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Abstract

Overparameterized neural networks can interpolate a given dataset in many different ways, prompting
the fundamental question: which among these solutions should we prefer, and what explicit regularization
strategies will provably yield these solutions? This paper addresses the challenge of finding the sparsest
interpolating ReLLU network—i.e., the network with the fewest nonzero parameters or neurons—a goal with
wide-ranging implications for efficiency, generalization, interpretability, theory, and model compression.
Unlike post hoc pruning approaches, we propose a continuous, almost-everywhere differentiable training
objective whose global minima are guaranteed to correspond to the sparsest single-hidden-layer ReLLU
networks that fit the data. This result marks a conceptual advance: it recasts the combinatorial problem
of sparse interpolation as a smooth optimization task, potentially enabling the use of gradient-based
training methods. Our objective is based on minimizing /¥ quasinorms of the weights for 0 < p < 1,
a classical sparsity-promoting strategy in finite-dimensional settings. However, applying these ideas to
neural networks presents new challenges: the function class is infinite-dimensional, and the weights are
learned using a highly nonconvex objective. We prove that, under our formulation, global minimizers
correspond exactly to sparsest solutions. Our work lays a foundation for understanding when and how
continuous sparsity-inducing objectives can be leveraged to recover sparse networks through training.

1 Introduction

Highly overparameterized neural networks have become the workhorse of modern machine learning. Because
these networks can interpolate a given dataset in many different ways (see e.g. and , explicit
regularization is frequently incorporated into the training procedure to favor solutions that are, in some sense,
more regular or desirable. In this work, we focus on explicit regularizers which yield sparse single-hidden-
layer ReLU interpolating networks, which for our purposes are those with the fewest nonzero input weight
parameters among the active neurons Sparse models are particularly desirable for computational efficiency
purposes, as they have lower storage requirement and computational overhead when deployed at inference
time, and may have other attractive generalization and robustness properties (Mozer and Smolensky] (1988));
Guo et al.| (2018); [Liao et al. (2022)); [Liu et al.| (2022), among many others).

Although a myriad of sparsity-inducing regularization schemes have been proposed in the neural network
literature, almost none of them have actually been proven to yield true sparsest solutions, and the justifications
for their use remain almost entirely heuristic and/or empirical. Furthermore, many such strategies rely
on complex pruning pipelines—composed of iterative magnitude thresholding, fine-tuning, and sensitivity
analyses—which are computationally costly, difficult to implement, and offer no theoretical guarantees in
terms of the resulting sparsity. In contrast, we propose a simple regularization objective, based on the ¢
quasinorm of the network weights for 0 < p < 1, whose global minimizer is provably a sparsest interpolating

1In the univariate-input case, this is equivalent to the count of active neurons.
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ReLU network for sufficiently small p. This objective is continuous and differentiable away from zero, making
it compatible with gradient descent. Although /P-norm minimization with 0 < p < 1 has been studied in
finite-dimensional linear problems (most extensively in the context of compressed sensing), where it is known
to guarantee sparsity under certain assumptions on the data/measurements, its behavior in the context of
neural networks—wherein the features themselves are continuously parameterized and data-adaptive—is
challenging to characterize mathematically, and to our knowledge, we are the first to do so. Specifically, our
contributions are the following:

1. Sparsity, uniqueness, and width/parameter bounds for univariate /P-regularized networks.
In we prove that, for single-hidden-layer ReL.U networks of input dimension one, minimizing
the network’s P path norm (see ) implicitly minimizes both its £* path norm (i.e., the total variation
of its derivative) and, for sufficiently small p > 0, its £ path norm (total knot/neuron count). We
show that for any 0 < p < 1, a minimum ¢P path norm interpolant of N data points has no more than
N — 2 active neurons. In contrast, ¢! path norm minimization alone is not guaranteed to implicitly
minimize sparsity, and may yield solutions with arbitrarily many neurons . Our result follows
from reframing the network training problem as an optimization over continuous piecewise linear (CPWL)
functions which interpolate a dataset with minimal p-variation @ of the derivative. Using this variational
framework, we can explicitly describe the optimal functions’ behavior based on the geometry of the data
points. This characterization provides data-dependent bounds on the sparsity and weight magnitudes
of such minimum-¢P solutions, and highlights an easily-verifiable condition on the data under which ¢
minimization for any 0 < p < 1 yields a sparsest interpolant (¢° solution). Additionally, our analysis
shows that the solution to the univariate /7 minimization problem is unique for almost every 0 < p < 1; in
contrast, univariate £° and ¢! solutions are both known to be non-unique in general (Debarre et al.| (2022);
Hanin (2022])).

2. Exact sparsity in arbitrary input dimensions. In[Section 4, we show for networks of arbitrary input
dimension that the problem of minimizing the network’s ¢ path norm subject to an £°° boundedness
constraint on the weights (see (8])) can be recast as a finite-dimensional minimization of a continuous,
concave function over a polytope. Using this reformulation, we show that there always exists some
data-dependent threshold p* below which £P minimization recovers an 0 (sparsest) solution, in terms of
the count of nonzero parameters of the active neurons in the network. This sparsest solution has no more
than N active neurons (Proposition 4.1) and, if the data is in general position, has O(N) active input
weight /bias parameters among these active neurons.

3. A principled, differentiable objective for sparse ReLU networks. Our theory provides the first
rigorous justification for using a smooth ¢P penalty for 0 < p < 1 to obtain truly sparsest interpolating
ReLU networks via gradient-based methods—no pruning or complex post-hoc approaches required.

2 Related work

Sparsity via /7 minimization in finite-dimensional linear models: /P penalties with 0 < p < 1 for
linear constraint problems have been studied extensively in the compressed sensing literature, and have been
shown to yield exact £° minimizers under certain conditions (typically involving restricted isometry and/or
null-space constants) on the measurement matrix (Candes and Tao (2005); (Chartrand| (2007); |Chartrand and
Staneva/ (2008); [Foucart and Lai (2009)). Such penalties have also been studied in the statistics literature
under the name bridge regression (Frank and Friedman (1993); Knight and Fu| (2000); Fan and Li (2001)).
Existing theory in these areas is highly dependent on the fixed, finite-dimensional nature of the linear
constraint, and is not readily adaptable to the neural network context, wherein the features are themselves
are adaptively learned.

¢! path norm regularization in single-layer ReLU networks: [Neyshabur et al.| (2015) showed that the
¢! path norm of a single-layer ReLU network controls its Rademacher complexity and thus its generalization
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Figure 1: shows several univariate min-#' path norm interpolants of a given dataset. Such solutions are
generally non-unique, and always include at least one sparsest interpolant (black), but also include arbitrarily
non-sparse interpolants (blue, red, green). and two different ReLU network interpolants of a
the same 2D dataset with different numbers of active neurons and parameters. has 5 nonzero input
weight /bias parameters (its £° path norm as in (9)), while has 16.

gap, but do not directly address the question of sparsity. In the context of infinite-width ReLLU networks, the
problem of minimum-¢* path norm interpolation is known to have solutions with no more active neurons than
the number of data points (Parhi and Nowal] (2021} [2022)); [Shenouda et al. (IQO24[)) However, solutions to
that problem are known to be non-unique, and generally include interpolating ReLU networks with arbitrarily
many active neurons (Hanin| (2022); Debarre et al. (2022)). [Nakhleh et al.| (2024) show that a variant of ¢!
path norm minimization applied to univariate-input, multi-output networks always yields a solution with no
more than N active neurons, but this solution rarely coincides with the sparsest solution unless the dataset is
of a very particular form. Therefore, the intuition that “¢' = sparsity” breaks down in the neural network
case.

Empirical methods for training sparse neural networks: A large body of research has been dedicated
to sparsity-promoting neural network neural network training strategies. Here we briefly summarize some of
the most well-known strategies as well as some which resemble our proposed regularization approach; our list
is by no means comprehensive. Earlier works suggested using ¢! and ¢? penalties to encourage small network
weights (Ng| (2004); [Hinton and Van Campl| (1993)) or applying post-training magnitude-based pruning
approaches (LeCun et al. (1989); Hassibi et al.| (1993); [Han et al.| (2015)). Group ¢*!-type penalties designed
to induce structured sparsity over neurons or channels (Scardapane et al.| (2017);|Wen et al.| (2016)) have
also been suggested. More recent pruning schemes incorporate pruning iteratively into training (Guo et al.
(2016); [Frankle and Carbin/ (2018); [Zhou et al.| (2019)). Other proposed approaches include £° approximation
using binary stochastic gates (Louizos et al. (2018)) and ADMM; (Zhang et al. (2018)), ¢ (for p < 1)
minimization using reweighted ¢! (Gong et al. (2022)), decoupled weight decay (Outmezguine and Levi
2024)), and shrinkage operators for nonconvex “norms” (Srinivas and Babu| (2017)); and variational dropout
Molchanov et al. (2017)). Another line of research uses reparameterization tricks to replace non-smooth
sparsifying objectives with smooth versions that share the same local and global minimizers
(2023); [Kolb et al.| (2023, [2025)). While these methods have demonstrated empirical success in training sparse
networks, existing theory does not guarantee that any of them will find sparsest solutions. Moreover, these
approaches often require complex multi-stage pipelines and are computationally costly to implement.

Provable sparsest-recovery in specialized neural network settings: In the 1D input case, Boursier
land Flammarion| (2023) show that, under certain assumptions on the data—mamely, that the data contains

2For input dimension greater than one, the ¢! path norm Zszl |vg|||wg||2 studied in those works differs from the one we
consider in (8), which is equivalent to S5, |vg|[lwy|l1 for p = 1.



no more than three consecutive points on which the straight-line interpolant is strictly convex or concave—
interpolation using a bias-penalized ¢! path norm regularizer will select a sparsest interpolant of the dataset.
As we will see in [Section 3| this assumption on the data is rather restrictive, and our analysis does not
require it. Their proof is also not readily extendable to multivariate inputs. |[Debarre et al.| (2022) characterize
the sparsest min-¢' path norm interpolants in the univariate case and provide an algorithm for explicitly
constructing one such solution. |Ergen and Pilanci| (2021) show that ¢! path norm minimization yields
solutions with a minimal number of active neurons if the data dimension is greater than the number of
samples (precluding the univariate-input case) and the data satisfy special assumptions, such as whitened
data. In contrast, our sparsity results do not require any special assumptions on the data, and provide exact
sparsity guarantees in arbitrary input dimensions.

3 Univariate (P-regularized neural networks

Here we consider single-hidden-layer R — R ReLU neural networks of the form

K

fo(x) := ka(wkx+bk)+ +azr+c (1)
k=1

where (-); := max{0,-} is the ReLU function, 6 := {{wy, bk, vi}r_1,a,b} is the collection of network
parameters, and all parameters are R-valued. For a given dataset (z1,y1),...,(zn,yn) € R x R, a fixed
p € (0,1], and a fixed width K > NJ*| consider the following problem:

K
minz |lwiv|? , subject to fo(x;) =y, i=1,...,N (2)
b =
We will refer to the quantity being minimized in as the network’s 2 path norm. Additionally, consider
the “sparsifying” problem

K

mein; B, 0.0 , subject to fo(x;) =y;,i=1,...,N (3)

where the ¢° path norm Ele B, v, #0—which is equivalent to the limit of the ¢” path norm as p | 0—counts
the number of active neurons in the network.

In this section, we will analyze the relationship between solutions of and in terms of their represented
functions, and show that these functions can be explicitly described in terms of the geometry of the data
points. This characterization shows that solutions to for any 0 < p < 1 are necessarily also
solutions for p = 1, immediately implying data-dependent bounds on the network’s parameters and Lipschitz
constant. This description also allows problem to be reduced to a minimization of a continuous, concave
function over a closed, convex polytope. From there, we show in that solutions to are unique
(in terms of their represented functions) for Lebesgue-almost every 0 < p < 1 and that, for small enough p,
this unique optimal function is also a sparsest interpolant of the data (i.e., a solution to ) Furthermore, if
the data meets certain easily-verifiable geometric assumptions, solutions to for any 0 < p < 1 are solutions
to the sparsest-interpolation problem .

