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Abstract

It is common in deep learning to warm up the learning rate 7, often by a linear
schedule between 7, = 0 and a predetermined target 7y¢:. In this paper, we show
through systematic experiments using SGD and Adam that the overwhelming bene-
fit of warmup arises from allowing the network to tolerate larger 7 by forcing the
network to more well-conditioned areas of the loss landscape. The ability to handle
larger 7)o makes hyperparameter tuning more robust while improving the final
performance. We uncover different regimes of operation during the warmup period,
depending on whether training starts off in a progressive sharpening or sharpness
reduction phase, which in turn depends on the initialization and parameterization.
Using these insights, we show how 7, can be properly chosen by utilizing the loss
catapult mechanism, which saves on the number of warmup steps, in some cases
completely eliminating the need for warmup. We also suggest an initialization
for the variance in Adam which provides benefits similar to warmup.

1 Introduction

One of the most important choices to make in gradient-based optimization is the learning rate (step
size) n. If n is too small, then learning may take place too slowly or the model might get stuck in
unfavorable regions of the loss landscape. If 7 is too large, training will typically diverge. In practice,
it is common to pick a dynamical learning rate schedule 7 [2, 4, 40, 26]. Modern learning rate
schedules for deep learning typically consist of a warmup period where 7, is increased linearly from
zero to a target value 7y over a warmup time Ty [13, 34]. After the warmup period, it is common
to eventually decay the learning rate, for example via a cosine decay schedule [34, 26, 40].

Given that warmup is standard in the practitioner’s toolkit, it is important to understand it deeply and
identify improvements. In modern settings, perhaps the earliest work to use warmup was [14], which
used a small constant learning rate for the first few epochs of training and then switched to a larger
learning rate. A linear warmup schedule was later introduced in [13]. The intuition given was that to
scale the minibatch size in SGD by a factor of £, it is natural to also scale the learning rate by a factor
of k, provided the model is not changing too rapidly and successive gradients are roughly aligned.
However at the beginning of training, the model is changing rapidly, so it is natural to start with a
lower learning rate and gradually increase it to the target value after the network has stabilized.

Other explanations suggest that since the network is initialized randomly, the gradient steps at the
beginning of training are not meaningful, and thus it would be harmful to take large steps in such
directions [40], so it makes sense to take smaller steps early in training. The analysis by [12] suggests
that warmup primarily limits the magnitude of weight updates in the deeper layers, preventing large
instabilities. It has also been suggested that the key benefit of warmup arises for adaptive optimizers,
such as Adam: [23] argues that the variance of the adaptive learning rate is large during early training
because the network has seen too few training samples; it is asserted that this large variance is harmful,
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and that warmup acts as a variance reduction method by allowing the network to collect accurate
statistics of the gradient moments before using larger learning rates. Alternatively, it is also sometimes
stated that the initialization may start the model off at places in parameter space that are unstable,
difficult to optimize, and easily lead to divergence, and that warmup can help alleviate this [40].

The above explanations are varied and do not clearly demonstrate why and to what extent warmup is
necessary. A loss landscape perspective was given in [10] (and summarized in [26] Ch. 8), which
argued that an important effect of warmup is to gradually reduce the sharpness (the top eigenvalue
of the Hessian of the loss), thus causing the model to leave poorly conditioned areas of the loss
landscape and move towards flatter regions which can tolerate larger learning rates. They argue that
the mechanism for this is similar to the dynamical stability (catapult) mechanisms studied in [35, 22].

Our contributions. Here we perform extensive studies on the effect of learning rate warmup across
architectures (FCNs, ResNets, and Transformers), initializations and parameterizations, datasets
(CIFAR-10, CIFAR-100, TinyImageNet, WikiText), and for both SGD and Adam.

We demonstrate through systematic experiments that by far the primary benefit of learning rate
warmup is to allow the network to tolerate larger learning rates than it otherwise would have. This
builds on the observations of [10] by showing that any other benefits are marginal, disentangling
the effect of warmup duration and target learning rate, and by extending the empirical evidence to
include adaptive optimizers and Transformers.

For SGD, the maximal allowable learning rate is determined by the sharpness (the top eigenvalue
of the Hessian of the loss). As we discuss in Section 4, we find that there are several qualitatively
distinct regimes and mechanisms at play. These depend on whether the network starts off in a
sharpness reduction or progressive sharpening phase [18, 19, 5], which in turn depends on the
initialization and parameterization. We further find that the performance of the network is largely
determined by the target learning rate. For a fixed target learning rate, increasing the warmup time
provides only marginal benefit, which arises by keeping the network further away from the divergence
(failure) boundary. The ability of the network to withstand a larger target learning rate in turn makes
hyperparameter tuning of the target learning rate more robust, since the network responds well to a
larger window of target learning rates, possibly explaining the popularity of warmup.

We then investigate Adam in detail, and show that the underlying mechanisms of warmup are similar
to the SGD case, but with sharpness replaced by a preconditioned sharpness (the top eigenvalue
of the pre-conditioned Hessian, defined below) . Our results disagree somewhat with prior results
[23] on the underlying reason for warmup’s benefits: We find that the key issue is not observing
too few training samples, but rather that the pre-conditioned sharpness typically starts off at high
values (even in the large batch case), causing considerable instabilities at high learning rates. Such
instabilities, which may be retained in Adam’s memory, can result in performance degradation
and even training failures. Warmup mitigates such instabilities by gradually pushing down the
preconditioned sharpness, enhancing performance, and preventing training failures. We propose a
simple alternative initialization for Adam, which we refer to as GI-Adam, which provides benefits
similar to warmup and consistently improves over standard Adam by inducing lower preconditioned
sharpness at initialization, thus pushing the training failure boundary to higher target learning rates.
This also demonstrates a different way to remove the bias correction of RMSProp with momentum.

Our analysis shows how much of the time spent during the warmup period is wasted. We show that
this wasted time can be saved by making use of the catapult mechanism [22] to effectively estimate
the initial sharpness scale by line search, providing a more principled choice of 7;,;. Our experiments
show that, depending on the target learning rate and initial sharpness, one can dramatically reduce
the warmup time, and in some cases remove it altogether.

2 Notations and Preliminaries

SGD(-M): Given gradients g; := VyL(6;) at step ¢, Stochastic Gradient Descent with momentum
updates the parameters 0; using learning rate 7; and momentum m; with coefficient 5. The update
equations are: m;,1 = g¢ + fmy and 6,11 = 6; — nymy41. f = 0 corresponds to SGD.

Adam: Adam [20] updates the parameters ; according to the equations: m; 1 = Sym;+(1—51)gs,
Vi1 = Povy + (1 - 52).%2, and 0y = 0; — 1y e

= = et — T]tPt+1mt+1, where T;’Lt =
Vi1+e€
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Figure 1: Training loss and sharpness trajectories of FCNs trained on a 5k subset of CIFAR-10 with
MSE loss using GD. In the sharpness plot, the dashed lines represent the 2/n, curves, and when A7 is
above these curves, training exceeds the instability threshold (1 > 7). (top) pP with 7y = /X,
(bottom) SP with 7yg¢ = 32/xk . Similar mechanisms are observed across different architectures, loss
functions, and mini-batch sizes, as shown in Appendix E.

and v; = ﬁ’ﬁ are the bias-corrected moments, € is a small scalar used for numerical stability and
2
P, = (1— p}) [diag (v/0;) + €]] is the preconditioner.

Linear Warmup: This is defined by the schedule 1y = 7 + (nngt — Tinit )Y/ Twm. The warmup rate is
a := (Mg =Mnit) /Ty Tyym = 1 corresponds to constant learning rate. Unless otherwise specified, we
set Minic = 0 when referring to linear warmup. We propose strategies for selecting 7,;; in Section 6.

Sharpness: The sharpness is defined as the maximum eigenvalue of the Hessian of the loss
M= Anax(V3L), with subscript ¢ indexing the training step. Adaptive optimizers, such as
Adam, effectively perform gradient descent in a transformed space determined by ¢ := P'/28 (for
details, see Appendix B.1). Hence, their stability is determined by the largest eigenvalue of the

pre-conditioned Hessian, denoted by AP~ # := X\, (P~2V2L), rather than the sharpness itself.

Parameterizations in Neural Networks: The mechanism of warmup and its effectiveness is heavily
influenced by the network parameterization (see Sections 4 and 5). Standard Parameterization (SP)
[33] is a staple in common libraries [28, 3]. Another notable parameterization is the Neural Tangent
Parameterization (NTP) [17], which along with SP resides in the kernel learning class at infinite
width. Ref. [37] proposed Maximal Update Parameterization (uP) which exhibits feature learning at
infinite width. Neural network parameterizations significantly impact training dynamics [19].

3 Overview of Training Instabilities and the Self-Stabilization Mechanism

One important underlying mechanism of warmup is intimately tied to training instabilities. These
training instabilities, often referred to as ‘catapults’ [22, 5], arise when the learning rate 7 exceeds a
critical threshold 7., where both 1 and 7. generally change with time. The critical learning rate 7, is
influenced by a variety of factors, including the choice of optimizer [5, 6], mini-batch size [35, 6], and
model properties such as depth, width, parameterization, and initialization [18, 19]. For a detailed
overview of instability thresholds, see Appendix B.

When the instability threshold is exceeded (n > 7.), two cases arise: (i) if the learning rate is higher
than the instability threshold but smaller than a maximum stable learning rate (which varies with time),
ie., . <M < Nmax, training stabilizes through a self-stabilization process and training continues, (ii)
if the learning rate exceeds this maximum stable learning rate 17 > 7may, training experiences severe
instabilities. For SGD, these can result in training divergence, characterized by the loss increasing to
infinity. For Adam, training may cease, resulting in a training failure, where the loss fails to improve
significantly over its initial value, as we demonstrate in Section 5.

