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Abstract—Spectrum misuser localization (SML) is essential for
dynamic spectrum sharing (DSS) to ensure that only authorized
users access and utilize shared spectrum. In this paper, we in-
troduce GNN-SML, an innovative framework for crowdsourcing-
based DSS systems that accurately and simultaneously localizes
multiple spectrum misusers with unknown locations and trans-
mission powers, even when they are in close proximity. GNN-
SML employs location-centric, sensor-agnostic Graph Neural
Networks (GNNs) with inductive power. In each online SML
instance, these GNNs predict the Received Signal Strength
(RSS) residue between each potential transmitter and available
spectrum sensors, which may be located arbitrarily and not
involved in the training phase. These predicted RSS residues,
combined with real-time RSS measurements from spectrum
sensors, are used with the zero-forcing technique to estimate the
locations and transmission powers of all potential transmitters.
This enables the identification of spectrum misusers as localized
transmitters lacking proper spectrum authorizations. We validate
the effectiveness and efficiency of GNN-SML with real indoor
and outdoor datasets. Compared to leading methods, GNN-SML
reduces localization error by up to 58% and transmitter power
estimation error by up to 24%, while maintaining a comparable
localization time of 1.2 s.

Index Terms—Spectrum misuser localization, GNN, dynamic
spectrum sharing

I. INTRODUCTION

Dynamic Spectrum Sharing (DSS) is a crucial solution to
the global shortage of wireless spectrum. The standard DSS
approach utilizes a Spectrum Access System (SAS) to issue
spatiotemporal spectrum authorizations while safeguarding
high-priority users and existing DSS users from interference.
However, DSS systems face challenges from spectrum mis-
users who attempt to access the spectrum without a proper
SAS authorization. The increasing availability of affordable
software-defined radio (SDR) devices has intensified this
threat. Consequently, spectrum misuser localization (SML) has
become essential for maintaining effective DSS operations [1],
[2], [3], [4]. Currently, the U.S. FCC and similar agencies
in other countries rely on complaints and manual investiga-
tions to detect spectrum violations. These methods are time-
consuming, labor-intensive, and costly, particularly given the
mobility and adaptability of smart spectrum misusers.

SML can be seen as a specific case of wireless transmitter
localization, a well-established field. If a localized transmitter
lacks an active spectrum authorization, the SAS operator
can classify it as a spectrum misuser. Traditional transmitter
localization techniques often employ a network of sensors for
spectrum monitoring [5]. These sensors may include dedicated

devices deployed by the SAS operator and crowdsourced
devices aimed at enhancing spectrum sensing coverage and
accuracy. Research such as [6] has demonstrated the techni-
cal feasibility of crowdsourced spectrum sensing, a concept
widely supported in the literature [7], [8], [3], [1], [2], [4].
Spectrum sensors can measure various parameters, including
received signal strength (RSS), angle-of-arrival, and time-of-
arrival. RSS-based localization is particularly prevalent due
to its lower sensor requirements [3], [1], [2], [4]. However,
traditional RSS-based methods typically focus on locating a
single transmitter and assume that each RSS measurement
corresponds to only one transmitter. In practice, when multiple
unauthorized and/or authorized DSS users share the same fre-
quency band, their overlapping transmissions result in aggre-
gated RSS measurements that are challenging to disentangle.
This situation underscores the need for advanced RSS-based
techniques capable of localizing multiple simultaneous trans-
mitters with unknown locations and powers within the same
frequency band, a problem known as Multiple Transmitter
Localization (MTL) [3], [4], [1], [2]. [9], [10].

State of the Art. Recent years have seen notable efforts
in MTL. SPLOT [3] reformulates the MTL problem into
multiple single-transmitter localization tasks, identifying ap-
proximate regions for each transmitter based on local maxima
in spatially distributed RSS measurements. As analyzed in [9],
SPLOT can produce high false alarm rates under complex
radio propagation conditions that generate many local maxima.
LLOCUS [4] improves upon SPLOT by adaptively selecting
these approximate regions. As noted in [3], [4], both SPLOT
and LLOCUS are less effective when transmitters are very
close to each other. MAP* [1], [2] employs a hypothesis-
driven Bayesian approach, where each hypothesis represents
a configuration (location and power) of potential transmitters,
and localization involves identifying the most likely hypothe-
sis. MAP* suffers from high computational costs due to too
many possible configurations (or hypotheses) and often results
in high false positives and negatives [10].

There are also deep learning-based MTL methods. Deep-
TxFinder [9] uses separate convolutional neural network
(CNN) models for each possible number of transmitters,
resulting in high model complexity and computational costs.
DeepMTL in [10] and [11] use CNN models to map RSS-
constructed images to transmitter distribution images and then
uses this mapping to infer transmitter locations. Like MAP*,
these models relies on exhaustive search for both transmitter



locations and power, leading to significant computational costs
during training and inference. Moreover, converting sensor
coordinates to an image has challenges, such as the impact of
pixel scale on localization accuracy, where poor scaling can
lead to significant errors. [12] proposes using quantum sensors
to encode signal information into quantum states and localize
transmitters through state transformations, similar to SPLOT’s
subproblem division but with scalability limited by sensor
availability. [13] models localization as a supervised learning
task using RSS measurements and ground-truth transmitters,
constrained to specific transmitter locations and sensor setups.
Our Contributions. In this paper, we present GNN-SML,
a novel framework that uniquely integrates Graph Neural
Networks (GNNs) [14] with the zero-forcing technique [15]
to achieve simultaneous, accurate, and fast localization of
multiple concurrent spectrum misusers, regardless of their
physical proximity. Like previous approaches [3], [4], [1],
[2], [9], [10], GNN-SML essentially tackles the MTL problem
and classifies any localized transmitter lacking a proper SAS
authorization as a spectrum misuser.