3.1 Variational reformulation of and (3)

We begin by showing that problems and can be equivalently expressed as a type of variational problem
over the set of continuous piecewise linear (CPWL) functions which interpolate the data. This equivalence is

3Here and in we fix K > N because interpolation in any dimension is possible with K = N neurons (Bubeck et al.
(2020)), Proposition 2).



critical for the analysis in this section, since it allows solutions to and to be characterized geometrically
in terms of the represented functions and their local behavior around data points. Here, we let Sé,p (resp.
Sg.0) denote the set of parameters of optimal neural networks which solve (resp. (3))) for a given dataset,
and let

Sy ={f:R=>R|f=/fo, 0 €Sp,} (4)
be the set of functions represented by neural networks with optimal parameters in Sg ,, for any 0 < p < 1.

Proposition 3.1. For any 0 <p <1, the set S}, is exactly the set of minimizers of

mfin Vo(f) , subject to f(z;)) =y;,i=1,...,N (5)

where the optimization in is taken over all f : R — R which are continuous piecewise linear (CPWL) with
at most K knots. For such CPWL functions f, we define

supp 317 [Df(wis1) = Df ()P = sup, ¥ae, D2 (AP, if0<p<1
number of knots of f, ifp=20

Vo(f) = { (6)

with the first sup taken over all partitions P = {xg < -+ < xn,p} of R, and the second sup taken over
partitions ™ of R into countably many disjoint (Borel) measurable subsets. In particular, S§ is non-empty.

Remark 1. For p € (0,1], V,(f) is the p-variation (Dudley and Norvaisa (2006), Part II1.2) of the
distributional derivative Df (in the sense of functions), or equivalently of the second distributional derivative
D%f (in the sense of measures). In particular, for a CPWL function f with knots at uy,...,ux and

corresponding slope changes c1,...,ck at those knots, so that D*f = Zszl k6, , we have

K
Vo) = lexl?
k=1

In the case p =1, Vi(f) is exactly the total variation of Df (in the sense of functions) and of D*f (in the
sense of measures), and the reformulation in|Proposition 3.1|is equivalent to that of|Savarese et al. (2019).

For a neural network where no two neurons “activate” at the same location (i.e., by, /wy, = by Jwyr for k £ k'),
Vo (f) is exactly the €7 path norm of f as defined above.

The proof is in [Section A.1.1] [Proposition 3.1 says that the set S} of functions represented by solutions
to is exactly the set of CPWL functions f which interpolate the data with minimal sum of absolute
slope changes, each taken to the p* power. In the case p = 0, solutions to represent CPWL functions
which interpolate the data with the fewest possible knots. This reformulation also shows that problem
is invariant to the choice of network width K, as long as K is large enough to allow interpolation. As a
consequence of we will see that this same width-invariance holds for problem .

3.2 Geometric characterization of solutions to

Next, in [Theorem 3.1, we describe a set of geometric characteristics which any optimal network function
J €5, for 0 <p <1 must satisfy, and which at least one f € Sj satisfies. This characterization depends on

the slopes s; := % of the straight lines ¢; connecting (z;,v;) and (2;41,yi+1). The discrete curvature
at a data point x; refers to €; := sgn(s; — s;—1), which is positive if the slope of the straight lines between
consecutive data points increases at x;, and negative if this slope decreases (with sgn(0) = 0).

In words, says that the behavior of any f € Sy for 0 < p < 1 is uniquely determined
everywhere except around sequences of more than three consecutive data points x;, ..., ;4 with the same
discrete curvature. On these “constant-curvature” regions of potential ambiguity, solutions must be convex

(resp. concave) if the curvature of the data is positive (resp. negative), and can have at most m knots on any



such region. Additionally, [Theorem 3.1|says that solutions to for 0 < p < 1 have at most N — 2 knots.
Therefore, as in the case p = 0, we see that problem is invariant (in terms of represented functions) to the
choice of network width K, as long as K > N — 2.

Theorem 3.1. For 0 < p < 1, solutions exist to (hence to ) For any such solution, its represented
function f € S, is CPWL and obeys the following:

1. f is linear before x5 and after x; between any three or more consecutive collinear data points; and
between any two consecutive points x; and x;11 with opposite discrete curvature €; # €;41.

2. On any mazximal set of m consecutive data points x,, ..., T;+m with the same discrete curvature (i.e.,
€17 € = €41 = = €ifm F €itms1):

(a) If m =1, then f has a single knot between x; and z;41, with incoming/outgoing slopes s;—1 at x;
and S;41 at Tiq1.

(b) If m > 2, then f has incoming slope s;—1 at x; and oulgoing slope S;in, at Titm,. Between x;
and Titm, f takes on at most m — 1 slopes uy, ..., um—1 distinct from s;_1 and Si1m. Each u; is
between s;1;—1 and s;+;, inclusive, and its corresponding segment passes through (Tit;,Yit;)-

Furthermore, there is always some f € S§ which obeys the above description. (See illustration in )

Corollary 3.1.1. Any minimum (P path norm interpolant of the data for 0 < p < 1 is also a minimum ¢!
path norm interpolant, and can be represented by a network with no more than N — 2 neurons.

The set 57 of optimal neural network functions for p = 1 has been fully characterized in previous work
(Hanin| (2022); Debarre et al.| (2022)), which showed that any interpolant f obeying the description in
is in S;. Therefore, shows that any solution to (5)) (hence to ) for0<p<1
is also a solution for p = 1. This result is interesting because, as our proof of shows, problem
(b) generally has multiple solutions for p = 0, many of which are not solutions for p = 1 and may have
arbitrarily large slope changes which cannot be bounded in terms of the data. Intuitively, the latter fact is
unsurprising, since the objective V5 (f) depends only on the number of knots of f, not on the magnitudes of
the corresponding slope changes. One might therefore expect that penalizing V,, for sufficiently small p could
also produce solutions with arbitrarily large slope changes (corresponding to networks with arbitrarily large
weights), particularly in light of the equivalence between V,, and V| penalization for sufficiently small p, as we
demonstrate in However, says that this is not the case. Therefore, in conjunction
with [Theorem 3.2] [Theorem 3.1|says that for sufficiently small p, penalizing V,, effectively penalizes both Vj
and Vi simultaneously: i.e., it selects a solution with the fewest possible knots (corresponding to a network
with the fewest possible neurons), and whose weights are small in the sense that Z,If:l |vgwg| is minimal. In
fact, [Theorem 3.1 immediately implies the following data-dependent bounds on the parameters and on the
network function’s Lipschitz constant:

Corollary 3.1.2. Any solution 6 to for0 < p <1 has maxg=1, . i |vswg| < Zszl |vpw| = ZfV:IQ [$i41—
si|, and Lipschitz constant L < max;—1,.. n—1 |8

Regarding the N — 2 neuron bound in [Corollary 3.1.1, we note that this bound applies to any minimum
P path norm solution for any 0 < p < 1. In contrast, there exist minimum ¢! path norm solutions with
N — 2 knots, but also solutions with arbitrarily many knots (Hanin| (2022); Debarre et al.| (2022)); see
Solutions for 0 < p < 1 are thus guaranteed a certain level of sparsity which is not enforced by p = 1
minimization alone. Sparsest (minimum ¢°) solutions—which we soon show will coincide with an ¢? path
norm solution for small enough p—are known to have as many as N — 2 active neurons and as few as O(N/2)
neurons, depending on the structure of data (Debarre et al. (2022)).

The proof of hinges mainly on two auxiliary results, detailed in which describe
the local behavior of any optimal f € S; between consecutive data points in terms of f’s incoming and
outgoing slopes at those points. This allows us to characterize when a knot can be removed from any
interpolating function while maintaining interpolation and reducing its regularization cost V,,. The full proof

is in Section A 1.3l
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(a) A function satisfying the description in [Theorem 3.1
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(b) A second possible function on [z7, z10]-. (¢) A third possible function on [z7, z10].

Figure 2: Tlustration of |Theorem 3.1, By |Theorem 3.111, any f € S) for 0 < p <1 must agree with the
function in [Fig. 2alon (—oo, z7] and [x19, 00). The only possible ambiguity occurs between xz7 and x1p, where
all points have the same discrete curvature. Here the function behavior is described by [Theorem 3.1[2bl
and [2c[show two other functions whose behavior on [27, 21¢] also concurs with |[Theorem 3.1|22b




3.3 Uniqueness and sparsity of solutions to for 0<p<1

Using we show that solutions to (5) are unique for almost every 0 < p < 1, and for sufficiently
small 0 < p < 1, correspond with globally sparsest interpolants (i.e., interpolants with the fewest total knots).
Additionally, [Theorem 3.1 shows that under an easily-verifiable condition on the data, penalizing V,, for
any 0 < p < 1 yields a sparsest interpolant. In conjunction with this result tells us that for
univariate data, £7 path norm minimization for sufficiencly small p > 0 simultaneously minimizes both the £!
and ¢° path norms, producing a unique solution which is both maximally sparse and controlled in terms of
its parameter’ magnitudes. We note that almost-everywhere uniqueness of solutions to occurs only in the
0 < p < 1 case. In contrast, solutions for both p = 0 and p = 1 are non-unique in general, and for p = 1, they
may have infinitely many knots/neurons (Debarre et al. (2022), Hanin (2022])).

Theorem 3.2. For all but finitely many 0 < p < 1, the solution to 18 um’queﬁ Furthermore, there is
some data-dependent p* such that the unique solution to for any 0 < p < p* is a solution for p = 0. If the
data contains no more than two consecutive points with the same discrete curvature, then the solution to
for any 0 < p <1 is also a solution for p = 0.

The proof of [Theorem 3.2|is in [Section A.1.4] It relies on in combination with the Bauer
Mazimum Principle (Aliprantis and Border| (2006), Theorem 4.104), which states that any continuous,
concave function over a closed, convex set attains a minimum at an extreme point of that set. The main
idea is that, using [Theorem 3.1, we can recast the problem of finding the minimum-V,, interpolant f € S
(where S denotes the set of functions which meet the description in as a minimization of
a continuous, concave function over the hypercube [0,1]™~1. This reformulation is possible because, by
[Theorem 3.1, the only place where these interpolants f € S may differ is around sequences of points
Ziy. ooy Tipm (for m > 2) which all have the same nonzero discrete curvature. Using the description in
@ the slopes uq,...,um—1 of any f € S on such an interval [z;, x;y.,] can be expressed as
convex combinations u; := (1 — @;)s;4j—1 + @;S;4+;, and any such solution f € S can be fully identified
with its corresponding vector of the parameters [y, ..., ;1] € [0,1]™7 L. Expressed in terms of these
parameters [a1,...,a;-1]" € [0,1]™71, the cost V, is strictly concave. Therefore, by the Bauer Maximum
Principle, any f € S with minimal V}, for 0 < p < 1 must correspond to one of the finitely many vertices
of the cube [0,1]™~!. Having restricted the set of possible candidate solutions to this finite set (which can
be shown to include at least one sparsest solution), the theorem statement follows from standard analysis
arguments.

In the next section, we will show that this general line of reasoning—recast the neural network optimiza-
tion as a concave function over a polytope, and apply the Bauer Maximum Principle—can also be used
to characterize the sparsity of ¢P-regularized multivariate-input ReLLU networks, although the machinery
underlying the argument is very different.

4 Multivariate (P-regularized neural networks

Here we consider single-hidden-layer R? — R ReLU neural networks of the form

K
fol) =" vp(wi®)y (7)
k=1
with output weights vy € R, input weights wy € R4*! and = := [z ,1]"T augments the dimension of the

input @ to account for a bias term. As before, 8 := {wy, vk}le is the collection of network parameters. For
a given dataset (1,¥1),..., (zx,yn) € RY x R, and fixed constants K > N, 0 < p < 1, and R > 0, consider

4Uniqueness here and in the remainder of the discussion only in terms of functions which interpolate the data with the same
set of absolute slope changes. If the data contains special symmetries, it may admit multiple distinct interpolating functions
which have the same set of absolute slope changes (corresponding to interpolating networks with the same weights).



the minimum ¢? path norm interpolation problem

K
argominz lokwi |5, subject to fo(zi) =vyi, i=1,..., N, [[vpwillec <R, k=1,..., K (8)
k=1

We will prove that, for small enough p, any solution to also solves the “sparsifying” problem

K
argminz lvgwgllo , subject to fo(x;) =y, i=1,...,N, |[swi|leoc <R, k=1,..., K 9)
0
k=1

The multivariate £° path norm objective in @D counts the number of nonzero input weight /bias parameters
of the active neuron in the network. Although we incorporate the biases into the input weight vectors (thus
including them in the ¢P path norm) for ease of exposition, the same analysis holds for the unregularized bias
problem by replacing the vectors v; and w; in the objective of [Lemma 4.1 with the subvectors of their first d
elements. As in the univariate case, the multivariate sparsest-interpolation problem @ is invariant to the
selection of the width K as long as K > N, and if the data are in general position, has O(N) nonzero input
weight /bias parameters across these active neurons. Specifically:

Proposition 4.1. For any K > N, any minimum (° solution {wy,vi}5_| to @D has at most N active
neurons. If the data x1,...,xN are in general positionﬂ then for sufficiently large R, any such solution has
> k=1 lvkwillo = O(N).

