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Abstract—Millimeter-wave (mmWave) technology, increas-
ingly adopted in 5G and beyond, enables fine-grained motion
sensing that surpasses traditional Wi-Fi-based approaches.
This capability makes mmWave a strong candidate for se-
cure and practical authentication. We introduce mmRhythm,
a system that authenticates users through rhythmic hand-
tapping near a device. The taps generate Doppler signatures
in mmWave signals, which are extracted through signal pro-
cessing and classified using deep learning models. To address
vulnerabilities of wireless channels, mmRhythm incorporates
randomized phase shifts and beamforming to mitigate RF
eavesdropping, offering a secure and usable approach to
contactless authentication in IoT settings.

Index Terms—mmWave, Security, User Authentication

I. INTRODUCTION

Millimeter-wave (mmWave) technology, a new feature
of 5G and NextG networks, is gaining attention not only
for high-speed communications but also for its fine-grained
sensing capabilities [1]. With higher frequencies, wide band-
width, and short wavelengths, mmWave can detect subtle
user movements that sub-6 GHz and Wi-Fi systems cannot,
making it well suited for secure authentication.

Most prior wireless authentication work has relied on
Wi-Fi Channel State Information (CSI), using gait or ac-
tivity features [2]-[4]. While these studies highlight the
promise of wireless-based authentication, Wi-Fi suffers from
low resolution and heavy interference in crowded bands.
mmWave overcomes these limitations, enabling more reli-
able and practical solutions. This is particularly valuable for
Internet of Things (IoT) devices, which often lack traditional
input interfaces and therefore require secure yet convenient
authentication methods.

In this paper, we present mmRhythm, a secure and
practical authentication system that leverages mmWave sens-
ing. Instead of relying on traditional inputs, mmRhythm
authenticates users through rhythmic tapping near the device.
Each tap sequence follows a self-chosen rhythm, producing
Doppler shifts in the reflected mmWave signal, which are
then analyzed by AI models on a backend server to verify
identity.

mmRhythm is designed for both usability and security.
The rhythm can be based on a song segment familiar to
the user, making it memorable but difficult for others to
guess or mimic. Since individuals naturally vary in how they
reproduce the same rhythm, the resulting signal patterns are
diverse and difficult to replicate, even by attackers who know
the original rhythm.

However, ensuring mmRhythm’s reliability and secu-
rity poses two key challenges. First, extracting meaningful
tapping features and accurately recognizing patterns from
mmWave signals are complex. To address this, we explore
various signal processing techniques for tapping pattern ex-
traction and leverage novel deep learning models for robust
pattern recognition. Second, like other wireless authentica-
tion systems, mmRhythm is vulnerable to eavesdropping due
to the open nature of wireless channels. To mitigate this
risk, we introduce two defensive mechanisms: randomized
phase shifts to disrupt Doppler extraction, and beamforming
to limit signal leakage toward off-angle eavesdroppers.

Our contributions are summarized as follows:

« We propose the first mmWave-based rhythm authenti-
cation system, integrating signal processing and classi-
fication for secure, contactless IoT authentication.

« We design two defenses against RF eavesdropping: ran-
domized phase shifts which introduces unpredictability
across chirps. And beamforming narrows the transmis-
sion beam toward the legitimate user, reducing signal
availability to off-angle adversaries.

« We evaluate mmRhythm with 14 participants across di-
verse environments, achieving 98.4% authentication ac-
curacy and high resistance to shoulder-surfing (97.24%)
and video-based mimicry (94.97%).

II. RELATED WORK

Rhythm-based authentication has largely been explored on
touch-enabled devices. Techniques include rhythmic tapping
or sliding on smartphones [5], [6] and wearable systems
like Beat-PIN [7], though the latter requires extra hardware,
making them impractical for resource-limited IoT devices.
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Fig. 1: System design overview.

Other methods employ alternative sensing, such as RF-
Rhythm [8], which recognizes user tapping patterns on RFID
tags. These methods often benefit from precise signal input
and low interference, unlike wireless-based systems.

