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Abstract
Best arm identification (BAI) is a key problem in stochastic
multi-armed bandits, where ! arms each has an associated re-
ward distribution, and the objective is to minimize the number
of queries needed to identify the best arm with high confi-
dence. In this paper, we explore BAI using quantum oracles.
For the case where each query probes only one arm (" = 1),
we devise a quantum algorithm with a query complexity up-
per bound of #̃ (!Δ→1 log(1/𝑂)), where 𝑂 is the confidence
parameter and Δ is the reward gap between best and second
best arms. This improves on the classical bound by a factor of
Δ→1. For the general case where a single query can probe "
arms (1 ! " ! !) simultaneously, we propose an algorithm
with an upper bound of #̃ ((!/√")Δ→1 log(1/𝑂)), improv-
ing by a factor of

√
" compared to the " = 1 case. We also

provide query complexity lower bounds for both scenarios,
which match the upper bounds up to logarithmic factors, and
validate our theoretical results with Qiskit-based simulations.

1 Introduction
Best arm identification (BAI) is a fundamental problem
in the bandits and online learning communities (Audibert,
Bubeck, and Munos 2010; Bubeck, Munos, and Stoltz 2011;
Mannor and Tsitsiklis 2004). Given ! ∈ N+ arms, each
arm % is associated with a reward distribution with unknown
mean 𝑄! , and the goal of BAI is to identify the arm with
the largest mean reward, with a confidence of 1→ 𝑂, using as
few queries as possible. The number of queries required is
called the query complexity. Each query, in the classical set-
ting, corresponds to the learner pulling (sampling) one arm
and observing a reward drawn from the arm’s reward distri-
bution. As the learner only cares about finding the best arm,
the BAI problem is a pure exploration problem. BAI has
many real world applications, such as, clinical trials (Rob-
bins 1952), network routing (Barrachina-Muñoz and Bel-
lalta 2017), and crowdsourcing (Zhou, Chen, and Li 2014).

Recent progress in building quantum computers (Arute
et al. 2019; Chow, Dial, and Gambetta 2021) and quantum
networks (Wehner, Elkouss, and Hanson 2018; Azuma et al.
2022) has been encouraging, and wide applications of quan-
tum systems are envisaged in the near future. In these quan-
tum systems, BAI problems also emerge. For example, a
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quantum network may contain multiple channels between
source and destination nodes. Among these channels, one
may want to determine the “best” one, where “best” may re-
fer, for example, to the channel with the highest fidelity (Liu
et al. 2024) or with the lowest noise (Li, Deng, and Zhou
2008). Another example is in distributed quantum comput-
ing (Cacciapuoti et al. 2019), where different quantum com-
puters may have different performances when applied to the
same problem, and one wants to identify the quantum com-
puter that provides the best performance for a given task.
Although one can still apply classical BAI algorithms to
address these problems, we aim to show that the quantum
information feedback from these quantum systems can be
leveraged to improve the learning efficiency.

In this paper, we study the BAI problem in quantum sys-
tems, where the learner can query the arms using quantum
queries. More specifically, we study two key advantages of
quantum feedback in BAI: (1) quantum parallelism (Chuang
and Yamamoto 1995), and (2) quantum entanglement (Ein-
stein, Podolsky, and Rosen 1935). The quantum Monte
Carlo estimator (parallelism, Lemma 1) provides a more ef-
ficient estimator for the learner to estimate arm rewards. Ad-
ditionally, multi-qubit oracles with entangled quantum su-
perposition inputs enable the learner to query multiple arms
simultaneously (coherently) within a single query.Wemodel
the former advantage by weak quantum oracles, one for
each arm, and the latter by a constrained quantum oracle
which can query several arms coherently (both detailed in
Section 2.2). When a constrained oracle can query all arms
coherently, we call it a strong quantum oracle.

The development of effective algorithms for both oracles
necessitates the use of quantum computing to manage quan-
tum information feedback and leverage quantum parallelism
and entanglement. However, obtaining a valid output from
a quantum computing subroutine, such as amplitude am-
plification (Brassard et al. 2002), typically demands mul-
tiple consecutive queries on the same arm or a subset of
arms for the constrained oracle. This characteristic renders
the classical BAI algorithm design and analysis ineffective
for BAI with quantum oracles. Consequently, it is impera-
tive to contemplate new algorithm designs and analyses for
BAI with quantum oracles. On the other hand, to investi-
gate the fundamental limit of quantum BAI problems, we
need to establish query complexity lower bounds. However,
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Table 1: Comparison of query complexity bounds with classical and quantum BAI

given that quantum information (including parallelism and
entanglement) offers more informative and inherently differ-
ent query feedback than classical BAI, the classical proofs
of BAI complexity lower bound are not applicable. Instead,
one needs to adapt quantum computation and quantum in-
formation approaches to examine quantum BAI problems.
Additionally, to empirically validate the performance of de-
vised algorithms for BAI with quantum oracles, one has to
utilize quantum circuits (Nielsen and Chuang 2002) and im-
plement the necessary quantum computation subroutines us-
ing basic quantum logic gates.

