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ABSTRACT

With the introduction of Industry 5.0, there is a growing focus on human-
robot collaboration and the empowerment of human workers through the
use of robotic technologies. Collaborative robots, or cobots, are well suited
for filling the needs of industry. Cobots have a prioritization on safety and
collaboration, giving them the unique ability to work in close proximity
with people. This has the potential impact of increasing task productivity
and efficiency while reducing ergonomic strain on human workers, as
cobots can collaborate on tasks as teammates and support their human
collaborators.

However, effectively deploying and using cobots requires multidisci-
plinary knowledge spanning fields such as human factors and ergonomics,
economics, and human-robot interaction. This knowledge barrier repre-
sents a growing challenge in industry, as workers lack the skills necessary
to effectively leverage and realize the potential of cobots within their ap-
plications, resulting in cobots often being used non-collaboratively as a
form of cheap automation. This presents several research opportunities
for the creation of new cobot systems that support users in the creation of
cobot interactions.

The goal of this dissertation is to explore the use of abstraction and scaf-
folding supports within cobot systems to assist users in building human-
robot collaborations. Specifically, this research (1) presents updates to the
design of systems for planning and programming collaborative tasks, and
(2) evaluates each system to understand how it can support user creation
of cobot interactions. First, I present the CoFrame cobot programming sys-
tem, a tool built on prior work, and illustrate how it supports user creation
and understanding of cobot programs. Then, I present the evaluation of
the system with domain experts, novices, and a real-world deployment to

understand in which ways CoFrame does and does not successfully sup-
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port users. I then describe the Allocobot system for allocating work and
planning collaborative interactions, describing how it encodes multiple
models of domain knowledge within its representation. Finally, I evaluate
the Allocobot system in two real-world scenarios to understand how it
produces and optimizes viable interaction plans.



1 INTRODUCTION

1.1 Motivation

Collaborative robots (cobots) are robots marketed for their focus on safety,
collaborative capabilities, and easy-to-use programming, and have grown
in adoption by the manufacturing industry (Grand View Research, 2023).
The marketing for cobots (Robots, 2023; fra) promises deployment and
usage reconfigurability through their user-friendly programming systems
along with increased safety for human work environments. These robots
are sold on the promise of ease of use and improved safety, but not at a
premium cost.

This marketing of safety and ease of use aligns well with the industrial
needs outlined in the concepts of Industry 4.0 and 5.0. One of the key
concepts for Industry 4.0 in the manufacturing domain is the flexibility
and reconfigurability of manufacturing processes (Lasi et al., 2014; Qin
et al., 2016). Manufacturers require adjustable and reconfigurable work
cells to accommodate changes to and personalization of products while
meeting manufacturing efficiency needs. Traditionally, these adjustments
would be accomplished through automation and worker replacement,
but Industry 5.0 attempts to address this by focusing on human-robot
collaboration and enhancing the capability of the human workforce (Leng
et al., 2022; Xu et al., 2021; Akundi et al., 2022).

In addition to cobot capability aligning with these concepts, research
also highlights additional positive benefits that these collaborative inter-
actions can provide, including reducing strenuous activity for human
workflows, reducing overall cycle times, and reducing costs (Sanneman
et al., 2021; Paulikova et al., 2021). Human-robot collaboration can also
combine the adaptiveness of humans with the accuracy and precision
of cobots, creating workflows that leverage the benefits of all parties in-



volved. This is important to help alleviate worker fears of automation
and replacement that exist within the workforce (Golin and Rauh, 2022;
Spencer, 2018).

Given the potential of cobots for fulfilling these needs of collabora-
tion and safety, cobots have demonstrated a high potential for application
in multiple domains and regions (Jacobs, 2024). As a result of this ap-
plication potential, cobots have grown in market share with projections
increasing through 2030 (Grand View Research, 2023). However, we cur-
rently do not see cobots being used in collaborative applications (Michaelis
et al., 2020). While adoption is improving, additional requirements and
considerations are needed for effective collaboration when compared to
traditional robotics and automation approaches. Due to the complexity of
these additional requirements, many users struggle to understand new
and unfamiliar interaction paradigms of collaborative robots, as much
of the workforce has not been adequately trained on or adapted to these
needs. Collaboration requires consideration of the individuals involved
in the task and the nature of the work being performed. This is further
complicated when incorporating cobots due to the difficulty of accounting
for changing environments and the non-deterministic actions of human
workers. This complexity, coupled with the unpredictability of humans,
puts cobots out of reach for many manufacturers.

The programming systems that accompany cobots, such as teach pen-
dants, are meant to assist users in building programs to achieve collabo-
rative interactions, but do not provide adequate support for users (Dong
et al., 2021; Zieliniski et al., 2021; Byun and Dong, 2023). As a stop-gap,
additional formal training is often required for users to supplement sys-
tem usage and provide a better understanding of how to operate cobots
safely while utilizing the collaborative potential of cobots. This lack of
user support and difficulty in understanding cobot interactions have been
some of the factors that have led to a growing "skills gap" in the industry



(Shipps and Howard, 2013; Holm et al., 2021; Leitdo et al., 2020). Addi-
tionally, this skills gap has resulted in cobots being mainly utilized as a
more cost-effective form of automation (Michaelis et al., 2020; Wallace,
2021), meaning they are used similarly to traditional robots and have their
collaborative capabilities underutilized. Due to these factors, manufac-
turers struggle to specify how they want to interact with and effectively
utilize cobot systems, resulting in their use as tools for automation or
manufacturers relying on third-party integrators with cobot expertise for
work-cell development and implementation.

While the adoption of cobot hardware is growing, it is important to
create software solutions that support users, making the collaborative ben-
efits accessible and realizable. Therefore, new systems and supports are
needed to help manufacturers integrate and utilize cobots effectively. This
is challenging due to the various processes involved with both planning
and programming cobot use within work cells, from the planning stages
where companies figure out how to incorporate cobots in the manufac-
turing process and how it will collaborate with a person on the task, to
programming it to be able to work effectively with an operator. As these
stages could involve different groups of individuals, there are many areas
where specialized knowledge of cobots is required, making it difficult
to realize their full potential. Thus, to make cobots more accessible and
usable, new tools are needed that can better complement users’ existing
knowledge and support their decision-making. The work in this disserta-
tion presents the design and evaluation of several systems that address
the growing need for human-robot collaboration by fulfilling the needs of
Industry 5.0 while bridging the skills gap within the existing workforce.



1.2 Thesis Statement

This dissertation explores how we can design systems that support users
in creating and understanding effective human-robot collaborations. To-
wards this goal, my thesis is as follows: Cobot interfaces that integrate
abstraction and scaffolding can facilitate planning and programming
human-robot collaborations.

For this dissertation, we adopt the definition of abstraction by Wing
(2008) as “deciding what details we need to highlight and what details we
can ignore,” meaning that it supports users in focusing conceptually on
what something does. Additionally, we adopt the definition of scaffolding
by Guzdial (1994) as “support which enables a student to achieve a goal
or action that would not be possible without that support,” meaning that
it serves as the pedagogical strategy for how users engage with or learn a
given concept. Put another way, abstraction allows users to think about
the problem at a conceptual level, and scaffolding is how those concepts
are learned and applied. While these definitions are frequently utilized
together, they refer to different ideas. For example, in cobot programming,
abstraction might involve focusing on high-level goal-based decisions,
such as “move robot” or “grasp object,” instead of low-level controls for
implementing robot behaviors and motions. At the same time, scaffolding
might provide expert knowledge that explains the behaviors and how their
usage impacts safe human-robot interactions. In this example, abstraction
allows users to think about the human-robot collaboration at a goal-driven
level, while scaffolding focuses on how users utilize and interact with
these representations.

The system described in Chapter 3 describes the design and implemen-
tation of the CoFrame programming system. It highlights design decisions
for supporting end-user robot programming by abstracting cobot program-
ming to the conceptual level and by providing scaffolding guidance on
program development that incorporates the expertise needed to build



effective collaborative interactions. The chapter discusses these design
decisions and the ways they provide support to end-users, highlighting
their interaction through illustrative case studies.

Chapter 4 presents the evaluation of the CoFrame system with domain
experts and novices, along with the results of a real-world deployment.
It provides qualitative insights regarding user perceptions of the system
and their use of the abstraction and scaffolding supports. Additionally, it
provides insight into the requirements for real-world deployments, identi-
tying new areas of support required and presenting the key outcomes and
areas of support needed for small-to-medium enterprise (SME) partners
to understand cobot interaction planning and programming.

Chapter 5 presents the design of the Allocobot system, a system built
to facilitate the planning of human-robot collaborative interactions by
addressing the areas of support described in Chapter 4. It highlights
the design decisions for supporting end-user cobot interaction planning
by leveraging user domain expertise and abstracting knowledge from
the domains of robotics, ergonomics, human factors, and economics to
autonomously allocate work and plan collaborative tasks.

Finally, Chapter 6 presents several scenarios to evaluate the use of
the Allocobot system on real-world tasks, illustrating how it focuses on
existing user knowledge, abstracts the required knowledge to plan and

operationalize human-robot collaborations.

1.3 Methodology

The work in this dissertation uses several methodologies to (A) understand
the needs of end-users, (B) design and build the systems that provide
abstraction and scaffolding to create human-robot collaborations, and
(C) evaluate the use and impact of the abstractions and scaffolding in the
systems. While each step represents a unique portion of the process, these



are sometimes overlapping or require iteration.

The first step of my approach, understanding the needs of end-users,
involved both an understanding of the literature and working with end-
users to identify problems and research questions situated in real-world
contexts. For example, Chapter 4 involved engaging end-users to under-
stand and identify gaps in user support for creating cobot programs. In
addition, this phase involved an understanding of the literature to identify
areas for user support, such as illustrated in Chapter 3.

The second step of my approach is the design and development of
systems to address the needs identified through my understanding. This
step involved designing multiple abstraction and scaffolding supports that
address the needs of users to be combined within systems to enable users to
create cobot interactions. For example, both Chapters 3 and 5 highlight the
design and implementation of both the CoFrame and Allocobot systems
that each encapsulate domain knowledge to support users in creating
human-robot collaborations.

The final step of my approach is the evaluation of the created systems.
To understand how these systems impact the cobot programming and
planning process, we employed several techniques, both quantitative and
qualitative, to understand how they provide support to users. For example,
Chapter 4 incorporates user studies as well as a real-world deployment
to understand the use and perception of the CoFrame system holistically.
Additionally, Chapter 6 highlights the use and support of the Allocobot

system through its application on real-world scenarios.

1.4 Contributions

This dissertation makes several technical, design, empirical, and theo-
retical contributions. Specifically, this dissertation makes the following

contributions:



1. Survey — A review of cobot usage within the manufacturing industry

and the state of human-robot collaborative systems (Chapter 2)

2. Technical — An update to the design and implementation of the
CoFrame programming system (Chapter 3, Section 3.3)

3. Empirical — An empirical evaluation of the CoFrame programming
system with experts, novices, and in a real-world deployment (Chap-
ter 4, Section 4.5)

4. Theoretical — The creation of a framework for supporting end-user un-
derstanding through the identification and creation of collaborative
interaction plans (Chapter 4, Section 4.7)

5. Theoretical — Design implications for human-robot collaborative pro-
gramming systems (Chapter 4, Section 4.9)

6. Technical — An update to the algorithmic design and creation of the
Allocobot collaborative planning system (Chapter 5, Section 5.3)

7. Empirical — The presentation and discussion of several real-world
scenarios for the evaluation of the Allocobot collaborative planning
system (Chapter 6, Section 6.4)

1.5 Dissertation Overview

The remainder of the dissertation is organized into six chapters. Chapter 2
provides the relevant background related to the use of cobots in industry
and systems for human-robot collaboration. Chapter 3 presents an iter-
ation on the design and development of the CoFrame system. Chapter 4
presents a user evaluation to understand the perception of the designed
programming supports, the utility of such a tool in industry, and the iden-
tification of additional supports for use in real-world contexts. Chapter 5



presents the design and development of Allocobot, an automated system
that attempts to address the problem of collaboration planning identified
in Chapter 4 to enable users to create collaborative interactions. Chapter
6 presents an evaluation of the Allocobot system using several real-world
scenarios, illustrating how the system supports user creation and under-
standing of collaborative interactions. Finally, Chapter 7 presents a general
discussion about the work presented in Chapters 3-6, including the contri-
butions, significance, and limitations of the work, as well as a discussion

of future research directions.



2 BACKGROUND

This dissertation argues that the use of cobots for collaborative interactions
is currently difficult for users to achieve and that this can be made more
accessible through the creation of new systems that provide abstraction
and scaffolding supports for end-users. To contextualize the contributions
of this work, this chapter provides relevant material for understanding and
motivating the needs and desires of industry, why cobots are a well-suited
technology to address those needs, the current difficulties in using cobots,
and how to support end-user programming.

This chapter provides a general context for understanding and mo-
tivating the work of this dissertation. Further background and related
works are included in Chapters 3-6, specific to the design and usage of the
discussed systems.

2.1 Understanding the Demands of Industry

Industry 4.0 is well underway within the manufacturing domain (Bag
et al., 2021; Jamwal et al., 2021). It makes several promises about the
change in automation, including increased efficiency in manufacturing
and resource management combined with the flexibility for reconfiguring
processes to account for a wider variety of products and customization of
them (Lasi et al., 2014; Qin et al., 2016). This is highly desirable for manu-
facturers, as the increased flexibility means that manufacturing processes
and lines can change and adjust as needed to varying product designs
and requirements. However, this necessitates that any automation and
collaboration technologies utilized are also flexible and reconfigurable.
These requirements are compounded with the next wave of industri-
alization, Industry 5.0 (Leng et al., 2022; Xu et al., 2021; Akundi et al.,
2022). Industry 5.0 focuses on the human element of the manufacturing
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pipeline, with an emphasis on human-robot collaboration, the empow-
erment of workers, and the versatility of interactions (Nahavandi, 2019).
This promises to merge the precision and accuracy benefits from automa-
tion with the versatility and adaptability of humans. Additionally, this
focus promises benefits to workers, as work can be allocated based on the
strengths of each agent, thus potentially reducing worker injury and harm
(Vysocky and Novak, 2016; Pearce et al., 2018).

Cobots have been heavily marketed to the manufacturing industry over
the last few decades (Simdes et al., 2020), but have also found adoption in
logistics (Lappalainen, 2019), and medicine (Ernst and Jonasson, 2020).
Marketing material, such as for the UR5 robot (Robots, 2023), includes
mentions of ease-of-programming, a focus on safety, and an encourage-
ment for possible human-robot collaborations. This has resulted in a
growing adoption rate within the manufacturing domain (Grand View
Research, 2023). Cobots have been seen as one way of fulfilling this flexible
and collaborative need (Knudsen and Kaivo-Oja, 2020), as they can be
interconnected with other systems within the factory, allowing them to be
more easily reconfigured and adjusted as needed to suit these changing
processes (Tamas and Murar, 2019). Additionally, their focus on safety
features allows them the capability to work alongside people, with prior
work exploring how work can be structured to enable humans and robots
to work together (Shi et al., 2012; Pearce et al., 2018), and how cobots
can be integrated into production lines (Wojtynek et al., 2019; Horst et al.,
2021). Depending on implementation, cobots can be used to collaborate on
tasks with humans, acting as a teammate and enhancing human capability
(Christiernin, 2017; Michalos et al., 2015).

Other work demonstrates the additional benefits that are provided
when using cobots, such as the improvement of physical ergonomic work-
ing conditions for operators (Peshkin and Colgate, 1999; Cardoso et al.,
2021; Vysocky and Novak, 2016) and the reduction of cycle time (Enrique
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et al., 2021). The benefits of integrating cobots, alongside their usability,
are some of the main factors for adoption (Simdes et al., 2019, 2020); and
have resulted in cobots having a demonstrated history of being successfully
integrated into various manufacturing processes, providing companies
various productivity benefits (Gil-Vilda et al., 2017).

2.2 Difficulty of Using Cobots To Fit the Needs
of Industry

Recent work has found that there are still many scenarios where cobots
are being utilized as a cheaper alternative to traditional manufacturing
robots, resulting in these companies not using their collaborative capabili-
ties due to the additional difficulties cobots bring (Michaelis et al., 2020;
Guertler et al., 2023; Wallace, 2021). Cobots are fundamentally different
from traditional robotics used in automation. Collaboration introduces
many new ideas and concepts that require new ways of thinking. When
planning interactions, while there are still considerations for system per-
formance and throughput, there are additional considerations for how
robots should interact with individuals (Galin and Meshcheryakov, 2020;
Khalid et al., 2017; Christiernin, 2017; Shi et al., 2012). This includes social
aspects such as physical characteristics and team dynamics (Sauppé and
Mutlu, 2015; Goetz et al., 2003), new capabilities such as being able to
adapt to changing environments and conditions (El Zaatari et al., 2019),
and the management of trust in robots due to fear of job loss (Kopp et al.,
2021). Additionally, organizations have released specific standards that
outline how to ensure safe operation and collaboration across a wide range
of cobot configurations and work cell designs (ANSI/RIA R15.06-2012,
2012; ANSI/RIA R15.08-1-2020, 2020; ISO/TS 15066:2016, 2016). These
regulations highlight critical and tangible design aspects that must be met
for collaborations, including the operation speed of the cobot, the max-



12

imum force it can exert under several scenarios, and additional sensing
and capabilities required for proximal user interaction.

This is a lot of knowledge required for individuals building collabora-
tive interactions. Even after knowing this information, there are additional
difficulties as users must find appropriate tasks to fit cobot capabilities
and determine how to utilize them effectively (Kadir et al., 2018). After
finding an appropriate task, increasing task efficiency can require making
adjustments to the robot’s program, which can be difficult as the respon-
sibility of reprogramming the interaction has shifted from engineers to
operators who are not necessarily robotics experts (Massa et al., 2015).
Further complications arise as operators find the task of reprogramming
to be intimidating, due to feeling like they are not trained to be able to
perform such tasks and that it requires years of training to be able to do
(Giannopoulou et al., 2021).

Other challenges beyond programming hinder the usage of cobots,
such as how to have the cobot operate safely within the environment
(Kildal et al., 2018; Malm et al., 2019), and how to balance control between
the users and robot to reduce overall stress (Pollak et al., 2020). These
concerns are less prevalent in students but are still a major concern amongst
current operators (Kildal et al., 2018). Thus, planning for cobot integration
can be difficult and includes thinking about factors such as people being
in unexpected areas, whether the cobot is holding an object, and how fast
it is moving (Bi et al., 2021). Improper movements while holding objects
can create uncollaborative environments, as collaborative environments as
dictated in part by the task and are not inherent in the application of cobots
(Guertler et al., 2023). Therefore, more consideration is required early
on when determining how to integrate cobots into the environment and
assign them tasks. This is partially mitigated through giving the operator
control over the robot and the interaction, as they can adjust behaviors

and prevent potential issues (George et al., 2023). However, determining
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what controls to present to the operator and when to do so requires extra

consideration before a user ever begins to physically interact with a cobot.

2.3 Addressing Cobot Difficulty

These challenges have demonstrated that existing paradigms are not suf-
ficient and that new, simpler systems and paradigms are needed that
allow for the various end users to be able to more effectively use the cobot
(Hentout et al., 2019; Weiss et al., 2021; Djuric et al., 2016; Emeric et al.,
2020). While existing systems, such as the teach pendant for the UR cobots,
allow users to build programs on the fly, prior work has shown that there
are multiple ways in which they are insufficient for supporting end-user
programming (Dong et al., 2021; Zieliiski et al., 2021; Byun and Dong,
2023). To address this issue, several programming interfaces and systems
have been developed in prior work (Schoen et al., 2022; Steinmetz et al.,
2018; Schou et al., 2013; Pieska et al., 2018; Senft et al., 2021a) that try
to bridge the gap in understanding for cobots by abstracting different
characteristics of the programming process or providing the user with
contextual information. Several different methods have been explored
for supporting the programming process, such as the use of block-based
programming to make the programming process more accessible, under-
standable, and logic focused (George et al., 2023), as well as through the
use of flow charts to represent moving through the steps within a process
(Dmytriyev et al., 2022). In regards to providing additional information
whilst programming, recent work has explored the concept of a digital
twin, a paradigm where the real-world environment is simultaneously
modeled within a digital environment to understand and measure the
impact on the worker, predict robot actions, and understand the state of
environment (Rivera-Pinto et al., 2023; Malik and Brem, 2021). Other

systems have looked at using new modalities for cobot programming,
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such as using augmented reality (AR) to improve collaboration between
users and allow for multiple types of users to be able to program the robot
(Kapinus et al., 2023). This variety of systems and paradigms has begun
to be explored to try and address the need for simplified programming of
cobots.

This has resulted in the identification of a number of areas for improv-
ing the use of cobots, such as system usability, trust, and safety (Chowd-
hury et al., 2020), with suggestions for new systems focusing on the design
of more intuitive interfaces (El Zaatari et al., 2019). Prior work has also
laid out a complete set of guidelines for how these new systems need
to support users and the information they require to be better informed
during the interaction (Frijns and Schmidbauer, 2021), but emphasizes
that the interfaces should generally include information about context
and human awareness to make the interaction feel more safe (Kildal et al.,
2018) and alleviate the mental workload of the operator (Faccio et al.,
2023).

While it is important to develop these new systems and interfaces,
recent work has emphasized the importance of exploring the human side
of this problem (Salvatore et al., 2021), with one avenue being the inclusion
of end users in the design process using methods such as participatory
design (Kaasinen et al., 2020; Bounouar et al., 2022). Other studies have
tried engaging makerspace communities as a way of having the community
get engaged with the creation of these new tools and interfaces (Ionescu
and Schlund, 2019; Ionescu, 2020). Through this incorporation of end
users in the early phases of the system design process and making the
developed tools more accessible to different communities, prior work
seeks to give them a stake in the development of the tools; thereby creating
systems that are both more usable and better support the user in their
tasks.
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2.4 Supporting End-User Programming

One way to help users in programming is by providing support to sim-
plify or ease the programming process. One common practice has been
through the introduction of block-based programming systems (Schoen
and Mutlu, 2024; Fraser, 2015; Resnick et al., 2009) that abstract low-level
code implementation. Block-based programming has been shown to help
students with learning to program (Mladenovi¢ et al., 2018), especially
when compared to text-based programming (Weintrop and Wilensky,
2017, 2015). Due to the benefits and accessibility that these block-based
systems provide, several robot programming tools have begun to explore
the benefits of block-based robot programming (Mayr-Dorn et al., 2021;
Weintrop et al., 2017; Bachiller-Burgos et al., 2020).

