
Global Minimizers of ωp-Regularized Objectives

Yield the Sparsest ReLU Neural Networks

Julia Nakhleh
Department of Computer Science
University of Wisconsin-Madison

jnakhleh@wisc.edu

Robert D. Nowak
Department of Electrical & Computer Engineering

University of Wisconsin-Madison
rdnowak@wisc.edu

Abstract

Overparameterized neural networks can interpolate a given dataset in many di!erent ways, prompting
the fundamental question: which among these solutions should we prefer, and what explicit regularization
strategies will provably yield these solutions? This paper addresses the challenge of finding the sparsest
interpolating ReLU network—i.e., the network with the fewest nonzero parameters or neurons—a goal with
wide-ranging implications for e"ciency, generalization, interpretability, theory, and model compression.
Unlike post hoc pruning approaches, we propose a continuous, almost-everywhere di!erentiable training
objective whose global minima are guaranteed to correspond to the sparsest single-hidden-layer ReLU
networks that fit the data. This result marks a conceptual advance: it recasts the combinatorial problem
of sparse interpolation as a smooth optimization task, potentially enabling the use of gradient-based
training methods. Our objective is based on minimizing ωp quasinorms of the weights for 0 < p < 1,
a classical sparsity-promoting strategy in finite-dimensional settings. However, applying these ideas to
neural networks presents new challenges: the function class is infinite-dimensional, and the weights are
learned using a highly nonconvex objective. We prove that, under our formulation, global minimizers
correspond exactly to sparsest solutions. Our work lays a foundation for understanding when and how
continuous sparsity-inducing objectives can be leveraged to recover sparse networks through training.

1 Introduction
Highly overparameterized neural networks have become the workhorse of modern machine learning. Because
these networks can interpolate a given dataset in many di!erent ways (see e.g. Figs. 1b and 1c), explicit
regularization is frequently incorporated into the training procedure to favor solutions that are, in some sense,
more regular or desirable. In this work, we focus on explicit regularizers which yield sparse single-hidden-
layer ReLU interpolating networks, which for our purposes are those with the fewest nonzero input weight
parameters among the active neurons.1 Sparse models are particularly desirable for computational e"ciency
purposes, as they have lower storage requirement and computational overhead when deployed at inference
time, and may have other attractive generalization and robustness properties (Mozer and Smolensky (1988);
Guo et al. (2018); Liao et al. (2022); Liu et al. (2022), among many others).

Although a myriad of sparsity-inducing regularization schemes have been proposed in the neural network
literature, almost none of them have actually been proven to yield true sparsest solutions, and the justifications
for their use remain almost entirely heuristic and/or empirical. Furthermore, many such strategies rely
on complex pruning pipelines—composed of iterative magnitude thresholding, fine-tuning, and sensitivity
analyses—which are computationally costly, di"cult to implement, and o!er no theoretical guarantees in
terms of the resulting sparsity. In contrast, we propose a simple regularization objective, based on the ω

p

quasinorm of the network weights for 0 < p < 1, whose global minimizer is provably a sparsest interpolating
1
In the univariate-input case, this is equivalent to the count of active neurons.

1

ar
X

iv
:2

50
5.

21
79

1v
2 

 [s
ta

t.M
L]

  2
3 

O
ct

 2
02

5

https://arxiv.org/abs/2505.21791v2


ReLU network for su"ciently small p. This objective is continuous and di!erentiable away from zero, making
it compatible with gradient descent. Although ω

p-norm minimization with 0 < p < 1 has been studied in
finite-dimensional linear problems (most extensively in the context of compressed sensing), where it is known
to guarantee sparsity under certain assumptions on the data/measurements, its behavior in the context of
neural networks—wherein the features themselves are continuously parameterized and data-adaptive—is
challenging to characterize mathematically, and to our knowledge, we are the first to do so. Specifically, our
contributions are the following:

1. Sparsity, uniqueness, and width/parameter bounds for univariate ω
p-regularized networks.

In Section 3, we prove that, for single-hidden-layer ReLU networks of input dimension one, minimizing
the network’s ω

p path norm (see (2)) implicitly minimizes both its ω
1 path norm (i.e., the total variation

of its derivative) and, for su"ciently small p > 0, its ω
0 path norm (total knot/neuron count). We

show that for any 0 < p < 1, a minimum ω
p path norm interpolant of N data points has no more than

N → 2 active neurons. In contrast, ω
1 path norm minimization alone is not guaranteed to implicitly

minimize sparsity, and may yield solutions with arbitrarily many neurons (Fig. 1a). Our result follows
from reframing the network training problem as an optimization over continuous piecewise linear (CPWL)
functions which interpolate a dataset with minimal p-variation (6) of the derivative. Using this variational
framework, we can explicitly describe the optimal functions’ behavior based on the geometry of the data
points. This characterization provides data-dependent bounds on the sparsity and weight magnitudes
of such minimum-ωp solutions, and highlights an easily-verifiable condition on the data under which ω

p

minimization for any 0 < p < 1 yields a sparsest interpolant (ω0 solution). Additionally, our analysis
shows that the solution to the univariate ω

p minimization problem is unique for almost every 0 < p < 1; in
contrast, univariate ω

0 and ω
1 solutions are both known to be non-unique in general (Debarre et al. (2022);

Hanin (2022)).

2. Exact sparsity in arbitrary input dimensions. In Section 4, we show for networks of arbitrary input
dimension that the problem of minimizing the network’s ω

p path norm subject to an ω
→ boundedness

constraint on the weights (see (8)) can be recast as a finite-dimensional minimization of a continuous,
concave function over a polytope. Using this reformulation, we show that there always exists some
data-dependent threshold p

↑ below which ω
p minimization recovers an ω

0 (sparsest) solution, in terms of
the count of nonzero parameters of the active neurons in the network. This sparsest solution has no more
than N active neurons (Proposition 4.1) and, if the data is in general position, has O(N) active input
weight/bias parameters among these active neurons.

3. A principled, di!erentiable objective for sparse ReLU networks. Our theory provides the first
rigorous justification for using a smooth ω

p penalty for 0 < p < 1 to obtain truly sparsest interpolating
ReLU networks via gradient-based methods—no pruning or complex post-hoc approaches required.

2 Related work
Sparsity via ω

p minimization in finite-dimensional linear models: ω
p penalties with 0 < p ↑ 1 for

linear constraint problems have been studied extensively in the compressed sensing literature, and have been
shown to yield exact ω

0 minimizers under certain conditions (typically involving restricted isometry and/or
null-space constants) on the measurement matrix (Candes and Tao (2005); Chartrand (2007); Chartrand and
Staneva (2008); Foucart and Lai (2009)). Such penalties have also been studied in the statistics literature
under the name bridge regression (Frank and Friedman (1993); Knight and Fu (2000); Fan and Li (2001)).
Existing theory in these areas is highly dependent on the fixed, finite-dimensional nature of the linear
constraint, and is not readily adaptable to the neural network context, wherein the features are themselves
are adaptively learned.

ω
1 path norm regularization in single-layer ReLU networks: Neyshabur et al. (2015) showed that the
ω
1 path norm of a single-layer ReLU network controls its Rademacher complexity and thus its generalization
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(a) (b) (c)

Figure 1: Fig. 1a shows several univariate min-ω1 path norm interpolants of a given dataset. Such solutions are
generally non-unique, and always include at least one sparsest interpolant (black), but also include arbitrarily
non-sparse interpolants (blue, red, green). Figs. 1b and 1c: two di!erent ReLU network interpolants of a
the same 2D dataset with di!erent numbers of active neurons and parameters. Fig. 1b has 5 nonzero input
weight/bias parameters (its ω

0 path norm as in (9)), while Fig. 1c has 16.

gap, but do not directly address the question of sparsity. In the context of infinite-width ReLU networks, the
problem of minimum-ω1 path norm interpolation is known to have solutions with no more active neurons than
the number of data points (Parhi and Nowak (2021, 2022); Shenouda et al. (2024)).2 However, solutions to
that problem are known to be non-unique, and generally include interpolating ReLU networks with arbitrarily
many active neurons (Hanin (2022); Debarre et al. (2022)). Nakhleh et al. (2024) show that a variant of ω1
path norm minimization applied to univariate-input, multi-output networks always yields a solution with no
more than N active neurons, but this solution rarely coincides with the sparsest solution unless the dataset is
of a very particular form. Therefore, the intuition that “ω1 = sparsity” breaks down in the neural network
case.

Empirical methods for training sparse neural networks: A large body of research has been dedicated
to sparsity-promoting neural network neural network training strategies. Here we briefly summarize some of
the most well-known strategies as well as some which resemble our proposed regularization approach; our list
is by no means comprehensive. Earlier works suggested using ω

1 and ω
2 penalties to encourage small network

weights (Ng (2004); Hinton and Van Camp (1993)) or applying post-training magnitude-based pruning
approaches (LeCun et al. (1989); Hassibi et al. (1993); Han et al. (2015)). Group ω

2,1-type penalties designed
to induce structured sparsity over neurons or channels (Scardapane et al. (2017); Wen et al. (2016)) have
also been suggested. More recent pruning schemes incorporate pruning iteratively into training (Guo et al.
(2016); Frankle and Carbin (2018); Zhou et al. (2019)). Other proposed approaches include ω

0 approximation
using binary stochastic gates (Louizos et al. (2018)) and ADMM; (Zhang et al. (2018)), ω

p (for p < 1)
minimization using reweighted ω

1 (Gong et al. (2022)), decoupled weight decay (Outmezguine and Levi
(2024)), and shrinkage operators for nonconvex “norms” (Srinivas and Babu (2017)); and variational dropout
(Molchanov et al. (2017)). Another line of research uses reparameterization tricks to replace non-smooth
sparsifying objectives with smooth versions that share the same local and global minimizers (Ziyin and Wang
(2023); Kolb et al. (2023, 2025)). While these methods have demonstrated empirical success in training sparse
networks, existing theory does not guarantee that any of them will find sparsest solutions. Moreover, these
approaches often require complex multi-stage pipelines and are computationally costly to implement.

Provable sparsest-recovery in specialized neural network settings: In the 1D input case, Boursier
and Flammarion (2023) show that, under certain assumptions on the data—namely, that the data contains

2
For input dimension greater than one, the ω1 path norm

∑K
k=1 |vk|→wk→2 studied in those works di!ers from the one we

consider in (8), which is equivalent to
∑K

k=1 |vk|→wk→1 for p = 1.
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no more than three consecutive points on which the straight-line interpolant is strictly convex or concave—
interpolation using a bias-penalized ω

1 path norm regularizer will select a sparsest interpolant of the dataset.
As we will see in Section 3, this assumption on the data is rather restrictive, and our analysis does not
require it. Their proof is also not readily extendable to multivariate inputs. Debarre et al. (2022) characterize
the sparsest min-ω1 path norm interpolants in the univariate case and provide an algorithm for explicitly
constructing one such solution. Ergen and Pilanci (2021) show that ω

1 path norm minimization yields
solutions with a minimal number of active neurons if the data dimension is greater than the number of
samples (precluding the univariate-input case) and the data satisfy special assumptions, such as whitened
data. In contrast, our sparsity results do not require any special assumptions on the data, and provide exact
sparsity guarantees in arbitrary input dimensions.

3 Univariate ωp-regularized neural networks
Here we consider single-hidden-layer R ↓ R ReLU neural networks of the form

fω(x) :=
K∑

k=1

vk(wkx+ bk)+ + ax+ c (1)

where (·)+ := max{0, ·} is the ReLU function, ω :=
{
{wk, bk, vk}Kk=1, a, b

}
is the collection of network

parameters, and all parameters are R-valued. For a given dataset (x1, y1), . . . , (xN , yN ) ↔ R ↗ R, a fixed
p ↔ (0, 1], and a fixed width K ↘ N ,3 consider the following problem:

min
ω

K∑

k=1

|wkvk|p , subject to fω(xi) = yi, i = 1, . . . , N (2)

We will refer to the quantity being minimized in (2) as the network’s ω
p path norm. Additionally, consider

the “sparsifying” problem

min
ω

K∑

k=1

wkvk ↓=0 , subject to fω(xi) = yi, i = 1, . . . , N (3)

where the ω
0 path norm

∑K
k=1 wkvk ↓=0—which is equivalent to the limit of the ω

p path norm as p ≃ 0—counts
the number of active neurons in the network.

In this section, we will analyze the relationship between solutions of (2) and (3) in terms of their represented
functions, and show that these functions can be explicitly described in terms of the geometry of the data
points. This characterization (Theorem 3.1) shows that solutions to (2) for any 0 < p < 1 are necessarily also
solutions for p = 1, immediately implying data-dependent bounds on the network’s parameters and Lipschitz
constant. This description also allows problem (2) to be reduced to a minimization of a continuous, concave
function over a closed, convex polytope. From there, we show in Theorem 3.2 that solutions to (2) are unique
(in terms of their represented functions) for Lebesgue-almost every 0 < p < 1 and that, for small enough p,
this unique optimal function is also a sparsest interpolant of the data (i.e., a solution to (3)). Furthermore, if
the data meets certain easily-verifiable geometric assumptions, solutions to (2) for any 0 < p < 1 are solutions
to the sparsest-interpolation problem (3).

3.1 Variational reformulation of (2) and (3)
We begin by showing that problems (2) and (3) can be equivalently expressed as a type of variational problem
over the set of continuous piecewise linear (CPWL) functions which interpolate the data. This equivalence is

3
Here and in Section 4 we fix K ↑ N because interpolation in any dimension is possible with K = N neurons (Bubeck et al.

(2020), Proposition 2).
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critical for the analysis in this section, since it allows solutions to (2) and (3) to be characterized geometrically
in terms of the represented functions and their local behavior around data points. Here, we let S

↑
ω,p (resp.

S
↑
ω,0) denote the set of parameters of optimal neural networks which solve (2) (resp. (3)) for a given dataset,

and let

S
↑
p := {f : R ↓ R | f = fω, ω ↔ S

↑
ω,p} (4)

be the set of functions represented by neural networks with optimal parameters in S
↑
ω,p, for any 0 ↑ p ↑ 1.