We first discuss the rationale for applying zero-forcing [15]
to MTL. Zero-forcing is an effective technique for mitigating
interference in MIMO systems. In a MIMO system with M
transmit antennas and N receive antennas, each receiver cap-
tures the combined power from M simultaneous transmissions.
Given an N x M channel matrix H that characterizes the
MIMO channel, zero-forcing computes a matrix W such that
WH = I, where 1 is the identity matrix. By applying W to the
N-dimensional vector of received signals, we can effectively
estimate the M transmitted signals [15]. Suppose the SAS
employs N sensors (i.e., receivers) to localize transmitters
over a large area divided into M equally-sized cells. Assume
that a potential transmitter could be located at the center of
each cell, with its transmission power unknown. If the channel
matrix H is known in this context, zero-forcing can be applied
to simultaneously estimate the transmission power of each
potential transmitter. If the estimated power of a potential
transmitter exceeds a predetermined system threshold (e.g., the
FCC power limit), it can be identified as an actual transmitter.
The accuracy of transmitter power and location estimations
can be refined by adjusting the cell size, which is equivalent
to changing M.

The main challenge in adopting the zero-forcing method is
obtaining the necessary channel matrix H. Radio propagation
models commonly used to estimate H are not known a priori
and must be learned from real RF data. Additionally, as we as-
sume crowdsourcing-based SAS operators, as in previous work
[31, [4], [11, [2], [9], [10], the spectrum sensors involved in
different MTL instances can vary dynamically in both number
and location. This variability prevents the pre-determination of
H for each cell center and fixed sensor location, necessitating
the rapid derivation of H to enable fast MTL in each instance.

GNN-SML addresses these challenges in three steps. First,
it uses an initial set of sensors to learn a fine-grained radio
propagation model specific to the sensing area. Next, the
same sensors are employed to train a location-centric and

sensor-agnostic GNN model with inductive power. This model
captures the spatiotemporal data dependencies among arbitrary
sensing locations, regardless of whether a real sensor is
present. The GNN is designed to predict the RSS residue
between any potential transmitter and sensor locations, which
represents the difference between the actual RSS measured
at a sensor and the expected RSS based on the propagation
model. Finally, in each online SML instance, the SAS operator
uses the trained GNN model to predict the RSS residue
between each cell center and available sensors, which may be
at arbitrary locations and not involved in the training phase.
These predicted RSS residues are then used to estimate the
channel matrix H. The zero-forcing method is subsequently
applied to estimate the transmission power at each cell center,
enabling the localization of potential transmitters (spectrum
misusers).

We evaluate the accuracy and efficiency of GNN-SML using
real datasets from both indoor and outdoor environments [2].
Our findings demonstrate that GNN-SML reduces localization
error for transmitters (including potential spectrum misusers)
by up to 37% indoors and 58% outdoors compared to state-
of-the-art methods [3], [4], [1], [2], [9], [10]. Additionally,
GNN-SML lowers transmitter power estimation error by up
to 20% indoors and 24% outdoors. Furthermore, GNN-SML
achieves a localization time of 1.2s on a standard Dell
desktop, which is comparable to the leading method but with
significantly reduced localization and power estimation errors.
These results affirm GNN-SML’s effectiveness in accurately
localizing simultaneous spectrum misusers in nearly real-time,
regardless of their physical proximity.

The rest of this paper is organized as follows. §II presents
the problem formulation. §III illustrates the design of GNN-
SML. §IV evaluates the performance of GNN-SML. §V con-
cludes this paper.

II. PROBLEM STATEMENT

A. Threat Model

This paper addresses the detection of simultaneous spectrum
users, categorized into three types: unauthorized DSS users,
intentional jammers, and unintentional jammers resulting from
compromised wireless devices. The exact number of misusers
is unknown, and they may operate with arbitrary transmission
power anywhere within the SAS’s sensing area. Moreover,
they may be located in close proximity to one another, which
complicates their localization and separation with current tech-
niques [3], [4]. Although spectrum users can move and change
their online/offline status unpredictably, their transmissions
persist at a given location long enough to make localization
efforts feasible and meaningful. We also assume a white-box
threat model in which spectrum misusers are fully aware of
SAS system operations, including our localization mechanism.
Additionally, we employ existing defenses [7], [16], [17] to
address the issue of compromised spectrum sensors that may
submit fake sensing data.



