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Abstract

Vision-Language Models (VLMs) have demonstrated im-
pressive multimodal capabilities in learning joint represen-
tations of visual and textual data, making them powerful
tools for tasks such as Compositional Zero-Shot Learning
(CZSL). CZSL requires models to generalize to novel com-
binations of visual primitives—such as attributes and ob-
Jjects—that were not explicitly encountered during training.
Recent works in prompting for CZSL have focused on mod-
ifying inputs for the text encoder, often using static prompts
that do not change across varying visual contexts. However,
these approaches struggle to fully capture varying visual
contexts, as they focus on text adaptation rather than lever-
aging visual features for compositional reasoning. To ad-
dress this, we propose a Visual Adaptive Prompting System
(VAPS) that leverages a learnable visual prompt repository
and similarity-based retrieval mechanism within the frame-
work of VLMs to bridge the gap between semantic and
visual features. Our method introduces a dynamic visual
prompt repository mechanism that selects the most relevant
attribute and object prompts based on the visual features of
the image. Our proposed system includes a visual prompt
adapter that encourages the model to learn a more gen-
eralizable embedding space. Experiments on three CZSL
benchmarks, across both closed and open-world scenarios,
demonstrate state-of-the-art results.

1. Introduction

Humans have a remarkable ability to compose attributes
with objects to imagine novel combinations they have never
encountered, for example, a blue banana. Attributes de-
scribe the state of an object, such as the color, texture, or
shape, while objects represent the entities themselves, such
as a banana or a car. This ability to associate various at-
tributes with different objects is a fundamental aspect of
human cognition, known as compositionality [4, 15, 16].
Compositional Zero Shot Learning (CZSL) aims to mimic
this human behavior by enabling models to recognize com-
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Figure 1. Similarity-Based Visual Repository Mechanism. The
image features are matched against learned keys in a shared repos-
itory space, where similarity scores are computed. Based on these
similarity scores, the most relevant learned visual prompts repre-
senting attributes (i.e., “color”) and objects (i.e., “animals”) are
selected. The selected prompts are then averaged, creating a final
representation (purple) that holds the object and attribute informa-
tion of the input images. This process allows dynamic retrieval
and combination of relevant visual prompts for downstream tasks.

binations of primitive attributes and objects that were not
explicitly composed, or seen together, during training.
CZSL focuses on the recombination of known primitives,
allowing for the recognition of novel compositions by effec-
tively disentangling attribute and object information from a
combined visual representation [5, 7, 39].

The rigorous pre-training of VLMs have shown great
ability for understanding tasks that require multimodal vi-
sual and textual data. Models like CLIP [32] are trained on
vast amounts of image-text data and learn to map visual and
textual representations into a shared embedding space, en-
abling them to perform tasks such as zero-shot classification
and image recognition. However, when approached with
the more nuanced understanding of compositional reason-
ing, CLIP lacks the ability to generalize to unseen primitive
compositions. This lack of generalization can be attributed
to the reliance on static representations of fixed classes seen
during training and the lack of flexibility to adjust their in-
ternal prompts to changes in visual inputs [9, 10, 42].

Recent studies in CZSL based on VLMs [1, 22, 38] suf-
fer from several drawbacks which limit their performance.



First, state-of-the-art (SOTA) methods typically utilize ei-
ther fixed templates “a photo of [attribute][object]” or a
single learned prefix prepended to “[attribute][object]”. In
these strategies, the text prompt is processed through the
text encoder, while the raw image is handled by the im-
age encoder, leading to the development of a joint embed-
ding that facilitates the inference of unseen attribute-object
compositions. Although promising, text-focused methods
largely overlook valuable visual insights, as they concen-
trate on tuning text-based prompts rather than exploiting vi-
sual information that could enhance attribute-object disen-
tanglement and improve model adaptability to unseen com-
positions [23, 26]. Second, SOTA algorithms typically rely
solely on these text-centric learnable prompts, and operate
under the assumption that a minimal number of prompts can
adequately capture all attribute-object combinations. For
example, a single prompt might be used to denote a variety
of attributes like “wet,” ”dry,” ’red,” etc. This limited ap-
proach constrains the development of tailored prompts that
could significantly improve performance. Moreover, using
only one or two prompts means these techniques struggle
to properly separate attribute features from object features,
thereby restricting their effectiveness in generalizing to un-
seen compositions. Third, text-centric approaches utilize
fixed prompts as a prefix to “[attribute][object]” during
training. These static prompts are comprised of a set of
learnable variables that remain constant in their positions
across different attribute-object pairings, such as transition-
ing from “wet cat” to “red apple”. Relying on such static,
learnable text prompts often fails to fully encompass the
entire context of an image. This is because text descrip-
tions can be relatively rigid, not adequately reflecting the
complexities of an image. For instance, the attribute “wet”
might carry different semantic implications when associ-
ated with disparate objects like a cat versus an apple.