IoT authentication is challenging due to limited input
interfaces and constrained device resources. WiFi-based ap-
proaches using RSSI and CSI rely on signal changes to
identify users [9], but they are easily affected by interference
and provide low spatial accuracy due to their longer wave-
lengths, which weakens performance in dynamic or noisy
environments.

mmWave sensing addresses these limitations by enabling
fine-grained, contactless motion detection [10]. It captures
detailed patterns like rhythmic hand-tapping without requir-
ing touch or line-of-sight. Recent works such as [11] show
the potential of mmWave and deep learning for gesture
recognition and 3D reconstruction. However, secure and
user-friendly authentication via mmWave in IoT remains
unexplored.

ITII. ADVERSARY MODEL

We consider an attacker attempting to bypass authentica-
tion on an IoT device that uses mmRhythm. The attacker is
fully aware of the system design and may attempt to replicate
rhythmic taps either manually or by using a programmable
robotic arm. However, the attacker does not know the user’s
secret rhythm and may launch one of the following attacks:

« Brute Force Attack: The attacker generates random
rhythmic tap sequences through trial and error.

« Visual Eavesdropping: The attacker observes the vic-
tim’s tapping rhythm through shoulder surfing or hidden
cameras and tries to replicate it.

« RF Eavesdropping: The attacker uses a wireless sniffer
to intercept and analyze mmWave signals in an attempt
to infer the user’s tapping rhythm by analyzing Doppler
information.

IV. SYSTEM OVERVIEW

We prototype mmRhythm using an mmWave radar, en-
abling non-intrusive user authentication based on rhythmic
hand-tapping patterns. Fig. 1 illustrates the system architec-
ture, including signal pre-processing, feature extraction, and
classification models.

mmRhythm first extracts intermediate frequency (IF) sig-
nals from the mmWave radar, which captures the hand-
tapping movements. In the Pre-processing phase, two Fast

Fourier Transforms (FFTs) are applied: Range-FFT and
Doppler-FFT, The Range-FFT computes the distance of the
hand movement from the radar, while the Doppler-FFT
captures the hand’s velocity. After the FFTs, we apply fil-
tering techniques to remove stationary objects and mitigate
environmental noise. This denoising step ensures that only
the dynamic movements from the user’s taps are retained for
further processing.

Once the signal has been pre-processed, the Feature
Extraction module extracts meaningful characteristics from
the data. Tap detection is used to isolate and focus on the
individual tapping events. In temporal feature extraction,
the system identifies key features such as the duration of
each tap and the intervals between consecutive taps. Along-
side this, statistical processing is performed to summarize
the overall tapping behavior using statistical metrics. The
extracted features are then compiled into a feature vector,
denoted as F, which will be used for the classification phase.
Finally, we train both CNN and SVM models to recognize
the feature vector F and generate the final authentication
decision.

V. SYSTEM DESIGN

This section details the design of mmRhythm, focusing on
how rhythmic hand-tapping patterns are captured and pro-
cessed using mmWave radar to enable secure and intuitive
user authentication.

A. Feasibility Study

We first discuss the feasibility of using mmWave signals
to capture hand-tapping movements for user authentication.
Our experiments show that mmRhythm can effectively cap-
ture fine-grained motion characteristics associated with tap-
ping gestures, which are critical for accurate authentication.

When a user performs a tapping gesture, the mmWave
signal experiences frequency shifts due to the motion of
the hand relative to the radar sensor. The Doppler shift is
induced by the velocity of the hand movement and can be
expressed as:

fal) = 249, M)
where wv(t) represents the instantaneous velocity of the
user’s hand, and A is the wavelength of the transmitted
mmWave signal. The Doppler shift fz(¢) varies dynami-
cally as the user transitions through different stages of the
tapping motion—an approach phase (negative velocity), a
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static phase (near-zero shift), and a release phase (positive
velocity)—as illustrated in Fig. 2. These variations form a
unique rhythmic signature, enabling precise user authentica-
tion.
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(a) User rhythm of 6 taps.  (b) User rhythm of a single tap.

Fig. 2: Preliminary data.

B. Signal Processing

This section details the signal processing pipeline used
to extract meaningful information from radar signals for
accurate tap detection and analysis.

Chirp Signal Generation and Reception: The radar
emits Frequency-Modulated Continuous Wave (FMCW)
chirps with linearly increasing frequency, enabling precise
distance estimation. The chirp frequency is defined as:

ft)=fe+ (;) t, )

where f, is the initial frequency, B the bandwidth, and T,
the chirp duration. Reflected chirps from the user’s hand are
captured for range and velocity computation [12].