We summarize the key contributions of this paper as fol-
lows:
• For BAI with the weak quantum oracle, we derive a
query complexity lower bound Ω (∑! (1/Δ!) log(1/𝑂)),
showing that no quantum algorithm can achieve a smaller
query complexity. Then, we propose an elimination-
based quantum algorithm (Q-Elim) and derive its query
complexity upper bound #̃ (∑! (1/Δ!) log(1/𝑂)), where
the suboptimality gap Δ! ! 𝑄1 → 𝑄! is the difference
in the mean rewards of the optimal arm and arm % , and
#̃ (·) hides poly-logarithmic factors. This implies that
Q-Elim is near-optimal up to logarithmic factors for
BAI with the weak quantum oracle (Section 3).

• For BAI with the "-constrained quantum oracle,
we propose a partition-based quantum algorithm
(Q-Part), and derive its query complexity upper bound
#̃ (∑S∈#

√∑
!∈S 1/Δ2

! log (1/𝑂)), where# is a partition
of the full arm set, i.e., a set of arm subsets, each subset
S containing " arms. We also derive a query complex-
ity lower bound of Ω(∑S∈#

√∑
!∈S 1/Δ2

!) for the parti-
tion algorithm class, which matches the upper bound of
Q-Part up to logarithmic factors (Section 4).

• We implement our quantum algorithms using the IBM
Qiskit (Qiskit contributors 2023). We first corroborate
the superiority of our quantum algorithms over classical
BAI algorithms. We then evaluate our algorithms under
simulated quantum noise (Section 5).

Related Works Prior works on multi-armed bandits
(MAB) typically focus on regret minimization and BAI. This
paper focuses on the BAI setting (Even-Dar, Mannor, and
Mansour 2002; Even-Dar et al. 2006; Mannor and Tsitsiklis
2004). The BAI setting can be divided into two categories:
(1) BAIwith fixed confidence—find the best armwith a con-
fidence of at least 1 → 𝑂 (𝑂 ∈ (0, 1)) using as few samples

as possible (Bubeck, Munos, and Stoltz 2011); and (2) BAI
with fixed budget—given a fixed budget of ' queries, find
the best arm with as high a probability as possible (Karnin,
Koren, and Somekh 2013). In this paper, we focus on the
former category which, for brevity, we will refer to sim-
ply as the BAI problem. BAI with the strong quantum or-
acle was first studied by Casalé et al. (2020); Wang et al.
(2021), where they proposed a near-optimal quantum algo-
rithm that enjoys a quadratic speedup in query complexity.
We are the first to study the BAI problem with the weak
and constrained quantum oracles. Besides BAI, another ob-
jective, regret minimization in bandit theory, has also been
studied with quantum oracles, including Wan et al. (2023);
Dai et al. (2023); Wu et al. (2023), etc. We defer a more
detailed discussion of these works and other loosely related
works to Appendix A.

In Table 1, we summarize the key results in this pa-
per and compare them to prior works. Comparing the Δ!-
dependence of the complexities, we have√∑

!

1
Δ2
!︸!!!!!︷︷!!!!!︸

Strong oracle

!
∑
S∈#

√∑
!∈S

1
Δ2
!︸!!!!!!!!!!!!︷︷!!!!!!!!!!!!︸

#-constrained oracle

!
∑
!

1
Δ!︸!!︷︷!!︸

Weak oracle

!
∑
!

1
Δ2
!︸!!︷︷!!︸

Classical oracle

(1)

All BAI problems with quantum oracles enjoy smaller query
complexities than the classical one. The query complexity of
the weak quantum oracle is worst among quantum oracles,
which is due to the fact that the weak oracle cannot exploit
quantum entanglement to probe multiple arms in parallel.
The query complexity of the "-constrained quantum oracle
lies between that of strong and weak oracles, and when " =
1 (resp., " = !) the complexity coincides with that of weak
(resp., strong) oracles.

2 Model
2.1 Preliminaries
Best arm identification (BAI). Consider a multi-armed
bandit (MAB) consisting of ! arms, where each arm % ∈
K ! {1, 2, . . . ,!} is associated with a Bernoulli distribu-
tion B(𝑄!) with mean 𝑄! ∈ (0, 1).1 An MAB instance is
determined by the mean rewards of its arms, and we denote
an instance I with means 𝑄1, . . . , 𝑄$ as I ! {𝑄1, . . . , 𝑄$ }.

1More general distributions, such as sub-Gaussian or bounded
distributions, have also been considered in the MAB literature (Auer
and Ortner 2010; Lattimore and Szepesvári 2020).
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For simplicity, we assume the ! arms are labeled in descend-
ing order of their means: 𝑄1 > 𝑄2 " . . . " 𝑄$ , unknown to
the learner, and denote the mean reward (suboptimality) gap
as Δ! ! 𝑄1 → 𝑄! for suboptimal arms % > 1 and Δ1 ! Δ2
for the optimal arm. We assume a unique optimal arm for
the simplicity of the later presentation of the algorithms and
analysis. One could extend the results to multiple optimal
arms with techniques in bandits literature, e.g., find an (-
optimal arm (Even-Dar, Mannor, and Mansour 2002). Then,
given confidence parameter 𝑂 ∈ (0, 1), the best arm iden-
tification (BAI) problem is to correctly output the best arm
with a probability of at least 1 → 𝑂 using as few queries as
possible, noted as the query complexity '.