Another form of support provided to users is the encapsulation of
expert robotics knowledge within the system (Schoen et al., 2020; Sanders
et al., 2018). These systems can support user understanding of how to
make program adjustments that accommodate the robot’s capabilities or
outright correct problems. This form of support attempts to have the sys-
tem supplement user understanding through abstraction (Janjanam et al.,
2021; Buchanan and Smith, 1988), thereby reducing the barrier of having
users fully understand robots and their capabilities before using them.
This aligns with other work in understanding the effect of abstraction in
program learning, demonstrating that having multiple levels of abstraction
helps to facilitate increased learning (Waite et al., 2018; Devathasan et al.,
2022).

2.5 Chapter Summary

As trends in the manufacturing industry seek to increase flexibility and
throughput while simultaneously empowering and supporting their hu-

man workforce, cobots are particularly well suited to address this need.
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Cobots have demonstrated the potential to assist workers while providing
safe environments for collaboration. However, current implementation
techniques for cobots are difficult due to the required deep understanding
of collaborative principles and the inaccessibility of support for program-
ming approaches. While new systems are improving, existing systems
do not adequately support users, resulting in cobot systems being used
for cheap automation instead of collaboration. This highlights a need for
new systems that better support users in the creation of effective cobot
programs, allowing them to more fully meet the needs and promises of
Industries 4.0 and 5.0.

This chapter provided background relevant to contextualizing and
understanding the work presented in this dissertation. Specifically, this
chapter highlights the current state of cobot usage in the manufacturing
industry and the difficulties in current implementations, while highlight-
ing ways of approaching and addressing this shortcoming. The work
presented in the following chapters leans on the understanding presented
in this chapter and generally builds on the work in the area of cobot pro-

gramming and planning.
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3 COFRAME: DESIGNING PROGRAMMING SYSTEMS FOR

HUMAN-ROBOT COLLABORATIONS

This chapter describes the design and implementation of the CoFrame
programming system. It addresses the challenge of supporting the end-
user robot programming process by abstracting core robotics knowledge
and scaffolding user interaction to build effective cobot programs. In
this chapter, we discuss the motivation of the work, review relevant prior
work to understand the design and application of the system, provide
details about our system, and reflect on the design process through an
illustrative workflow. This chapter includes work from a manuscript in
progress (White et al., 2025b), building on our previously published work
in Schoen et al. (2022); Schoen (2023).

3.1 Motivation

Industry 5.0 concepts focus on human-robot collaboration within manufac-
turing (Nahavandi, 2019). This focus attempts to enable human workers,
merging the precision and accuracy of automation with the versatility and
adaptability of humans. This focus on the empowerment of the workforce
comes at a time when the industry faces labor shortages (Autor, 2021),
which further necessitates the incorporation of new technologies. Collab-
orative robots (cobots) are one such technology that can address these
needs by combining the skill sets of both humans and robots for collab-
oration (Pearce et al., 2018), and have seen an increase in usage within
industry (Miller, 2021).

Cobots are uniquely equipped to address the needs of manufactur-
ers, with a high potential for impact in the manufacturing industry (Liu
et al., 2022a; Knudsen and Kaivo-Oja, 2020). Their focus on safety features
allows them to work effectively alongside people, with the potential to
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interact as a teammate and enhance human capability (Christiernin, 2017;
Michalos et al., 2015). This ability to collaborate and interact with human
workers, while performing precise and repetitive actions, allows for cobot
integration in many areas such as assembly, machine tending, or kitting.
These safety features, coupled with the collaborative capability of cobots,
allow for them to assist users in strenuous tasks, improving physical er-
gonomic working conditions for operators (Peshkin and Colgate, 1999;
Cardoso et al., 2021; Vysocky and Novak, 2016) and reducing overall task
cycle time (Enrique et al., 2021).

However, programming cobots is non-trivial, meaning that these bene-
fits are difficult for users to achieve. This has resulted in a growing “skills
gap” (Michaelis et al., 2020; Wingard and Farrugia, 2021; Holm et al.,
2021), in which workers in industry do not have the capability to suc-
cessfully integrate cobots into collaborative tasks. The existing workforce
is trained on traditional automation skills and is not trained to develop
cobot programs, resulting in feelings of intimidation when attempting to
do so (Giannopoulou et al., 2021). Cobot interactions require specialized
knowledge, planning for non-deterministic human behavior, and the con-
sideration of changing work cell environmental factors. Additionally, it
requires operators to consider and account for many critical safety and
performance factors that are not always obvious.

One method to address this gap is the development of new systems
to support users in the creation of cobot programs. In this chapter, we
present an update on the design and implementation of the CoFrame digital
programming environment and discuss how we leverage design to build
a programming environment that supports end users in learning and
building collaborative programs.

The contributions described in this chapter include':

IThe research in this chapter is derived from a manuscript in progress meant as
an update to the published work by Dr. Andrew Schoen, myself, Curt Henrichs, Dr.
Amanda Siebert-Evenstone, Dr. David Shaffer, and Dr. Bilge Mutlu.
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e An update to the design and implementation of the CoFrame human-
robot collaboration programming environment (see Appendix A for

a link to the system);

e The presentation and discussion of an updated set of case studies
demonstrating the system’s support for end-users building human-

robot collaborative programs.

3.2 Related Work

Cobots have been growing in adoption by the manufacturing industry
(Simoes et al., 2020; Grand View Research, 2023), given their safety features
enabling the safe operation and the potential for collaboration to work with
people (Shi et al., 2012; Pearce et al., 2018; Christiernin, 2017; Michalos
et al., 2015). This collaborative potential has allowed cobots to take on
more strenuous physical labor in collaborative tasks, allowing for the
improvement of physical ergonomic working conditions for operators
(Peshkin and Colgate, 1999; Cardoso et al., 2021; Vysocky and Novak, 2016)
and the reduction of cycle time (Enrique et al., 2021). However, despite
these potential benefits, there is a growing skills gap in industry resulting
from the lack of skills necessary to effectively use cobot technology within
the existing workforce (Ras et al., 2017; Michaelis et al., 2020; Wingard and
Farrugia, 2021; Shmatko and Volkova, 2020; Giffi et al., 2018).

While educational and training programs have been proposed as a
means of addressing this gap (Chrisinger, 2019), prior work has found
a lack of emphasis on critical technical and non-technical skills in these
educational programs (Andrew et al., 2020). In response, cobot manufac-
turers have provided training programs that target the specific skills they
deem necessary to utilize their products, and are being used in vocational

training (Stowikowski et al., 2018). However, recent work shows that
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these programs are not sufficient, as industry primarily uses cobots for
automation due to the lack of necessary skills (Michaelis et al., 2020).

This has led to several attempts at teaching robot programming con-
cepts to the potential future workforce, through high school (Dagdilelis
etal., 2005) and college students (Ziaeefard et al., 2017), as well as attempt-
ing to increase cobot accessibility within the community (Ionescu and
Schlund, 2019; Ionescu, 2020). Additional work has explored contextual-
izing cobot skills through hands-on, real-world learning environments,
such as the “Teaching Factory” that offers a factory-like classroom envi-
ronment (Mavrikios et al., 2013; Chryssolouris et al., 2016), or virtual and
augmented reality platforms that enable users to perform work tasks and
processes (Matsas and Vosniakos, 2017).

This has left the programming of cobots for new tasks to be one area
where the skills gap is significant (El Zaatari et al., 2019). While prior work
has explored several robot programming systems for skill demonstrations
(Steinmetz et al., 2018, 2019), human-robot task allocations (Schoen et al.,
2020), and AR-based interfaces (Perzylo et al., 2016; Gao and Huang, 2019;
Senft et al., 2021b,a), they do not adequately support user understanding
for the programming and debugging of cobot applications.

One technique for supporting the cobot programming process is through
the use of visual programming languages (Alexandrova et al., 2015; Huang
and Cakmak, 2017), including block-based programming. Block-based
programming has been shown to help students with learning to program
(Mladenovi¢ et al., 2018), especially when compared to text-based pro-
gramming (Weintrop and Wilensky, 2017, 2015). This has been explored
within the context of programming of industrial robots (Weintrop et al.,
2017) and has been shown to be more effective and preferable to the ex-
isting cobot programming interfaces (Weintrop et al., 2018). Additional
systems have explored the encapsulation of expert robotics knowledge

(Schoen et al., 2020; Sanders et al., 2018), an abstraction technique shown
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to support user understanding (Janjanam et al., 2021; Buchanan and Smith,
1988).

Our work builds on this body of knowledge, attempting to design a
cobot programming system that addresses the skills gap through a combi-
nation of introducing and supporting cobot concepts, situating learning
within hands-on real-world problems, and abstracting cobot knowledge

that can support users.

3.3 System Design & Implementation

In this section, we summarize the initial implementation of the CoFrame

system and then highlight the changes and additions made to the system.

Original Implementation

CoFrame is a programming system designed to support users in the cre-
ation of collaborative robot programs. Figure 3.1 showcases the original
implementation of the system. The interface contains a four-tile layout
with several key features for users. This includes a built-in simulator (B),
a programming environment (G), an expert feedback panel (A), and an
area to view and interact with contextual information (C).

CoFrame includes a block-based visual programming environment that
is inspired by Blockly (Fraser, 2015) and Scratch (Resnick et al., 2009). It
aims to simplify the programming paradigm for novice users, leveraging a
drag-and-drop-based design, allowing users to assemble programs using
a set of predefined programming blocks. These blocks are color-coded
according to specific categories of actions and environmental objects, and
organized within a program drawer according to these categories. These

categories are:
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CoFrame - Knife Assembly

Figure 3.1: The original design of the CoFrame interface, including compo-
nents for the Program Editor (G), which includes the Block Drawer (D)
and Program Canvas (E), Simulator (B), Expert Frames (A), Contextual
Information (C). The Program Canvas (E) contains the program (F) along
with implemented skills. Figure from Schoen et al. (2022); Schoen (2023).

1. Things and Tools, which represent the physically interactable objects
in the environment.

2. Machines and Processes, which represent the manufacturing ma-
chines that produce and consume parts, as well as their associated

processes.

3. Locations and Waypoints, which are 3D points of interest in the

environment.

4. Actions, such as “Move Gripper”, “Move Trajectory”, and “Machine
Start”, which affect robot or machine states.

5. Containers, such as “Hierarchical” and “Trajectory,” which cluster

and organize related actions for modularity and clarity.
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6. Skills, analogous to functions in traditional programming, which

define reusable sequences of parameterized actions.

CoFrame also includes a feedback panel, or Expert Frames, which helps
users to identify and visualize issues during the program creation process
through four frames: Safety Concerns, Program Quality, Robot Perfor-
mance, and Business Objectives. Each of these frames addresses unique
issues pertaining to cobot programming. Under Safety Concerns, the sys-
tem detects rapid motions in dangerous directions (End Effector Pose),
checks for the grasping of unsafe objects (Thing Movement), highlights un-
safe areas to place hands near the robot (Pinch Points), identifies collisions
between the robot and the environment or the robot itself (Collisions), and
monitors for the robot approaching or entering the human work zone (Oc-
cupancy). For Program Quality, the system identifies structural and logic
issues in the user-generated program, including missing blocks, missing
parameters, issues in the order of operations for using machines (Machine
Logic), unused skills and features, and empty program blocks. Within
Robot Performance, the system flags reachability issues for locations or
waypoints (Reachability), trajectories that exceed safe speed thresholds
in joint space (Joint Speed) or end effector space (End Effector Speed),
situations where payload capacity is exceeded during grasps or trajectories
(Payload), and trajectories resulting in excessive workspace usage (Space
Usage). Finally, the Business Objectives category includes metrics that are
graphed as users iterate on the program: changes in cycle time, idle time,
and expected return on investment.

Each issue is presented as either a warning or an error. Errors are pre-
sented as must-fix problems for the user, while warnings can be manually
acknowledged and dismissed or addressed. As users interact with the
frames and issues, feedback is presented to the user through the Contex-
tual Information tile. This tile includes definitions of key terms, usage
suggestions, and graphical breakdowns of the selected issue. For example,



24

A.Expert Frames B.Simulated Environment Programming Environment
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Expert Feedback E.Program"TimeIine Task Goals ~G.Documentation

Figure 3.2: The updated design of the CoFrame system, extending the
original through the addition of timeline (E) to visualize detailed program
execution timing, the Task Goals tile (F) presenting high-level guided steps
to completing the task, and the documentation window (G) providing
supplemental information about program blocks and issues.

if a Joint Speed issue is selected, it informs the user that the highlighted
trajectory is moving too fast and presents the user with a graph detailing
the robot’s speed over time for each joint.

CoFrame is designed for users to build programs in the Program tile,
generate issues, and address them one by one. As users build their pro-
gram or select issues, the Simulator tile is updated to visualize and animate
the robot’s behavior, along with visually highlighting and illustrating the
selected issues.
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Updated Design & Implementation

Several updates and changes have been made to the CoFrame system since
the original implementation (Figure 3.2). Namely, the replacement of the
Contextual Information tile, the provision of additional textual informa-
tion, and the addition of more visualizations to support user understand-
ing.

While CoFrame still features a four-tile design, the Contextual Informa-
tion tile was replaced with Task Goals. The new Task Goal tile (Figure 3.2
F) provides operators with a detailed task breakdown and was introduced
as a way to support users through a series of tasks to learn cobot pro-
gramming. Tasks can be manually specified by users, allowing them to be
as specific or general as needed. Each step of the task breakdown adds
support for previews, allowing for the visualization of objectives users
need to accomplish, as well as automatically verifying whether the step
has been achieved by the user’s program. This automatic verification is
accomplished using linear temporal logic properties (Rozier, 2011), and
checks whether the user’s program satisfies the property.

Information from the original Contextual Information tile has been re-
distributed across several new and existing components within the CoFrame
interface. Previously, when a user selected a detected issue from the Ex-
pert Frames panel, a graph would appear in the Contextual Information
tile to explain the issue. This graph is now embedded directly within the
issue itself (Figure 3.2 D), more clearly communicating to users what the
information is referring to. To further aid user understanding, CoFrame
highlights the corresponding programming block that causes the issue
and opens a new documentation window (Figure 3.2 G).

The documentation window provides users with block and issue-
specific information. Information about issues includes why the issue
exists, what it means, why it is an issue roboticists care about, and also
provides high-level suggestions regarding potential ways to address the
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Figure 3.3: Interaction documentation window built in to the CoFrame
programming environment. Operators can select issues from the Expert
Feedback tile to receive information about the problem and how to solve
it (Left), or understand block functionality (Top Right) and parameters
(Bottom Right).

issue. In addition to issue-specific information, users can select program
blocks in the program editor to view documentation about the use of the
block. This provides users with information about what the block does
and what parameters it accepts (Figure 3.3).

To help users better understand program execution, a timeline was
added to the interface (Figure 3.2 E). The timeline component is initially
not visible to the user, only appearing when program blocks are selected
to run in the Simulator tile. It visualizes the timing of actions for the

robot and the machines in the environment. If an issue is selected, such as
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Joint Speed, CoFrame will highlight the corresponding programming block,
visualizing the motion and showing the timeline to the user. Additionally,
issues add a simplified visual of the accompanying graph onto the timeline,
allowing users to see at a glance the problematic areas of their program.

A new issue detector was added under the Program Quality Expert
Frame called Thing Flow. Thing Flow refers to the order of operations in
producing and using Thing objects in CoFrame. This new issue detector
checks user programs to ensure that, before interacting with a Thing
object, the Thing is produced earlier in the program, allowing it to exist
in the simulated environment. Building on CoFrame’s issue and frame
dependencies, users must first address Missing Parameter and Missing
Block issues before addressing Thing Flow issues.

The final update to the CoFrame system was the change to a fully web-
based implementation. This allowed CoFrame to be accessed via browser,
increasing system accessibility as it removed the need to set up a compli-
cated backend for additional simulators.

3.4 Case Studies

Schoen et al. (2022); Schoen (2023) includes an initial set of case studies
to illustrate how the system supported users in the creation of effective
programs 3.4. These case studies were created in the context of a knife
assembly task, based on the comments of experts (Siebert-Evenstone et al.,
2021), where a cobot is programmed to move about an environment to
assemble a knife from base components. Here we present an update to
those case studies, highlighting the abstraction and scaffolding provided
to the users through the updated design of the system.
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Case Study 2 || Case Study 1

Case Study 3

Figure 3.4: Three case studies showing the process of evaluating feedback
from the system and informing adjustments to the operator’s program.
The gradient background of the figure denotes the switching between
Expert Frames by the operator, from Safety Concerns (pink), Program Quality
(blue), Robot Performance (orange), and Business Objectives (green). In Case
Study 1, the operator begins by investigating the task goals and previews
the goal (A). The operator then creates a trajectory and addresses a missing
trajectory block (B), followed by filling in its parameters (C). The operator
then addresses reachability concerns (D) and finishes by addressing issues
with robot collision (E). In Case Study 2, the operator begins by addressing
joint speed issues, visualizing the speed, and reading documentation to
address the issue (F). They transition to solving pinch point issues (G) and
finish by addressing issues with the robot’s space usage (H). In Case Study
3, the operator begins by investigating the next task and solves issues with
machine logic (I). The operator addresses problems with unsafe thing
movement (J), and finishes by viewing their completed task (K).
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Case Study 1: Defining a trajectory

Opening the interface, the operator first looks at the Task Goals to under-
stand the task they are trying to complete. They see the first action calls for
having the robot move through the environment, requiring them to create
a trajectory to move the robot. The operator clicks on the preview button to
see the desired action in the context of the environment. As they observe
the animation playing out, they inspect each machine to determine where
the robot needs to move first. They see visually that they need to move to
the "Blade Receive" machine, which catches the blades as they arrive from
the conveyor. The operator cancels the preview and notices the additional
text accompanying the task, seeing that it confirms the location they need
to move the robot to. Then they open the program editor’s block drawer
and drag a “Move Trajectory” block into the program. As they release the
block into the environment, they see it is empty and has a red X icon. The
operator hovers their cursor over the X and sees that it tells them the block
is missing a required parameter. The operator moves to the Expert Frames
tile, clicking the “Refresh” button, showing a number of errors with their
program. As they move through the frames, they investigate Program
Quality and see that under the Missing Blocks issue, it says the trajectory
is missing. The user clicks on the visibility toggle to investigate the issue
further. CoFrame highlights the “Move Trajectory” action, displaying a
documentation window informing the operator that the block needs a
“Trajectory” block from the drawer. As the operator adds the block, they
see a new red X appear, informing them that the required parameters are
missing. The operator decides to open the documentation window for the
block, seeing that they need to specify two locations in the “Trajectory”
block to have the robot move. They refresh the feedback and confirm that
they need to parameterize the trajectory with a start and end location. The
operator adds the location blocks to the trajectory, but notices that one of
the locations has a triangle icon on it. As they hover their mouse, they see
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that, unfortunately, their end location is unreachable. They click on the
issue to bring up the location for editing and notice the robot got stuck
in a joint state, preventing it from reaching the location. The operator
adjusts the location. CoFrame then displays the new joint state that aligns
the gripper with the location. At this point, the operator refreshes the
Expert Frames tile again and sees that the trajectory has been fully speci-
fied. However, under the Safety frame, they see that the trajectory causes
collisions with both the environment and itself. They add a waypoint,
guiding the robot above the table while also avoiding colliding with itself.
After a last refresh, the collision issues have been downgraded to warnings.
Finally, the operator looks back at the Task Goals to see that the goal has
been checked off, marking the task complete.

Case Study 2: Debugging a movement

After creating a valid trajectory, the operator notices there are a number
of issues still present in the Expert Frames tile. They consult the Robot
Performance frame showing active issues for joint and end effector speeds.
Clicking the joint speed issue, the operator sees lines for each joint po-
sition over time appear within the Simulator. The operator also sees a
more explicit graph depicting the speed of each joint over time under the
issue. Then, the operator investigates the end effector issue, observing the
corresponding graph in the issue. With the issue still selected, the opera-
tor looks over to the programming environment, where a documentation
window has opened to inform them about the end effector issue caused
by the move trajectory block. In the documentation, they see a suggestion
for reducing the speed of the trajectory, so they open the motion’s settings
menu to increase the duration of the movement. Afterward, the operator
switches back to the Safety frame to view pinch point issues. They see that
the documentation window has been updated, suggesting that they add
additional waypoints to the trajectory to better coax the robot to a joint
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state that prevents the issue. After adding a waypoint, they click the feed-
back “Refresh” button to update the trajectory visualization. The operator
is now prompted to address robot space usage for the trajectory. They
notice that the robot extends out into the workspace more than necessary,
so they again modify the waypoints, iterating over speed, collision, and

pinch point concerns.

Case Study 3: Working with machines

Happy with the trajectory, the operator looks at the Task Goals tile to
understand the next task. They see it tells them to use the blade feeder
machine to run the create blade process. The operator revisits the scene to
consider the machines” operations. They click on the blade feeder and see
that it “produces blades,” which they want to move to the assembly jig.
They open the block drawer and place a “Machine Start” action after their
trajectory, parameterizing the action with the machine’s item block. They
then place a “Machine Wait” action to force the robot to wait until the
machine completes its action. Refreshing the feedback, they see a machine
logic error informing them that the machine needs to be initialized before
use. The operator adds the necessary action block, then adds a “Move
Gripper” action parameterized with the blade, followed by a second “Move
Trajectory” action. They iterate over the new trajectory in a similar fashion
to the first one, though they add and adjust waypoints before seeking
frame feedback.

Refreshing the feedback, the operator encounters a thing movement
issue, which informs them that the program causes the robot to grasp
an unsafe object. Clicking on the issue, the operator sees CoFrame has
highlighted the problem in their program and focuses their attention on
the simulation to find the transport jig, which they can use to safely carry
the blade. They add additional sets of movements and grasps to move the
transport jig to the blade feeder to get a blade that is safe to carry. Finally,
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the operator checks the Task Goals tile to see that the task is marked as

complete.

3.5 Discussion

While multiple industries face a growing skills gap that prevents the effec-
tive utilization of cobots, new systems can support cobot programming
by bridging the gap in user knowledge and guiding user learning and
exploration. CoFrame illustrates this potential, highlighting the multiple
ways it supports learning and guides users through the process of creat-
ing cobot programs. Designing cobot applications requires specialized
knowledge that is encoded in CoFrame through the Safety First Expert Model
extracted from work by Siebert-Evenstone et al. (2021). This translation
of the model into Expert Frames provides novice users with structured
support in addressing cobot programming issues while highlighting key
concepts experts pay attention to.

The update to CoFrame’s design provides users with more information
in a targeted and focused manner, where they can learn and understand
how to build cobot programs. It adds more cohesion across interface
components, supporting the user’s learning experience and their under-
standing as they move from one component to another to build programs
and address issues.