Windowing: To reduce spectral leakage before applying
FFT, we use a Hamming window for its balance between
main lobe width and side lobe attenuation. The windowed
signal is given by:

Ty[n] = z[n] - win], (3)

where z[n] is the original signal and w[n] represents the
window function.

Range-FFT: Range is calculated from the intermediate
frequency (IF) signal produced by mixing transmitted and
received chirps:

c-Te- fir
2B’
where ¢ is the speed of light and fir the beat frequency.
allows us to estimate the distance to the user’s hand.
Doppler-FFT: Motion-induced Doppler shifts are ana-
lyzed to estimate hand velocity. Velocity is derived from
the phase difference A¢ between chirps:

RV,
v= AnT,’

d= 4)

3

where A is the radar wavelength. This enhances the accuracy
of tap detection and gesture classification [13]-[15].

Background Subtraction: Static reflections from the
environment are removed by subtracting consecutive radar
frames:

Dy =5; — 851, (6)

where S; and S;_; are radar frames at time ¢ and ¢t — 1,
respectively, and D; contains only dynamic changes.

Denoising: We use a low-pass filter to remove high-
frequency noise, improving system robustness against tran-
sient noise fluctuations.

C. Feature Extraction

After processing mmWave signals to isolate genuine hand
movements, the next step is to extract meaningful features
that represent a user’s unique tapping pattern.

Tap Detection: Tap identification begins by analyzing ve-
locity changes to locate tap start (fsar) and end (fenq) times.
These are determined by deviations from a dynamically set
threshold based on the baseline signal’s mean and standard
deviation:

(7

tstart, When v > threshold,
tevent =
tend, When v < threshold,

where v is the velocity of the ¢th tap. This allows segmen-
tation into discrete tap events.

Temporal Feature Extraction: Each tap’s duration (D;)
and inter-tap interval (I;) are computed to capture the rhythm
of the tapping pattern:

Ii = tgart,i+1 — tendye- (8)

A moving average filter smooths the phase data to reduce
noise and improve accuracy.

Statistical Processing: To represent behavior over mul-
tiple taps, we compute the mean (x) and variance (c?) of
durations and intervals:

D; = tend,i — tstart,is

1 n
of=—> (L—p)’  (10)

These parameters provide insights into rhythm consistency
and serve as key discriminators between users [8].

General Statistical Features: From the smoothed phase
signal, we also extract overall characteristics, including
mean, standard deviation, maximum, and minimum:

i

1 Z(qbi — meany)2,
et
(11)

ming = min(g;). (12)

1 mn
meany = ~ Z;qbi, stdy =
i=

maxy = max(¢;),

These features offer an overall view of the tapping signal’s
dynamics.

Temporal Alignment and Dynamic Time Warping: To
ensure consistency across sessions, we apply Dynamic Time
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Fig. 3: Classification overview.

Warping (DTW), which aligns time-varying sequences and
reduces variability due to timing shifts—especially useful for
model training. The resulting feature vector F' encapsulates
the user’s rhythmic tapping behavior and serves as input to
the machine learning models for authentication.

D. Classification

The final phase of the system uses the extracted features
to classify user gestures for authentication. We employ two
classification techniques: Convolutional Neural Networks
(CNNs) and Support Vector Machines (SVMs). Their
workflow is shown in Fig. 3.

CNNs are selected for their ability to capture complex
patterns through layered transformations. The model takes
reshaped feature vectors of size (11,1) as input, followed
by two fully connected layers with 10 and 5 neurons using
ReLU activation. The final layer has N neurons (equal to
the number of classes) with Softmax output. Training uses
stochastic gradient descent with momentum (SGDM), over
20 epochs and a mini-batch size of 16. CNNs effectively
learn temporal structures, making them well-suited for rhyth-
mic pattern recognition.

For SVMs, feature normalization ensures equal contribu-
tion from all features. The dataset is split into 80% training
and validation and 20% testing. A 5-fold cross-validation is
performed across various K values (e.g., 4-20), where K
samples per class are used for both training and validation.
SVMs are trained using the fitcecoc function for multi-
class classification. We compute metrics including accuracy,
True Positive Rate (TPR), True Negative Rate (TNR), False
Negative Rate (FNR), and False Positive Rate (FPR), and
evaluate performance on a separate test set.