The self-stabilization mechanism of GD can be understood through both empirical observations
(Figure 1) and a theoretical model. We first describe a model derived by Ref. [7] that effectively
captures this phenomenon. The model assumes that the top eigenvector w changes slowly through



training and can be treated as constant and considers a cubic approximation of the GD dynamics
around a reference point *. The dynamics along the projection z; := u” (8; — 6*) is given by two
coupled non-linear equations:

T = (1= mA )z, Ay =M+ me(a = Bf), )]

where o := — VA .V L quantifies the instantaneous change in sharpness and 3 := ||VA||? controls
the non-linear change in sharpness. In this model, an instability arises when 7; > 7. = 2/A¥. Ref.
[7] considered a constant learning rate 7 and assumed progressive sharpening (o > 0). In contrast,
we consider a time-dependent learning rate and allow « to attain both positive and negative values in
order to analyze different warmup mechanisms.

The self-stabilization mechanism manifests as a four-step process [22, 7]. Below, we describe the
four steps of the self-stabilization mechanism using the above model and the Ty, = 64 trajectories
illustrated in Figure 1(c, d):

(1) Approaching instability: Due to increasing learning rate and/or progressive sharpening, training
approaches the instability threshold 7y = 7. = 2/x#. In Figure 1(d), this occurs within the first 10
steps due to increasing learning rate.

(2) Blow up: On exceeding the instability threshold (n > 7.), Equation (1) predicts exponential
growth in x4, empirically manifesting as a sharp increase in loss, as observed in Figure 1(c).

(3) Sharpness reduction: For small enough learning rates, || (and the loss) continues to increase
until the higher-order term in the sharpness update equation causes a decrease in sharpness (z; > ©/g).
This is observed as an abrupt decrease in sharpness in Figure 1(d). If the sharpness fails to decrease
over extended steps, it may result in training divergence (e.g., see Tym = 1 case in the same figure).

(4) Return to stability: Once the sharpness has decreased appreciably so that ;AT < 2, stability is
restored and the loss eventually decreases.

While the self-stabilization process for more complex optimizers remains poorly understood, a
qualitatively similar mechanism is observed in practice, as we will see in the later sections.

4 Warmup Mechanisms of Gradient and Adaptive Methods

This section analyzes the underlying mechanism of warmup through the lens of sharpness dynamics. A
key finding is that warmup decreases sharpness in two ways: by allowing a natural sharpness reduction
effect at early times and/or by forcing sharpness reduction through training instability at later times.

4.1 Stochastic Gradient Descent

Learning rate warmup is intrinsically tied to sharpness dynamics, as sharpness determines the
instability threshold 7. As the learning rate is increased during warmup, training instabilities can be
triggered. Assuming the warmup rate is not too high, these instabilities induce a temporary increase
in the loss and a decrease in the sharpness to restore stability through the self-stabilization mechanism.
Ultimately this allows the model to adapt to the increased learning rate. In other words, a primary
goal of warmup is to gradually reduce sharpness, guiding training towards flatter regions that can
accommodate training at higher learning rates [10].

However, digging deeper, we find that training has a ‘natural’ preference for sharpness evolution
throughout the training course [19]. Before exceeding the instability threshold (1 < 7.), training
naturally experiences either a progressive increase or decrease in sharpness, as observed in Figure 1,
which is unrelated to warmup. For instance, consider the sharpness trajectories with Ty, = 1024
in the above figure. In Figure 1(b), sharpness has a natural preference for increasing, whereas in
Figure 1(d), it tends to decrease on its own. This natural sharpness evolution can defined as the
sharpness evolution under gradient flow, corresponding to « in Equation (1). The interplay between
this natural sharpness evolution and the deliberate intervention of warmup to reduce sharpness can
result in completely distinct dynamics. Below, we use the model described by Equation (1) and the
experiments in Figure 1 to describe these distinct dynamics.

(C1) Natural Progressive Sharpening (o« > 0; top row of Figure 1): The combined effect of
naturally increasing sharpness while the learning rate is also being increased results in a “head-on



collision" at which the instability threshold is exceeded (1, > 7.). This causes the loss to increase,
leading to a decrease in sharpness. Once the sharpness has decreased appreciably, the stability is
restored (1; < 7.). As training proceeds, both sharpness and learning rate continue to increase,
again surpassing the instability threshold. This results in a persistent catapult cycle, characterized by
N & 2/AF = 1., for the remainder of the warmup period, as seen in Figure 1(b).

(C2) Natural Sharpness Reduction (o < 0; bottom row of Figure 1): The network is naturally
already reducing its sharpness during early training. However, if the learning rate is increased
sufficiently quickly, eventually the instability threshold will be reached (akin to a “rear-end collision"),
causing the loss to increase. For small enough learning rates, the increased loss induces a dramatically
more pronounced decrease in sharpness than would naturally occur, ultimately restoring stability
(n:+ < ne). To exceed the instability threshold again, the learning rate must significantly increase to
account for the decreased sharpness, potentially requiring considerable training steps. Consequently,
training experiences one or more separated catapults during the warmup phase, as seen in Figure 1(c,
d). This contrasts with the progressive sharpening case, where training enters a continuous catapult
cycle after reaching the instability threshold for the first time. Notably, training may eventually
reach a very flat region of the landscape during warmup, with gradients pointing towards increasing
sharpness (e.g., Twm = 64 in Figure 1(d)). Upon reaching such a region, the dynamics aligns with
the natural progressive sharpening scenario.

When natural sharpness reduction is significant (large negative o), warmup may not need to actively
reduce sharpness. Instead, it may “piggy-back” on the inherent sharpness decrease, resulting in a
completely different warmup mechanism, which does not rely on instabilities to facilitate training at
higher learning rates.

The above two scenarios can be interpreted as cooperative or competitive dynamics between warmup
and the natural evolution of sharpness. When training inherently undergoes sharpness reduction, it
cooperates with warmup in decreasing sharpness. Conversely, if the natural trajectory of training is
towards increasing sharpness, it opposes the warmup’s effort, leading to a persistent cycle of catapults.

The Effect of Warmup Duration: Given a fixed target learning rate 7, increasing the warmup
duration Ty, delays the point at which training exceeds the instability threshold 7., allowing the
sharpness to evolve freely before reaching this point. In the sharpness reduction case, sharpness can
significantly decrease by the time this threshold is reached, lowering the need for warmup to decrease
sharpness actively. Consequently, increasing 7y, results in catapults that are both delayed and
smaller in magnitude, as seen in Figure 1(d). As the catapults become less intense on increasing the
warmup duration, the model can train at higher target learning rates without diverging. For extended
warmup durations, warmup may not actively reduce sharpness in these sharpness reduction cases and
instead it leverages the inherent sharpness decrease.

In the progressive sharpening case, increasing T,y allows the sharpness to naturally increase. As a
result, training exceeds the instability threshold for the first time at a relatively lower learning rate
compared to the constant learning rate case. Although warmup has to now undertake more work in
decreasing sharpness, it does so in a more gradual manner since increasing the warmup duration
amounts to a lower warmup rate 7oret/T,.... As a result, the fluctuations observed on exceeding the
instability threshold are much smaller in magnitude, as seen in Figure 1(a, b).

Small vs. Large Initializations: So far, we have outlined different warmup mechanisms without
describing specific conditions that typically exhibit them. Small initializations, such as those using
maximal update parameterization (¢P) [37] in the large width limit or appropriately using normalizing
layers (e.g. standard Transformer architectures, see Figure 17 in Appendix E.5), are characterized by
a small initial network output. Such initializations start in flat regions where gradients point toward
increasing sharpness [19], placing them in the progressive sharpening category (C1). As we will see in
Section 5, such initializations may not significantly benefit from warmup as they already start in a flat
region. In contrast, large initializations, such as FCNS, CNNs, ResNets with Standard Parameteriza-
tion (SP) initialized at criticality [29, 31] or Transformers with the last layer-norm removed, undergo
an early sharpness reduction, categorizing them into sharpness reduction category (C2). As the
primary effect of warmup is to reduce sharpness, we expect such large initializations to considerably
benefit from warmup. Notably, large initializations can eventually undergo progressive sharpening at
later training stages [18, 19] and adhere to the second mechanism, especially for prolonged warmups.
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Figure 2: Training loss and sharpness trajectories of FCNs trained on the entire CIFAR-10 dataset
with MSE loss using full batch Adam. (top) simple-uP (for details, see Appendix D.2.1) with
Nwge = 0.003 and (bottom) SP with learning rate 7y, = 0.001. The dashed lines in the sharpness
figures illustrate the instability thresholds (2+261)/n,(1—8,). Similar mechanisms are observed for
different architectures, loss functions, and smaller batch sizes as detailed in Appendix E.

Natural sharpness change provides an intuitive way of determining whether an initialization is ‘small’
or ‘large’: if training from a given initialization exhibits sharpness reduction, it suggests the existence
of naturally flatter initializations that could be chosen instead. This observation is particularly helpful
for analyzing Adam in the later sections and motivates modifications to improve it.

4.2 Stochastic Gradient Descent with Momentum (SGD-M)

The warmup mechanism of SGD-M, while at its core is similar to that of vanilla SGD, has a few
subtleties. Here we summarize the major differences, leaving details to Appendix E.2.

During early training, the loss may decrease non-monotonically on incorporating momentum, even
at small learning rates. Such oscillations are also observed when quadratic loss functions are
optimized using GD with momentum [11]. These oscillations make it challenging to differentiate
between warmup-induced catapults and fluctuations in loss due to the intrinsic effects of momentum.
Nevertheless, we can still observe loss spikes correlated with an abrupt decrease in sharpness at large
learning rates, as detailed in Appendix E.2.

