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As instructors, we have likely all encountered the situation
where a certain few students dominate the mathematical
activity in our classrooms. We may find this especially
to be the case in classes where students are encountering
proofs for the first few times. Not only do these classes
raise the level of abstraction, they deeply change the game
students are asked to play. Students need to argue from
a particular logical-deductive approach and use symbol-
dense language that follows a whole new set of rules. Too
often, these classes narrow the mathematics game from
one with exploration, discovery, and testing of unfinished
ideas to a precise and prescriptive exercise in setting up hy-
potheses, unpacking definitions, and arriving at a prede-
termined conclusion. As a result, it can be easy for proof
classrooms to be a place where the only students perceived
as competent or “good at math” are those who already can
produce a symbolic proof, and quickly.

As mathematics instructors and education researchers
we have repeatedly challenged ourselves to involve more
students in proof-based classes. Just as important is that
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we involve students in such a way that we do not regularly
put a fixed set of students in a position to guide the work
of the other students. We want all students to develop a
sense of their own mathematical capability and be seen as
capable by their peers.

So how do we do this in ways that do not unnecessar-
ily constrain mathematical activity, that preserve the inten-
tions of our proof-based courses, and at the same time in-
volve more students (and perhaps more mathematics)?

In this article, we share some of our research-based at-
tempts to change the nature of students’ mathematical ac-
tivity in proof-based classes that might address these chal-
lenges. We draw on several heuristics:

• (authenticity principle) The undergraduate proof-
based classroom should support students in ap-
prenticeship into themathematical discipline and
thus should reflect the tools of researchmathemat-
ics. [MVLE22].

• (access principle) The undergraduate proof-based
classroom should start with current student back-
grounds in order to provide opportunities for all
students to engage in the activities of research
mathematicians. [MDLS22].

• (participation principle) The undergraduate
proof-based classroom should support all stu-
dents in contributing to the mathematical activity
in such a way that participation is relatively equal.
[MDLS22].

• (expansion principle) The undergraduate proof-
based classroom should expand students’ tools
and knowledge rather than try to replace their cur-
rent ways of reasoning [WM22].

While these principles exist in theory, we have found it a
worthwhile challenge to consider how we, as instructors,

JANUARY 2025 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 51



EDUCATION

can bring them to life in proof-based courses. We have
adopted two overarching innovations that have success-
fully supported this work. First, we develop collaborative
tasks that treat theorems and proofs not only as objects
for students to construct, but also as objects of study, ex-
panding students’ access to different forms of mathemati-
cal activity. Second, we adapt and incorporate a number
of participation-broadening teaching practices more thor-
oughly studied at the K–12 level into the proof-based set-
ting.

In this article, we will discuss the three tasks we devel-
oped specifically for abstract algebra. We note that these
taskswere developed and refined over six implementations
which included testing with small groups of students (two
times), then in the classroom (four times). The class-
room testing began with a member of the project team
(Melhuish) implementing both in-person and online ver-
sions, and then an instructor outside of the team (Pat-
terson). Current instructor guides for these three tasks
are available by request; please visit https://rume.txst
.edu/curricular-materials.html.

We organize the remainder of the paper as follows. First,
we share an overview of the three abstract algebra tasks,
which embody three different ways we encourage students
to explore theorems and their proofs. Subsequently, Pat-
terson reflects on his implementation of the tasks as some-
one outside of the team, and shares some insights into the
learning opportunities the tasks can create for students. Fi-
nally, we discuss the next steps in this project, including
developing parallel tasks for other proof-based courses to
be made available for instructors.

Orchestrating Discussions Around Proof (ODAP)
One way we have been framing changes in student class-
room activity is moving beyond just proof construction.
But what exactly does that mean? First, we want to reit-
erate that developing and polishing proofs is an essential
activity, and we do not intend to diminish this. However,
take a moment and think about the types of mathematical
work you’ve done as a researcher. We bet you could eas-
ily list many kinds of essential work other than writing the
formal proof product. Perhaps you can recall exploring
examples, tweaking statements to test new assumptions,
reading an article to better understand a technique, or as-
sessing the validity of an argument in amanuscript you are
reviewing. In fact, many mathematicians have lamented
the way that the final formal proof obscures the mathe-
matical work that comes before it. In our recent work, we
have documented the ways that mathematicians go about
their work and compiled a list of 10 different tools used
towards 9 aims found in the work of research mathemati-
cians [MVLE22]. For instance, a mathematician may gen-

erate examples of a certain type of object in order to test a
conjecture about that class of object. Or they may analyze
or refine parts of a statement that describes that class of ob-
ject in order to construct a more elegant definition of that
class. We used this analysis as a launching point for de-
signing tasks that engage students in an expanded set of
mathematical activities beyond just proof production.