Proposition 3.1. For any 0 ↑ p ↑ 1, the set S↑
p is exactly the set of minimizers of

min
f

Vp(f) , subject to f(xi) = yi, i = 1, . . . , N (5)

where the optimization in (5) is taken over all f : R ↓ R which are continuous piecewise linear (CPWL) with
at most K knots. For such CPWL functions f , we define

Vp(f) :=

{
supP

∑nP↔1
i=0 |Df(xi+1)→Df(xi)|p = supω

∑
A↗ω |D2

f(A)|p, if 0 < p ↑ 1

number of knots of f, if p = 0
(6)

with the first sup taken over all partitions P = {x0 < · · · < xnP} of R, and the second sup taken over
partitions ε of R into countably many disjoint (Borel) measurable subsets. In particular, S↑

0 is non-empty.

Remark 1. For p ↔ (0, 1], Vp(f) is the p-variation (Dudley and Norvai!a (2006), Part II.2) of the
distributional derivative Df (in the sense of functions), or equivalently of the second distributional derivative
D

2
f (in the sense of measures). In particular, for a CPWL function f with knots at u1, . . . , uK and

corresponding slope changes c1, . . . , cK at those knots, so that D2
f =

∑K
k=1 ckϑuk , we have

Vp(f) =
K∑

k=1

|ck|p

In the case p = 1, V1(f) is exactly the total variation of Df (in the sense of functions) and of D2
f (in the

sense of measures), and the reformulation in Proposition 3.1 is equivalent to that of Savarese et al. (2019).
For a neural network where no two neurons “activate” at the same location (i.e., bk/wk = bk→/wk→ for k ⇐= k

↘),
Vp(f) is exactly the ω

p path norm of f as defined above.

The proof is in Section A.1.1. Proposition 3.1 says that the set S
↑
p of functions represented by solutions

to (2) is exactly the set of CPWL functions f which interpolate the data with minimal sum of absolute
slope changes, each taken to the p

th power. In the case p = 0, solutions to (3) represent CPWL functions
which interpolate the data with the fewest possible knots. This reformulation also shows that problem (3)
is invariant to the choice of network width K, as long as K is large enough to allow interpolation. As a
consequence of Theorem 3.1, we will see that this same width-invariance holds for problem (2).

3.2 Geometric characterization of solutions to (5)
Next, in Theorem 3.1, we describe a set of geometric characteristics which any optimal network function
f ↔ S

↑
p for 0 < p < 1 must satisfy, and which at least one f ↔ S

↑
0 satisfies. This characterization depends on

the slopes si :=
yi+1↔yi

xi+1↔xi
of the straight lines ωi connecting (xi, yi) and (xi+1, yi+1). The discrete curvature

at a data point xi refers to ϖi := sgn(si → si↔1), which is positive if the slope of the straight lines between
consecutive data points increases at xi, and negative if this slope decreases (with sgn(0) = 0).

In words, Theorem 3.1 says that the behavior of any f ↔ S
↑
p for 0 < p < 1 is uniquely determined

everywhere except around sequences of more than three consecutive data points xi, . . . , xi+m with the same
discrete curvature. On these “constant-curvature” regions of potential ambiguity, solutions must be convex
(resp. concave) if the curvature of the data is positive (resp. negative), and can have at most m knots on any
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such region. Additionally, Theorem 3.1 says that solutions to (5) for 0 < p < 1 have at most N → 2 knots.
Therefore, as in the case p = 0, we see that problem (2) is invariant (in terms of represented functions) to the
choice of network width K, as long as K ↘ N → 2.

Theorem 3.1. For 0 < p < 1, solutions exist to (5) (hence to (2)). For any such solution, its represented
function f ↔ S

↑
p is CPWL and obeys the following:

1. f is linear before x2 and after xN ; between any three or more consecutive collinear data points; and
between any two consecutive points xi and xi+1 with opposite discrete curvature ϖi ⇐= ϖi+1.

2. On any maximal set of m consecutive data points xi, . . . , xi+m with the same discrete curvature (i.e.,
ϖi↔1 ⇐= ϖi = ϖi+1 = · · · = ϖi+m ⇐= ϖi+m+1):

(a) If m = 1, then f has a single knot between xi and xi+1, with incoming/outgoing slopes si↔1 at xi

and si+1 at xi+1.
(b) If m ↘ 2, then f has incoming slope si↔1 at xi and outgoing slope si+m at xi+m. Between xi

and xi+m, f takes on at most m→ 1 slopes u1, . . . , um↔1 distinct from si↔1 and si+m. Each uj is
between si+j↔1 and si+j, inclusive, and its corresponding segment passes through (xi+j , yi+j).

Furthermore, there is always some f ↔ S
↑
0 which obeys the above description. (See illustration in Fig. 2.)

Corollary 3.1.1. Any minimum ω
p path norm interpolant of the data for 0 < p < 1 is also a minimum ω

1

path norm interpolant, and can be represented by a network with no more than N → 2 neurons.

The set S
↑
1 of optimal neural network functions for p = 1 has been fully characterized in previous work

(Hanin (2022); Debarre et al. (2022)), which showed that any interpolant f obeying the description in
Theorem 3.1 is in S

↑
1 . Therefore, Theorem 3.1 shows that any solution to (5) (hence to (2)) for 0 < p < 1

is also a solution for p = 1. This result is interesting because, as our proof of Theorem 3.1 shows, problem
(5) generally has multiple solutions for p = 0, many of which are not solutions for p = 1 and may have
arbitrarily large slope changes which cannot be bounded in terms of the data. Intuitively, the latter fact is
unsurprising, since the objective V0(f) depends only on the number of knots of f , not on the magnitudes of
the corresponding slope changes. One might therefore expect that penalizing Vp for su"ciently small p could
also produce solutions with arbitrarily large slope changes (corresponding to networks with arbitrarily large
weights), particularly in light of the equivalence between Vp and V0 penalization for su"ciently small p, as we
demonstrate in Section 3.3. However, Theorem 3.1 says that this is not the case. Therefore, in conjunction
with Theorem 3.2, Theorem 3.1 says that for su"ciently small p, penalizing Vp e!ectively penalizes both V0

and V1 simultaneously: i.e., it selects a solution with the fewest possible knots (corresponding to a network
with the fewest possible neurons), and whose weights are small in the sense that

∑K
k=1 |vkwk| is minimal. In

fact, Theorem 3.1 immediately implies the following data-dependent bounds on the parameters and on the
network function’s Lipschitz constant:

Corollary 3.1.2. Any solution ω to (2) for 0 < p < 1 has maxk=1,...,K |vkwk| ↑
∑K

k=1 |vkwk| =
∑N↔2

i=1 |si+1→
si|, and Lipschitz constant L ↑ maxi=1,...,N↔1 |si|.

Regarding the N → 2 neuron bound in Corollary 3.1.1, we note that this bound applies to any minimum
ω
p path norm solution for any 0 < p < 1. In contrast, there exist minimum ω

1 path norm solutions with
N → 2 knots, but also solutions with arbitrarily many knots (Hanin (2022); Debarre et al. (2022)); see Fig. 1a.
Solutions for 0 < p < 1 are thus guaranteed a certain level of sparsity which is not enforced by p = 1
minimization alone. Sparsest (minimum ω

0) solutions—which we soon show will coincide with an ω
p path

norm solution for small enough p—are known to have as many as N → 2 active neurons and as few as O(N/2)
neurons, depending on the structure of data (Debarre et al. (2022)).

The proof of Theorem 3.1 hinges mainly on two auxiliary results, detailed in Section A.1.2, which describe
the local behavior of any optimal f ↔ S

↑
p between consecutive data points in terms of f ’s incoming and

outgoing slopes at those points. This allows us to characterize when a knot can be removed from any
interpolating function while maintaining interpolation and reducing its regularization cost Vp. The full proof
is in Section A.1.3.
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(a) A function satisfying the description in Theorem 3.1.

(b) A second possible function on [x7, x10]. (c) A third possible function on [x7, x10].

Figure 2: Illustration of Theorem 3.1. By Theorem 3.1,1, any f ↔ S
↑
p for 0 < p < 1 must agree with the

function in Fig. 2a on (→⇒, x7] and [x10,⇒). The only possible ambiguity occurs between x7 and x10, where
all points have the same discrete curvature. Here the function behavior is described by Theorem 3.1,2b.
Figs. 2b and 2c show two other functions whose behavior on [x7, x10] also concurs with Theorem 3.1,2b.
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3.3 Uniqueness and sparsity of solutions to (5) for 0 < p < 1

Using Theorem 3.1, we show that solutions to (5) are unique for almost every 0 < p < 1, and for su"ciently
small 0 < p < 1, correspond with globally sparsest interpolants (i.e., interpolants with the fewest total knots).
Additionally, Theorem 3.1 shows that under an easily-verifiable condition on the data, penalizing Vp for
any 0 < p < 1 yields a sparsest interpolant. In conjunction with Theorem 3.1, this result tells us that for
univariate data, ωp path norm minimization for su"ciencly small p > 0 simultaneously minimizes both the ω

1

and ω
0 path norms, producing a unique solution which is both maximally sparse and controlled in terms of

its parameter’ magnitudes. We note that almost-everywhere uniqueness of solutions to (5) occurs only in the
0 < p < 1 case. In contrast, solutions for both p = 0 and p = 1 are non-unique in general, and for p = 1, they
may have infinitely many knots/neurons (Debarre et al. (2022), Hanin (2022)).

Theorem 3.2. For all but finitely many 0 < p < 1, the solution to (5) is unique.4 Furthermore, there is
some data-dependent p↑ such that the unique solution to (5) for any 0 < p < p

↑ is a solution for p = 0. If the
data contains no more than two consecutive points with the same discrete curvature, then the solution to (5)
for any 0 < p < 1 is also a solution for p = 0.

The proof of Theorem 3.2 is in Section A.1.4. It relies on Theorem 3.1 in combination with the Bauer
Maximum Principle (Aliprantis and Border (2006), Theorem 4.104), which states that any continuous,
concave function over a closed, convex set attains a minimum at an extreme point of that set. The main
idea is that, using Theorem 3.1, we can recast the problem of finding the minimum-Vp interpolant f ↔ S

(where S denotes the set of functions which meet the description in Theorem 3.1) as a minimization of
a continuous, concave function over the hypercube [0, 1]m↔1. This reformulation is possible because, by
Theorem 3.1, the only place where these interpolants f ↔ S may di!er is around sequences of points
xi, . . . , xi+m (for m ↘ 2) which all have the same nonzero discrete curvature. Using the description in
Theorem 3.1,2b, the slopes u1, . . . , um↔1 of any f ↔ S on such an interval [xi, xi+m] can be expressed as
convex combinations uj := (1 → ϱj)si+j↔1 + ϱjsi+j , and any such solution f ↔ S can be fully identified
with its corresponding vector of the parameters [ϱ1, . . . ,ϱj↔1]≃ ↔ [0, 1]m↔1. Expressed in terms of these
parameters [ϱ1, . . . ,ϱj↔1]≃ ↔ [0, 1]m↔1, the cost Vp is strictly concave. Therefore, by the Bauer Maximum
Principle, any f ↔ S with minimal Vp for 0 < p < 1 must correspond to one of the finitely many vertices
of the cube [0, 1]m↔1. Having restricted the set of possible candidate solutions to this finite set (which can
be shown to include at least one sparsest solution), the theorem statement follows from standard analysis
arguments.

In the next section, we will show that this general line of reasoning—recast the neural network optimiza-
tion as a concave function over a polytope, and apply the Bauer Maximum Principle—can also be used
to characterize the sparsity of ωp-regularized multivariate-input ReLU networks, although the machinery
underlying the argument is very di!erent.

4 Multivariate ωp-regularized neural networks
Here we consider single-hidden-layer Rd ↓ R ReLU neural networks of the form

fω(x) :=
K∑

k=1

vk(w
≃
k x)+ (7)

with output weights vk ↔ R, input weights wk ↔ Rd+1, and x := [x≃
, 1]≃ augments the dimension of the

input x to account for a bias term. As before, ω := {wk, vk}Kk=1 is the collection of network parameters. For
a given dataset (x1, y1), . . . , (xN , yN ) ↔ Rd ↗ R, and fixed constants K ↘ N , 0 < p < 1, and R > 0, consider

4
Uniqueness here and in the remainder of the discussion only in terms of functions which interpolate the data with the same

set of absolute slope changes. If the data contains special symmetries, it may admit multiple distinct interpolating functions

which have the same set of absolute slope changes (corresponding to interpolating networks with the same weights).
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the minimum ω
p path norm interpolation problem

argmin
ω

K∑

k=1

⇑vkwk⇑pp , subject to fω(xi) = yi, i = 1, . . . , N, ⇑vkwk⇑→ ↑ R, k = 1, . . . ,K (8)

We will prove that, for small enough p, any solution to (8) also solves the “sparsifying” problem

argmin
ω

K∑

k=1

⇑vkwk⇑0 , subject to fω(xi) = yi, i = 1, . . . , N, ⇑vkwk⇑→ ↑ R, k = 1, . . . ,K (9)

The multivariate ω
0 path norm objective in (9) counts the number of nonzero input weight/bias parameters

of the active neurons5 in the network. Although we incorporate the biases into the input weight vectors (thus
including them in the ω

p path norm) for ease of exposition, the same analysis holds for the unregularized bias
problem by replacing the vectors εj and ϑj in the objective of Lemma 4.1 with the subvectors of their first d

elements. As in the univariate case, the multivariate sparsest-interpolation problem (9) is invariant to the
selection of the width K as long as K ↘ N , and if the data are in general position, has O(N) nonzero input
weight/bias parameters across these active neurons. Specifically:

Proposition 4.1. For any K ↘ N , any minimum ω
0 solution {wk, vk}Kk=1 to (9) has at most N active

neurons. If the data x1, . . . ,xN are in general position,6 then for su"ciently large R, any such solution has∑K
k=1 ⇑vkwk⇑0 = O(N).