As illustrated in our case studies, as the operator begins working
through the process of creating a program, there are multiple sources
of information and feedback for them to rely on to develop safe and ef-
fective cobot programs. The operator leverages expert feedback from the
Expert Frames tile, watches the simulator to see issues visualized, sees
highlighted parts of their program alongside contextualized feedback, and
is provided with information for how to address the problem. Addition-

ally, CoFrame slowly introduces the user to cobot concepts and programs by
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guiding them through the steps of building programs, breaking down the
task into steps in the Task Goals tile, and then through the Expert Frames
tile to iterate and improve their program. This approach helps to structure
and guide the cobot programming process for novice users, supporting
their learning and exploration of cobot concepts and programming.

As cobot expertise in industry is difficult to find, this presents several
challenges for the effective integration of cobots for working alongside
human workers. We believe that new systems can increase the accessibility
of cobot technology and bridge the skills gap by supporting the existing

workforce in learning and understanding cobot concepts.

Limitations & Future Work

The work presented in this chapter has a number of limitations. Primar-
ily, the current work discusses the design of the CoFrame system as it
supports cobot programming, and does not include an empirical evalua-
tion. An evaluation of the system should be conducted with both experts
and novices to assess the perception and use of programming supports
created through the translation of the Expert Model into Expert Frames.
While we demonstrate the behavior of the system and illustrate how it
supports the creation of cobot programs through several case studies, fu-
ture work should compare the efficacy of cobot programming systems,
such as CoFrame, to traditional methods.

Secondly, CoFrame makes several simplifications to support and ease
user learning of cobot programming. CoFrame was built to support level-
one (e.g., start-stop shared-space, time-separated) collaborations com-
monly found in industry (Michaelis et al., 2020), and future work should
consider additional levels to support more complex forms of human-robot
collaboration. Additionally, CoFrame assumes a simplistic model of physics
for simulating programs, instead focusing on teaching users cobot con-

cepts rather than having users spend time accounting for discrepancies in
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physical interactions, such as grasping, that introduce additional consid-
erations for program design. Finally, CoFrame is not designed to support
real-time control, nor allow users an easy means of adjusting the tasks and
simulated environment. However, integrating these features will allow
for more general-purpose implementations and use cases, and should be
explored in future work to assess how systems can support users.

While these simplifications are useful for a simulated learning envi-
ronment, future work will need to explore how to bridge the simulated
world to the physical while supporting user understanding across both.
Currently, CoFrame does not account for real-world issues such as grasp
detection or I/O management, nor does it integrate with physical robot
systems. These are features that are desired by users and may assist in
understanding cobot concepts. Future work should consider how to incor-

porate these features while supporting user understanding.

3.6 Chapter Summary

As industries face a growing skills gap, there is an increasing need for
the development of new systems that support the existing workforce in
creating effective human-robot collaborations. Current systems rely on
specialized user knowledge and a deep understanding of collaborative
concepts, which are currently lacking among users in industry. This need
for deep understanding makes current systems insufficient for supporting
the creation of cobot programs.

CoFrame represents the first step towards a solution to this problem.
CoFrame encodes expert knowledge by translating the model created by
Siebert-Evenstone et al. (2021), abstracts low-level robot implementation
details so users can interact with high-level block-based representations,
and highlights key issues and problems that can support user understand-

ing of robot concepts. Additionally, it scaffolds user learning, allowing for
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gradual introduction and exploration of concepts that support cobot pro-
gram development through the use of Task Goals and Expert Frames that
guide users on what it means to create safe and effective cobot programs.

This chapter presents an update to the design of the CoFrame system,
leveraging abstraction and scaffolding supports to facilitate effective learn-
ing and cobot program creation. This is illustrated through a series of case
studies that highlight how a user can leverage the system to learn about

multiple concepts and create a cobot program.
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4  EVALUATING COFRAME AND IDENTIFYING SUPPORTS

FOR HUMAN-ROBOT INTERACTION PLANNING

This chapter presents our evaluation of the CoFrame programming sys-
tem, in a lab study with both novice and expert cobot users to understand
system perceptions and use of supports, and in a real-world deployment
to understand CoFrame’s capability to assist users in real-world applica-
tions. In this chapter, we discuss the motivation of the work, describe our
approach to evaluating the system, present empirical observations and
findings, and discuss both the use of the CoFrame system as it pertains to
supporting end-users and the identification of new required supports to as-
sist users in creating collaborative interactions. This chapter includes work
from a manuscript in progress (White et al., 2025b) as well as previously
published work in Sullivan et al. (2024).

4.1 Motivation

Cobots are increasingly utilized across various tasks and domains (Javaid
et al., 2022) and hold particular potential within manufacturing settings
(Liu et al., 2022a). This potential comes from the versatility and flexibility
that cobots provide, as they are relatively easy to reprogram and repur-
pose without an integrator. Given their ability to work in conjunction with
human workers and perform precise, repetitive actions, cobots possess
a skill set that makes them very effective in tasks such as assembly, pal-
letizing, packaging, kitting, and tool use for caulking, gluing, and sanding.
However, most prior efforts to analyze cobot integration have focused on
the associated engineering challenges that emerge following the choice to
integrate.

Although there has been significant progress in the development of
technical approaches to integration, several key questions remain: “How
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can a cobot complement existing human-only work processes;” “are there subtasks
that human workers prefer the cobot perform;” and “is it possible to integrate
a cobot while maintaining these preferences?” These questions are impor-
tant to address to ensure that a cobot is operating safely, being utilized
effectively, meeting worker preferences, and has a positive impact on busi-
ness outcomes, as these factors affect cobot adoption (Simdes et al., 2019;
Silva et al., 2022; Berx et al., 2022; Aaltonen and Salmi, 2019). Addition-
ally, as these questions are not fully considered in the existing integration
paradigm, organizational leaders, including owners and managers of small
and mid-size enterprises (SMEs), may lack the knowledge or understand-
ing required to make informed decisions about cobot integration in their
workspaces. When cobots are integrated under these circumstances, the
result may be poor utilization of their collaborative capabilities, disrup-
tion in existing worker processes, and only partial realization of potential
improvements in overall business outcomes (Michaelis et al., 2020; Paliga,
2022).

In this chapter, we present an evaluation of the CoFrame programming
system both in a lab and real-world setting'. For the lab setting, we focus
on understanding the current issues and trends within industry as per-
ceived by cobot experts, and the perceptions of system use and difficulties
for novice robot programmers. For the real-world setting, we present
the deployment of the CoFrame system and the process we employed to
bridge the gap of supporting end users through the process of human-
robot interaction conceptualization and planning. For this, we examine
the decisions that occur prior to program implementation and propose an
approach for collaborating with manufacturers. Our proposed approach
includes four phases: planning for integration, analysis of existing work-
flows, development of new human-cobot workflows, and presentation

IThe research in this chapter is derived from a manuscript in progress as well as
previously published work by Dakota Sullivan, myself, Dr. Andrew Schoen, and Dr.
Bilge Mutlu.
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Planning Phase
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Development Phase
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Figure 4.1: A depiction of the four-phase cobot integration approach pro-
posed within this paper: planning for integration, analyzing workflows,
developing simulations, and presenting to the manufacturer.
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of results to stakeholders (Figure 4.1). This process allows stakeholders
within manufacturing settings to make informed decisions about cobot
integration, address questions related to worker and business preferences,
and consider practical engineering constraints. To illustrate our approach,
we discuss each phase within the context of our collaboration with an SME
manufacturer. Following this discussion, we examine feedback from our
collaborator.

4.2 Background

Cobot Usage

SMEs are increasingly using cobots in their processes, in part due to their
marketed usability and benefits for collaboration (Simdes et al., 2019, 2020),
and the potential for reduction in cycle time of their processes (Enrique
et al., 2021). Cobots can help to reduce repetitive tasks for operators
(Marvel, 2014) and assist them in their tasks, such as by holding objects
the operator is working on (Munzer et al., 2018). This practice of the
cobot assisting operators is well explored within the research community
(Peshkin and Colgate, 1999; Colgate et al., 2003; Bi et al., 2021).

However, prior work has noted that the usage of cobots by SMEs
has primarily been as a cheaper alternative to traditional manufacturing
robots, resulting in SMEs not fully utilizing their collaborative capabilities
(Michaelis et al., 2020; Guertler et al., 2023; Wallace, 2021). In part, this
under-utilization of the collaborative aspect of cobots can be attributed to
the difficulty of finding appropriate tasks applications, misunderstand-
ing how to utilize cobots effectively (Kadir et al., 2018), and a lack of
knowledge regarding cobots by SMEs (Boucher et al., 2022). These find-
ings illustrate the difficulty of successfully integrating cobots into existing
manufacturing processes.
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Factors for Cobot Integration

When beginning to integrate cobots into manufacturing facilities, there are
a number of factors that must be considered. Existing work has identified
the need to better understand work environments such that cobots can
safely operate within them (Kildal et al., 2018; Malm et al., 2019). Main-
taining safe operation requires consideration of factors such as crossover
between cobot and worker work zones, cobot handling of objects, and
cobot movement speeds, as these can create unsafe conditions for oper-
ation (Bi et al., 2021). Furthermore, certain cobot actions (e.g., handling
hazardous materials, moving quickly, or moving unintuitively) can create
non-collaborative environments. These examples show that collaboration
is dictated in part by a given task and is not inherent to the application of
cobots themselves (Guertler et al., 2023).

Once a task is selected and initial workspace factors have been con-
sidered, additional interaction considerations must be made. Integrators
must consider the ways individuals will interact with cobots to complete
a task and utilize their knowledge of a cobot’s capabilities to develop a
collaborative process that optimizes operator needs and task outcomes
(Grahn and Langbeck, 2014; Simdes et al., 2020). To make a process col-
laborative, existing work has documented a set of guiding considerations
(Malik et al., 2021), such as workspace configuration, ergonomic impact,
types of interaction and collaboration that occur between the operator and
robot, and understandability of cobot actions to the operator.

Task scheduling is well explored in automation (Lewandowski and
Olszewska, 2020; Yin et al., 2018; Wang and Li, 2019), and cobots pro-
vide new variables that integrators need to consider, as they pose new
ways of dividing, sharing, and collaborating on tasks between the worker
and cobot based on the type of interaction (Christiernin, 2017). While
algorithms and approaches for addressing this challenge exist (Sadik and
Urban, 2017; Tsarouchi et al., 2017), it is important to consider the ways in
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which a cobot can assist the human operator more directly, as it is com-
monplace for operators to adjust their own workflows to work with cobots
(Wurhofer et al., 2015). While cobots can improve an operator’s physical
working conditions (Peshkin and Colgate, 1999; Cardoso et al., 2021), this
capability is dependent on which tasks are selected for the cobot and op-
erator to perform. It is important to consider the operator’s preferences
and trust between the operator and cobot, as these are important factors

in determining resulting task performance (Kopp et al., 2021).

Integration Frameworks and Approaches

There are many key factors that need to be considered when approach-
ing cobot integration. One of these factors is the selection of candidate
workcells and processes for cobot assistance. This step can be completed
by identifying any manual processes that may be a bottleneck to other
processes (Cohen et al., 2019), or through analyzing return on investment
over long-term usage (Gil-Vilda et al., 2017). Another step that must be
completed is the configuration of an effective workcell (i.e., developing a
simple, modular, and safe design for workers) (Malik et al., 2021) while
taking into account productivity (Gil-Vilda et al., 2017) and interactions
between the cobot and worker (Malik et al., 2021). These workcell designs
need to consider the potential for the cobot to work in parallel with the
worker, either by having the cobot work in a separate area of the cell or by
collaborating with the worker directly (Andronas et al., 2020). Addition-
ally, an appropriate cobot must be selected for integration based on the
context in which it will be situated. Prior work has investigated how to
make this decision, based on the requirements of the task, the properties
of the robot, and its potential performance (Cohen et al., 2019; Ghorabaee,
2016).

Several of the above steps have been encapsulated by the National Insti-
tute of Standards and Technology (NIST) within their set of guidelines for
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cobot integration, based on discussions with robotics experts (Horst et al.,
2021). In their work, they present several concrete methods for identify-
ing candidate workcells for integration, metrics for selecting a cobot, and
metrics for determining the viability of a given integration plan. Overall,
NIST provides several steps to begin the integration process, as well as
metrics and considerations to use in the decision-making process. Other
work has explored a method of integration which begins at a general level,
by understanding the task context, and then considers specific elements
such as the workcell, cobots and other machines, and, finally, the workers
(Djuric et al., 2016).

However, recent work has acknowledged the technological focus that
exists in prior approaches to cobot integration, as well as the recent shift
towards incorporating a socio-technical perspective that considers the
worker and cobot a partnership rather than as individuals (Adriaensen
et al., 2022). While these technological approaches have defined many im-
portant factors and methods for integration, they fall short of incorporating
both manufacturer and worker considerations while also demonstrating

system feasibility.

4.3 Evaluation Approach

To understand how CoFrame addresses the challenges in industry and
how novice users experience such systems, we conducted three studies,
one lab study with industry roboticists knowledgeable in cobots, which
we denote as Expert Evaluation, another lab study with novice users, which
we denote as Novice Evaluation, and a real-world deployment case study
where we deploy CoFrame with a SME partner, which we denote as Real-
World Deployment. Sections 4.4-4.5 discuss the lab studies used to evaluate
CoFrame, while sections 4.6-4.8 discuss the real-world deployment of

CoFrame. Finally, section 4.9 presents a general discussion on the design
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and deployment of programming systems.

4.4 Lab Study

Participants

For the two lab studies, we recruited a total of 3 industry experts with
knowledge of cobots (3 male, age M = 37.67, SD = 10.66), and 13 novices
(9 male, 3 female, 1 no response, age M = 23.15, SD = 5.39). The experts
were recruited by contacting cobot integration companies. The novices
were recruited in person on a University campus, through flyers posted
in common areas, as well as through university mailing lists. Novices
were recruited from several disciplines, including mechanical engineering,
electrical engineering, industrial & systems engineering, and computer
engineering, and were required to affirm they have some knowledge of
robots. Studies lasting around 1 hour in length for which participants
were compensated for their participation, with experts receiving $48 /hour,
while novices received $12/hour.

Measures

Within this study, we capture participants’ perceptions of CoFrame through
the User Experience Questionnaire (UEQ) Schrepp et al. (2014) and semi-
structured interviews. The UEQ is a 26-item questionnaire composed
of six subscales (i.e., attractiveness, perspicuity, efficiency, dependabil-
ity, stimulation, and novelty). Each item within the questionnaire is a
seven-point semantic differential scale that allows users to characterize
their experience. While a benchmark is provided by the authors of this
questionnaire Schrepp et al. (2017), we do not include it within our analy-
sis and results. CoFrame, while intended for both novices and experts, is

used for a specialized application (i.e., programming of robots), unlike
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many of the products included within the benchmark (e.g., web services,
social networks, mobile applications, and household appliances).

During our semi-structured interviews, we asked participants ques-
tions regarding the features in CoFrame they liked, disliked, and would
have liked to see modified. For example, we asked participants, “What did
CoFrame do well,” “What did it not do well,” and “How would you suggest chang-
ing the system to address that?” These questions allow us to better understand
what specific features are most and least helpful to participants and why.
We then conducted Thematic Analysis (TA) on the semi-structured inter-
views using the guidelines proposed by Clark and Braun Clarke and Braun
(2017). This process required transcription of interviews, familiarization
with the data, iterative coding, and development of themes.

Lab Study Procedure

Expert Evaluation. Participants were first informed about the purpose of
the study and provided consent to participate. Participants then engaged
in a semi-structured interview (10 — 15 minutes) about the use of cobots
in industry, the different skills they believe to be important for using
cobots, what tools and processes they currently utilize for cobots, and
what some of the biggest issues that need to be addressed are. Following
the interview, participants were then shown a brief video tutorial on the
CoFrame system that explains the multiple tiles and program blocks, as
well as demonstrating how to use the system. Participants were then given
15 minutes to use the CoFrame system. They were told they could explore
the system freely or follow the set of predefined task goals to build a
program. At the end of their interaction, participants were asked to fill
out a UEQ survey, as well as demographics. Next, participants engaged
in another semi-structured interview (10 — 15 minutes) regarding their
experience with and perception of CoFrame, how CoFrame addresses
some of the issues they presented in the first interview, as well as its
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applicability in solving the problems faced in industry. Example questions
include “What did you like and dislike about CoFrame?”, and “Do you see
CoFrame as being applicable at any stage of the cobot integration process?”
Finally, participants were compensated for their participation.

Novice Evaluation. Participants were first informed about the purpose
of the study and provided consent to participate. Participants were then
shown a brief video tutorial on the CoFrame system, explaining the mul-
tiple tiles and program blocks, as well as demonstrating how to use the
system. Participants were then given 30 minutes to use the CoFrame in-
terface. During this time, participants were asked to follow a predefined
set of task goals within the system, completing as much as they could
within the timeframe. These task goals had the participant move the robot
around the simulated environment, interact with various objects, and
combine those objects to produce some final product. Participants were
asked to think aloud while they built their programs, and after they either
finished building their program or reached the time limit, they were asked
to fill out a UEQ questionnaire and demographics. Next, participants
engaged in a semi-structured interview (10 — 15 minutes) regarding their
experience with the interface. Example questions include “What did you
like or dislike about using CoFrame?”, and "Why did you do X?” where
X is some action they took in building their program. Finally, participants

were compensated for their time.

4,5 Results of Lab Studies

Here we present the findings of our study. First, we present the quanti-
tative results of the UEQ questionnaire, discussing initial high-level user
perceptions of the CoFrame system and its comparison to the benchmark.

Then we present the results of our Thematic Analysis, highlighting expert
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Figure 4.2: User Experience Questionnaire results including the average
scores of novices and experts and confidence intervals. These results show
that both novice and expert participants regard CoFrame favorably with
positive average scores across all six UEQ subscales.

perceptions of difficulties in industry and the perceptions from novice’s

experience interacting with the CoFrame system.

UEQ Results

Following their exploration of CoFrame, participants completed the User
Experience Questionnaire. The results of all six usability subscales of the
UEQ can be seen in Figure 4.2. Novice participants rated all six UEQ
usability aspects positively with stimulation receiving the highest av-
erage score (2.06,SD = 0.74), followed by novelty (1.98,SD = 0.71),
attractiveness (1.81,SD = 0.82), efficiency (1.52,SD = 0.89), depend-
ability (1.29,SD = 0.76), and perspicuity (1.27,SD = 1.12). Similarly,

expert participants also rated all aspects positively, with novelty receiv-
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ing the highest average score (1.47,SD = 0.52), followed by attractive-
ness (0.944,SD = 0.096), stimulation (0.75,SD = 0.25), dependabil-
ity (0.583,SD = 0.629), efficiency (0.333,SD = 0.629), and perspicuity
(0.083,SD = 0.577).

Experts Viewed Cobots as Difficult And Inaccessible

When discussing the current state of cobots and cobot support, experts
discussed cobots as being complicated, with E1 describing there being
“so many areas where an impact could be made.” E1, familiar with CNC
machining, framed the current state of robotics as where CNC was 30
years, needing tools that better support users in using cobots without

requiring them to work at the lowest levels.

“30 years ago, most people were programming CNC machines by
writing the machine code by hand, or by using some kind of assisted
features at the CNC control to teach the machine how to do what
you wanted it to do. And now, almost nobody does that, you got to
design the part in CAD, you go over to CAM, which is computer
aided manufacturing, and you design the toolpath [...] press Cycle
Start, and then it just makes a thing for you [...] the world of robotics
is very much where the world of CNC was 30 years ago” — E1

E3 expressed a similar concern over cobot difficulty, stating that “there
are a lot of limitations and there are things that humans intuitively will
do,” resulting in experts having to “really think hard” about how they’ll
incorporate the robot within tasks. E2 explained that to try and overcome
this, they work in teams so they can rely on each other’s expertise to
“keep pointing things out” and that “it’s really just trying to get them to
look at the scenarios in the right way and to identify a risk. And then
again, determine if you need to do something different to mitigate that

risk.” E2 further explained that working in teams is especially critical for
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new hires, as they rely “on the expertise of the seasoned person that’s
got more experience, to ensure that whatever they’re doing is safe.” To
be successful, E1 explained that “people have to come to the table with
enough understanding of how a robot works” and “how it’s programmed.”

Expert E3 did not see cobot programming as particiularly difficult,
saying that “if you can program industrial robots, programming is easy
for cobots [...] except for a few additional safety features,” and that it
has “similar difficulties you might have just in general programming.”
However, E3 also noted that it may be more difficult for those who are
not familiar with cobots, saying “if it's an operator that doesn’t have any
background or higher education, which is common in this industry, that
might be tough just because of, you know, that background isn’t there.”
E3 viewed this as a training problem, saying that “if we were to bring
new people on, we just send them over to [person] and have them take a
programming class.”

In addition to programming, experts viewed the current state of pro-
gramming tools as insufficient for supporting cobot program creation
and facilitating understanding. E1 viewed teach pendants as insufficient
by robot manufacturers, saying that while there are “clearly basics that
people need to understand before they come to the table” and that “robot
manufacturers could certainly do a better job of creating more usable in-
terfaces for people to work with.” E1 expanded on this difficulty with the
teach pendant, saying that if you “give someone a Fanuc teach pendant
and tell them to figure it out on their own” then “they’re going to be lost
even if they you know, understand the basics of industrial robotics.” How-
ever, new systems show promise in addressing several of these issues. E3
viewed new programming systems as being able to support multiple users
of different skill levels, with the goal being that you can “have operators
that aren’t necessarily super technically proficient, but they can still set up
a cell, and then they can easily like, say, redeploy it for other operations.”
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E3 mentioned several recent systems they were aware of that were being
advertised as being usable “without much programming skills” to “get a
certain operation working.” Similarly, E2 mentioned that they have seen
recent tools with “more of the Al type stuff, where it will help you write
stuff on its own and risk assess as part of the software.” E2 felt that these
would better support user programming, saying that “while I don’t neces-
sarily know they’re going to catch everything. The more questions that
can be asked, the better.”

Overall, cobots were generally seen as inaccessible by experts, making
it difficult to communicate how to use them or demonstrate capability. E1
viewed this inaccessibility as being due in part to the fact that “they’re
kind of hard to use, they're pretty darn expensive,” and “there’s not a lot
of community support or tutorial material available.” When elaborating,
E1 reaffirmed that part of the issues is the “availability of hardware” and
the other part is “the usability of the hardware.” E3 had similar concerns
about cobot accessibility, but mainly for communicating their capability
and potential. When working with customers E3 said it is important
to be “transparent with both of the robot and of [humans] in terms of
integrating [the robot],” but that “getting [customers] open to the idea
of having robots doing certain tasks is the hardest part” due to not being
able to effectively demonstrate or communicate those capabilities and

limitations.