Additionally, the instability threshold 7. itself evolves differently during training. It changes from
2/X{" at initialization to (2+28)/AT" later in training. Moreover, the late-time instability threshold is
significantly influenced by the batch size, exhibiting a much smaller value than SGD for the same
batch size. These properties make it more challenging to analyze the training dynamics of SGD with
momentum. Nonetheless, the fundamental warmup mechanisms closely mirror the vanilla SGD case.
We leave a more detailed analysis of the early training dynamics of SGD-M for future studies.

4.3 Adaptive Gradient Methods (Adam)

Adaptive optimizers effectively perform gradient descent in a transformed space given by ¢ = P1/29,
as we show in Appendix B.1. This analysis suggests that their local stability should be determined
by the largest eigenvalue of Vj)L = P71VZL, which we refer to as the pre-conditioned Hessian.
Indeed, this is what we observe in Figure 2, which shows the training loss, pre-conditioned sharpness
APTUH and sharpness trajectories for full batch Adam. In these figures, sharpness is significantly
smaller than its instability threshold (2+251)/5, & 4000, indicating that sharpness does not determine

stability. Instead, loss catapults are associated with A’ TH exceeding its instability threshold.

The pre-conditioned sharpness starts high for both progressive sharpening (simple-uP) and sharpness
reduction (SP) scenarios considered in the previous section. For simplicity, we considered a simpler
version of 1P, detailed in Appendix D.2.1. In particular, for /P models, A” " H ~ 10° despite being
initialized in a flat region as measured by sharpness, while for SP models, )\63 “'H 106, These large
initial values arise because P; = (1 — 1) [diag(gg) + €I] and go has components that are near zero.



WRN-16-4 &MSE SGD CIFAR-10

(a)
S A
b@,ﬁ /\Q{XQ b(e,XQ QXQ VQ/XQ ,\sz QXQ XQ QXQ bg/xQ QXQ
LN I PN PPN R N PN
Thagt
WRN-16-4 SP MSE SGD CIFAR-10
7137 | 7886 [EZN0) 90 4096- 75.96
(C) 7133 7850 [EERE] (d) 2048- 76.09 0
.40 85 1024- 7628 85

51 50 512- 7663

256-76.73
75 128- 76.48
64-7633
073 7123 32-76.42

7085

7125

wrmn

70.99

T

7082 -65 16- 7654

68,12 87639
60

4-7682

55 2-7657

1-76.83

- b 50 - R

P & QS SS S & P D P P SIS

AN NGNS N NN AN INSENNEINN NSNS NN NN NI N

& o & A€ W& al & A& X X X @ AT of ¥ of of A% af AY W& o A

NN N SN RS SRS SR R N ORCR RN ORI A

Thrgt Nergt

Figure 3: Test accuracy heatmaps of WRNSs trained on CIFAR-10 using different and parameteriza-
tions loss functions using SGD: (a) uP and MSE loss, (b) uP and cross-entropy loss, (c) SP and MSE
loss, and (d) SP and cross-entropy loss. Empty cells correspond to training divergences. Similar phase
diagrams are generically observed for different architectures and datasets, as shown in Appendix F.

The large A}’ “'H can lead to training failures if the learning rate does not start sufficiently small.
We put forward modifications to improve Adam in Section 6; here we continue characterizing the
warmup mechanisms of Adam.

Given that the pre-conditioned sharpness consistently starts high and decreases during early training,
this behavior can be viewed as an extreme example of the natural sharpness reduction scenario (C2)
described in the previous section. Training Adam at high initial learning rates without warmup can
cause large catapults, as seen in Figure 2(d), potentially leading to training failures. Increasing the
warmup duration allows the pre-conditioned sharpness to naturally decrease. This prevents the loss
from spiking during early training and avoids training failures. In the later stages of training, the
pre-conditioned sharpness may continue reducing or exhibit progressive sharpening. From here on,
the dynamics follows the warmup mechanisms discussed in the previous sections, with sharpness
replaced with pre-conditioned sharpness. Similar to the momentum case, Adam’s stability threshold
at late training times significantly decreases for smaller batch sizes [6], also shown in Appendix E.4.

5 Impact of Warmup on Training and Generalization

Here we investigate the impact of warmup on training efficacy and generalization by disentangling
the role of 7 and Tiym,. Our key findings are that generalization capability is primarily determined
by 7ier and that Adam is particularly sensitive to large catapults. The role of increasing T is to
(i) allow the network to tolerate larger 7, and (ii) move training further away from the divergence
(failure) boundary, leading to a marginal improvement in generalization.

Experimental Setup: We consider WideResNets (WRNs) and Transformers (LM) parameterized
in either SP or pP. WRNS are trained on CIFAR-10, CIFAR-100, and Tiny-ImageNet, employing
data augmentation. Transformers are trained on the next token prediction task using the WikiText
dataset. These models are trained with MSE or cross-entropy (xent) loss functions using SGD or
Adam optimizers for a fixed training budget of T = 10° steps unless otherwise specified. Training
begins with a linear warmup phase from 7y = 0 t0 1)y OVer Ty steps. After warmup, training
continues at 7)o for the remaining training budget. In some cases, following the warmup period, we
decrease the learning rate using cosine decay [24]. Further details are provided in Appendix D.
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Figure 4: Test loss heatmaps of Pre-LN Transformers in SP trained on WikiText-103 with cross-
entropy loss for a single epoch using (a) Adam, and (b) GI-Adam (introduced in Section 6). Additional
results are presented in Appendix F.3.

5.1 Stochastic Gradient Descent (SGD)

Figure 3 presents heatmaps that show the best test accuracy achieved during training, plotted in the
Mgt~ Lwrm plane for different parameterizations and loss functions. These phase diagrams of warmup
also show the convergence-divergence boundary, with empty cells indicating training divergences,
illustrating the interplay between warmup duration and the maximum trainable 7.,. Below, we
discuss the crucial insights these results provide into warmup’s role in training dynamics.

Longer Warmup Facilitates Training at Higher Learning Rates: These phase diagrams reveal
that an extended warmup duration facilitates training at higher target learning rates. This benefit is
particularly noticeable for large initializations (like SP) and MSE loss. In contrast, the advantage is
less pronounced when using cross-entropy loss and smaller initializations (like P). The diminished
benefit for yP is likely due to its initialization in a relatively flat region of the loss landscape, which
can already facilitate training at higher learning rates at initialization. This consistent increase in
maximum 7, With warmup durations can be understood through the lens of warmup mechanisms
described in the previous section. As observed in Figure 1, when the warmup duration is increased,
loss catapults occurring on surpassing the instability thresholds become milder. This effectively
pushes the divergent boundary to higher learning rates.

Final Performance Primarily Depends on the Target Learning Rate: A closer look into these
phase diagrams reveals that, slightly away from the divergent boundary, the test accuracy primarily
depends on the target learning rate and nominally on the warmup duration. Based on the model
performance, we can categorize these phase diagrams into two distinct cases: (i) models that fail
to achieve optimal performance when trained with a constant learning rate (e.g., Figure 3(c)),
and (ii) models that attain optimal performance without warmup (e.g., Figure 3(b)). The first
scenario corresponds to models with large initializations. Increasing the warmup duration improves
performance by facilitating training at higher learning rates. Yet, similar performance is observed
for different warmup durations, suggesting that the primary gain comes from the target learning rate,
rather than the duration itself. The second case arises for flat initializations, which can already train
at large learning rates, and resultantly the optimal performance is already achieved without warmup.
While increasing warmup duration facilitates training at even higher learning rates, it does not enhance
performance. Nevertheless, it does broaden the range of optimal learning rates, reducing the need for
precise tuning of the target learning rate, and making training more practical and robust. We conclude
that warmup can serve two key purposes: (i) it can significantly improve model performance in large
initialization cases, and (ii) extend the range of optimal target learning rates for small initializations,
making it easier to tune the target learning rate. In Appendix F.2, we demonstrate that these results
hold on incorporating momentum and employing cosine learning rate decay.

5.2 Adaptive Gradient Methods (Adam)

Figure 4(a) shows the warmup phase diagram of Adam. Increasing the warmup duration enables
training at higher learning rates by allowing the pre-conditioned sharpness to decrease naturally,
thereby reducing the severity of catapults. These large catapults, which may persist in Adam’s
memory, can lead to performance degradation and training failures. Thus, in addition to facilitating
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Figure 5: Heatmaps showing (a) the steps to reach 7yg (Treach) and (b) the effective steps saved (Taye)
on setting 7inix = 7. for WRNSs in SP trained on CIFAR-10 using SGD with cross-entropy loss.

training at higher rates similar to SGD, warmup further improves Adam’s performance by addressing
its vulnerability to large catapults, justifying its widespread use with Adam. Below, we discuss the
distinct properties of Adam phase diagrams in detail.

Training Failures of Adam: Remarkably, we find that models trained with Adam always exhibit
training failures rather than divergences where the loss grows without bound, as further demonstrated
in Appendix G. In cases of training failure, we often observed that certain layers or residual blocks
output zero, leading to vanishing gradients. This implies that the model gets stuck at a critical point
and is unable to train further. Understanding this unexpected phenomenon requires further study.