See proof in Section A.2.1 for explicit constants in various cases.
To show the equivalence of problems (8) and (9) for su"ciently small p, we first show that both problems

both be recast as finite- (albeit high-) dimensional optimizations over a linear constraint set. This reformulation
is heavily inspired by Theorem 1 in Pilanci and Ergen (2020). Here the matrices {Dj}2

N

j=1 are defined as
Dj = diag(sj) for all binary vectors sj ↔ {0, 1}N , and a ↑ b denotes element-wise inequality for vectors a, b.

Lemma 4.1. Let ω = {wk, vk}Kk=1 be a solution to (8) for some 0 < p < 1. Then there is another solution
ω↘ = {w↘

k, v
↘
k}Kk=1 to (8), which is reconstructed from a solution {ε ↘

j ,ϑ
↘
j}2

N

j=1 to the problem

argmin
{εj ,ϑj}2N

j=1⇐Rd+1

2N∑

j=1

⇑εj⇑pp + ⇑ϑj⇑pp , subject to
2N∑

j=1

DjX(εj → ϑj) = y, (10)

(2Dj → I)Xεj ↘ 0, (2Dj → I)Xϑj ↘ 0, ⇑εj⇑→ ↑ R, ⇑ϑj⇑→ ↑ R, ⇓j (11)

as

{w↘
k}Kk=1 =

{
ε ↘
j/ϱj ,ε

↘
j ⇐= 0

}
⇔
{
ϑ↘

j/ςj ,ϑ
↘
j ⇐= 0

}
, {v↘k}Kk=1 =

{
ϱj ,ε

↘
j ⇐= 0

}
⇔
{
→ςj ,ϑ

↘
j ⇐= 0

}
(12)

for any choice of ϱ1,ς1, . . . ,ϱ2N ,ς2N > 0. Both solutions satisfy
∑K

k=1 ⇑vkwk⇑0 =
∑K

k=1 ⇑v↘kw↘
k⇑0 as well as∑K

k=1 ⇑vkwk⇑qq =
∑K

k=1 ⇑v↘kw↘
k⇑qq for any 0 < q < 1. The same statement holds for solutions ω to (9), with

the objective in (10) replaced by
∑2N

j=1 ⇑εj⇑0 + ⇑ϑj⇑0.

The proof of Lemma 4.1 is in Section A.2.2. The main idea is that although there are uncountably many
ways to choose the neurons’ parameters, there are only finitely many possible binary activation patterns,
i.e., vectors representing whether a given neuron is active on each data point. By combining all neurons
which induce the same activation pattern into a single neuron, the network’s output and ω

p path norm can be
expressed as a sum over all 2N neurons, each corresponding to one of the possible activation patterns. The

5
A neuron x ↓↔ vk(w→

k x)+ is active if vkwk ↗= 0; i.e., that neuron has a nonzero contribution to the network function.

6
A set of points x1, . . . ,xN ↘ Rd

are in general (linear) position if no k of them lie in a k ≃ 2 dimensional a"ne subspace,

for k = 2, 3, . . . , d+ 1. If N ↑ d+ 1, this is equivalent to the statement that no hyperplane contains more than d points.
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equality constraint in (10) encodes the interpolation constraint; the ω
→ inequalities reflect the corresponding

⇑vkwk⇑→ ↑ R constraint in (8); and the additional inequality constraints in (10) force the optimization to
only consider activation patterns which can actually be induced by some choice of input weight/bias wk.
With this reformulation in hand, we are ready for the main result of this section:

Theorem 4.1. For any dataset, there is some data-dependent p
↑ such that any solution to (8) for any

0 < p < p
↑ is a solution to (9).

Remark 2. This result also holds if the interpolation problems in (8) and (9) are replaced by the regularized
ω
→ constrained loss problems

argmin
ω

N∑

i=1

L(yi, fω(xi)) + φ

k∑

k=1

⇑vkwk⇑pp , subject to ⇑vkwk⇑→ ↑ R, k = 1, . . . ,K (13)

and its ω
0 analogue, for a loss function L which is CPWL in its second argument (e.g. hinge loss, L1/L→

losses). This is because problem (13) can be reformulated as

argmin
ω

k∑

k=1

⇑vkwk⇑pp , subject to
N∑

i=1

L(yi, fω(xi)) ↑ C, ⇑vkwk⇑→ ↑ R, k = 1, . . . ,K (14)

and, under the CPWL assumption on L, the feasible set of the reformulation of (14) as in Lemma 4.1 is a
polytope. The proof of Theorem 4.1 then applies verbatim.

The proof is inspired by that in Peng et al. (2015), with a correction to what we believe is an impor-
tant error in their reasoning regarding p-independent boundedness of solutions to problems of the form
argminx ⇑x⇑pp s.t. Ax = y; this is why we include the ω

→ boundedness constraint in problems (8) and (9)
(see Section A.2.3 for our proof and further discussion). The fundamental observation is that the linear
constraints in (10) determine a polytope, and the map z ↖↓ ⇑z⇑pp is concave on each individual orthant and
invariant to absolute values of vector elements. By projecting the constraint set of (10) into the nonnegative
orthant, the problem turns into a minimization of a continuous, concave functional over a polytope. By the
Bauer Maximum Principle, any solution to this problem occurs at one of the finitely many vertices of that
polytope, and by appropriately normalizing the vertices of this polytope, we are able to demonstrate the
desired result.

Although Theorem 4.1 applies to any input dimension, thus recovering part of the result of Theorem 3.2,
we note that our multivariate analysis requires an explicit ω

→ boundedness constraint on the parameter
vectors wkvk in problems (8) and (9). In contrast, the univariate optimizations in (2) and (3) require no such
constraint, as Theorem 3.1 tells us that ω

p minimization implicitly performs ω
1 minimization which yields

immediate data-dependent control on all parameter magnitudes. Our multivariate analysis does not easily
recover the univariate results on uniqueness, parameter/width bounds, or explicit functional characterization
of solutions to (8). Thus, although Theorem 4.1 guarantees exact sparsest recovery for su"ciently small p in
arbitrary input dimensions, the multivariate problem leaves many interesting open questions, which we save
for future work.

5 Experiments
We perform several simple experiments on synthetic data which suggest that our proposed ω

p path norm
lends itself to practical application, recovering far sparser solutions more quickly than unregularized or
weight decay-regularized gradient-based training. To implement our regularizer, we use a proximal gradient
algorithm based on the iteratively reweighted ω

1 method of Candes et al. (2008); Figueiredo et al. (2007), the
details of which are summarized in Section A.3.1. Fig. 3 shows the sparsity over time of networks trained
with our reweighted ω

1 algorithm for three di!erent values of p ↔ {0.4, 0.7, 1}, as well as with unregularized
Adam and AdamW weight decay, on two di!erent synthetic datasets. For all values of p, the ω

p-regularized

10



Figure 3: Sparsity over time of networks trained to interpolation with a reweighted ω
1 algorithm (see

Section A.3.1) for ω
p path norm regularization, p ↔ {0.4, 0.7, 1}, and of unregularized and weight decay-

regularized networks. Results on the left are for a synthetic univariate “peak/plateau” dataset, and results on
the right are for a high-dimensional set of random data and labels. The gray dashed lines reflect the true
minimal sparsity (in the univariate case, left) and the upper bound on the minimal sparsity guaranteed by
Proposition 4.1 in the multivariate case (right). For further details, results, and discussion, see Section A.3.2.

networks are much sparser much earlier in training than the unregularized or weight decay regularized
networks, with the p = 0.4 networks being the sparsest. For the univariate synthetic dataset, the p = 0.4
regularized network recovers the true sparsest solution, and for the multivariate synthetic dataset, all ωp
regularized networks recover solutions which obey the sparsity upper bound guaranteed by Proposition 4.1.
For further details, results, and discussion, see Section A.3.2. Code for these experiments is available at
https://github.com/julianakhleh/sparse_nns_lp.

6 Conclusion and Discussion
We have introduced a smooth, ωp path norm (0 < p < 1) regularization framework whose global minimizers
provably coincide with the sparsest ReLU network interpolants for su"ciently small p, thus recasting the
combinatorial ω0 minimization problem as a di!erentiable objective compatible with gradient descent. In the
univariate case, we showed minimum ω

p path norm interpolants are unique for almost every 0 < p < 1; never
require more than N → 2 neurons; and are also ω

1 minimizers, yielding explicit data-dependent parameter and
Lipschitz bounds. In arbitrary dimensions, we demonstrate a similar ω

p-ω0 equivalence for su"ciently small
p. Our proposed regularization objective o!ers a principled, gradient-based alternative to heuristic pruning
methods for training truly sparse neural networks.

While we demonstrate the existence of p small enough for ω
p/ω0 minimization equivalence, our proofs

do not yield an e"cient way to compute the “critical threshold” p
↑, although they do demonstrate that

estimating this p↑ is in theory possible by enumerating an exponential number of vertices of a data-dependent
polytope. Whether or not p

↑ can be computed or estimated e"ciently is an open question of interest for
future work. Other possible directions of interest are to extend our results here to multi-output and deep
architectures and to other notions of sparsity (such as sparsity over entire neurons vs. parameters in the
multi-dimensional case).
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A Proofs of main results

A.1 Univariate results
A.1.1 Proof of Proposition 3.1

Proof. By homogeneity of the ReLU—meaning that (ϱx)+ = ϱ(x)+ for any ϱ > 0—any ReLU neural network
of the form (1) can have its parameters rescaled as vk ↖↓ |wk|vk, (wk, bk) ↖↓ |wk|↔1(wk, bk) without changing
the network’s represented function or its ω

p path norm. Therefore, any f ↔ S
↑
p can be expressed as a neural

network of the form (1) with |wk| = 1 for all k = 1, . . . ,K. Additionally, any f ↔ S
↑
p can be expressed as a

network where no two neurons “activate” at the same location, i.e., bk/wk ⇐= bk→/wk→ whenever k ⇐= k
↘. To see

this, consider a neural network fω with unit-norm input weights which contains two distinct neurons k, k
↘

with bk/wk = bk→/wk→ . The sum of these neurons can be rewritten as

vk(wkx+ bk)+ + vk→(wk→x+ bk→)+ = (vk + vk→)(wkx+ bk)+ (15)

if wk = wk→ , or as

vk(wkx+ bk)+ + vk→(wk→x+ bk→)+ = (vk + vk→)(wkx+ bk)+ → vk→(wkx+ bk) (16)

if wk = →wk→ . (The latter uses the identity x = (x)+ → (→x)+.) In either case, we see that the original two
neurons k, k

↘ can be replaced with a single neuron and, in the latter case, an additive a"ne term. Because
the a"ne term does not contribute to ω

p path norm, and because |vk + vk→ |p ↑ |vk|p + |vk→ |p for p ↔ (0, 1], the
resulting network represents the same function as the original one with no greater regularization cost.

Furthermore, any neural network of the form (1) with unit-norm input weights and K active neurons,
where no two active neurons activate at the same location, is a CPWL function with K knots, where knot k

is located at →bk/wk, and the slope change of the function at knot k is vk. Conversely, any R ↓ R CPWL
function f with K knots at locations u1 < · · · < uK and corresponding slope changes v1, . . . , vK can be
expressed as

f(x) = f(u0) + f
↘(u0)(x→ u0) +

K∑

k=1

vk(x→ uk)+ (17)

for some arbitrary point u0 < u1. Any such f has D
2
f =

∑K
k=1 vkϑuk , so that Vp(f) =

∑K
k=1 |vk|p, and

V0(f) =
∑K

k=1 vk ↓=0 = K.
These facts are su"cient to establish the equivalence of problems (2) and (5). Indeed, let S

↑
ω,p denote the

set of optimal parameters for a modified version of problem (2) which imposes the additional constraints
that each |wk| = 1 and that bk/wk ⇐= bk→/wk→ whenever k ⇐= k

↘. For some ω↑ ↔ S
↑
ω,p, let C↑ denote its ω

p path
norm. We have shown that S

↑
p can be equivalently expressed as

S
↑
p = {f : R ↓ R | f = fω, ω ↔ S

↑
ω,p} (18)

= {f : R ↓ R | f is CPWL with ↑ K knots, Vp(f) = C
↑
, f(xi) = yi, i = 1, . . . , N} (19)

which is exactly the set of minimizers of (5). Non-emptiness of S
↑
0,ω (and thus of S

↑
0 ) follows from non-

emptiness of the feasible set ! of (3) when K ↘ N , and the fact that the objective values of members of the
feasible set lie in {1, . . . ,K}, on which a minimum is achieved.

A.1.2 Auxiliary lemmas: local behavior of f around same/opposite sign slope changes

Our proof of Theorem 3.1 relies strongly on the following two auxiliary lemmas, which describe the local
behavior of any f ↔ S

↑
p for 0 ↑ p < 1 between consecutive data points. Here we denote the incoming and

outgoing slopes of any interpolant f at a data point xi as sin(f, xi) and sout(f, xi), respectively (sometimes
dropping the explicit reference to f if it is clear from context). First, we show in Lemma A.1 that for any
optimal network function f ↔ S

↑
p , 0 ↑ p < 1, if the signs of si → sin(f, xi) and sout(f, xi+1)→ si agree, then f

connects (xi, yi) and (xi+1, yi+1) in a single “peak” (see Fig. 4a).

15



(a) Illustration of Lemma A.1. (b) Illustration of Lemma A.2.

Figure 4: Left: Illustration of the case sgn (si → sin(f, xi)) = sgn (sout(f, xi+1)→ si) addressed in Lemma A.1.
Right: illustration of the case sgn (si → sin(f, xi)) ⇐= sgn (sout(f, xi+1)→ si) addressed in Lemma A.2. In both
cases, the functions in black have strictly greater Vp for 0 ↑ p < 1 than the functions in blue.