B. System Model

Consistent with previous studies [3], [4], [1], [2], [10], [7],
[18], [8], [16], we consider a crowdsourcing-aided SAS that
leverages both dedicated and crowdsourced (spectrum) sensors
for spectrum access control. The SAS operator conducts one
round of SML either periodically or as needed. Let V denote
the set of N, = |V| responsive sensors in a given SML
round, with the round index omitted for brevity. Crowdsourced
sensors can be recruited for specific sensing tasks and removed
upon task completion. The SAS operator has the flexibility to
add or remove both dedicated and crowdsourced sensors as
needed. Additionally, some sensors might experience tempo-
rary unresponsiveness. Consequently, V' can vary significantly
across different SML rounds in the same area, which poses one
of the biggest design challenges. Furthermore, since sensors
primarily function as passive receivers, we use “sensors” and
“receivers” interchangeably when no confusion arises.

C. Design Goals

Consider an arbitrary SML round in a given physical area,
where there can be N, = |U| simultaneous transmitters on
the same frequency band, denoted by U. The number N, as
well as the location [, and transmission power P, of each
transmitter w € U, are all unknown to the SAS operator. Each
sensor v € V provides a spectrum-sensing report that includes
its location [, and a sequence x, of RSS measurements
collected during this round.

Given the RSS measurements X = {X;}ycv., the goal
of GNN-SML is to simultaneously, accurately, and quickly
estimate the transmission power P, and location [,, of each
transmitter v € U. Any localized transmitter v € U not
associated with an active spectrum authorization is considered
a spectrum misuser by the SAS operator.

ITII. GNN-SML DESIGN

In this section, we outline the GNN-SML design. As shown
in Fig. 1, GNN-SML consists of an initial training phase
and an online SML phase. In the training phase, the SSP
uses the available sensors to learn a precise radio propagation
model specific to the sensing area. It then trains a location-
centric, sensor-agnostic GNN with inductive capabilities. This
GNN is designed to accurately estimate the RSS residue
between potential transmitter and sensor locations. In each
SML round, the SAS operator employs the trained GNN to
predict RSS residues between each potential transmitter loca-
tion and available sensors. Zero-forcing [15] is then used to
localize all transmitters based on the predicted RSS residues,
identifying those without proper spectrum authorizations as
spectrum misusers. We provide a detailed explanation below.

A. Learning Radio Propagation Models

We assume a short, trustworthy system initialization phase
in which no spectrum misusers are present. During this phase,
the SAS operator aims to develop fine-grained radio propaga-
tion models that account for path loss and large-scale shadow
fading due to obstructions such as hills or high-rise buildings.
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Fig. 1: GNN-SML system overview.

In this paper, we use the classical log-distance path loss model
with shadow fading as a representative example. However, our
approach can be easily adapted to other models. Additionally,
the radio propagation model can be periodically relearned or
updated as necessary to adapt to dynamic radio environments.
We use the notation V' to represent the set of sensors
available to the SSP during system initialization. For each
sensor v € V, both its location [,, and power P, are known.
The SSP divides V into two subsets: V; and V.. Sensors
in V; take turns acting as transmitters, while sensors in Vi
continuously serve as receivers. Since only one transmitter is
active at any time during the controlled training phase, the
RSS measurement at each receiver is attributable to a single
transmitter. Let X,. .+ denote the RSS measurement at each
receiver v € V. induced by any transmitter v' € V;.
According to the log-distance path loss model [19], we have:

Xyewt = f(I'U) '!'u’: Pfu’) + Spew
' 1
= Iy — PD — 10« loglo (d‘-’d(_‘:}t’I ) + Sy, ( )

where f(-) denotes the path loss model function, dy; v =
[[ly — ly||2 denotes the Euclidean distance, « is the path loss
exponent, P, is the path loss at a reference distance dp, and
Sy is the shadow-fading term (also known as the RSS
residue). We follow the conventional assumption that Sy,
follows a Gaussian distribution with zero mean. To learn the
model parameters (Py, ) of f(-), our optimization objective
is to minimize the mean squared error between measured
RSS values and those predicted by f(-). Thus, given all the
collected RSS values, we formulate the optimization problem
as follows:

a;rgm_in Z Z "XfU(—v* - f("! 1£U';Pv')||§ . (2)

Fo,a vEV, v EV,
We confirm that the log-distance path model accurately fits
both indoor and outdoor datasets [2]. For brevity, detailed

fitting results are omitted.

B. Learn a GNN for Predicting RSS Residues

To justify the need for learning an inductive GNN for
predicting RSS residues, we first examine the role of the RSS
residue defined in Eq. (1) as

Sy = Xyew! — f(-‘! s Evr,Pvr),VU < ]r"zu-.,’l!)jI e Vi (3)

When Egq. (1) is expressed in Watts, it becomes

) dv(—fu" - g
Xw—v’:Pv—“Pﬂ'( do ) cefvev’ = Py - by yry (4)
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Fig. 2: Spatial correlation of RSS residues at different sensors (or receivers).
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where Py = 1077/10 5, ,, = 10 ., and hyeo =

~ —
Py (d"d;o“’) eSv—v' represents the channel gain from trans-
mitter v’ to receiver v. In other words, given the RSS Xy,
and the learned model parameters (Py,a) of f(-), we can
directly compute S, and subsequently Ay, .

