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Abstract
Allocating mobility resources (e.g., shared bikes/e-scooters, ride-
sharing vehicles) is crucial for rebalancing the mobility demand
and supply in the urban environments. We propose in this work
a novel multi-agent reinforcement learning named Hierarchical
Adaptive Grouping-based Parameter Sharing (HAG-PS) for dynamic
mobility resource allocation. HAG-PS aims to address two important
research challenges regarding multi-agent reinforcement learning
for mobility resource allocation: (1) how to dynamically and adap-
tively share the mobility resource allocation policy (i.e., how to
distribute mobility resources) across agents (i.e., representing the
regional coordinators of mobility resources); and (2) how to achieve
memory-efficient parameter sharing in an urban-scale setting.

To address the above challenges, we have provided following
novel designs within HAG-PS. To enable dynamic and adaptive pa-
rameter sharing, we have designed a hierarchical approach that
consists of global and local information of the mobility resource
states (e.g., distribution of mobility resources). We have developed
an adaptive agent grouping approach in order to split or merge
the groups of agents based on their relative closeness of encoded
trajectories (i.e., states, actions, and rewards). We have designed a
learnable identity (ID) embeddings to enable agent specialization
beyond simple parameter copy. We have performed extensive ex-
perimental studies based on real-world NYC bike sharing data (a
total of more than 1.2 million trips), and demonstrated the superior
performance (e.g., improved bike availability) of HAG-PS compared
with other baseline approaches.

CCS Concepts
• Computing methodologies → Reinforcement learning; •
Information systems → Spatial-temporal systems.

Keywords
Multi-agent reinforcement learning, dynamic parameter sharing,
mobility resource rebalancing, hierarchical grouping

1 Introduction
Dynamic allocation of urban mobility resources, such as the shared
bikes [10], e-scooters [3], and ride-sharing vehicles [1, 8], is crucial
for enhancing the operational efficiency of urban mobility systems
and satisfying the mobility needs of various communities. Due to
the complex city environments and varying mobility needs, how
to adaptively rebalance the demands and supplies is crucial for
the success of allocation. Among various approaches explored to
support city-scale rebalancing, multi-agent reinforcement learning

(MARL) has been explored due to its adaptivity and scalability. By
considering coordinators (e.g., ride sharing drivers, bike sharing
relocators) as agents, MARL can serve as the resource distribution
engine, observing the mobility resources and environment (states),
and dynamically allocate the mobility resources (actions) through
strategically (policy) coordinating these agents’ behaviors.

Despite the prior results, two major challenges remain before
the MARL can be deployed for mobility resource allocation and
demand-supply rebalancing. First, how can we dynamically and
adaptively share the mobility resource allocation policy (e.g., when
and where the available mobility resources should be re-allocated)
across different agents that are coordinating? One may consider
grouping the agents and respectively instantiating a set of pol-
icy networks for each agent group [18]. Such a grouping method,
however, may not provide a principled mechanism on the group
number and their sizes. Therefore, sub-optimal performance may
be achieved given the dynamic urban mobility demands and sup-
plies. Second, how can we achieve scalable and memory-efficient
parameter sharing in a city-wide setting? Learning the mobility
allocation policy for every agent is not feasible. On the other hand,
a shared mobility resource allocation policy may not necessarily
capture heterogeneous roles or location-specific specialization of
the agents. The performance of MARL may hence deteriorate given
the complex urban environment with varying mobility demands
and supplies [21].

To overcome the above-mentioned challenges, we propose in this
work a novel multi-agent reinforcement learning named HAG-PS,
Hierarchical Adaptive Grouping-based Parameter Sharing for dy-
namic and adaptive mobility resource allocation. Toward develop-
ment of HAG-PS, we have made the following contributions:

• Hierarchical Parameter Sharing with Scalable and Memory-
Efficient Designs: We have designed and developed a hi-
erarchical parameter sharing mechanism for MARL. Our
mechanism consists of global and local information of the
mobility resource states (e.g., distribution of mobility re-
sources across different regions). This way, our HAG-PS can
enable dynamic and adaptive parameter sharing in a city-
wide setting.

