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Abstract—The rapid advancement in genomic sequencing
technologies has resulted in an explosion of data, creating
substantial computational bottlenecks in DNA analysis work-
loads. Applications such as DNA classification are particularly
impacted due to their reliance on intensive, large-scale pattern
matching. Existing hardware accelerator and software solutions
are increasingly unable to manage the scale and energy demands
of these datasets, highlighting the need for architectures that can
perform faster and more efficient pattern matching. To address
these challenges, we propose NP-CAM: a data-optimized, CAM-
based accelerator designed for parallel and energy-efficient DNA
classification. NP-CAM harnesses a network-on-chip to implement
a novel optimized indexing and CAM partitioning scheme that
reduces the active search space, allowing significant scalability.
We demonstrate results for NP-CAM on commodity 10T binary
CAM cell designs. Our experimental evaluations show that NP-
CAM achieves a simultaneous 65ˆ improvement in sequence
throughput and an over 173ˆ improvement in energy efficiency
over state-of-the-art hardware solutions on existing small viral
workloads. We go on to demonstrate feasibility for larger bacterial
and fungal workloads, enabling scalable DNA classification in the
era of large-scale genomic data.

I. INTRODUCTION

Explosive genomic data growth has outpaced our ability to
process it. Next-generation sequencing (NGS) technologies,
advancing faster than Moore’s Law, have fueled this surge [1].
As of October 2024, GenBank contained over 34 trillion
nucleotides [2], up from just 5 trillion in 2018—a 40% annual
increase. From 2006 to 2023, the cost to sequence a human
genome dropped from over $10 million to just $200 [3], [4].
This data boom motivates population-scale sequencing, but
many end applications are now computationally bottlenecked:
NGS devices generate 4–200 Gbp/hr, while software read
mappers process only 0.2–1.7 Gbp/hr [5].

Bioinformatics workloads often involve large-scale pattern
matching between reference and query sequences. Applications
include alignment [6], [7], genome assembly [8], and DNA
classification [9], [10]. Pathogen detection—a critical bioinfor-
matic task—demands fast, energy-efficient DNA classification
under tight resource constraints [11]. Most DNA classifiers
count and compare matching substrings (k-mers) between
query and reference sequences (Fig. 1). This reliance on k-mer
matching makes classification an ideal candidate for hardware
acceleration [12]–[17]. In particular, content addressable mem-
ories (CAMs) support constant-time parallel search across all
entries, making them well-suited for high-throughput k-mer
matching. However, existing CAM-based accelerators [12]–[14]
still struggle with the power demands as the size and number
of sequences increase (Fig. 4). For this reason, CAM-based
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Fig. 1. Online DNA classification pipeline. A metagenomic sample is
sequenced by an NGS device. From the reads, k-mers are extracted and
compared against known reference genomes. Sequences are classified based
on match counts.

solutions have been limited to pathogens with the smallest
genomes: viruses [12]–[14]. For detection of pathogens with
larger genomes, like bacteria or fungi, software solutions [9],
[10] are relied upon.

We present NP-CAM, a scalable, parallel, and energy-
efficient CAM-based accelerator for DNA classification. Unlike
previous works [12]–[14], NP-CAM partitions the reference
k-mer space into many independent on-chip search regions
using an indexing step. Partitioning enables: 1) energy-efficient
search by activating only a single subspace per query, and 2)
high throughput via parallel searches across disjoint partitions.
Our primary contributions are:

‚ We introduce hierarchical adaptive partitioning (HAP),
a data-driven scheme for splitting search space, and
implement it using a butterfly network topology.

‚ We design NP-CAM as an end-to-end, commercially-
plausible pathogen detection system, and evaluate trade-
offs in energy, area, and throughput across partitioning
granularity and workloads.

‚ We demonstrate up to 65ˆ higher throughput and 173ˆ
better energy efficiency over best prior CAM accelerators
on viral workloads, and extend classification to larger
bacterial and fungal genomes previously infeasible for
on-chip acceleration.

NP-CAM enables scalable, high-performance DNA classifica-
tion across large reference datasets, making it well-suited for
emerging genomics workloads.

II. BACKGROUND

A. Metagenomics and DNA Classification

Metagenomics aims to characterize the biological makeup
of an environment by analyzing DNA sequences. This has
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broad applications in pathogen detection, disease diagnosis,
and phylogenetic analysis. Detecting pathogens quickly and
efficiently is especially important for tracking infectious disease
outbreaks, particularly in resource-limited settings. While
advances in next-generation sequencing (NGS) technologies
(e.g., Illumina [18], PacBio [19], ONT [20]) have dramat-
ically increased sequencing throughput, analyzing this data
remains a major computational bottleneck—particularly for
large-scale DNA classification. Early DNA classification relied
on alignment-based methods [21], [22], which are accurate
but computationally intensive. Probabilistic models offer high
sensitivity but are often too slow for large-scale workloads [23],
[24]. In contrast, k-mer-based methods achieve comparable
accuracy with significantly lower compute cost [9], [10]. These
algorithms compare query k-mers against reference k-mers,
tallying match scores for each class and classifying accordingly.

Platforms like the handheld Oxford Nanopore’s Min-
ION [25] enable real-time sequencing in portable and resource-
constrained contexts such as remote wastewater surveil-
lance [26], pathogen tracking [27], [28], point-of-care diagnos-
tics [29], [30], field epidemic surveillance [31], and embedded
environmental metagenomic monitoring [32]. In these scenarios,
the CPU-based Kraken2 is insufficient: it processes only 1.3
Gk-mer/hr while demanding 80 GB of RAM and server-level
compute [10], [33]. Real-world applications necessitate high-
throughput low-power classification pipelines that Kraken2
cannot support. Due to the need for an alternative to Kraken2,
hardware accelerators for the memory-intensive k-mer-based
classifiers have been developed [12]–[17], [34].