Performance Degradation prior to Failure Boundary: Test accuracy in these phase diagrams
declines well before the failure boundary, in contrast to SGD where optimal learning rates are
observed near the divergence boundary. This discrepancy stems from Adam’s property of retaining
a memory of gradient magnitudes. At large learning rates, along with the loss, the gradients spike
during early training, as seen in Figure 28 in Appendix G. While the gradients decrease after a few
steps, the second moment v remains large for an extended period, leading to a small effective learning
rate P~ 1. As a result, training struggles to escape high-loss regions. Therefore, a longer warmup is
more beneficial for Adam compared to SGD, as it is crucial to stay away from the failure boundary.

6 Improved Hyperparameter Initialization Schemes for Optimizers

Initial Learning Rate Selection for Warmup: Setting the initial learning rate to 7, = 0 is
common practice in warmup [27, 8]. Our analysis reveals that the primary effect of warmup is to
facilitate training at higher learning rates by annealing sharpness (or pre-conditioned sharpness for
Adam). From this perspective, starting with 7, = 0 appears suboptimal, as it can significantly delay
the learning rate from exceeding the instability threshold, thus delaying the primary effect of warmup.

An effective strategy involves setting 7,y = 7). to induce loss increase and thereby sharpness
decrease right from initialization. We introduce a straightforward search method that only uses
forward passes to estimate the initial critical learning rate 7.. The method consists of two stages:
(i) an exponential search, starting from an initial guess 7, iteratively multiplies 7 by a factor £ > 1
until the loss increases. This identifies an interval [7ir, Tuppr] cONtaining 7., (i) a binary search
further narrows down [7iwr, Tuppr] by evaluating the loss at the midpoint g = (mwr+7heer) /2. If the
loss increases, 7uppr is updated to 1yia; otherwise, My, is set to Nmig. This process is repeated until the
loss in the next step L(6;) satisfies the condition L(61) < L(6p)(1 + 8), for some hyperparameter
0 > 0. For details, see Appendix B.3.

By setting ninie = 7., training can achieve the target learning rate earlier. Consider the modified
warmup schedule: 17, = %init + et (t/Tomm ), Which attains 7ge in Treach = Trwrm (1—7¢/nuq) Steps, saving
Tyem (¢/mee) steps. Incorporating the computational cost of additional forward passes Tj, required
for estimating 7. (~ 10 in number), and noting that one training step approximately equates to two
forward passes, the net computational savings is Tsave = Twrm (7¢/nee) — Tiv/2. Figure 5 demonstrates
how Tieach and Ti,ye vary with the Tym and 1. For nye < 1., the target learning rate is reached
in a single step, nearly saving the entire duration of the warmup, whereas for (7 > 7)), starting
Minit =, Ne can save up to half of the allocated warmup duration, although this saving diminishes on
approaching the divergent/failure boundary.
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Figure 6: Training loss and sharpness trajectories of FCNs in SP. The experimental setup is identical
to Figure 2 but with GI-Adam instead of standard Adam.

It is worth noting that there can be instances where there is no loss catapult at initialization. In our
experiments, this only occurs for Transformers trained using SGD. In such scenarios, the prescribed
approach is not applicable and one can resort to heuristics, such as setting the initial learning rate to a
fraction of the maximum stable learning rate, such as 7, = "met/10.

GI-Adam: Improving Adam by Initializing The Second Moment using Gradients

In Section 4.3, we observed that the pre-conditioned sharpness for Adam starts at a high value, even
for low sharpness initializations like pP, and can lead to training failures at large learning rates.
We propose Gradient Initialized Adam (GI-Adam), which initializes the second moment using the
gradient squared, vo = g3. In Appendix .2, we show that a bias correction is not required when the
second moment is initialized using the gradients. As a result, GI-Adam can be viewed as standard

Adam with an automated warmup given by 7; = ugy/1 — S5.

This simple trick reduces the initial pre-conditioned sharpness by around two orders of magnitude
(more precisely by a factor of /1 — 35) at initialization, preventing large catapults, as illustrated
in Figure 6 (c.f. Figure 2(d-f)). Moreover, it consistently shows improvement over standard Adam
across datasets and prevents training failures by pushing the training failure boundary to higher 7y,
as shown in Figure 4(b). We provide additional results for different datasets in Appendix F.3. In
Appendix F.4, we show that GI-Adam consistently performs on par or better than RAdam [23] while
offering a simple modification to Adam.

To further assess that the primary cause of instability during early training is the large pre-conditioned
sharpness, we randomly initialize vg but with the same norm as the gradients at initialization. Like
GI-Adam, this also results in improved performance as shown in Appendix 1.3.

We further reduce the pre-conditioner size by removing bias correction for the first moment, referred
to as Flat-Adam. As demonstrated in Appendix 1.4, this modification eliminates the initial decrease
in pre-conditioned sharpness. We leave a comprehensive evaluation of Flat-Adam for future work.

7 Discussion

Our analysis provides new insights into the role of warmup across optimizers and parameterizations.
We found compelling evidence that the primary effect of warmup is to facilitate training at higher
learning rates and stabilizing the training dynamics by keeping it away from the failure (divergence)
boundary. Looking under the hood, we found a variety of underlying mechanisms, which also
suggested several improvements for hyperparameter initialization. In Appendix A, we provide
practical guidance for practitioners on choosing the warmup duration.

Our analysis also motivates a potential parameter-free warmup strategy, which we refer to as persistent
catapult warmup. The central idea behind this strategy is to repeatedly induce catapults aimed to
progressively reduce sharpness, thereby facilitating training at higher learning rates. We present
encouraging preliminary results in Appendix C and defer further development to future work.

The maximum learning rate can be written as 7. = max/A"~'#. Here we showed how warmup
. -1 . . . .
effectively decreases A* , which is a local measure of sharpness. There is also another possible
effect of warmup, that it can cause an increase in cmax, Which can be viewed as a more non-local

measure of sharpness. Further analysis is required to understand how warmup helps increase cpyx.-

Limitations: Our experiments were conducted on relatively small-scale datasets and models, and
further investigations are needed to understand the generalizability of our findings to larger-scale
settings. For Adam, we did not explore the dependence on hyperparameters (31, 32, €.
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A Practical Guidance for Practitioners

How to Select the Warmup Duration? Given a target learning rate )y, if the training loss during
the warmup period exhibits large instabilities (loss spikes), the warmup duration Ty, should be
increased until such instabilities are sufficiently small. This effectively moves training away from the
divergent / failure boundary, as illustrated in Figure 3. This is particularly crucial for Adam, as large
instabilities can be detrimental and lead to considerable performance degradation without divergence,
as discussed in Section 5.2.

How to Select the Target Learning Rate? As the primary effect of warmup is to anneal sharpness
by increasing the learning rate beyond the instability threshold, it suggests that the target learning
rate should be at least greater than the instability threshold at initialization.

When to Decay the Learning Rate? Figure 21 suggests that employing learning rate decay at
small learning rates can result in performance degradation for a fixed training budget. Therefore, the
learning rate should be decayed at large target learning rates only. The underlying intuition is that we
use large target learning rates to train in a flat region of the landscape. However, these large learning
rates restrict training to go into sharper regions of the basin and learning rate decay helps.

Leveraging /P for Effecient Training: Our analysis suggests that the primary role of warmup
facilitates training at higher learning rates by gradually reducing sharpness. Given this perspective,
beginning training with flat initializations, such as uP, is advantageous. These initializations might
allow for achieving optimal performance without the need for warmup, as observed in Figure 3.

B Instability Thresholds

B.1 Instability Thresholds for Adaptive Optimizers

For adaptive optimizers, such as Adam, a pre-conditioner P;; multiplies the gradients in the update
equation

011 = 0y — . P Vo L(6y). )

Next, we define ¢; := Ptl_ﬁHt, then the gradient and Hessian are V4L = P~1/2V, L and ViL =
P~'VZL. As aresult, the update equations for ¢ is given by

b1 =P — i VyL(6y). 3)

We observe that the update equation of an adaptive optimizer mirrors that of SGD under a change of
variables. Using the stability arguments of SGD, we conclude that Ayax (P} VZL(6;)) determines
the stability.

B.2 Overview of Instability Thresholds

Lewkowycz et al. [22] showed that for wide networks in NTP/SP trained with MSE loss and SGD,
this critical learning rate is 2/x early in training. Further investigation by Kalra and Barkeshli
[18] demonstrated that sharpness reduction during early training causes 7). to increase with depth
and 1/width. In such scenarios, 7). can be as large as 40/x¥. Cohen et al. [5] demonstrated that
sharpness at late training times for GD with momentum coefficient 8 oscillates above (2+25)/p,
suggesting 7. = (2+28)/xF at late training times. Expanding on this, Cohen et al. [6] analyzed

adaptive optimizers and found that for Adam, the pre-conditioned sharpness A” “'H ogcillates around
(24261)/n(1—p,) at late training times. The instability threshold also depends on the mini-batch size
[35] and is often observed to be smaller than their full batch counterparts [5, 6].
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B.3 Estimating the Instability Threshold

This section describes the method for estimating the instability threshold 7). at initialization (or
generically, any point ;) using only forward passes. The method consists of two stages:

Exponential Search: An exponential search, starting from an initial guess 7, iteratively multiplies
7)o by a factor k = 2 until the loss increases. This identifies an interval [7yyr, nuppr} containing 7.. The
detailed algorithm is described in Algorithm 1. Unless specified, we use 779 = 10~ as our initial
guess. If the loss already increases at the initial guess 79, we set Minit = 1o-

Algorithm 1 Exponential Search

1: Input: (Initial weights: 6, Initial guess: 7))
2: Output: Interval 7y, Nuppr] CONtaining 7,
3: Evaluate initial loss L(6y)

4: Initialize i) <— 19

5: 0, < Optimizer(n, 8)

6: Evaluate L(6;)

7: while L(91) < L(go) do

8: if’l’} > Nergt then

9: n< Ntrgt
10: break

11:  endif

12: 1+ 2n

13: 67 < Optimizer(n, 6y)
14:  Evaluate L(6,)

15: end while

16: Muppr <= 71

17: Mwr < 77/2

18: return [mwn??uppr]

Binary search: A binary search further narrows down [7y, nuppr} by evaluating the loss at the
midpoint 7yg = (mwtmee)/2. If the loss increases, Tuppr 18 updated to 7miq; otherwise, my, is
set to Mmig. This process is repeated until the loss in the next step L(6;) satisfies the condition
L(61) < L(6o)(1 + 9), for some 6 > 0. The algorithm is detailed in Algorithm 2. In all our
experiments, we set § = 0.1.