In the subsequent SML phase, one might consider deter-
mining the channel gain h,. , for each potential transmitter
u and sensor v using a similar approach. However, during
training, each RSS measurement is attributable to only one
transmitter, whereas in the SML phase, multiple transmitters
may be active simultaneously. This results in an aggregated
RSS measurement at sensor v that is not directly separable.
Consequently, since Xy, is unknown, it is infeasible to derive
Sy« for computing h. . Therefore, we need an effective
method to estimate the RSS residue between each potential
transmitter and the available sensor in the SML phase to apply
zero-forcing.

The design of our GNN model is driven by two key
observations. First, there are significant spatial correlations
among the RSS residues across different pairs of transmitter
and sensor locations. Second, RSS residues are primarily
dependent on the locations of transmitters and sensors rather
than the specific RF devices, making them location-centric and
sensor-agnostic. In what follows, we first elaborate on these
observations and then discuss how they inform the design of
our GNN model.

1) Properties of RSS residues: Studies [20], [21], [22], [23],
[24], [25] have shown that RSS measurements exhibit intrinsic
stationarity. This means that the statistical properties—such as
mean, variance, and covariance—of the spatial process remain
consistent across different locations. This intrinsic stationarity
is widely accepted in the DSS literature [26], [27], [28].
Further research [29], [30], [22] indicates that RSS residues
also demonstrate intrinsic stationarity.

In particular, we model the RSS residue s,,. ,+ associated
with the sensor-transmitter location pair (I, , 1,/ ) as a Gaussian
random field: s, , ,» = p + d(l,,), where p is the mean
of the RSS residues, assumed to be zero under a Gaussian
distribution, and §(l,,) represents potential sampling errors at
location [,,,. Consequently, We have

E[sy;«v] =p=0,
E[(Sv;¢-vr — 5v;<—v’)2] =2y (”'!'u‘- — by, ||2) ;
where ~(-) represents the semivariogram function, a funda-
mental geostatistical tool that quantifies how the variance of

)

differences between values of a spatial process changes with
distance. This is referred to as the receiver-location-dependent
property of the RSS residue.

Similarly, for a single sensor v at location [, receiving
RSS measurements from two different transmitters »" and v”
located at l,» and [,~, respectively, we have

E[(SU*_U: — Sw_vn)z] = 2"}‘ (”lv’ — lvn ||2) . (6)

We refer to this as the transmitter-location-dependent property
of the RSS residue.

We conduct experiments using indoor and outdoor datasets
[10] to validate that RSS residues exhibit strong spatial cor-
relations dependent on both sensor and transmitter locations.
Figs. 2a and 2b show that RSS residues measured at different
sensor locations approximate a Gaussian distribution in both
indoor and outdoor environments. Additionally, Figs. 2c and
2d present the empirical semivariograms of RSS residues in
indoor and outdoor settings, involving three transmitters and
various sensors. The solid lines in these plots represent fits us-
ing an exponential semivariogram model. These plots indicate
that sensors in close proximity exhibit similar measurements
with minimal fluctuations (i.e., smaller semivariogram values),
while sensors located further apart display more pronounced
variations (i.e., larger semivariogram values). Similar results
demonstrating the spatial dependency of RSS residues on
transmitter locations are obtained but omitted here due to space
constraints.

2) GNN design: GNNs [14] are advanced deep-learning
methods well-suited for analyzing spatial data. Compared to
traditional geospatial interpolation, GNN-based approaches
excel in modeling complex relationships, managing irregu-
lar data, and incorporating additional features while offering
superior adaptability, predictive performance, scalability, and
flexibility [17], [31]. Therefore, we aim to design and train
a GNN to predict RSS residue between potential transmitter
and sensor locations during the SML phase. A crucial feature
we seek in the GNN is its inductive ability, which allows
it to handle arbitrary transmitter and sensor locations that
are unseen during training. This feature is essential because
transmitters can be located anywhere within the sensing area,
and spectrum sensors may vary considerably in each SML
round within the crowdsourcing-aided SAS (see §II-B).
GNN Training for Unseen Sensors. We first train an induc-
tive sensor-centric GNN to predict RSS residues for sensors
not seen during training. The GNN explores latent spatial
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correlations among nodes to perform interpolation and pre-
diction of RSS residues. In this study, we adapt the Inductive
Graph Neural Network Kriging (IGGNK) model proposed in
[31] to our context, with the extension of our GNN-SML
framework to other GNN models left as future work. Recall
that the SAS operator divides the available sensors V into
two subsets during training: V; for transmitters and V. for
receivers (see §III-A). We represent V,. as an undirected graph
G = (V,, &), where each node corresponds to a sensor in V.,
and £ denotes the set of edges connecting any two sensors
within V.. The edge weights are defined by the Euclidean
distance-based adjacency matrix W, where the element at
coordinate (z,5) corresponds to sensors v; and v; in V. and
is given by W;; = exp (— (I[to, —IUJ.||2/2)2) . This model
characterizes the spatiotemporal dependencies among the RSS
residues for each sensor in V., as described in Eq. (3).

We first describe how training samples are generated.
During the training phase, the SAS operator instructs the
transmitters in V; to transmit sequentially, with only one active
transmitter at any time. Each transmitter in V; generates L
RSS measurements at each sensor in V., attributable solely
to that transmitter. Using these RSS measurements, the SAS
operator calculates L RSS residues for each sensor in V, as
described in Eq. (3). Each sample is associated with a single
transmitter and is represented as a |V,.| x L matrix, where each
row corresponds to the L RSS residues for one sensor in V.
The SAS operator can produce as many samples as needed
for each transmitter. The sample generation process can be
integrated with the learning of the radio propagation model.