See proof in for explicit constants in various cases.
To show the equivalence of problems and @ for sufficiently small p, we first show that both problems

both be recast as finite- (albeit high-) dimensional optimizations over a linear constraint set. This reformulation
is heavily inspired by Theorem 1 in |Pilanci and Ergen (2020). Here the matrices {D; }fil are defined as
D; = diag(s;) for all binary vectors s; € {0, 1}V, and @ < b denotes element-wise inequality for vectors a, b.

Lemma 4.1. Let 8 = {wy, vk}le be a solution to for some 0 < p < 1. Then there is another solution
0" = {w}, v} }E | to , which is reconstructed from a solution {V},ué}?il to the problem

2N 2N
arg min Z i[5 + llw;llb, subject to Z D;X (v; —w;) =y, (10)
{Vj7wj}?i]1CRd+1 j=1 j=1
(2D; —I)Xv; >0, 2D; — )Xw; 2 0, [[Vjllec < R, wjllc < R, Vj (11)
as
{wi} K = {V}/O(j,l/;» #0} U {w}/ﬂj7w; #0}, {vp } B | = {ozj,l/j'. #0}U {—ﬁj,wg #0} (12)
for any choice of aq, B1, ..., aan, Bon > 0. Both solutions satisfy szzl [vkwrllo = Zszl lvpwrllo as well as

25:1 |vrwy |2 = Zszl vpwy||2 for any 0 < g < 1. The same statement holds for solutions € to ©), with
N
the objective in replaced by 25:1 lvillo + llw;llo-

The proof of [Lemma 4.1|is in |[Section A.2.2. The main idea is that although there are uncountably many
ways to choose the neurons’ parameters, there are only finitely many possible binary activation patterns,
i.e., vectors representing whether a given neuron is active on each data point. By combining all neurons
which induce the same activation pattern into a single neuron, the network’s output and #? path norm can be
expressed as a sum over all 2V neurons, each corresponding to one of the possible activation patterns. The

5A neuron x > vy, (’UJZE)JF is active if vywy, # 05 i.e., that neuron has a nonzero contribution to the network function.
6A set of points @1, ...,xx € R% are in general (linear) position if no k of them lie in a k — 2 dimensional affine subspace,
for k=2,3,...,d+ 1. If N > d+ 1, this is equivalent to the statement that no hyperplane contains more than d points.



equality constraint in encodes the interpolation constraint; the £°° inequalities reflect the corresponding
[[vkwg|loo < R constraint in (8); and the additional inequality constraints in force the optimization to
only consider activation patterns which can actually be induced by some choice of input weight /bias wy.
With this reformulation in hand, we are ready for the main result of this section:

Theorem 4.1. For any dataset, there is some data-dependent p* such that any solution to for any
0 < p < p* is a solution to @D

Remark 2. This result also holds if the interpolation problems in and @D are replaced by the regularized
£2° constrained loss problems

N k
arggminZE(yi, fo(zx:)) + )\Z lvrwi b, subject to lvpwillo < R E=1,..., K (13)
i=1 k=1

and its ° analogue, for a loss function £ which is CPWL in its second argument (e.g. hinge loss, L' /L>°
losses). This is because problem can be reformulated as

k N
arg min vpwil||? , subject to Ly, fo(x;)) < C, ||lvpwgl|loo < R E=1,..., K 14
] M [ > Ly, fo(:)) | [ (14)

k=1 i=1

and, under the CPWL assumption on L, the feasible set of the reformulation of as in is a
polytope. The proof of [Theorem 4.1] then applies verbatim.

The proof is inspired by that in [Peng et al.| (2015), with a correction to what we believe is an impor-
tant error in their reasoning regarding p-independent boundedness of solutions to problems of the form
argming, ||z||2 s.t. Az = y; this is why we include the £*° boundedness constraint in problems and (9)
(see * for our proof and further discussion). The fundamental observation is that the linear
constraints in (10} determine a polytope, and the map z — ||zHg is concave on each individual orthant and
invariant to absolute values of vector elements. By projecting the constraint set of into the nonnegative
orthant, the problem turns into a minimization of a continuous, concave functional over a polytope. By the
Bauer Maximum Principle, any solution to this problem occurs at one of the finitely many vertices of that
polytope, and by appropriately normalizing the vertices of this polytope, we are able to demonstrate the
desired result.

Although applies to any input dimension, thus recovering part of the result of [Theorem 3.2,
we note that our multivariate analysis requires an explicit £*° boundedness constraint on the parameter

vectors wy vy in problems @i and @ In contrast, the univariate optimizations in and require no such
constraint, as [Theorem 3.1[tells us that #” minimization implicitly performs ¢! minimization which yields
immediate data-dependent control on all parameter magnitudes. Our multivariate analysis does not easily
recover the univariate results on uniqueness, parameter/width bounds, or explicit functional characterization
of solutions to . Thus, although [Theorem 4.1 guarantees exact sparsest recovery for sufficiently small p in
arbitrary input dimensions, the multivariate problem leaves many interesting open questions, which we save
for future work.

5 Experiments

We perform several simple experiments on synthetic data which suggest that our proposed ¢? path norm
lends itself to practical application, recovering far sparser solutions more quickly than unregularized or
weight decay-regularized gradient-based training. To implement our regularizer, we use a proximal gradient
algorithm based on the iteratively reweighted ¢! method of Candes et al.| (2008); |Figueiredo et al.| (2007), the
details of which are summarized in [Section A.3.1] [Fig. 3] shows the sparsity over time of networks trained
with our reweighted ¢! algorithm for three different values of p € {0.4,0.7,1}, as well as with unregularized
Adam and AdamW weight decay, on two different synthetic datasets. For all values of p, the ¢P-regularized
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Figure 3: Sparsity over time of networks trained to interpolation with a reweighted ¢! algorithm (see
for ¢? path norm regularization, p € {0.4,0.7,1}, and of unregularized and weight decay-
regularized networks. Results on the left are for a synthetic univariate “peak/plateau” dataset, and results on
the right are for a high-dimensional set of random data and labels. The gray dashed lines reflect the true
minimal sparsity (in the univariate case, left) and the upper bound on the minimal sparsity guaranteed by

Proposition 4.1 in the multivariate case (right). For further details, results, and discussion, see [Section A.3.2

networks are much sparser much earlier in training than the unregularized or weight decay regularized
networks, with the p = 0.4 networks being the sparsest. For the univariate synthetic dataset, the p = 0.4
regularized network recovers the true sparsest solution, and for the multivariate synthetic dataset, all ¢?
regularized networks recover solutions which obey the sparsity upper bound guaranteed by
For further details, results, and discussion, see Code for these experiments is available at
https://github.com/julianakhleh/sparse_nns_lp.

6 Conclusion and Discussion

We have introduced a smooth, ¢ path norm (0 < p < 1) regularization framework whose global minimizers
provably coincide with the sparsest ReLLU network interpolants for sufficiently small p, thus recasting the
combinatorial #° minimization problem as a differentiable objective compatible with gradient descent. In the
univariate case, we showed minimum (P path norm interpolants are unique for almost every 0 < p < 1; never
require more than N — 2 neurons; and are also ¢! minimizers, yielding explicit data-dependent parameter and
Lipschitz bounds. In arbitrary dimensions, we demonstrate a similar ¢P-£° equivalence for sufficiently small
p. Our proposed regularization objective offers a principled, gradient-based alternative to heuristic pruning
methods for training truly sparse neural networks.

While we demonstrate the existence of p small enough for ¢ /¢° minimization equivalence, our proofs
do not yield an efficient way to compute the “critical threshold” p*, although they do demonstrate that
estimating this p* is in theory possible by enumerating an exponential number of vertices of a data-dependent
polytope. Whether or not p* can be computed or estimated efficiently is an open question of interest for
future work. Other possible directions of interest are to extend our results here to multi-output and deep
architectures and to other notions of sparsity (such as sparsity over entire neurons vs. parameters in the
multi-dimensional case).
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A Proofs of main results

A.1 TUnivariate results

A.1.1 Proof of |Proposition 3.1

Proof. By homogeneity of the ReLU—meaning that (az); = a(x)4 for any o > 0—any ReLU neural network
of the form (] can have its parameters rescaled as vi +— |wg|vg, (wg, by) — |wi| ™" (wg, by) without changing
the network’s represented function or its 7 path norm. Therefore, any f € S can be expressed as a neural
network of the form (|| . ) with |w;€\ =1forall k=1,..., K. Additionally, any f € S, can be expressed as a
network where no two neurons “activate” at the same location7 ie., by /wy # by Jwy Whenever k # k'. To see
this, consider a neural network fg with unit-norm input weights which contains two distinct neurons k, k'
with by /wi = bg /wis,. The sum of these neurons can be rewritten as

v (wrx + bi)+ + v (W + b )+ = (Vi + v ) (Wi + bi) + (15)

if wy, = wyr, or as
vg(wpe + bg) 4 + vk (W + b )+ = (Vg + V) (W + by )+ — Ve (Wi + by,) (16)
if wy = —wys. (The latter uses the identity z = (z)4+ — (—x)+.) In either case, we see that the original two

neurons k, k' can be replaced with a single neuron and, in the latter case, an additive affine term. Because
the affine term does not contribute to ¢ path norm, and because |vy 4+ v [P < |vg|P + |vg|P for p € (0, 1], the
resulting network represents the same function as the original one with no greater regularization cost.

Furthermore, any neural network of the form with unit-norm input weights and K active neurons,
where no two active neurons activate at the same location, is a CPWL function with K knots, where knot k
is located at —by /wy, and the slope change of the function at knot k is vg. Conversely, any R — R CPWL
function f with K knots at locations u; < --- < ug and corresponding slope changes v1,...,vx can be
expressed as

K
f(@) = f(uo) + f'(uo)(z — uo) + Y vn(w — ur) 4 (17)
k=1
for some arbitrary point ug < u;. Any such f has D?f = Zszl Vg0, , so that V,(f) = Zszl |vg|P, and

Vb(f) = 21521 lwﬁfo =K.

These facts are sufficient to establish the equivalence of problems and . Indeed, let S, 0,p denote the
set of optimal parameters for a modified version of problem (2) which i imposes the addltlonal constraints
that each |wg| = 1 and that by /wy # by /wy, whenever k # E'. For some 6* € Se,p, let C* denote its /P path
norm. We have shown that S7 can be equivalently expressed as

S;={fR=R|f=fo, 0€5,} (18)
={f:R—R| fis CPWL with < K knots, V,(f) =C", f(z;) =y, i=1,...,N} (19)

which is exactly the set of mmlmlzers of (B). Non-emptiness of Sj, (and thus of Sj) follows from non-
emptiness of the feasible set © of (3) when K > NN, and the fact that the objective values of members of the
feasible set lie in {1,..., K}, on Wthh a minimum is achieved. O

A.1.2 Auxiliary lemmas: local behavior of f around same/opposite sign slope changes

Our proof of [Theorem 3.1 relies strongly on the following two auxiliary lemmas, which describe the local
behavior of any f € 57 for 0 < p < 1 between consecutive data points. Here we denote the incoming and
outgoing slopes of any interpolant f at a data point x; as si,(f, x;) and sous(f, x;), respectively (sometimes
dropping the explicit reference to f if it is clear from context). First, we show in that for any
optimal network function f € S5, 0 < p < 1, if the signs of s5; — Sin(f, x;) and sout(f, Ti41) — s; agree, then f
connects (z;,y;) and (2;41,¥;+1) in a single “peak” (see .
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Figure 4: Left: Illustration of the case sgn (s; — sin(f, ;) = sgn (Sout (f, Ti+1) — $;) addressed in [Lemma A.ll
Right: illustration of the case sgn (s; — sin(f, 2:)) # sgn (Sout(f; Ti41) — si) addressed in|Lemma A.2| In both
cases, the functions in black have strictly greater V, for 0 < p < 1 than the functions in blue.