Algorithm 2 Binary Search

1: Input: (Initial weights: 8, Tolerance: 4, Initial search interval [iyr, Tuppr))
2: Output: Estimate of 7,

3: Evaluate L(6,)

4: 01 < Optimizer(7uppr, 60)

5: Evaluate Lyppr < L(61)

6: while Ly, > L(609)(1 + J) do
7 Mmid < (nlwr + nuppr)/Q

8:  Omig < Optimizer(1miq, Oo)
9:  Evaluate Lyg < L(Omiq)
10: if Lnig < L(eo) then
11: Mwr < Mmid
12:  else
13: Tuppr <~ Tmid
14: Luppr — L(@mid)
15:  endif

16: end while
17: return 7e <— Muppr

While both 7y and § are additional hyperparameters, the method does not heavily depend on these
choices. A poor initial guess of 79 would only take a few more iterations to find an interval [7)iwr, Tuppr)-
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Figure 7: Comparison of persistent catapult warmup (in black) with linear warmup with different
durations. The experimental setup is the same as in Figure 1, but the model is trained on the entire
CIFAR-10 dataset using SGD with a batch size B = 512.

Meanwhile, any small value of 6 € (0, 1] is effective in finding 7)., as small initial loss spikes have
minimal impact on the overall dynamics. Note that for Adam, a small § (~ 0.01) has to be selected
to ensure that we do not observe large catapults.

C Persistent Catapult Warmup

Our analysis also motivates a potential parameter-free warmup strategy, which we refer to as persistent
catapult warmup. The central idea behind this strategy is to repeatedly induce catapults aimed to
progressively reduce sharpness (or pre-conditioned sharpness), thereby facilitating training at higher
learning rates. Given a target learning rate 7, the strategy consists of the following steps:

1. Start with a ‘stable’ reference point 8*, defined as a point where the loss decreases in the
next step and estimate the interval [1iy, uppr| containing 7., as described in Appendix B.3.

2. Induce a catapult by increasing the learning rate to 7 = 7yppr.

3. Continue training and wait until the loss falls below the reference point, i.e., L(6;) < L(6*).
This new point now becomes the stable reference point.

4. Repeat the above steps until the target learning is achieved, i.e., 17 = 7yg.

Here, the initial stable reference point is the model’s initialization. The detailed algorithm is described
in Algorithm 3 in Appendix C.

Figure 7 compares persistent catapult warmup (shown in black) with linear warmup. The persistent
catapult warmup facilitates training at higher learning rates without the need to specify warmup
duration. Since 7). serves as an indicator of sharpness, persistent catapult warmup utilizes the local
sharpness information to automatically determine the warmup rate, resulting in an adaptive non-linear
warmup. This adaptive approach eliminates the need for manual tuning of the warmup duration,
allowing for a more efficient and effective warmup.

Although persistent catapult warmup is a promising approach to warmup, it requires specifying how
large a catapult should be induced, which introduces another hyperparameter. Nevertheless, persistent
catapult warmup motivates the development of parameter-free warmup strategies that could simplify
the training process. We leave further development of parameter-free warmup to future work.

D Experimental Details

This section provides additional experimental details. All models were implemented using the JAX
[3], and Flax libraries [15]. The key results can be reproduced using the GitHub repo: https:
//github.com/dayal-kalra/why-warmup.
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Algorithm 3 Persistent Catapult Warmup

1: Input: (Initial weights: 6y, Target learning rate: 7, Tolerance: ¢)
2: 0* < 6, // Reference point

3: while n < 1yg do

4:  if L(6;) < L(6*) then

5 Estimate [nuppr, Miwr] containing 7. using Algorithms 1 and 2 with tolerance &
6: 1 <= Nuppr

7 0* «— Ht

8 else

9 continue

10:  end if

11: end while

D.1 Datasets Details

D.1.1 Image Classification Tasks

We consider standard image classification datasets such as CIFAR-10, CIFAR-100 [21], and Tiny-
ImageNet [1]. The images are normalized to have zero mean and unit variance. For MSE loss, we
use one-hot encoding for the labels.

Data augmentation: For various image classification tasks, we employ data augmentation techniques,
applied in the following order: random horizontal flips, random cropping, and mixup [41].

D.1.2 Language Modeling Tasks

We consider the next token prediction task on the Wikitext-2 and Wikitext-103 datasets [25]. The
Wikitext-2 dataset consists of ~ 2M tokens, whereas the Wikitext-103 dataset has ~ 0.1B tokens.
We use Byte Pair Encoding (BPE) tokenizer [32] with a Whitespace pre-tokenizer. For Wikitext-103
experiments, we considered a standard vocabulary size of 50, 257, whereas our initial Wikitext-2
experiments employed a smaller vocabulary size of 4096.

D.2 Model Details

This section describes the models considered, including their parameterization and initialization
details. We adopt parameterizations outlined in Table 9 of Ref. [38]. Unless otherwise specified, we
employ ReLU non-linearities and initialize the weights with a truncated normal distribution !, with a
variance o2 = 2.0 in appropriate parameterizations (details below), except for the last layer, which
has a weight variance of 02, = 1.0. All biases are initialized to zeros.

D.2.1 Parameterizations

Standard Parameterization (SP): For SP, the weights are initialized with truncated Gaussian
distribution A/(0, % /fan,,) and the biases are initialized to zero.

Maximal Update Parameterization (¢P): For uP, different schemes are employed for the inter-
mediate and last layers. The intermediate layers are initialized using N(0, 7% /fan,,.) and the layer
outputs are scaled by the factor 4/fanou/fan,,. In comparison, the layer weights are initialized with
N (0, 9% /fan,,), and the final output is rescaled by the factor /1/fan,. Conveniently, for SGD, the
learning rate does not scale with width in the above uP formulation. In comparison, for Adam,
the learning rate corresponding to input, intermediate, and output layers are rescaled by the factors
1/\/fang, 1/+/Tan, and !/fan,. Since we are utilizing pP only to obtain flat initializations, we omit the
additional scaling of the learning rate for Adam in some experiments (e.g., Figure 2). As a result, the
instability threshold is only dependent on the target learning rate 7, during late training, rather than
on the largest learning rate across layers. We refer to this parameterization as ‘simple-pP’ for Adam.

'for details, see https://jax.readthedocs.io/en/latest/_autosummary/jax.nn.initializers.
truncated_normal.html
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D.2.2 Architectures

Fully Connected Networks (FCNs): We consider fully connected networks with a constant width
of n and a depth of d layers. These networks are denoted by FCN-d-n. Unless specified, we
considered d = 4 layer FCNs with width n = 512.

WideResNets (WRNs):  We consider WideResNets [39] with d layers, S stages, and a widening
factor of k, denoted by WRN-d-k. The number of channels in each stage s € [0,.5) is given
by 2° x 16 x k, with the input layer having 16 channels. For example, WRN-16-4 consists of
S = 3 stages, each with [2, 2, 2] layers, and the corresponding number of channels in each stage is
[64, 128, 256]. In all our experiments, we use LayerNorm instead of BatchNorm.

Transformers: We consider Transformers with GPT-2 style architecture [30]. These models use
sinusoidal positional embeddings [34] and are implemented in the Standard Parameterization (SP)
with GELU activation [16]. We initialize all layers using the 7%, /fan;, scheme, except for the embedding
layers, as they do not involve matrix multiplication [9]. We consider both Pre-LN [36] and Post-LN
[34] Transformer variants. We denote a Transformer with d blocks and an embedding dimension of n
as LM-d-n. Unless specified, the model has d = 4 blocks, embedding dimension n = 128, context
length Tix¢ = 64 and are trained for 10* steps.

D.3 Optimization Details
D.3.1 Optimizers

SGD(-M): Given gradients g, at step ¢, Stochastic Gradient Descent with momentum (SGD-M)
updates the parameters 6, using learning rate 7; and momentum m; with coefficient 5. The update
equations are:

miy1 = g + fmy, “
0111 =0y —mymyy . )

Here, 5 = 0 corresponds to SGD. In all experiments incorporating momentum, the default value of
the coefficient is set to 5 = 0.9.

Adam: Given gradients g, at step ¢, Adam [20] updates the parameters 6, using learning rate 7
and the first two moments of the gradient m; and wv; with their coefficients 5, and 32, respectively.
The equations governing the updates are:

my 1 = fimy + (1 — B1)ge, (6)
Vi1 = Pove + (1 — 52)9?» @)
My
01 =0, — 1 ———, ®)
Vi1 +€
where m; = 1’_"—B’t and v; = 13‘ - are the bias-corrected moments, and ¢ is a small scalar used for
1 2

numerical stability. The pre-conditioner for Adam is given by:

. v
P =(1-pith [dlag < 1t+j+1> + eI} . )
- M2

In all experiments, the default values are setto 5; = 0.9, 82 = 0.999, and € = 10~8, unless otherwise
specified.