Perceived usage of CoFrame

CoFrame was perceived positively by both expert and novice participants.
While experts were given 15 minutes to explore CoFrame, leveraging it as
a design probe for discussion, their impressions were overall positive. All
experts particularly liked the visualization and highlighting the CoFrame
uses to call attention to issues. E1 expressed this by saying “I thought this
was quite cool, especially the pinch points and collisions.” Similarly, E2
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liked the expert frames and the focus on safety, saying that the “ability to
look at this and kind of run through the process” while having the system
highlight that “this is something you need to pay attention to” is “big.” E3
liked that the use of these issues guided program development, saying
“I like the fact that it shows the safety concerns for you” especially for
“things we don’t always consider” because for “collaborative robots, that’s
very important.” E3 connected these issues to their process of building
cobot applications, saying that “one big thing when we’re working on field
service or something, is kind of identifying exactly what the objectives
are of that service” and “this kind of does that explicitly.” E2 similarly
expressed a connection between the frames and their process for building
cobot applications, saying that the spreadsheets they use to analyze inter-
actions for safety concerns are “the exact same thing” as what CoFrame
does and that “it’s really just a structured way to try to look at it to come
up with those ideas on how you make that risk less”

Novices also generally liked CoFrame, with N13 explaining that “the
Ul was very [...] welcoming in terms of adding blocks, and [...] clearly
defining what exactly each thing does.” N10 liked that everything was
within a single application, saying that they “haven’t seen software where
you can, actually, you know, program your stuff, run your stuff, see what
like, how your robot is moving, and then your robot moves.” N5 found that
the task breakdown in the Task Goals section was “easy to understand” and
they liked how “I knew what I was supposed to do” but “not necessarily
right away like how to do it” as it provided an opportunity to explore and
learn. N4 liked CoFrame’s delineation between programming the robot
and the machines used in the task, saying that “I liked the general idea
of like splitting out the the robots, actions, and the different processes
happening and looking for things like that.” Similarly, N2 found that
CoFrame forced them to think about the machines used in the process, as
they “never thought about how those are programmed in, because that
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might be really annoying.”

Several novice participants expressed that they liked the structure and
use of the expert feedback issues. N5 explained that they “like that it gives
solutions,” referring to the suggested ways to address the detected issue,
and said that it “gives me the options” for how to address the problem
while simultaneously highlighting the corresponding program block so
that they “knew what section it was.” N11 similarly expressed that the
use of the feedback allowed them to “make adjustments” resulting in it
being “easy to learn.”

When comparing experts and novices, experts viewed the system
through a different lens than novices, relying on their experience with
other software and familiar workflows. This resulted experts perceiving
CoFrame with having relatively high perception of novelty, but lower —
although positive — views on its ability to facilitate programming. E1 ex-
plained that CoFrame could lean on systems such as “Autodesk fusion
or Solidworks” to have similar, familiar functionality for users for the 3D
simulator. Additionally, E1 mentioned how within RVIS “when the robot
actually does collide with itself, or is going to, [...] it’ll turn one of the
robot’s two offending links that collide with each other, it turns red.” E2
expressed that CoFrame needed to be able to connect to the physical robot,
as “it’s a little bit trickier always when you're looking at a screen in 3D.” For
E3 this would also allow for more detailed information about the robot’s
state when using the gripper, as they frequently need to know “what that
means for the I/O, like how we're actually closing our gripper.”

However, both experts and novices saw value in CoFrame’s use for
multiple use cases in education and industry. N2 expressed that cobots are
inaccessible for schools, saying that “you can’t ship an a robot arm to like,
you know your middle school,” but highlighted that systems like CoFrame
allow you to “just send them to a link and like teaches kids how to step by

step think of like a simple movement of your arm.” N2 further explained
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that it is easy for them to take “those things for granted of like how that
stuff moves” due to their experience and familiarity with robots, but that
systems like CoFrame can allow users to “get into this like how processes
work” and how to “do the hierarchical thinking.” Similarly, N3 expressed
that CoFrame could be used for education, saying “I think thisis [...] a
good program for beginners to get into how thinking for robotics actually
begins, you know. It’s not just about code, but also about the position,
start location and location and all that.” However, N3 also saw CoFrame
as beneficial for industry usage, saying it would “make a lot of workflows
smooth or gives control to some person, [...] I guess even debugging would
be provided and all that.” N3 further explained CoFrame’s applicability
in both areas, saying that “it's more dependent on what the creative goal
is” but that they “don’t see how [ CoFrame|] adds more strength towards
one aspect or the other. I don't see that. I mean to me it looks like it’s
equally usable in both.” One expert also discussed CoFrame’s multi-use
potential. E2 thought that tools like CoFrame could be “extremely useful
at every stage. At the sales stage, because it’s relatively simple and easy to
put together. I could see putting together a simulation like this so that way,
at least on a baseline, you know you’ve sold the right safety components,
you've sold the right pieces, and I could see it being helpful that way, all
the way through to maybe the final, final programming phase, depending
on on what actually comes out of this programmer.” Overall, E2 said that
they were “very excited to see tools like this coming out. I think they're
going to help out greatly in the future as as we get more and more people
involved with this, and not necessarily relying as heavily on the experience
and expertise that you have to have in order to successfully do this today.”

Difficulty Interacting with System Supports

Several users expressed a desire to make actions more visible to the user
within CoFrame. N10 expressed the task goals completion was “not no-



53

ticeable enough,” and that they would prefer “if there was a pop up” to
tell them when each step was completed. Another user, N12, desired
for clearer indication within the simulator of occurring actions, having
noted that when they used the processes to have the machine produce
parts the simulator “doesn’t show you doing that. So you're not actually
sure if it’s working.” N12 expanded on this idea, opening it to additional
visualizations to indicate future actions and goals, saying that it would be
“useful [...] if, while you're making a trajectory, it like shows an outline of
what’s gonna happen.”

In part, this desire for increased visibility stemmed from user diffi-
culty with accessing pieces of information within CoFrame, from selecting
blocks to simulate to interacting with the expert feedback. N13 felt it was
difficult to select which block to simulate. However, while N13 understood
that “you can have multiple processes” within a program, they expressed
that having a “dropdown” which lets you select the process “you wanna
run” would be preferred instead of “scrolling all the way up and then
selecting that process.” A few novice users had issues with accessing
the expert feedback information. This was partially caused by CoFrame
requiring users to request feedback, which users were split on whether
they liked it or preferred the feedback continuously generating while they
built their program. N6 said they preferred to request feedback, as “If I at
least get all built, then all the issues that will ever exist will be in that tab
when I get to it.” N13 expressed a similar sentiment, wanted to “first set
everything up and then understand our issues” because “if it’s constantly
giving me a feedback, then it it kinda interrupts with my thought process.”
Other users expressed wanting the feedback panel to update continuously
as they built their program, providing continual feedback that they can
choose to engage with or ignore. N2 thought the use of a button to request
feedback was bad, saying “the button [...] is a very computer programmer

mindset.” N7 elaborated on this, saying that it could “refresh on its own
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after some time” so that users does not “forget refreshing and noticing”
problems in their problem. However, continually refreshing the expert
feedback panel would make the feedback obvious to users, as one partici-
pant, N1, expressed that because the feedback panel did not show errors
during their interaction they didn’t think there were issues to fix in their
program, saying “I just kind of saw that everything was already checked
off. And so I figured once I get through tasks, once I have things set up, I
can look at the feedback and improve it if I want to.”

A few users expressed confusion over the expert feedback panel and the
issues, finding that clicking the eyeball to select an issue was not intuitive.
N4 expressed this best saying that “I didn’t realize that I had to click on
the eyeball. And then I didn’t realize what that was doing when I clicked
on the eyeball at first until you told me it was highlighting something in
pink, and then I went to go look.” One user, N8, suggested moving the
feedback from the panel to the blocks directly, to tighten the coupling
between them, saying “I guess why have it as a separate panel on the left
versus like, what if you had a little badge, icon, or something on each of
the steps on the right that would provide feedback, like directly on the
step itself. directly on the block itself.”

While participants liked the drag-and-drop programming, the im-
plementation within CoFrame making the environment draggable and
zoomable resulted in confusion and frustration by users and impacted
user ability to engage with the documentation window. Users expected to
be able to scroll the program, like a typical written program, but instead
were met with zoom-based draggable features, with N13 saying that the
draggable environment was bad because “I'm required to like, you know,
zoom out and then move everything up. [...] It’s not that intuitive.” As
users zoomed out to see their program, the individual blocks became
small and not as noticeable. N6 explained that they “didn’t like how small
everything got” because they felt like they needed to zoom out to effec-
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tively interact with the program. N13 elaborated saying that they found
the zoom feature to be “a little painful” because they were “zooming in
and out navigating these coding blocks and moving them up and down
like from the UI perspective, I just didn't like it.” This resulted in issues
when viewing expert feedback from the feedback panel, as attempting to
highlight specific blocks and provide the corresponding documentation
resulted in it going unnoticed. N4 said that they were confused because
“you're telling me all these things” but because their program was so large
and they were zoomed out “I don’t know where specifically these things
are happening. And I. So I don’t know what to do about them.” A few
users expressed that because of the zooming, they struggled to notice
the highlighted program blocks, and occasionally weren’t able to find the
information panel due to it being off-screen and requiring the user to drag
the environment to view it. N4 explained that “the highlighting wasn't
very obvious” because it was difficult to see “a really thin pink line” when
they were “often like zoomed all the way out to view like the whole thing.”

Supporting Advanced Usage

Several participants talked about the eventuality of requiring CoFrame to
allow for more in-depth tools or capabilities, extending its capability to
support more advanced usage.

While participants liked the block-based programming system, one
novice expressed a desire to understand what lower level code the blocks
translated into. N3 explained that “it would be also nice if we could
actually look at the code this generates. You know, so that educational way,
they’ll get to know what’s going on under the hood.” N3 further explained
that this also benefits users by allowing them to extend functionality, saying
that if users wanted “to do something else, you know, that’s not available
in this program. They could take it up independently. by adding their
own blocks to it.”
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Several participants also desired for a stronger connection between
CoFrame and the physical robot. N4 mentioned they were “curious about
like the angle of joints and stuff like that,” and that while they liked the
simulation they would want to occasionally see “some sort of numerical
output of it or something.” While CoFrame does provide users with joint
angles for specific user-created locations and waypoints, these appear in a
menu when selecting the locations and waypoints, which no user utilized
within the study. In addition to joint states, one novice user expressed a
desire to interact with the robot physically to move and orient it for use in
storing locations and configurations they can then use in their program.
N12 explained that “in my engineering program in high school, [...] we
worked with like an actual arm,” which allowed them to use the teach
pendant to “manually move the robot, create a point and then come back
to that point later.”

One expert also discussed the need for more advanced capabilities
than what CoFrame allows. After interacting with CoFrame, E3 said
that “with the gripper closing” they would need additional sensing and
information to understand “what that means for the I/0O, like how we're
actually closing our grip.” E3 elaborated on this saying I/O sensing and
information was very important because “a big part of things is, especially
with our machine tending, we're going to a PLC and it’s a big part of
the program that we’re, you know, when we get to the machines, we’re
opening the door properly.”

4.6 Real-World Deployment

Following the lab studies, we attempted to deploy and evaluate the CoFrame
system in a real-world context with a small-to-medium enterprise (SME)
partner.

Our team worked with a local SME manufacturer that expressed inter-
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est in cobot integration. In working with our collaborator, we took several
actions to ensure the privacy and confidentiality of the business as well as
individuals with whom we interacted. First, we have omitted the identity
of our collaborator in this paper and supplemental documentation. Sec-
ond, our institution signed a non-disclosure agreement (NDA) with our
collaborator, and the research team sought permission from our collabo-
rator to publish the material presented in this paper. Third, we collected
information (i.e., video recordings, process information, and feedback)
only after verbal consent was obtained (in process analyses) or consent
forms were signed (in feedback sessions).

While our collaboration lasted approximately eight months, this time
period included iterative modifications to the software tools we used
for analysis and simulation. We expect our proposed approach to take
less time with a strict minimum of four meetings (i.e., initial discussion,
collection of data, overview of implementation, and presentation) and ad-
ditional meetings as needed depending on the nature of the collaboration.
Therefore, we expect our approach to roughly require a time commitment
between a few days and a few weeks. More streamlined software tools and
organizational commitment can shorten this timeframe to a few hours.

During our initial visit to our SME partner, we presented on and dis-
cussed the use of the CoFrame system. Our partner was interested in
the software, but expressed not knowing how to approach the use of the
system, as they were not entirely sure where or how to incorporate cobots
in their manufacturing process. Through this discussion, we learned that
our collaborator was hesitant to test the software without first better un-
derstanding cobot capability and potential applications, desiring to be
reasonably sure that a given application was well suited for integration
prior to exploring software capability. The following sections illustrate
our approach to collaborating with our SME partner, as well as discuss

how we executed that approach.
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Figure 4.3: An overview of the four-phase approach including the individ-
uals, foci, and milestones involved at each phase.

4.7 Approach

We propose a four-phase approach to help businesses understand the
costs, outcomes, and implications of cobot integration in order to make
better-informed decisions (see Figure 4.3). These four phases are plan-
ning (i.e., understanding the context of cobot intervention), analysis (i.e.,
defining the roles of the human and robot), development (i.e., creating
a new workflow involving the human and robot), and presentation (i.e.,
gathering and presenting relevant information to the collaborator). These
four phases provide a pathway to the integration process that business
administrators can utilize to understand the effects of integrating a cobot

into their workflows before making major commitments.

Planning Phase

The initial planning phase of our approach attempts to develop an under-
standing of existing workflows and allows the roboticist to ground their
expertise within the context of these processes. This approach builds
on the ideas of contextual inquiry (Beyer and Holtzblatt, 1999), where
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observations and interviews are combined in order to develop a thor-
ough understanding of a conceptual space. Thus, this phase requires the
involvement of all three parties (i.e., business administrators, workers,
and roboticists), and places an initial focus on applying the roboticist’s
understanding of HRI through observations and discussions. This ini-
tial understanding may be achieved through on-site visits and tours, or
a series of discussions regarding existing processes and workflows cur-
rently completed by human workers alone. Within these discussions, it is
important to identify contextual factors including the workspace layout,
spatial constraints, and resources required for a specific process including
labor and parts. Additionally, it is important to identify opportunities for
collaborative assistance by the cobot. While there may be several tasks or
subtasks that can benefit from cobot involvement, a discussion of worker
and business preferences (e.g., reduction of undesirable work or optimiza-
tion of critical tasks) will guide which tasks are most appropriate. For
manufacturers with limited prior knowledge of cobots, this phase helps
to ground any potential ideas for integration based on the realistic capa-
bilities of cobots and helps to establish expectations of the impact a cobot
could have. Follow-up discussions should occur as often as necessary for
the manufacturer to gain a sufficient understanding of cobot integration
and to agree upon the best possible task candidates for cobot intervention.
By the end of the planning phase, manufacturers should have a cursory
understanding of what cobot integration requires and yields, and roboti-
cists should have one or more candidate tasks they can begin to analyze

in the next phase.

Analysis Phase

Once the planning phase is complete, the roboticist can begin gathering
data on the existing human-only work process for review in the analysis
phase. This phase will initially require the involvement of all three parties
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as the phase focuses on data collection. The gathered data may include
blueprints of the work environment and its configuration, videos of pro-
cess execution, timetables of task steps, subtask dependencies, component
schematics, or other forms of data that describe the work process in fine
detail. After data collection, the involvement of the worker and business
administrators is lessened. From here the roboticist uses the collected
data to concretely understand the environment and existing workflows
so they may be restructured. The restructuring process initially involves
analyzing the workflow, which can be done through methods such as
hierarchical task analysis (Stanton, 2006), a method used to break a task
down into goals and subgoals to understand its operation. Once a given
task is understood at a granular level, the roboticist can complete the
restructuring process by dividing the overarching goal into subtasks for
the worker and the cobot based on worker preferences, robot capabilities,
and overall optimization of the task. This process may place particular
emphasis on limiting human or cobot idle time to allow for optimal efficacy
of the human-cobot team. However, it is important that this process of
assigning subtasks leverages the roboticist’s knowledge of cobots and their
capabilities, and incorporates principles of human-robot interaction and
ergonomics. This practice allows the roboticist to ensure that the cobot acts
as a effective collaborator, assists the operator in a safe manner, and im-
proves overall task performance (Paliga, 2022; Simdes et al., 2022; Cardoso
etal., 2021). Given the unique stakeholder preferences that need to be con-
sidered in creating a new human-cobot workflow, continued discussion
with the collaborator may be necessary to ensure that desired outcomes
are achieved. During this phase, it is important that the roboticist develop
an understanding of where and how the cobot can be optimally inserted
within the existing workflow. Additionally, the roboticist must be aware
of potential failure points caused by limitations in the cobot’s capabilities.

For example, if a particular component does not have convenient grasp
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points, manipulation of such a component may be a task better suited
for the human worker. At the end of the analysis phase, a new human-
robot workflow should be produced and communicated to stakeholders
for high-level feedback. Based on this feedback, the roboticist may need to

iterate on prior planning and analysis steps.

Development Phase

During the development phase, the goal of the roboticist is to operationalize
the newly created human-cobot workflow and produce outcome metrics
that communicate the workflow’s performance. This phase will primarily
involve the roboticist, as they initially focus on the implementation by cre-
ating a simulation of the new workflow process in software systems such
as Unity (Bartneck et al., 2015), RViz (Kam et al., 2015), Webots (Michel,
2004), or CoFrame (Schoen et al., 2022). The purpose of the simulation
is to act as a general proof of concept that showcases where and how the
cobot operates within the environment and demonstrates the feasibility
of the new workflow as the collaborative process is executed. Once the
implementation is complete, the roboticist will begin to produce metrics
derived from the simulation in tandem with updating the implementation
as needed. These metrics should account for the process’s cycle time and
the robot’s idle time and include information about potential safety con-
cerns and their mitigation. Based on the workcell setup and cobot that are
utilized within the simulation, a roboticist can begin to approximate the
price of components needed to recreate the simulation within the manufac-
turer’s facility. As this integration plan is developed, potential flaws may
become evident, thereby necessitating additional stakeholder discussion
and iteration on prior completed steps. By the end of the development
phase, the roboticist should have a concrete integration plan including the
simulated workflow, process outcome metrics, and approximate compo-

nent costs.
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Presentation Phase

In the presentation phase, the roboticist synthesizes all information from the
prior three phases and discusses it with the business administrators and
workers. These data may include the procedure of the new human-cobot
workflow, subtask timetables, process performance metrics, equipment
or labor costs of integration, and overall profit per produced item. Once
gathered, these data can be compared to the existing human-only work
process and analyzed to determine the relative costs and benefits of the
human-cobot task procedure and hardware installation or any variants
that may have been developed. This information can be complex and
cumbersome, so the roboticist may develop recommendations based on
specific overarching needs and preferences conveyed by collaborators. All
information should be formatted for submission to the manufacturing
collaborator (e.g., within a presentation or written report) and then dis-
cussed to ensure they fully understand the results and have any questions
or concerns addressed. Once the presentation phase is complete, the
manufacturer should have a thorough understanding of the potential inte-
gration plan, its outcomes, and any other information required to make an
informed decision about cobot integration within their facility. From this
point, additional discussion and iteration on proposed ideas can occur

depending on the needs of the business and nature of the collaboration.

4.8 Case Study Application

Using our proposed approach, we present a case study of its application
with our collaborator. In this section, we present the application of each
of the four phases, actions that were taken in each, and feedback provided

following our initial collaboration.
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Planning Phase: Stakeholder Discussions

Our initial meeting with our collaborator involved touring their facility,
discussing business needs and worker preferences, and seeking prelim-
inary opportunities for cobot integration. From this initial meeting, we
learned that the business administrators wanted to increase efficiency in
their process to fulfill more product orders and saw cobots as a means of
meeting this need. Additionally, the administrators expressed interest in
having a cobot take over undesirable and messy tasks from the workers, a
sentiment that was echoed by the workers themselves. The result of this
initial visit helped set expectations with the manufacturer and allowed
us to identify several potential areas for a cobot to assist in their process.
Following this visit, our research team convened to discuss potential op-
tions and scheduled a follow-up meeting with the manufacturer to further
discuss the potential of each option.

During the follow-up visit, we developed a deeper understanding of
the various tasks that could potentially benefit from cobot intervention.
By observing worker processes, we were able to identify tasks that were
repetitive or undesirable to workers. At the end of the visit, we discussed
with the administrators which tasks would be best suited for cobot integra-
tion given our knowledge of cobots, our understanding of each process’s
potential for collaboration, the administrator’s desired business outcomes,
and the preferences of workers. From this discussion, an assembly task
was chosen which required the collection of parts, silicone application,
rivet fastening, and other subtasks. This particular task involved the as-
sembly of high-volume units, which was a high priority for reduced cycle
time and could lead to an increase in their throughput and overall ability
to fulfill orders. The application of silicone in the assembly task was seen
as extremely messy and therefore undesirable to workers, while also be-
ing ideal for the cobot given its ability to perform precise and repetitive
motions. As a second candidate, we identified that the cobot could assist
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further by supplying components and then applying silicone to them.
Overall, the selected task was a clear fit for cobot integration and was the

focus of further analysis.

Analysis Phase: Existing Workflow

Once a candidate task was identified, we visited the manufacturing fa-
cility again to gather detailed information about the specific task. We
filmed workers performing the task, to be analyzed later, and asked them
questions to clarify the general assembly procedure and variants that are
utilized by different workers. Video was collected only after receiving ver-
bal consent from workers and was stored and shared with our collaborator
through university-approved digital storage. No employee identifying
information was collected through these videos (i.e., verbal information
or view of worker faces). In consultation with our Institutional Review
Board (IRB), these interactions were not considered research with human
participants, as they focused on the manufacturing processes rather than
the individuals, although feedback sessions were, as described in §4.8.
Additionally, administrators provided schematics for parts and workcell
layouts utilized within the assembly process.

We used the collected data to reconstruct the assembly process to
understand the steps involved in the procedure, and how it varied between
workers. This process is shown in Figure 4.4. We first analyzed the video
to create a timeline of the assembly process. Some segments included
discussions with workers and additional pauses during which workers
would provide the camera with specific views of the process or parts.
These sections were removed from our timeline reconstruction for accuracy.
Additionally, when appropriate, durations of specific steps were averaged
between workers. Our reconstructed timeline can be seen in Table 4.1.

Once we reconstructed a timeline of the human-only process, we identi-
fied potential subtasks where the cobot could assist the operator in the pro-
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Figure 4.4: A subset of the steps involved in the manufacturer’s assembly
process. A. applying silicone to gaskets. B. applying silicone to pans and
beginning the assembly process. C. continuing the assembly process by
attaching gaskets.

Table 4.1: A timeline of the SME’s existing procedure to complete one cycle
of their assembly process.