To ensure the inductive power of the GNN, we apply a
random-masking strategy. Specifically, we generate a new set
of samples from each original sample by setting random rows
in the data matrix to zero. Sensors with zeroed-out RSS
residues are referred to as masked sensors, while those with
nonzero residues are called unmasked sensors. Let €2 denote
this new set of samples. The GNN predicts RSS residues for
both masked and unmasked sensors, with masking ensuring
generalization to unseen sensors during training.

The central idea of a GNN is its use of neural message pass-
ing, where vector messages are exchanged between nodes and
updated through neural networks. In our approach, message-

passing operations are implemented using a three-layer GNN
model, with the latent representations at each layer defined as:

Hy = WH8! + (2WW — I)Hyb62 ,
Hy ZU(Wngi +(2WW—I)H19%) + H, , (7)
S, =WH,0% + (2WW — I)H,63 .

Here, Hj represents the input to the first layer, which is any
sample S, € €. The matrix W = W /rowsum(W) denotes
the normalized transition matrix derived from the adjacency
matrix W. The parameters {6F | | = 0,1,2; k = 1,2} are
learning parameters that control how each node processes the
incoming data. Since the RSS residues of masked sensors are
zeroed out in each sample, these sensors initially pass only
zeros to their neighbors in the first layer. The second layer
enables each masked sensor to transmit its layer-1 embedding
to its neighbors. Given that W is fully connected, these two
layers are sufficient to capture the spatial correlations of RSS
residues among all sensors. The output of the final layer,
denoted S, represents the reconstructed RSS residues for
both masked and unmasked sensors in the input sample. Let
S, denote the original RSS residues for sample w without
any masking. The loss function is defined as the total re-
construction error for both masked and unmasked sensors:
Loss = 3" cq 150 — Sull*.

During system runtime, the trained model can be used to
predict the RSS residues for sensors unseen during training,
such as newly added crowdsensing devices. Specifically, we
extend the graph G = (V,&) to include these new sensors,
update the adjacency matrix W, and integrate these new
sensors as masked sensors into the original training samples
that have not yet been subjected to random masking. We then
input the modified samples and the updated W into the GNN,
which can predict the RSS residues between each transmitter
location used during training and each new sensor location.
Our assumption here is that the RSS residues obtained during
training remain relatively stable during the online SML phase,
as they are linked to the path loss model learned previously. If
significant changes occur, the path loss model and GNN can
be retrained periodically or as needed.

The upper section of Fig. 3 shows the training and prediction
process for the sensor-centric GNN. The GNN is trained using



s Unmasked Rxs *

*
H
MMTHMMMMEIA 8 a7

(E AT TR R TR R

Longitude

(a) REM of RSS residues of 15 sen- (b) Correlation matrix of real and
sors and 1 transmitter predicted RSS residues

ELTEmrE]

Fig. 4: GNN prediction results for new sensors.

data from five crowdsourced sensors, labeled Rx1, Rx4, Rx5,
Rx6, and Rx8, along with two transmitters, labeled Tx1 and
Tx2. Each transmitter generates a time sequence of RSS
measurements at each of the five sensors, creating a sample
that includes five time series of RSS residues. In this example,
sensors Rx5 and Rx6 are masked in each sample. During
system operation, when a new sensor Rx2 is introduced, the
GNN can predict its RSS residues for both Tx1 and Tx2. In
practice, a larger number of sensors and transmitters are used
for training.

Fig. 6 presents exemplary results of GNN-based RSS
residue prediction for both unmasked and masked sensors.
Specifically, Fig. 4a shows Radio Environment Maps (REMs)
illustrating the predicted RSS residues for 15 testing sensors.
The GNN model successfully reconstructs the RSS residues
for these sensors, demonstrating strong spatial correlations
among them. Additionally, Fig. 4b demonstrates the correla-
tion between matrices of actual and predicted RSS residues.
Each column in these matrices represents residue values across
all sensors for a specific transmitter (with 28 transmitters in
total). The correlation matrix reveals the linear correlation be-
tween actual and predicted residue values from both matrices.
Strong correlations are observed primarily between residue
values from the same transmitter, confirming the distinct
spatial RSS residue correlations among sensors associated with
each transmitter.

GNN Training for Unseen Transmitters. The second step
involves training an inductive transmitter-centric GNN model
specifically to predict the RSS residues generated by new
transmitters that are not seen during the training phase—these
are the transmitters that need to be localized. As described in
Eq. (6) and illustrated before, strong spatial correlations are
observed among the RSS residues from different transmitters
at the same sensor. Therefore, we are motivated to employ
a spatial interpolation method using the GNN model trained
with data from known transmitters. By leveraging the GNN
model’s ability to understand spatial correlations, our approach
can deliver reliable and accurate predictions of RSS residue
values during system runtime, even for previously unseen
transmitters, such as new spectrum misusers.