Algorithm 1: Software algorithm for DNA classifica-
tion with k-mer matches (based on [9], [10]).
//Offline Preprocessing
foreach genome Ref in Database do

foreach k-mer r in Ref do
hash table[Ref ][r]++;

//Online Classification
foreach read Query in Sample do

foreach k-mer q in Query do
foreach genome Ref in Database do

scores[Query][Ref ]+= hash table[Ref ][q];

return C(scores); //C is a classifier
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Fig. 3. A 2-ary 3-fly butterfly network. Example directs incoming packets
from injection terminals to 000 destination terminal by fixing one digit per
stage (MSB to LSB here).

B. Content Addressable Memory (CAM)

Content addressable memories (CAMs) store data in arrays
of cells that perform bitwise comparisons in parallel. CAMs
return the locations of matching entries in a single-cycle,
Op1q operation by simultaneously activating all cells [35]–
[38]. This in-memory search capability makes CAMs attractive
for high-throughput matching tasks. Figure 2 illustrates the key
components of a CAM array, including word lines, bitlines,
cells, and peripheral circuitry. In the CAM cell of Fig. 2, if the
search line (SL) input does not match the stored data bit, a pair
of series-connected NMOS transistors is activated, creating a
pull-down path that discharges the match line (ML). At the
array level, a row is considered a match only if all CAM cells
in that row maintain a high ML. Any single mismatch triggers
a discharge, pulling the row ML low.

Various cell-level optimizations have reduced CAM energy
consumption [12]–[14], [39], [40]. However, these approaches
only improve constant factors and do not address fundamental
scalability or support multi-query parallelism. CAMs are
typically implemented as large monolithic arrays. Although
physically tiled to mitigate line capacitance and delay, they still
operate as a logical whole. Each search activates all cells, caus-
ing power consumption to scale with the total array size. This
architecture becomes a bottleneck for large-scale workloads like
DNA classification, where reference sets can span millions of k-
mers. This has held back designs like DASH-CAM and EDAM,
which applied CAMs to DNA classification due to their fast
search capability, to small viral workloads [12], [14], [41]. Full
array activation becomes increasingly energy-prohibitive for
larger classification workloads. For example, classifying across
10 fungal genomes can require 64MB of CAM storage and over
200W of search power [12]. To overcome these limitations, we
propose hierarchical adaptive partitioning (HAP), an algorithm-
hardware co-design that partitions the CAM into smaller,
independently searchable sections. By leveraging patterns in the
reference data, HAP enables scalable CAM usage orthogonal
to cell-level optimizations, allowing concurrent and energy-
efficient matching across disjoint partitions.

C. Butterfly Networks

A m-ary n-fly butterfly network is a multistage intercon-
nection topology comprising n stages of routers, each with
a radix (degree) of m [42], [43]. This structure connects mn

input terminals to mn output terminals through a series of n
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Fig. 4. Monolithic CAM vs CPU k-mer classification energy derived
analytically. CPU outperforms prior CAM designs on fungal datasets due
to efficient sublinear search algorithms.

switching stages. The topology maintains diameter logarithmic
to the total number of nodes and enforces deterministic routing,
making it a staple in parallel computing and network-on-
chip (NoC) designs [44]–[48]. Each node in the network
is assigned a unique address represented in radix-m with n
digits. Routing a packet involves traversing the network stages,
where at each stage i, the router examines the i-th digit of the
destination address to determine the appropriate output port.
This process effectively ”fixes” one digit per stage, ensuring
that after n stages, the packet reaches its correct destination,
(see example in Fig. 3). From the packet’s perspective, the
traversal resembles navigating through a tree structure, where
each decision point (router) directs the packet closer to its
destination based on the corresponding digit in the address.
This deterministic routing guarantees a unique path from any
source to any destination, simplifying the routing logic and
enabling predictable performance. In our work, we use the
butterfly network topology to facilitate scalable and parallel
indexing into independent search-space partitions.

III. SEARCH SPACE PARTITIONING

This section presents the scalability limits of monolithic
CAM search and motivates our partitioning-based solution. We
introduce theoretical cost models for partitioned search and
examine two approaches: a naive prefix method and a data-
aware hierarchical adaptive partitioning (HAP) scheme. Using
real genomic datasets, we compare their theoretical search costs
across different partitioning granularities. Finally, we describe
how the indexing step in both schemes maps naturally onto a
butterfly NoC.

A. The Problem With Monolithic Searches

Though CAMs offer Op1q search time, there is no free
lunch: their area and energy scale linearly with database size
(OpNq). Figure 4 illustrates this tradeoff between CAM and
CPU systems across datasets of 10 species. For small N
(104–105), CAMs outperform CPUs in performance, energy,
and area, thanks to low constant overheads and in-memory
parallelism. CPUs, constrained by memory bandwidth and
the Von Neumann bottleneck, struggle in this regime. As N
increases, however, CPUs can exploit sublinear search strate-
gies (e.g., binary search), and their constant-factor overhead
becomes less significant. For large databases, CPUs ultimately
surpass monolithic CAMs in energy efficiency. This tradeoff
has confined prior CAM-based works [12]–[14] to small viral
genomes (typically 104 base pairs). Yet many pathogenic
genomes are orders of magnitude larger: bacterial genomes span
„106 bp, while fungal genomes exceed 107 bp. We address
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Fig. 5. Effective search cost (Eq. 1) for 16-mer datasets with varying sizes.
Results are normalized to monolithic baseline and presented on a log-log axis.

this scalability gap with a partitioned CAM architecture tailored
for large-scale DNA classification, enabling on-chip detection
of complex pathogens.

B. Prefix Partitioning

To optimize large-scale CAM-based search tasks, such as
DNA classification, we propose a search-space partitioning
approach. By using selected positions in each query k-mer as
an index, we divide the reference k-mers into disjoint groups,
activating only the CAM subarray relevant to the query. This
reduces energy consumption, as CAM search energy scales
with the number of active entries.