Lemma A.1 (Behavior of f ↔ S
↑
p around same-sign slope changes). For 0 ↑ p < 1, suppose that f ↔ S

↑
p has

sgn (si → sin(f, xi)) = sgn (sout(f, xi+1)→ si) at consecutive data points xi, xi+1. If both signs are zero, then
f is linear on the interval I := [xi → ϑ, xi+1 + ϑ] surrounding [xi, xi+1], for small ϑ > 0. Otherwise, f has a
single knot on I, between xi and xi+1. (See Fig. 4a.)

Proof. If both signs are zero, then f must be linear on I, since anything else would have nonzero Vp(f |I) for
0 ↑ p < 1. If both signs are nonzero, observe that

|sout(f, xi+1)→ sin(f, xi)|p < |sout(f, xi+1)→ uJ |p + |uJ → uJ↔1|p + · · ·+ |u2 → u1|p + |u1 → sin(f, xi)|p

for any u1, . . . , uJ which are all distinct from each other and from sin(f, xi) and sout(f, xi+1). This is a
simple consequence of the inequality |a+ b|p ↑ |a|p + |b|p, which holds for any a, b ↔ R and any 0 < p < 1
and is strict unless a = 0 or b = 0. Since any interpolant with more than one knot on I has one or more
intermediate slopes u1, . . . , uJ between xi and xi+1, the result follows.

Next, Lemma A.2 says that if the signs of si → sin(f, xi) and sout(f, xi+1) → si of an optimal f ↔ S
↑
p ,

0 < p < 1 disagree, then f is linear between xi and xi+1.

Lemma A.2 (Behavior of f ↔ S
↑
p around opposite-sign slope changes). For 0 ↑ p < 1, suppose that f ↔ S

↑
p

has sgn (si → sin(f, xi)) ⇐= sgn (sout(f, xi+1)→ si) at consecutive data points xi, xi+1. If 0 < p < 1, then f

is linear between xi and xi+1. If p = 0, then either f is linear between xi and xi+1, or it agrees outside of
[xi, xi+1] with some g ↔ S

↑
0 which is linear between xi and xi+1. (See illustration in Fig. 4b.)

Proof. First consider the base case illustrated in Fig. 5, where we suppose that f ↔ S
↑
p for some 0 ↑ p < 1

has a single knot at some x ↔ (xi, xi+1). To simplify the notation, we denote a := sin(f, xi), b := si,
c := sout(f, xi+1) and ↼ := x↔xi

xi+1↔xi
and assume that sgn(a→ b) ⇐= sgn(b→ c). The intermediate slopes u1 and

u2 can be parameterized as u1 = b+ ϑ and u2 = b→ ε
1↔ε ϑ for some ϑ ↔ R. Consider the cost Vp(f

∣∣
I
) of f on

the interval I := (xi → ϖ, xi+1 + ϖ) (for some arbitrary ϖ > 0) as a function C(ϑ) of the parameter ϑ. If p = 0,
then clearly C(0) = 2 ↑ C(ϑ) ↔ {2, 3} for ϑ ⇐= 0. This shows that the function g whose slope is b on [xi, xi+1]
has no greater cost than f , and thus g ↔ S

↑
0 . In the case 0 < p < 1, we have

C(ϑ) := |ϑ + b→ a|p + 1

(1→ ↼)p
|ϑ|p +

∣∣c→ b+
↼

1→ ↼
ϑ
∣∣p (20)

and we will show that C(0) < C(ϑ) for ϑ ⇐= 0, contradicting the assumption that f ↔ S
↑
p .

Note that C is coercive and continuous on ϑ ↔ R, so it attains a minimizer (this follows from the Weierstrass
Extreme Value Theorem as applied to the compact sublevel sets of C). By Fermat’s Theorem, any minimizer
of C must occur at critical points, i.e., points where the derivative C

↘ is zero or undefined. The three points
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Figure 5: Base case of Lemma A.2, where we consider the possibility that f ↔ S
↑
p for some 0 ↑ p < 1 has a

single knot at some x ↔ (xi, xi+1) where sgn(a→ b) ⇐= sgn(b→ c). Here ↼ := x↔xi
xi+1↔xi

.

where C
↘ is undefined are ϑ1 = a→ b, ϑ2 = 0, and ϑ3 = 1↔ε

ε (b→ c). Assuming without loss of generality that
ϑ1 < ϑ2 < ϑ3, note that C is concave on the intervals (→⇒, ϑ1), (ϑ1, ϑ2), (ϑ2, ϑ3), and (ϑ3,⇒). This is because
compositions of concave and a"ne functions are concave, and the function x ↖↓ |x|p for p ↔ (0, 1] is concave
on any subinterval of R over which x does not change sign. Therefore, any point at which C

↘ = 0 will be a
local maximum rather than a minimum, and hence any minimum of C can only occur at the critical points
ϑ1, ϑ2, ϑ3. We have

C(ϑ1) =
1

(1→ ↼)p
|a→ b|p +

∣∣c+ ↼

1→ ↼
a→ 1

1→ ↼
b
∣∣p (21)

C(ϑ2) = |b→ a|p + |c→ b|p (22)

C(ϑ3) =
∣∣1
↼
b→ 1→ ↼

↼
c→ a

∣∣p + 1

↼p
|b→ c|p (23)

Now, for the variable t ↔ [0, 1), define

h1(t) :=
1

(1→ t)p
|a→ b|p +

∣∣c+ t

1→ t
a→ 1

1→ t
b
∣∣p (24)

and observe that h1(0) = C(ϑ2) and h1(↼) = C(ϑ1). Its derivative is

h
↘
1(t) =

p

(1→ t)p+1
|a→ b|p + p

∣∣c+ t

1→ t
a→ 1

1→ t
b
∣∣p↔1sgn

(
c+

t

1→ t
a→ 1

1→ t
b

)
a→ b

(1→ t)2
(25)

=
p

(1→ t)p+1
|a→ b|p + p

∣∣c+ t

1→ t
a→ 1

1→ t
b
∣∣p↔1sgn

(
(1→ t)(c→ b) + t(a→ b)

1→ t

)
a→ b

(1→ t)2
(26)

Assuming that sgn(a→ b) ⇐= sgn(b→ c) with a ⇐= b (and thus ϑ1 ⇐= ϑ2), we see that h
↘
1(t) > 0 for all t ↔ [0, 1).

This is because the term inside the sgn above is positive if a > b (so that b ↑ c) and negative if a < b (so
that b ↘ c). This shows that h1(0) = C(ϑ2) < h1(↼) = C(ϑ1). Similarly, define

h2(t) :=
∣∣1
t
b→ 1→ t

t
c→ a

∣∣p + 1

tp
|b→ c|p (27)

for t ↔ (0, 1], so that h2(↼) = C(ϑ3) and h2(1) = C(ϑ2). Its derivative is

h
↘
2(t) = p

∣∣1
t
b→ 1→ t

t
c→ a

∣∣p↔1
sgn

(
1

t
b→ 1→ t

t
c→ a

)
c→ b

t2
→ p

tp+1
|b→ c|p (28)

= p
∣∣1
t
b→ 1→ t

t
c→ a

∣∣p↔1
sgn

(
t(b→ a) + (1→ t)(b→ c)

t

)
c→ b

t2
→ p

tp+1
|b→ c|p (29)
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(a) u1, uJ are on the same side of si. (b) u1 and uJ can be connected, reducing Vp(f).

Figure 6: General case of Lemma A.2, where the outgoing line segment at xi and the incoming line segment
at xi+1 both lie on the same side of the straight line between (xi, yi) and (xi+1, yi+1). We can apply the
argument in the proof of Lemma A.1 to connect these two segments in a single knot inside (xi, xi+1) and
strictly reduce Vp(f).

Assuming that sgn(a→ b) ⇐= sgn(b→ c) with b ⇐= c (and thus ϑ2 ⇐= ϑ3), we see that h
↘
2(t) > 0 for all t ↔ (0, 1].

This is because the term inside the sgn above is positive if b > c (so that a ↑ b) and negative if b < c (so that
a ↘ b). This shows that h2(↼) = C(ϑ3) < h2(1) = C(ϑ2). Therefore, C(0) < C(ϑ) for ϑ ⇐= 0, as desired.

Next, consider the general case, where we assume by contradiction that f ↔ S
↑
p for 0 ↑ p < 1 may have

multiple knots inside (xi, xi+1). As before, in the case p = 0, f can’t have fewer knots than the function g

whose slope is b on [xi, xi+1]; the only way for f to be in S
↑
0 is if it has a single knot inside (xi, xi+1) and

a single knot at either xi or xi+1, in which case we also have g ↔ S
↑
0 . In the case 0 < p < 1, let u1, . . . , uJ

denote the slopes of f on [xi, xi+1]. If the line segments with slopes u1 and uJ lie on the same side of the line
segment with slope si, then we can apply the argument in the proof of Lemma A.1 to remove the segments
with slopes u2, . . . , uJ↔1 and connect the segments with u1 and uJ in a single knot inside (xi, xi+1); this
strictly reduces Vp(f), contradicting f ↔ S

↑
p . (See Fig. 6.) If the line segments with slopes u1 and uJ lie on

opposite sides of the line segment with slope si, then either one of the intermediate segments, whose slope
we call uj0 , crosses the segment with slope si, or else one of the intermediate segments (again call its slope
uj0) lies on one side of si, and uj0+1 lies on the other side. In either case, the segments u1 and uj0 can be
connected and the segments between them removed, as can the segments uj0 (or uj0+1) and uJ . (See Fig. 7.)
Again, by the logic in the proof of Lemma A.1, this strictly reduces Vp(f), contradicting f ↔ S

↑
p . If f is

already of the form in Fig. 7b, with only two knots inside (xi, xi+1) on opposite sides of the line si, then the
second knot can be removed by directly connecting u1 and sout(f, xi+1) (see Fig. 7c). By the same logic, this
strictly reduces Vp(f), contradicting f ↔ S

↑
p .

A.1.3 Proof of Theorem 3.1

Proof. We first use Theorem 3.1 and Lemmas A.1 and A.2 to show that any f ↔ S
↑
p for 0 < p < 1 must obey

the description in Theorem 3.1, and that there is always some f ↔ S
↑
0 which fits this description. Using this

result, we argue non-emptiness of S↑
p . We break the proof into the following sections.

Linearity before x2 and after xN↔1. We will prove the statement for (→⇒, x2]; the proof for [xN↔1,⇒)
is analogous. No f ↔ S

↑
p for 0 ↑ p ↑ 1 can have a knot at or before x1 as this would strictly increase the

cost Vp(f) without a!ecting the ability of f to interpolate the data points. In the case 0 < p < 1, assume
by contradiction that some f ↔ S

↑
p has a knot at some x ↔ (x1, x2). By Lemma A.2, it must be the case

that sgn(s1 → sin(f, x1)) = sgn(sout(f, x2)→ s1), and by Lemma A.1, this knot is the only one inside (x1, x2),
with sin(f, x1) = sout(f, x1) and sin(f, x2) = sout(f, x2). (See Fig. 8a.) Assuming without loss of generality
that sgn(s1 → sin(f, x1)) = sgn(sout(f, x2) → s1) = →1, we have sin(f, x1) > s1 > sout(f, x2), and therefore
|sout(f, x2)→ sin(f, x1)| > |sout(f, x2)→ s1|. But this shows that Vp(f) > Vp(g), where g = ω1 on (→⇒, x2]
and is otherwise identical to f . (See Fig. 8b.) This contradicts f ↔ S

↑
p .
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(a) u1, uJ are on opposite sides of si. (b) u1, uj0 and uj0 , uJ can be connected, reducing Vp(f).

(c) u1 and sout(f, xi+1) can be connected, reducing Vp(f).

Figure 7: General case of Lemma A.2, where the outgoing line segment at xi and the incoming line segment
at xi+1 lie on opposite sides of the straight line between (xi, yi) and (xi+1, yi+1). We can apply the argument
in the proof of Lemma A.1 to connect the segments u1 and uj0 and uj0 and uJ , resulting in a function with
two knots inside (xi, xi+1) and strictly reducing Vp(f). By the same argument, we can further reduce Vp(f)
by connecting u1 and sout(f, xi+1), resulting in a single knot inside (xi, xi+1).

In the case p = 0, fix some f ↔ S
↑
0 . As argued above, f has no knots on (→⇒, x1]. If sgn(s1→ sin(f, x1)) ⇐=

sgn(sout(f, x2) → s1), then by Lemma A.2, either f = ω1 on [x1, x2] (hence it also must agree with ω1 on
(→⇒, x1]), or there is some g ↔ S

↑
0 which agrees with ω1 on [x1, x2] (hence also on (→⇒, x1], since g must also

not have any knots on (→⇒, x1]). If sgn(s1 → sin(f, x1)) = sgn(sout(f, x2) → s1) = 0, then by Lemma A.1,
f = ω1 on [x1, x2] and thus also on (→⇒, x1]. If sgn(s1 → sin(f, x1)) = sgn(sout(f, x2)→ s1) are both nonzero,
then by Lemma A.1, f has a single knot inside (x1, x2) with sin(f, x1) = sout(f, x1) and sin(f, x2) = sout(f, x2),
as in Fig. 8a. Then function depicted in Fig. 8, which agrees with ω1 on (→⇒, x2] and with f on [x2,⇒), has
the same number of knots as f , so g ↔ S

↑
0 .

Linearity between data points of opposite curvature. For 0 < p < 1, assume by contradiction
that some f ↔ S

↑
p does not agree with ωi on an interval [xi, xi+1] where sgn(si → si↔1) ⇐= sgn(si+1 → si).

By Lemmas A.1 and A.2, it must be the case that sgn(si → sin(f, xi)) = sgn(sout(f, xi+1) → si) are both

(a) A function with a knot inside (x1, x2). (b) A function which agrees with ω1 on (→↑, x2].