Next, we present some basics notation from quantum
computation and information (Nielsen and Chuang 2002).

Bra-ket notation. We make use of bra-ket notation
to represent quantum states, where the “ket” |)〉 !
()1, )2, . . . , )%)& ∈ C% denotes a column vector of * com-
plex numbers, while the “bra” 〈) | ! |)〉† = ()∗1, )∗2, . . . , )∗%),
a row vector, is the conjugate transpose of |)〉. For two quan-
tum states |)〉 , |+〉 ∈ C%, their inner product is denoted as
〈) |+〉 ! ∑%

𝑅=1 )
∗
𝑅 +𝑅 ∈ C, and given another quantum state

|,〉 ∈ C#, the tensor product between |)〉 and |,〉 is denoted
as |)〉 |,〉 = |)〉 ⊗ |,〉 := ()1,1, )1,2, . . . , )%,#) ∈ C% ⊗ C#.

Qubit. A “qubit” is a two-level quantum system |𝑋〉 =
(., /) ∈ C2, often written as |𝑋〉 = . |0〉 + / |1〉, where
|0〉 = (1, 0)& and |1〉 = (0, 1)& are two basis states, and
., / ∈ C are complex numbers, called amplitudes, satis-
fying |. |2 + |/ |2 = 1. A measurement of the qubit in the
{|0〉 , |1〉} basis will give a ‘0’ with probability |. |2 and a
‘1’ with probability |/ |2.
Quantum query model. In the quantum query model,
one has access to a black-box unitary operator (i.e., oracle)
which implements a given transformation. The objective is
to study the query complexity, i.e., the number of calls '
to the oracle needed to solve a given task; all other possi-
ble costs, e.g., gate complexity, are ignored. This is a com-
monly used model for studying quantum algorithms (Childs
2017, §20) and can be used, for instance, to obtain algo-
rithmic running time lower bounds (Klauck, Špalek, and
DeWolf 2007). In this paper, we study the query complexity
of best arm identification with fixed confidence under weak
and constrained quantum oracles.

2.2 Quantum Oracles
Before introducing the quantum oracles, we first recall the
classical oracle for the BAI problem. That is, when query-
ing an arm % , one obtains a reward drawn from a Bernoulli
distribution B(𝑄!) with unknown mean 𝑄! , i.e.,

𝑎! ∼ B(𝑄!). (2)

We refer to (2) as the classical oracle.
In the quantum setting, the Bernoulli distributions can be

mapped to oracles O(! )
weak (one for each %) that act as follows,

O(! )
weak : |0〉𝑆 ↦→

√
1 → 𝑄! |0〉𝑆 + √𝑄! |1〉𝑆 , (3)

where the register |·〉𝑆 represents a single-qubit “bandit re-
ward” register with basis states |0〉 and |1〉. The output qubit
encodes the Bernoulli reward, meaning that if one measures
the output in the basis {|0〉 , |1〉}, the probability of observ-
ing |1〉 is 𝑄! , while the probability of observing |0〉 is 1→𝑄! .
We refer to (3) as the weak quantum oracle.

Note that directly measuring the output qubits reduces the
weak oracle to a Bernoulli distribution. However, aside from
direct measurement, the output qubits enable efficient quan-
tum parallelism through quantum computing algorithms,
which we elaborate in Section 3.

To harness the entanglement properties of quantum infor-
mation in real-world quantum systems, we consider a more
general quantum oracle that allows simultaneous querying
of multiple arms. In addition to the reward register |·〉𝑆, we
introduce an “arm index” register |·〉𝑇 , which has ! orthog-
onal basis states {|%〉𝑇 }$!=1, each corresponding to an arm.
A quantum state in the |·〉𝑇 register can be expressed as∑$
!=1 𝑏! |%〉𝑇 , where 𝑏! ∈ C are the amplitudes of the arms,

and normalization requires that
∑$
!=1 |𝑏! |2 = 1.

With the assistance of the arm index register, we define
a constrained quantum oracle that outputs states entangling
the arm index and reward registers. Assuming the oracle can
access " ∈ {1, 2, . . . ,!} arms simultaneously, for any sub-
set of arms S ⊆ K with |S| = " and

∑
!∈S |𝑏! |2 = 1, the

oracle is defined as follows:

O(S)
cons :

∑
!∈S

𝑏! |%〉𝑇 |0〉𝑆

↦→
∑
!∈S

𝑏! |%〉𝑇
(√

1 → 𝑄! |0〉𝑆 + √𝑄! |1〉𝑆
)
.
(4)

when " = 1, the oracle reduces to the weak quantum oracle
in (3), and when " = ! , it becomes the strong quantum
oracles as follows,

Ostro :
$∑
!=1

𝑏! |%〉𝑇 |0〉𝑆

↦→
$∑
!=1

𝑏! |%〉𝑇
(√

1 → 𝑄! |0〉𝑆 + √𝑄! |1〉𝑆
)
.