Time Production Step

1:01 Place gaskets and apply silicone (61s)

2:28 Place pans and apply silicone (87s)

2:34 Apply core to first pan (6s)

2:43 Apply second pan to core (9s)

3:06 Clean excess silicone (23s)

3:57 Apply gasket 1 to core and secure with rivets (51s)
4:43 Apply gasket 2 to core and secure with rivets (46s)
5:21 Apply gasket 3 to core and secure with rivets (38s)
5:57 Clean excess silicone (36s)

6:34 Apply gasket 4 to core and secure with rivets (37s)
9:14 Clean pans, apply final bracket and labels, and move finished core (160s)

cess. These subtasks were: (1) the cobot applying silicone to components
placed by the worker and (2) the cobot picking and placing components,
and applying silicone to them. While we had noted a possible delineation
of work at the end of the planning phase, this step helped us to formally
identify and justify the distribution of subtasks. While both assignments
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appeared feasible, it was unclear what the optimal selection would be
given the differences in benefits to the worker and process, as well as the
required component costs. Exploring these different allocations of work
allowed us to provide our collaborator with multiple options to consider
depending on their budget and business needs. Both options were pre-
sented and confirmed to be practical. Using these potential processes, we
next created two new timelines to represent the potential human-cobot
process accounting for the possibility of one or two workers being assisted
by a single cobot simultaneously. These approximate time-tables are used
as the basis for the development phase, as they provide a rough outline of
what needs to be achieved and in what time frame.

Development Phase: Simulation

Based on the approximate timetables that were created in the analysis
phase, we created simulations of the new human-cobot workflows using
the CoFrame (Schoen et al., 2022) system. Within the simulation, we ini-
tially modeled the workcell of the manufacturer based on the information
they provided and adjusted it to reflect the changes brought by integrating
a cobot into the space. The created models included walls to visualize
spatial constraints, tables where the component preparation and assembly
process occurs, a table on which a tool switcher would be placed, and a
conveyor to symbolize a location for component pickup (see Figure 4.5).
After modeling the environment, we added models for the cobot, a UR5e
robot arm, models for the components that are required within the assem-
bly process of a single product unit (i.e., a core, pans, and gaskets), and
defined regions of the workspace that the operator would work in. With
the work environment, cobot, and components modeled, we next began

to create simulations of the cobot and worker tasks.
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Process 1: Silicone Application Only

The first process we created in simulation involved the worker placing
components, the cobot applying silicone to those components, and the
worker completing the remaining steps in the assembly process. A sim-
plified version of the final timeline for this workflow can be seen in Table
4.2, and reflects the cobot’s ability to assist two workers in parallel. Within
our simulation, we defined locations for components to be placed and
waypoints for the cobot’s end effector to follow as it applied silicone. The
cobot’s end-effector speed was optimized for efficiency and safety based
on feedback from CoFrame’s review panel. The simulation also included
processes to simulate the worker assembling components to recreate an
entire production cycle and produce performance metrics that accurately

captured the entire human-cobot workflow. These performance metrics
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Figure 4.5: The program and simulated environment created for process
2. The environment captures the robot, a workspace for the operator, a
workstation, a location to switch end effectors, and a source for component
parts.
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included cycle time, cobot idle time, and wear-and-tear cost.

Process 2: Silicone and Pick-and-Place Workflow

Our second simulated workflow involved the cobot picking up, placing,
and applying silicone to components, and the worker completing the re-
mainder of the assembly process. Similar to our first simulation, locations
and waypoints were defined for components and the cobot’s end-effector
path. However, in this simulation, after placing components, the cobot
navigates to a designated tool switcher zone to exchange its gripper for a
silicone dispenser. The cobot’s end-effector speed was calibrated based on
feedback from CoFrame and the performance metrics that it generated.
While this workflow offloads the additional task of placing components
from the worker to the cobot, and resultingly reduces cobot idle time,
this process still allows the cobot to assist two workers in parallel. Table
4.3 shows the timeline for this workflow, and Figure 4.5 illustrates the

simulation setup.

Table 4.2: A timeline of process 1 including the steps and timing for a
cobot to assist one or two workers in applying silicone.

Time Cobot Worker 1 Worker 2
. (Cycle Start) Place pans
0:17 Idle (17s) and gaskets (17s) Assemble pans, gaskets,
and core (58s)
0:58

Apply silicone to pans and

1:15 | gaskets for worker 1 (58s) (Cycle Start) Place pans

(Previous Cycle End) and gaskets (17s)
Finalize core construction
213 Apply silicone to pans and (196s)
’ gaskets for worker 2 (58s) (Previous Cycle End)
Finalize core construction

3:33 (196s)
4:31

Idle (298s) Assemble pans, gaskets,
711 and core (218s) Assemble pans, gaskets,

and core (160s)
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Table 4.3: A timeline of process 2 including the steps and timing for a
cobot to assist one or two workers in gathering components and applying

silicone.
Time Cobot Worker 1 Worker 2
2:10 Place pans and gaskets for
’ worker 1 (130s)
2:19 Switch from gripper to Finali )
: ; 1nalize core construction
dispenser for worker 1 (9s) (1965) Continue assembly of pans,
Aooly sili d gaskets, and core (203s)
3:15 pply silicone to pans an
: gaskets for worker 1 (56s)
3:16
323 Switch from dispenser to
= gripper for worker 2 (9s)
3:24
534 Place pans and gaskets for
’ worker 2 (130s)
Switch f ] . Finalize core construction
5:43 SWICh from Eripper o (Cycle Start) Assemble (196s)
dispenser for worker 2 (9s)
pans, gaskets, and core
6:39 Apply silicone to pans and (2185)
’ gaskets for worker 1 (56s)
6:48 SV\{itch from dispenser to (Cycle Start) Assemble
gripper for worker 1 (9s) pans, gaskets, and core
6:54 Idle (6s) (155)
Equipment Costs

As the final step of this phase, we obtained cost estimates for the cobot

and other materials required for integration based on our simulations.

These estimates helped to develop requirements to reconstruct the simu-

lations within the manufacturer’s facility. Cost estimates were obtained

through discussions with a robotics vendor. While not included within

our simulations, we also obtained cost information for a range extender

that would allow the cobot to move between two workstations. If the range

extender were to be utilized, the manufacturer could use a single cobot to
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assist two workers in parallel with minimal changes to their existing setup.
Alternatively, the same benefits may be achieved by reconfiguring the
workspace such that a single cobot could directly access two workspaces.
These hardware options were included to allow for greater flexibility in
achieving preferred outcomes and allowed us to present multiple options
to the manufacturer so they could select one based on their needs and
constraints.

Presentation Phase: Reporting Results

Using the performance metrics that were generated from our simulations
and the cost information that we obtained for each workflow, we created a
complete write-up to describe both processes, their associated costs, and
the trade-offs of each. We presented these findings to the manufacturer,
describing in detail each plan, showing them the simulations and output

metrics of each, and answering any remaining questions they had.

Synthesizing Results

Based on our analysis of the original human-only workflow, the total cycle
time was 9:14 minutes. By comparison, our simulation of processes 1 and
2 yielded cycle times of 7:11 minutes and 6:54 minutes, respectively. As a
result, processes 1 and 2 would reduce total cycle time by approximately
22% and 25% respectively. However, the manufacturer would need to
weigh the improvement these reduced cycle times provide against the
total costs of integration. For process 1, our estimated integration cost was
$38,470.00 USD, but resulted in more idle time by the cobot. Process 2’s
increased task assignment reduced this idle time, but required additional
hardware and would cost an estimated $47,350.00 USD to be integrated
into the facility. Additionally, both workflows would incur some level of

wear-and-tear cost from regular operation. According to our simulation,
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Table 4.4: This table shows several metrics comparing both proposed
processes and their direct differences.

Cycle Time in Time Robot Idle Time Wear and Component

Seconds Reduction in Seconds Tear Cost Cost
Process 1 431.2 22.17% 372.8 Negligible  $38,470.00
Process 2 414 25.27% 219.6 $0.02 $47,350.00
Difference 17.2 3.10% 153.2 $0.02 $8,880.00

this cost would be negligible for process 1 but would be $0.02 USD per
cycle for process 2. Both workflows produced clear benefits from a busi-
ness perspective, but process 2 was able to fulfill worker preferences by
offloading an undesirable task (i.e., applying silicone to components) to
the cobot, although at a much higher cost (shown in Table 4.4 and Figure
4.6).

Presenting Results

During our final meeting with our collaborator, we presented all the re-
sults uncovered throughout our collaboration. We reviewed the overall
steps we had taken over the span of our several-month partnership, focus-
ing on the factors that motivated the need for cobot intervention within
our collaborator’s facility and highlighting the decisions made along the
way to progress toward the final proposals. We discussed the process
required to create our simulations, including the simulation environment
(i.e., CoFrame), our model of the manufacturer’s workspace, and the cobot
we utilized within the simulations. This overview helped to familiarize our
collaborator with the simulations before providing a full demonstration.
Next, we provided a detailed demonstration of each workflow simulation
along with simplified timelines to illustrate each process. When show-
ing process 2, we provided an overlay video of the human work process
to clearly visualize the worker’s and cobot’s coordinated effort. These
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demonstrations provided an intuitive and compelling view of the cobot’s
effectiveness. For each of the simulations, we discussed the required inte-
gration costs and the performance metrics they each achieved. While the
ultimate decision of whether and how to integrate a cobot belonged to our
collaborator, we attempted to provide a clear understanding of the benefits
of each workflow and how they compared to one another. Following our
presentation, our collaborator had several questions regarding potential
next steps and practical considerations if they were to pursue either option
further. We addressed these questions and offered further support, should

the need arise.

Feedback Session

Following our final presentation with our SME collaborator, we held one
additional discussion session to receive feedback on our presented work
and four-phase approach. Within this session, we sought feedback from
two manufacturing engineers and a manufacturing engineer manager.
While we expressed interest in involving production workers in this ses-
sion, we were unable to due to their work schedules. At the beginning
of the session, consent forms were read and signed by all participants.
During the session, we briefly presented our four-phase approach and
conducted a semi-structured interview with the participants as a group.
The session was conducted over Zoom and recorded. We transcribed the
interview and conducted a thematic analysis of the interview data, which
revealed three primary findings discussed below.

First, we learned that our approach was able to capture worker needs
at all levels. The manager emphasized that production workers would be
very pleased if an undesirable task (i.e., messy silicone caulk application)
were offloaded to a cobot partner. He further emphasized that the use of
cobots in this process would not eliminate the worker, but rather make
their work more efficient. Additionally, the engineers reported that their
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Figure 4.6: This plot showcases the costs of our processes and their cycle
times to assemble two units when one or two workers are assisted by the
cobot.

needs were met by providing relevant information including robot motion
sequences, spatial constraints, and comparisons to the currently manual
process. Finally, the manager reported that our collaboration answered
many of their questions about cobot application.

Second, our work acted as an effective proof of concept for our collabo-
rator. The manager expected that work toward cobot integration would
occur in phases and that the first phase would be determining feasibility.
The manager stated, “I think this project really helped us answer the question,
"can we do this?’, right? 'Is this a good application?’ I think that really helped us.”
Specifically, our collaborators expressed that the simulations illustrated
the “big picture” of what such a workflow could resemble and allowed
for a clear comparison to the existing processes. These sentiments con-
vey how our proposed process can answer initial critical questions that

may be stumbling block for many businesses in evaluating whether cobot
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integration is appropriate in their facilities.

Finally, we learned that, although our case study provided our col-
laborator with an understanding of feasibility toward making informed
decisions, implementing our presented solutions would require additional
action. Our collaborators explained that management approval for such a
project would require information including comparisons across available
cobot systems, observation of these systems in actual production, and gen-
eration of supplier lists. Then, resulting elements such as exact workcell
layouts, equipment specifications, and cost estimates can be proposed for
budget approval. Although some of these implementation steps extend
beyond what our approach encapsulates, they can clearly benefit from

and build upon the results generated utilizing this approach.

4.9 Discussion

Cobots have a high potential for application within manufacturing settings
(Liu et al., 2022a), but designing appropriate and effective applications re-
quires considerable knowledge held by only a few individuals. This makes
utilizing cobots for collaborative tasks difficult or unattainable for most.
This presents numerous opportunities for researchers and system devel-
opers to explore ways of supporting user understanding and increasing
cobot accessibility.

The results of our lab study highlight the challenges in industry, as
discussed by experts, illustrating an overarching need to make cobot tech-
nology more accessible to individuals as a means to help bridge the skills
gap. While prior work has begun to explore ways of making physical
robots accessible to the community, such as through incorporating cobots
in makerspaces (Ionescu and Schlund, 2019), our work demonstrates the
potential for increasing accessibility using simulated robots in a structured

programming environment. This reduces the barrier to accessibility, only
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requiring an internet connection, as users can work with simulated robots
while leveraging CoFrame’s abstractions of cobot concepts to build an
understanding of collaborative principles.

Additionally, both expert and novice users saw the benefit of these
abstractions, developed through our translation of the Safety First Expert
Model (Siebert-Evenstone et al., 2021) into interactive textual and visual
program feedback, as a means of supporting user knowledge and produc-
ing effective collaborations. While users had varying expectations and
desires for the behavior of CoFrame’s features, all liked the conceptualiza-
tion of the explicit program feedback and issue detectors, along with the
extensive coupling of the visual and textual information to support the
creation of cobot programs.

Through our real-world deployment of CoFrame in our collaboration
with an SME manufacturer, we learned that users are not all at the "pro-
gramming" stage for cobot usage. Users need additional support to feel
confident in understanding cobot tasks and capabilities prior to explor-
ing the task through programming, necessitating additional support in
processes leading up to programming. We presented our approach to sup-
porting users and demonstrated the steps required to apply our proposed
approach, develop new human-cobot workflows, and assist a business in
making an informed decision regarding cobot integration. This experience
offered critical insights into the information that a business needs to make
informed decisions about integration and what roboticists require to assist
that business. These insights show that our approach can begin to answer
our initial questions regarding complementary cobot intervention, worker
preferences, and successful cobot integration. First, our approach can
offer a deep understanding of the manufacturer’s workflow and create
solutions that utilize cobots” collaborative capabilities. Further, our ap-
proach can enable roboticists to apply principles of collaborative robotics,

ergonomics, and HRI to develop effective workflows that meet worker
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preferences. Finally, our approach can help satisfy the needs of the larger
business without sacrificing the prior two goals. This intersection of proper
cobot utilization, consideration of worker preferences, and optimization
of business goals is critical to cobot integration.

While our case study illustrates the utility of our proposed approach,
certain elements warrant further exploration. First, our proposed human-
cobot processes were developed only in simulation. Given that simulations
cannot accurately reflect real-world performance, further in situ evalua-
tions will likely produce additional insights into the effectiveness of our
approach. Additionally, while our case study proceeded in a relatively
linear fashion, further evaluation of our approach’s iterative capacity (i.e.,
the ability to iterate between phases rather than only within individual
phases) may help us to understand its ability to handle complex manu-
facturing processes. Furthermore, to make the integration process more
accessible for SMEs, future work can seek to develop tools and frameworks
that support SMEs in their endeavor to make informed decisions about

cobot integration.

Design Implications

Based on our results, we present several design implications for the devel-

opment of future expert feedback programming systems.

Design Implication 1 Supports should be designed for collaborative use. Both
expert and novice users benefited from and valued the supports and visu-
alizations incorporated within CoFrame. Our results illustrate the current
difficulties and challenges in cobot usage faced by experts, with teaming
being one method used for producing and verifying the safety of cobot
programs. CoFrame’s use of visualization, structured feedback, and high-
lighting of problematic areas of code can act as a collaborator for users,

performing the role of a teammate to provide verification. This was evi-
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dent in the way novices engaged with the support, but also in the expert’s
discussion of the way the support directed them to issues they would
already be looking for. Future systems should support users by designing
supports that can be used collaboratively, allowing users to request feed-
back that draws their attention to issues and support problem-solving,
such as with visual cues, contextual prompts, step-by-step guidance, or

interactive explanations.

Design Implication 2 Support diverse users and workflows. Users bring
different backgrounds to the cobot programming process, spanning a
range of goals, experiences, and expectations. This results in a variance of
preferences for how scaffolding and abstraction supports should behave.
Our results show how users were split over when to incorporate feedback,
or how to best inform them of issues and changes to their program. Ad-
ditionally, users envisioned multiple use cases of CoFrame outside of just
industrial programming, from being used to increase accessibility in edu-
cation through web-based programming and simulation, to supporting
sales and customer understanding by demonstrating prototype programs.
These differences in users and use cases reflect the need to support diverse
workflows for user engagement in creating cobot programs and address-
ing program feedback. By offering multiple workflows for addressing
the programming process, future systems can allow users to tailor the
experience to their workflows, supporting users in the development of
programs, troubleshooting problems, and progressively deepening their

understanding of cobots over time.

Design Implication 3 Support knowledge progression and exploration. While
high-level abstractions can get users initially engaged with and remain
oriented within a task, users who are more experienced or curious seek to
understand the underlying mechanisms for cobot operation. Our study
revealed that participants began their interactions with the high-level
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abstractions provided in the system, but grew curious about the lower-
level representations for interacting with cobots; often desiring advanced
features to understand the state of the cobot. To allow for the progression
of exploration and understanding, future systems should support user
exploration of lower-level abstractions that map the high-level interface to
low-level concepts. This can occur by allowing users access to lower-level
programming implementations, as discussed by users in this study, but
can also occur by removing the simplifications and abstractions that the
system provides, such as grasp simplification. While real-world programs
will need to account for grasp detection, friction, gravity, etc., these factors
are not present in CoFrame to allow users to focus on conceptual problem-
solving of the task. Future systems should support multiple levels of
fidelity, allowing users to toggle the level of abstraction for these supports
and progressively engage with more complex representations and real-
world concerns. By supporting knowledge progression and exploration in
this way, future programming systems can promote deeper learning and
more sophisticated collaborations with cobots.

Limitations & Future Work

While our lab study serves as an initial exploration of novice and expert
user perceptions, one limitation of this study is the relatively small number
of expert participants. Recruiting domain experts is a well-known chal-
lenge, but was further restricted due to our target demographic of cobot
integrators. Future research should aim to broaden the participant pool
by incorporating a more diverse range of expert stakeholders, including
instructors and industry professionals from multiple domains.
Additionally, our real-world deployment highlights the difficulties for
industry in utilizing cobot tools. Future research should more closely work
with industry to understand users and explore the development of tools

in real-world contexts. This will allow for more rapid identification of
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issues and concerns, allowing for new tools to better support users in the

planning and programming of cobot interactions.

4.10 Chapter Summary

As industries confront a growing skills gap, there is a clear need for new
systems that simplify the use of cobots. While cobots hold great potential
for use within SME manufacturing facilities, SMEs may not have the re-
quired knowledge to fully utilize the collaborative capabilities of cobots
or understand the implications of their integration. Effective integration
and usage of cobots requires consideration of human worker needs and
preferences, proper utilization of cobot strengths, and improved perfor-
mance of manufacturing processes. Through the results of the two lab
studies, our evaluation of CoFrame demonstrates the potential for these
techniques within cobot programming, highlighting where participants
enjoyed support from several aspects of the software. However, it also
illustrates a variance in expectations and needs across users, highlighting
the differences in their backgrounds, both in terms of knowledge and
capability.

This is further exemplified through our real-world deployment, where
CoFrame was used to help develop the resulting program but required
additional external support structures to effectively plan for cobot usage
and integration. Integrating cobots into existing manufacturing workflows
requires extensive knowledge of cobots, their capabilities, human-robot
interaction principles, and a deep understanding of the manufacturer’s
needs. While the design of CoFrame, presented in Chapter 3, demonstrates
how the design of programming systems can support users through ab-
straction and scaffolding of robotics knowledge, this chapter illustrates the
need for additional user support earlier in the process. Specifically, users

require additional support in planning effective cobot interactions before
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reaching the programming stage. Our approach facilitates this deep un-
derstanding, assists in the development of effective integration proposals,
and supports SME manufacturers in making informed decisions about
cobot integration within their facilities.

This chapter presents an empirical evaluation of the CoFrame system
through lab studies and real-world deployment. It highlights user per-
ceptions and use of the system’s supports for building cobot programs,
building on the understanding of the design impacts from Chapter 3. Ad-
ditionally, it presents a theoretical framework for working with SME users
to facilitate additional cobot understanding that is lacking within the de-
sign of the system. This highlights additional opportunities for developing

support for user creation of cobot interactions.
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5 ALLOCOBOT. DESIGNING PLANNING SYSTEMS FOR

COLLABORATIVE INTERACTIONS

This chapter presents the design and implementation of the Allocobot
human-robot collaboration task planning system. It addresses the chal-
lenge of supporting user planning of human-robot collaboration, leverag-
ing user expertise while abstracting critical robotics, human factors, and
economics knowledge. In this chapter, we discuss the motivation of the
work, review relevant work to understand the design and application of
the system, detail our representation of collaborative tasks and the imple-
mentation for learning effective collaborations, and reflect on the design of
the system through an illustrative workflow. This chapter includes work
from a manuscript in progress (White et al., 2025a), building on work
presented by Schoen (2023).

5.1 Motivation

Recent trends in research illustrate an increasing focus on human-robot
collaboration within the concepts of Industry 5.0 (Nahavandi, 2019). In-
dustry 5.0 focuses on collaboration as a means to increase productivity,
personalize products, and create flexible work cells, while enabling and
empowering human workers through the use of robots. Collaborative
robots, or “cobots,” are one of the technologies well suited to address this
need, due to their safety focus and capability to assist human workers in
shared collaborative workspaces as full coworkers (Fanuc; Kuka; Universal
Robots). Cobot market share continues to grow (Grand View Research,
2023), as manufacturers begin to explore how to effectively utilize cobots
within their processes.

However, deploying cobots in real-world scenarios has proven to be a
difficult task for manufacturers. This has resulted in a growing skills gap in
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industry, as many manufacturers struggle to realize the benefits of human-
robot collaboration, often focusing on using cobots as cheap forms of
automation or for simple start-and-stop based interactions (Michaelis et al.,
2020). Several attempts have been made to bridge the gap, often focusing
on programming systems (Schoen et al., 2022; Emeric et al., 2020) and
increasing cobot accessibility within makerspaces (Ionescu and Schlund,
2019; Ionescu, 2020).

However, recent work has demonstrated the need for additional sup-
port for manufacturers to understand and make informed decisions when
creating collaborative interactions (Sullivan et al., 2024). This suggests
that support is needed not only for programming cobots but also in the
earlier stages when planning tasks and workflow allocation. Planning
for human-robot collaboration is particularly challenging for users due
to the extensive multidisciplinary knowledge required across economics,
ergonomics, human factors, robotics, and human-robot interaction to suc-
cessfully create viable collaborations. For instance, recent work has shown
that when creating collaborative tasks, the characteristics of the job affect
the degree to which the cobot will impact the ergonomics of the human
collaborator (Liu et al., 2022b). However, successful collaborations require
an in-depth understanding of all these concepts, balancing the economic
concerns, such as budget and implementation cost, with ergonomic factors,
such as human worker impact, to determine what collaborations should
look like.