• Adaptive Grouping of Coordinating Agents: We have devel-
oped an adaptive parameter budget-capped agent grouping
approach in order to split or merge the groups of agents
based on their relative closeness of encoded trajectories (i.e.,
states, actions, and rewards). We have designed a learnable
identity (ID) embeddings to enable agent specialization be-
yond simple parameter copy. Through these measures, we

1

ar
X

iv
:2

50
7.

20
37

7v
2 

 [c
s.A

I]
  2

9 
Ju

l 2
02

5

https://arxiv.org/abs/2507.20377v2


Nooshi and He

enhance the model adaptivity in dynamic mobility resource
allocation.

• Extensive Emulation Studies based on Bike Sharing Mobil-
ity Data: We have performed extensive experimental stud-
ies based on real-world NYC bike sharing data (a total
of 1,232,838 trips), and demonstrated the superior perfor-
mance (e.g., improved bike availability and rebalanced bikes)
of HAG-PS compared with other baseline approaches.

The rest of the paper is organized as follows. We first present the
related work in Section 2. Then, we discuss the concepts, problem
formulation, and core designs in Section 3. After that, we demon-
strate the preliminary results in Section 4, and conclude with future
studies in Section 5.

2 Related Work
We briefly review the related work in the following two categories.

• Parameter Sharing for MARL. Various parameter sharing
methods have been explored in order to improve the memory re-
quirements and learning efficiency of MARL [5–7]. In order to
enhance the diversity of agent behaviors [21] of MARL instead of
homogeneous roles, the agents can be grouped selectively [12, 19]
based on similar trajectories. For instance, SePS [2] performs a
one-shot clustering and reuses weights within each cluster. How-
ever, a major limitation of these approaches lies in that the role
assignment of agents remain largely static — that is, once the role
(group) is decided, an agent cannot be re-assigned. Therefore, these
approaches may not adapt to the evolving urban mobility envi-
ronment. DyPS [18] periodically re-clusters agents based on latent
trajectories (e.g., states, actions, rewards), and support the urban
resource allocation. However, as each group of agents holds its own
policy network, it remains difficult to further enhance the scala-
bility of the approach given large number of agents and groups in
practice.

• Urban Mobility Resource Allocation. Reinforcement learn-
ing [9, 20], including MARL, has been explored for bike sharing re-
source allocation [14, 16], traffic light control [4], and ride-sharing [13].
For instance, i-Rebalance [13] studied shared-policy reinforcement
learning for city-wide repositioning of idle ride-sharing vehicles.
However, these approaches often rely on heuristic clustering or
operate with one shared policy, which limits their adaptability in
the complex urban environments.

• Differences from Prior Arts. Different from the above stud-
ies, HAG-PS advances from the following aspects. First, we have
enabled a low-dimensional identify (ID) embedding as well as the
model weights for every agent. This way, we can enhance the
invidual learnability of the agents [17]. Second, HAG-PS provides
a dynamic adjustment of agent role (group), enabling city-wide
mobility resource allocation.

3 Concepts, Problem Formulation, & Core Designs
3.1 Concepts & Problem Formulation
• Spatial & Temporal Discretization. Following the prior studies,
we discretize the service area into a total of 𝐾 rectangular regions
that are indexed byK = {1, . . . , 𝐾}. A set of 𝑁 agents serving as the
mobility resource re-allocators (e.g., a fleet of trucks or coordinators
for bike rebalancing) is denoted by A = {1, . . . , 𝑁 } where each

agent 𝑖 serve a region at each time interval 𝑡 . We discretize the time
horizon into time intervals (e.g., days in our current studies).