From a reference genome of length N , we extract all k-mers
using a sliding window of unit stride, yielding N ´ k ` 1
substrings. These k-mers form a monolithic search space of
size N ˆ k. We partition this space using p selected positions
in each k-mer, producing P “ 4p total partitions. Since these
index positions are matched before dispatching a query to a
partition, only the remaining k´p characters need to be stored
and compared within each subspace. The number of stored
k-mers remains N , but each query only searches a fraction of
the total space. Figure 8 illustrates this scheme.

To model the tradeoff between partitioning and search cost,
we define the following objective function:

Oidealpk, p,Nq “ p ˆ P
loomoon

indexing

` pk ´ pq ˆ N

P
loooooomoooooon

regular partition search

, 0 ď p ď k (1)

The first term captures the cost of indexing logic shared across
queries, while the second represents the average number of
entries searched within a partition. Fig. 5 plots this cost,
normalized to the monolithic baseline, across varying p and
dataset sizes N . We observe that the optimal partitioning
granularity increases with N , as more partitions reduce per-
query cost. However, for very large p (e.g., p “ 8), the indexing
overhead dominates, making such granularities suboptimal even
for massive datasets. In contrast, small p consistently offers
modest but suboptimal improvements.

C. Hierarchical Adaptive Partitioning (HAP)

While simple, prefix partitioning has notable drawbacks.
The index positions are fixed, and the resulting partitions are
often highly imbalanced. In Fig. 6, we show how even small
values of p can produce skewed partition sizes when using
prefix-partitioning. This imbalance increases fragmentation
and energy usage, as large partitions dominate the search
workload. To address this, we introduce hierarchical adaptive
partitioning (HAP), a greedy algorithm that iteratively splits
the dataset to balance partition sizes. Figure 8 illustrates the
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schemes and /stages p. HAP generates more balanced partitions than prefix-
based partitioning.

offline construction and online usage of both prefix-based and
HAP trees. The figure compares how each method partitions a
monolithic k-mer reference set (steps �–�) and routes queries
during classification (steps �–�). Prefix-based partitioning
splits on fixed positions, while HAP adaptively selects split
points to balance partition sizes. During search, queries in the
HAP tree land in smaller, more efficient partitions than in
the prefix tree. A recursive formulation of HAP is given in
Alg. 2. In Fig. 6, we illustrate the improvement in partition
size balance from using HAP over prefix-partitioning. Because
HAP adaptively splits partition nodes based on the current data
distribution, the variation in partition sizes is reduced.

Our previous objective function (Eq. 1) assumed uniform

Algorithm 2: Hierarchical Adaptive Partitioning (HAP)
Input: Pattern length k, total stages t, current stage s,

used positions U , current set of patterns C
Output: List of final partitions
Function: HAP(k, t, s, U, C)

if s ą t then
return C;

best var Ð 8;
foreach position p P t0, . . . , kuzU do

var Ð evaluate_split (C, p);
if var ă best var then

best var Ð var;
best pos Ð p;

G Ð split_patternspC, best posq;
R Ð H;
foreach group g in G do

R Ð RYHAPpk, t, g, s`1, U Y t best posuq;

return R;

1 2 3 4 5 6
p

0

25

50

O
ve

rh
ea

d
(%

) Viral

1 2 3 4 5 6
p

Bacterial

1 2 3 4 5 6
p

Fungal

Method
Prefix
HAP

Fig. 7. Search overheads on real data due to imbalanced partitions. We
calculate the weighted partition search cost (Eq. 2) for prefix-based, HAP, and
perfectly-uniform partitioning.

query distribution, yielding an average partition cost of pk ´
pq ˆ N

P . However, in DNA classification, query distributions
mirror reference distributions, since the source organism is
expected to be present in the reference set. To better reflect
true costs, we weight each partition by its share of the total
reference set. Let Si be the number of k-mers in partition i.
The expected cost becomes:

ErOrealpk, p,Nqs “ p ˆ P
loomoon

index

` pk ´ pq
P´1
ÿ

i“0

|Si|
|Si|
N

looooooooooomooooooooooon

weighted partition search

, 0 ď p ď k

(2)
When partitions are uniform (|Si| “ N{P ), Eq. 2 reduces to
Eq. 1. We analyze the impact of the weighted partition search
term on our proposed partitioning schemes. Both schemes
incur overhead from partition imbalance, but prefix partitioning
suffers more: in Fig. 7 prefix overheads exceed 40% above
ideal, while HAP stays below 20%.

D. Butterfly Network Implementation

Hierarchical adaptive partitioning (HAP) constructs a de-
cision tree that maps naturally onto a butterfly network. We
implement HAP on a radix-4, p-stage network, where p is the
partitioning granularity. Each stage performs a data-dependent
split based on one k-mer index, routing queries along one
of four paths corresponding to the nucleotide at that position.
Fig. 9 shows a 3-stage (p=3) configuration. The first-stage
routers all use the same split position, 3, to route queries. For
instance, if the nucleotide at index 3 is ‘A’, the packet is routed
to the rightmost region of the network. At the next stage, all
four second-stage quadrants use independently chosen positions.
Since both k-mers routed to the rightmost quadrant in the first
stage, they again both split based on the same position—index
4. In the third and final stage, each k-mer is routed to a different
subregion of the network: one splitting at index 0 and one
splitting at index 2. From the final split directions, k-mers
are sent to the CAM containing the corresponding partition.
Our butterfly network implements parallel HAP trees with
programmable routing logic at each node.

Prefix partitioning is a special case of HAP where the split
positions are fixed ahead of time and shared across all routers
in each stage. In this case, the k-mer is partitioned based on
the first p characters, every router at a given stage uses the
same fixed index (e.g., stage 0 uses position 0, stage 1 uses
position 1, and so on). This results in unbalanced partitions
when the underlying prefix distribution is skewed.