One method to address this gap is the creation of new systems that
abstract this multidisciplinary knowledge while supporting user creation
of human-robot collaborations. In this chapter, we present an update to the
design and implementation of the Allocobot system initially presented by
Schoen (2023), illustrating how it creates viable interaction plans through
our design choices in data representation and interaction simulation. The

result of the Allocobot system is a policy that accounts for all collaborator
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decisions, allowing for flexibility in task executions needed in real-world
deployments.
The contributions described in this chapter include':

1. An update to the design and implementation of the Allocobot human-
robot collaboration planning system (see Appendix A for a link to
the system).

2. The presentation and discussion of a workflow that demonstrates
the behavior of the system and its support for end-users building

human-robot collaborative plans.

5.2 Related Work

As more manufacturers begin to integrate collaborative robots into their
workflows, there is a growing interest in supporting the task allocation
process. However, creating collaborative interactions remains challenging
as users must find appropriate tasks that align with cobot capabilities
(Kadir et al., 2018), and assess how best to allocate work between robot
and human agents. A significant body of prior work has explored the
use of optimization-based methods that seek to allocate work between
human and robot agents based on a variety of metrics (Huang et al., 2023;
Calzavara et al., 2023; Monguzzi et al., 2022; Battini et al., 2016). One
example is by Pearce et al. (2018), who combine metrics on ergonomics
and productivity to create human-robot interactions that minimize the
total task time and impact on the human worker.

When optimizing task allocations, ergonomics is a common objective

for analyzing tasks and mitigating risk factors for human workers (Potvin,

IThe research in this chapter is derived from a manuscript in progress by myself, Dr.
Andrew Schoen, Dr. Anna Konstant, Dr. Josiah Hanna, Dr. Robert Radwin, and Dr. Bilge
Multu, and presents an update to the design and implementation initially presented by
Dr. Andrew Schoen.



84

2012). Common metrics for assessing task impact on human workers
include the Strain Index (Garg et al., 2007, 2017), the Metabolic Prediction
Model (Garg, 1976), and the Revised NIOSH Lifting Equation (Waters
et al., 1994). These metrics are often applied holistically, evaluating com-
ponents in the context of the entire task, and are used to allocate strenuous
work away from humans and onto robot agents, reducing overall risk (Liao
et al., 2023; Dalle Mura and Dini, 2022). Additionally, many approaches
also consider task productivity, as literature has identified trade-offs be-
tween ergonomics improvements and task productivity (Pearce et al., 2018;
Wang and Li, 2019; Huang et al., 2021; Raatz et al., 2020).

However, several challenges still limit the broader usage of cobots,
such as how to have the cobot operate safely within the environment
(Kildal et al., 2018; Malm et al., 2019), and how robots should interact with
individuals (Galin and Meshcheryakov, 2020; Khalid et al., 2017). While
some researchers have explored parallel task optimization (Pearce et al.,
2018) where humans and robots have minimal task overlap, others have
investigated collaborative tasks where the human and robot agents need
to interact on a task together (Wang and Li, 2019).

Despite this, many existing methods produce statically scheduled allo-
cations of work, assigning a fixed set of tasks to agents (Kheirabadi et al.,
2023). In contrast, real-world interactions are often more complex, requir-
ing an awareness of both collaborators and the task state (Bi et al., 2021) to
inform decision-making, resulting in dynamic workflows. Effective collab-
orative interactions require that agents adapt to changing environments
and conditions (El Zaatari et al., 2019). Failure to consider these factors
can create uncollaborative environments, as collaborative environments
are dictated in part by the nature of the task and are not inherent to the
application of cobots (Guertler et al., 2023; Liu et al., 2022b).

One way of representing all these factors is through Petri Nets, a di-
rected bipartite graph consisting of two node types (Places and Transitions)
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(Peterson, 1977). Petri Nets have been shown to be an effective tool for the
modeling and analysis of workflows (Van der Aalst, 1998; Sun and Jiang,
2009; Adam et al., 1998), with variants of the Petri Net implementation
being used to represent time (Zuberek, 1991) and resources (Souravlas
et al., 2020). This makes Petri Nets well suited for collaborative tasks, due
to their capability to model both parallel and concurrent actions (Casalino
et al., 2019; Hu and Chen, 2017; Ziparo et al., 2011) as well as being able to
represent the state of processes (Zurawski and Zhou, 1994).

The work presented in this chapter builds on this understanding, com-
bining factors from multiple disciplines with Petri Nets to learn effective

human-robot task allocations.

5.3 Approach

The original design of Allocobot, as described in Schoen (2023), is centered
around enabling flexible and effective collaboration between human and
robot workers. It accomplishes this through a hierarchical task represen-
tation, decomposing jobs into several components, consisting of agents,
tasks, targets, and environmental information. A complete breakdown
from the initial implementation can be seen in Figure 5.1.

For each task, Allocobotuses an action primitive representation to define
the actions necessary for agents to perform. The actions describe how
agents interact with objects, move about the environment, and define the
impact of the action on the agent. These primitives are designed to be
additive to build more complex actions and are compatible with both
independent and joint activities to allow for shared task representations.

Allocobot supports both robot and human agents, each defined by a
unique set of capabilities and constraints. When analyzing tasks, Allocobot
examines the set of primitives and determines whether each agent is

capable of accomplishing the task. Similarly, it looks at the pairing of
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Figure 5.1: A breakdown of Allocobot’s job representation. Each card
represents core components defining a job, and includes Agents to be
utilized in the job, a set of Tasks or steps to complete the job, Targets to be
manipulated throughout the job, Points of Interest (POIs) that represent
the job environment, and Primitives that define the actions for each Task.
Figure from Schoen (2023).
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agents to determine if tasks can be split, allowing for subsets of primitives
to be completed by each agent.

Tasks in Allocobot operate on a set of targets, which describe the physi-
cally interactable objects within the environment. These include reusable
components, such as tools, precursors, intermediates, and products, which
describe input, intermediate, and output parts.

Allocobot also encodes environmental information through points of in-
terest (POIs). POIs include both standing and hand locations, representing
locations where agents will stand to perform work activities and where the
activity occurs. These locations are utilized to determine whether agents
need to move between locations to reach various objects.

Overall, this hierarchical breakdown enables Allocobot to track the po-
sition and state of the agents and targets within the environment over
time. This allows Allocobot to understand task progression and collabo-
ration characteristics by analyzing the state of these components. This
is enhanced by the primitive and point of interest (POI) representation,
allowing Allocobot to understand how the collaboration impacts agents
and understand agent limitations such as reachability or movement.

To support flexible collaboration, Allocobot encodes this information
using a Petri Net representation. This allows the system to represent the
partial orderings of tasks and dynamic execution paths. This approach is
useful for the modeling of concurrent and interdependent tasks, allowing
for the simulation of collaborative tasks by adjusting the state of the Petri
Net. This simulation is used by the reinforcement learning approach to
find a policy that represents a human-robot collaboration. The resulting
policy represents the optimal interaction as well as non-optimal variations,
where agents may deviate from the optimal policy, encoding multiple
options for continuing collaborations in non-optimal states. This flexibility

is crucial for real-world human-robot teaming.
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Update to Original Design

In this section, we describe the number of ways we build on the initial
design of Allocobot.

As Allocobot pulls from an understanding of human factors and er-
gonomics, economics, robotics, and human-robot interaction, several fac-
tors need to be represented within jobs to allow users to add and adjust
parameters that affect the factor prioritization and output collaboration of
the job. Primarily, jobs in Allocobot have been extended to include several
user-specified parameters that can affect the produced collaboration, in-
cluding monetary information such as worker hiring and onboarding costs,
robot purchasing and setup costs, and the cost of electricity in kilowatt
hours. Additionally, users can specify an « value that represents the rela-
tive weighting of the monetary and ergonomic factors Allocobot considers
in producing collaborations. The addition of this information represents
Allocobot’s ability to account for multidisciplinary factors while allowing
users to specify prioritization, which impacts output collaborations.

In the original specification of primitives, the Position primitive was
restricted to just the turning or rotating of a target. This restriction resulted
in Allocobot assuming that agents do no Move objects within the environ-
ment, meaning that certain real-world actions that require users to move
their hands about the environment, such as wiping a surface or guiding
a target into a keyed or fitted position, could not easily be modeled. In
the updated design, a displacement factor has been added to the Position
primitive. This differs from the Move primitive in the restriction that the
displacement factor assumes the agent’s hand ends up in the same location
it began.

In the original design, Allocobot did not specify the starting or goal
location of targets. This resulted in the system allowing for precursor
targets to be created and used at any location, without any restrictions on
carrying them around the environment. This resulted in Allocobot having
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agents move to locations to create and use the part there, without needing
to carry the parts around the environment to be used in other locations. To
better represent real-world interactions and constraints, Allocobot has been
updated to include additional representation for all targets and tasks that
restrict their locations. Now, when precursor targets are placed within
the environment, Allocobot has a representation of the starting location
of that precursor object, requiring agents to move to the location to carry
the target to new locations. Tasks can similarly be restricted for specific
locations within the environment, better representing real-world work-
flows where machines or processes may be tied to specific locations. With
this representation, the placement of targets within the environment will
either disable or allow specific tasks at each POI. For example, placing
targets away from a POI rather than near it will mean that Agents must
first carry targets to the POI to use them at the POI to complete a task.
Additionally, this representation allows for the specification of product
targets, allowing users to distinguish between locations where actions
occur and where products are moved to be shipped or used in order jobs.

Previously, Allocobot required users to specify parameters dictating
human capability, such as various heights and weights. This required
users to have in-depth knowledge of the relationships of multiple factors
for human capability, which could result in changes to the collaboration. In
the updated design, Allocobot asks users to specify a population percentile
and gender they are targeting for the human agent. This means that a
user is able to easily specify a task such that 99% of the population can
complete the task, which is easier for them to understand rather than how
the specific heights and weights map onto human capability.

Finally, the original design of Allocobot did not model robot capability.
In our attempt to map robot capability to the primitives defined, we were
unable to find suitable prior work that quantifies robot capability or error

rates. As part of the updated design, an initial implementation for this
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capability has been modeled based on our expertise and understanding of
cobots. This implementation includes factors based on the robot’s sensing
and movement capabilities as defined by the user.

54 Implementation

As described in Schoen et al. (2022), Allocobot utilizes a Timed-Transition
Petri Net to represent the execution and ordering of tasks as well as the
location of agents and targets within the environment. The Petri Net model
utilizes places, transitions, and arcs to dictate the movement of tokens
through the system. These tokens represent the targets and agents, with
places representing the state of the task and the location of the environment.
Transitions connect to places through arcs, determining how long actions
take before moving tokens from the set of input places to the set of output
places within the Petri Net. Using this Petri Net representation, we leverage
techniques in reinforcement learning to simulate and learn the sequence
of transitions necessary to facilitate effective task completion.

In the remainder of this section, we describe the updates to the original
Allocobot implementation, with particular attention to the implementation

of agents, cost estimation, and our approach to reinforcement learning.

Cost Modeling

Allocobot explicitly models both ergonomic and economic costs for each
transition in the Petri Net. Costs are split into two categories: onetime and
extrapolated. onetime costs represent the costs that occur exactly once per
job and are usually related to the setup of the job and environment, such
as the purchasing cost of the robot or the hiring and onboarding cost of
the human worker. extrapolated costs are used to represent the costs that
recur each time the job is run, such as worker compensation, cost of robot

task failure, and ergonomic impact to human workers. These costs are
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used by the reinforcement learning approach, described in Section 5.4, to

determine optimal interaction policy.

Economic Costs

Allocobot requires the user to specify the costs associated with several
portions of the job setup process. These costs include onetime estimated
costs for hiring and training human agents or the purchasing price of the
robot agent. Additionally, this includes extrapolated costs such as salary
costs for the human agent, the cost per kilowatt hour of electricity, the
cost of Precursor parts for the process, and finally the value of the Product
parts produced by the job. While not directly a cost variable, Allocobot
requires the user to specify the level of sensing capability for the robot
agent, which is used to estimate the cost of configuring the work cell. We
use Zane Michael’s estimate of between four and six times the cost of the
robot (Maw, 2018) for the cost of a custom work cell, with four times the
cost representing a low level of sensing capability, and six times the cost
for a high level.

Ergonomic Cost Modeling

The ergonomic cost is a measure of the ergonomic risk to the human
worker when performing different actions. Two common factors affecting
ergonomic risk are force and duration of exertion. Many ergonomic tools
utilize force and time, such as the Strain Index (SI), Revised Strain Index
(RSI), Garg Metabolic Prediction Model, NIOSH Lifting Index, Rohmert’s
Law, and the Hand, Shoulder, and Lifting Threshold Limit Values (TLVs)
Garg et al., 2017, 1978; Potvin, 2012; THOMAS R. WATERS and FINE,
1993; of Governmental Industrial Hygienist), 2002. Therefore, we modeled
ergonomic risk by multiplying the normalized force in the action and

the duration of the exertion (see 5.1). In our equation, we calculate the
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normalized force to be the required force for the action relative to the
person’s strength, commonly known as a percentage of the maximum

voluntary contraction (%MVC) (Basmajian and Luca, 1985).

Extrapolated Cost = %MV C x Duration of Exertion (5.1)

Additionally, the user must input information about the worker, such
as biological sex and percentile of the population, so that Allocobot can
compute the maximum strength and capability of the worker in a specific
task. These maximum capabilities are then used for each action to calculate
the maximum voluntary contraction (see 5.2) to determine whether the
human worker is capable of performing a given task and what the impact
of that task is on them. Further details of the ergonomic modeling can be
found in Konstant (2024).

Required Force

PMVC = Strength of Agent

(5.2)

Productivity Modeling

Methods-Time Measurement (MTM) by Barnes (1980) was used to model
the time in Allocobot. MTM is a predetermined time system tool used
to analyze the basic motions in a job, task, or subtask. MTM-1 consists
of 9 basic elements: reach, move, turn, apply pressure, grasp, position,
release, disengage, eye times (focus and travel), and body, leg, and foot
motions. The primitives are defined in Schoen (2023) and are mapped
to the MTM-1 motions. Allocobot requires that for each task of a job, the
user must specify the set of primitives associated with completing the task.
This allows Allocobot to compute the total time needed for each task to be

completed. Further details of the productivity modeling can be found in
Konstant (2024).
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Table 5.1: Robot error rate for physical interaction tasks, defined as a
function of sensing capability, and both location structure and variability.

Robot Sensing
Structure  Variability Low Medium High

Low 3.00E-01 1.50E-02 4.00E-03

Low Medium 7.00E-01 6.00E-02 7.50E-03
High 9.50E-01 1.00E-01 1.00E-02

Low 1.50E-01 1.00E-02 250E-03

Medium Medium 4.00E-01 2.00E-02 5.00E-03
High 8.00E-01 6.00E-02 7.50E-03

Low 1.00E-02 4,00E-03 1.00E-03

High Medium 2.00E-01 1.50E-02 3.00E-03
High 5.00E-01 4.00E-02 6.00E-03

Robot Cost Modeling

In our review of prior work, we were unable to find work that quantifies
robot capability or error rates. Allocobot relies on these factors to determine
the capability and costs of assigning work to each agent. We created an
initial set of error rates based on our experience and expertise with cobots.
For our modeling of the robot’s cost, we consider two scenarios for error.
The first is in the physical interaction with objects, such as by applying
force or the manipulation of objects, and is modeling as a function of the
robot’s sensing capability and the variability and structure of the location
(Table 5.1). The second form of error comes from visually demanding
tasks, such as part inspection or selection. This form of error is modeled
as a function of the robot’s sensing capability and the skill rating for the

associated action (Table 5.2).
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Table 5.2: Robot error rate for visual inspection tasks, defined as a function
of sensing capability and skill rating.

Robot Sensing
Low Medium High
_ Low 5.00E-03 2.00E-03 5.00E-04
Skill Medium 1.50E-02 600E03 | 7.50E-04
Required .
High 1.00E-01 2.00E-02 1.00E-03

Reinforcement Learning

As discussed in Schoen (2023), we use reinforcement learning (RL) to
simulate traces through the Petri Net model that represent human-robot
collaboration, exploring multiple orderings of actions and optimizing
based on the costs associated with transitions. Specifically, we use Proximal
Policy Optimization (PPO) (Schulman et al., 2017) combined with action
masking (Huang and Ontafién, 2020) to restrict the available action space
to only viable actions at each timestep. PPO acts as a middle ground
between policy gradient methods (Sutton et al., 1999; Grondman et al.,
2012) and trust region policy optimization (Schulman et al., 2015), using
a clipped objective function that penalizes large deviations in the model

between iterations, ensuring small, iterative steps toward the optimal
policy.

Reward Function

Conceptually, when training, the RL agent must select transitions for all
the human and robot agents specified in the job to progress the time of the
simulation. This allows us to explicitly account for actions that progress the
state of the collaboration, while also allowing agents to rest. Each selected
transition results in a negative reward (cost) to the RL agent based on
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the transition’s specified onetime and extrapolated costs for ergonomic
and economic metrics and the user-specified o value. Rest actions for
agents are rewarded based on the ratio of total task time and exertion time,
with higher ratios being positively rewarded, incentivizing rest, and lower
ratios incurring costs, disincentivizing rest. Additionally, the agent trains
against deadlocks, similar to Hu et al. (2020), by imposing high costs to
transitions that result in no viable transitions in the subsequent state, such
as by removing all agents from the job. If the RL agent encounters one of
these transitions, the action is penalized, and the training episode is ended.
Overall, the cost associated with each transition is the combination of the
ergonomic cost associated with the transition itself and the economic cost
of labor and parts.

These costs result in the RL agent accumulating an increasingly neg-
ative reward, which it attempts to minimize. PPO works best when pro-
viding a combination of negative and positive rewards to help it find the
optimal policy. We reward the RL agent positively for transitions that
progress towards the goal, as defined by the user’s set of tasks, as well as
when it reaches the goal state, which is marked by having produced all
Products associated with the Job, resulting in a large positive reward.

Specifically, the reward function for the RL agent is broken down into
several factors. It first checks whether the selected action results in the
agent reaching the goal state (Equation 5.3) or creates an invalid state
(Equation 5.4), such as by using targets that do not exist.

10000 if at goal state
goaly ) (5.3)
0 otherwise
—100000 if state is invalid
-_ { if state is 1Twa i (5.4)
0 otherwise

The reward function also checks for deadlocks, checking whether the
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new state results in the discarding of all agents. If all agents are discarded,
the agent is given a negative reward and the episode is concluded (Equa-
tion 5.5).

(5.5)

di { —100000 if all agents discarded
Si
0 otherwise

In order to incentivize rest, we explore a simple exponential function
based on the relation of the total time the agent spends exerting energy to
the total time spent on the task (Equation 5.6). This incentivizes the RL
agent to allocate rest actions when the ratio approaches 1, and disincen-

tivizes rest as it approaches 0.

etoral task time — 1.5 if rest action used
rest; (5-6)

0 otherwise

Finally, the RL agent checks to see if the action progresses the Job, using
the Tuasks defined by the user to determine the reward of increasing linear
reward (Equation 5.7. For example, if the action is the first Task of n needed
to complete the Job, then the reward is 1, whereas if it is the nth Task, the

reward is n.

i if action is the it" Task
Progi . (5.7)
0 otherwise

Altogether, the RL agent’s reward function for taking some action;
is defined as the sum of these components, minus the ergonomic and
economic costs balanced according to the o parameter as described earlier,

and minus 1 as a cost for exploration (Equation 5.8).

Ti = dis; + inv; 4+ rest; 4+ goal; + prog; — @ X econy (58)
— (1 — o) x ergo; — 1 .
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This creates a multifaceted reward function, allowing the RL agent to

optimize for many factors of the collaboration.

PPO Implementation

To implement this reward function, we utilized Stable-Baselines3’s (Raffin
et al., 2021) contrib repository for their implementation of the PPO algo-
rithm with action masking. Action masking allows for the constraining of
the action space at each timestep of the simulation, restricting the agent
to only valid actions. If the prerequisites of a transition are not met, then
it is not considered a valid transition for the given state. For example,
producing a Product part without using the necessary inputs would be
invalid. This reduces model training time by removing the need to train
against invalid transitions, focusing only on the viable possibilities for a
given state.

While the reward function determines the value of specific actions on
the Petri Net, the action mask allows us to restrict the available actions at
each time step to only potentially viable actions. The action mask uses the
outgoing arcs for each place and transition in the Petri Net and the available
agents to determine viable actions. The simulation tracks whether agents
are free to engage in an action or if they are already involved in an assigned
task. The action mask marks all the transitions associated with busy agents
as invalid. Next, the action mask uses the outgoing arcs of each place that
connects a transition and checks to ensure the place has enough tokens
to satisfy the transition, marking it invalid if not. The remaining set of
transitions is marked valid and used to select an action for the current step
of training.

The action mask initially restricts the action space further. The RL agent
distinguishes transitions in the Petri Net between Simulation and Setup
transitions. Setup transitions reflect the initial setup phase of the simula-

tion, where decisions about which agents to include, work allocation, and
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placement of Targets in the environment are made. Simulation transitions
reflect the transitions associated with the collaboration itself, capturing the
movement of agents through the environment and the progress towards
the completion of all Products. As a result of this, when beginning model
training, the action mask initially restricts the RL agent to consider only
Setup transitions, forcing the agent to fully set up the environment prior to
simulation.

As described by Schoen (2023), we represent the Petri Net network as a
set of matrices and vectors. Within the simulation, each observation of the
current state of the Petri Net is represented as a vector, where each index
represents the number of tokens in that place. We represent the change
to the Petri Net caused by transitions as a matrix, with rows indexing
the places in the Petri Net and columns indexing the transitions. Each
indexy; in the matrix represents the net change in tokens at place; for
transition;. For example, if transition; consumes 1 token from place; and
then produces 1 token for place;, index;; is 0, whereas if it produced 0
tokens then index;; would be —1. Additionally, as each transition has a
time associated with its execution, we split this matrix into two, one for
token consumption input and one for token production output. This
allows us to consume the input tokens when the RL agent selects an action,
and then add the output tokens after the transition has finished firing.

As Allocobot allows for multiple agents to be utilized collaboratively or
independently, this consumption and production of tokens simplifies the
changes to the network. Allocobot assumes a max firing of the Petri Net at
each timestep to progress the simulation, meaning that all possible agents
must perform an action. For each agent, the RL agent selects an action, and
the input matrix is used to consume the corresponding tokens from the
Petri Net. As each agent completes their action, the Petri Net is updated
using the output matrix, and the agent is assigned a new action. In this

way, each observation of the Petri Net correctly reflects the current tokens
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Figure 5.2: Example environment for the kitting task case study. It includes
two bins to pick parts from to assemble at the kitting station.

available within the network, but does not represent the held incoming
tokens.