Figure 8: Behavior of f ↔ S
↑
p before x2 and after xN . A knot inside (x1, x2) can be moved to x2, maintaining

the same outgoing slope at x2, which strictly decreases the magnitude of the slope change at the knot.
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(a) A function with knots inside (xi, xi+1) and (xi+1, xi+2). (b) A function which agrees with ωi on [xi, xi+1].

Figure 9: Behavior of f ↔ S
↑
p between data points of opposite curvature. The knot inside (xi, xi+1) on the

left can be moved to xi, and the knot inside (xi+1, xi+2) can be adjusted accordingly (right); this reduces the
magnitudes of the slope changes of both knots.

nonzero, and that sin(f, xi) = sout(f, xi) and sin(f, xi+1) = sout(f, xi+1) and f has a single knot inside
(xi, xi+1) where the incoming line at xi and the outgoing line at xi+1 meet. It must be the case that
sgn(si→ si↔1) ⇐= sgn(si→ sin(f, xi)) and/or that sgn(si+1→ si) ⇐= sgn(sout(f, xi+1)→ si). Assume without loss
of generality that sgn(si+1 → si) ⇐= sgn(sout(f, xi+1)→ si) = 1, so that si+1 ↑ si < sout(f, xi+1) = sin(f, xi+1).
Then clearly si+1 ⇐= sout(f, xi+1) (in other words, f does not agree with ωi+1 on all of [xi+1, xi+2]), so by
Lemma A.1 and Lemma A.2, it must be the case that →1 = sgn(si+1 → sin(f, xi+1)) = sgn(sout(f, xi+2)→
si+1), that f has a single knot inside (xi+1, xi+2), and that sin(f, xi+2) = sout(f, xi+2). (See Fig. 9a.)
Therefore, sin(f, xi+2) = sout(f, xi+2) < si+1 ↑ si < sout(f, xi+1) = sin(f, xi+1). Furthermore, because 1 =
sgn(sout(f, xi+1)→ si) = sgn(si → sin(f, xi)), we have sin(f, xi) < si < sout(xi+1). On I := [xi↔1 → ϖ, xi+2 + ϖ]
for small ϖ > 0, we thus have

Vp(f
∣∣
I
) = |sout(f, xi+1)→ sin(f, xi)|p + |sout(f, xi+2)→ sout(f, xi+1)|p (30)

> |si → sin(f, xi)|p + |sout(f, xi+2)→ si|p = Vp(g
∣∣
I
) (31)

where g agrees with f outside of [xi, xi+2], agrees with ωi on [xi, xi+1], and has a single knot inside [xi+1, xi+2]
with sout(g, xi+1) = si and sin(g, xi+2) = sout(g, xi+2) = sout(f, xi+2). (See Fig. 9b.) This contradicts f ↔ S

↑
p .

For p = 0, consider some f ↔ S
↑
0 . If sgn(si → sin(f, xi)) ⇐= sgn(sout(f, xi+1) → si), then by Lemma A.2,

there is some g ↔ S
↑
0 which agrees with f outside of [xi, xi+1] and agrees with ωi on [xi, xi+1]. By Lemma A.1,

if sgn(si → sin(f, xi)) = sgn(sout(f, xi+1) → si) = 0, then f = ωi on [xi, xi+1]. If sgn(si → sin(f, xi)) =
sgn(sout(f, xi+1) → si) are both nonzero, then by Lemma A.1, sin(f, xi) = sout(f, xi) and sin(f, xi+1) =
sout(f, xi+1), and f has a single knot inside (xi, xi+1) where the incoming line at xi and the outgoing line at
xi+1 meet. As before, it must be the case that sgn(si→si↔1) ⇐= sgn(si→sin(f, xi)) and/or that sgn(si+1→si) ⇐=
sgn(sout(f, xi+1)→ si). Assume without loss of generality that sgn(si+1 → si) ⇐= sgn(sout(f, xi+1)→ si) = 1,
so that si+1 ↑ si < sout(f, xi+1) = sin(f, xi+1). Because 1 = sgn(sout(f, xi+1) → si) = sgn(si → sin(f, xi)),
we also have sin(f, xi) < si < sout(f, xi+1). If sgn(sout(f, xi+2) → si+1) ⇐= sgn(si+1 → sin(f, xi+1)) = →1,
then by Lemma A.2, there is some g ↔ S

↑
0 which agrees with f outside [xi+1, xi+2] and agrees with ωi+1 on

[xi+1, xi+2]. Then this g has sout(g, xi+1) = si and sin(g, xi) = sin(f, xi), so sgn(sout(xi+1)→ si) ↔ {→1, 0},
and sgn(si→sin(g, xi)) = 1; hence by Lemma A.2, there is some h ↔ S

↑
0 which agrees with g outside of [xi, xi+1]

and agrees with ωi on [xi, xi+1]. On the other hand, if sgn(sout(f, xi+2)→si+1) = sgn(si+1→sin(f, xi+1)) = →1,
then by Lemma A.1, f has a single knot inside (xi+1, xi+2), and sin(f, xi+2) = sout(f, xi+2), as in Fig. 9a.
This function has two knots on I := [xi↔1 → ϖ, xi+2 + ϖ] (for small ϖ > 0). The function g depicted in Fig. 9b,
which agrees with f outside of [xi, xi+2], agrees with ωi on [xi, xi+1], and has a single knot inside [xi+1, xi+2]
with sout(g, xi+1) = si and sin(g, xi+2) = sout(g, xi+2) = sout(f, xi+2), also has two knots on I. Therefore
g ↔ S

↑
0 .

Linearity between collinear data points. For 0 < p < 1, fix f ↔ S
↑
p . If sin(f, xi) = si = si+1 = · · · =

si+m↔1 = sout(f, xi+m), then f must agree with ωi = · · · = ωi+m↔1 on [xi, xi+m], since any other function
g would have Vp(g

∣∣
I
) > 0 = Vp(f

∣∣
I
) on I := [xi → ϖ, xi+m + ϖ] for small ϖ > 0. If sgn(si → sin(f, xi)) ⇐=
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(a) A nonlinear function between m + 1 collinear
points, m-even.

(b) A nonlinear function between m + 1 collinear
points, m-odd.

Figure 10: Behavior of f ↔ S
↑
p between collinear points. If f ↔ S

↑
p is not a straight line between collinear

points (xi, yi), . . . , (xi+m, yi+m), it must look like Fig. 10a (if m is even) or Fig. 10b (if m is odd). In both
cases, the sum of absolute slope changes of these functions is greater than the sum of absolute slope changes
of the function g which agrees with f outside of [xi, xi+m] and connects (xi, yi), . . . , (xi+m, yi+m) with a
straight line. Such a g has two knots, whereas functions of the form f depicted here have m ↘ 2 knots.

sgn(sout(f, xi+m)→si), then the argument in the proof of Lemma A.2 shows that f must agree with ωi = · · · =
ωi+m↔1 on [xi, xi+m]. So we need only consider the case where sgn(si → sin(f, xi)) = sgn(sout(f, xi+m)→ si)
are both nonzero; say without loss of generality that they both equal 1, so that sin(f, xi) < si < sout(f, xi+m).
If f = ωi on both [xi, xi+1] and [xi+m↔1, xi+m], then it also must agree with ωi on [xi+1, xi+m↔1] (otherwise
it would have Vp(f

∣∣
[xi,xi+m]

) > 0), so assume by contradiction that f ⇐= ωi on at least one of these intervals,
say without loss of generality on [xi, xi+1]. Then by Lemmas A.1 and A.2, it must be the case that f has a
single knot inside (xi, xi+1) and that sin(f, xi) = sout(f, xi) < si < sin(f, xi+1) = sout(f, xi+1). This implies
that f also disagrees with ωi on [xi, xi+1], so again by Lemmas A.1 and A.2, f must have a single knot inside
(xi+1, xi+2) with sin(f, xi+1) = sout(f, xi+1) > si+1 > sin(f, xi+2) = sout(f, xi+2). The same logic applies
on the remaining intervals up to and including [xi+m↔1, xi+m] (see Fig. 10). Note that if m is even, we
will have sin(f, xi+m↔1) = sout(f, xi+m↔1) > si+m↔1 = si > sin(f, xi+m) = sout(f, xi+m), contradicting the
assumption that sgn(sout(f, xi+m)→ si) = 1 (see Fig. 10a). If m is odd, as in Fig. 10b, we have

Vp(f
∣∣
I
) = |sout(f, xi+1)→ sin(f, xi)|p + |sout(f, xi+2)→ sout(f, xi+1)|p (32)

+ · · ·+ |sout(f, xi+m)→ sout(f, xi+m↔1)|p (33)
> |si → sin(f, xi)|p + |sout(f, xi+m)→ si+m↔1|p = Vp(g

∣∣
I
) (34)

where g is the function which agrees with f outside of [xi, xi+m] and agrees with ωi = · · · = ωi+m↔1 on
[xi, xi+m]; this contradicts f ↔ S

↑
p .

In the case p = 0, fix f ↔ S
↑
0 . If sin(f, xi) = si = · · · = si+m↔1 = sout(f, xi+m), then f must agree

with ωi = · · · = ωi+m↔1 on [xi, xi+m] and if sgn(si → sin(f, xi)) ⇐= sgn(sout(f, xi+m)→ si), then the proof of
Lemma A.2 shows that there is some g ↔ S

↑
0 which agrees with f outside of [xi, xi+m] and agrees with ωi on

[xi, xi+m]. If sgn(si → sin(f, xi)) = sgn(sout(f, xi+m)→ si) are both nonzero, then there must be at least one
knot on [xi, xi+m] in order for the slope to change from sin(f, xi) to sout(f, xi+m). It is impossible for f to
interpolate the data with a single knot on [xi, xi+m] where the slope changes from sin(f, xi) to sout(f, xi+m),
since this would require at least two of the points (xi, yi), . . . , (xi+m, yi+m) to both lie on either the incoming
line at xi or the outgoing point at xi+m, but this is impossible because si ⇐= sin(f, xi) and si ⇐= sout(f, xi+m).
Therefore, f must have at least two knots on [xi, xi+m]. The function g which agrees with ωi on [xi, xi+m] and
has sin(g, xi) = sin(f, xi) and sout(g, xi+m) = sout(f, xi+m) interpolates the points (xi, yi), . . . , (xi+m, yi+m)
with exactly two knots on [xi → ϖ, xi+m + ϖ], and thus g ↔ S

↑
0 .

Single knot between two data points with the same curvature. For 0 < p < 1, fix f ↔ S
↑
p . If i = 2,

then f = ω1 on (→⇒, x2] by Theorem 3.1,1. If i > 2, then by assumption, sgn(si↔1 → si↔2) ⇐= sgn(si → si↔1),
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(a) u1 = si+1 (b) si < u1 < si+1

(c) ui = si

Figure 11: Possible behavior of f ↔ S
↑
p between three consecutive data points of the same discrete curvature.

All possibilities satisfy si ↑ u1 ↑ si+1.

so by Theorem 3.1,1, f = ωi↔1 on [xi↔1, xi]. In either case, we have sin(f, xi) = si↔1. An analogous
argument shows that sout(f, xi+1) = si+1. Similarly, Theorem 3.1,1 says that there is some g ↔ S

↑
0 for which

sin(g, xi) = si↔1 and sout(g, xi+1) = si+1. In both cases, the conclusion then follows from Lemma A.2.

Characterization around ↘ 2 points with the same curvature. For 0 < p < 1, fix some f ↔ S
↑
p .

As in the proof of Theorem 3.1,2a above, the assumptions guarantee that si↔1 = sin(f, xi) and si+m =
sout(f, xi+m). Using this fact, we will proceed by (strong) induction, assuming without loss of generality that
sgn(si → si↔1) = sgn(si+1 → si) = · · · = sgn(si+m → si+m↔1) = 1.

In the base case m = 2, first suppose that sgn(si → sin(f, xi)) ⇐= sgn(sout(f, xi+1)→ si). Since sin(f, xi) =
si↔1 < si by assumption, it must be the case that sgn(sout(f, xi+1) → si) ↔ {0,→1}. If sgn(sout(f, xi+1) →
si) = →1, Lemma A.2 implies that f = ωi on [xi, xi+1], and thus sin(f, xi+1) = si. But then we have
sin(f, xi+1) = si < si+1 < sout(f, xi+2) = si+2, so by Lemma A.1, it must be the case that sin(f, xi+1) =
sout(f, xi+1), contradicting sgn(sout(f, xi+1) → si) = →1 (see Fig. 12b). If sgn(sout(f, xi+1) → si) = 0,
then Lemma A.2 implies that f = ωi on [xi, xi+1], and therefore sin(f, xi+1) = sout(f, xi+1) = si. Then
sin(f, xi+1) = si < si+1 < sout(f, xi+2) = si+2, so by Lemma A.1, f has a single knot inside [xi+1, xi+2], with
sin(f, xi+1) = sout(f, xi+1) = si (as we already know) and sin(f, xi+2) = sout(f, xi+2) = si+2. The conclusion
then holds with u1 := si (see Fig. 11c).

On the other hand, still for the base case m = 2, suppose that sgn(si→ sin(f, xi)) = sgn(sout(f, xi+1)→ si).
Then by Lemma A.1, there is a single knot inside [xi, xi+1], with si↔1 = sin(f, xi) = sout(f, xi) and
sin(f, xi+1) = sout(f, xi+1). It cannot be the case that sout(f, xi+1) > si+1, because if this were true,
we would have →1 = sgn(si+1 → sin(f, xi+1)) ⇐= sgn(sout(f, xi+2) → si+1) = 1, and that would imply by
Lemma A.2 that f = ωi+1 on [xi+1, xi+2], contradicting sout(f, xi+1) > si+1 (see Fig. 12a). Therefore,
we must have sout(f, xi+1) ↑ si+1. If sout(f, xi+1) < si+1, then by Lemma A.1, there is a single knot on
[xi+1, xi+2], with sin(f, xi+1) = sout(f, xi+1) (as we already knew) and sin(f, xi+2) = sout(f, xi+2) = si+2.
The conclusion then holds with u1 := sin(f, xi+1) = sout(f, xi+1) (see Fig. 11b). If sout(f, xi+1) = si+1, then
0 = sgn(si+1 → sin(f, xi+1) ⇐= sgn(sout(f, xi+2)→ si+1) = 1, so by Lemma A.2, f = ωi+1 on [xi+1, xi+2]. The
conclusion then holds with u1 := si+1 (see Fig. 11a).
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(a) sin(xi+1) = sout(xi+1) > si+1 (b) sout(xi+1) < sin(xi+1) = si

Figure 12: Behaviors which f ↔ S
↑
p for 0 < p < 1 cannot exhibit around three consecutive points of the same

discrete curvature. The case on the left violates Lemma A.2, and the case on the right violates Lemma A.1.