4



Offline and Online -mer Extraction and Monolithic Searches HAP Scheme and Search

A
A
C
A
G
A
T
G
G
T
A
A
C

A
A

A
A
A
G
A
T
T
T
G
T
A
G
T

T
C

G
C
C
A
G
C
T
T
A
A
A
A
T

G
T

A
C
A
A
G
G
G
A
T
T
G
A
C

T
T

A
C
G
C
A
T
G
T
G
T
G
C
A

G
A

A
A
A
G
C
T
T
G
G
G
A
G
G

T
A

Sample Read 0
AAGAAA

AACGCA

Sample Read 1
TTTGGT

GTTATG

Class 0 Reference Genome
AAGAAA

AACCCA

TTTGGT
GTTATG

A A G A
A G A G
C A C A

T A A C C A

0 1 2 3 4 5 0 1 2 5

3

4

AAGAAA
AACGCA
TTTGGT
GTTATG

1

2 4

1
2

4

T

G

C

A

T
G
C
A

G T T G

5

T
G
C
A

2

T
G
C
A

4

T
G
C
A

A A C C
A G A C
C T T A

0 1 2 4

T A A C

A A G A
A T T T
G A A C

0 1 4 5

T T G T

A C T A
A T G T
G G A G

0 1 2 5

T T A G

Prefix-based Partitioning and Search

G A A A

T T A A
A A C G

C A G A

T C A G

G G A C
A T G G
T A T G

A C C A

T G G T

C C C A
A G G A

A C C C
C G T T
G T C T

A T T G

2 3 4 5

2 3 4 5

2 3 4 5

2 3 4 5

3 3

T

G

C

A

T
G
C
A

0

1

T
G
C
A
1

T
G
C
A
1

T
G
C
A
1

Class 1 Reference Genome
AAGAAA

AACCCA

TTTGGT
GTTATG

.....

.....

.....

To Novel
Approach

Fig. 8. Comparison of monolithic (prior work), prefix-based partitioning, and HAP schemes. Steps �–� depict offline dataset construction. Prior works
extract k-mers (�) to construct monolithic reference set (�). Prefix-based partitioning (�) splits the reference set using fixed indices (e.g., first two characters),
leading to imbalanced partition sizes due to nonuniform prefix distribution. In contrast, HAP (�) recursively selects the split index that minimizes partition size
variance, producing more balanced trees. Steps �–� illustrate the online search process. In the monolithic configuration (�–�), the query k-mer must be
searched across all entries. In the prefix tree (�), the query “AAGAAA” lands in a partition of size 3 by matching fixed prefix positions. In the HAP tree (�),
adaptive splits direct the same query to a partition of size 1, reducing energy.

A
GT C A

3 3

4 4

0 2

ACT GACGT AC TGACGT

AAGAAA CACAGA

to CAMs

Fig. 9. A 3-stage (p “ 3) configuration of HAP on a butterfly network
topology. At top, 64 injection ports (not shown) feed into 16 radix-4 routers.

IV. NP-CAM
This section presents: an overview of the NP-CAM architec-

ture, a detailed description of its two primary components—the
HAPNet interconnect and SCore units, and the execution flow
and system integration for end-to-end classification.

A. Architecture Overview

NP-CAM (Fig.10) consists of three main components: the
frontend, which manages control and memory access; the
in-memory search engine, which uses the HAPNet NoC to
partition and search across CAM banks (SearchCores); and the
backend, which performs result reduction on the same network.

1) Frontend: The frontend handles control, off-chip memory
access, and preprocessing. A microcontroller configures the
search engine by programming each HAPNet router’s split
position and assigning class IDs to CAM subarrays. This setup
is performed offline, once per reference dataset. Incoming DNA
reads are parsed using a bank of shift registers that extract
k-mers via a sliding window. Input sequences are encoded
in UCSC 2-bit format [49]. Each metagenomic sample may
yield thousands of reads, with each read producing hundreds
of k-mers. Shift registers operate on independent nucleotide
streams from a slice of, one of, or multiple of these reads.
Each register consumes a nucleotide, shifts left, discards the

most significant position, and appends the new nucleotide.
To maximize throughput, all P registers attempt to load P
nucleotides and produce P k-mers per cycle. If contention
arises in the search engine, backpressure may stall specific
registers, preserving their contents. On-chip buffering serves
to both support high-bandwidth streaming access to off-chip
memory and dynamically adapt to network contention.

2) Search Engine: The search engine consists of the
HAPNet and SCores (Search Cores); it is responsible for
sorting, routing, and searching incoming k-mer queries, as
well as accumulating class-specific match scores. Query k-
mers enter the search engine through P injection ports of the
HAPNet, connected to the frontend shift registers. Queries
may arrive in any order; HAPNet deterministically routes
each to its corresponding subspace partition while handling
contention. Each routed k-mer exits HAPNet via one of P
ejection channels, delivering it to the appropriate SCore. Each
SCore contains a single CAM bank, hierarchically organized
into mats, arrays, and subarrays (see Fig. 12), similar to
prior CAM accelerators [50], [51]. Each SCore broadcasts
the incoming k-mer to all CAM subarrays within the bank and
accumulates matches using peripheral logic.

3) Backend: The backend comprises the local accumulator
units within each SCore, the reversed HAPNet module, and
the microcontroller running the C() classifier. The reversed
HAPNet aggregates scores from all SCores and sends the
result to the microcontroller. The butterfly network naturally
supports low-latency reduction trees, and requires only a subset
of the routers to support reduction. Our classifier C() function
performs a scaled arg-max over class scores, normalizing
each by the expected number of random matches based on
genome size and k-mer length. Similar classifiers also apply
lightweight logic on class scores and can be implemented on
simple microcontrollers [12]–[14], [16].
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B. HAPNet Network Topology & Router Microarchitecture

1) Forward Pass: Fig. 11 shows the router microarchitecture.
Each router is radix 4, with four input and output channels
corresponding to the four nucleotides. Internally, the router
includes input buffers, a position register (identifying the
current pivot index), a direction decoder, round-robin arbiter,
credit-based flow control, and a 4-way integer adder for the
backward reduction phase. The direction decoder inspects the
nucleotide at the pivot position and selects the appropriate
output channel. A round-robin arbiter resolves conflicts when
multiple inputs request the same output, giving priority to
each of the inputs in turn. Packets traverse the network in a
pipelined manner: 1 cycle for router processing and 1 cycle
for each hop. This lightweight design minimizes area and
power overhead for the indexing process. HAPNet efficiently
connects P shift register producers to P SCore consumers,
managing contention and routing in parallel. The butterfly
topology ensures scalable and deterministic routing for high-
throughput DNA classification.