(5)

The constrained quantum oracle in (4) is more powerful than
the weak oracle in (3) because it can access multiple arms
coherently in a single query, whereas the weak oracle only
allows access to one arm at a time. In Section 4, we present
a BAI algorithm using the "-constrained oracle, which out-
performs the weak oracle when " > 1.

In practice, coherently querying a large number of chan-
nels may be technologically challenging, which motivates
the general " ! ! case. This limitation reflects a tech-
nology constraint where more options exist than can be ac-
cessed simultaneously. Such technological constraints may
also affect, for example, access to quantum states stored in
memory. In this case, a weak oracle would support individ-
ual calls to memory, while an"-constrained oracle functions
like a dynamically loadable quantum random access mem-
ory (QRAM, see Appendix B), capable of querying multiple
entries at once.
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3 BAI with Weak Quantum Oracle
In this section, we address the BAI problem using a weak
quantum oracle as described in (3). Querying this oracle for
arm % yields the state

√
1 → 𝑄! |0〉 +

√
𝑄! |1〉. To estimate 𝑄!

efficiently, we use the following lemma:

Lemma 1 (Performance of QuEst, adapted from Monta-
naro (2015); Grinko et al. (2021)). For a weak quantum or-
acle O(! )

weak in (3), there exists a constant 𝑐1 > 1 and a quan-
tum estimation algorithm QuEst(O(! )

weak, ( , 𝑂) that estimates
𝑄! with precision ( and confidence 𝑂 (i.e., P( | 𝑄̂! → 𝑄! | "
() ! 𝑂), using at most *1

+ log 1
" queries.

This quantum estimator QuEst achieves a quadratic
speedup over the classical estimators that require
# ((1/(2) log(1/𝑂)) queries. Unfortunately, QuEst lacks
flexibility: it does not generate any information before the
entire procedure has completed, unlike classical estimators
that improve estimates incrementally during the samples
arriving and allows for sample reuse.

To address this issue, we first use QuEst to develop a
batch-based elimination algorithm for BAI with the weak
quantum oracle in Section 3.1. We then establish an upper
bound on the query complexity of this algorithm in Sec-
tion 3.2. Finally, in Section 3.3, we present a lower bound
for any BAI algorithm using a weak quantum oracle, high-
lighting the fundamental limits of the task.

3.1 Algorithm Design

Algorithm 1 presents a quantum elimination algorithm
(Q-Elim) for BAI. The core idea of the elimination pro-
cess is to maintain a candidate arm set C (initially set to the
full arm set K), gradually identify and remove suboptimal
arms from C as learning progresses, and terminate when C
contains only one arm, which is then declared as the optimal
arm.

Although several classical elimination algorithms, such
as successive elimination (Even-Dar et al. 2006), have been
proposed for BAI using classical oracles, these cannot be di-
rectly adapted by simply replacing classical estimators with
the quantum estimator from Lemma 1 due to the rigidity of
the quantum estimator (one cannot acquire any information
from QuEst before the entire procedure completed).

A significant challenge in designing our quantum algo-
rithm is determining when to perform quantum estimation
QuEst and arm elimination. We address this by proposing
a batch-based exploration and elimination scheme, where
3 ∈ {1, 2, . . . } denotes the batch number. In each batch,
we query all remaining arms in the candidate arm set C a
number of times depending on the batch number 3 (Line 2),
conduct QuEst

(
O(! )
weak, 2

→ , , "
2 " | C |

)
to estimate the mean re-

wards of arms in C based on the queries from this batch
(Line 3), and eliminate newly identified suboptimal arms
(Line 5) at the end of the batch. As 3 increases, we pro-
gressively increase both the number of queries (Line 6) and
the estimation accuracy of QuEst (Lines 2 and 3).

Algorithm 1 Q-Elim: Quantum elimination algorithm for
BAI with weak quantum oracle
Input: fixed confidence parameter 𝑂 and number of arms !
Initialize: empirical mean 𝑄̂! ← 0, candidate arm set C ←

K, batch number 3 ← 1
1: while |C| > 1 do
2: Query each arm % ∈ C for 𝑐12 , log

(
2 , |C|/𝑂

)
times

3: Run QuEst
(
O(! )
weak, 2

→ , , "
2 " | C |

)
for each arm % in C

and update these arms’ estimates 𝑄̂!
4: 𝑄̂max ← max!∈C 𝑄̂!
5: C ← C \ {% ∈ C : 𝑄̂! + 2 · 2→ , ! 𝑄̂max} ⊲ Arm

elimination
6: 3 ← 3 + 1
Output: the single remaining arm in C.