These classifiers enable high authentication accuracy by
learning the distinctive rhythmic patterns captured from
mmWave signals.

VI. MITIGATING RHYTHM EAVESDROPPING

To mitigate the risk of RF eavesdropping, we introduce
two potential defense mechanisms designed for wireless
security: randomized phase shifts and beamforming. These
techniques significantly degrade an attacker’s ability to ex-
tract meaningful Doppler information from intercepted sig-
nals while still preserving signal integrity for the legitimate
user.

A. Random Phase Shifts

As detailed in Equation 5, user hand velocity is derived
from phase differences between consecutive chirps. To ob-
scure this information from eavesdroppers, we apply random
phase shifts across chirps during transmission. Since the
legitimate system is aware of the applied random phase
shifts, it can reverse them before authentication, ensuring
accurate velocity estimation. In the context of mmWave
radar systems.

The randomized chirp signal from transmission antenna 7
is expressed as:

B
si(t) = A; cos (21rf0t + ﬂ?tz + ¢io + ﬁfx’ﬁ:k) ,  (13)

where A; is the signal amplitude, fj is the starting frequency,
B is the bandwidth, T, is the chirp duration, ¢; ¢ is the
initial phase for antenna i, and 1), ;, is the random phase
shift introduced in chirp k. '

This defense significantly reduces the attacker’s ability to
extract clean Doppler signatures, thereby increasing Bit Er-
ror Rate (BER) for unauthorized sniffers, while maintaining
reliable authentication for the legitimate system.

B. Beamforming

Beamforming is used to steer the transmitted mmWave
chirp signals toward the legitimate user, improving signal-
to-noise ratio (SNR) and limiting signal leakage in other
directions. This enhances both signal quality and security
by reducing interception risk.

For a uniform linear array (ULA) with Ny antennas,
beamforming is achieved by applying phase shifts across
antennas to focus energy at a target angle Oyger. The
transmitted signal from antenna 7 at chirp k is:

si(t) = A;cos (21rf0t + ﬂgtz + dio+ 95) , (14)

where ¢; o is the antenna’s initial phase, 0; is the beamform-
ing phase shift toward @ycer.

The beamforming shift 8; is calculated as:
_ 2md
D)

where d is the inter-antenna spacing, A the signal wave-
length, and ¢ the antenna index [16].

Bi EE Si-n(g'user): (15)

VII. IMPLEMENTATION AND EVALUATION

We conducted extensive experiments to evaluate the ef-
fectiveness of our mmWave-based authentication system.

A. Experimental Setup

A group of fourteen participants with diverse back-
grounds contributed by creating and repeating a unique
rhythmic tapping pattern for authentication. Each session
was conducted in a controlled environment, with participants
performing air-tapping gestures while the mmWave radar
(IWR68431SK-ODS + DCA10000EVM) was placed 25-50
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(a) Lab.

(b) Office.

(c) Corridor.

(d) Living Room. (e) Human Interfering.

Fig. 4: Different setup environments used in the experiments.

cm away. Each participant completed 50 sessions, yielding
700 rhythm samples. Most rhythms lasted between 6-10
seconds (average: 8.3 s).

B. Model Training and Validation

We used two models—Support Vector Machines (SVM)
and Convolutional Neural Networks (CNN)—to analyze the
tapping patterns. Data was split into training (70%), valida-
tion (10%), and testing (20%) sets. Hyperparameter tuning
was performed using grid search for the SVM model and
random search for the CNN model. CNNs were composed
of convolutional and fully connected layers, while SVMs
used an RBF kernel.