2) Backward Pass: As shown in Fig. 10, part of HAPNet
supports a backward pass for class score reduction. In this
phase, routers reverse their input and output directions: outputs
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Fig. 11. Router microarchitecture for NP-CAM. The solid line shows k-mer
routing in the forward pass; the dotted line shows score reduction in the
backward pass.

become inputs and vice versa. Each reduction-stage router
aggregates inputs from all four channels using an integer adder
and forwards the result upstream. These modifications require
minimal additional logic and apply only to the subset of routers
involved in score reduction. The backward pass proceeds in a
pipelined manner across all C classes and p network stages,
completing in C ` p ` 1 cycles.

C. SCore Memory Hierarchy & Microarchitecture

Each SCore (Search Core) consists of a single CAM bank
and corresponds to one reference partition. We adopt a four-
level hierarchical CAM architecture from prior accelerator
designs [50], [51], consisting of bank, mat, array, and subarray
levels (Fig. 12). In our notation, m is the number of mats per
bank, a is the number of arrays per mat, s is the number of
subarrays per array, and r is the number of rows per subarray.
The number of banks is fixed at P , with each having a one-
to-one correspondence with a reference partition from HAP
(Sec. III-C). If a partition contains more k-mers than can fit in
a single bank, a subsample is taken. In practice, around 20%
coverage is necessary to maintain classification performance
(Sec.V-C2); meaning the general size of the workload must be
known to determine the appropriate CAM sizing.

Each SCore locally accumulates scores across C classes. We
assign each subarray to a single class, enabling fine-grained
representation without requiring per-row class tracking. When a
k-mer is searched, matchlines in the subarray are activated, and
a POPCNT operation counts matches. At the array level, scores
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Fig. 12. The hierarchical CAM architecture used in SCores, with four levels:
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TABLE I
CAM CIRCUIT PARAMETERS FOR RELATED DESIGNS.

Design This
work [52]

DASH-
CAM
[12]

HD-
CAM
[13]

EDAM
[14]

Technology (nm) 14 16 65 65
Cell type 10T 12T 30T 42T
Cell area (µm2) 0.55 0.68 5.45 33
Cell search energy (fJ) 0.38 0.3 0.54 1.4
DNA encoding binary one-hot one-hot one-hot
Match type exact hamming hamming edit
Search time (ns) 1 1 1 0.75

from subarrays with the same class ID are aggregated using
gather-add. Mats and banks sum partial scores into C-wide
vectors, which are stored in a local SRAM-based cache.

We use a conventional 10T binary CAM (BCAM) design
(Fig. 2, Table I). CAM cells store binary values 0, 1, while
DNA uses four bases A,C,G, T . To encode DNA in binary,
we map each base to a unique 2-bit code stored across two
adjacent CAM cells. For example, base ‘A’ is encoded as ‘00’,
and a row contains 2k-p cells. This dual-cell scheme reduces
memory overhead compared to the one-hot (4-cell) encodings
used in other works.

D. DNA Classification in NP-CAM

1) Offline Processing: To perform DNA classification in
NP-CAM, we generate a monolithic k-mer set, select a
partitioning scheme, and program the search engine. The
k-mer set is extracted from reference genomes of target
pathogens, with each k-mer labeled by its class. A single
NP-CAM configuration may support multiple partitioning
schemes, provided they share the same granularity p. The
HAPNet’s position registers are programmed accordingly, and
the reference dataset is partitioned. Each partition is assigned
to a SCore, with subarrays allocated to classes in proportion to
their relative size within the partition. Once the genome of a
pathogen is known, the reference changing, and thus the offline
partitioning and accelerator programming, occurs infrequently.

2) Online Classification: NP-CAM supports scalable, paral-
lel, and energy-efficient online classification of metagenomic
samples. To extract greater parallelism from the workload,
NP-CAM supports read-level parallelism—up to 2t reads per
batch. Modern sequencing devices produce many reads from a
sample in parallel; NP-CAM can consume many of these in real
time. Each shift register will process a stream of nucleotides
in a batch before the reduction step occurs. Depending on
the batch size and available number of shift registers, reads
may be concatenated with padding or split into overlapping
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Fig. 13. Input format and execution flow. Supports batch size up to 2t.

TABLE II
REFERENCE GENOME DATASETS OF VIRAL PATHOGENS, SOURCED FROM

NCBI DATABASE [53].

Domain Pathogen Length Notes

Viral

Lassa 10,700

Same viruses used
in prior work [12]

Influenza 13,600
Measles 15,900

Rotavirus 18,600
SARS-Cov-2 29,900

Bacterial

E. Coli 4,640,000

Common human
pathogenic bacteria

Streptococcus 2,110,000
Salmonella 4,950,000

Staphylococcus 2,820,000
Tuberculosis 4,410,000

Fungal

A. fumigatus 29,400,000

Critical or high
priority according
to WHO [54]

Candida albicans 14,300,000
Candida auris 12,200,000
C. neoformans 18,900,000
Histoplasma 30,500,000

TABLE III
SIMULATED READ DATASETS INFORMATION. REPORTED LENGTH AND

ACCURACY VALUES ARE MEANS, READ COUNT IS PER CLASS.