For each task we developed, we focused on several in-
structional elements: (1) how do we best launch the task?
(2) how do we support group work? (3) how do we work
with what students create during group work and orches-
trate whole-class discussion? For this article, we are go-
ing to unpack the types of tasks with emphasis on the ex-
panded mathematical activity. For more information on
other elements, see [MDLS22]. We refer to these tasks
as the Orchestrating Discussions Around Proof (ODAP)
tasks.
Task 1: Proof and theorem comparison and analysis.
The first type of task we developed relied on “opening”
proofs and theorems to be objects of students’ analysis. We
developed this task around a common structural property
theorem found in abstract algebra:

Theorem 1. Suppose 𝐺 and 𝐻 are isomorphic groups. If 𝐺 is
abelian, then 𝐻 is abelian.

This theorem was selected for several reasons. First, it
contains a statement that can be strengthened: only a sur-
jective homomorphism is needed between 𝐺 and 𝐻 for 𝐻
to be abelian. The majority of theorems provided in in-
troductory courses are already in the strongest form and
do not allow for such exploration. Second, students often
inadvertently weaken the statement when writing a proof,
arguing that the images of elements of 𝐺 commute rather
than arbitrary elements in𝐻, and then do not refer back to
the surjectivity of themap to deduce that therefore any two
arbitrary elements of 𝐻 commute (See [MLC19], p. 214).
Thus, this context provides an opportunity for students to
engage in analyzing proofs for hidden assumptions and
to explore what assumptions in a statement are needed. A
typical structure for this task is:

• The instructor prepares copies of two purported
proofs of the theorem. These proofs are designed
by the research team to represent two common
student approaches to proving the theorem: a “𝐺-
first” approach and an “𝐻-first” approach, using
two different sets of assumptions:

Proof. Let 𝑎, 𝑏 ∈ 𝐺. Then 𝜙(𝑎)𝜙(𝑏) = 𝜙(𝑎𝑏) =
𝜙(𝑏𝑎) = 𝜙(𝑏)𝜙(𝑎) since 𝑎𝑏 = 𝑏𝑎. Therefore
𝜙(𝑎)𝜙(𝑏) = 𝜙(𝑏)𝜙(𝑎). Since these elements are in
𝐻, 𝐻 is abelian. □
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Proof. Let 𝑐, 𝑑 ∈ 𝐻. Then 𝑐 = 𝜙(𝑎) and 𝑑 = 𝜙(𝑏)
for some 𝑎, 𝑏 ∈ 𝐺 since 𝜙 is onto. So 𝑐𝑑 =
𝜙(𝑎)𝜙(𝑏) = 𝜙(𝑎𝑏) = 𝜙(𝑏𝑎) = 𝜙(𝑏)𝜙(𝑎) = 𝑑𝑐.
Therefore, 𝐻 is abelian. □

• After a discussion of the key definitions, assump-
tions, and conclusion of the theorem’s statement,
students are put into pairs. The two proofs are
given to each pair, with each partner responsible
for one.

• The partners explain their proofs to each other
and identify one thing that makes sense about the
proof and one thing they have a question about.

• In whole-class discussion, the two proof ap-
proaches are compared to identify similarities and
differences. A running list is kept on the board. At
this point, students typically notice many things
including that onto is used in one proof and
that the arbitrary elements start in the domain or
codomain group, respectively. This allows for a
discussion of how different assumptions are or are
not used in the arguments.

• Students are given an opportunity to state con-
jectures based on the reasoning they have exam-
ined. At this point, students often suggest some
of the following: the target group is abelian if 𝜙 is
a homomorphism; if 𝜙 is a surjective homomor-
phism; if 𝜙 is an isomorphism. Note that two of
these three are strengthened versions of the origi-
nal statement, though the first is not true.

• Students test the statements by analyzing the
proofs and generating examples of homomor-
phisms to arrive at the strongest valid version of
the theorem. Students also may “patch” the first
version of the proof.