(a) si+m↑2 < um↑1 < si+m↑1 (b) um↑2 = um↑1 = si+m↑2

Figure 13: Possible behavior of f ↔ S
↑
p around m consecutive data points of the same discrete curvature.

Assuming inductively that Theorem 3.1,2b holds for 2, . . . ,m → 1, both satisfy si+j↔1 ↑ uj ↑ si+j for
j = 1, . . . ,m→ 1.

Next, for the (strong) inductive step, fix some integer m ↘ 4 and assume the conclusion holds for all
integers 2, . . . ,m → 1. First suppose that sout(f, xi+m↔1) > si+m↔2. Then by the inductive hypothesis, f
has slopes u1, . . . , um↔2—some of which may be equal to each other, but all of which are distinct from
sin(f, xi) = si↔1 and sout(f, xi+m↔1)—on [xi, xi+m↔1] satisfying si+j↔1 ↑ uj ↑ si+j for all j = 1, . . . ,m→ 2.
It cannot be the case that sout(f, xi+m↔1) > si+m↔1, because if this were true, we would have →1 =
sgn(si+m↔1 → sin(f, xi+m↔1)) ⇐= sgn(sout(f, xi+m) → si+m↔1) = 1, and thus Lemma A.2 would imply that
f = ωi+m↔1 on [xi+m↔1, xi+m], contradicting sout(f, xi+m↔1) > si+m↔1 (see Fig. 12b). Therefore, we must
have sout(f, xi+m↔1) ↑ si+m↔1. If sout(f, xi+m↔1) < si+m↔1, then by Lemma A.1, there is a single knot
inside [xi+m↔1, xi+m] and sin(f, xi+m↔1) = sout(f, xi+m↔1) and sin(f, xi+m) = sout(f, xi+m) = si+m. The
conclusion then holds for m with um↔1 := sout(f, xi+m↔1) (see Fig. 13a). If sout(f, xi+m↔1) = si+m↔1, then by
Lemmas A.1 and A.2, it must be the case that {0,→1} ↙ sgn(si+m↔1 → sin(f, xi+m↔1)) ⇐= sgn(sout(f, xi+m)→
si+m↔1)) = 1. It is impossible that sgn(si+m↔1 → sin(f, xi+m↔1)) = →1 because by Lemmas A.1 and A.2, for
f to disagree with ωi+m↔2 on [xi+m↔2, xi+m↔1], it must be the case that sin(f, xi+m↔1) = sout(f, xi+m↔1),
contradicting sin(f, xi+m↔1) < sout(f, xi+m↔1) = si+m↔1 (see Fig. 14a, red). Therefore, in this case we
have sin(f, xi+m↔1) = sout(f, xi+m↔1) = si+m↔1, and the conclusion holds for m with um↔1 := si+m↔1 (see
Fig. 14a, green).

On the other hand, still for the (strong) inductive step, suppose that sout(f, xi+m↔1) ↑ si+m↔2. If
sout(f, xi+m↔1) = si+m↔2, then by Lemmas A.1 and A.2, f has a single knot inside [xi+m↔1, xi+m] with
sin(f, xi+m↔1) = sout(f, xi+m↔1) = si+m↔2 and sin(f, xi+m) = sout(f, xi+m) = si+m. This implies, again by
Lemmas A.1 and A.2, that f = ωi+m↔2 on [xi+m↔2, xi+m↔1]. By the (strong) inductive hypothesis, f has
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(a) si+m↑1 = sout(xi+m↑1) ↓ sin(xi+m↑1) (b) sin(xi+m↑1) = sout(xi+m↑1) > si+m↑1

Figure 14: Behaviors which f ↔ S
↑
p can and cannot exhibit between m consecutive points of the same discrete

curvature. Assuming inductively that Theorem 3.1,2b holds for 2, . . . ,m→ 1, the case with the green check
mark on the left satisfies si+j↔1 ↑ uj ↑ si+j for j = 1, . . . ,m→ 1. The case with the red x on the left violates
Lemma A.1, and the case on the right violates Lemma A.2.

(a) A function with sout(xi+m↑1) < si+m↑2. (b) A function with sin(xi+m↑1) = sout(xi+m↑1) = si+m↑2.

Figure 15: Possible behavior of f ↔ S
↑
p around m consecutive slope changes of the same discrete curvature.

The magnitude of slope change at each knot of the function f on the left, which has sout(f, xi+m↔1) < si+m↔2,
is greater than that of the corresponding knot in the function g on the right, which has sin(xi+m↔1) =
sout(xi+m↔1) = si+m↔2.
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slopes u1, . . . , um↔3 on [xi, xi+m↔2], all distinct from sin(f, xi) = si↔1 and sout(f, xi+m↔2) = si+m↔2, which
satisfy si+j↔1 ↑ uj ↑ si+j for j = 2, . . . ,m→3. The conclusion then holds for m with um↔2 = um↔1 := si+m↔2

(see Fig. 13b). It remains only to consider the case sout(f, xi+m↔1) < si+m↔2, and show that this is impossible
for f ↔ S

↑
p . If sout(f, xi+m↔1) < si+m↔2, then by Lemmas A.1 and A.2, there is a single knot inside

[xi+m↔1 → xi+m] and sin(f, xi+m↔1) = sout(f, xi+m↔1) and sin(f, xi+m) = sout(f, xi+m) = si+m. This
in turn implies, again by Lemmas A.1 and A.2, that there is a single knot inside [xi+m↔2, xi+m↔1] and
sin(f, xi+m↔2) = sout(f, xi+m↔2). (See Fig. 15a.) On the interval I := [xi+m↔2 → ϖ, xi+m + ϖ] for small ϖ > 0,
we thus have

Vp(f
∣∣
I
) = |sout(f, xi+m↔1)→ sin(f, xi+m↔2)|p + |si+m → sout(f, xi+m↔1)|p (35)
> |si+m↔2 → sin(f, xi+m↔2)|p + |si+m → si+m↔2|p (36)

where the inequality holds because sout(f, xi+m↔1) < si+m↔2 < si+m and sin(f, xi+m↔2) > si+m↔2 >

sout(f, xi+m↔1). The latter is exactly Vp(g
∣∣
I
), where g is the function which agrees with f outside of

[xi+m↔2, xi+m], agrees with ωi+m↔2 on [xi+m↔2, xi+m↔1], and has a single knot in [xi+m↔1, xi+m] with
sin(f, xi+m↔1) = sout(f, xi+m↔1) = si+m↔2 and sin(f, xi+m) = sout(f, xi+m) = si+m. (See Fig. 15b.) This
contradicts f ↔ S

↑
p .

For the case p = 0: again, as in the proof of Theorem 3.1,2a, the assumptions guarantee that there is some
f ↔ S

↑
0 for which sin(f, xi) = si↔1 and sout(f, xi+1) = si+1. The inductive argument above for 0 < p < 1 also

shows the desired result in the p = 0 case, with each reference to Lemma A.2 as well as the last portion of
the inductive step instead justifying the existence of some g ↔ S

↑
0 which exhibits the desired local behavior

and agrees with f elsewhere.

Non-emptiness of S
↑
p for 0 < p < 1. As noted in Section A.1.1, restricting the input weights to |wk| = 1

in optimization (2) recovers the same set of optimal functions S
↑
p . The geometric characterization proved

above shows that any solution to this modified (2) must have no knots outside of [x2, xN↔1], and thus its
biases satisfy |bk| ↑ B := max{|x2|, |xN↔1|}. Additionally, any such solution has slopes absolutely bounded
by C := maxi=1,...,N↔1 |si|, so that each |vkwk| = |vk| ↑ 2C, and thus its skip connection parameters can be
bounded as

|a|→

∣∣∣∣∣
∑

wk>0

vk

∣∣∣∣∣ ↑

∣∣∣∣∣a+
∑

wk>0

vk

∣∣∣∣∣ = |f ↘(xN + 1)| ↑ C =∝ |a| ↑ A := C +
∑

wk>0

|v| ↑ C + 2KC (37)

and

c = y1 →
K∑

k=1

vk(wkx1 → bk)+ → ax1 =∝ |c| ↑ |y1|+
K∑

k=1

|vk|(|x1|+ |bk|) + |ax1| (38)

↑ C0 := |y1|+ 2KC(|x1|+B) + |x1|(C + 2KC) (39)

Therefore, any f ↔ S
↑
p is recovered by a restricted version of (2) which requires that |wk| = 1, |bk| ↑ B, |vk| ↑

2C, |a| ↑ A, |c| ↑ C0. For any fixed choice of w1, . . . , wK ↔ {→1, 1}K , this modified optimization (in the
remaining variables) constitutes a minimization of a continuous function over a compact set, so by the
Weierstrass Extreme Value Theorem, a solution exists. Taking the minimum over all such solutions for all
possible choices of w1, . . . , wK ↔ {→1, 1}K proves the result.

A.1.4 Proof of Theorem 3.2

Proof. If the data contain no more than two consecutive points with the same discrete curvature, there is
only one interpolant f which fits the description in Theorem 3.1. By Theorem 4 in Debarre et al. (2022), this
f ↔ S

↑
0 . Otherwise, if the data do contain some xi, . . . , xi+m with the same discrete curvature for m ↘ 2, the

slopes u1, . . . , um↔1 of any interpolant satisfying the description in Theorem 3.1,2b have si+j↔1 ↑ uj ↑ si+j

for each j = 1, . . . ,m → 1. Indeed, any choice of u1, . . . , um↔1 satisfying si+j↔1 ↑ uj ↑ si+j for each j
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defines an CPWL interpolant of the data, given by the pointwise maximum of ωi↔1, ωi+m, and the lines Lj ,
each of which has slope uj and passes through (xi+j , yi+j). Therefore, the set S of functions described by
Theorem 3.1,2b on any such xi, . . . , xi+m can be fully associated with the set of numbers u1, . . . , um satisfying
si+j↔1 ↑ uj ↑ si+j for each j. Since any such uj = (1→ ϱj)si+j↔1 + ϱjsi+j for a unique ϱj ↔ [0, 1], we can
equivalently identify S with the unit cube [0, 1]m↔1.

Viewed as a function of its corresponding ϖ = [ϱ1, . . . ,ϱm↔1]≃ ↔ [0, 1]m↔1, the regularization cost Vp(f |I)
(for 0 < p < 1) of any f ↔ S on I := [xi↔1 → ϑ, xi+m+1 + ϑ] for small ϑ > 0 is

Vp(ϖ) = |u1 → si↔1|p +
m↔1∑

j=2

|uj → uj↔1|p + |si+m → um↔1|p = ⇑Aϖ+ c⇑pp (40)

where the rows a1, . . . ,am of A ↔ Rm⇒(m↔1) and entries c1, . . . , cm of c ↔ Rm are

a1 = [si+1 → si, 0, . . . , 0]
≃
, c1 = si → si↔1 (41)

am = [0, . . . , 0, si+m↔1 → si+m]≃, c1 = si+m → si+m↔1 (42)

and

aj = [0, . . . , 0,→(si+j↔1 → si+j↔2), si+j → si+j↔1, 0, . . . , 0]
≃
, cj = si+j↔1 → si+j↔2 (43)

for j = 2, . . . ,m → 1, with the nonzero entries of aj in positions j → 1 and j. By the assumption that
ϖi = · · · = ϖi+m are all nonzero, the rows a1, . . . ,am of A span Rm↔1, and thus ϖ ↖↓ Aϖ + c is injective.
For any distinct ϖ1,ϖ2 ↔ [0, 1]m↔1, we thus have Aϖ1 + c ⇐= Aϖ2 + c, and therefore

Vp(tϖ1 + (1→ t)ϖ2) = ⇑t(Aϖ1 + c) + (1→ t)(Aϖ2 + c)⇑pp > t⇑Aϖ1 + c⇑pp + (1→ t)⇑Aϖ2 + c⇑pp (44)

for any t ↔ (0, 1) by strict concavity of ⇑ · ⇑pp on [0, 1]m↔1. This shows that Vp is strictly concave on [0, 1]m↔1.
By the Bauer Maximum Principle (Aliprantis and Border (2006), Theorem 4.104), Vp(ϖ) thus attains a
minimum on [0, 1]m↔1 at an extreme point of [0, 1]m↔1. Moreover, by strict concavity of Vp(ϖ), any minimum
of Vp(ϖ) over [0, 1]m↔1 must occur at an extreme point. Therefore, when searching for an f ↔ S with
minimal Vp, we may restrict our attention to those f corresponding to the 2m↔1 vertices {0, 1}m↔1 of the
cube [0, 1]m↔1.

Among these 2m↔1 vertices, there is at least one corresponding to a sparsest solution f ↔ S
↑
0 ′ S. This

is because, by Theorem 4 in Debarre et al. (2022), any f ↔ S
↑
0 ′ S has ∞m+1

2 ∈ knots on I, and there is one
such f if m is odd, or uncountably many if m is even. If m is odd, this unique f corresponds to the vertex
[1, 0, . . . , 1, 0]≃ ↔ {0, 1}m↔1; i.e., this f has uj = si+j for odd j and uj = si+j↔1 for even j. If m is even, there
are multiple vertices ϖ ↔ {0, 1}m↔1 which attain the minimal number ∞m+1

2 ∈ of knots on I: two examples
are [1, 0, . . . , 1, 0, 1]≃ ↔ {0, 1}m↔1 (see Fig. 16b) and [0, 1, . . . , 0, 1, 0]≃ ↔ {0, 1}m↔1 (see Fig. 16a).