To address these challenges, we propose a novel ap-
proach Visual Adaptive Prompting System (VAPS) that
builds on CLIP’s multi-modal architecture by leveraging a
dynamic visual prompt repository and a similarity-based re-
trieval mechanism, which shifts the emphasis to the image
features generated by CLIP’s visual encoder. VAPS creates
a repository of visual features to serve as visual prompts,
comparing them with fused features in a pair space, as well
as implementing a prompt adapter based on the original im-
age features that allows the model to adapt its representation
based on the visual context. The summary of our contribu-
tions for CZSL are stated below:

e Visual Prompts: To leverage information directly from
the image encoder, we introduce visual prompts. These
visual prompts are learnable embeddings designed to cap-
ture visual patterns related to attributes and objects. This
high-level semantic representation efficiently separates
attributes from object visual features, allowing VAPS to

generalize visual semantics to unseen compositions more
effectively. Unlike text-based prompts, visual prompts
leverage visual features to enhance disentanglement and
boost adaptability.

Prompts Repository: Our approach employs a repository
of learnable visual prompts that operate independently
from those used by the text encoder. Each visual prompt
in this repository is paired with a learnable key, which
serves as an identifier for effective selection. VAPS uses
a similarity-based retrieval mechanism to match image
features with learned keys in the repository, selecting the
most relevant prompts for the input image. This allows
the model to effectively disentangle attributes from ob-
jects, facilitating generalization to unseen compositions.
Text Prompt Adapter: VAPS incorporates an adapter that
dynamically updates the prefix of the text prompt using
image features from the visual transformer. By incorpo-
rating a bias term from image features, this approach cus-
tomizes the prompt for each image, aligning it with the
visual context and effectively separating attributes from
objects. For instance, the learnable text prompts are ad-
justed with different bias values when processing images
of a “wet cat” versus a “red apple,” overcoming the limi-
tations associated with static prompts.

2. Related Work

Compositional Zero-Shot Learning extends the principles
of zero-shot learning by focusing on the recognition of un-
seen compositions of known primitives. As previously men-
tioned, disentanglement is a prevalent approach in many
CZSL methods [3, 5, 17, 35]. However, this is not the
only approach to achieve compositional generalization. Li
et. al. uses the principles of symmetry and group theory to
model attribute-object compositions through coupling and
decoupling transformations, and introduces a novel distance
method for CZSL [20]. A Siamese Contrastive Embedding
Network (SCEN) embeds visual features into a Siamese
contrastive space to separately capture attribute and object
prototypes diversity [18]. A retrieval-augmented approach
was proposed to enhance the recognition of unseen prim-
itive compositions by retrieving and augmenting attribute
and object representations [11]. Wang et. al. propose a de-
pendent approach for CZSL that generates conditional at-
tribute embeddings by using an attribute hyper learner and
base learner to account for the varying interaction of at-
tributes with different objects [36].