Notice that the task involves partners having clear roles
and responsibilities, and that they are asked to engage
in many types of mathematical activities with the proof.
For more information on implementing this task see
[MLH22].
Task 2: Proof and theorem comprehension. The second
task was developed for the fundamental homomorphism
theorem (or first isomorphism theorem):

Theorem 2. If 𝜙 ∶ 𝐺 → 𝐻 is a group homomorphism, then

𝐺/(ker 𝜙) ≅ 𝜙(𝐺).

The crux of this task is comprehension of the theorem’s
statement and proof. That is, we are not asking students to
construct the statement or proof, but rather make sense of
a conceptually and symbolically dense theorem. In partic-
ular, the theorem connects many fundamental ideas from

group theory (e.g., isomorphism, homomorphism, quo-
tient groups; see [MGD+23]) and has a proof with multi-
ple parts referencing abstract objects. A typical structure of
this task looks like:

• After initial discussion of the theorem statement
and needed definitions, small groups are each
given a different group homomorphism. The ex-
amples use groups that are familiar to students
(for example, a homomorphism from ℤ12 to ℤ4,
or from a dihedral group to ℤ2) and are designed
to allow students to quickly build a mapping di-
agram showing the correspondence between do-
main elements and codomain elements. The
small group works on the board with each mem-
ber having a different color chalk. One person
is responsible for writing the elements in the do-
main and codomain groups. One person is re-
sponsible for drawing a mapping diagram for the
homomorphism. One person is responsible for
identifying the kernel and its cosets. The final
person is responsible for adding the isomorphism
map to the picture.

• In a whole-group discussion, students look at the
structural similarity across the examples on the
board and develop a symbolic representation of
the isomorphism that would capture each of the
instances.

• Students then anticipate what will need to be
proven in the theorem. This list typically includes
showing there is an isomorphism (one-to-one,
onto, homomorphism), but not that the function
is well-defined.

• Students are then given the proof and asked to
chunk and label the pieces according to the goals.
At this point the class discusses the need to show
that the function is well-defined.

• Each small group is then responsible for one
chunk of the proof. Within the group, each mem-
ber is given a card that contains a discussion ques-
tion that can help the group make sense of their
particular section of the proof. (Figure 1 provides
some examples of the discussion questions pro-
vided.)

• The small groups each present their section to the
class.

Notice this task involves substantial mathematical activ-
ity despite students being given a theorem and proof. This
can allow for emphasis of structural elements and proof
approaches. Finally, we note the fact that the examples on
the board are joint products (as each student contributes
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a piece), and small-group time is structured by distributed
discussion prompts.
Task 3: Theorem conjecturing and proving from dia-
grammatic structure. The last of our three abstract alge-
bra tasks was created for Lagrange’s theorem:

Theorem 3. For any finite group 𝐺, the order of every subgroup
𝐻 of 𝐺 divides the order of 𝐺. Alternatively, the quotient of the
order |𝐺|/|𝐻| is equal to the index [𝐺 ∶ 𝐻].

We selected this theorem not just for its centrality to the
course, but because important insights can be gained via
reasoning about diagrams and recognizing the multiplica-
tive structure of the cosets. For this task, students explore
cosets and then use those insights for Lagrange’s theorem.
A typical structure of this task looks like:

• Small groups of students are each taskedwith find-
ing all the subgroups of the group they are given
(or to save time, provided the list). The groups
given are relatively small and familiar to students
at this point: cyclic groups ℤ𝑛 for different values
of 𝑛 ≤ 12, and possibly a dihedral group of or-
der less than or equal to 10. Students record sub-
groups on the board and then are asked to con-
jecture relationships between subgroups and their
parent groups by examining examples developed
by other students. This often leads to a lengthy list
that includes something akin to Lagrange’s theo-
rem.

• The statement of Lagrange’s theorem is discussed,
and students anticipate what needs to be proven:
a statement of the form |𝐺| = 𝑘|𝐻| for some 𝑘 ∈ ℤ.
At this point, it can be helpful to prime students
to think of a definition of multiplication that has
worked since elementary school.

• Cosets are introduced as a useful tool, and each
group of students returns to their parent group
and creates cosets for a designated subgroup. Stu-
dents again make conjectures based on what they
notice from the class’s example work. This list
should include things that can be formalized as
lemmas: all cosets are the same size, the union of
all cosets is the group, distinct cosets are disjoint.
Students usually notice most of these facts as they
work, though they may state them differently (for
example, “the sets make up the whole group”).