GI-Adam: Given gradients g; at step ¢, GI-Adam updates the parameters like Adam but with the
second moment initialized using the gradients at initialization, i.e., vo = g3. The equations governing
the updates are:
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my 1 = fimy + (1 — B1)ge, (10)
Vi1 = Bovr + (1 — Ba)gy, (11
m
011 =0, — p———, (12)
\/Ut+1 + €
where v; = # is the bias-correction second moment and € is a small scalar used for numerical
2
stability.

Flat-Adam: Given gradients g; at step ¢, Flat-Adam updates the parameters 6; using learning rate
7, and the first two moments of the gradients m; and v, with their coefficients /31 and (s, respectively.
In contrast to Adam, we do not apply bias correction for the first moment and initialize the second
moment at initialization using the gradients vy = g3. The equations governing the updates are:

myp1 = fime + (1 — 51)ge, (13)
Vi1 = Bovy + (1 — B2)g7, (14)
m
Ori1 =0 — np—e—, (15)
Vi1 T €
where ©; = 2+ is the bias-correction second moment and ¢ is a small scalar used for numerical

1-5;
stability. The pre-conditioner for Flat-Adam is given by:

. )
Py = {dlag( /1t+j+1) + el} . (16)
2

Warmup linearly increases the learning rate from an initial value 7y to a target value 7 over Tym
training steps. The learning rate 7, at step ¢ is given by:

D.3.2 Linear Warmup

t
Nt = Ninit + (ntrgt - ninit) (T) . (17)

Here, o := (""%;n“‘“) is referred to as the rate of warmup. Under the above definition, constant

learning rate training corresponds to Ty = 1. Twrm = 1 corresponds to constant learning rate.
Unless otherwise specified, we set 7i,ic = 0 when referring to linear warmup.

D.3.3 Learning Rate Decay

In several experiments, we employ learning rate decay following the warmup phase. Specifically, we
use cosine learning rate decay, which is detailed below.

Cosine Decay: Towards the end of training, it is typical to reduce the learning rate to a small value.
Cosine decay is a commonly used method for decaying the learning rate from an initial value of 7yg¢
down to a value 1y, over T¢os steps, according to the rule:

1 it P
Nt = Mgt + (nmin - ntrgt) § 1+ cos T s (18)

where p governs the rate of decay, with p = 1 being the standard. Note that with p = 0, the learning
rate is not decayed and instead maintained at 7). In the above expression, ¢ counts the steps from
the initiation of cosine decay and not the current training step. As per standard practice, we consider
p = 1 and decay the learning rate to 7y, = ™we/10.
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D.3.4 Target Learning Rate Sampling for Phase Diagrams

For SGD, target learning rates 7y are exponentially sampled using the initial sharpness \’. Starting
with 7)ye = /A%, subsequent rates are sampled until divergence as 2°/A! for values of x increased
in integer steps starting from zero. For WRNSs trained with Adam, we sample target learning rates
exponentially as 7 = 2% x 1077, where x is incremented in integer steps starting from zero until
training failure. For Transformers, we sample the learning rate in a similar fashion but starting from
10~* and increment x in steps of 0.5.

D.4 Sharpness and Pre-conditioned Sharpness Measurement

We measured sharpness / pre-conditioned sharpness using the JAX implementation of the LOBPCG
sparse eigenvalue solver with the tolerance set to 10~? and maximum number of iterations to nje =
1000. In most cases, the solver converges within 40 iterations. We performed these computations in
float64, as the solver would not converge with float32 in some cases.

In certain instances, the pre-conditioned sharpness computation did not converge within 1000 solver
iterations. Moreover, we observed that the solver converges on restarting it with a new initial guess
of the eigenvector within 40 iterations. To address these edge cases, we employed the following
method: if the solver did not converge within 100 iterations, we restarted it with a new initial guess
for the eigenvector. We allowed for at most 10 restarts with the maximum number of iterations set to
nier = 1000 in the last attempt. In all reported cases, the solver converges using this method.

D.5 Additional Figure Details

Figure 1: Training trajectories of 4-layer FCNs with width n = 512, trained on a 5k subset of
CIFAR-10 using MSE loss and GD in (top) uP with 1 = 1/3H, where )\5{ ~ 0.05, and (bottom) SP

with e = 32/A8, where A ~ 50.

Figure 2: Training loss and sharpness trajectories of 4 layer FCNs with width n = 512, in (top) uP
with learning rate 7o = 0.003 and (bottom) SP with 77y = 0.001 trained the CIFAR-10 dataset with
MSE loss using full batch Adam with 3; = 0.9, 85 = 0.999 and € = 1072, In these experiments, we
use data augmentation as described in Appendix D.1.1.

Figure 3: Test accuracy heatmaps of WRN-16-4 trained on CIFAR-10 using different parameter-
izations and loss functions using SGD with a batch size B = 128: (a) SP and MSE loss, (b) uP
and cross-entropy loss (c) SP and cross-entropy loss. All models are trained for 10° steps. In these
experiments, we use data augmentation as described in Appendix D.1.1.

Figure 4: Test loss heatmaps of Pre-LN Transformers in SP trained on WikiText-103 with cross-
entropy loss using (a) Adam, and (b) Flat-Adam (introduced in Section 6) over Adam. The Trans-
former models have d = 4 blocks, embedding dimension n = 768, a context length of T,y = 64,
and a baich size B = 64. These experiments also employ cosine decay and weight decay with
A=10""

Figure 5: Heatmaps showing (a) Tieach, number of steps to reach 7y, and (b) Tiave, the effective
number of steps saved on setting 7inir = 7). for WRN-16-4 in SP trained on CIFAR-10 with cross-
entropy loss using SGD with B = 128 for 10* steps. For a fair comparison with linear warmup, we
choose 1y = /T, as our initial guess.

Figure 6: Training loss and sharpness trajectories of FCNs in SP. The experimental setup is identical
to Figure 2 but with GI-Adam instead of standard Adam.

D.6 Estimation of Computational Resources

The phase diagram experiments typically required about an hour on per run on an A100 GPU.
Consequently, each phase diagram consumed approximately 100 A100 hours of computational time.
With a total of 16 phase diagrams, this equates to 1600 A100 hours dedicated solely to phase diagram
computations. Additionally, the warmup mechanism experiments, which were conducted over 2000
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Figure 8: Training loss and sharpness trajectories of FCNs trained on CIFAR-10 with MSE loss using
SGD with a batch size B = 512. The dashed lines in the sharpness figures illustrate the instability
thresholds 2/y,. (top) uP with learning rate 1/xZ, (bottom) SP with learning rate 32/xZ.

steps, required sharpness estimation. The FCN experiments required approximately 1200 A100 hours,
while the WRN mechanism experiments consumed 1600 A100 hours. The experiments concerning
the initial learning rate took about 20 A100 hours. This brings the total computational time amounted
to approximately 4500 A100 hours. Preliminary experiments took about 1000 A100 hours. Hence,
we estimate the total computational cost to be around 5500 A100 hours.

E Additional Results for Mechanisms of Warmup

This section presents additional trajectories for warmup mechanisms discussed in Section 4 covering
various architectures, loss functions, and optimizers.

E.1 Stochastic Gradient Descent

Figure 8 shows that the warmup mechanisms for full batch GD are also observed in the SGD with a
batch size B = 512. The results for other optimizers in the mini-batch setting are discussed in their
respective sections.

E.2 Stochastic Gradient Descent with Momentum

While the warmup mechanisms of SGD with momentum are fundamentally similar to those of vanilla
SGD, three key differences arise, as discussed below.

First, the training loss can decrease loss in an oscillatory fashion during training [11]. To illustrate
this, consider the full-batch GD with momentum. The middle row of Figure 9 demonstrates the
sharpness reduction case with the learning rates well below the stability threshold (7 << 7). Despite
being far below these thresholds, the loss does not decrease monotonically but converges in an
oscillatory fashion. This makes it challenging to differentiate between warmup-induced catapults and
fluctuations in loss due to the intrinsic effects of momentum. Nevertheless, we can still observe loss
spikes correlated with an abrupt decrease in sharpness at large learning rates, as seen in the bottom
row of the same figure. Similar to the SGD case, we observe these catapults are delayed and become
smaller in magnitude on increasing the warmup duration.

Next, the stability threshold 7. for SGD with momentum evolves during training. For simplicity of
explanations, we again consider the full batch GD case. The stability threshold 7. for SGD with

21



107!
10

10°°

Training loss
A

107!
107°

10° 10! 107 10° 10° 10! 107 10°
step step

(a) (b)

Training loss

0.0

10° 10! 10° 10°

107!

10!

Training loss
I
v

107
10

100 10! 107 10° 10° 10! 10° 10°
step step

(e ®

Figure 9: Training loss and sharpness trajectories of FCNs trained on 5k subset of CIFAR-10 using
MSE loss and full batch GD with momentum 5 = 0.9: (top) pP with learning rate 1/x¥ (middle) SP
with learning rate 1/»¥, and (bottom) SP with learning rate 32/»Z. The dotted lines in the sharpness
figures correspond to the (2+28)/,, curves, while dashed lines show the 2/y, for reference.

momentum changes from 2/AZ at initialization to (2+28)/, late in training. At initialization, the
momentum vector is set to zero my = 0, and the stability is given by vanilla GD threshold 2/2%.
As training progresses, the momentum m; increases in magnitude, and the instability threshold at
late training time becomes (2+28)/x,. The bottom row of Figure 9 show the sharpness trajectories
with both 2/n, and (2+28)/y, curves. For Ty = 64, the learning rate curve 2/n, causes an abrupt
decrease in sharpness, which is coupled with a loss spike. For longer warmup durations, the sharpness
decreases before training exceeds the 2/A¥.