Modern applications in CZSL include adapting pre-
trained multimodal VLMs, such as CLIP [32], to improve
CZSL results. It is shown that downstream tasks can be
built on top of the VLMs to enhance these results. Com-
positional Soft Prompting (CSP), introduced in [29], uses
a static prompt prefix combined with learned attribute and
object descriptions. This text is passed through a text en-
coder while the image is processed by CLIP’s visual en-
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Figure 2. VAPS leverages the multimodal power of CLIP’s image and text encoders to extract visual features f, € R and text features
ft € R7™®. A prompt adapter uses f, to shift three learnable prefix tokens [v1][v2][v3], which are prepended to the embeddings of all
attribute—object candidates and encoded to yield f;. The top two visual prompts most similar to f, are retrieved and averaged, and f, and f:
are projected into a shared pair space, fused with the averaged prompts, and scored to produce final logits for selecting the highest-scoring

attribute—object pair.

coder. The model then calculates the cosine similarity be-
tween the text embeddings and image features to predict
the correct attribute-object composition. More recent works
built on top of this method by removing the static pre-
fix content and instead making the entire prompt learnable
[22, 38]. While these processes produce promising results,
only one learned prompt may not generalize well to every
image passed through the visual encoder.

Prompt Learning/Tuning modifies the original input by
leveraging learnable tokens that guide the pre-trained lan-
guage model to examine specific features or contexts rele-
vant to the task the model is trying to solve [13, 21, 34].
With the more recent advancements in VLMs, prompt learn-
ing has steered into a new direction by focusing on the
multi-modality of both textual and visual content in a shared
embedding space [14, 32, 33]. Huang et. al. introduced
a method to transfer performance from VLMs without the
need for prompt engineering or labeled data by generating
pseudo labels for target datasets and optimizing learnable
prompt representations through self-training on the psuedo-
labeled samples [6]. Prompt learning has been applied on
top of pre-trained vision transformers to solve the catas-
trophic forgetting problem in continual learning by using a
pool of learnable prompts to learn tasks sequentially [37].
CoOp [42] introduced a method to automate prompt en-
gineering for models like CLIP by learning the vectors of
prefix content while keeping the pre-trained model fixed for
few-shot scenarios. CoCoOp [41] learns a lightweight neu-
ral network that generates dynamic prompts based on the
input image.

3. Preliminaries and Insights
Let A denote the set of attributes and O denote the set of ob-
jects. Given a set of attributes A = {ag,a1,...,a,} and a

set of objects O = {o0g, 01, . .., 0m }, we define the set of all
possible compositions C' = A x O, where X is the Cartesian
product. The set C can be divided into two disjoint subsets:
seen compositions Cy and unseen compositions C',, where
C;NCy=0Pand C;, UC, =C.

In Closed-World CZSL, the model operates under the
assumption that all possible compositions for testing are
drawn from a predefined subset Cesy € C'. This means
that while some compositions may be unseen during train-
ing, they are still part of this known subset. Consequently,
the test set includes both C's and C,,, but all testing samples
are limited to this established set Cs U C,,, restricting the
model to a predefined range of feasible combinations. In
Open-World CZSL [24], the model must navigate the entire
composition space C = A x O, which includes both fea-
sible and infeasible combinations. This presents an added
challenge, as the model encounters compositions that were
neither seen during training nor predefined as possible dur-
ing testing, making classification more complex. The objec-
tive is to learn a function f : X — Ciey for Closed-World
settings and f : X — C for Open-World settings, where X
denotes the input space of images corresponding to these
compositions.

4. Methodology

Our approach builds upon the multimodal capabilities of
VLMs, such as CLIP, for compositional learning by freez-
ing its pre-trained visual and text encoders. During train-
ing, each input image is processed through CLIP’s visual
encoder to obtain feature representations f,. These features
are used two-fold: (i) as input to the text prompt adapter
to find the appropriate bias for dynamically shifting a set
of learnable prefix text tokens and (ii) used to select visual



prompts from the repository. The shifted prefix tokens are
prepended to the word embeddings of attributes and objects
to form the final text prompt, which is processed through
the text encoder to produce text features f;. Next, f, and
ft are decomposed and fused via cross-attention, resulting
in a joint representation that is mapped to a dedicated pair
space. In this space, the similarity between the fused repre-
sentation of < f,, f >and the selected visual prompts in-
forms the final compositional prediction. Additionally, both
fv and f; are each projected into a separate pair space to fa-
cilitate the compositional prediction.

During inference, the same processing pipeline is fol-
lowed with one main difference: ground truth attribute-
object pairings are unavailable. Instead, text prompts are
generated for each candidate pair (a,0) € C"* using the
shifted prefix, and the final predicted composition is se-
lected as the pair yielding the highest probability pg,. Figure
2 provides an overview of our method.