We use a grid-based method to generate training data.
Specifically, the SAS operator creates an M-by-M grid over
its sensing area, resulting in M? equally sized cells. We
assume the SAS operator can either identify or dispatch a
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transmitter near each cell center. Each of these M? transmitters
takes turns transmitting for a brief period, with only one being
active at any given time. Each available sensor in V' acts
as a receiver, collecting a series of L RSS measurements.
Using these measurements, the SAS operator calculates L
RSS residues for each transmitter, as described by Eq. (3).
Each training sample is linked to a specific sensor in V
and is represented as a M? x L matrix, where each row
corresponds to the L RSS residues for the transmitter located
at the respective cell center. The SAS operator can generate as
many samples as required for each transmitter, and this sample
generation process can be integrated with the path loss model
learning.

Given these RSS residue samples, we apply the same
random-masking strategy and use the model structure outlined
in Eq. (7) to train a three-layer transmitter-centric inductive
GNN. The details of training and prediction processes are
omitted here to avoid redundancy. The lower section of
Fig. 3 illustrates the training and prediction process for this
transmitter-centric GNN. The GNN is trained using data from
five transmitters, labeled Tx1, Tx2, Tx3, Tx4, and Tx5, and
three receivers, labeled Rx1, Rx2, and Rx3. Each receiver
receives a time sequence of RSS measurements from each of
the five transmitters, resulting in a sample that includes five
time series of RSS residues. In this example, transmitters Tx5
and Tx6 are masked in each sample. During system operation,
when a new transmitter Tx7 is introduced, the GNN can
predict its RSS residues for all three receivers. In practice, a
larger number of sensors and transmitters are used for training.

Fig. 5 shows some exemplary results of GNN-based RSS
residue prediction for both unmasked and masked transmitters.
Fig. 5a provides the REMs illustrating the predicted RSS
residues for 16 testing transmitters with a single sensor.
The GNN model successfully reconstructs the RSS residues
for these transmitters, highlighting strong spatial correlations
among them. Fig. 5b presents the correlation matrix of the real
and predicted RSS residues for 10 testing sensors, demonstrat-
ing the accuracy of the GNN model in predicting RSS residues
for new transmitters during system runtime.

The granularity of the grid partitioning, or equivalently
the number M? of cells, significantly impacts localization
precision. A finer grid with sufficient training transmitters
results in more accurate RSS residue estimations during the
online SML phase, due to the abundance of training samples
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Fig. 6: Visualizations of transmission power estimation in
indoor lab environment with Py = 45dB.

from various transmitters. Conversely, a coarser grid with
fewer training transmitters may lead to poor generalization
and less accurate RSS residue estimations. Therefore, selecting
an appropriate number of training transmitters and grid cells
is crucial for precise transmitter localization. In this paper,
we use a cell size of 1.2m x 1.2m for the 9.6m x 7.2m
indoor testbed with 48 transmitters during training, and the
same cell size for the 32m x 32m parking-lot testbed with
100 transmitters. To ensure consistency and accuracy, we apply
the same grid partitioning during system runtime, which helps
maintain reliable and precise RSS residue estimations for
potential transmitters in the online SML phase.

C. GNN-based SML with RSS Residues and Zero-Forcing

Finally, we demonstrate how to combine receiver-centric
and transmitter-centric GNNs in the SML phase to predict
RSS residues for both sensors and transmitters that are not seen
during training. We also illustrate how to integrate zero-forcing
with these predicted RSS residues to achieve simultaneous,
accurate, and rapid SML. Recall that V and U denote all
the sensors available to the SAS operator and the transmitters
to be localized during the SML phase. In our method, we
assume that there could be a candidate transmitter at each of
the M? cell centers. Thus, U initially includes all these M?
candidate transmitters. Our technique is to identify the actual
transmitters among them based on their approximate locations
at the corresponding cell centers. For clarity, we refer to
the sensors and transmitters used during training as historical
sensors and transmitters, and those in V' and U as new sensors
and transmitters, respectively. Note that there may be overlap
between historical and new sensors and transmitters, which can
be easily managed with a simple modification of the process
outlined below.

Step 1. We input all new sensors in V' along with the RSS
residue samples from the training phase into the receiver-
centric GNN to predict RSS residues for each new sensor and
historical transmitter. Because the GNN is location-centric and
sensor-agnostic, all RSS residues—whether newly predicted
or previously obtained during training—are associated with
their respective (sensor, transmitter) locations. As shown in the
upper-right section of Fig. 3, this process effectively expands
the sample for each historical transmitter to include the new
Sensors.

Step 2. We then feed all historical and new RSS residue
samples into the transmitter-centric GNN to predict RSS
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Fig. 7: Visualizations of transmission power estimation in
outdoor parking-lot environment with Py = 58dB.

residues for each new sensor in V' and candidate transmitter in
U. As shown in the lower-right section of Fig. 3, this process
effectively expands the sample for each new sensor in V to
include all the candidate transmitters.