Read Type Simulator Length Accuracy Reads Total

Illumina ART [55] 100 99.9% 10,000 1M
PacBio PBSIM [56] 5,000 99.0% 200 1M
ONT PBSIM [56] 10,000 90.0% 100 1M

subsequences to generate the streams. As each new k-mer is
generated, a t-bit read-ID tag is appended. The tagged k-mer is
then injected into one of P HAPNet ports. The k-mer and tag
traverse p stages of the network and arrive at the corresponding
SCore. The remaining k ´ p nucleotides are compared against
CAM entries, and class scores are accumulated locally. Scores
for all active reads are cached in each SCore’s accumulator
unit. The read-ID tag indexes a direct-mapped score cache
to read and write per-read scores efficiently. This approach
improves utilization by allowing each forward pass to process
many k-mers, and it reduces pipeline drain overhead. Total
backward pass latency is reduced from Nreadspc`p´1q cycles
to Nreads

2t p2tc ` p ´ 1q.

V. EXPERIMENTAL RESULTS

A. Experimental Setup and Methodology

1) Datasets and Software Baseline: The reference datasets,
summarized in Table II, include viral, bacterial, and fungal
genomes sourced from the NCBI database [53]. The query
datasets, shown in Table III, consist of three simulated sequenc-
ing read types: 1) Illumina reads: short (100bp), high-accuracy
(«99.9%) [57]; 2) PacBio reads: longer (5,000bp), high-
accuracy («99%) [19]; 3) ONT reads: ultra-long (10,000bp),
lower-accuracy («90%) due to higher noise [20]. As a
software baseline, we used Kraken2 with default settings and
the standard RefSeq [58] viral, bacteria, and fungi
databases [10]. Kraken2 was evaluated single-threaded on an
Intel Xeon Gold 6254 CPU at 3.10 GHz.

2) Hardware Modeling and Cycle-Accurate Simulation: We
model NP-CAM using CAM circuit parameters from [52]. The
10T-BCAM model was implemented and evaluated via SPICE
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Fig. 14. Exact matching DNA classification performance for various k-mer lengths and pathogen/read type pairs. The k-mer length of 16 is chosen for its
consistently high performance across all scenarios.

simulation. Peripheral circuitry and interconnects were modeled
with a 20% cumulative energy and area overhead across
the memory hierarchy. Digital components—including shift
registers, buffers, HAPNet routers, and near-memory processing
logic—were synthesized using Synopsys Design Compiler
at a commercial 28nm node under SS corner conditions.
Area and power estimates were scaled from 28nm to 14nm
using the methodology of Stillmaker et al. [59]. Channel
and wiring models were chosen conservatively to ensure area
and power estimates remain realistic for large-scale HAPNet
configurations. We estimate channel area as FbL, where F
is feature width, b is channel bit width, and L is channel
length, estimated as L «

a

AP {4 given router area A. Channel
power is computed assuming 0.5pJ/bit/mm [60]. NP-CAM
was evaluated using a custom, object-oriented, cycle-accurate
simulator that faithfully models all components and tracks state
across cycles for result validation.

B. NP-CAM Classification Accuracy

Figure 14 shows that classification accuracy is highly
sensitive to the choice of k-mer length. Accuracy peaks
in the k-mer length range of 14 to 20. Smaller k-mers,
while more area- and energy-efficient for CAMs, produce
overly frequent patterns. This reduces the ability to distinguish
between classes—especially in the larger bacterial and fungal
datasets. As k increases, Illumina reads—despite their high
accuracy (99.9%)—show a sharper drop in F1 scores than
PacBio and ONT. This is due to the short length of Illumina
reads (100bp), which yield fewer k-mers and make each
error disproportionately impactful. In contrast, PacBio and
ONT reads produce many more k-mers, making them less
sensitive to individual errors—even at higher k. Based on these
findings, we select k=16 as the optimal k-mer length for NP-
CAM. This value strikes a balance between error tolerance
and discriminative power across all read types and reference
datasets, matching the performance of approximate-matching
accelerators [12]–[14] while minimizing CAM width.
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Fig. 15. Effect of partitioning scheme, granularity, and buffer depth on isolated
network performance of HAPNet.

C. Design Space Exploration

1) HAPNet Architecture: We evaluate HAPNet performance
across a range of design parameters. Throughput does not
always match the injection rate due to contention: multiple
inputs may compete for shared network resources, leading
to increased latency and reduced throughput. We simulate
10,000-cycle trials to evaluate network throughput across a
range of injection rates—defined as the probability that a k-
mer is injected at each HAPNet input port per cycle. This
methodology is standard in NoC research for assessing network
performance. We sweep buffer depth and the number of
HAPNet stages. Each configuration is evaluated using both
prefix-based and HAP partitioning, classifying simulated reads
(Table III). Uniform traffic is included as an idealized positive
control. Results are shown in Figure 15. Saturation throughput
improves with increasing buffer depth and more uniform traffic
distributions. Larger HAPNet configurations benefit more from
deeper buffers. Overall, the optimal buffer depth is determined
to be 4. HAP consistently achieves higher throughput than
naive prefix partitioning, due to its more balanced partition
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sizes and less concentrated traffic.
2) SCore Architecture: We explore how SCore sizing

affects fragmentation and storage overhead across partitioning
granularities. The number of rows per subarray (r) is fixed
to 32, 128, and 512 for viral, bacterial, and fungal datasets,
respectively. We vary the number of subarrays (S) per bank
from 1 to 1024. The memory hierarchy is sized to match the
number of subarrays: S=mas, and to balance the interconnect
requirements at each level: m=a=s. Subarrays are assigned to
classes in proportion to each class’s k-mer frequency within
the partition (from HAP or prefix). For each class, k-mers
are sampled without replacement. In Figure 16, we plot CAM
utilization, k-mer coverage, and accuracy versus S for different
datasets and values of p. Accuracy saturates when k-mer
coverage reaches 20–40%; thus, we set the storage requirements
to 64K, 2M, and 16M k-mers for viral, bacterial, and fungal,
respectively—highlighted in Figure 16. When partitions are
small and banks are large, many CAM entries go unused. This
effect is especially pronounced for the viral dataset at p=6,
where small partitions cause average utilization to fall below
50% even with a single subarray per bank. Figure 17 shows
the effect of cache size on SCore performance. We sweep
the tag bits from 0-7 and 0-8 for ONT and PacBio reads,
allowing a single read to an entire dataset of 1Mbp to operate
in parallel. For Illumina reads, we sweep the tag bits from
p-1 to 2p+2, exploring the knee of the performance curve for
each configuration of NP-CAM. Larger caches help maintain
resource utilization at higher p, especially for Illumina reads,
which produce fewer k-mers per read. We identify 4 tag bits
(16 cache entries per class) as optimal for p=1–3, and 6 tag
bits (64 entries) as optimal for p=4–6 configurations. This
selection balances area and performance.