Finally, the instability threshold 7. for SGD with momentum significantly decreases for smaller
batch sizes. Figure 10 shows the training trajectories under the same setup as in Figure 8, but
with momentum coefficient 3 = 0.9. The late-time sharpness trajectories oscillate well below the
(2+28)/n, (and even below 2/x!"), whereas the vanilla SGD counterpart oscillates on the 2/, curve.
This indicates a strong dependence of the instability threshold on batch size.

Besides these three differences, we note that the warmup mechanisms of SGD with momentum are
similar to the vanilla SGD case. We leave a thorough analysis of the early sharpness dynamics of
SGD with momentum for future works.

E.3 Stochastic Gradient Descent and Cross-entropy Loss

The warmup mechanisms for models trained with cross-entropy loss exhibit trends similar to those
observed with MSE loss with one crucial difference. Near convergence, sharpness first increases
and then abruptly decreases. The decrease in sharpness towards the end of training is observed
in previous studies analyzing SGD with fixed learning rate [5]. Additionally, we observe higher
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Figure 10: Training loss and sharpness trajectories of FCNs trained on CIFAR-10 with MSE loss
using SGD with a batch size B = 512 and momentum 3 = 0.9: (top) uP with learning rate 1/x7,
and (bottom) SP with learning rate 32/x. The dotted lines in the sharpness figures correspond to the
(2+28)/y, curves, while dashed lines show the 2/», for reference. Similar mechanisms are observed
for cross-entropy loss with a decrease in sharpness at late training times, as detailed in Appendix E.3.
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Figure 11: Training loss and sharpness trajectories of FCNs trained on CIFAR-10 with cross-entropy
loss using SGD with a batch size B = 512. (Top row) uP with learning rate 1/ (Bottom row) SP
with learning rate 32/2%.

fluctuations compared to the MSE loss case. Figure 11 shows trajectories of FCNs under different
parameterizations trained on CIFAR-10 with cross-entropy loss using vanilla SGD. Meanwhile,
Figure 12 shows the loss and sharpness trajectories of FCNs in SP trained on CIFAR-10 with
cross-entropy loss using full batch GD with and without momentum.
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Figure 12: Training loss and sharpness trajectories of FCN-4-512 in SP trained on 5k subset of
CIFAR-10 with cross-entropy loss using full batch GD with learning rate 32/ with momentum
coefficient (top) S = 0.0 and (bottom) 5 = 0.9.
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Figure 13: Training loss and sharpness trajectories of FCN-4-512 in (top) pP and (bottom) SP
trained on CIFAR-10 with MSE loss using Adam with learning rate n = 0.001, batch size B = 512,
£1 = 0.9 and By = 0.999. The dashed lines in the sharpness figures illustrate the instability thresholds
(24260 [, (1-1).

E.4 Warmup Mechanisms of Adam

As discussed in Section 4.3, the instability threshold for Adam is determined by the pre-conditioned

sharpness A” “'H and not by the sharpness itself. Moreover, training dynamics falls under the
sharpness reduction case as the pre-conditioned sharpness starts off large and reduces considerably
during the first few training.

Figure 13 shows the training trajectories of FCNs trained with Adam in the same setting as in
Figure 2 but with a batch size of B = 512. Similar to the SGD with momentum case, the late
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Figure 14: Training loss and sharpness trajectories of FCNs in (top) pP and (bottom) SP trained on
CIFAR-10 with cross-entropy loss using full-batch Adam with learning rate n = 0.001, 5, = 0.9
and B2 = 0.999. The dashed lines in the sharpness figures illustrate the instability thresholds
(24261) [, (1-1).

time sharpness oscillates far below the instability threshold ((2+261)/5,(1-8,)), suggesting that the
instability threshold heavily decreases with a smaller batch size. We note similar findings by Ref. [6].

Next, Figure 14 show the warmup mechanism of FCNs trained with cross-entropy loss using Adam
under the full-batch setting. Similar to the SGD case, the pre-conditioned sharpness decreases towards
the end of training.

E.5 Different Architectures and Datasets
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Figure 15: WRN-16-1 trained on CIFAR-10 with MSE loss using vanilla SGD with batch size
B = 512: (top) pP with 7ge = 1/2¥ and (bottom) SP with 7y = 32/2[.
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Figure 16: WRN-16-1 trained on CIFAR-10 with cross-entropy loss using vanilla SGD with batch
size B = 512: (top) pP with 1), = /A and (bottom) SP with 7 = 32/2[.

In the previous sections, we confined our analysis to FCNs to thoroughly explore the effects of
different optimizers and loss functions. This section expands on those results by demonstrating
that the observed warmup mechanisms apply to ResNets and Transformers as well. The Resnet
experiments also employ data augmentation as detailed in Appendix D.1.

Figures 15 and 16 show the training trajectories of WideResNets (WRNs) trained on CIFAR-10 with
MSE and cross-entropy loss using SGD. These trajectories generally reflect the warmup mechanisms
discussed in Section 4. However, certain additional features obscure the clarity of these mechanisms.
Notably, we observed a significant sharpness spike on the first training step when using longer
warmup durations, which automatically resolves in the subsequent step. The magnitude of this spike
increases with longer warmup periods. Further analysis revealed that this phenomenon is associated
with an initial increase in the first LayerNorm parameters, which also resolves automatically by the
second step. Beyond this observation, the training trajectories align with the warmup mechanisms
described in the main text.

Figure 17 illustrates the warmup mechanisms of Pre-LN Transformers trained on the WikiText-2 with
SGD. The Pre-LN Transformer (top row) starts in a flat landscape region (A\Y' ~ 5) and experiences
progressive sharpening right from initialization. In contrast, when the last LayerNorm (just before the
final linear layer) is removed (bottom row), the model starts training in a significantly sharper region,
with the initial sharpness 100 times larger than the standard Pre-LN Transformer. This modified
Pre-LN Transformer experiences a reduction in sharpness during the early stages of training.

Figure 18 presents the warmup mechanisms of Pre-LN Transformers trained on WikiText-2 using the
Adam optimizer. Consistent with the results in the main text, the pre-conditioned sharpness exhibits a
reduction early in training, despite the model initializing in a very flat region.

These experiments demonstrate that Transformers trained on language modeling tasks exhibit warmup
mechanisms consistent with those discussed in the main text.

F Additional Phase Diagrams

This section presents further results related to the phase diagrams of warmup shown in Section 5.
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Figure 17: LM-4-128 trained on the WikiText-2 dataset with cross-entropy loss using SGD with a
batch size B = 512 and a context length T;,x = 64. The top row shows the warmup mechanisms
of a Pre-LN Transformer with 7y = 5-65/A%, while the bottom row shows the results for the same
Pre-LN Transformer but with the last LayerNorm removed and a learning rate of 7 = 8/2Z.
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Figure 18: Pre-LN LM-4-128 trained on the WikiText-2 dataset with cross-entropy loss using Adam
with a target learning rate 7,g = 0.003, a batch size B = 512 and a context length T = 64.

10°

F.1 Phase Diagrams for different Models and Datasets

Figure 19 shows the test accuracy heatmaps of WRN-16-4 trained on CIFAR-100 and Tiny-ImageNet.
These models are trained using cross-entropy loss using SGD with a batch size of B = 128.
Additional phase diagrams for Adam are presented in Appendix F.3.

Figure 20(a) shows the test loss heatmaps of Pre-LN Transformer trained on the WikiText-2 dataset
using SGD with a batch size B = 64. Figure 20(b) shows the Pre-LN Transformer under the same
setup except for the last layer LayerNorm removed. The standard Pre-LN Transformer starts off with
a small sharpness, while the version without the last LN starts off with 100 times higher curvature
and requires warmup to achieve good performance.

F.2 The Effect of Momentum and Learning Rate Decay

Figure 21 shows that incorporating momentum and cosine decay (for details, see Appendix D.3.3)
minimally affects the warmup phase diagrams. While the conclusions regarding warmup presented in
the main text remain unaffected, we note a few interesting observations.
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Figure 19: Test accuracy heatmaps of WideResNets (WRNs) in SP trained on (a) CIFAR-100 and (b)
Tiny ImageNet with cross-entropy loss using SGD with batch size B = 128.
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Figure 20: Test loss heatmaps of LM-4-128 in SP trained on WikiText-2 with cross-entropy loss
using SGD with a batch size B = 64: (a) Pre-LN Transformer and (b) Pre-LN Transformer without
the last LayerNorm.

First, the divergent boundary shifts leftward on incorporating momentum, indicating that momentum
permits smaller target learning rates without warmup, and warmup helps SGD-M more. Meanwhile,
cosine decay has a minimal effect on the divergent boundary.

Additionally, we observe a performance enhancement by incorporating momentum, especially at
small learning rates. In contrast, a decaying learning rate beyond warmup degrades performance
at small learning rates while improving at higher ones. Finally, incorporating both momentum and
cosine decay leads to further enhancement, indicating a synergistic interaction between the two.

F.3 Phase Diagrams of Adam and GI-Adam
Figures 23 to 25 compare the warmup phase diagrams of Adam and GI-Adam of WRNSs trained on
CIFAR-100, Tiny-ImageNet and of Transformers trained on WikiText-2 and Wikitext-103 dataset.

Similar to the results shown in the main text, GI-Adam enhances performance over standard Adam
by pushing the failure boundary.