4.1. Visual Prompt Repository

The visual prompt repository comprises a collection of
M learnable visual prompts P, Py, ..., P, where each
P; ¢ R represents an individual visual prompt, and
l denotes the prompt length. These prompts are initial-
ized randomly and refined during training to capture high-
level semantic visual features, such as colors, textures, and
shapes. Each visual prompt P; is paired with a learnable key
a; € R?, which helps identify the most relevant prompts
for a given image by measuring similarity between the in-
put image features and the keys. The keys a; are used
for similarity assessment, while P; contributes to predicting
attributes and objects in the joint embedding space, com-
bined with the output of the fusion block. To find the best-
matching visual prompts, cosine similarity is computed be-
tween the normalized visual features f, of the input image
and each normalized key a;. Based on the similarity scores,
the model selects the top two prompts with the highest co-
sine similarity, ensuring that one prompt aligns with the im-
age’s attribute and the other with the object. These selected
prompts are then averaged, forming a combined representa-
tion that is later integrated with the visual and textual fea-
tures to improve compositional prediction. By dynamically
selecting the most relevant visual prompts, the model im-
proves image-text alignment and enriches the representation
of image content. Over the course of training, each visual
prompt becomes more adept at capturing the visual charac-
teristics of basic elements, such as “red” or “wet,” enabling
more precise attribute-object mapping and enhancing gen-
eralization to unseen compositions. The final representation
of the retrieved visual prompts can be denoted by f.c;.

4.2. Text Prompt Adapter

In SOTA CZSL algorithms, “[attribute][object]” is
prepended with learnable text soft prompts. These soft

prompts typically consist of a few trainable tokens, such as
three prefix tokens [v1][v2][v3], which are initialized with
a generic phrase like “a photo of” to align with CLIP’s pre-
training [22, 29, 38]. However, these tokens remain fixed
in location and combination for every training and infer-
ence sample, making no distinction between different at-
tributes and objects. Therefore, during inference, when
“[attribute][object]” is not available, the same trained pre-
fix text soft prompt is used for every test sample, leading to
poor generalization on unseen compositions.

Motivated by the prompting method introduced in [41],
we incorporate a prompt adapter module with trainable pa-
rameters. The prompt adapter takes the image feature f,, as
the input and provides the amount of the shift for the text
prompt in the output. The prefix structure of the learnable
soft prompt provides a general context for the task while
the attribute and object represent the composition of the ob-
ject. The prompt adapter is a lightweight neural network,
represented as:

PromptNet(f,) = Wa - (W7 - f, + b1) + by, (1)

where f, represents the visual features, W1, W, by, and
b, represent the linear layers and their bias terms, respec-
tively, and o () is the ReLU activation function. The output
of the prompt adapter network is a bias term, denoted as
©(fv), which is added to each of the learnable embeddings
in the soft prompt’s prefix {6, 01, ...,6,}. This is repre-
sented as:

0 =6+ i) for i=0,...p, @

where each 6, represents the shifted version of the original
prompt embedding #;. Therefore, the updated shift in the
soft prompt P is Pl = {00,01,...,0,,0a,0,}. The
text features f; are obtained by passing P’ . through the

soft
text encoder.

4.3. Decomposition and Fusion Block

To disentangle the visual features of attributes and objects
and embed them jointly with their text representation, we
decompose and fuse the visual features, f,, and the text
features, f; [22]. Specifically, the text feature representa-
tion is decomposed by averaging the contributions of the
attributes and objects from the corresponding logits. De-
composition helps isolate the properties of attributes and
objects, allowing the model to treat these two components
independently during subsequent fusion. The decomposed
features are supervised during training to accurately cap-
ture the primitive’s information. We compute the attribute
and object probability as follows:

o =al ai0) =SBl S

acA

3)
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where A and O denote the sets of attributes and objects.
The cross-entropy can be minimized as:
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Next, f, and f; are fused through a cross-attention mech-
anism, where the query (Q), key (K), and value (V') matri-
ces focus on aligning image and text features within a com-
positional space. Specifically, @ is derived from f;, while
K and V are derived from f,, where the key represents the
aspects of the image that the query will attend to, and the
value holds the information that will be emphasized based
on how well @ aligns with K. Here, d denotes the dimen-
sionality of the feature vectors in the compositional space.
The cross-attention can be computed as follows:

QK™
Vd
This cross-attention operation yields f;_,,,, a fused rep-

resentation that incorporates textual context of the attributes
and objects with the visual features.