Lemma A.1 (Behavior of f € S around same-sign slope changes). For 0 < p < 1, suppose that f € Sy has
sgn (8; — Sin(f, i) = sgn (Sout (f, Xir1) — 8;) at consecutive data points x;, x;+1. If both signs are zero, then
f s linear on the interval I := [x; — 0, ;41 + 0] surrounding [x;, Tiy1], for small § > 0. Otherwise, f has a

single knot on I, between x; and x;y1. (See|Fig. 4d.)

Proof. If both signs are zero, then f must be linear on I, since anything else would have nonzero V,(f|r) for
0 < p < 1. If both signs are nonzero, observe that

|Sout (f; Tiv1) = sin(f, i) [P < [Sout (f, Tiv1) —wg|P +ug —wj—1|" + -+ Jug — wa [P + |u1 — sin(f, i)

for any wy,...,u; which are all distinct from each other and from si,(f, ;) and Sout(f,z;+1). This is a
simple consequence of the inequality |a + b|P < |a|P + |b|?, which holds for any a,b € R and any 0 < p < 1
and is strict unless a = 0 or b = 0. Since any interpolant with more than one knot on I has one or more
intermediate slopes u1,...,u; between z; and x; 1, the result follows. O

Next, [Lemma A.2 says that if the signs of s; — sin(f, ;) and sout(f, Tiy1) — s; of an optimal f € S5,
0 < p < 1 disagree, then f is linear between z; and x;4.

Lemma A.2 (Behavior of f € S;; around opposite-sign slope changes). For 0 <p < 1, suppose that f € S,
has sgn (s; — sin(f, i) # sgn (Sout (f, Tit1) — Si) at consecutive data points x;, x;41. If 0 < p < 1, then f
is linear between x; and x;11. If p =0, then either f is linear between x; and x;y1, or it agrees outside of
[xi, wiq1] with some g € S which is linear between x; and x;41. (See illustration in[Fig. 4bl.)

Proof. First consider the base case illustrated in [Fig. 5| where we suppose that f € S for some 0 <p <1
has a single knot at some x € (x;,z;+1). To simplify the notation, we denote a := sin(f, i), b := s,
¢ = Sout(f, Tit1) and 7 := 7.2 and assume that sgn(a — b) # sgn(b — ¢). The intermediate slopes u; and
ug can be parameterized as u; = b+ 6 and uz = b — 170 for some J € R. Consider the cost V;D(f|1) of f on
the interval I := (x; — €, ;41 + €) (for some arbitrary € > 0) as a function C(4) of the parameter §. If p =0,
then clearly C(0) =2 < C(d) € {2,3} for 6 # 0. This shows that the function g whose slope is b on [z;, ;1]
has no greater cost than f, and thus g € 53. In the case 0 < p < 1, we have
C@) =[6+b—a’ + ——— |6 + e~ b+ — o] (20)
(1—7)p 1—7
and we will show that C'(0) < C(d) for d # 0, contradicting the assumption that f € S;.
Note that C is coercive and continuous on ¢ € R, so it attains a minimizer (this follows from the Weierstrass
Extreme Value Theorem as applied to the compact sublevel sets of C'). By Fermat’s Theorem, any minimizer
of C' must occur at critical points, i.e., points where the derivative C” is zero or undefined. The three points
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Figure 5: Base case of [Lemma A.2, where we consider the possibility that f € S for some 0 <p <1 has a

single knot at some x € (2, 2;4+1) where sgn(a — b) # sgn(b — ¢). Here 7 := o

where C” is undefined are §; = a — b, 62 = 0, and 83 = =7 (b — ¢). Assuming without loss of generality that
d1 < 02 < d3, note that C is concave on the intervals (—o0,d1), (d1,02), (d2,03), and (d3, 00). This is because
compositions of concave and affine functions are concave, and the function = — |z|P for p € (0, 1] is concave
on any subinterval of R over which z does not change sign. Therefore, any point at which C’ = 0 will be a
local maximum rather than a minimum, and hence any minimum of C can only occur at the critical points

01,03, 03. We have

1
— g —blP
C(61) (1_7)p|a blP + |c+ : . (21)
C(d2) =|b—alP + |c —blP (22)
1
C(63) = ]; - —al’ +- Slb—cf? (23)
Now, for the variable t € [0, 1), define
= Ja—bpP — 4 — 24
hy(t) (1_t)p|a bl +|c+1_ta 1_tb\ (24)
and observe that hi(0) = C(d2) and hy(7) = C(61). Its derivative is
1 -1 t 1 a—b
/ [ _ D - P _
Ry (t) = )p+1|a b| —&-p’c—k Sa l—tb’ sgn <C+1ta 1tb> e (25)
B P 1 1—=t)(c—b)+tla—=b)\ a—0b
= 7(1—1?)1’“'& b|P +p’c+ ta T—3 b|" sgn < T—37 e (26)

Assuming that sgn(a — b) # sgn(b — ¢) with a # b (and thus 01 # d2), we see that hj(t) > 0 for all ¢ € [0, 1).

This is because the term inside the sgn above is positive if a > b (so that b < ¢) and negative if a < b (so

that b > ¢). This shows that hy(0) = C(d2) < hy1(7) = C(d1). Similarly, define

1-1¢
t

for t € (0,1], so that ha(7) = C(d3) and ha(1) = C(d2). Its derivative is

1 1
ha(t) := |¥b7 cfa|p+t—p|bfc|p (27)

1—t 1 1-1¢ c—b
! - T - _ _ P
ha( p| b ; al’ sgn (t el a) 2 tP+1| c| (28)

(t(ba)+(1t)(bc)

1—-t c—b P
t > m b (29)

= p|;b T T a”" sen
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(a) u1, us are on the same side of s;. (b) w1 and us can be connected, reducing V,,(f).

Figure 6: General case of where the outgoing line segment at x; and the incoming line segment
at x;41 both lie on the same side of the straight line between (z;,y;) and (x;41,¥i+1). We can apply the
argument in the proof of to connect these two segments in a single knot inside (z;,x;41) and
strictly reduce V,(f).

Assuming that sgn(a — b) # sgn(b — ¢) with b # ¢ (and thus d2 # d3), we see that h5(¢) > 0 for all t € (0, 1].
This is because the term inside the sgn above is positive if b > ¢ (so that a < b) and negative if b < ¢ (so that
a > b). This shows that ho(7) = C(d3) < ha(1) = C(d2). Therefore, C(0) < C(§) for § # 0, as desired.
Next, consider the general case, where we assume by contradiction that f € S} for 0 < p <1 may have
multiple knots inside (z;,;4+1). As before, in the case p = 0, f can’t have fewer knots than the function ¢
whose slope is b on [x;, z;4+1]; the only way for f to be in S§ is if it has a single knot inside (z;, z;+1) and
a single knot at either z; or x;1, in which case we also have g € Sj. In the case 0 < p < 1, let uy,...,uy
denote the slopes of f on [z;,2;11]. If the line segments with slopes u; and wu; lie on the same side of the line
segment with slope s;, then we can apply the argument in the proof of to remove the segments
with slopes wus,...,us_1 and connect the segments with u; and w; in a single knot inside (z;,x;41); this
strictly reduces V,,(f), contradicting f € S;. (See [Fig. 6}) If the line segments with slopes u; and u; lie on
opposite sides of the line segment with slope s;, then either one of the intermediate segments, whose slope
we call uj,, crosses the segment with slope s;, or else one of the intermediate segments (again call its slope
uj,) lies on one side of s;, and w,41 lies on the other side. In either case, the segments uq and u;, can be
connected and the segments between them removed, as can the segments wj, (or uj,11) and u;. (See[Fig. 7)
Again, by the logic in the proof of [Lemma A.1, this strictly reduces V,(f), contradicting f € S;. If f is
already of the form in |Fig. 7b, with only two knots inside (z;,2;11) on opposite sides of the line s;, then the
second knot can be removed by directly connecting u; and Sous(f, zi41) (see . By the same logic, this
strictly reduces V},(f), contradicting f € S;. O

A.1.3 Proof of Theorem 3.1

Proof. We first use [Theorem 3.1 and [Lemmas A.T| and to show that any f € Sy for 0 < p < 1 must obey
the description in [Theorem 3.1} and that there is always some f € S5 which fits this description. Using this
result, we argue non-emptiness of S;. We break the proof into the following sections.

Linearity before zo and after zy_;. We will prove the statement for (—oo, xs]; the proof for [zx_1,0)
is analogous. No f € S} for 0 < p <1 can have a knot at or before x; as this would strictly increase the
cost V,(f) without affecting the ability of f to interpolate the data points. In the case 0 < p < 1, assume
by contradiction that some f € S; has a knot at some x € (z1,73). By [Lemma A.2, it must be the case
that sgn(s1 — sin(f, 1)) = sgn(sout(f, x2) — s1), and by [Lemma A.1] this knot is the only one inside (z1,x2),
with sin (f, 1) = Sout(f, 1) and sin(f, z2) = Sout ([, $2)) Assuming without loss of generality
that sgn(s1 — sin(f,21)) = sgn(Sout(f, x2) — s1) = —1, we have si, (f, 21) > 51 > Sout([f, 22), and therefore
ISout (f, ®2) — Sin(f,21)| > [Sout (f,22) — s1|. But this shows that V,(f) > V,(g), where g = {1 on (—o0, z3]
and is otherwise identical to f. (See ) This contradicts f € S;.

18



sout(mi+1)

Sout($i+1)

sin(mi) s uy sin("Ei)
Uj-1
> >
x; Tit1 Z; Tit1
(a) w1, uy are on opposite sides of s;. (b) w1, uj, and uj,,us can be connected, reducing V,(f).

Sout (mi+1)

8in(Z:) si

Z; Tit+1
(c) u1 and Sout(f, zi+1) can be connected, reducing V,(f).

Figure 7: General case of where the outgoing line segment at x; and the incoming line segment
at x;4+1 lie on opposite sides of the straight line between (x;,y;) and (2;41,¥;+1). We can apply the argument
in the proof of to connect the segments uy and wuj, and u;, and uy, resulting in a function with
two knots inside (x;, z,41) and strictly reducing V,(f). By the same argument, we can further reduce V,,(f)
by connecting w1 and Sout(f, i+1), resulting in a single knot inside (x;, z;41).

In the case p = 0, fix some f € S§. As argued above, f has no knots on (—oo, z1]. If sgn(s; — sin(f, 1)) #
sgn(Sout(f, x2) — s1), then by [Lemma A.2| either f = ¢; on [z, z2] (hence it also must agree with ¢; on
(—00, z1]), or there is some g € S§ which agrees with ¢; on [, 2] (hence also on (—oo, 1], since g must also

not have any knots on (—oo, z1]). If sgn(s; — sin(f, 1)) = sgn(sout(f, z2) — s1) = 0, then by
f =14 on [x1, 2] and thus also on (—oo, z1]. If sgn(s1 — sin(f, 1)) = sgn(Sous(f, z2) — s1) are both nonzero,

then by [Lemma A.1} f has a single knot inside (x1, z2) with sin(f, 1) = Sout(f, 1) and sin (f, 2) = Sout (f, z2),
as in Then function depicted in [Fig. 8 which agrees with ¢; on (—o0,x2] and with f on [z, 00), has
the same number of knots as f, so g € Sg.

Linearity between data points of opposite curvature. For 0 < p < 1, assume by contradiction
that some f € S; does not agree with /; on an interval [, 2i11] where sgn(s; — s;—1) # sgn(s;+1 — $;)-

By [Lemmas A.1 and . it must be the case that sgn(s; — sin(f, ;) = sgn(Sout(f,i+1) — ;) are both

sout($2)

Sin(21) sin(1) = 51

:L'l :Eg wl $2 >

(a) A function with a knot inside (z1, z2). (b) A function which agrees with 1 on (—oco, z2].

Figure 8: Behavior of f € S; before xo and after . A knot inside (z1, z2) can be moved to x2, maintaining
the same outgoing slope at o, which strictly decreases the magnitude of the slope change at the knot.
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sout($i+2)

81"’1 sout(wi+2)

sout(xi+1) 51+1

sin(wi) Sin(:lii) Si = Sout(IiJrl)
Li—-1 xT; Ti+1 Tit2 Tio1 zi Ti1 Tito
(a) A function with knots inside (z;, zi+1) and (zit1, Tit2). (b) A function which agrees with ¢; on [z, Tit1].