3.2 Query Complexity Upper Bound for
Elimination Algorithm

Theorem 1 (Query complexity upper bound of Algo-
rithm 1). Given confidence parameter 𝑂 ∈ (0, 1), the query
complexity of Q-Elim is upper bounded as follows,

' !
∑
!∈K

log2
(
4
Δ!

)
16𝑐1
Δ!

log !
𝑂
,

where log is the natural logarithm, and log2 is the logarith-
mic function base 2.

Comparison with the query complexity lower bound
in Theorem 2 shows that our upper bound in Theo-
rem 1 is tight up to logarithmic factors. Compared to
the classical oracle sample complexity upper bound of
# (∑!∈K (1/Δ!)2 log(1/𝑂)) (Karnin, Koren, and Somekh
2013), the query complexity upper bound in Theorem 1 has a
quadratic improvement in the dependence on 1/Δ! for each
individual arm. In contrast, the strong quantum oracle sam-
ple complexity upper bound #̃ (

√∑
! 1/Δ2

! log(1/𝑂)) (Wang
et al. 2021) achieves an overall quadratic speedup. That is,
as the first inequality of (1) shows, the coefficient of the
query complexity lower bound of the weak quantum oracle
is larger than that of the strong oracle, and is, in the worst
case,

√
! times larger.

3.3 Lower Bounds for BAI with weak quantum
oracle

Lastly, we present a query complexity lower bound for BAI
with a weak quantum oracle. This lower bound describes the
fundamental limits of the BAI task with a weak quantum
oracle and is independent of the specific algorithm used.
Theorem 2 (Query complexity lower bound for best arm
identification). Given a quantum multi-armed bandits in-
stance I0 = {𝑄1, . . . , 𝑄$ } where 𝑄! ∈ (0, 1/2) for all % and
𝑄1 > 𝑄2 " 𝑄! for any % ≠ 1, any algorithm that identifies
the optimal arm with a given confidence 1 → 𝑂, 𝑂 ∈ (0, 1)
requires ' queries to the weak quantum oracle, where

' "
∑
!∈K

1
4Δ!

log 1
4𝑂 .
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Thus, to identify the best arm with confidence 1 → 𝑂, it
is necessary to pull each arm % at least 1/(4Δ!) log 1/(4𝑂)
times. The proof of this lower bound consists of two steps:
(1) apply the quantum hypothesis testing techniques to prove
a lower bound for the task of two arm identification, and
(2) extend the lower bound of the two-arm case to multi-
ple arms via adapting the lower bound proof of the classical
best arm identification. The detailed proof is presented in
Appendix F.

First, Theorem 2 demonstrates that the query complexity
of Q-Elim, as established in Theorem 1, is near-optimal
(up to some logarithm factors). Compared to the classical
oracle’s sample lower bound Ω

(∑
!∈K

1
Δ2
!

log 1
"

)
(Mannor

and Tsitsiklis 2004), our lower bound shows a linear de-
pendence on 1/Δ! rather than quadratic. When compared to
the strong quantum oracle’s sample complexity lower bound

Ω
(√∑

!
1
Δ2
!

(1 →
√
𝑂(1 → 𝑂))

)
(Wang et al. 2021, Theorem

5), the weak oracle’s query complexity lower bound has a
larger coefficient, which can be up to

√
! times greater in

the worst case. However, our lower bound improves on the
dependence on 𝑂, as log(1/𝑂) is significantly larger than
1 →

√
𝑂(1 → 𝑂) when 𝑂 is small.

4 BAI with m-Constrained Quantum Oracle
In this section, we present a partition algorithm for BAIwith
the"-constrained quantum oracle. We first present some key
subroutines in Section 4.1 on quantum computing, and then
present our algorithm in Section 4.2, followed by the algo-
rithm’s query complexity upper bound in Section 4.3, as well
as a lower bound for any partition algorithms in Section 4.4.

4.1 Key Quantum Subroutines
Variable-Time Algorithm Construction The variable-
time algorithm of Ambainis (2010); Wang et al. (2021) can
be used to transform an "-constrained quantum oracle with
a reward register |·〉𝑆 into an oracle (VTA) that outputs a
state with a flag register |·〉- which distinguishes arms with
large mean rewards from other arms. For an "-constrained
oracle O(S)

cons and a subset S, VTA takes an interval 5 = [𝑏, 6]
with 0 < 𝑏 < 6 < 1 and a parameter . ∈ (0, 1) as inputs.
It divides S into three subsets: Sright ! {% ∈ S : 𝑄! "
6 → .→/

8 } (high rewards); Sleft ! {% ∈ S : 𝑄! < 6 → .→/
2 }

(low rewards); Smiddle ! S \ (Sright ∪ Sleft) (intermediate
rewards). The output state is:

VTA(O(𝑎)
cons,S, 5 = [𝑏, 6], .) : 1√

"

∑
!∈S

|%〉𝑇 |1〉- →

1√
"

01
2

∑
!∈Sright

|%〉𝑇 |1〉- +
∑
!∈Sleft

|%〉𝑇 |0〉- +
∑

!∈Smiddle

|%〉𝑇 |𝑋!〉-
34
5
,

(6)

where |·〉- indicates the subsets Sright and Sleft with |1〉-
and |0〉- respectively. Arms in Smiddle are represented by
|𝑋!〉- , with specific states depending on . and the MAB
instance. The probability of observing |1〉- is 7good !