Attention(Q, K, V') = softmax ( ) V. @)

4.4. Training

The additional training of our model is conducted in two
parts: one focuses on adapting the soft prompt to the target
compositions, and the other on the alignment between re-
trieved prompts and the final fused representation f;_,,. To
ensure the shifted soft prompts align with the target com-
positions, the class probability for the soft prompt are com-
puted as follows:

exp(fv : ft)
e, o T

DPsp (y = (a,o)\x;@) = E ()

where f; is the text feature representation from the shifted
soft prompt and C® denotes the set of seen compositions.
To encourage the adapted soft prompt to generate text fea-
tures that align with the target compositions, the cross-
entropy over these probabilities is minimized to form the
soft prompt alignment loss:

7% S log(py (y = (a,0)[x:6).  (©)

(z,y)eCs

L=

Next, we ensure that the fused features accurately reflect
the retrieved prompts from the repository. The probability
of this is defined as pt and apply the softmax function over
C*:

exp (fret'ft—)u)

. (10
Z(n/,n’)ecs exp(f'r‘et'ftﬂv) ( )

pret(y = (CL,O) | x,&) =

The cross-entropy loss is then minimized over the class
probabilities. The objective function is defined as:

1671 3" log (pre (y = (a,0)]a:6)). (1)

(z,y)eCs

The total loss function for training the model is then a
weighted combination of the compositional, attribute, ob-
ject, and soft prompt losses, where Ay obj and A, are hyper-
parameters that control the relative weight of the attribute-
object loss and the soft prompt loss:

Etolal = Lret + /\att,obj (L‘all + Eobj) + )\spcsp- (12)

4.5. Inference

To predict the most likely attribute-object composition ¢ in
a closed-world scenario, we select the label (a, 0) from the
test set C'**' that maximizes the probability py, (y = (a,0) |
z;0):

9 = argmax psp(y = (a,0) | x;@), (13)
(a,0)€Ct

where pg, is computed following the same procedure in
Eq. (8). Since the true attribute-object labels are unknown at
inference, we construct text prompts for each (a,0) € C*
using our learned prefix, and select the pair yielding the
highest p,.

For open-world inference, C' expands to encompass all
possible attribute-object pairs, making classification more
challenging. As in prior works [1, 22, 29], a feasibility
calibration step is applied by computing a similarity score
p(a, o) for each candidate pair (a, 0). Any pair whose score
falls below a threshold 7" is deemed infeasible and filtered
out:

j = arg max psp(y = (a,0) | x;@). (14)
(a,0) € C,p(a,0) >T

This approach restricts the model to only consider
attribute-object pairs deemed feasible. Selecting ¢ from
the remaining pairs ensures that we capture the most prob-
able composition for a given image, whether in a closed- or
open-world setting.



Method | MIT-States | UT-Zappos | C-GQA

/'S U H AUC| S U H AUC| S U H AUC
AoP [28] 143 174 99 16 [598 542 408 259 [ 170 56 59 07
LE+ [27] 150 20.1 107 20 [530 619 41.0 257 | 181 56 61 08
TMN [31] 202 201 130 29 | 587 600 450 293|231 65 75 11
SymNet [20] | 242 252 161 3.0 |498 574 404 234|268 103 11.0 21
CompCos [24] | 25.3 246 164 45 | 598 625 43.1 281 281 112 124 26
CGE [27] 287 253 172 51 | 568 636 412 264 | 287 253 172 5.1
Co-CGE [25] | 32.1 283 200 66 |623 663 481 339 333 149 144 41
SCEN [18] 299 252 184 53 | 635 63.1 478 320 | 289 254 175 55
CLIP [32] 302 400 261 110 [ 158 49.1 156 50 | 75 250 86 14
CSP [29] 46.6  49.9 363 194 | 642 662 46.6 330 | 288 268 205 62
GIPCOL [38] | 48.5 49.6 36.6 199 | 650 685 488 362 |319 284 225 7.1
DFSP [22] 46.9 520 373 206 | 667 717 472 360 | 382 320 271 105
VAPS (Ours) | 484 522 382 212|645 743 538 401 |396 317 281 110