3) NP-CAM System-Level Evaluation: We illustrate the
throughput of NP-CAM across configurations in Figure 18a.
System throughput varies significantly with read type and
partitioning granularity: higher partitioning provides increased
hardware parallelism, and longer reads better exploit this
parallelism. As p increases, throughput for short Illumina reads
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Fig. 17. Study on cache sizing effect on performance. Batch size doubles for
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saturates rapidly due to bottlenecks in result aggregation, driven
by the fixed latency per read. Longer PacBio and ONT reads
benefit more significantly from increased p due to enhanced
concurrency in k-mer searches. An observed secondary effect is
the slightly higher throughput for bacterial pathogen detection
compared to fungal pathogens in the long-read and high-p
context. We attribute this to the fungal dataset containing
multiple closely related species in the Candida genus, increasing
k-mer overlap and network contention. For instance, at p “ 6,
ONT bacterial throughput reaches 527 Gk-mer/s compared
to 460 Gk-mer/s for fungal datasets. Additionally, the small
viral dataset when partitioned at p “ 6 shows nonuniform
partitions (Fig. 6), leading to contention in HAPNet, limiting
maximum throughput (448 Gk-mer/s for ONT reads). Since
each k-mer requires 2 bits, even NP-CAM’s most bandwidth-
intensive configuration (p “ 6, ONT, bacterial) demands only
132 GB/s of DRAM bandwidth.

Figure 18b shows total area across configurations. Scales
differ across domains due to increasing storage requirements
for reference genomes. The area for viral classification remains
below 2 mm2 until p “ 5, beyond which the increase in SCore
logic dominates total area (area decreases monotonically to
1.4 mm2 at p “ 3 before increasing to 1.59 and 2.31 mm2 at
p “ 4 and p “ 5 respectively). For bacterial classification, total
area initially decreases moderately before sharply increasing
as p grows, reaching a minimal area of 32.7 mm2 at p “ 5.
Fungal classification configurations exhibit the largest areas,
driven by significantly larger reference genome sizes. At p “ 6,
the total fungal area is minimized at 228 mm2, achieving a
net area decrease of over 100 mm2 compared to monolithic
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Fig. 18. Design space exploration across partitioning granularity (p), reference domains (viral/bacterial/fungal), and read types (short Illumina/long PacBio and
ONT). The p=0 configuration indicates the monolithic baseline. Other architectural parameters are fixed based on earlier design-space studies.

configurations due to reduced CAM widths.
Figure 18c shows power consumption across various NP-

CAM configurations. Power consumption exhibits substantial
variation across datasets due to differences in CAM footprint
size. For viral datasets, increasing partition granularity initially
reduces power from 1.05 W at p “ 0 to less than 0.30 W at p “
4, as large CAM arrays are partitioned into smaller segments.
However, overhead from additional logic at higher granularity
limits further reductions. Bacterial and fungal datasets require
more power (17.8 W at p “ 6 for ONT reads on fungal)
due to larger memory footprints. Deeper partitioning strategies
significantly mitigate the total power.

Figure 18d shows the Energy-Delay-Area Product (EDAP)
across different configurations. EDAP significantly decreases
as partition granularity (p) increases, highlighting NP-CAM’s
efficient balance between performance, energy, and area. Mono-
lithic fungal datasets have an EDAP of 4.3ˆ1017 nJ·ns·mm2/k-
mer, reducing dramatically to 9.5 ˆ 1010 nJ·ns·mm2/k-mer
at p “ 6. The EDAP metric indicates several orders-of-
magnitude improvement over baseline configurations, especially
pronounced for large fungal datasets, demonstrating scalability.

D. Comparison with State-of-the-Art

To our knowledge, NP-CAM is the first CAM-based accel-
erator to scale to DNA classification tasks involving pathogen
genomes exceeding 1 million base pairs. Table IV summarizes
NP-CAM’s performance alongside representative state-of-the-
art hardware and software solutions across viral, bacterial,
and fungal classification workloads. NP-CAM throughput and
power results are reported as ranges corresponding to short
and long reads, respectively. Kraken2 results are reported for
a single core and ONT reads, which we empirically found
to run 5–20ˆ faster than PacBio and Illumina, respectively.

TABLE IV
STATE-OF-THE-ART DNA CLASSIFICATION SOLUTIONS.

Task Solution Tput Power Area
(Gk-mer/s) (W) (mm2)

Viral

NP-CAM (p=4) 15.2–65.1 0.07–0.29 1.59
DASH-CAM [12] 1.00 0.88 1.57

HD-CAM [13] 0.50 4.53 10.51
EDAM [14] 0.67 3.93 16.00

ClaPIM [16] 0.00015 0.37 0.03
ClaPIM Filt. [16] 0.00440 *0.0015 *0.03
KRAKEN2 [10] 0.00036 11.1 -

Bacterial

NP-CAM (p=5) 17.4–219.3 0.41–4.90 32.7
DASH-CAM [12] 1.00 28.3 50.3

HD-CAM [13] 0.50 145.0 336.3
EDAM [14] 0.67 125.8 512.2

ClaPIM [16] 0.00015 12.0 1.0
ClaPIM Filt. [16] 0.00440 *0.048 *1.0
KRAKEN2 [10] 0.00036 11.1 -

Fungal

NP-CAM (p=6) 18.0–459.2 0.78–17.8 228.1
DASH-CAM [12] 1.00 226.5 403

HD-CAM [13] 0.50 1159.6 2692
EDAM [14] 0.67 1006.6 4098

ClaPIM [16] 0.00015 95.63 8
ClaPIM Filt. [16] 0.00440 *0.39 *8
KRAKEN2 [10] 0.00036 11.1 -

*: plus CPU power/area (not reported)

MetaCache-GPU [61] is omitted due to its inferior performance
to CPU-based Kraken2 [12]. All hardware solutions are
normalized by scaling to a fixed reference dataset size: 64K,
2M, and 16M k-mers for viral, bacterial, and fungal tasks,
respectively. For HD-CAM and EDAM, which target older
technology nodes, we scale normalized area to 14nm [59].