1
#

(66Sright
66 +∑

!∈Smiddle |/! |
2
)
, where /! depends on |𝑋!〉- .

The algorithm’s pseudocode is in Appendix C.1.

Amplitude amplification (Amplify) and amplitude esti-
mation (Estimate) The Amplify and Estimate are
two fundamental quantum computing algorithms (Brassard
et al. 2002). Amplify enhances the amplitude of a target
basis state, while Estimate estimates the amplitude of that
state. Since these algorithms are well-established, we omit
their pseudocode and direct interested readers to Brassard
et al. (2002) for details. In this work, we apply both algo-
rithms with the VTA oracle in (6), using |1〉- as the target
state. The performance of Amplify and Estimate in this
context is discussed in Lemma 5 in Appendix C.1.

Good Ratio (GoodRatio) Subroutine The good ratio
subroutine is based on the variable-time algorithm (VTA)
and amplitude estimation (Estimate). It takes an "-
constrained oracle O(S)

cons for a subset of arms S, an interval
5 = [𝑏, 6], and a confidence parameter 𝑂 as inputs, and out-
puts an estimate of the ratio of “good arms” in S, where the
“good arms” are the arms with mean reward greater than 𝑏
in the interval 5. The subroutine is detailed in Algorithm 4
in Appendix C.2. Lemma 2 provides the subroutine’s perfor-
mance guarantees.
Lemma 2 (Performance of GoodRatio). Given an inter-
val 5 = [𝑏, 6] and a confidence parameter 0 < 𝑂 < 1,
there exists a GoodRatio(O(S)

cons,S, 5 = [𝑏, 6], 𝑂) subrou-
tine which uses # (8) queries to output an estimate 7̂good of
the “good arm” ratio 7good such that

0.9
(
7good →

0.1
"

)
< 7̂good < 1.1

(
7good +

0.1
"

)

with probability at least 1 → 𝑂, where the parameter 8 !√
1

(.→/)2 +
1

|Sright |
∑
!∈Sleft∪Smiddle

1
(.→𝑏! )2 polylog

(
#

" (.→/)

)
.

Lemma 2 guarantees that GoodRatio provides a good
estimate of the ratio of good arms in the subset S with high
probability and with in a reasonable number of queries.

Partition Shrink (PartShrink) Subroutine The parti-
tion shrink subroutine takes as input the "-constrained ora-
cles O(𝑎)

cons for each subset S in the partition set #, the parti-
tion set# itself, an interval 5, and parameters 𝑗 ∈ {1, 2} and
𝑂 ∈ (0, 1). The parameter 𝑗 = 1 (resp. 𝑗 = 2) directs the al-
gorithm to shrink the input interval 5 so that the best arm 𝑄1
(resp. the second best arm 𝑄2) lies inside the output interval
𝑘. Utilizing a technique from quantum ground state prepara-
tion (Lin and Tong 2020), PartShrink divides the input
interval 5 = [𝑏, 6] into five sub-intervals of equal length and
outputs a new interval 𝑘 consisting of three consecutive sub-
intervals, as illustrated below:

Input Interval 5:

Output
Interval 𝑘

:
case (0, 0)
cases (1, 0), (0, 1)
case (1, 1)

𝑏 𝑏 + ( 𝑏 + 2( 𝑏 + 3( 𝑏 + 4( 6

Which case the output interval 𝑘 above corresponds to
depends on the input parameters and the mean reward
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Algorithm 2 Q-Part: Partition Algorithm for BAI with
coherent query constrained "
Input: full arm setK, confidence parameter 𝑂, constraint "
Initialize: 𝑂← 𝑂/2, 51, 52 ← [0, 1], 𝑂′ ← 𝑂
1: Partition the full arm sets to /!/"′ subsets, each with
" arms, together denoted as a set #
⊲ Stage (i): identify best arm subset

2: while min 51 →max 52 < 2|51 | or |#| > 1 do
3: 51 ← PartShrink

(
(O(S)

cons)∀S∈#,#, 51, 1, 𝑂′
)

4: 52 ← PartShrink
(
(O(S)

cons)∀S∈#,#, 52, 2, 𝑂′
)

5: for S ∈ # do
6: if GoodRatio

(
O(S)
cons, 51, 𝑂

′
)
= 0 then

⊲ If no good arm inside subset S
7: #← # \ S ⊲ Subset elimination
8: 𝑂′ ← 𝑂′/2 ⊲ Halve confidence parameter
9: ℓ1 ← min 51, ℓ2 ← max 52