C. Performance Evaluation

We evaluated accuracy, True Positive Rate (TPR), False
Positive Rate (FPR), False Negative Rate (FNR), and True
Negative Rate (TNR) while varying the number of training
samples per class (K) from 4 to 20. The CNN model
achieved 98.4% accuracy, outperforming SVM at 94.68%.
As shown in Fig. 5a and Fig. 5b, CNNs captured more
nuanced rhythm features, leading to better generalization.
CNN model also achieved a TPR of 98.4%, while SVM
yielded a lower FPR, making it suitable for resource limited
scenarios.
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Fig. 5: Classification performance of CNN and SVM

D. Environmental Robustness

We tested the system under various environmental condi-
tions, including changes in lighting and background noise, to
evaluate its robustness in real-world scenarios. The mmWave
radar maintained stable performance with minimal accuracy
loss. However, accuracy dropped below 80% when the hand-
radar distance was under 10 cm and gradually declined
beyond 1 meter.

a) Distance Experimentation: We evaluated system
performance at distances ranging from 10 cm to 150 cm.
Optimal accuracy (96.7%) occurred between 25 ¢cm and 50
cm. Accuracy declined significantly below 10 cm or beyond
1 meter due to signal attenuation and saturation, as shown
in Fig. 6a.

b) Angle Experimentation: We tested system perfor-
mance across different horizontal Fields of View (FoV).
Within a 90° FoV, accuracy remained high (94%) but
dropped noticeably beyond 120°, indicating a narrower an-
gular range is optimal for hand-tapping detection, as shown

in Fig. 6b.
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Fig. 6: Performance metrics under various test conditions.

c) New Environment Experimentation: As shown in
Fig. 4, we tested the system in a variety of environments:
small offices (S.0.), large offices (L.O.), corridors (Cor.),
quiet labs (Q.Lab), busy labs (B.Lab), and living rooms
(L.R.). The highest accuracy—over 98%—was observed in
large offices, quiet labs, and living rooms. Slightly reduced
performance was noted in high-activity areas like busy labs,
as shown in Fig. 7.

Accuracy (%)

5.0. L.O. Cor. Q.Lab B.Lab L.R.
Environments

Fig. 7: Accuracy in new environments.
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E. Security Analysis

We evaluated the system’s security and robustness against
adversarial attacks through visual eavesdropping experi-
ments. Results show that the system maintains strong au-
thentication performance even under potential observation
threats.

a) Visual Eavesdropping: We evaluated the system’s
resilience to visual eavesdropping through two attack types:
shoulder-surfing and video recording. In the first, attackers
tried to replicate tapping patterns after a single real-time
observation. In the second, they reviewed recorded sessions
and made multiple mimicry attempts. Four volunteers acted
as attackers, observing rhythms from 14 participants. Each
attacker attempted one reproduction in the shoulder-surfing
case and four in the video case. In total, we collected 320
attack samples across both scenarios.

To evaluate system robustness, we trained a classifier for
each participant using the collected 700 rhythm samples
from 14 users. The attack samples were then tested against
the corresponding classifiers. As shown in Table I, the
system achieved high rejection rates, especially with the
CNN-based model. This demonstrates strong resistance to
replication, even when attackers had repeated access to
video-recorded tapping. These results highlight the system’s
robustness against eavesdropping in visually observable en-
vironments.

TABLE I: Rejection Rate (%) for Visual Eavesdropping
Attacks.

SVM CNN
Shoulder-surfing, 1 try 95% | 97.24%
Video recording, 4 tries | 93.9% | 94.97%

b) RF Eavesdropping: We also assessed resilience to
RF eavesdropping, though real mmWave sniffers were not
available during our study. Instead, we focused on random-
ized phase shifts as a defense mechanism. By introducing
random shifts across chirps, an eavesdropper without phase
knowledge cannot properly align the received signal, pre-
venting accurate Doppler extraction. To illustrate the effect,
we compared classification in two cases: with phase shifts
reversed at the receiver (eavesdropper has knowledge) and
without reversal (eavesdropper lacks knowledge). The CNN-
based classifier achieved an 88.2% rejection rate without
phase knowledge, but only 2.1% when the shifts were
known. These results show that randomization significantly
reduces the risk of successful RF eavesdropping.

VIII. CONCLUSION

We introduced mmRhythm, a mmWave-based authentica-
tion system that leverages rhythmic hand-tapping as a secure
and intuitive input method. By combining signal process-
ing with deep learning, mmRhythm captures fine-grained
motion signatures that are difficult to mimic, providing a
contactless solution well suited for [oT devices with limited
interfaces. Our evaluation demonstrated robustness across

diverse environments and resilience against both visual and
RF eavesdropping, highlighting the potential of mmWave
sensing to move beyond communications and serve as a
foundation for practical, secure authentication.
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