Figure 9: Behavior of f € S; between data points of opposite curvature. The knot inside (24, x;i+1) on the
left can be moved to z;, and the knot inside (x;41,2;42) can be adjusted accordingly (right); this reduces the
magnitudes of the slope changes of both knots.

nonzero, and that s, (f, ;) = Sout(f,z:) and sin(f, i+1) = Sout(f, zi+1) and f has a single knot inside
(zi,x;+1) where the incoming line at x; and the outgoing line at x;1; meet. It must be the case that
sgn(s; — s;—1) # sgn(s; — sin(f, x;)) and/or that sgn(s;+1 — s;) # sgn(Sout(f, Zi+1) — 8;). Assume without loss
of generality that sgn(s;+1 — $;) # sgn(Sout (f, Ti+1) — 8i) = 1, so that s;11 < 8; < Sout (f, Tit1) = Sin(f, Tit1)-
Then clearly $;11 # Sout(f, Zi+1) (in other words, f does not agree with ¢;11 on all of [x;11,z;42]), so by
[Lemma A.lfand [Lemma A.2| it must be the case that —1 = sgn(s;+1 — Sin([f, Zi+1)) = sgn(sout(f, Tit2) —
si+1), that f has a single knot inside (x;11,%;12), and that si,(f,2i42) = Sout(f, Tit2). (See )
Therefore, sin(f, Zit2) = Sout ([ Tit2) < Si+1 < 8i < Sout (f5Zit1) = Sin(f, xiy1). Furthermore, because 1 =
sen(Sout (f, Tit1) — i) = sgn(s; — sin(f, 2;)), we have sin(f, z;) < 8; < Sout(Tit1). On I :=[x,-1 — €, 2,412+ €]
for small € > 0, we thus have

‘/;)(f|1) - ‘Sout(fv $i+1) - sin(fv xz)|p + |sout(f, xi+2) - sout(fa xi+1)|p (30)
> [8i = sin(f, ) |7 + [sout (f iga) — si” = Vi (g],) (31)

where g agrees with f outside of [z;, z;4 2], agrees with ¢; on [x;, z;11], and has a single knot inside [z;11, Z; 2]
with sout(g, Zit1) = si and sin(g, Tiv2) = Sout (9, Tir2) = Sout(f, Tiy2). (See|Fig. 9b|) This contradicts f € S.

For p = 0, consider some f € S§. If sgn(s; — sin(f,2:)) # sgn(Sout(f, Tix1) — Si), then by [Lemma A.2
there is some g € Sg which agrees with f outside of [x;, z;41] and agrees with £; on [x;, z;41]. By [Lemma A.1
if sgn(s; — sin(f,2:)) = sgn(sout(f, zi+1) — s;) = 0, then f = ¢; on [x;, x;v1]. If sgu(s; — sin(f, 1)) =
sgn(Sout (f, xit1) — s;) are both nonzero, then by Sin(fy2i) = Sout(fyx;) and sin(f, ziy1) =
Sout(f, Zi+1), and f has a single knot inside (z;,2;11) where the incoming line at z; and the outgoing line at
x;+1 meet. As before, it must be the case that sgn(s; —s;_1) # sgn(s; —sin(f, z;)) and/or that sgn(s;11—s;) #
sgn(Sout (fs Tiy1) — 8;). Assume without loss of generality that sgn(s;+1 — s;) 7 sgn(Sout (f; Tit1) — 8i) = 1,
so that s;11 < 8; < Sout(f, Zit1) = Sin(f,@it1). Because 1 = sgn(Sout(f; Tit1) — i) = sgn(s; — sin(f, 1)),
we also have sin(f, ;) < 5i < Sout(f, it1). If sgn(Sout (fs Tit2) — Siv1) 7 sgn(sit1 — sin(f, zigy1)) = —1,
then by @, there is some g € S§ which agrees with f outside [z;41,%i+2] and agrees with ¢, 11 on
[€i41, Zit2]. Then this g has sout(g, zir1) = s; and sin(g, ;) = Sin(f, 24), 80 sgn(sout(zit1) — s;) € {—1,0},
and sgn(s; — sin(g, z;)) = 1; hence by [Lemma A.2, there is some h € S§ which agrees with g outside of [z;, ;1]
and agrees with ¢; on [x;, ;4+1]. On the other hand, if sgn(sout (f, Titr2) —Sit1) = sgn(Sit1— Sin(f, xiv1)) = —1,
then by f has a single knot inside (x;11,2;12), and sin(f, Zi+2) = Sout(f, Tit+2), as in @
This function has two knots on I := [z;,_1 — €, 2,42 + €] (for small € > 0). The function g depicted in [Fig. 9b,
which agrees with f outside of [z;, 2;12], agrees with ¢; on [x;,2;11], and has a single knot inside [2;11, Z; 2]
with Sout(g, Tit1) = $; and Sin(g, Tit2) = Sout (g, Tit2) = Sout (f, Zit+2), also has two knots on I. Therefore
ges;.

Linearity between collinear data points. For 0 <p <1, fix f € S;. f sin(f,2:) =si =sip1=--- =
Sitm—1 = Sout(fs Titm), then f must agree with ¢; = -+ = £;;,,—1 on [z;, T;1m], since any other function
g would have Vp(g’I) > 0= V,,(f’l) on I := [x; — €,Xiym + €] for small € > 0. If sgn(s; — sin(f,z;)) #
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s Sout(Tit1)
Sin(z;) out\et O Sout (Tit1)

ZT; Tit+1 Tit2 T; Tit1 Tito Ziy3
(a) A nonlinear function between m + 1 collinear (b) A nonlinear function between m + 1 collinear
points, m-even. points, m-odd.

Figure 10: Behavior of f € S; between collinear points. If f € S} is not a straight line between collinear
points (T3, ¥:), - -« (Tipm, Yitm), it must look like (if m is even) or [Fig. 10b (if m is odd). In both
cases, the sum of absolute slope changes of these functions is greater than the sum of absolute slope changes
of the function g which agrees with f outside of [x;, x;1,] and connects (z;,4:), - - ., (Titm, Yitm) With a
straight line. Such a g has two knots, whereas functions of the form f depicted here have m > 2 knots.

sgn(Sout (f, Titm) — Si), then the argument in the proof of@ shows that f must agree with ¢; = --- =
litm—1 ON [X;, Ti1m]. So we need only consider the case where sgn(s; — sin(f, 2:)) = sgn(Sout (f, Titm) — Si)
are both nonzero; say without loss of generality that they both equal 1, so that si,(f, z;) < 8; < Sout ([, Titm)-
If f =¢; on both [z;,z;141] and [T;4m—1,Zi+m], then it also must agree with ¢; on [z; 41, T;ym—1] (otherwise
it would have V,(f ‘[wwiw]) > 0), so assume by contradiction that f # ¢; on at least one of these intervals,
say without loss of generality on [z;,z;+1]. Then by and @, it must be the case that f has a
single knot inside (z;,x;41) and that sin(f, z;) = Sout (f, i) < $i < Sin([f, Zi+1) = Sout(f, Ti+1). This implies
that f also disagrees with ¢; on [z;,2;11], so again by and f must have a single knot inside
(Tig1, Tigo) With sin(f, Tit1) = Sout(fr Tit1) > Sit1 > sin(f, Tit2) = Sout (f; it2). The same logic applies
on the remaining intervals up to and including [%;ym—1,Zitm] (see . Note that if m is even, we
will have sin (f, Zitm—1) = Sout (fs Titm—1) > Sitm—-1 = i > Sin(f, Titm) = Sout ([, Ti+m ), contradicting the

assumption that sgn(Sout(f, Zitm) — s;) = 1 (see|Fig. 10a). If m is odd, as in [Fig. 10b} we have

Vp(f|1) = [Sout (fs @i+1) — sin(f, 2)[" + [Sout (f, Tit2) — Sout (f, Tiy1)[” (32)

+ -0+ |80ut(f7 xi-l—nL) - Sout(fv xi+m—1)|p (33)

> |s; = sin(f, )P + [Sout (f; Titm) = Sitm—1/" = Vp(9|1) (34)

where g is the function which agrees with f outside of [z;, z;4,,] and agrees with ¢; = -+ = ¢;4,,—1 on
[, Zi1m]; this contradicts f € Sy

In the case p = 0, fix f € S§. If sin(f,25) = i = -+ = Sitm—1 = Sous([, Ti+m), then f must agree

with ¢; = -+ = liym—1 o0 [T, Tiym] and if sgn(s; — sin(f, ;) # sgn(sout (f, Titm) — Si), then the proof of

shows that there is some g € S} which agrees with f outside of [z;, z;1,] and agrees with ¢; on
[, Tipm]. I sgn(s; — sin(f, x;)) = sgn(Sout (f, Titm) — si) are both nonzero, then there must be at least one
knot on [x;, Z;1m] in order for the slope to change from s, (f, z;) t0 Sout ([, itm). It is impossible for f to
interpolate the data with a single knot on [z;, ;.| where the slope changes from si, (f, 2;) t0 Sout(f, Titm),
since this would require at least two of the points (z;,;),. .., (Xitm, Yitm) to both lie on either the incoming
line at x; or the outgoing point at x;1,,, but this is impossible because s; # sin(f, ;) and s; # Sout (f, Tivm)-
Therefore, f must have at least two knots on [z;, 2;4,,]. The function g which agrees with ¢; on [z;, z;4,,] and
has sin(g, ;) = sin(f, ;) and Sout (g, Titm) = Sout ([, Titm ) interpolates the points (z;,y;), - -, (Titm, Yitm)
with exactly two knots on [x; — €, 2;4m + €], and thus g € S§.

Single knot between two data points with the same curvature. For 0 <p <1, fix f € S). Ifi=2,

then f =¢; on (—oo, x3] by [Theorem 3.1J[1] If ¢ > 2, then by assumption, sgn(s;—1 — $;—2) # sgn(s; — si—1),
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(a) Ul = Si+1 (b) Si < ur < Si+1

Ti-1 T; Tit1 Tit2 Tit+3
(C) U; = S

Figure 11: Possible behavior of f € S; between three consecutive data points of the same discrete curvature.
All possibilities satisfy s; < u1 < 8;41.

so by [Theorem 3.1@, f =41 on [x;_1,x;]. In either case, we have s;,(f,z;) = s;—1. An analogous
argument shows that Sout(f, ;1) = S;41. Similarly, [Theorem 3.1 says that there is some g € S5 for which
Sin(g, ;) = ;-1 and Sout(g, Zir1) = Si+1. In both cases, the conclusion then follows from

Characterization around > 2 points with the same curvature. For 0 < p < 1, fix some f € 5.
As in the proof of above, the assumptions guarantee that s;_1 = sin(f, z;) and s;4p, =
Sout (fy Titm ). Using this fact, we will proceed by (strong) induction, assuming without loss of generality that
sgn(s; — si—1) =sgn(s;11 — ;) = -+ = 8g(Sitm — Sitm—1) = 1.

In the base case m = 2, first suppose that sgn(s; — sin(f, ;) # sgn(Sout (f, Xir1) — 8;). Since sin(f, x;) =
$i—1 < 8; by assumption, it must be the case that sgn(sous(f, zit1) — $:) € {0, —1}. If sgn(sout(f, zit1) —
si) = —1, implies that f = ¢; on [z;,2;41], and thus siy(f,z;41) = s;. But then we have
Sin(fyziv1) = 8i < Sit1 < Sout(f, Tir2) = Sit2, so by [Lemma A.1, it must be the case that si,(f, zi41) =
Sout (f, Zit1), contradicting sgn(sout(f, Zit1) — $i) = —1 (see [Fig. 12b). If sgn(sous(f,zity1) — s;) = 0,
then implies that f = ¢; on [z, z;+1], and therefore sin(f,Zit+1) = Sout(f, Tiy1) = s;- Then
Sin(f, Tit1) = 8i < Sit1 < Sout ([, Tit2) = Sit2, SO by f has a single knot inside [2;41, z;42], with
Sin(f, Tit1) = Sout (f; it1) = s; (as we already know) and sin(f, Zit2) = Sout(f; Titr2) = Sit2. The conclusion
then holds with uy := s; (see .