Step 3. With the predicted RSS residue s,., for each sensor
v € V and candidate transmitter u € U, and the learned path
loss model parameters (Pp, ), we use the results in Eq. (4)
to compute the channel gain

—o
hw—u = IO_PO/‘]'D (d‘!;.?u) eglm—u,

= _ In10
where §,. 4, = o Sveu-

Next, we utilize the channel gain information and zero-
forcing [15] to separate the superimposed RSS measurements
{Xy}vev for all M? candidate transmitters in U. Given |V|
sensors and M? candidate transmitters, we define a [V x M?
matrix H, where each element represents the channel gain
between one sensor and one transmitter. Specifically, H =
[h1, ha, . .., harz], where by = [ho, e u, huyeuy - - s hopy eu] T
denotes the channel gain vector from transmitter u € U to
all sensors in V. Zero-forcing [15] aims to find a decod-
ing vector C, for each transmitter u such that the signal
from each transmitter can be decoupled from the superim-
posed RSS measurements {X;}ycy. Based on linear least
squares (LLS) approximation theory [32], the decoding matrix
{Cy,C,...,Chyz} is derived as the pseudo-inverse of the
channel matrix:

(CT,C],...,CT,]" = (HTH)"'HT. (8)
With the decoding matrix, the transmission power vector
P = [Py, Py,, ..., Py,,,] of all candidate transmitters can
be obtained by

P=I[CI,C],....C]p"X = (H'H)'H'X,  (9)
where X = [Xu,, Xu,, - - -, Xu,|T represents the received RSS

vector of all sensors in V.

Step 4. A transmitter is considered at the center of a specific
cell if its power estimate exceeds a predefined system thresh-
old, as shown in Fig. 6 and 7, which could be near the FCC
power limit. If this cell-center location is not associated with
an active spectrum authorization that minimally specifies the
approved channel, location, duration, and power limit, the SAS
operator classifies the transmitter as a spectrum misuser. In
such cases, the operator may take actions, including involving
law enforcement to physically exclude the spectrum misuser.



Furthermore, even if an active spectrum authorization is asso-
ciated with the transmitter’s location, the SAS operator may
use crowdsourced spectrum misuser detection mechanisms,
such as those described in [33], [34], [35], to ascertain whether
the transmitter is a legitimate user or a spectrum misuser
opportunistically operating within an authorized area.

IV. PERFORMANCE EVALUATION
A. Evaluation Settings

Our evaluations utilize the following two real datasets from
[2] to facilitate the comparison between GNN-SML and re-
lated work. Due to space constraints, we leave the presentation
of similar results obtained from large-scale simulations to a
future extension of this work.

Dataset A: indoor testbed: The dataset [2] was collected in
an indoor lab with dimensions of 9.6 m x 7.2 m, subdivided
into 48 grid cells, each measuring 1.2 m x 1.2 m. During data
collection, a single transmitter was moved through each cell,
while each sensor, randomly placed in one of the grid cells,
records average RSS readings. This setup results in a total of
48 x 18 = 864 RSS measurements.

Dataset B: outdoor testbed: This dataset [2] was collected in
an open-space parking lot with dimensions of 32 m x 32 m,
divided into 100 grid cells, each covering an area of 3.2 m x
3.2 m. Data collection involved moving a single transmitter
through each cell, while 18 sensors, each randomly placed in
one of the grid cells, record average RSS readings. In total,
there are 1,800 RSS measurements.

We continue using V' and U to represent the sensor and
transmitter sets, respectively. For dataset A, we set the num-
bers of training and testing transmitters as |Uan| = 28
and |Ugy| = 20, respectively, while for dataset B, we use
|Urain] = 50 and |Ust| = 20, unless specified otherwise.
Additionally, we use the same numbers of training and testing
sensors as |Vigin| = |Viest| = 18 for both datasets. To ensure
statistical significance, we repeat each experiment 20 times
by randomly selecting spectrum misusers from the transmitter
set, and we report the average results below. We use three
main performance metrics to evaluate and compare GNN-SML
with state-of-the-art methods: transmitter localization error,
transmission power estimation error, and localization time.
Note that if each transmitter is considered a spectrum misuser,
the localization and power estimation errors for transmitters
are equivalent to those for spectrum misusers. Therefore, we
do not distinguish between these terms in our evaluations.

B. Transmitter Localization Error

We measure the transmitter localization error using the
Optimal SubPattern Assignment (OSPA) metric [36], [3]. The
OSPA metric is a distance measure between two point patterns
that accounts for both the dissimilarity in the number of points
in the sets and the track values of these points. The localization
error ¢; is defined as

. 1 i
e(6,0) = (E (T{g_lnn

i=1

b=

d(0;, '%(:a))2 +c*(n— m)) )
(10)

where 6 and @ are the ground-truth and estimated transmitter
sets, with sizes m and n, respectively. II,, denotes the set of
all permutations of {1,...,n}. The function d(6;, Bﬁ(,)) rep-
resents the Euclidean distance between #; and Sr(i} with ¢ as
a cut-off constant (set to ¢ = 1 in our case). Note that Eq. (]0)
applies when m < n; for m > n, we use €6, 6) := e;(6,0).
Thus, Eq. (10) captures both the average distance estimation
error between the ground-truth and estimated transmitter sets
and the error due to differences in their sizes.

We compare the transmitter localization error of GNN-
SML with state-of-the-art methods, including SPLOT [3],
MAP#* [2], LLOCUS (with the RRBI mode) [4], and the
classical kNN method [4]. For both kNN and LLOCUS, we
use the log-distance path loss model in Eq. (4) for transmission
power estimation to ensure a fair comparison.