10: S ← # ⊲ Only remaining subset in #
⊲ Stage (ii): identify best arm

11: Construct variable-time quantum algorithm A ←
VTA(O(S)

cons,S, 5 = [ℓ2, ℓ1], 0.01𝑂)
12: % ← Amplify(A, 𝑂′)
Output: arm %

of the arms in the interval 5. We refer the detail to the
PartShrink subroutine in Algorithm 5 in Appendix C.3.
The performance guarantees are provided in Lemma 3.
Lemma 3 (Performance of PartShrink). Given 𝑗 ∈
{1, 2}, an interval 5 = [𝑏, 6], and a confidence parameter
0 < 𝑂 < 1, supposing 𝑄ℎ ∈ 5 and |5 | " Δ2/8, there exists a
PartShrink

(
(O(S)

cons)∀S∈#,#, 5, 𝑗, 𝑂
)
subroutine which

1. outputs an interval 𝑘 with |𝑘 | = 3|5 |/5 such that 𝑄ℎ ∈ 𝑘
with a probability of at least 1 → 𝑂, and

2. uses #
(∑

S∈#
√∑

!∈S
1
Δ2
!

polylog
(

$
#"Δ2

))
queries.

Lemma 3 guarantees that PartShrink outputs an inter-
val 𝑘 containing the mean reward 𝑄ℎ with high probability
and in a reasonable number of queries. The proofs of Lem-
mas 2 and 3 are presented in Appendix E.1.

Next, we present the partition algorithm for BAI with
the "-constrained quantum oracle that builds on the
GoodRatio and PartShrink subroutines.

4.2 Algorithm Design
This section presents the partition algorithm (Q-Part in
Algorithm 2) using the "-constrained quantum oracle. The
algorithm partitions ! arms into !/" subsets2 and queries
arms within each subset to find the optimal one.

Initially, Q-Part partitions the ! arms into !/" sub-
sets S1, . . . ,S$/# (Line 1), each containing " arms, and
denote # := {S1, . . . ,S$/#}. The algorithm has two main

2If !/" is not an integer, add * dummy arms (where * < ") to
make " | (! + *).

stages: (i) identifying the subset containing the optimal arm
(Lines 2-8) and (ii) finding the best arm within that subset
(Lines 9-12).

To find the optimal arm’s subset, Q-Part uses an elimi-
nation process. It starts with all subsets in # and progres-
sively removes those without the best arm until one re-
mains. The algorithm maintains two intervals, 51 and 52,
both initialized to [0, 1]. Within the while loop (Line 2),
PartShrink is applied to shrink the intervals 51 and 52
(Lines 3-4). Then, GoodRatio checks each remaining sub-
set to see if it contains an arm with a mean reward in 51. If
not, the subset is eliminated (Line 7). The loop ends when
only one subset remains, and 51 and 52 are separated by a
gap of at least 2|51 | (i.e., min 51 →max 52 " 2|51 |).

Upon completion of Stage (i), Q-Part identifies the sub-
set containing the best arm, with 51 containing the mean
reward 𝑄1 of the best arm and 52 containing the mean re-
ward 𝑄2 of the second-best arm. The endpoints ℓ1 = min 51
and ℓ2 = max 52 separate the best arm from the rest
(Line 9). To find the optimal arm, Q-Part uses a variable-
time algorithm (VTA) in (6) with the remaining subset S
and interval [ℓ2, ℓ1] as inputs (Line 11), which produces
the expected output 1√

#
( |%∗〉𝑇 |1〉- + ∑

!∈S\{!∗ } |%〉𝑇 |0〉-).
Amplify then determines the index of the optimal arm %∗

(Line 12), which guarantees to output the best arm in the set
S with a probability of at least 1 → 𝑂′.

4.3 Query Complexity Upper Bound for Partition
Algorithm

We derive a query complexity upper bound for Q-Part (Al-
gorithm 2), and its detail proof is deferred to Appendix E.2.
Theorem 3 (Query complexity upper bound for Q-Part of
the"-constrained quantum oracle). With confidence param-
eter 𝑂 ∈ (0, 1) and an arm partition #, the query complex-

ity of Algorithm 2 is #
(∑

S∈#
√∑

!∈S
1
Δ2
!

polylog
(
$
"Δ2

))
,

where Δ! = 𝑄1 → 𝑄! is the reward gap of arm % , and Δ2 is
the minimal reward gap.

As Δ2 is the smallest reward gap, Theorem 3 simpli-
fies the upper bound to #̃ ((!/√")Δ→12 ). Thus, a smaller
" (better coherence) reduces the query complexity. When
" = 1 (weak quantum oracle), Q-Part’s complexity is
#̃ (∑!∈K Δ→1! log 1

" ), which matches Q-Elim’s bound for
a weak oracle (Theorem 2). However, Q-Elim’s bound
# (log 1

Δ log $" ) is better than Q-Part’s polylogarithmic
factor# (polylog $

"Δ2
) (at most log3 $

"Δ2
) because Q-Elim’s

parameters are optimized for weak oracles. When " = !
(strong quantum oracle), Q-Part reduces to the algorithm
by Wang et al. (2021), as no further partitioning is needed
(# = {K}). For 1 < " < ! , Q-Part’s complexity
lies between that of Wang et al. (2021)’s strong oracle and
Q-Elim’s weak oracle (see (1)).