On the other hand, still for the base case m = 2, suppose that sgn(s; — sin(f, ;) = sgn(sout(f, Tit1) — Si)-
Then by @, there is a single knot inside [x;,z;41], with s;—1 = sin(f,2i) = Sout(f, ;) and
Sin(fy Zit1) = Sout(f,Zit1). It cannot be the case that sout(f,xir1) > Si+1, because if this were true,
we would have —1 = sgn(s;r1 — Sin(f, Zit1)) # sgu(sout(f, Tir2) — Si+1) = 1, and that would imply by
that f = f;11 on [2i41,%i1o], contradicting sou(f, Tis1) > sip1 (see [Fig. 12a)). Therefore,
we must have Sout(f, it1) < Sig1- If Sout(f, it1) < Sit+1, then by [Lemma A.1, there is a single knot on
[Tig1, Tiga], With sin(f, Zir1) = Sout(f, Zit1) (as we already knew) and sin(f, Zit2) = Sout ([, Tit2) = Sit2.
The conclusion then holds with uy := sin(f, Zi+1) = Sout(f, i+1) (see[Fig. 11b). If sout(f, @iy1) = Sit1, then
0 = sgn(siy1 — Sin(f, Tit1) 7# sg0(Sout (f, Tiv2) — siy1) = 1, so by [Lemma A2} f = {;1 1 on w41, %i12]. The
conclusion then holds with uy := s;11 (see [Fig. 11a).
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Sit2
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Sin,out(ale) sout($i+1)
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(a) sin(Tit1) = Sout (Tit1) > Sit1 (b) sout(Ti+1) < Sin(Tit1) = s

Figure 12: Behaviors which f € S} for 0 < p <1 cannot exhibit around three consecutive points of the same
discrete curvature. The case on the left violates and the case on the right violates [Lemma A.1

Si-1 Si-1
8 Si
Si+m—2
. o e \
Um-1 = Sin,o\lt(zi+m—l) Um—2 = Um—-1 = Sitm—2
Ti-1 T Tit1 Titm-2 Titm-1 Titm Titm+1 Ti-1 @ Tit1 Titm—2 Titm-1 Titm Titm+1
(a) Sigm—2 < Um—1 < Sitm—1 (b) Um—2 = Um—1 = Sitm—2

Figure 13: Possible behavior of f € S¥ around m consecutive data points of the same discrete curvature.
Assuming inductively that [Theorem 3.1|2D| holds for 2,...,m — 1, both satisfy s;4;_1 < u; < s;4; for
j=1,....m—1.

Next, for the (strong) inductive step, fix some integer m > 4 and assume the conclusion holds for all
integers 2,...,m — 1. First suppose that Sout(f, Zitm—1) > Si+m—2. Then by the inductive hypothesis, f
has slopes uq, ..., Uy,_s—some of which may be equal to each other, but all of which are distinct from
sin(f, i) = si—1 and Sout(f, Titm—1)—o0n [T, Titm—1] satisfying s;1;_1 <u; < s;4j forall j=1,...,m—2.
It cannot be the case that sout(f, Zitm—1) > Si+m—1, because if this were true, we would have —1 =
sen(Sitm—1 — Sin(fs Tivzm—1)) 7 580 (Sous (f> Titm) — Sizm—1) = 1, and thus [Lemma A.2 would imply that
f="Litm—1 0N [Titm—1,Titm], contradicting sout (f, Titm—1) > Sitm—1 (see[Fig. 12D). Therefore, we must
have sout(f, Titm—-1) < Sitm—1- I Sout(fs Titm—1) < Sitm—1, then by [Lemma A.1, there is a single knot
inside [@jtm—1,Titm) and sin(f, Titm—1) = Sout (fs Tixm—1) and sin(f, Zitm) = Sout (f, Titm) = Siym. The
conclusion then holds for m with wm,—1 := Sout(f, Titm—1) (see[Fig. 13a)). If sout(f, Titm—1) = Sitm—1, then by
Lemmas A.1 and it must be the case that {0, —1} 3 sgn(si+m—1 — Sin(fs Titm—1)) 7 sgn(Sout (f, Titm) —
Si+m—1)) = L. It is impossible that sgn(s;1m—1 — Sin(f, Ti+m-1)) = —1 because byand for
f to disagree with £; 1,2 o0 [ {m—2, Titm—1], it must be the case that sin(f, Titm—1) = Sout (fs Titm—1);
contradicting sin (f, Titm—1) < Sout(f; Titm—1) = Si+m—1 (see red). Therefore, in this case we
have sin (f, Titm—1) = Sout(f, Titm—1) = Sitm—1, and the conclusion holds for m with w,,_1 := $;4m—_1 (see
Fig. 1da, groen).

On the other hand, still for the (strong) inductive step, suppose that sout(f, Titm-1) < Sitm—2. If
Sout (fy Titm—1) = Sit+m—2, then by and f has a single knot inside [2;ym—1, Titm] With
Sin(f, Tigm—1) = Sout (f, Titm—1) = Sitm—2 and sin(f, Titm) = Sout(f> Titm) = Sitm. This implies, again by

and [A.2] that f = {;1mm—2 OD [Ti4m—2, Titm—1]. By the (strong) inductive hypothesis, f has

23



Si-1 Sitm
Si-1
S; Si+m-1
Sitm—2 Si
-
Um-1 = simout(zhm—l) = Sitm-1 X d
s'm(a:Hm—l) > 'Sout($1Am—l) = Si+m—-1
Sinout (Titm-1) > Sitm-1
> >
Ti-1  T; Tiyl Titm—2 Titm-1 Titm Titm+l Ti-1  T; Tit1 Titm—2 Titm-1 Titm Titm+l
(a) Si+m—1 = Sout (mi+m71) S sin(l"H»mfl) (b) Sin(mi+m71) = Sout(xi+m71) > Sitm—1

Figure 14: Behaviors which f € S; can and cannot exhibit between m consecutive points of the same discrete
curvature. Assuming inductively that [Theorem 3.1|12b] holds for 2,...,m — 1, the case with the green check
mark on the left satisfies s;1j_1 <u; < 5545 for 7 =1,...,m— 1. The case with the red z on the left violates

and the case on the right violates [Lemma A.2

Sitm Sitm
Si-1 Si-1
Sitm—1 Sitm—1
Si sin,out(zi+m—2) Si sin,out(zi+m—2)
Sit+m—2 X
sin,out(wi+m—l)
> >
Ti-1  T; Tit1 Titm—2 Titm-1 Titm Titm+1 Ti-1  T; Tit1 Titm—2 Titm-1 Titm Titm+1
(a) A function with Sout(Zitm—1) < Sitm—2. (b) A function with sin(Zitm—1) = Sout (Titm—1) = Sitm—2.

Figure 15: Possible behavior of f € S} around m consecutive slope changes of the same discrete curvature.
The magnitude of slope change at each knot of the function f on the left, which has sout(f, itm—1) < Sitm—2,
is greater than that of the corresponding knot in the function g on the right, which has si,(zi4m—1) =

Sout (xi+m71) = Si+m—2-
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slopes u1, ..., Um—_3 on [x;, Ti4m—2], all distinct from si, (f, z;) = s;—1 and Sout ([, Tipm—2) = si+m,2, which
satisfy sj1j—1 < u; < s545 for j =2,...,m—3. The conclusion then holds for m with w;,—2 = Upm—1 = Sitm—2
(see[Fig. 13D)). It remains only to c0n31der the case Sout(f, Titm—1) < Sitm_2, and show that this is impossible
for f € 5;. It Sout (fs Titm—1) < Sitm—2, then by m and F there is a single knot inside
[l'erm 1 :Eerm] and Sln(fa Litm— 1) = Sout f7 Litm—1 and sj, T4 sout fa 1’2+m) = Sit+m- This
in turn implies, again by lm and . that there is a single knot inside [2;1m—2,Zitm—1] and

Sin(f, Zitm—2) = Sout (f, Titm—2). (See|Fig. 15a,) On the interval I := [2; 2 — €, Tiym + €] for small € > 0,
we thus have

f‘ |30ut f7 Titm— 1) - Sin(f7 xi+m—2)|p + |5i+m - 30ut(f7 xi+m—1)|p (35)

> [Sivm—2 — Sin(fs Titm—2)[P + [Sitm — Sitm—2/" (36)

where the inequality holds because Sout(f, Zitm-1) < Sitm-2 < Sitm and Sin(f, Titm—2) > Sitm—2 >
Sout (f, Ti+m—1). The latter is exactly Vp(g’ I), where ¢ is the function which agrees with f outside of
[Titm—2, Titm], agrees with £;1,m_o ON [Tifm—2,Titm—1], and has a single knot in [Z;ym—1,Titm] With
5in(f7 $i+m—1) = Sout(fa xi+m—1) = Sit+m—2 and Sin(fa xi+m) = Sout(fa gci+7n) = Si+m- (See ) This
contradicts f € Sp.

For the case p = 0: again, as in the proof of [Theorem 3.1]2a] the assumptions guarantee that there is some
f € S§ for which sy (f, x;) = si—1 and sout(f, i+1) = Si+1. The inductive argument above for 0 < p < 1 also
shows the desired result in the p = 0 case, with each reference to [Lemma A.2] as well as the last portion of
the inductive step instead justifying the existence of some g € S§ which exhibits the desired local behavior
and agrees with f elsewhere.

Non-emptiness of S; for 0 < p < 1. Asnoted in[Section A.1.1} restricting the input weights to wy| =1

in optimization recovers the same set of optimal functions S;. The geometric characterization proved
above shows that any solution to this modified must have no knots outside of [z, 2x_1], and thus its
biases satisfy |by| < B := max{|xa|, |zy_1|}. Additionally, any such solution has slopes absolutely bounded
by C :=max;=1 n—1]S;|, so that each |vgwy| = |vx| < 2C, and thus its skip connection parameters can be
bounded as

lal = | > wk[<la+ D w|=Ifan+D|<C = fa] <A:=C+ ) || <C+2KC  (37)
wg >0 wg, >0 wi >0
and
K K
c=y1— Y vp(wpzr —bp)y —azr = |o| < lyi| + Y [orl(|z1] + [br]) + |az: | (38)
k=1 k=1

< Cp = |y1| + 2KC(|z1| + B) + |z1|(C + 2KC)  (39)

Therefore, any f € S is recovered by a restricted version of (2) which requires that |wg| = 1, |bgx| < B, |vg| <
2C, |a| < A, |e¢|] < Cp. For any fixed choice of wy,...,wx € {—1,1}¥, this modified optimization (in the
remaining variables) constitutes a minimization of a continuous function over a compact set, so by the
Weierstrass Extreme Value Theorem, a solution exists. Taking the minimum over all such solutions for all
possible choices of wy,...,wx € {—1,1}¥ proves the result. O

A.1.4 Proof of Theorem 3.2

Proof. If the data contain no more than two consecutive points with the same discrete curvature, there is
only one interpolant f which fits the description in [Theorem 3.1} By Theorem 4 in |Debarre et al.| (2022), this

f € 55. Otherwise, if the data do contain some z;, ..., ;4. with the same discrete curvature for m > 2, the
slopes uq, ..., u;,—1 of any interpolant satisfying the description in [Theorem 3.1 have 5,41 < uj < 8544
for each j = 1,...,m — 1. Indeed, any choice of ui,...,um—1 satisfying s;1;_1 < u; < s;4; for each j
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defines an CPWL interpolant of the data, given by the pointwise maximum of ¢;_1, {;y,,, and the lines L;,
each of which has slope u; and passes through (z;1;,y;+;). Therefore, the set S of functions described by
[Theorem 3.1[2bJon any such @, ..., ;1 can be fully associated with the set of numbers uy, ..., u,, satisfying
Sitj—1 < u; < s;4; for each j. Since any such u; = (1 — a;)s;4j-1 + a;8i4+; for a unique «; € [0,1], we can
equivalently identify S with the unit cube [0, 1]~ 1.

Viewed as a function of its corresponding & = [y, . .., @p,—1] " € [0,1]™ 71, the regularization cost V,(f|r)
(forO0<p<1l)ofany f€Sonl:=[x;—1— 08 Titms1 + 0] for small 6 > 0 is

m—1
Vo(a) = Jur = siaP + D uj = wj ] + [Sim — um—1|” = |Aa + ¢ (40)
=2
where the rows a1, ..., a, of A € R™*(m=1) and entries ¢, ..., ¢y of ¢ € R™ are
ai = [sit1 — $4,0,...,0] ", €1 =8; — 8i_1 (41)
A, = [0, ey 0, 87;+m,1 — Si+m]—r, Cc1 = Sier — Si+m71 (42)
and
a; =[0,...,0,—(sisj-1 = Sitj2),Sits — Sitj—1,0,-., 0], ¢ =sip; 1 —sirj0 (43)
for j = 2,...,m — 1, with the nonzero entries of a; in positions j — 1 and j. By the assumption that
€ = --- = €;+m are all nonzero, the rows ay,...,a,, of A span R™~! and thus a — A« + c is injective.