After training, we are left with a policy network that we apply to the
problem space and determine the optimal sequence of tasks to complete
the collaborative job. This network allows us to iteratively step through
the collaboration and identify the costs associated with the collaboration,
the allocation of tasks between the various agents, and the impact of the
tasks on each agent. This information is persistent and recoverable after

training, allowing for in-depth analysis on the resulting collaborative task.

5.5 Case Study

To demonstrate how Allocobot supports user creation of human-robot col-
laborations, we developed an illustrative workflow that discusses system
behavior and output. This workflow is inspired by prior work in robot
kitting (Mancini et al., 2018; Balakirsky et al., 2013), where a robot and

human worker must grab objects from locations in the environment to
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Figure 5.3: The user begins by defining all POlIs in the environment (A),
then specifies the desired Agents for the collaboration (B). Then the user
defines all Targets (C), and the tasks that use them to complete the job (D).
Finally, the user simulates the interaction to produce the best collaboration.

pack a “kit” used in another job. To illustrate the workflow, we created a
mock environment (Figure 5.2), and present the workflow at a high level
in Figure 5.3.

The user wants to explore an existing kitting task in their facility in the
framing of human-robot collaboration. The user begins by analyzing their
task environment, defining it within the Allocobot system. They note that
the environment contains two bins, which contain the parts for the kit, and
a table where the kit is assembled. The user marks the locations next to the
bins and table as standing POIs within the system, and the areas where
agents will interact with the target parts as hand POIs, using a relative
positioning of locations based on the table where the kit is assembled.

The user then adds the potential agents for the collaboration. They first
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specify a human agent as a potential agent to be used in the job, defining
the job as fit for the 50th percentile male, and adding wage and hiring cost
information. Then the user specifies the information for the robot agent,
opting for the UR10 robot on a mobile base with a max speed of 1 m/s, and
defines the energy consumption and initial investment cost of the robot
setup.

Next, the user begins to define the targets involved in the task. They
know the task involves the kit itself and two objects, one from each bin,
that must be placed within the kit. They specify precursor targets for the
kit and both objects to be placed in it, followed by intermediate targets
representing the box with one precursor or the other, and a product target
representing the kit with both objects in it. For each target, they restrict the
potential locations to the corresponding areas in the environment, better
reflecting how they want the task to be conducted.

Then the user begins to think about the order of steps to complete the
task, namely, the addition of each part to the kit. They want one part to
be added before the other due to its weight, so they define the transitions
to add a single object at a time to the kit. Following this, the user adds
the primitives associated with each transition. As each transition is the
addition of the part to the kit, the user knows that they only need to add a
Position and Hold primitive to represent the placing of the object within
the kit.

Having defined the environment, agents, and task, the user turns their
attention to the final parameter for the job. The user needs to determine
the o« weighting factor for the job, setting it to 0.5 to represent weighing
both the ergonomic and economic factors equally when evaluating the
collaboration.

Finally, the user begins the reinforcement learning process using the job
they specified and analyzes the output. Once training has been completed,

the user finds that the produced collaboration focuses on the human
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worker only, discarding the robot. To understand the impact of the «
weighing, the user adjusts the weighting to 0.3, indicating a weighting
of 70% — 30% split for ergonomic and economic factors, and reruns the
simulation. This time, the simulation produces an interaction with the
robot adding the heavy object to the kit and the human adding the lighter

one.

5.6 Discussion

Designing effective human-robot collaborations is a complex challenge,
requiring specialized knowledge across robotics, human factors and er-
gonomics, economics, and human-robot interaction. This represents an
open challenge for industry, where users with knowledge across these
disciplines are rare. Allocobot represents our approach to addressing this
issue. Through a combination of Petri Nets, unique action primitives,
and reinforcement learning, Allocobot enables users to create and explore
human-robot collaboration plans.

Our case study highlights how Allocobot supports users through the
planning process. The user focuses on describing the environment, com-
ponent parts, and steps necessary for the collaboration, without needing
to explicitly model capabilities, constraints, or strategies for collaboration.
Instead, they rely on Allocobot’s abstraction of agent capability and task
planning to generate complete human-robot collaborations, optimizing
for ergonomic and economic factors. In this way Allocobot allows users
to focus on specific aspects of the jobs and environments they should be
familiar with while enabling them to create human-robot collaborations.

This approach has several implications for the design of systems for
human-robot collaboration. First, by enabling users to create effective col-
laborations without requiring multidisciplinary expertise, Allocobot lowers

the barrier of entry for human-robot collaboration. Users can instead
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leverage their existing knowledge and environment to explore potential
collaborations. Second, Allocobot supports user understanding by allowing
for the exploration of trade-offs in the design of collaboration. Users can
adjust costs, primitives, or factor weighting through the « parameter to un-
derstand how these affect the resulting collaboration. Additionally, users
are not restricted to real-world robot designs and limitations, allowing
them to freely explore the potential minimum specifications needed to
facilitate a successful collaboration. Overall, this ability to rapidly model,
simulate, and compare scenarios is important in facilitating user under-

standing of collaborations.

Limitations & Future Work

One limitation of our work is the lack of a planned empirical evaluation
to assess Allocobot’s capability to support users in producing viable real-
world collaborations. Although our case study illustrates how the system
is designed to enable user creation of human-robot collaborations, future
work will seek to explore the efficacy of Allocobot’s output collaborations.
Our approach has several additional design limitations. First, we as-
sume a deterministic representation for the timing of actions within our
Petri-Net representation. While in the real world, the time it takes to com-
plete a given action is variable, we used a simplified approach, assuming
the best-case scenario for any action times. Second, we assume human
agents are incapable of failing any given task if they are ergonomically
capable of completing the task. For the robot agents, a percentage of mon-
etary cost was calculated to account for the possibility of such an agent
failing the task, but no such percentage is calculated for human agents.
Accounting for the variable timing of actions and the potential failure of
actions introduces additional model complexity and should be explored
in the future to better reflect real-world expectations of collaborations.
Another limitation is in our modeling of the environment for the Petri-
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Net. To serve as an initial step to address the collaborative planning
problem and reduce complexity, we assume that objects in the environment
are static unless acted upon by agents. This results in difficulty modeling
for factories with automated assembly lines and conveyor belts, as Allocobot
requires the conveyor systems to be agents or for the static locations of
objects to be defined.

Finally, we could not find suitable models for robot capability in the
literature. Allocobot encodes a model of robot capability based on our
understanding, but future work should seek to empirically understand

real-world robot capability, performance, and failure rates.

5.7 Chapter Summary

Planning human-robot collaboration is a difficult task that requires exten-
sive knowledge of human factors, ergonomics, economics, robotics, and
human-robot interaction. This presents several challenges for manufac-
turers seeking to use cobots. Allocobot attempts to simplify this process
for users, abstracting the process of allocating work between human and
robot agents based on their capability and the ordering of tasks to facilitate
a collaborative task. This abstraction enables users to focus on the envi-
ronment and task they are already familiar with, leveraging their domain
and task knowledge as inputs that Allocobot can decompose and assign
to agents based on its representation of multiple domain factors. This
provides additional scaffolding to the user, enabling them to create and
iterate through multiple collaborations, each potentially viable.

This chapter presents an update to the design of the Allocobot system,
a system for supporting user creation and exploration of human-robot
task allocations. Our method utilizes models across multiple disciplines
to analyze and understand what viable human-robot collaboration looks

like. Our reinforcement learning approach, in theory, allows for dynamic
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environments, accounting for both optimal and suboptimal options for
facilitating the interaction, due to the nature of its policy-based output.
Finally, we demonstrated through the use of a case study how Allocobot
allows users to create human-robot collaborations, leveraging the abstract
representations of multiple domains within the system while focusing
on user domain knowledge and expertise through the incorporation of
simple system inputs.
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6 EVALUATING ALLOCOBOT AS A WORK ALLOCATION

AND TASK PLANNING OPTIMIZATION TOOL

This chapter presents our evaluation of the Allocobot task allocation and
scheduling system. It explores multiple real-world scenarios and high-
lights how human-robot collaboration can be achieved in each. In this
chapter, we discuss the motivation for the work, highlight relevant related
work, describe our approach to evaluating the system, present our find-
ings, and discuss the use of the Allocobot system in creating human-robot
collaborations. This chapter includes work from a manuscript in progress
(White et al., 2025a).

6.1 Motivation

Planning for effective human-robot collaboration is a complex task, in-
volving multidisciplinary knowledge across ergonomics, human factors,
robotics, and human-robot interaction. Successful collaboration depends
on balancing these factors with task efficiency, productivity, and economic
constraints to ensure that human well-being is prioritized along with the
overall performance of the system. As industry increases its adoption of
collaborative robot (cobot) technologies (Grand View Research, 2023),
there is a growing need for methods that can support the planning of
human-robot collaborations, as the diversity of factors involved makes
this process challenging for real-world scenarios.

Prior work has explored several ways to increase cobot accessibility in
the hopes of supporting user understanding, such as by making cobots
accessible to the community (Ionescu and Schlund, 2019; Ionescu, 2020),
or through the creation of novel programming systems (Schoen et al.,
2022; Emeric et al., 2020). Additional work has been conducted to gen-
erate collaborative plans using techniques in optimization (Pearce et al.,
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2018), genetic algorithms (Bobka et al., 2016), and reinforcement learning
(Zhang et al., 2022). However, while some work optimizes for factors
such as ergonomics (Potvin, 2012) or productivity (Wang and Li, 2019;
Huang et al., 2021), optimizing for factors across multiple disciplines while
simultaneously allowing for dynamic workflows remains challenging.

Our work seeks to evaluate the Allocobot system, a task allocation
and scheduling optimizer for human-robot collaboration. Allocobot in-
tegrates metrics from ergonomics, human factors, economics, robotics,
and human-robot interaction to produce task allocation policies that re-
duce strain on human workers while enabling flexible workflows. In this
chapter, we present several real-world scenarios and use Allocobot to ex-
plore what human-robot collaboration can look like within them. Through
these real-world scenarios, we investigate how Allocobot balances trade-
offs in human-robot collaboration and adapts to diverse human-centered
scenarios.

The contributions described in this chapter include!:

1. An empirical evaluation of the Allocobot system using real-world

case studies.

2. A discussion of the impact of Allocobot’s parameters on human-robot

collaboration.

6.2 Related Work

Cobots are designed with a focus on safety and ease of use, which has
contributed to the growing adoption of the technology within the manu-
facturing domain (Grand View Research, 2023; Simdes et al., 2020). Their

ability to work collaboratively with people as teammates (Christiernin,

IThe research in this chapter is derived from a manuscript in progress by myself, Dr.
Andrew Schoen, Dr. Anna Konstant, Dr. Josiah Hanna, Dr. Robert Radwin, and Dr. Bilge
Mutlu.
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2017; Michalos et al., 2015), increasing productivity through task paral-
lelization (Pearce et al., 2018) or through interacting together collabora-
tively to facilitate task completion (Wang and Li, 2019). However, prior
work has highlighted the difficulty manufacturers face when attempting
to integrate collaborative robots into their facilities (Sullivan et al., 2024).
Small-to-medium enterprises often lack workers with the skills necessary
to effectively utilize cobots, due in part to the growing worker shortage and
skills gap (Giffi et al., 2018; Michaelis et al., 2020; Wingard and Farrugia,
2021).

Determining how best to use cobots within an application is difficult.
While it is known that cobots are capable of reducing ergonomic impact on
workers (Liao et al., 2023; Dalle Mura and Dini, 2022), this often has trade-
offs with task productivity (Pearce et al., 2018; Wang and Li, 2019; Huang
et al., 2021; Raatz et al., 2020). This presents challenges for determining
what an acceptable level of impact is on the human worker, but is further
complicated when considering how to operate cobots safely within the
environment (Kildal et al., 2018; Malm et al., 2019), and how they should
interact with individuals (Galin and Meshcheryakov, 2020; Khalid et al.,
2017).

To address this difficulty, prior work has explored several approaches
for generating, deploying, and analyzing policies for facilitating human-
robot collaboration. These methods include techniques in optimization
(Pearce et al., 2018), simulation and genetic algorithms (Bobka et al., 2016;
Brosque et al., 2020), and reinforcement learning(Zhang et al., 2022; El-
Shamouty et al., 2020; Modares et al., 2015). These approaches attempt
to simplify the process of building human-robot collaborations, provid-
ing concrete metrics by which to evaluate the collaboration, such as the
ergonomic impact on the human collaborator (Potvin, 2012) and task
productivity (Pearce et al., 2018).

Allocobot is a system that seeks to address the challenges presented
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here by encoding multiple models of domain knowledge and using them
to optimize human-robot interactions. Our work seeks to evaluate the Allo-
cobot system’s capability of creating viable task allocations and interaction
plans.

6.3 Method

Here we describe our experimental setup to evaluate the Allocobot system.

Scenarios

We demonstrate Allocobot’s capabilities through two real-world scenarios:
automotive manufacturing and small parts assembly. These scenarios
were selected due to their potential for human-robot collaboration and
to demonstrate Allocobot’s versatility across varying environments and
collaborative scenarios.

Each scenario was modeled based on video analysis of real-world
workers performing the job’s associated tasks. From this, we produced a
detailed breakdown of the job, along with the associated primitives for
each task, as well as modeled the environment the agents must interact in
(Figure 6.1).

Scenario 1: Automotive Manufacturing. The automotive manufacturing
scenario is inspired by the half-shaft installation job at a partner automotive
manufacturer. This scenario involves workers moving around a workcell
to gather parts and tools from various locations and bring them to an
engine on the other side of the workcell for installation (Figure 6.1 A).
To reduce the complexity and variability of the task, we use a simplified
setup compared to the real-world equivalent. For this scenario, we assume
the engine is stationary as opposed to being on an unguided autonomous
vehicle, which is more typical of real environments. Additionally, we

simplified the job’s steps to combine actions that would not make sense
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Agents

Figure 6.1: Scenario environments for the evaluation of Allocbot. (A)
depicts an automotive assembly job where agents will need to move around
the environment to grab parts and tools to work on the engine. (B) depicts
a small parts assembly job where agents will prepare and assemble parts.
For both (A) and (B) areas marked in orange represent the POIs where
agents will stand, while the areas marked in red represent hand locations
where they will perform work.

to split among multiple agents. For example, when checking whether
the half-shaft is properly attached, the agent must apply a force, tugging
the object several times to verify its connectedness. Splitting this into
multiple steps would allow different agents to each perform a check on the
component, rather than guaranteeing a single agent performs all checks.

For the automotive manufacturing scenario, we only consider the initial
portion of the job, due to its high ergonomic impact on the human worker.

Concretely, we model this high-impact portion of the job within a four-step
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process. The first step of this process is the insertion of an engine protection
template, followed by the second step where the agent attaches the half-
shaft. The third step removes the protector, and the agent completes the
job by doing a manual inspection of the work. All pieces and tools used
in the scenario are located on the left side of the environment, requiring
agents to take multiple trips to bring components from the left side to the
right, where the engine is located.

Scenario 2: Small Parts Assembly. The small parts assembly scenario is
inspired by an assembly task from a small to medium enterprise (SME)
as presented by Sullivan et al. (2024). This scenario involves workers
doing prep work on multiple parts before assembling them together. This
scenario does not require agents to move about the environment much, as
all necessary parts are located near the workstation (Figure 6.1 B).

For the small parts assembly scenario, the job consists of prep work
and assembly. Agents must first prepare multiple sets of gaskets and metal
pans by applying silicone to them. Following this, agents can attach the
gaskets and pans to a “core” through a multi-step process. These are
outlined as four distinct actions: prepare gaskets, prepare pans, add pans
to the core, and add gaskets to the core. To complete the job, agents must
perform each action multiple times, as a fully assembled unit consumes
one core, two pans, and four gaskets. Within this scenario, parts are located
in bins around the table, with tools being accessible to both agents.

Experimental Setup

For each of the scenarios, we utilized the same set of input parameters for
the Allocobot system, only changing the Targets, POIs, and Primitives to
match the needs of the scenario. Each scenario was run with two agents,
one human and one robot. The human agent was set to the 50th percentile
male, meaning the human worker assigned collaboration tasks should
be doable by a 50th percentile male. The robot agent was modeled after
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the Universal Robot UR10 (Robots). Specifically, we defined our robot
agent to have a reach of 1.3m, a payload capacity of 10kg, an end-effector
speed of 1m/s, a precision of 0.0001m, and an energy consumption of
300W, as defined in the spec sheet. We set the purchase price for the arm
to $35,000, with an estimated annual maintenance cost of $5,000. We
ranked the agility factor of the UR10 as medium, and set the desired level
of sensing to be low to indicate we want to use the system with minimal
add-on features. For each scenario, we assume the UR10 robot to be on a
mobile base, with a height of one meter off the ground, and with a mobile
speed of 4m/s.

For each scenario, we varied the o weighting of economic and er-
gonomic costs from 0 to 1 in increments of 0.1. This varies the weighting
of the ergonomic and economic costs from 100% ergonomic costs to 100%
economic costs, with an « of 0.5 meaning an equal weighting between
ergonomic and economic factors. For each job and « value, we train the
RL agent for one million steps.

Measures & Analysis

We conducted a quantitative analysis of Allocobot’s task allocations across
varying o values to understand the impact on agent behavior, task alloca-
tion, task efficiency, and overall cost. Allocobot produces logs with agent
assignments, primitive-level actions, and task metadata. The assignment
of tasks to either the human agent, robot agent, or a combination of them,
as well as the primitives associated with them, was extracted from these
logs and visualized to examine patterns in collaboration and workload
distribution. Additionally, logs were analyzed for non-allocated work,
such as the fetching of parts.

Both ergonomic and economic costs were extracted from these logs
to assess the o parameter’s influence on task characteristics. To assess
the physical impact on the human worker, we used Allocobot’s internal
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ergonomic cost model. This model tracks strain across specific body areas,
including the hand, arm, shoulder, and whole body, based on maximum
voluntary contraction (MVC). We use this value to illustrate how the
allocation of work impacts the human agent. Monetary cost was also
recorded for each allocation, including both setup costs and operational
costs. In addition to the total cost, we computed an alternative version that
excludes the initial robot setup cost to isolate the cost difference driven by
agent time and material use.s

Finally, the time to complete the task was computed based on the
duration of all actions executed in a given allocation up until the final
product was created. This allowed us to measure the efficiency of each
allocation strategy and understand the role of parallelization and agent

substitution in reducing overall task time.

6.4 Results

Here we present the results of Allocobot for each job. For each job, we
vary « from 0 to 1 in increments of 0.1 and illustrate how it affects the
resulting collaboration.

Scenario 1: Automotive Manufacturing

Figure 6.2 demonstrates the result of Allocobot’s allocations for the Auto-
motive Manufacturing scenario, highlighting both the agent assigned to
each task as well as the primitives defining their role in that task. Overall,
Allocobot produced varied task allocations and primitive assignments,
resulting in varied impacts on the human agents and overall task time.
When ergonomic factors are the only factors being prioritized (x =
0.0), Allocobot allocated the robot to the entire task. This is expected, as
ergonomic strain does not impact the robot, but it also indicates the error

rate of the robot is acceptable compared to the cost that would be incurred
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Figure 6.2: The change in work allocation and primitive assignment due
to the change in alpha weighting for the Automotive Manufacturing Sce-
nario’s four-step process. For each « value, we see the resulting allocation
of robot (R), human (H), or human-robot (HR) to the task. Additionally,
each allocation specifies which primitives are assigned to each agent, in-
cluding force (F), position (P), or hold (H). Finally, on the right is the
total cycle time for the collaboration.



115

through collaboration. However, we see a similar allocation for « values
0.2,0.3, and 0.5. While this could indicate a similar prioritization of factors,
the total time for the task varies for each. When analyzing the outputs of
these collaborations, we find that for « = 0.2 the human agent is added
to the task to carry the protector for the robot, shortening the overall task
time when compared to o« = 0.3. For o = 0.5, the human agent was not
added to the task, but the policy determined that the robot agent should
rest for 60 seconds following adding the half-shaft to the engine. If this
action were removed, the time would more closely align with « = 0.3.

However, in most scenarios, the human agent was still added to the
job, with the exception of « values 0.3 and 0.5, where the human agent
was not added. As the robot was fully allocated work for o values 0.0, 0.2,
0.3, and 0.5, we analyze tasks 0.0 and 0.2 further to understand the role
of the human agent. For o« = 0.2, the human agent was added to the task
and carried a protector before resting for the remainder of the task. In this
way, the human agent was used to parallelize part fetching for the robot
agent to use. Similarly, for o« = 0.0, the human agent was used to fetch a
half-shaft. However, the result of the human carrying the half-shaft was
ignored as the policy had the robot agent grab a second half-shaft that
was utilized within the remainder of the process.

For the Automotive Manufacturing scenario, task two of the process re-
quires agents to add the half-shaft to the engine, and is the most strenuous
job for the human agent to perform. This task involves agents holding the
half-shaft, positioning it in the correct place, and applying force to attach
it. However, in two scenarios, « values 0.7 and 0.9, Allocobot allocated the
entire job to the human agent.

Figure 6.3 shows how each of the allocations produced by Allocobot
impacted the human agent. Namely, it illustrates that the Automotive
Assembly job primarily focuses on arm strain as measured by Allocobot.
Additionally, it shows that the allocations for « values 0.0, 0.1, 0.7, and
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Figure 6.3: The ergonomic impact on the human agent measured by Al-
locobot for each produced allocation in the Automotive Manufacturing
scenario.

0.9 result in the highest impact on the human worker. For 0.7 and 0.9,
this is expected due to the allocation of work only using the human agent.
However, similar to o values 0.0 and 0.2 with the roles reversed, Allocobot
adds the robot agent for o = 0.7, having the robot carry the half-shaft for
the human agent to use in the process, whereas for « = 0.9 the robot agent
is not included in the task. Additionally, we see high values for o values
0.0 and 0.1 caused by carrying the half-shaft (for both) and then inserting
and checking its installation (for o« = 0.1). The value for 0.0 is especially
high, given that the human agent’s only task is to carry the half-shaft.

Figure 6.4 shows how each allocation performs in terms of overall cost
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Figure 6.4: The total cost and time for task completion for each produced
allocation in the Automotive Manufacturing scenario.

and time needed to complete the task. In terms of cost, notably & = 0.9
was the only instance where Allocobot did not include the robot agent
in some form. When removing the setup costs, such as the hiring cost of
the human agent and the purchasing cost of the robot setup (Figure 6.5),
we see little overall impact due to the change in the o parameter. We
would expect this, as the parts needed to complete the task should be
consistent. We see that for most values of «, the cost is well optimized. In
these instances, the agents perform the bare minimum actions required to
complete the task and use only the parts necessary. However, « values 0.0,
0.3, and 0.5 result in higher costs stemming from the potential for error
when the robot agent performs certain actions, such as when it carries the
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Figure 6.5: The total cost of the task, minus the cost of the task setup, and
time for task completion for each produced allocation in the Automotive
Manufacturing scenario.

half-shaft in &« = 0.5.