For each of the 2m↔1 functions f ↔ S corresponding to the vertices ϖ ↔ {0, 1}m↔1, consider the associated
“cost curves” Cf (p) := Vp(f |I), which is simply the regularization cost Vp(f |I) for that individual f over
I, viewed as a function of the variable p ↔ [0, 1]. Each Cf (p) is a generalized Dirichlet polynomial7 of the
variable p. By the generalized Descartes rule of signs for Dirichlet polynomials (Jameson (2006), Theorem
3.1), any two cost curves Cf (p), Cg(p) for distinct f, g can only intersect at finitely many p ↔ [0, 1]. Therefore,
for any given p ↔ [0, 1] outside of that finite set (which has Lebesgue measure zero), a unique one of these
2m↔1 candidate solutions f has smaller cost Cf (p) = Vp(f |I) than the others. Furthermore, the sparsest of
these 2m↔1 functions (i.e., the ones in S ′ S

↑
0 ) will necessarily have smaller Cf (0) = V0(f |I) than the rest,

and because all of the cost curves Cf (p) are continuous, a unique one of these sparsest solutions will have
smaller cost Cf (p) than the others for all p between 0 and p

↑, which is the location of the first intersection of
any two of these 2m↔1 candidate solutions’ cost curves.

7Generalized Dirichlet polynomials are functions of the form f(x) =
∑n

i=1 aib
x
i , where ai, x ↘ R and b1 ↑ · · · ↑ bn > 0.
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(a) One sparsest interpolant, corresponding to ω =
[0, 1, 0].

(b) Another sparsest interpolant, corresponding to
ω = [1, 0, 1].

Figure 16: Illustration of two sparsest interpolants in the scenario of Theorem 3.1,2b with m = 4. Both have
∞m+1

2 ∈ = 3 knots on [xi → 1, xi+m + 1], consistent with Theorem 4 of Debarre et al. (2022).

A.2 Multivariate results
A.2.1 Proof of Proposition 4.1

Proof. Assume by contradiction that a solution {vk,wk}Kk=1 to (9) for K > N has K0 > N active neurons
{vk,wk}K0

k=1. Because K0 > N , the vectors ak := [(w≃
k x1)+, . . . , (w≃

k xN )+]≃, where xi := [xi, 1], are linearly
dependent, meaning that there are constants c1, . . . , cK0 (not all zero) for which

∑K0

k=1 ckak = 0. Then for
any real t:

K0∑

k=1

(vk + tck)ak =
K0∑

k=1

vkak + t

K0∑

k=1

ckak =
K0∑

k=1

vkak = y

where y := [y1, . . . , yN ]≃. Therefore, choosing t = →vk→/ck→ for one of the ck→ ⇐= 0, the network with parameters
{vk + tck,wk}K0

k=1 interpolates the data, and satisfies

K0∑

k=1

⇑(vk + tck)wk⇑0 <

K0∑

k=1

⇑vkwk⇑0

where strict inequality holds because all of the vkwk are nonzero, whereas at least one of the (vk + tck)wk

on the left is zero (for k = k
↘), and ⇑vkwk⇑0 = ⇑(vk + tck)wk⇑0 whenever both vkwk and (vk + tck)wk are

nonzero. This contradicts optimality of {vk,wk}Kk=1.
If the data are in general position and N ↘ d+ 1, then Bubeck et al. (2020) show that there exists an

interpolating single-hidden-layer ReLU network with 4∞N/d∈ neurons. Any such network clearly has at most
4(d+ 1)∞N/d∈ ↑ 4(N + 1) + 4(N + 1)/d ↑ 8(N + 1) = O(N) nonzero input weight/bias parameters across
those 4∞N/d∈ neurons.

If the data are in general position and N ↑ d+ 1, the points x1, . . . ,xN must be a"nely independent,
meaning that

N∑

i=1

ϱixi = 0 and
N∑

i=1

ϱi = 0 =∝ ϱ1 = · · · = ϱN = 0 (45)

Because this condition is equivalent to linear independence of the vectors xi := [x≃
i , 1]

≃, the general position
assumption ensures that augmented data matrix X = [x1, . . . ,xN ]≃ ↔ RN⇒(d+1) has full rank N . Therefore,
there exists a solution w ↔ Rd+1 to the system

Xw = y := [y1, . . . , yN ]≃ (46)
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with ⇑w⇑0 = N . (To see this, choose N linearly independent columns of X, express y as a linear combination
with respect to this basis, and let w be the vector of coe"cients of this linear combination.) For any such w,
(46) says that the a"ne function

f(x) = w≃x = (w≃x)+ → (→w≃x)+ (47)

interpolates the data (recall x := [x≃
, 1]≃). The term on the right is a two-neuron ReLU network with ω

0

path norm of 2⇑w⇑0 = 2N . Also note that if the labels yi are all nonnegative (resp. nonpositive), we may
discard the second (resp. first) ReLU term in (47), achieving interpolation with ω

0 path norm of ⇑w⇑0 = N .
As long as R is large enough to allow these constructions, we have shown that the ω

0 path norm of any
solution to (9) is O(N).

A.2.2 Proof of Lemma 4.1

Proof. Note that the data-fitting constraint in problems (8) and (9) can be expressed in matrix form as
K∑

k=1

vk

(
Xwk

)
+
= y (48)

where X = [x1, . . . ,xN ]≃ ↔ RN⇒(d+1) is the matrix of augmented data points xi := [x≃
i , 1]

≃, y =
[y1, . . . , yN ]≃ ↔ RN is the vector of labels, and the ReLU (·)+ is applied element-wise. For any wk ↔ Rd+1,
define sk = [ w↑

k x1⇑0, . . . , w↑
k xN⇑0]

≃ ↔ {0, 1}N . In other words, sk checks whether each entry of Xwk is
positive (in which case its corresponding entry is 1) or negative (in which case its corresponding entry is 0). Of
course, even though there are uncountably many possible wk’s, there are only a finite number—clearly at most
2N— of possible binary activation patterns sk. Although the actual number of possible activation patterns
which could be induced by a configuration of ReLU neurons on the data is generally fewer than this maximal
possible 2N (Ojha (2000); Winder (1966); Stanley et al. (2007)), we may reformulate our optimization as
being over all 2N binary patterns, since we will encode explicit constraints into the optimization to require
that any solutions correspond to activation patterns which can be induced on the data by a ReLU network.
Denote the corresponding diagonal matrices diag(sk) as D1, . . . ,D2N ↔ {0, 1}N⇒N . Then for any wk whose
corresponding activation pattern is Dpattern(k), we have

(Xwk)+ = Dpattern(k)Xwk =∝ (Xwk)+vk = Dpattern(k)Xw̃k

where w̃k := vkwk.
For any j = 1, . . . , 2N , let Kj = {k : pattern(k) = j} be the set of neuron indices which share the same

pattern Dj . Then the sum of those neurons can be rewritten as
∑

k↗Kj

(Xwk)+vk =
∑

k↗Kj

DjXw̃k = DjX
∑

k↗Kj

w̃k = DjX(εj → ϑj)

where εj and ϑj represent the positive and negative parts of the aggregate vector
∑

k↗Kj
w̃k, respectively, i.e.

εj =
∑

k↗K+
j

vkwk, ϑj = →
∑

k↗K↓
j

vkwk

where K
+
j := {k ↔ Kj , vk > 0} and K

↔
j := {k ↔ Kj , vk < 0}, so that

εj → ϑj =
∑

k↗K+
j

vkwk +
∑

k↗K↓
j

vkwk =
∑

k↗Kj

w̃k

Therefore, the entire network output can be written as

K∑

k=1

(Xwk)+vk =
2N∑

j=1

DjX(εj → ϑj)
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with the understanding that, if the set Kj is empty for some j, the vector εj → ϑj :=
∑

k↗Kj
vkwk is the

zero vector.
The objectives of (8) and (9) can be correspondingly rewritten as:

K∑

k=1

⇑vkwk⇑pp =
K∑

k=1

⇑w̃k⇑pp =
2N∑

j=1




∑

k↗K+
j

⇑w̃k⇑pp +
∑

k↗K↓
j

⇑w̃k⇑pp





K∑

k=1

⇑vkwk⇑0 =
K∑

k=1

⇑w̃k⇑0 =
2N∑

j=1




∑

k↗K+
j

⇑w̃k⇑0 +
∑

k↗K↓
j

⇑w̃k⇑0





Observe that:

∑

k↗K+
j

⇑w̃k⇑pp ↘


∑

k↗K+
j

w̃k


p

p

= ⇑εj⇑pp,
∑

k↗K↓
j

⇑w̃k⇑pp ↘


∑

k↗K↓
j

w̃k


p

p

= ⇑ϑj⇑pp (49)

∑

k↗K+
j

⇑w̃k⇑0 ↘


∑

k↗K+
j

w̃k


0

= ⇑εj⇑0,
∑

k↗K↓
j

⇑w̃k⇑0 ↘


∑

k↗K↓
j

w̃k


0

= ⇑ϑj⇑0 (50)

where in all cases, equality holds if and only if the supports of each vector in the sum (i.e., the set of indices at
which each vector is nonzero) are disjoint. This follows from applying the inequality (a+ b)p ↑ a

p+ b
p—which

holds for any a, b ↘ 0 if 0 < p < 1 and for any a, b ↔ R if p = 0 (defining 00 = 0), and in both cases is strict
unless a = 0 or b = 0—coordinate wise.

At a global minimizer of either (8) or (9), this lower bound will be achieved. To see this, note that it is always
possible to replace a single one of the vectors w̃k in each group K

+
j (resp. K↔

j ) with the vector εj (resp. →ϑj),
and set the remaining vectors in each group to zero. By definition εj =

∑
k↗K+

j
w̃k and ϑj = →

∑
k↗K↓

j
w̃k,

so clearly the network output
∑2N

j=1 DjX
∑

k↗K+
j
w̃k +

∑
k↗K↓

j
w̃k


=

∑2N

j=1 DjX(εj →ϑj) on the data X

remains unchanged by this modification. And with this modification, all inequalities in (49) will clearly hold
with equality. This shows that, for any solution to (8) or (9), all input weight vectors wk in any individual
activation pattern group K

+
j or K

↔
j will have disjoint supports. In any such case, the neurons in each

individual positive/negative activation pattern groups can be merged into a single nonzero neuron containing
their sum, without a!ecting either the network’s ability to interpolate the data or the value of the sums∑

k↗K+
j
⇑w̃k⇑0 or

∑
k↗K+

j
⇑w̃k⇑qq for any 0 < q < 1. Note that, although this merging may alter the function

represented by the neural network, it will preserve the values of
∑K

k=1 ⇑vkwk⇑0 and
∑K

k=1 ⇑vkwk⇑qq for any
0 < q < 1, which is the only thing required for the statement of the lemma and its subsequent use in proving
Theorem 4.1. Therefore, we may enforce that there is at most one positively-weighted neuron vjwj = εj and
at most one negatively-weighted neuron vjwj = ϑj corresponding to any possible activation pattern j on the
data. Under this assumption, solutions to problem (8) can be recovered from solutions to (10) as

{wk}Kk=1 =


εj

ϱj
,εj ⇐= 0


⇔

ϑj

ςj
,ϑj ⇐= 0


(51)

{vk}Kk=1 = {ϱj ,εj ⇐= 0} ⇔ {→ςj ,ϑj ⇐= 0} (52)

for any constants ϱ1,ς1 . . . ,ϱ2N ,ς2N > 0, the choice of which a!ects neither the network’s represented
function, nor its value of

∑K
k=1 ⇑vkwk⇑0 or

∑K
k=1 ⇑vkwk⇑qq for any 0 < q < 1.

Finally, notice that in order for a particular binary pattern Dj to actually correspond to an input
weight/bias wk, it must be the case that (Xwk)i ↘ 0 wherever (Dj)ii = 1 and (Xwk)i ↑ 0 wherever
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(Dj)ii = 0. This is exactly the requirement that every entry of the vector (2Dj → I)Xwk ↔ RN is
nonnegative, since

((2Dj → I)Xwk)i =

{
(Xwk)i, if (Dj)ii = 1

→(Xwk)i, if (Dj)ii = 0

When we re-parameterize as w̃k = vkwk and split the neuron indices Kj correponding to activation pattern
Dj into the groups K

+
j and K

↔
j , the requirement that (2Dj → I)Xwk ↘ 0 is equivalent to requiring that

(2Dj → I)Xw̃k ↘ 0 if k ↔ K
+
j and (2Dj → I)Xw̃k ↑ 0 if k ↔ K

↔
j . Under the assumption (discussed above)

that there is at most one nonzero neuron w̃k = εj (resp. w̃k = →ϑj) in each activation pattern group K
+
j

(resp. K
↔
j ), this condition is also clearly equivalent to (2Dj → I)Xεj ↘ 0 and (2Dj → I)Xϑj ↘ 0. By

incorporating these constraints, we have thus fully reparameterized the neural network problems (8) and (9)
as stated in the lemma.