For any distinct oy, ap € [0, 1], we thus have Aa; + ¢ # Aas + ¢, and therefore

Vp(tan + (1 = t)ag) = [[t(Ac + ¢) + (1 — t)(Aca + ) [|F > t| Aas +cf|f + (1 —t)[[Aca + c|[)  (44)
for any ¢ € (0,1) by strict concavity of || - [[2 on [0,1]™*. This shows that V), is strictly concave on [0, 1]
By the Bauer Maximum Principle (Aliprantis and Border| (2006), Theorem 4.104), V,(c) thus attains a
minimum on [0, 1]™~! at an extreme point of [0, 1]™~!. Moreover, by strict concavity of V, (), any minimum
of V,(a) over [0,1]™~! must occur at an extreme point. Therefore, when searching for an f € S with
minimal V,, we may restrict our attention to those f corresponding to the 2™~ vertices {0,1}™~! of the
cube [0, 1] L.

Among these 2™~ ! vertices, there is at least one corresponding to a sparsest solution f € S; N S. This
is because, by Theorem 4 in |Debarre et al. (2022), any f € S§ N S has V”THW knots on I, and there is one
such f if m is odd, or uncountably many if m is even. If m is odd, this unique f corresponds to the vertex
[1,0,...,1,0] " € {0,1}™1; i.e., this f has u; = s;4; for odd j and u; = s;4 ;1 for even j. If m is even, there
are multiple vertices a € {0,1}™~! which attain the minimal number ["1] of knots on I: two examples
are [1,0,...,1,0,1]T € {0,1}m~1 (see and [0,1,...,0,1,0]T € {0,1}™~! (see .

For each of the 2™~ functions f € S corresponding to the vertices o € {0,1}™~!, consider the associated
“cost curves” Cf(p) := V,(f|r), which is simply the regularization cost V,(f|;) for that individual f over
I, viewed as a function of the variable p € [0, 1]. Each Cf(p) is a generalized Dirichlet polynomiaﬂ of the
variable p. By the generalized Descartes rule of signs for Dirichlet polynomials (Jameson| (2006), Theorem
3.1), any two cost curves C'(p), Cy(p) for distinct f, g can only intersect at finitely many p € [0, 1]. Therefore,
for any given p € [0, 1] outside of that finite set (which has Lebesgue measure zero), a unique one of these
2m~1 candidate solutions f has smaller cost C(p) = V,(f|r) than the others. Furthermore, the sparsest of
these 2™~! functions (i.e., the ones in S N Sg) will necessarily have smaller C't(0) = Vo (f|;) than the rest,
and because all of the cost curves Cs(p) are continuous, a unique one of these sparsest solutions will have
smaller cost C'y(p) than the others for all p between 0 and p*, which is the location of the first intersection of
any two of these 2! candidate solutions’ cost curves. O

"Generalized Dirichlet polynomials are functions of the form f(z) = S, ab¥, where a;,z € R and by > --- > by > 0.

'
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U = U3 = 8j4+2 U = U2 = Sit+1

Ti-1 T Tit1 Tit2 Tit3  Tita  Tiss Tl @ Tinl Tit2 Tits  Tira  Tits
(a) One sparsest interpolant, corresponding to o =  (b) Another sparsest interpolant, corresponding to
[0,1,0]. a=[1,0,1].

Figure 16: Illustration of two sparsest interpolants in the scenario of [Theorem 3.1§2b with m = 4. Both have
[m+Ll] = 3 knots on [z; — 1,24 + 1], consistent with Theorem 4 of Debarre et al. (2022).

A.2 Multivariate results

A.2.1 Proof of |Proposition 4.1

Proof. Assume by contradiction that a solution {vy, wk}le to @D for K > N has Ky > N active neurons

{vg, wi }120, . Because Ko > N, the vectors ay, := [(w] 1)+, ..., (w] n)4] ", where T, := [z, 1], are linearly
dependent, meaning that there are constants cy,...,ck, (not all zero) for which EkK:01 crar = 0. Then for
any real t:

Ko Ko Ko Ko

Z(vk + teg)ay = kaak —i—thkak = kaak =y

k=1 k=1 k=1 k=1
where y := [y1,...,yn]|". Therefore, choosing ¢t = —vj /cy for one of the cpr # 0, the network with parameters

{v + teg, wk}szol interpolates the data, and satisfies

Ko Ko
S 1w + tewilo < 3 llowrlo
k=1 k=1

where strict inequality holds because all of the v wy are nonzero, whereas at least one of the (vy + teg)wy
on the left is zero (for k = k'), and |lvpwg|lo = || (vk + ter)wi||o whenever both viywy and (vg + teg)wy, are
nonzero. This contradicts optimality of {v, wy }H< .

If the data are in general position and N > d + 1, then |Bubeck et al.| (2020) show that there exists an
interpolating single-hidden-layer ReLU network with 4] N/d] neurons. Any such network clearly has at most
4(d+1)[N/d] <4(N +1)+4(N +1)/d < 8(N + 1) = O(N) nonzero input weight/bias parameters across
those 4[N/d]| neurons.

If the data are in general position and N < d + 1, the points x1, ...,y must be affinely independent,
meaning that

N N
ZaimizoandZaizo=>a1=~-~:aN=0 (45)

i=1 i=1
Because this condition is equivalent to linear independence of the vectors x; := [z, ,1]T, the general position
assumption ensures that augmented data matrix X = [Z1,...,Zy]|" € RN *(d41) has full rank N. Therefore,

there exists a solution w € R¥*! to the system

Xw=y:= [yl,...,yN]T (46)
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with |Jwl||o = N. (To see this, choose N linearly independent columns of X, express y as a linear combination
with respect to this basis, and let w be the vector of coefficients of this linear combination.) For any such w,
(46) says that the affine function

fl@)=w'Z=(w'E); - (—w'T),; (47)

interpolates the data (recall Z := [z ,1]"). The term on the right is a two-neuron ReLU network with ¢°
path norm of 2||w|lo = 2N. Also note that if the labels y; are all nonnegative (resp. nonpositive), we may
discard the second (resp. first) ReLU term in (47)), achieving interpolation with ¢° path norm of ||w|o = N.

As long as R is large enough to allow these constructions, we have shown that the ¢° path norm of any
solution to ([9) is O(N). O

A.2.2 Proof of[Lemma 4.7
Proof. Note that the data-fitting constraint in problems and @D can be expressed in matrix form as

K
Z’Uk (ka)+ =Y (48)
k=1
where X = [&,...,Zy]" € RVX(@HD) s the matrix of augmented data points z; := [z;,1]7, y =
[Y1,...,yn]" € RY is the vector of labels, and the ReLU (-), is applied element-wise. For any wj, S]Rd“,
define s = [Byr5, 505+ -5 leENZO]T € {0,1}". In other words, s; checks whether each entry of Xwy, is

k k
positive (in which case its corresponding entry is 1) or negative (in which case its corresponding entry is 0). Of

course, even though there are uncountably many possible wy’s, there are only a finite number—clearly at most
2N of possible binary activation patterns s;. Although the actual number of possible activation patterns
which could be induced by a configuration of ReLU neurons on the data is generally fewer than this maximal
possible 2% (Ojhal (2000); [Winder (1966); |Stanley et al. (2007)), we may reformulate our optimization as
being over all 2V binary patterns, since we will encode explicit constraints into the optimization to require
that any solutions correspond to activation patterns which can be induced on the data by a ReLLU network.
Denote the corresponding diagonal matrices diag(sy) as Dy, ..., Don € {0, 1} %N, Then for any wj, whose
corresponding activation pattern is Dpattern(k), We have

(ka)-‘r = Dpattern(k)ywk = (ka)-i-vk = Dpattern(k)ywk

where Wy, := vpwy.
For any j =1,...,2N let K; = {k : pattern(k) = j} be the set of neuron indices which share the same
pattern D;. Then the sum of those neurons can be rewritten as

Z (Y’UJk;)Jr’Uk; = Z DjY’lI)k = DJY Z ’LIJk = DjY(Vj - wj)
keK; keK; keK;
where v; and w; represent the positive and negative parts of the aggregate vector >, K, wy,, respectively, i.e.
v; = Z VpWg, W, = — Z VWi
keK; keK;
where Kj == {k € Kj,vx >0} and K = {k € K;,v; <0}, so that
Vv —w; = kawk+2vkwkzzwk
keK; keK} keK;

Therefore, the entire network output can be written as

K 2N o
> Xwi)ive = DX (v — w;)
k=1 j=1
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with the understanding that, if the set K is empty for some j, the vector v; — w; := ZkeKj vpwy is the
zero vector.
The objectives of (8) and (9) can be correspondingly rewritten as:

K K 2N

S lowwills = lwells = [ D0 Ikl + > llewkl?
k=1 k=1 Jj=1 kGK;' keEK;

K K 2N

S llvewello =Y llwwllo=> | Y lwwlo+ > llbllo
k=1 k=1 Jj=1 keK;' keEK;

Observe that:

p p
Skl = || >0 k|| = [l S7ollwkllp > || D k| = [lw;l? (49)
kek} keK; p keK; keK; p
> llwwkllo > || D k|| = Illvjllo. S lldnllo > || D k|| = llwillo (50)
keK KeKF 0 KEK keK; 0

where in all cases, equality holds if and only if the supports of each vector in the sum (i.e., the set of indices at
which each vector is nonzero) are disjoint. This follows from applying the inequality (a+b)? < aP + bP—which
holds for any a,b > 0 if 0 < p < 1 and for any a,b € R if p = 0 (defining 0° = 0), and in both cases is strict
unless a = 0 or b = 0——coordinate wise.

At a global minimizer of either (8] or @, this lower bound will be achieved. To see this, note that it is always
possible to replace a single one of the vectors wy, in each group K;r (resp. K i ) with the vector v; (resp. —w;),
and set the remaining vectors in each group to zero. By definition v; = ZkeK;r wy and w; = — EkeK; wg,

so clearly the network output Zjil D;X (ZkeK;r wy, + ZkeKj_ 'Lbk) = Z?Zl D; X (v; —wj;) on the data X
remains unchanged by this modification. And with this modification, all inequalities in will clearly hold
with equality. This shows that, for any solution to or @, all input weight vectors wy, in any individual
activation pattern group K; or K, will have disjoint supports. In any such case, the neurons in each
individual positive/negative activation pattern groups can be merged into a single nonzero neuron containing
their sum, without affecting either the network’s ability to interpolate the data or the value of the sums
ZkeK;r [ welo or ZkeK;r [[wg ¢ for any 0 < ¢ < 1. Note that, although this merging may alter the function

represented by the neural network, it will preserve the values of 25:1 [lvgwg|lo and Z,I::l lvrw||¢ for any
0 < g < 1, which is the only thing required for the statement of the lemma and its subsequent use in proving
‘Theorem 4.1} Therefore, we may enforce that there is at most one positively-weighted neuron v;w; = v; and
at most one negatively-weighted neuron v;w; = w; corresponding to any possible activation pattern j on the
data. Under this assumption, solutions to problem can be recovered from solutions to as

{wi}iss = {Zj’vj#O}U{%,wj #0} (51)

J Bj
{on}ie, = {og,v; # 0} U {=8;,w; # 0} (52)
for any constants ai, (1 ...,asn, Bon > 0, the choice of which affects neither the network’s represented

function, nor its value of Zle |lvgwg||lo or Zszl lvkwg || for any 0 < ¢ < 1.
Finally, notice that in order for a particular binary pattern D; to actually correspond to an input
weight /bias wy, it must be the case that (Xwy); > 0 wherever (D;); = 1 and (Xwy); < 0 wherever
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(Dj);; = 0. This is exactly the requirement that every entry of the vector (2D; — I)Xwy € RV is
nonnegative, since

(2D — D Xwy); = {_(ka)i, if (D;)i =0

When we re-parameterize as wy = vpwy and split the neuron indices K correponding to activation pattern
D; into the groups KJ"r and K i the requirement that (2D; — I )X wy > 0 is equivalent to requiring that
(2D; — I)Xwy, > 0if k € K} and (2D; — I) X1y < 0 if k € K; . Under the assumption (discussed above)
that there is at most one nonzero neuron wy = v; (resp. W, = —w;) in each activation pattern group K;r
(resp. K '), this condition is also clearly equivalent to (2D; — I)Xv; > 0 and (2D; — I)Xw; > 0. By
incorporating these constraints, we have thus fully reparameterized the neural network problems and @D
as stated in the lemma. O