Table 1. Closed-World Results on MIT-States, UT-Zappos, and CGQA. The results are reported for Seen (S), Unseen (U), Harmonic Mean
(H), and Area Under the Curve (AUC). Bold and blue indicate the first and second best results, respectively.

5. Experiments and Results

5.1. Experimental Setup

Datasets. We evaluate our model on three renowned CZSL
datasets: MIT-States [8], UT-Zappos [40], and C-GQA
[27]. MIT-States contains a variety of web-crawled images
with 115 and 245 attributes and objects, respectively. 1262
seen compositions are used in training and 400 seen and un-
seen compositions used in testing. UT-Zappos is a smaller
dataset containing images of 12 different types of shoes and
16 fine-grained attributes. C-GQA was built on top of the
Stanford GQA dataset and contains a wide array of real life
objects and attributes and possesses the most robust label
space out of all three datasets, with over 800 seen and 900
unseen compositions in the test set.

Metrics. Following the setting of previous works [19, 22,
38], we assess our model’s performance using metrics tp
focus on both seen and unseen compositions. Specifically,
we evaluate accuracy for Seen (S) and Unseen (U) composi-
tions under both closed-world and open-world scenarios, as
these two cases offer insights into the model’s generaliza-
tion capabilities. Furthermore, we observe the Harmonic
Mean (H). Given the inherent bias of zero-shot models to-
ward seen compositions [2, 24, 26], we analyze the trade-
off between seen and unseen performance by plotting an
accuracy curve across a bias range from —oo to +00. This
allows us to compute the Area Under the Curve (AUC), the
core metric reflecting the model’s overall capability.
Implementation Details. We utilize PyTorch 1.12.1 [30]
for the implementation of our model. The model is opti-
mized using the Adam optimizer over the previously men-
tioned datasets. Both the image encoder and text encoder

are based on the pretrained CLIP ViT-L/14 model, and the
entire model is trained and evaluated on a single NVIDIA
A100 GPU. We set M = 20 for UT-Zappos and M = 30
for MIT-States and C-GQA, as the latter two datasets con-
tain a wider variety of attribute-object compositions.

5.2. Comparison with State-of-the-Arts

Our method is compared to other state-of-the-art (SOA)
CZSL methods, including: AoP [28], LE+ [27], TMN [31],
SymNet [20], CompCos [24], CGE [27], Co-CGE [25],
SCEN [18], CLIP [32], CSP [29], GIPCOL [38], and DFSP
[22]. The same data splits are used across each model and
are based using CLIP’s ViT-L/14 backbone.

The main results for the Closed-World setting are re-
ported in Table 1. We can observe that VAPS outperforms
all other SOA methods on the UT-Zappos dataset, specifi-
cally with an increase of 2.6% in classifying unseen com-
positions, a 5.0% increase in harmonic mean, and a 3.9%
increase in AUC. When tested on the C-GQA dataset, our
model demonstrates strength in seen accuracy with a 1.4%
improvement, harmonic mean with a 1.0% increase and an
increase in AUC to the previous SOA method by 0.5%, fur-
ther showcasing its robust performance across the bench-
marks. Additionally, VAPS remains competitive on MIT-
States, delivering best results in seen, unseen, and AUC. Ta-
ble 2 showcases the results for the more challenging open-
world scenario. An improved unseen accuracy, harmonic
mean, and AUC can be observed UT-Zappos, while all met-
rics seen increases across CGQA. Once again, we show
an increase in harmonic mean and AUC on the MIT-States
dataset. We can attribute this success to the use of the visual
prompt repository, which leverages learned visual seman-