However, we do see a noticeable decrease in task time when looking at
o values greater than 0.5 compared to those less than 0.5. Analyzing these
allocations, we find that this difference is primarily due to the reliance on
the robot to fetch parts. The robot performs actions slower than the human
agent, severely impacting overall task time. When looking at the best case
for the robot agent when it performs the task alone, we see that o« = 0.3
has a time of 41.23 seconds. By adding the human agent to fetch one
part, the protector in « = 0.2, we decrease this time to 32.75 seconds. For
the allocations where o« > 0.5, these actions are more common, with the
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human agent frequently moving around the environment to fetch parts,

or both agents fetching parts simultaneously.

Scenario 2: Small Parts Assembly

Figure 6.6 shows the result of Allocobot’s allocations for the Small Parts
Assembly scenario. For most values of «, the system was not able to find
an allocation that completes the task. Of the « values that resulted in
completed tasks, all except for 0.5 result in a sharing of work for at least
one task within the job. For « = 0.5, we see that the human is allocated
all tasks, while also having the shortest total time for completing the job.
Analyzing the allocation output further shows that Allocobot still adds
the robot agent to the job, but does not utilize it at all. Instead, the robot
agent rests throughout the entire job. In contrast, « = 0.1 has the highest
total job time. This is due to Allocobot not effectively utilizing the agents,
adding multiple rest actions for the agents that produce a negative reward,
as well as using additional parts within the process. Similarly, both «
values 0.0 and 0.5 also add additional steps to complete the task, having
the agents prepare multiple additional parts before completing the task.

In terms of ergonomic impact, as shown in Figure 6.7, the Small Parts
Assembly job primarily utilizes arm-based movements and actions, similar
to the Automotive Manufacturing scenario. However, this scenario is not
strenuous on the human worker, with an average %MVC of about 12% in
the worst scenario. While the job was not completed for o« = 0.9, it was the
only scenario where Allocobot did not include the human agent in the job,
resulting in an average %MVC of 0%. From the allocations where the task
was completed, x = 0.8 resulted in the human agent having the smallest
average %MVC, but also took the longest for the task to be completed.
Analyzing this output further, we find that the forces exerted by the human
agent are minimal throughout the task, sharing the workload with the
robot for most actions.
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Figure 6.6: The change in work allocation and primitive assignment due
to the change in alpha weighting for the Small Parts Assembly’s four-step
process. For each « value, we see the resulting allocation of robot (R), hu-
man (H), or human-robot (HR) to the task. Additionally, each allocation
specifies which primitives are assigned to each agent, including force (F),
position (P), or hold (H). The lack of assigned primitives indicates that
the task has not been performed after being allocated to the agent. Finally,
on the right is the total cycle time for the collaboration, where oo indicates
the task is not completed.
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Figure 6.7: The ergonomic impact on the human agent measured by Allo-
cobot for each produced allocation in the Small Parts Assembly scenario.

Figure 6.8 shows the trade-off in total task time and monetary cost,
ignoring the setup cost for the job. When analyzing the tasks, we find
that for « values 0.2, 0.3, 0.4, 0.6, 0.7, 0.9, and 1.0 Allocobot has agents
continually grabbing parts to use in the process, but not using them to
progress the state of the job. While this process of continually grabbing
parts but not using them results in some incurred cost as measured by the
Allocobot system, these costs are minimal when compared to the costs
associated with the agents completing the task.

Additionally, there is a notable discrepancy between « values 0.0 and
0.1 with values 0.5 and 0.8. When analyzing the outputs, it becomes clear
that « values 0.0 and 0.1 similarly create extra parts that are not utilized
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Figure 6.8: The total cost of the task, minus setup costs, and time for
task completion for each produced allocation in the Small Parts Assembly
scenario.

within the process. In this regard, « values 0.5 and 0.8 represent near-
optimal use of parts, with discrepancies between them occurring due to

labor and electricity costs.

6.5 Discussion

We presented several real-world scenarios that illustrate the capability of
Allocobot to produce viable plans for human-robot collaborations. These
scenarios demonstrate how changes in factor prioritization influence the

characteristics of the job, such as task allocation and ergonomic strain
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on the human agent. Overall, this highlights the versatility of the Al-
locobot system, as it produces multiple different forms of human-robot
collaboration, dependent on the o parameter. These collaborations go
beyond simple task allocation, revealing patterns of task parallelization
and concurrency that are only evident when analyzing the job outputs.

In the Automotive Manufacturing scenario, Allocobot produced suc-
cessful allocations that completed the scenario for all « values, demon-
strating its adaptability and versatility in allocations. The outputs were
feasible, given the input constraints, and reflected multiple collaboration
strategies. However, as the Small Parts Assembly scenario demonstrated,
the system is not always able to find a solution. While the system will
always determine how to allocate work among the potential agents, it
may not always result in a completed task. This can be due to the reward
function of the reinforcement learning algorithm not sufficiently incen-
tivizing task progression or punishing poor interaction states, resulting in
the policy getting stuck in local minima.

While not explored in this work, since Allocobot is an abstract repre-
sentation of work and capability for agents, this, in theory, allows for the
exploration of minimum robot capability to facilitate effective collaboration.
In a similar manner of exploration as illustrated using the « parameter,
users of Allocobot can adjust robot parameters, such as payload, speed,
reach, and cost, to analyze the impact on collaboration and task allocation.
This allows users to understand the minimum robot requirements needed
to perform the task as desired. This can make cobots more accessible due
to the system supporting user understanding of interactions and reduc-
ing the barrier of entry that previously required specific knowledge and
training.

Overall, our results highlight the potential of the Allocobot system and
its ability to produce viable collaborative interactions while removing the

need for users to understand multiple disciplines to create human-robot
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collaborations.

Limitations & Future Work

Our work presents a set of real-world scenarios that illustrate the cre-
ation of collaborative interaction plans, but lacks an understanding of how
end-users would interact with such a system to create collaborative inter-
actions. Future work should explore how to build interfaces that leverage
user knowledge and support their decision-making in creating effective
collaborative interactions.

Additionally, our results demonstrate the limitations of the current
Allocobot system. Within the Small Parts Assembly scenario, Allocobot
was not always able to produce allocations and outputs that resulted in
completed jobs. This indicates that additional work is needed to adjust
the internal reward function, as well as increase transparency into the
reasons it fails for particular allocations. This transparency can assist user
understanding, without requiring them to dig through the output files.

Finally, while one of the benefits of Allocobot’s approach is the result
of a policy, allowing for adaptation to changing environments even as they
deviate from the optimal interaction, our analysis did not explore how
robust the system is to these deviations. Future work should explore how
such an approach can recover unexpected inputs that cause deviations
from the optimal allocation, as real-world deployments that rely on these
policies need to reliably be capable of completing the task.

6.6 Chapter Summary

Planning for and creating collaborative interactions between humans and
robots is a challenging process requiring in-depth multidisciplinary knowl-
edge. Due to this difficulty, industrial use of cobots is challenging and

has resulted in a growing need for systems that support user knowledge
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and allow for the exploration and creation of human-robot collaborations.
Allocobot represents one method of addressing this issue, optimizing
for factors from ergonomics, human factors, economics, robotics, and
human-robot interaction.

This chapter presents an empirical evaluation of the Allocobot sys-
tem using real-world scenarios to illustrate the approach’s versatility in
creating human-robot collaborative task allocations. The system allows
users to focus on concrete input values and output metrics, abstracting the
multidisciplinary knowledge that would normally be required to create
the collaboration, all while scaffolding the process for users to allow them
to build viable human-robot collaborations. While the system does not
solve all scenarios, this work demonstrates the potential of the approach
while highlighting the need for future work.
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7 GENERAL DISCUSSION

7.1 Summary & Significance of Work

This dissertation argues that cobots are difficult to use, both for planning
human-robot collaborations and programming them. We argued that
this difficulty requires new systems that provide abstraction and scaf-
folding supports to assist users in creating cobot interactions. The work
presented in this dissertation highlights how we engage both end-users
and the literature to understand how to provide these supports through
system design. In Chapter 3, we presented an update to the CoFrame
programming system, a system built on a model of cobot expertise from
the literature, and illustrated through case studies how the system’s design
can support user program creation and understanding. In Chapter 4, we
presented the evaluation of the CoFrame system, with domain experts,
novices, and a real-world deployment. Our results revealed expert percep-
tions of the difficulties of cobot use within industry and how the concepts
CoFrame encodes are beneficial in addressing the gap. Our results also
revealed novice user perceptions of the CoFrame system, highlighting
their use of each support and their desire to progressively engage with
more advanced concepts and information. The final part of our CoFrame
evaluation demonstrated its capability for real-world programming of col-
laborative interactions, but also revealed the need for additional support
to assist users in understanding how to plan for human-robot collabora-
tion. Through our evaluation and engagement with end-users, both in
lab studies and in a real-world deployment, we identified how the sys-
tem supports cobot programming and where additional work is required.
Overall, CoFrame represented our first step in addressing the skills gap,
demonstrating the potential new systems have in supporting user creation
of cobot programs.
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However, through the real-world deployment of CoFrame, we iden-
tified additional support structures required for users to begin building
cobot programs, which led to the creation of the Allocobot system pre-
sented in Chapter 5. In discussing the updated design of the system, we
highlighted how the system encodes models from multiple domains to
enable users to create collaborative allocations and plans based on their
domain knowledge. This was demonstrated through a case study that
walked through how users would interact with the Allocobot system to
create viable collaborations by using its Petri Net representation and rein-
forcement learning approach. We presented the evaluation of Allocobot in
Chapter 6, where we presented two real-world scenarios and analyzed the
result of using Allocobot to create collaborations and allocations for each
scenario. Our evaluation revealed Allocobot’s capability and flexibility in
producing multiple types of collaboration across varying environments
and interaction needs. This work demonstrated how users can interact
with inputs and outputs they understand while leveraging a system that
encodes several domains of knowledge to produce viable allocations of
work. Allocobot represents our second step to addressing the skills gap
by addressing the needs identified within the real-world deployment of
CoFrame.

Overall, this dissertation presents both CoFrame, a programming sys-
tem, and Allocobot, an allocation and planning system, as tools to begin
addressing the skills gap identified in industry by supporting user creation
and understanding of cobot programs. We demonstrated the way each
system accomplishes this through technical and empirical evaluations. We
designed and built these systems as end-user tools and hope that new
systems and future work continue to build on and expand them to address

the challenges of using cobots.



128

7.2 Evaluation of Thesis

Here, I revisit the thesis statement discussed at the beginning of the disser-
tation: Cobot interfaces that integrate abstraction and scaffolding can
facilitate planning and programming human-robot collaborations. In
this dissertation, I have adopted the definitions of abstraction and scaf-
folding as “deciding what details we need to highlight and what details
we can ignore” (Wing, 2008) and “support which enables a student to
achieve a goal or action that would not be possible without that support”
(Guzdial, 1994) respectively. In the remainder of this section, I discuss how
interfaces that integrate the concepts of abstraction and scaffolding can
facilitate the planning and programming of human-robot collaborations,
and how this is supported by the work in this dissertation.

In Chapters 3 and 5, I demonstrated how the design of both the CoFrame
and Allocobot systems can support user planning and creation of human-
robot collaborations through the abstraction of expert knowledge across
multiple domains. Additionally, I demonstrated how the design of the
systems can scaffold and support user knowledge and understanding,
allowing users to incrementally engage with the system through the ad-
justment of parameters (e.g., Chapter 5) and gradual introduction of
collaborative interaction concepts while providing initial guidance for
how to start building programs (e.g., Chapter 3). In both Chapters 3 and 5,
I illustrated how a fictitious user can approach and use each system while
focusing on their domain knowledge to plan for and program human-
robot collaborations. These chapters illustrate the use of abstraction and
scaffolding in facilitating user creation of human-robot collaborations by
allowing users to focus on collaborations at a representative or goal-driven
level (abstraction) while providing strategies and a means for interacting
with the higher-level representation (scaffolding).

However, the use of abstraction and scaffolding for facilitating user
creation of collaborations was demonstrated in Chapters 4 and 6, where
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I presented the evaluations of the Coframe and Allocobot systems. In
Chapter 4, I presented the evaluation of the CoFrame system with end-
users, demonstrating its capability for real-world applications as well as
highlighting how users perceived and leveraged CoFrame’s support to
build cobot programs. In Chapter 6, I presented the evaluation of the
Allocobot system using real-world scenarios to demonstrate how, given a
few input parameters, the system can create viable collaborative allocations
and plans. These chapters demonstrate how the use of the abstraction
and scaffolding supports guide user interaction of the systems and enable
them to create effective cobot programs and plans.

7.3 Challenges & Limitations

While each chapter presented in this dissertation outlines various chal-
lenges and limitations, they are consolidated and synthesized here to
discuss the broader challenges and limitations in building and evaluating

systems for creating human-robot collaborations.

Challenges in System and Support Design

Designing systems and support for users to create cobot plans and pro-
grams presents a number of challenges. Cobots represent a combination
of knowledge across multiple domains to facilitate effective usage. Any
system will need to balance between supporting users with the knowledge
and capability of utilizing cobots with those who need to learn about
them. This can be a difficult tradeoff as the supports needed for one may
not overlap with the other. Allowing for users of different backgrounds
and expertise presents additional challenges, as highlighted in our evalua-
tion of CoFrame (Chapter 4), where users desired low-level controls or

additional functionality for real-world use.
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Additionally, it is difficult to combine models and perspectives across
multiple disciplines. Systems must consider these perspectives, but when
issues arise, it can be difficult to determine how to balance each perspective
in addressing the issue. As presented in Chapter 5, Allocobot encodes
multiple models for use in its reinforcement learning approach, and is
no exception to the challenge of balancing each aspect of these models to
produce viable collaborative plans and allocations. While the black box
nature of the reinforcement learning approach is desirable as it allows
for the combination of these multiple models as well as allows users to
focus on inputs and outputs, it obscures insight into decision making and
impact of models. This makes the process of understanding model impact
on the resulting collaboration reconstructive, where users receive the
output collaboration and must contextualize the results according to the
input parameters to understand how Allocobot selected each action. This
presents challenges when designing systems, as trading off this black box
nature may introduce additional complexity for solving the collaboration,
but allow for additional understanding regarding decision making.

Finally, designing supports for systems presents several challenges in
determining the correct level of abstraction to support user interactions
with the system. Low-level abstractions may benefit expert users who
already have the depth of knowledge needed for cobot usage, but higher
levels are required for scaffolding novice user experiences and learning.
This can present challenges for systems that target a wider demographic
of users, as this abstraction impacts considerations such as how closely to
model and align expectations with the real world. For example, CoFrame
(Chapter 3) employed a simplistic simulation model, ignoring aspects
of gravity and friction that may cause issues with cobot object grasping.
While grasp detection is something expert users consider and deal with,
presenting this to novice users results in less time spent learning general

cobot interaction concepts. The same principle applies for the modeling
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of real-world human behavior and variability, such as in Allocobot (Chap-
ter 5). By using a simplified model, users can more easily understand the
outputs and general workflow of the system, but it may not fully translate
to real-world implementations.

Challenges in Evaluation

In evaluating the systems created for enabling user creation and under-
standing of cobot systems, a number of challenges arise. It is known in the
literature that it is difficult to recruit expert participants at any point of the
designing and evaluating process. As highlighted in our background re-
search, the growing worker shortage and skills gap (Michaelis et al., 2020;
Wallace, 2021) put these individuals’ time in high demand, resulting in
difficulty engaging them outside of the scope of their existing work. While
partnering and collaborating with manufacturers is a viable alternative,
this produces its own issues. It can limit the scope and generalizability
of the evaluation, consisting of processes specific to that partner, but also
presents a greater need for system capability to allow for real-world use
and contexts. These real-world deployments are highly valuable for un-
derstanding user needs and where the system either does or does not meet
those needs.

Additionally, when evaluating systems that support user program
creation and understanding, evaluation plans and metrics must balance
an understanding of system usability with learning outcomes. Measuring
learning and understanding is difficult, even at a surface level, as they
may require longer studies or comparisons to understand the impact of
each support. The work in this dissertation sought to strike a balance,
as illustrated in Chapter 4, through the use of multiple approaches and
studies with different sets of users.
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7.4 Future Work

This dissertation advocates for the use of abstraction and scaffolding to
support users in the creation of cobot programs. In the course of this work,

we have identified a number of areas for future work to explore.

System Extension and Iteration

As a direct extension of the work presented in this dissertation, there
are many opportunities for the iteration and extension of the systems
presented. In Chapter 4, we highlight how users desire more advanced
features and capabilities, bridging the simplified representations for pro-
gramming to more traditional methods. This graduation removal of ab-
straction is known to benefit learning (Waite et al., 2018; Devathasan et al.,
2022), and presents several open questions for how to facilitate this within
cobot system designs. Then in Chapter 6, we present a system for work
allocation and planning. There are several open questions regarding how
to design a user interface for such a system that highlights and enables
users to focus on the environment and task components of the job to create
a viable collaboration.

However, the work in this dissertation presents two separate systems
for supporting users. As demonstrated in our real-world deployment
(Chapter 4), additional support for programming needed to be explored,
which led to our exploration of task allocation and planning. While we
explored the use of reinforcement learning to incorporate models across
multiple disciplines to produce collaborative plans, this presents trade-
offs for understanding outputs. Future work should explore the needs of
real-world users to understand whether the additional insight alternative
approaches may provide is necessary or if providing tools for analyzing
the output of these black box models is sufficient.

While each system addresses the needs of its respective area, new
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systems will need to explore the combination of both, supporting the
planning process and transitioning that into realizable programs. By
creating more coupled and integrated systems, users can move between
the planning and programming processes as needed, deriving the support

and exploration supported by each process.

System Evaluations

Future work should strive to evaluate systems in real-world contexts with
end-users. Chapter 4 demonstrates the benefits of this, gaining expert
insight into industry, perceptions, and interactions with the system by
novices, and an understanding of how the system does and does not ad-
dress industry needs in a real-world deployment. This approach allows for
greater buy-in from industry through partnerships and collaborations that
allow for mutual benefit between parties, and can also demonstrate where
system designs are well implemented and where additional supports are
required for real-world use.

However, it is well known that the recruitment of experts can be dif-
ficult, as discussed in Section 7.3. Future evaluations should consider
broader groups of users and experts, encompassing system integrators,
technicians, operators, instructors, trade schools, etc. By broadening the
scope of potential users, this builds a wider understanding of the needs
of potential users across multiple areas of industry, allowing for more
generalized support and system implementation as well as enabling more
users to create cobot programs. It is important to complement these expert
insights with novices, as while experts have the perception and bias of
what is currently done within the industry, novices may represent new
ideas for approaching solutions, given their lack of exposure to current

practices.
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Additional Representations and Supports

While the work in this dissertation incorporates several abstraction and
scaffolding supports within cobot interfaces to assist user creation of
human-robot collaborations, new technology and approaches that can
be used for abstraction and scaffolding might increase accessibility and
system ease of use. Namely, the introduction of large language models
(LLMs) has been increasingly explored in many domains. They can pro-
vide familiar interactions through their understanding of language, which
might enable users to more easily program or plan collaborative inter-
actions. However, given the prioritization of safety, exploration of this
technology within cobots has been minimal, given the lack of guardrails
on output generation. However, the pairing of this technology with several
designs presented in this dissertation, such as the Expert Frames presented
in Chapter 3, can be one method of increasing accessibility and ease of use
while maintaining efficiency and safety.

Additionally, while the work presented in this dissertation highlights
the planning and programming process, future work will need to explore
the connection of programming and planning systems to the physical
world. As highlighted in our evaluation of the CoFrame system (Chap-
ter 4), users will eventually want and need to understand the connection
between what they are doing within programming and simulation to how

it reacts to and impacts real-world environments and collaborations.

7.5 Conclusion

This dissertation presented work for understanding how cobot interfaces
that integrate abstraction and scaffolding facilitate user creation of cobot
programs and plans. In each chapter, we attempted to highlight the use of
abstraction and scaffolding, both for design and evaluation. In particular,
we presented the design of a programming system, CoFrame, and an
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allocation and planning system, Allocobot, highlighting how the design of
the systems encapsulates expert domain knowledge that enables users to
build and understand cobot programs. Additionally, we evaluated each of
these systems to demonstrate their capability in real-world contexts and
to understand how they support users.

While I hope this dissertation has demonstrated the potential for ab-
straction and scaffolding supports in cobot systems, additional work is
needed to both address the growing skills gap and deploy these systems
long-term in the real world. While the ideas presented in this dissertation
illustrate how to support cobot understanding and program creation, there
is a need to connect this work with physical cobot systems and continue
deploying systems in real-world environments to engage users. Ultimately,
I hope that new systems will iterate on the designs and ideas presented
here to build better systems and support for end-users, increasing the

accessibility of cobots in the real world.
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A APPENDIX

A.1 Links to Systems

Both systems presented in this dissertation are hosted on GitHub and are
publicly accessible.

CoFrame, as described in Chapter 3, is hosted on the Wisc-HCI GitHub
page (https://github.com/Wisc-HCI/CoFrame), with alive version of the
website also deployed there using GitHub’s systems (https://wisc-hci.
github.io/CoFrame/). Users can engage with the live website or down-
load and run the code locally.

Allocobot’s code repository is split into two separate repositories. The
first repository (https://github.com/Wisc-HCI/allocobot) serves to build
the Petri Nets, as described in Chapter 5, and the corresponding JSON
tiles that represent them. Users can interact with this code repository
to build and configure their desired jobs. The second repository (https:
//github.com/Wisc-HCI/PetriNetRL) hosts the reinforcement learning
code that utilizes the JSON files produced by the first repository to learn
collaborations.

A.2 Study Data and Materials

All study data and materials that have been presented within this disserta-
tion have been uploaded to an OSF repository (https://osf.io/hkdse/
?view_only=5ab447e7a6a1472dafb34dffcb510973). The repository con-
tains questionnaires, procedures, anonymized transcripts, and survey
metrics presented in the evaluation of the CoFrame system in Chapter 4,
as well as the configuration and output files from Allocobot for both sce-
narios presented in Chapter 6.


https://github.com/Wisc-HCI/CoFrame
https://wisc-hci.github.io/CoFrame/
https://wisc-hci.github.io/CoFrame/
https://github.com/Wisc-HCI/allocobot
https://github.com/Wisc-HCI/PetriNetRL
https://github.com/Wisc-HCI/PetriNetRL
https://osf.io/hkdse/?view_only=5ab447e7a6a1472dafb34dffcb510973
https://osf.io/hkdse/?view_only=5ab447e7a6a1472dafb34dffcb510973
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