• States & Actions. We design the mobility resource states for
HAG-PS to capture and learn. Specifically, for each time interval
𝑡 , we have a global state s𝑡 which consists of mobility features
(i.e., time of a day, day of a week, distributions of available mo-
bility resources, historical pick-up statistics) and urban environ-
ment features (harvested from OpenStreetMap). In this prototype
study, we encode the time of a day (ℎ𝑡 in hour), day of a week
𝑑𝑡 (integers from 0 to 6) of an time interval 𝑡 into a vector of
[sin 2𝜋ℎ𝑡

24 , cos 2𝜋ℎ𝑡
24 , sin 2𝜋𝑑𝑡

7 , cos 2𝜋𝑑𝑡
7 ]. We take in the availability

of mobility resources (e.g., number of available bike inventory) per
region as [𝑏1𝑡 , 𝑏2𝑡 , . . . , 𝑏𝐾𝑡 ]. For each region 𝑘 at the time interval
𝑡 , we find the means 𝜇𝑘𝑡 and standard deviations 𝜎𝑘𝑡 of aggregate
pick-ups (from all stations in a region) in the most recent 𝐻 time
intervals, and therefore we have for all regions the statistics vec-
tor [𝜇1𝑡 , 𝜎1𝑡 , 𝜇2𝑡 , 𝜎2𝑡 , . . . , 𝜇𝐾𝑡 , 𝜎𝐾𝑡 ]. For each region 𝑘 , we encode the
numbers of roads, bike lanes, and POIs within the region into a
three-dimension vector [rd𝑘 , bd𝑘 , pd𝑘 ] [15].

For each agent 𝑖 at time interval 𝑡 , we find the sizes of mobility
resources (e.g., bikes) that will relocate from the current region to
one of the four adjacent regions (to the north, south, east, and west)
as a𝑖𝑡 = [𝑎 (North,𝑖 )𝑡 , 𝑎

(South,𝑖 )
𝑡 , 𝑎

(East,𝑖 )
𝑡 , 𝑎

(West,𝑖 )
𝑡 ]. The value in a𝑖𝑡 , if

negative, represents the relocation from an adjacent region.
Let 𝑑𝑘𝑡 and 𝑜𝑘𝑡 respectively be the numbers of pick-up requests

and drop-offs at the region 𝑘 ∈ K at the time interval 𝑡 . Given
the states and actions, HAG-PS finds and updates the availability of
mobility resources for each region as

𝑏𝑘𝑡+1 = max
𝑏𝑘𝑡 +

∑︁
𝑗 : loc( 𝑗 ) ∈N(𝑘 )

𝑎
(∗, 𝑗 )
𝑡 − 𝑑𝑘𝑡 + 𝑜𝑘𝑡 , 0

 , (3.1)

where N(𝑘) represents the adjacent regions of a region 𝑘 .
• Reward Function. Given a coordinated relocation decision

A𝑡 = {a1𝑡 , a2𝑡 , . . . , a𝑁𝑡 } from 𝑁 agents, the availability of mobility
resources (inventory) in a region 𝑘 (before serving the actual pick-
up requests) is

𝑏𝑘𝑡 = 𝑏𝑘𝑡 +
∑︁

𝑗 : loc( 𝑗 ) ∈N(𝑖 )
𝑎
(∗, 𝑗 )
𝑡 , (3.2)

where 𝑎 (∗, 𝑗 )𝑡 is the signed net inflow contributed by agent 𝑖 . The
fulfilled demand is then given by

𝑆𝑘𝑡 = min
{
𝑑𝑘𝑡 , 𝑏

𝑘
𝑡

}
, (3.3)

while the unfulfilled demand is calculated by

𝑈 𝑘𝑡 = 𝑑𝑘𝑡 − 𝑆𝑘𝑡 = max
{
𝑑𝑘𝑡 − 𝑏𝑘𝑡 , 0

}
. (3.4)

We define the reward function for each agent 𝑖 at time interval
𝑘 as

𝑟 𝑖𝑡 = 𝜆

(
1 − 𝑈 𝑖

𝑡

𝑑𝑖𝑡+𝜀

)
− 𝛼

𝑈 𝑖
𝑡

𝑑𝑖𝑡+𝜀
− 𝛽

∥a𝑖𝑡 ∥1
𝑚 , (3.5)

where the three components (𝜆, 𝛼, 𝛽 > 0) inside the reward function
𝑟 𝑖𝑡 respectively favor (i) high service ratio, (ii) low under-served
demand, and (iii) low cost of relocation that is proportional to
the total size of relocated mobility resources capped by maximum
relocation load𝑚 > 0.
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Figure 1: Illustration of overall architecture of HAG-PS.