Compared to prior CAM-based accelerators [12]–[14], NP-
CAM offers significantly higher scalability in throughput, power
efficiency, and area. Against the PIM-based ClaPIM [16],
NP-CAM delivers orders-of-magnitude higher throughput and
greater energy and area efficiencies. ClaPIM Filt. uses software-
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aided filtering to reduce search operations—similar in spirit
to our HAP-based indexing. However, it lacks a hardware
implementation of parallel filtering and search. In contrast,
NP-CAM implements indexing and parallel search directly
in hardware via HAPNet, enabling scalable, systematic parti-
tioning. Furthermore, the memristive hardware of ClaPIM Filt.
suffers from low endurance with a projected operational lifespan
of just 9 hours to 1 year. We plot the energy efficiency and
energy-area-product efficiency of the top hardware solutions in
Figure 19. For ClaPIM Filt., we consider only the energy and
area contributions of the hardware components. The results
demonstrate that the efficiency improvements of NP-CAM
increase with the dataset size, proving its more scalable nature.

VI. DISCUSSION

Even under conservative modeling assumptions, NP-CAM
significantly outperforms prior CAM-based accelerators for
realistic pathogen detection workloads. Specifically, viral
and bacterial evaluations at moderate granularities (p=1,2,3)
already yield substantial improvements in throughput, energy
efficiency, and scalability. These results position NP-CAM
as a significant advancement in hardware-accelerated DNA
classification. Nevertheless, we discuss future directions here.

Given that large fungal datasets occupy 200mm2, NP-
CAM’s suitability for DNA classification beyond the context of
pathogen detection is limited. However, it could be significantly
enhanced by employing emerging memory technologies such
as memristors, which offer higher density and lower power
compared to traditional SRAM-based CAMs [39], [40], [62].
NP-CAM, unlike ClaPIM [16], does not require repeated writes,
making it well-suited to memristive device characteristics.
Alternatively, we suggest a multi-pass reference loading strategy
that sequentially loads portions of the reference k-mer set
into the CAM and accumulates query scores across these
passes. For example, in a two-pass strategy, CAM area halves
and throughput is reduced by roughly 50%, a linear trade-
off. Accordingly, NP-CAM can scale effectively to extremely
large genomic databases containing plant or even mammalian
genomes („ 109 bp) while maintaining performance and energy
efficiency advantages. Exploring scalability beyond pathogen
detection is a potential line of work.

Butterfly networks are commonly used in off-chip networks
but are less prevalent on-chip due to their long wire lengths
at scale. For our largest configuration (p=6), channel routing
accounts for over 50% of each router’s area. Prior work [47]

proposed the flattened butterfly, which collapses each row of
routers into a single high-radix router to improve VLSI com-
patibility. Their implementation of a 3-stage radix-4 butterfly
in 65nm validates our HAPNet design up to p=3. While they
discuss scaling via increased concentration, dimensionality, or
hybrid topologies, we conservatively model energy and area
using a full butterfly topology. Future work may explore other
network topologies such as flattened butterflies.

Our system uses exact matching and achieves high accuracy
(Sec.V-B). Prior works have used custom CAM [12]–[14]
or PIM [16] designs to implement approximate matching,
which can improve performance on noisy datasets when using
large k-mers [12]–[14], [16]. Our choice of a smaller k-
mer simultaneously allows for high sensitivity on noisy ONT
reads and minimizes hardware area. Still, we outline how our
architecture can be extended to support arbitrary Hamming
distance matching [12], [13]. Supporting Hamming matching
within SCore units is straightforward: we can directly adopt
CAM designs from prior work [12], [13]. However, this only
applies to the k´p length subsequence of the k-mer that arrives
at the SCore. To support mismatches across the full k-mer, we
can attach a mismatch counter to the packet header and enable
multicast routing in the HAPNet. As a k-mer moves through
the network, it is multicast to all directions that do not exceed
the mismatch threshold. For each divergence from the matched
index, the mismatch counter is incremented. Once it arrives at
the SCore unit, the allowed Hamming distance is adjusted to
account for any mismatches garnered through the indexing step.
Exploring the tradeoff between classification sensitivity—across
varying k-mer ranges and approximate matching techniques—
and classifier performance is proposed as future work.

VII. CONCLUSION

We introduce NP-CAM, a scalable and energy-efficient ac-
celerator tailored specifically for DNA classification workloads.
To the best of our knowledge, NP-CAM is the first work
to exploit the parallelism enabled by CAM partitioning in
this manner, transforming the approach to CAM-based search
operations. Our architecture leverages a novel indexing and
partitioning scheme, HAP, to accelerate the entire DNA clas-
sification pipeline, directly addressing critical bioinformatics
applications such as pathogen detection. Through comprehen-
sive design space exploration, we investigate the impact of
major architectural parameters on key application metrics. NP-
CAM demonstrates superior scalability, achieving throughput
improvements (107ˆ/370ˆ/84000ˆ) and energy-efficiency
improvements (620000ˆ/4600ˆ/1800ˆ) over state-of-the-art
software/CAM/PIM solutions on large fungal datasets.

These results position NP-CAM as an advancement, po-
sitioned to meet the computational demands of rapidly ex-
panding genomic datasets, enabling faster, more efficient
DNA classification in a wide range of real-world settings.
Beyond DNA classification, NP-CAM’s efficient and scalable
matching infrastructure has broad applicability in domains such
as database acceleration, network acceleration, and pattern
detection.
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