Method | MIT-States | UT-Zappos | C-GQA

/'S U H AUC| S U H AUC| S U H AUC
AoP [28] 166 57 47 07 [509 342 294 137 | - - - -
LE+ [27] 142 25 27 03 | 604 365 305 163|192 07 1 0.1
TMN [31] 126 09 12 01 |559 181 217 84 | - - - -
SymNet [20] | 214 7 58 08 [533 446 345 185|267 22 33 04
CompCos [24] | 254 100 89 16 |593 468 369 219 | - - - -
CGE [27] 324 51 60 1.0 |61.7 477 390 231 |267 22 33 05
Co-CGE[25] |303 112 107 23 |6l.1 458 408 233|321 30 48 08
KG-SP[I2] |284 75 74 13 |618 521 423 265|315 29 47 08
CLIP [32] 301 143 128 3.0 |[157 206 116 22 | 75 46 40 03
CSP [29] 463 157 174 57 | 641 441 389 227 | 287 52 69 12
GIPCOL [38] | 48.5 160 17.9 63 | 650 450 40.1 235|316 55 73 13
DFSP [22] 475 185 193 68 | 668 60.0 440 303|383 72 104 24
VAPS (Ours) | 483 182 20.0 7.0 | 644 60.1 478 317 |39.5 73 108 2.6

Table 2. Open-World Results on MIT-States, UT-Zappos, and CGQA. The results are reported for Seen (S), Unseen (U), Harmonic Mean
(H), and Area Under the Curve (AUC). Bold and blue indicate the first and second best results, respectively.

tics from the image encoder, as well as the prompt adapter,
which shifts the soft prompt prefix for each individual im-
age. Previous methods disregard enhancing the visual fea-
tures from the image encoder while also assuming that one
learned soft prompt prefix can generalize to all composi-
tions. These outcomes emphasize the effectiveness of VAPS
in both closed and open-world scenarios, where its visual
prompt retrieval mechanism and soft prompt prefix adap-
tation results in consistent gains over all datasets against
competing methods.

5.3. Ablation Study

To better understand the behavior of our model, we begin
by conducting an ablation study to assess the contribution
of each component branch. Additionally, we explore how
varying the number of selected prompts from the visual
repository affects performance. This study is performed on
the UT-Zappos and MIT-States datasets.

Component Study. We analyze how different branches in-
teract in the proposed model in both closed-world and open-
world settings in Table 3. Specifically, we examine the
cross-attention (ca), prompt adapter (pa), and prompt repos-
itory (pr) components. We keep all configurations consis-
tent throughout each experiment. When the pa branch is
excluded from the model, we observe a decrease across all
metrics when compared to the full model. Over a 2% de-
crease occurs on the seen and unseen composition accu-
racy and AUC drops 1.6% on UT-Zappos in the open-world
setting. For the closed-world setting, a decrease of 6.6%
and 3.7% occur across unseen accuracy and AUC, respec-
tively. Similarly, we see a decrease across all metrics on

Components MIT-States UT-Zappos
prca pal| S U H AUC| s U H AUC
v v v | 484 522 382 212|645 743 538 40.1
v v 479 515 373 205 | 622 721 522 385
CcwW v v | 485 516 376 208 | 60.7 69.7 50.1 36.0
v v v | 483 182 200 7.0 | 644 60.1 478 31.7
v v 488 174 192 6.6 | 640 535 442 280
ow v v | 487 175 195 68 | 61.8 532 430 269

Table 3. Ablation of different model components and its effect on
performance on Closed World (CW) and Open World (OW). Bold
represents the best results.

MIT-States when removing the pa branch. Next, we per-
form an ablation to study the effect of the prompt repository
by keeping only ca and pa. When removing pr, all met-
rics decrease across the UT-Zappos dataset for both closed
and open world scenarios. On MIT-States, a slight decrease
of 0.4% in AUC occurs; however, seen accuracy increases
slightly by 0.1%. Overall, we can see a higher variability
in the results across the UT-Zappos dataset when ablating
components compared to MIT-States. Retaining the prompt
repository alongside the cross-attention and prompt adapter
components ensures optimal performance, particularly in
complex open-world scenarios. Furthermore, retaining all
three branches of the model ensures that the core AUC met-
ric remains at its highest level.