• Problem Formulation. We formulate our mobility resource
allocation problem as a finite–horizon multi-agent Markov game.
For a horizon of 𝑇 time intervals, and a discount factor 𝛾 ∈ (0, 1],
HAG-PS aims to find the MARL parameters 𝜽 that maximize the
objective function of

𝐽 (𝜽 ) = E
[
1
𝑁

𝑁∑︁
𝑖=1

𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟 𝑖𝑡

]
. (3.6)

3.2 Hierarchical Adaptive Grouping
Wehave designed the hierarchical adaptive grouping to dynamically
assign the group (role inmobility resource allocation) for each agent.
We have designed adaptive splitting and merging methods, such
that the number of groups and the sizes of each group dynamically
change as the learning evolves.

To better serve the urban-scale setting, the global group can
serve as the macro coordination for a district or a county. Each
global group indexed by C (𝑐 )

𝑡 at the interval 𝑡 has a feature trunk
network 𝑇𝜽𝑐

shared across all the agents inside the group 𝑐 . The
resulting embeddings h𝑖𝑡 = 𝑇𝜽𝑐

(s𝑡 ).Within each group, we further
partitionmultiple local groups, each of which (𝑐, 𝑙) maintains a local
actor–critic network head which has compact structure. Such local
groups can serve underneath the global group asmicro coordination
for the neighborhoods or street levels. The local actor-critic network
head of the agent 𝑖 is formed by a multi-layer perceptron (MLP)
with 128 units and maps the concatenated vector of h𝑖𝑡 and identity
embeddings e𝑖 into the action a𝑖𝑡 and reward 𝑟 𝑖𝑡 .

• Dynamic & Adaptive Agent Grouping. After every episode,
each agent encodes its latest 𝐻 -step trajectory

𝝉 𝑖𝑡−𝐻 :𝑡 =
{
s𝑖𝑡−𝐻 , 𝑎

𝑖
𝑡−𝐻 , 𝑟

𝑖
𝑡−𝐻 , . . . , s

𝑖
𝑡−1, 𝑎

𝑖
𝑡−1, 𝑟

𝑖
𝑡−1

}
, (3.7)

via a Variational Long Short-term Memory (VLSTM) with 128 hidden
units and obtain the embeddings, i.e.,

z𝑖𝑡 = VLSTM
(
𝝉𝑖𝑡−𝐻 :𝑡

)
. (3.8)

For each local group 𝑙 , let |G (𝑙 )
𝑡 | be its group size, and we find

the average embeddings

𝜇
(𝑙 )
𝑡 =

1

|G (𝑙 )
𝑡 |

∑︁
𝑗∈G (𝑙 )

𝑡

z 𝑗𝑡 , (3.9)

and the average symmetrized KL divergence within the group,

𝐷
(𝑙 )
𝑡 =

1

|G (𝑙 )
𝑡 |

∑︁
𝑗∈G (𝑙 )

𝑡

1
2
(
KL(z 𝑗𝑡 ∥ 𝜇 (𝑙 )𝑡 ) + KL(𝜇 (𝑙 )𝑡 ∥ z 𝑗𝑡 )

)
. (3.10)

Splitting and Merging Operations. The splitting and merg-
ing operations of the agents are given as follows. If 𝐷 (𝑙 )