A.2.3 Proof of Theorem 4.1

Proof. Our proof follows the same line of reasoning as Peng et al. (2015), with a correction to what we believe
to be an important oversight in their argument. Peng et al. (2015) claim that for any 0 < p < 1, solutions
to minx↗Rn ⇑x⇑pp s.t. Ax = b, for a full rank matrix A ↔ Rm⇒n with m < n, are bounded inside the ω

→

ball of radius nmaxi=1,...,n |(A(AA≃)↔1b)i|. This claim of ω→ boundedness independent of p is critical to
the proof of their main result. We believe this bound is incorrect, and that the correct bound is instead
n
1/p maxi=1,...,n |(A(AA≃)↔1b)i|, which is unbounded as p ≃ 0. For this reason, we explicitly include the ω

→

boundedness constraint in optimizations (8) and (9). With (10) expressed more compactly in matrix form,
we thus have the problem

argmin
z↗R2N+1(d+1)

⇑z⇑pp , subject to Az = y, Gz ↘ 0, ⇑z⇑→ ↑ R (53)

where z := [ε≃
1 ,ϑ≃

1 , . . . ,ε
≃
2N ,ϑ≃

2N ]≃ ↔ R2N+1(d+1), A := [D1X,→D1X, . . . ,D2NX,→D2NX] ↔ RN⇒2N+1(d+1),
and G is the block diagonal matrix G := diag

(
(2D1 → I)X, (2D1 → I)X, . . . , (2D2N → I)X, (2D2N → I)X

)
↔

RN2N+1⇒2N+1(d+1).
The feasible set ” of (53) is a polytope, i.e., a bounded intersection of finitely many half-spaces. The

map z ↖↓ ⇑z⇑pp is not concave on all of R2N+1(d+1)

, but it is concave on each individual orthant, so to apply
the Bauer Maximum Principle as in the proof of Theorem 3.2, we will relate (53) to an optimization over a
polytope contained in the nonnegative orthant R2N+1(d+1)

+ . To do so, note that the set

# :=

(z, z↘) ↔ R2N+1(d+1) ↗ R2N+1(d+1)

+

∣∣ z ↔ ”, ⇑z↘⇑→ ↑ R, |z| ↑ z↘

, (54)

is a polytope in the product space R2N+1(d+1) ↗ R2N+1(d+1)
+ . (Here the module vector |z| is the vector of

absolute values of entries of z.) Because the coordinate projection of a polytope is a polytope (Goemans
(2009)), the set

”↘ :=

z↘ ↔ R2N+1(d+1)

+

∣∣ ⇑z↘⇑→ ↑ R, ∋ z ↔ ” s.t. |z| ↑ z↘

, (55)

which is given by the coordinate projection of # onto the z↘ coordinate, is a polytope in R2N+1(d+1)
+ .

Furthermore, minz↗! ⇑z⇑pp = minz→↗!→ ⇑z↘⇑pp. To see this, note that for any z ↔ ”, its module vector |z| ↔ ”↘,
so minz↗! ⇑z⇑pp ↘ minz→↗!→ ⇑z↘⇑pp. If that inequality were strict, then there would be some z ↔ ” with
|z| < z↘

↑ ↙ argminz→↗!→ ⇑z↘⇑pp, but this would imply that minz↗! ⇑z⇑pp < minz→↗!→ ⇑z↘⇑pp.
As a polytope, ”↘ is compact, convex, and has finitely many extreme points, the set of which we denote

Ext(”↘). Let

r := min{z↘i > 0 | z↘ = [z↘1, . . . , z
↘
2N+1(d+1)]

≃ ↔ Ext(”↘)} (56)
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be the smallest nonzero coordinate in any of the extreme points of ”↘.
Next, note that for 0 < p < 1, the objective z ↖↓ ⇑z⇑pp is continuous and strictly concave on the

nonnegative orthant R2N+1(d+1)
+ , and thus on ”↘. Therefore, by the Bauer Maximum Principle (Aliprantis

and Border (2006), Theorem 4.104), a solution to argminz→↗!→ ⇑z↘⇑pp exists at an extreme point of ”↘. In
particular, by strict concavity of z ↖↓ ⇑z⇑pp, any solution to argminz→↗!→ ⇑z↘⇑pp must be at an extreme point
of ”↘. (Otherwise, if such a solution had z↘ = ta↘ + (1 → t)b↘ for distinct a, b ↔ ”↘ and t ↔ (0, 1), then
⇑z↘⇑pp > t⇑a↘⇑pp + (1→ t)⇑b↘⇑pp ↘ t⇑z↘⇑pp + (1→ t)⇑z↘⇑pp = ⇑z↘⇑pp which is impossible.)

Putting everything together, fix an arbitrary 0 < p < 1 and let zp be a solution to (53) for that p. The
previous paragraph shows that |zp| is a solution to argminz→↗!→ ⇑z↘⇑pp, and therefore |zp| ↔ Ext(”↘). Then:

⇑zp⇑0 = ⇑r↔1|zp|⇑0 = lim
q⇓0

2N∑

i=1

(
|zp,i|
r

)q

(57)

↑
2N∑

i=1

(
|zp,i|
r

)p

= r
↔p min

z→↗!→
⇑z↘⇑pp = r

↔p min
z↗!

⇑z⇑pp =

(
R

r

)p

min
z↗!

⇑R↔1z⇑pp (58)

↑
(
R

r

)p

min
z↗!

⇑R↔1z⇑0 =

(
R

r

)p

min
z↗!

⇑z⇑0 (59)

where the inequalities come from the fact that p ↖↓ x
p is decreasing for x ↔ (0, 1) and increasing for x > 1.

Because ⇑z⇑0 is a positive integer for any z, the above shows that zp solves

argmin
z↗R2N+1(d+1)

⇑z⇑0 , subject to Az = y, Gz ↘ 0, ⇑z⇑→ ↑ R (60)

for any p satisfying
(
R

r

)p

min
z↗!

⇑z⇑0 < min
z↗!

⇑z⇑0 + 1 (61)

△∝ p <
log(minz↗! ⇑z⇑0 + 1)→ log(minz↗! ⇑z⇑0)

logR→ log r
(62)

if r < R, or for any 0 < p < 1 if r = R. (Note that by definition of ”↘, r ↑ R always.)
Let ω0 be a solution to (9) and ωp be a solution to (8) for any p which obeys the inequality in (62),

and let ω↘
0 and ω↘

p be the corresponding solutions—constructed from solutions zp and z0 to (53) and (60),
respectively—as stated in Lemma 4.1. We have shown that

⇑ωp⇑0 = ⇑ω↘
p⇑0 = ⇑zp⇑0 = ⇑z0⇑0 = ⇑ω↘

0⇑0 = ⇑ω0⇑0 (63)

which proves the result.

A.3 Experiments
All code for the experiments can be found at https://github.com/julianakhleh/sparse_nns_lp.

A.3.1 Reweighted ω
1 algorithm

To implement our proposed ω
p path norm regularizer, we use the iteratively reweighted ω

1 algorithm of Candes
et al. (2008); Figueiredo et al. (2007), which we summarize informally here. The principal motivation is the
inequality

|x|p ↑ |x|p|y|p↔1 + (1→ p)|y|p (64)
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which holds for all x ↔ R, all y ↔ R \ {0}, and all 0 < p ↑ 1, with equality when p = 1 and/or when x = y.
Applied to x = |vkwk,i|, we have

K∑

k=1

⇑vkwk⇑pp =
K∑

k=1

d∑

i=1

|vkwk,i|p ↑
K∑

k=1

d∑

i=1

(
|vkwk,i|p|yk,i|p↔1 + (1→ p)|yk,i|p

)
(65)

for any choice of constant yk,i ↔ R \ {0}. The iteratively reweighed ω
1 algorithm attempts to minimize the

ω
p path norm objective on the left hand side of (65) by minimizing its upper bound on the right. Because

the choice of vk, wk,i which minimizes this upper bound is invariant to the additive constant (1→ p)|yk,i|p
term, we can equivalently choose vkwk,i at each iteration t to minimize only the first term Ck,i|vkwk,i| where
Ck,i := p|yk,i|p↔1. Because the upper bound is tighter when yk,i is closer to the optimal values of vkwk,i for
this iteration t, we choose the constants yk,i as v

(t↔1)
k w

(t↔1)
k,i , where v

(t↔1)
k , w

(t↔1)
k,i are the previous iterates.

The regularization penalty thus becomes

K∑

k=1

d∑

i=1

Ck,i|vkwk,i| (66)

which is simply a separable weighted ω
1 penalty with weights Ck,i. This objective lends itself to a standard ω

1

proximal gradient update algorithm, with each soft-thresholding step scaled appropriately according to the
individual threshold Ck,i. The full algorithm is summarized in Algorithm 1.

Algorithm 1 Iteratively reweighted ω
1 algorithm for ω

p path norm minimization
Input: loss function L, sparsity parameter 0 < p ↑ 1, learning rate ↽ > 0, regularization parameter φ > 0,
total number of iterations T .

for t = 1, . . . , T do
Compute thresholds: Ck,i ▽ φp|v(t↔1)

k w
(t↔1)
k,i |p↔1

Gradient update for input weights: w̃k,i ▽ w
(t↔1)
k,i → φ

ϑL(ω)
ϑwk,i

∣∣
w(t↓1)

k,i

Gradient update for output weights: ṽk ▽ v
(t↔1)
k → φ

ϑL(ω)
ϑvk

∣∣
v(t↓1)
k

Reweighted ω
1 prox update: uk,i ▽ ProxCk,i|·| = sgn(ṽkw̃k,i)(|ṽkw̃k,i|→ Ck,i)+

Update input weights: w
(t)
k,i ▽ sgn(w̃(t)

k,i)
uk,i̸
⇔uk⇔2

Update output weights: v
(t)
k ▽ sgn(ṽ(t)k )


⇑uk⇑2 ⇀ satisfies uk = v

(t)
k w

(t)
k,i

end for

We note that there are infinitely many ways to choose the updated input/output weights w
(t)
k,i and v

(t)
k

to satisfy uk = v
(t)
k w

(t)
k,i; due to homogeneity of the ReLU (meaning that (ϱx)+ = ϱ(x)+ for any ϱ ↘ 0),

any choice w
(t)
k,i ▽ ϱuk,i and v

(t)
k ▽ 1/ϱ for any ϱ > 0 would satisfy uk = v

(t)
k w

(t)
k,i and produce the same

neural network function. The particular choice described in Algorithm 1 additionally satisfies the balancing
constraint ⇑w(t)

k ⇑2 = |v(t)k |, and we find that this selection tends to perform best in practice. We also note
that, for univariate input dimension d = 1 and sparsity parameter p = 1, Algorithm 1 is equivalent to the
PathProx algorithm of Yang et al. (2022).

A.3.2 Setup and results

We test our algorithm on two simple synthetic datasets. The first is a univariate “peak/plateau” dataset,
which consists of the data/label pairs:

(→2, 0), (→1, 0), (0, 1), (1, 1), (2, 0), (3, 0) (67)
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Figure 17: Sparsity over time of five networks trained to interpolation on the univariate peak-plateau dataset
(67). The reweighted ω

1 algorithm for ω
p path norm minimization (Algorithm 1) recovers much sparser

solutions earlier in training than unregularized Adam or AdamW weight decay regularization, with the
smallest value p = 0.4 eventually recovering the sparsest possible interpolant (68).

For this dataset, the theory of Debarre et al. (2022) shows that the sparsest interpolant f is unique, and is
represented using 3 ReLU neurons as

f(x) = (x+ 1)+ → 2(x→ 1/2)+ + (x→ 2)+ (68)

Our theory in Section 3 also shows that this f is a global ωp-path norm minimizer for any 0 < p ↑ 1, and is
the unique such minimizer for any 0 < p < 1.

Fig. 17 shows the sparsity over time of our reweighted ω
1 algorithm for three di!erent values of

p ↔ {0.4, 0.7, 1}, implemented in PyTorch using the Adam optimizer, along with that of Adam-only (no
regularization) and AdamW weight decay. All networks share the same random initialization and are trained
with MSE loss for 100,000 epochs with learning rate ↽ = 0.01, regularization parameter φ = 0.003 (except for
unregularized Adam-only, which uses φ = 0), and hidden layer width K = 80. All three values of p in our
reweighted ω

1 algorithm produce vastly sparser solutions earlier on in training than both Adam-only and
AdamW; however, only p = 0.4 eventually recovers the true sparsest solution f with 3 ReLU neurons (see
Fig. 18).

Fig. 19 shows the functions learned by all five networks throughout the course of training. We see
that reweighted ω

1 with p ↔ {0.4, 0.7, 1} all converge quickly to near-sparsest solutions, and then the small
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Figure 18: Three interpolants of the peak-plateau dataset, learned after 100,000 epochs using unregularized
Adam, AdamW weight decay, and reweighted ω

1 (Algorithm 1) with p = 0.4. Only the latter recovers the
true sparsest interpolant (68).
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additional kinks inside [0, 1] disappear gradually throughout training, with only p = 0.4 eliminating them
completely (the final solutions for p ↔ {0.7, 1} have a single extraneous active neuron of small magnitude
which activates just before x = 1/2).

For our second experiment, we consider N = 10 data points in d = 50 dimensions. The coordinates of each
data xi point are drawn i.i.d. from Unif[→1, 1], as are the labels yi. As in the univariate case, we compare
the sparsity over time of our reweighted ω

1 algorithm for p ↔ {0.4, 0.7, 1}, implemented in PyTorch using
the Adam optimizer, against that of Adam-only (no explicit regularization) and AdamW weight decay. All
networks are trained using MSE loss for 100,000 epochs with learning rate ↽ = 0.01, regularization parameter
φ = 0.005 (except for unregularized Adam-only, which uses φ = 0), and hidden layer width K = 100. Fig. 20
shows that all values of p produce much sparser solutions than Adam-only and AdamW weight decay, with
p = 0.4 producing sparser solutions than p ↔ {0.7, 1}. The solutions recovered by p ↔ {0.4, 0.7, 1} all obey
the sparsity upper bound of 2N guaranteed by the proof of Proposition 4.1.
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Figure 19: Learned network functions of five di!erent algorithms throughout the course of training. Reweighted
ω
1 with p ↔ {0.4, 0.7, 1} converge to near-sparsest solutions early on in training, with only p = 0.4 eventually

eliminating all extraneous neurons to recover the true sparsest solution (68).
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Figure 20: Sparsity over time of five networks trained to interpolation on N = 10 uniform random data
points in d = 50. The solutions obtained by the ω

1 algorithm (Algorithm 1) for p ↔ {0.4, 0.7, 1}) satisfy the
sparsity upper bound of 2N guaranteed by guaranteed by the proof of Proposition 4.1.
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