Fig. 8a and Fig. 8b illustrate the localization errors for these
schemes across both datasets as the number of transmitters
(ie., spectrum misusers) increases from 1 to nearly half of
the grid cells. The results highlight GNN-SML’s significant
advantages over previous methods. Specifically, while SPLOT
shows the lowest localization error among the four comparison
methods, GNN-SML outperforms it by 37% and 58% for
dataset A (indoor) and dataset B (outdoor), respectively, with
20 misusers. This improvement is due to kNN and LLOCUS
assuming that RSS measurements are primarily influenced by a
single transmitter, which increases noise and errors with more
misusers. GNN-SML’s superior performance is attributed to
its ability to handle spatial and temporal variability, whereas
SPLOT relies on fixed parameters and overlooks these factors,
leading to less accurate localization.

We also evaluate how GNN-SML's localization error varies
with different numbers of training transmitters and testing
sensors, i.e., |Upin| and |Vie|. Fig. 8c shows that as |Upin]
increases, GNN-SML, LLOCUS, and MAP* achieve signif-
icantly lower localization errors because more training data
improves the quality of their respective ML models. Similarly,
Fig. 8d demonstrates that the localization errors of GNN-
SML, LLOCUS, and MAP* decrease as |Vi| increases, since
more sensors involved in the SML phase lead to better predic-
tion results. In contrast, SPLOT, being a non-learning-based
method, remains relatively unaffected by changes in |Upin]
and |Vieg|- Nonetheless, GNN-SML consistently outperforms
all other methods in every evaluated scenario.

C. Transmission Power Estimation Error

Similar to the OSPA-based localization error metric, we
define the transmission power estimation error e, as

~(Eml)) o

where Py, and P; represent the real and estimated transmis-
sion powers corres‘pondmg to the ground-truth and estimated
transmitter sets 6 and 6, respectively. It is clear that e, can be
influenced by both the transmitter cardinality error |m—mn| and

ep(ﬂ
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the differences between the real and estimated transmission
powers.

Fig. 9a and Fig. 9b demonstrate the significant improvement
of GNN-SML over SPLOT, MAP*, and LLOCUS. For clarity,
the poorest results using kNN are not shown for both indoor
and outdoor environments. Specifically, as shown in Fig. 9a,
while LLOCUS achieves lower power estimation errors than
SPLOT and MAP#*, GNN-SML still outperforms it by 14%
and 24% for dataset A (indoor) and dataset B (outdoor),
respectively, when there are |Ugy| = 20 spectrum misusers
in both datasets. Additionally, Fig. 9b reveals that as |Ueg]
increases, the power estimation errors also increase for all
schemes due to more spectrum misusers causing closer average
distances among them and greater difficulty in disentangling
their transmissions at the sensors. However, GNN-SML con-
sistently shows a clear advantage over all other schemes.

Fig. 9¢ and Fig. 9d illustrate how the power estimation
errors of all schemes change with |Utrain| and |Viegt|. Similar to
localization errors, the power estimation errors for GNN-SML,
LLOCUS, and MAP* decrease dramatically as |Uspin| Or |Viest]
increases. This is because more transmitters involved in the
training phase and more sensors in the SML phase improve the
prediction accuracy of their respective ML models. In contrast,
SPLOT remains relatively unaffected by |Uyrgin| and |Vies| due
to its lack of an ML component. Nonetheless, GNN-SML
demonstrates better performance in all cases. For example,
as shown in Fig. 9¢c, GNN-SML outperforms LLOCUS and
MAP* by approximately 20% and 34%, respectively, when
25 transmitters are used during training for dataset A.

D. Localization Time (Prediction Time)

We also evaluate the localization time (i.e., online prediction
time) of GNN-SML. The training and testing are conducted
on a Dell desktop with a 2.90 GHz CPU, 32 GB RAM, and
Windows 10 64-bit Professional. Our experiments show that
GNN-SML achieves an average localization time of less than
1.2s, which is slightly longer than LLOCUS’s localization
time of 1.1s [4]. While GNN-SML employs deep learning
techniques, LLOCUS uses traditional machine learning meth-

ods, making their localization times comparable. However,
GNN-SML significantly outperforms other deep learning-
based SML methods [9], [37]. For instance, DeepTxFinder
[9] has a prediction complexity of O(|N||M|?), where N
and M represent the number of sensors and transmitters,
respectively, while GNN-SML has a lower complexity of
O(|M|?). Additionally, DeepMTL [37] incurs even longer
running times due to its deep YOLOv3-cust component, which
consumes over 90% of the total runtime.

In summary, GNN-SML offers comparable computational
performance to the most efficient method available (i.e., LLO-
CUS [4]) while providing significantly improved localization
and power estimation accuracy. Thus, GNN-SML is highly
suitable for assisting SAS operators in identifying spectrum
misusers in nearly real-time.

V. CONCLUSION

We introduce GNN-SML, a novel framework for accurate
and fast localization of spectrum misusers in crowdsourced
DSS systems. Leveraging location-centric, sensor-agnostic
GNNs with inductive capabilities, it can simultaneously local-
ize multiple misusers, even in close proximity with unknown
locations and transmission powers. Validation on real datasets
shows GNN-SML outperforms existing methods.
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