4.4 Query Complexity Lower Bounds for the
m-Constrained Quantum Oracle

In Section 4.4, we establish lower bounds to demonstrate the
tightness and optimality of the Q-Part algorithm. The key
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(a) SuccElim vs. Q-Elim (b) Q-Part with different " (c) Impact of noise on Q-Part

Figure 1: Performance evaluation of Q-Elim and Q-Part. The results for Q-Part are based on taking the constant multi-
plicative prefactor from Lemma 5 to be 1. In reality this constant may be larger than 1 and thus the results for Q-Part and
Q-Elim are not directly comparable. Figure 1c is conducted for gap = 0.01 in a simulated 127-qubit quantum computer.

challenge is proving the lower bound with the outer summa-
tion over all subsets in# (i.e.,

∑
S∈#). This summation indi-

cates that queries on each subset are “orthogonal”, meaning
information gained from one subset does not overlap with
others. To address this, we define a class of partition algo-
rithms for "-constrained oracles, which ensures that queries
on one subset of arms cannot be used to infer information
about arms in any of the other subsets. We then derive a
lower bound for any partition algorithm, as stated in Theo-
rem 4, with a proof provided in Appendix G.2.
Definition 1 (Partition algorithm class). A partition algo-
rithm for BAI with the "-constrained oracle is one that par-
titions the full arm set into several subsets at initialization,
each with at most " arms, and always follows this fixed par-
tition when querying arms during algorithm execution.

Theorem 4 (Query complexity lower bound for
"-constrained oracle). To identify the best arm with a prob-
ability of at least 1 → 𝑂 with the "-constrained oracle with
parameter ", any partition algorithm needs to spend at least

the following number of queries, Ω(∑S∈#

√∑
!∈S 1/Δ2

!),
where # is the partition of arms.

Note that Q-Part (Algorithm 2) belongs to this parti-
tion algorithm class, and if the arm partition # in the lower
bound is the same as the one chosen in Q-Part, then this
lower bound matches the upper bound for Q-Part in The-
orem 3 up to some logarithmic factors. This implies that the
bounds in both Theorems 3 and 4 are tight, and Q-Part is
near-optimal within the partition algorithm class.

5 Qiskit-based Simulation
We compare the quantum algorithms Q-Elim (for the
weak quantum oracle) and Q-Part (for the "-constrained
quantum oracle) with the classical successive elimination
SuccElim (Even-Dar et al. 2006).

We set 𝑂 = 0.1 and ! = 8 arms with mean rewards rang-
ing from 0.99 → (% → 1) ∈ Δ (where % ∈ {1, . . . ,!}) and
vary Δ from 0.11 to 0.01 in steps of 0.02 to analyze its
effect on query complexity. Details of the Qiskit imple-
mentation are in Appendix H, and the code is provided in

the supplementary material. We implement Q-Elim with
" = 1 and Q-Part with " = 2, 4, and 8. For " = 8, the
"-constrained oracle is equivalent to the strong quantum or-
acle. The default confidence parameter for SuccElim is
𝑚 = 4 (Even-Dar et al. 2006). Results, averaged over 50 tri-
als, are shown in Figure 1.

Figure 1a (with y-axis in log-scale) shows that Q-Elim
outperforms SuccElim, demonstrating the benefits of
quantum information with the weak oracle. As Δ de-
creases, SuccElim’s query complexity increases faster
than Q-Elim’s, validating the quantum improvement of
dependence on Δ from Δ→2 to Δ→1 (see Appendix H for
curve-fitting). Figure 1b compares Q-Part’s performance
for " = 2, 4, 8 as Δ varies. Increasing " improves per-
formance, confirming the advantage of quantum parallelism
predicted by the #̃ ((!/√")Δ→1) bound from Theorem 3.

We also assess the impact of noise using Qiskit’s sim-
ulation of IBM’s 127-qubit device. Figure 1c shows that
Q-Elim’s performance decreases by 2.38% and 8.09% for
" = 2 and " = 4, respectively. For "=8, Q-Part fails due
to high noise, as the increased qubit and gate requirements
exceed practical limits, impairing the algorithm’s function-
ality. This highlights the importance to study the restrictive
"-constrained quantum oracles under a noisy environment.

6 Conclusion
In this paper, we explore the best arm identification (BAI)
problem using weak and "-constrained quantum oracles.
We introduce the "-constrained oracle, which generalizes
both the weak oracle (" = 1) and the strong oracle (" = !).
Our quantum algorithms, Q-Elim for the weak oracle and
Q-Part for the constrained oracle, offer significant im-
provements over classical methods. Specifically, Q-Elim
achieves a quadratic speedup at the arm level due to quantum
parallelism, while Q-Part provides a quadratic speedup at
the subset level due to quantum entanglement. We estab-
lish query complexity lower bounds for both quantum BAI
problems that align with our upper bounds, indicating near-
optimal performance. Our experiments using Qiskit confirm
these theoretical results.
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