Repository Size and Number of Selected Prompts. This
study experiments with initiating the size of the repository
and the number of selected prompts with different values.
Through empirical analysis, it was observed the optimal vi-
sual repository size was between 20 and 30 prompts for
each dataset. This range offers a sufficient diversity of
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Figure 3. Top-3 qualitative results. Each example displays the ground truth (GT) label and predictions, highlighting correct predictions in

green and incorrect ones in red.

learned prompts. Additionally, our analysis showed that se-
lecting a single visual prompt for attributes and one for ob-
jects per image was optimal for compositional disentangle-
ment. Our results show some variability between datasets.
On MIT-States, increasing the repository size slightly im-
proves harmonic mean and AUC, suggesting that a mod-
erate diversity of prompts supports its range of compo-
sitions. For UT-Zappos, smaller repository sizes and se-
lecting two prompts per image yield more noticeable AUC
gains, likely due to one prompt representing attributes and
one per image. This demonstrates that while both datasets
benefit from the prompt repository, optimal configurations
vary with dataset characteristics, showcasing the adaptabil-
ity of our approach across different compositional settings.

5.4. Qualitative Results

To observe the robustness of our method, the top-3 qualita-
tive results for selected images across UT-Zappos and MIT-
States datasets are reported for both closed and open world
settings, shown in Figure 3. For example, our model suc-
cessfully classifies images of "Nubuck Loafers’ and ’Canvas
Clogs’ with the first prediction, but classifies ’Cotton Flats’
correctly in the second prediction. However, the first pre-
diction for ’Cotton Flats’ was ’Leather Flats’, which may
be due to the brown color of the flats in the studied im-
age. Similar results also occur in the MIT-States and UT-
Zappos datasets. Our model correctly classifies all three of
the images from MIT-States with its first prediction. For the
’Ancient Coin’ image, despite the challenging visual sim-
ilarities it may have with objects such as *Ancient Drum’,
the model demonstrates strong attribute recognition by cor-
rectly identifying the *Ancient’ attribute, which helps it cor-
rectly classify the object. Similarly, for the *Broken Bottle’
image, although the texture and overall form might overlap
with objects like *Broken Boulder’, the model effectively
uses the *Broken’ attribute as a distinguishing feature, al-
lowing it to make informed predictions.

Our model’s robustness is further demonstrated in the
open world setting. For instance, it successfully differen-

Rep. Size | Selected N | MIT-States | UT-Zappos

\ | S U H AUC| S U H AUC
20 2 492 505 372 205 | 63.5 7277 538 40.1
20 4 493 504 37.1 206 | 644 70.1 47.1 351
30 2 484 522 382 212 | 624 723 499 369
30 4 48.5 52.1 382 208 | 61.0 726 493 358

Table 4. Comparison of datasets with varying repository size and
number of selected prompts in closed-world setting.

tiates between visually similar but distinct material, such as
"Leather’ and ’Synthetic’, when classifying ’Ankle Boots’.
Similarly, the model was able to classify the image of the
’Winding Stream’ with high accuracy. However, some in-
correct first predictions are seen in each dataset, such as
predicting the image of the *Iguana’ as "Mossy’ instead of
"Young’. Also, the prediction of a "Windblown Iguana’
highlights the challenge posed by the open-world scenario
since this attribute is not plausible for the given object.
Overall, these qualitative results represent the effectiveness
of our method in both closed and open world settings. By
focusing on key object features and attribute details, our
model is able to make accurate classifications, even when
confronted with unseen compositions or visually complex
scenarios.

6. Conclusion

In this paper, we propose a Visual Adaptive Prompting Sys-
tem (VAPS) to bridge the gap between semantic and visual
features for CZSL. By leveraging a dynamic visual prompt
repository and a similarity-based retrieval mechanism to se-
lect relevant visual prompts based on attribute and objects,
VAPS enhances the model’s ability to generalize to unseen
compositions. Furthermore, we propose dynamically adapt-
ing the learnable prompt prefix based on the image features
derived from CLIP’s image encoder. Our experiments on
benchmark datasets demonstrate that VAPS achieves state-
of-the-art performance on metrics across the UT-Zappos
and CQGA datasets, highlighting its capability to disentan-
gle and recompose visual features effectively.
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