𝑡 > 𝐷split

and |G (𝑙 )
𝑡 | is greater than the pre-defined group size 𝑆min, we

bisect an agent group 𝑙 with 𝑘-means (𝑘=2) over {z𝑖𝑡 }. Both lo-
cal groups inherit the parent’s local actor-critic network heads,
and immediately re-cluster their members into a total of 𝑆max
sub-groups. Two local groups inside the same global group are
merged if KL(𝜇 (𝑎)𝑡 | |𝜇 (𝑏 )𝑡 ) +KL(𝜇 (𝑏 )𝑡 | |𝜇 (𝑎)𝑡 ) is less than a pre-defined
merging threshold 𝜏merge. The local actor-critic network heads of
the larger sub-group are kept, while the agents are re-assigned via
𝑘-means to the nearest of the 𝑆max centroids.

Adaptive Regrouping Period. In order to enable adaptive re-
grouping period instead of a fixed one, we find a running expo-

nential average 𝐷̄𝑡 = 𝜂 𝐷̄𝑡−1 + (1−𝜂) 1
| G (𝑙 )

𝑡 |
∑ | G (𝑙 )

𝑡 |
𝑙=1 𝐷

(𝑙 )
𝑡 to adjust the

period before the next split–merge operations, i.e.,

Δ𝑡+1 = max
(
1,

⌈
Δ0 𝑒

−𝜁 (𝐷̄𝑡−𝛿 ) ⌉) . (3.11)

Thus, when KL divergence within the local group has stabilized,
regrouping becomes infrequent. As we can bound the maximum
numbers of global group and local groups, we can restrict the model
parameters and subsequent memory footprint of the feature trunk
network and the local actor-critic network head. Our future exten-
sion will include detailed theoretical analysis over the performance.

4 Experimental Evaluation
We present our experimental settings, baselines, and experimental
results as follows.

4.1 Experimental Settings
• Dataset Preparation. We leverage a total of 1,232,838 trips in
January 2024 for our experimental studies. We have aggregated
them into an origin–destination matrix over a total of 𝐾 = 106 1x1
km2 rectangular regions covering the central Manhattan.

• Comparison Baselines. We compare our approach with the
following baseline approaches.
• No-Share: which coordinates the mobility resources with fully

independent proximal policy optimization (PPO).
• Share-All: which has one global actor–critic shared by all agents.
• SePS [2]: which performs offline 𝑘-means clustering for agent

grouping.
• DyPS [18]: which performs dynamic grouping with group net-

works.
• CDS [12]: which performs diversity-regularized full parameter

sharing.
• HAG-PS w/o ID: which removes the identity (ID) embeddings

from HAG-PS.
• HAG-PS w/o SM: which performs no split–merge operation (i.e.,

fixed group sizes).
• HAG-PS w/o HG: which performs no hierarchical grouping.
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• HAG-PS w/o ARP: which performs no adaptive regrouping pe-
riod.
• Implementations & Detailed Parameter Settings. All

models are implemented in PyTorch and trained on a single T4
GPU (16 GB RAM) on Google Colab. The PPO implementation
follows the 37-detail checklist [11] (mini-batch SGD, value-loss
clipping, etc.). We configure the model and environment settings
to balance performance and training stability. The reward function
employs weighting coefficients 𝛼 = 5.0, 𝛽 = 15.0, and 𝛾 = 3.0
to respectively emphasize fulfillment of demand, penalize under-
service, and discourage excessive relocations. Environment inputs
include temporal encodings with 4 dimensions, spatial features
with 6 dimensions, and one-step demand history represented by
a single dimension. Each training epoch consists of 64 episodes
(corresponding to 64 simulated months), and each episode spans a
maximumof 31 decision steps to cover the days in January.We apply
PPO with a discount factor 𝛾 = 0.995 and generalized advantage
estimation (GAE) with 𝜆 = 0.95. The learning rates for policy and
value networks are set to 3e-4 and 1e-3, respectively to reflect a
more conservative update for the policy to ensure stable learning
while allowing faster adaptation of the value function.