A.2.3 Proof of Theorem 4.1]

Proof. Our proof follows the same line of reasoning as [Peng et al. (2015), with a correction to what we believe
to be an important oversight in their argument. Peng et al.| (2015) claim that for any 0 < p < 1, solutions
to mingegn |||/} s.t. Az = b, for a full rank matrix A € R™*" with m < n, are bounded inside the £>
ball of radius nmax;—1,. . n |(A(AAT)~!b);|. This claim of /*° boundedness independent of p is critical to
the proof of their main result. We believe this bound is incorrect, and that the correct bound is instead
nt/p max;—1,_n|(A(AAT)71b);|, which is unbounded as p } 0. For this reason, we explicitly include the ¢>°
boundedness constraint in optimizations (8) and (9). With expressed more compactly in matrix form,
we thus have the problem

argmin ||z|b, subject to Az =y, Gz >0, ||z]lc <R (53)
zeR2NF1(d+1)
where z := [, w{,..., vy, wiy]" € R2VTHAHD) | 4 = [D1X,-D;X,...,Dy;n X, —Dyn X € RN*2VH(d+1)

and G is the block diagonal matrix G := diag (2D, — I X, (2D, — I)X,...,(2Dyy — I)X,(2Dyv — 1)X) €
RNV2VT 2N (d 1)

The feasible set 2 of is a polytope, i.e., a bounded intersection of finitely many half-spaces. The
map z — [|z[|} is not concave on all of ]RZNHMH), but it is concave on each individual orthant, so to apply
the Bauer Maximum Principle as in the proof of we will relate to an optimization over a
polytope contained in the nonnegative orthant R?FNHMH). To do so, note that the set
U= {(sz/) c R2VTH @) R3_N+1(d+1) | zeQ |2 |w <R |2 < z/} : (54)

N+1
is a polytope in the product space R2" ' (d+1) x Ri (d+1), (Here the module vector |z| is the vector of

absolute values of entries of z.) Because the coordinate projection of a polytope is a polytope (Goemans
(2009)), the set

o = {z' eRY T ||l <R, Tz e st 2] < z'}, (55)

N+1
which is given by the coordinate projection of ¥ onto the z’ coordinate, is a polytope in Ri (d+1)

Furthermore, minzeq |25 = minzrcq [|2’[|5. To see this, note that for any z € €, its module vector |z| € €,
s0 minzeq [|z||5 > ming o [[2/|[5. If that inequality were strict, then there would be some z € 2 with
|z| < 2, 3 argmin,, cq [|2||}, but this would imply that min.cq [|z|5 < min.eqr [|2/[5.

As a polytope, ' is compact, convex, and has finitely many extreme points, the set of which we denote
Ext(£2). Let

ro=min{z; > 0| 2’ = [2],..., 2v11(q1)) | € Ext()} (56)
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be the smallest nonzero coordinate in any of the extreme points of €.
Next, note that for 0 < p < 1, the objective z + ||z|b is continuous and strictly concave on the

N+1
nonnegative orthant ]R2+ (d+1), and thus on Q'. Therefore, by the Bauer Maximum Principle (Aliprantis

and Border (2006), Theorem 4.104), a solution to argmin,, .o [|2[|} exists at an extreme point of Q'. In
particular, by strict concavity of z + ||z||b, any solution to argmin,, g, [|2’[|) must be at an extreme point
of /. (Otherwise, if such a solution had 2z’ = ta’ + (1 — ¢)b’ for distinct a,b € Q" and ¢ € (0,1), then
1215 > tlla'[|5 + (L =) [|b'[|B > t]|2||5 + (1 — t)||2" || = [|2’[|}, which is impossible.)

Putting everything together, fix an arbitrary 0 < p < 1 and let 2, be a solution to for that p. The
previous paragraph shows that |z, is a solution to argmin,, g/ [|2’||}, and therefore |z,| € Ext(€2’). Then:

2N q
— |1 1 |2p.il
Izl = I~ llo =t 3 (P2 67)

(il R\ :
< 17pstl — P mj NP — =P mij p_ (2 ; - P
_Z( ) = o i 12117 = il = () mig el (59)
2
R\? R\?
< (= in|R 'zllo == i 59
< (£) wminr-talo = () mig el (59)

where the inequalities come from the fact that p — P is decreasing for « € (0,1) and increasing for = > 1.
Because ||z||o is a positive integer for any z, the above shows that z, solves

argmin ||z]|o , subject to Az =y, Gz >0, [|z]lcc <R (60)
zeR2NT1(d+1)

for any p satisfying

R p

= i < mi 1 61

(T) glelgllﬂlo glelgHZIloJr (61)
b < log(min.eq ||z]lo + 1) — log(min.cq | 2(/o) (62)

log R —logr

ifr <R, orfor any 0 < p < 1if r = R. (Note that by definition of ', r < R always.)

Let 6y be a solution to @D and 6, be a solution to for any p which obeys the inequality in (62)),
and let ) and ), be the corresponding solutions—constructed from solutions z;, and 2o to and (60,
respectively—as stated in |Lemma 4.1. We have shown that

18510 = 116, ll0 = lI2pllo = [Iz0llo = 1165]lo = [[6allo (63)

which proves the result. [

A.3 Experiments

All code for the experiments can be found at https://github.com/julianakhleh/sparse_nns_lp.

A.3.1 Reweighted ¢! algorithm

To implement our proposed ¢P path norm regularizer, we use the iteratively reweighted ¢! algorithm of |(Candes
et al. (2008)); [Figueiredo et al. (2007, which we summarize informally here. The principal motivation is the
inequality

jzfP < [alplylP~! + (1~ p)lyl? (64)
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which holds for all z € R, all y € R\ {0}, and all 0 < p < 1, with equality when p = 1 and/or when z = y.
Applied to z = |viwy 4|, we have

K d
Z vkwell} = ZZ orwil? <D0 (Jowwrs

k=11i=1 k=11i=1

YrilP ™t 4+ (1= p)lyril”) (65)

for any choice of constant yi; € R\ {0}. The iteratively reweighed ¢! algorithm attempts to minimize the
£P path norm objective on the left hand side of by minimizing its upper bound on the right. Because
the choice of vy, wy,; which minimizes this upper bound is invariant to the additive constant (1 — p)|yx :|?
term, we can equivalently choose vgwy ; at each iteration ¢ to minimize only the first term Cy ;|vgwy ;| where
Cr,i = plyr, i|p*1 Because the upper bound is tighter when y; ; is closer to the optimal values of viwy, ; for
this iteration ¢, we choose the constants yy ; as v,(f Uw,(ii_l), where v,(f_l) w,(:z Y are the previous iterates.
The regularization penalty thus becomes

K d
chkz|vkwkz (66)

k=11i=1

which is simply a separable weighted ¢! penalty with weights Cj ;. This objective lends itself to a standard ¢!
proximal gradient update algorithm, with each soft-thresholding step scaled appropriately according to the
individual threshold Cj ;. The full algorithm is summarized in [Algorithm 1

Algorithm 1 Iteratively reweighted ¢! algorithm for /7 path norm minimization

Input: loss function £, sparsity parameter 0 < p < 1, learning rate v > 0, regularization parameter \ > 0,
total number of iterations 7'

fort=1,...,7 do

Compute thresholds: Cj ; + )\p|v,(:_1)w(tv_1)|p_1

Gradient update for input weights: wy, ; + w,(fl b )\gfu(ke ’ =
(t=1) _ | 9L(6)

Gradient update for output weights: vy, + v, oy ’ (t—1)
k

Reweighted ¢! prox update: ug; Proxc, ,|.| = sgn(0xWg,i) (|0rWk,i| — Ch.i)+
Update input weights: w( ) + sgn(w ,(C)Z) ﬁ’“ 1H
ugl|2
Update output weights: U](C) — sgn(f;l(c )) |2 > satisfies uy = v,(:)w,(fz

end for

We note that there are infinitely many ways to choose the updated input/output weights wk i ) and v(t)

to satisfy uy = U,(:)w,(:z, due to homogenelty of the ReLU (meaning that (az); = a(x)4 for any a > 0),

any choice w,(c) +— auy,; and vk + 1/a for any a > 0 would satlsfy uk = v,(c) (t and produce the same
neural network function. The particular choice described in addltlonally satisfies the balancing
constraint ||w(t) Iz = \v,(:)|, and we find that this selection tends to perform best in practice. We also note
that, for univariate input dimension d = 1 and sparsity parameter p = 1, is equivalent to the
PathProx algorithm of [Yang et al.| (2022).

A.3.2 Setup and results

We test our algorithm on two simple synthetic datasets. The first is a univariate “peak/plateau” dataset,
which consists of the data/label pairs:

(—2,0),(-1,0),(0,1),(1,1),(2,0),(3,0) (67)
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sparsity over time: peak/plateau datasetind=1
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Figure 17: Sparsity over time of five networks trained to interpolation on the univariate peak-plateau dataset
(67). The reweighted ¢! algorithm for 7 path norm minimization recovers much sparser
solutions earlier in training than unregularized Adam or AdamW weight decay regularization, with the
smallest value p = 0.4 eventually recovering the sparsest possible interpolant .

For this dataset, the theory of |Debarre et al.| (2022) shows that the sparsest interpolant f is unique, and is
represented using 3 ReLLU neurons as

Fl@) = (@ + 1)y —2(z = 1/2)4 + (@ — 2)4 (68)

Our theory in also shows that this f is a global /P-path norm minimizer for any 0 < p < 1, and is
the unique such minimizer for any 0 < p < 1.

shows the sparsity over time of our reweighted ¢! algorithm for three different values of
p € {0.4,0.7,1}, implemented in PyTorch using the Adam optimizer, along with that of Adam-only (no
regularization) and AdamW weight decay. All networks share the same random initialization and are trained
with MSE loss for 100,000 epochs with learning rate v = 0.01, regularization parameter A = 0.003 (except for
unregularized Adam-only, which uses A = 0), and hidden layer width K = 80. All three values of p in our
reweighted ¢! algorithm produce vastly sparser solutions earlier on in training than both Adam-only and
AdamW; however, only p = 0.4 eventually recovers the true sparsest solution f with 3 ReLU neurons (see
iz, 15).

shows the functions learned by all five networks throughout the course of training. We see
that reweighted ¢! with p € {0.4,0.7,1} all converge quickly to near-sparsest solutions, and then the small
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Figure 18: Three interpolants of the peak-plateau dataset, learned after 100,000 epochs using unregularized

Adam, AdamW weight decay, and reweighted ¢! (Algorithm 1)) with p = 0.4. Only the latter recovers the
true sparsest interpolant .
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additional kinks inside [0, 1] disappear gradually throughout training, with only p = 0.4 eliminating them
completely (the final solutions for p € {0.7,1} have a single extraneous active neuron of small magnitude
which activates just before x = 1/2).

For our second experiment, we consider N = 10 data points in d = 50 dimensions. The coordinates of each
data x; point are drawn i.i.d. from Unif[—1, 1], as are the labels y;. As in the univariate case, we compare
the sparsity over time of our reweighted ¢! algorithm for p € {0.4,0.7,1}, implemented in PyTorch using
the Adam optimizer, against that of Adam-only (no explicit regularization) and AdamW weight decay. All
networks are trained using MSE loss for 100,000 epochs with learning rate v = 0.01, regularization parameter
A = 0.005 (except for unregularized Adam-only, which uses A = 0), and hidden layer width K = 100.
shows that all values of p produce much sparser solutions than Adam-only and AdamW weight decay, with
p = 0.4 producing sparser solutions than p € {0.7,1}. The solutions recovered by p € {0.4,0.7,1} all obey

the sparsity upper bound of 2N guaranteed by the proof of |Proposition 4.1
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Figure 19: Learned network functions of five different algorithms throughout the course of training. Reweighted
¢t with p € {0.4,0.7,1} converge to near-sparsest solutions early on in training, with only p = 0.4 eventually

eliminating all extraneous neurons to recover the true sparsest solution .
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sparsity over time: N =10, d =50, data/labels in Unif[-1,1]
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Figure 20: Sparsity over time of five networks trained to interpolation on N = 10 uniform random data
points in d = 50. The solutions obtained by the ¢! algorithm (Algorithm 1) for p € {0.4,0.7,1}) satisfy the
sparsity upper bound of 2N guaranteed by guaranteed by the proof of [Proposition 4.1.
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