F.4 Comparison with RAdam

Figures 26 and 27 and table 1 compare the performance of GI-Adam with RAdam. We observe that
GI-Adam performs on par or better than RAdam while offering a simpler modification to Adam.
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Figure 21: Test accuracy heatmaps of WideResNets (WRNs) in SP trained on CIFAR-10 with cross-
entropy loss using SGD with batch size B = 128: (top row) no cosine decay (a) no momentum, (b)
momentum with 8 = 0.9, and (bottom row) with cosine decay (c) no momentum, and (d) momentum
with 8 = 0.9. The setting of (a) is the same as in Figure 3(c) but with a different mini-batch sequence.
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Figure 22: Test accuracy heatmaps of WRN-16-4 trained on CIFAR-100 with cross-entropy loss
using (left) standard Adam, and (right) GI-Adam with batch size B = 128.

G Non-divergence of Adam

Figure 28 shows that, despite experiencing catastrophic instabilities during early training, Adam
does not diverge well beyond the training failure boundary. While Adam can recover from these
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Figure 23: Test accuracy heatmaps of WRN-16-4 trained on CIFAR-100 with cross-entropy loss
using (left) standard Adam, and (right) GI-Adam with batch size B = 128.

WRN-1 . WRN-16-4 SP XENT GIl-Adam TINY-IMAGENET
4096- 3053 | 46.64 2
2048-39.67 4654
1024-39.54 50
-39.90
- 3981 45
- 3087
13070 40
3053
16-40.15 35
8- 4038
4- 4011 30 4635
2-40.19 ’ 46.10
1-4010 46.14
- . 25 . .
é’@@@@@“’@”@@@ 0 Q"@@@@&"”@@@@Q\
AN z? (2 e A% ¢ A% <
A o M F 0 N T 0 S oF 1 o O (F 0
Mtrgt Mergt
(a) (b)

Figure 24: Test accuracy heatmaps of WRN-16-4 trained on Tiny-ImageNet with cross-entropy loss
using (left) standard Adam, and (right) GI-Adam with batch size B = 128.
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Figure 25: Test loss heatmaps of LM-4-128 in SP trained on WikiText-2 with cross-entropy loss
using (a) standard Adam, and (right) GI-Adam with batch size B = 64.

instabilities, the model’s performance is severely impacted, resulting in training failures rather than
convergence to a reasonable minimum.
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Figure 26: Test loss heatmaps of LM-4-768 in SP trained on WikiText-103 with cross-entropy loss
using (a) standard Adam, (b) GI-Adam, (c) Flat-Adam, and (d) RAdam with batch size B = 64.
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Figure 27: Comparison of optimizer performance on WRNs trained on CIFAR-10. The value next to
the optimizer name corresponds to the warmup duration. Each value corresponds to an average over
five initializations. Here, Adam-save corresponds to Adam with warmup 7y = %init + Utrgt%-

These large loss catapults cause the gradients g to spike during early training, leading to a substantial
increase in its second moment v. While the gradients return to a lower value after a few training
steps, the second moment remains large in magnitude for a prolonged period. These large values of
v result in a small effective learning rate, which hinders training to escape these high-loss regions.
Consequently, the models remain stuck in a suboptimal state rather than converging. We refer to this
as a training failure.

Upon closer examination of the individual layers during training failures, we found that certain layers
or residual blocks output zero. This results in vanishing gradients except for the last layer bias and
training halts. We defer the detailed analysis of Adam’s failures to future work.
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Optimizer

Test Accuracy (mean = std)

Adam-1
GI-Adam-1
Radam-1

94.1515 + 0.0980
94.6123 + 0.1273
94.4244 + 0.1052

Adam-4096
GI-Adam-4096
Adam-save-4096
Radam-4096

94.6163 + 0.2528
94.6499 + 0.1112
94.6084 + 0.1664
94.6460 + 0.2532

Table 1: Performance comparison of different optimizers with varying warmup durations.
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Figure 28: Training trajectories of WRNSs trained on CIFAR-10 using Adam with cross-entropy
loss and varying learning rates. The setup is identical to the Ty, = 1 row of Figure 4, but without
employing cosine learning rate decay. The first training failure is observed at a learning rate of
Mwge = 0.02048. To investigate the behavior beyond the training failure boundary, learning rates are
sampled from 7y = 0.01024 (just below the failure boundary) up to 7y = 150.
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Figure 29: Heatmaps illustrating the computational savings in reaching 7y, for WRN-16-4 in P
trained on CIFAR-10, using SGD and cross-entropy loss. Colored cells show the warmup steps Tieach
(left) and the total steps saved T,y (right), while the empty cells correspond to training divergence.
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H Additional results for the Initial Learning Rate Selection

This section provides additional results for the initial learning rate selection. Figure 29 shows the
number of steps Tiesch required to reach the target learning rate and the effective number of steps
saved Tgaye for WRNs in pP. Note that in such cases, 1. & Mnax. We observe that Tie,on = 1 for a
wide range of learning rates, saving almost the entire warmup duration. Figures 30 and 31 show
similar phase diagrams for WRNs in SP and pP trained with Adam.
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Figure 30: Heatmaps illustrating the computational savings in reaching 7y, for WRN-16-4 in SP
trained on CIFAR-10, using Adam and cross-entropy loss. Colored cells show the warmup steps Tieqch
(left) and the total steps saved T,y (right), while the empty cells correspond to training divergence.
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Figure 31: Heatmaps illustrating the computational savings in reaching 7, for WRN-16-4 in pP
trained on CIFAR-10, using Adam and cross-entropy loss. Colored cells show the warmup steps Treqch
(left) and the total steps saved Ti,y.e (right), while the empty cells correspond to training divergence.

I Additional Results on GI-Adam

This section presents additional results for GI-Adam. We provide further insights into the mechanisms
and interpretations of GI-Adam.

I.1 Warmup Mechanisms of GI-Adam

Figure 32 shows the training trajectories of FCNs with different parameterizations trained with
GI-Adam. Notably, the pre-conditioned sharpness starts at significantly lower values than standard

Adam. Specifically, for the P model, the initial pre-conditioned sharpness A\’ “'H is around 2000
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Figure 32: Training loss and sharpness trajectories of FCNs in (top) pP and (bottom) SP. The
experimental setup is identical to Figure 2 but with GI-Adam instead of standard Adam.

instead of the value 10° observed for Adam (c.f. Figure 2). Remarkably, this almost eliminates initial
sharpness reduction. Similarly, the pre-conditioned sharpness for the SP model starts around 10*
instead of 10°. Notably, in the SP scenario, there is no initial spike in the Ty = 1 (c.f. Figure 2),
demonstrating that this simple modification effectively reduces instabilities during the early training.

.2 GI-Adam as an Automated Warmup

In this section, we show that a bias correction is not required when the second moment is initialized
with the gradients at initialization in GI-Adam. Therefore, employing a bias correction as in the

original Adam algorithm in this case serves as an automated warmup given by 7; = ngy/1 — 5.

The moving average of the second moment is given by:

t—1
vy = (1= B2) Y Bigi + Bhvo, (19)

=0

where vy = g3. Following standard assumptions, we assume that the second moment of the gradient
is constant during early training E[g?] = 2. Taking the expectation of the above equation over the
gradient distribution yields

t—1
Efv] = (1 - 82) Y _ BiElgi ;] + B3E[v). (20)

=0

Simplifying the above equation, we have

21— 85

Elo] = (1= 2)o*

+ [3502 =2 2n

This result demonstrates that when the second moment is initialized with the gradients at initialization,
it does not require bias correction, as the expected value of the second moment is equal to the constant
o?. If we apply the usual bias correction on top of initializing the second moment with the gradients,

we effectively downscale the second moment by a factor \/1 — 5. Assuming small enough e, this
can be viewed as a multiplicative factor to the learning rate. As a result, GI-Adam is equivalent to

having a natural warmup given by 1; = 7/ 1 — /5.
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Figure 33: Comparison of test accuracy trajectories of WRNs trained with different Adam variants for
two target different learning rates: (a) 7yg = 0.020480, and (b) 7ye = 0.040960. For Adam+warmup,
the warmup duration is set to Ty, = 1024.

LI.3 The Primary benefit of GI-Adam results from the magnitude of the second moment at
initialization

To further assess if the primary cause of instability during early training is the large A" THH e
randomly initialize vy but with the same norm as the gradients at initialization. We refer to this as
Randomly Initialized Adam (RI-Adam). Like GI-Adam, this also results in improved performance as
shown in Figure 33.

L4 Warmup Mechanisms of Flat-Adam

Figure 34 shows the training trajectories of FCNs with different parameterizations trained with Flat-
Adam. We observe that further removing bias correction for the first moment completely removes the
initial reduction in the pre-conditioned sharpness.
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Figure 34: Training loss and sharpness trajectories of FCNs in (top) uP and (bottom) SP. The
experimental setup is identical to Figure 2 but with Flat-Adam instead of standard Adam.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We have summarized our main contributions in Section 1.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 7.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide extensive details of the experiments in Appendix D to reproduce
the results. Furthermore, we provide additional details for each Figure in Appendix D.5.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The main results of the paper can be reproduced using the anonymous GitHub
repository https://github. com/dayal-kalra/why-warmup.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide extensive details of the experiments in Appendix D
Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The only sources of errors in our experiments are the variation arising from
the model initialization and mini-batch sequence through training. Due to the extensive
computational cost of generating the warmup phase diagrams (100 A100 hours), we do not
provide error bars. Nevertheless, we have finely swept the learning rate and the warmup
duration, and we do not observe a significant variation across the learning rate and warmup
durations for various experiments. Hence, we do not expect the results to vary significantly
with initialization and mini-batch sequence.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the details in Appendix D.6.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We adhere to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper analyzes the underlying mechanisms of warmup. We do not think
there are any societal impacts of the work that are worth mentioning here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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12.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have used standard image datasets and architectures and cited the original
work.

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Human subjects were not involved in this study.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Human subjects were not involved in this study.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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