To ensure robust evaluation, we reserve 20% of the training data
for validation purposes. The split–merge controller is governed by
five stable hyper-parameters. The regroup interval is initialized to
Δ0 = 8 episodes and clipped to the range Δ ∈ [1, 64]. After each
episode the running KL divergence is updated with an exponential
smoother (𝜂 = 0.90) and compared with the target drift level (𝛿 =

0.02); any excess shortens the next interval with sensitivity 𝜁 =

3. This configuration balances rapid reaction to behavioral shifts
against the computational overhead of regrouping.
Evaluation Metrics. Following the prior practices in bike resource
reallocation [6, 16], we evaluate overall performance via (1) fulfilled
service ratio, i.e.,

Avail𝑇 = 1 −

𝑇−1∑︁
𝑡=0

𝐾∑︁
𝑘=1

𝑈 𝑘𝑡

𝑇−1∑︁
𝑡=0

𝐾∑︁
𝑘=1

𝑑𝑘𝑡

, (4.1)

i.e. the fraction of all pickup requests that are successfully served
over an episode; and (2) the total number of bikes that get rebal-
anced. Higher fulfilled service ratio and total bike rebalanced indi-
cates better performance in mobility resource allocation.

4.2 Preliminary Experimental Results
Table 1 summarizes the fulfilled service ratio and the total number
of bikes that get rebalanced. We can see that No-Share, which is the
fully-independent PPO baseline, achieves only about 51 % fulfilled
service ratio, demonstrating the drawback of over-parameterization
without sharing themodel parameters. Share-All reserves themodel
parameters but its performance falls below 44%. Compared with
CDS, SePS, and DyPS, our achieves a higher fulfilled service ratio of
77.21% and more bikes rebalanced thanks to the gained learnability
from its hierarchical adaptive grouping-based parameter sharing.

We also demonstrate the ablation studies within Table 1. We can
see that removing the identity (ID) embeddings degrades about 0.3

Table 1: Performance comparison of different schemes.

Method Fulfilled Service Ratio (%) Total Bikes Rebalanced

No-Share 51.18 357,864
Share-All 43.84 333,372
CDS 58.40 407,316
SePS 64.77 453,180
DyPS 69.09 462,696
HAG-PS w/o ID 76.91 471,900
HAG-PS w/o SM 75.10 470,028
HAG-PS w/o HG 73.23 468,936
HAG-PS w/o ARP 76.07 471,588
HAG-PS 77.21 472,212

percent in terms of fulfilled service ratio. This indicates that a small
agent-specific vector can help disentangle similar mobility alloca-
tion policies. Disabling the splitting and merging operation or the
hierarchical adaptive grouping leads to more performance degrada-
tion, and decreases fulfilled service ratios by about 2.1 percent and
4.0 percent, respectively. This underscores their importance for the
mobility resource allocation. Fixing the regrouping period instead
of an adaptive one leads to 1.1 percent performance drop in terms
of fulfilled service ratio. Combining all these designs lead to overall
superior performance of HAG-PS.

5 Conclusion & Future Work
We study in this work a multi-agent reinforcement learning named
hierarchical and adaptive grouping-based parameter sharing (HAG-PS)
for dynamic mobility resource allocation. Using the NYC bike shar-
ing as a case study, HAG-PS addresses two challenges regarding
MARL for mobility resource allocation – that is, adaptive sharing
of policy across agents, and memory-efficient parameter sharing in
the urban-scale setting. we have designed a hierarchical approach
that consists of global and local information of the mobility re-
source states. We have developed an adaptive budget-capped agent
grouping approach to split or merge the groups of agents based on
their relative closeness of encoded trajectories. Extensive experi-
mental studies based on over 1.2 million bike sharing trips have
validated the performance of HAG-PS in rebalancing the demand
and supply in a metropolitan setting. Our future work will include:
(i) expansion of experimental studies; (ii) introduction of multi-city
data evaluations.
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