repository

by keeping only ca and pa. When removing pr, all met-

rics decrease across the UT-Zappos dataset for both closed

and open world scenarios. On MIT-States, a slight decrease

of 0.4% in AUC occurs; however, seen accuracy increases

slightly by 0.1%. Overall, we can see a higher variability

in the results across the UT-Zappos dataset when ablating

components compared to MIT-States. Retaining the prompt

repository alongside the cross-attention and prompt adapter

components ensures optimal performance, particularly in

complex open-world scenarios. Furthermore, retaining all

three branches of the model ensures that the core AUC met-

ric remains at its highest level.

Repository Size and Number of Selected Prompts. This

study experiments with initiating the size of the repository

and the number of selected prompts with different values.

Through empirical analysis, it was observed the optimal vi-

sual repository size was between 20 and 30 prompts for

each dataset. This range offers a sufficient diversity of



Figure 3. Top-3 qualitative results. Each example displays the ground truth (GT) label and predictions, highlighting correct predictions in

green and incorrect ones in red.

learned prompts. Additionally, our analysis showed that se-

lecting a single visual prompt for attributes and one for ob-

jects per image was optimal for compositional disentangle-

ment. Our results show some variability between datasets.

On MIT-States, increasing the repository size slightly im-

proves harmonic mean and AUC, suggesting that a mod-

erate diversity of prompts supports its range of compo-

sitions. For UT-Zappos, smaller repository sizes and se-

lecting two prompts per image yield more noticeable AUC

gains, likely due to one prompt representing attributes and

one per image. This demonstrates that while both datasets

benefit from the prompt repository, optimal configurations

vary with dataset characteristics, showcasing the adaptabil-

ity of our approach across different compositional settings.

5.4. Qualitative Results

To observe the robustness of our method, the top-3 qualita-

tive results for selected images across UT-Zappos and MIT-

States datasets are reported for both closed and open world

settings, shown in Figure 3. For example, our model suc-

cessfully classifies images of ’Nubuck Loafers’ and ’Canvas

Clogs’ with the first prediction, but classifies ’Cotton Flats’

correctly in the second prediction. However, the first pre-

diction for ’Cotton Flats’ was ’Leather Flats’, which may

be due to the brown color of the flats in the studied im-

age. Similar results also occur in the MIT-States and UT-

Zappos datasets. Our model correctly classifies all three of

the images from MIT-States with its first prediction. For the

’Ancient Coin’ image, despite the challenging visual sim-

ilarities it may have with objects such as ’Ancient Drum’,

the model demonstrates strong attribute recognition by cor-

rectly identifying the ’Ancient’ attribute, which helps it cor-

rectly classify the object. Similarly, for the ’Broken Bottle’

image, although the texture and overall form might overlap

with objects like ’Broken Boulder’, the model effectively

uses the ’Broken’ attribute as a distinguishing feature, al-

lowing it to make informed predictions.

Our model’s robustness is further demonstrated in the

open world setting. For instance, it successfully differen-

Rep. Size Selected N MIT-States UT-Zappos

S U H AUC S U H AUC

20 2 49.2 50.5 37.2 20.5 63.5 72.7 53.8 40.1

20 4 49.3 50.4 37.1 20.6 64.4 70.1 47.1 35.1

30 2 48.4 52.2 38.2 21.2 62.4 72.3 49.9 36.9

30 4 48.5 52.1 38.2 20.8 61.0 72.6 49.3 35.8

Table 4. Comparison of datasets with varying repository size and

number of selected prompts in closed-world setting.

tiates between visually similar but distinct material, such as

’Leather’ and ’Synthetic’, when classifying ’Ankle Boots’.

Similarly, the model was able to classify the image of the

’Winding Stream’ with high accuracy. However, some in-

correct first predictions are seen in each dataset, such as

predicting the image of the ’Iguana’ as ’Mossy’ instead of

’Young’. Also, the prediction of a ’Windblown Iguana’

highlights the challenge posed by the open-world scenario

since this attribute is not plausible for the given object.

Overall, these qualitative results represent the effectiveness

of our method in both closed and open world settings. By

focusing on key object features and attribute details, our

model is able to make accurate classifications, even when

confronted with unseen compositions or visually complex

scenarios.

6. Conclusion

In this paper, we propose a Visual Adaptive Prompting Sys-

tem (VAPS) to bridge the gap between semantic and visual

features for CZSL. By leveraging a dynamic visual prompt

repository and a similarity-based retrieval mechanism to se-

lect relevant visual prompts based on attribute and objects,

VAPS enhances the model’s ability to generalize to unseen

compositions. Furthermore, we propose dynamically adapt-

ing the learnable prompt prefix based on the image features

derived from CLIP’s image encoder. Our experiments on

benchmark datasets demonstrate that VAPS achieves state-

of-the-art performance on metrics across the UT-Zappos

and CQGA datasets, highlighting its capability to disentan-

gle and recompose visual features effectively.
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