• Students are then asked to return to their example
and identify what the numbers |𝐺|, 𝑘, and |𝐻| in
the multiplication statement |𝐺| = 𝑘|𝐻| represent
in terms of the coset list they have developed.

• In small groups, students then work on creating
an outline of a proof that draws on the three lem-

mas. Depending on time, students can work to
prove the three lemmas in class or at home.

Much like the prior tasks, this task subdivides the math-
ematical activity. Students are positioned to make a num-
ber of conjectures, and then use tools (multiplicative struc-
ture and lemmas) to develop a proof of Lagrange’s the-
orem. We note that earlier versions of this task did not
have clear individual responsibilities in the group. In later
versions, particular group roles were developed, each with
specific guidelines and roles in activity management (e.g.,
Example Guardian, Meaning Manager, Lemma Liaison,
Conjecture Curator).1 For example, the Conjecture Cura-
tor is responsible for recording and presenting what the
group notices or conjectures about subgroups in the first
part of the task, and about cosets during the coset-building
exploration. These roles were designed to support interde-
pendence among team members and individual account-
ability.

WhatMight Tasks Such as ODAPMake Possible?
In this section, we switch point-of-view to share reflections
from Cody Patterson, who implemented versions of the
ODAP tasks after they were tested and developed by the
project team. Patterson has taught proof-based courses
in mathematics for ten years, including introduction to
proof, real analysis, and abstract algebra. We hope the first-
person reflection helps to illustrate the potential of these
types of tasks in proof-based courses.

When possible, I (Patterson) teach using an inquiry-
oriented pedagogy [LR19], devoting a significant portion
of class time to having students explore problems and de-
velop proofs on their own. In some cases, I have had stu-
dents develop proofs of most of the results of the course
with minimal lecture or direct guidance from me. Histori-
cally, I have facilitated this by producing a list of theorems
for students to prove, with some examples and other exer-
cises interspersed.

When I was invited to try using the ODAP tasks in my
algebra class, I saw an opportunity to engage students in
ways of thinking about proof that had not been fostered
in my teaching to date. I also appreciated the guidance
that the task documentation provided on the use of in-
structional routines such as the task launch and facilitat-
ing productive class discussions using students’ invented
solution approaches [SESH08]. While the ODAP tasks
are rooted firmly in disciplinary considerations of what
it means to engage in mathematical activity, their incor-
poration of routines from the K–12 mathematics teaching
literature helps structure student-centered activity so that

1We wish to acknowledge Brittney (Bea) Ellis’s contribution of these group roles
and names in the task redesign process.
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lessons reach their intended endpoints in a timely manner,
and leverage the thinking of a wider range of students, not
only those most often encouraged to share their thinking
publicly during class.

In this section I will share a few anecdotes illustrating
how the ODAP tasks engaged my students in forms of
mathematical thinking that I did not typically see with tra-
ditional tasks that defined participation narrowly as proof
construction, while also revealing the mathematical com-
petence of students who oftenwent unheard during typical
lessons.
Broadening students’ mathematical thinking. The pro-
cess of developing a proof of a relatively routine proposi-
tion builds some skills that are indispensable in the learn-
ing of advanced mathematics: using definitions, unpack-
ing assumptions, and using the structure of the desired
conclusion to formulate a game plan for the argument.
These operations, which rely primarily on logical structure,
fall within syntactic modes of thinking about proof [Alc10],
[WA04]; it is expected that students develop these skills
in an introduction to proof course and continue to hone
them through other advanced mathematics courses. How-
ever, as instructors, we also wish to see students develop
semantic modes of thinking about proof: ways of think-
ing that attend specifically to the mathematical objects de-
scribed by a proposition or argument.

In the first few weeks of my algebra course, I imple-
mented the ODAP task on Lagrange’s theorem. As de-
scribed above, a centerpiece of the lesson is a small-group
exploration in which students are given a group and a sub-
group and are asked to work at the board to generate all
left cosets of the given subgroup. Transcripts of the small-
group work from my class gave us insight into how dif-
ferent teams of students approached the coset generation
process. One team was tasked with generating left cosets
of the alternating group 𝐴3 in the symmetric group 𝑆3:

Richard: Basically take every element and apply it
to the left side. . . . So we just start with the first one
– with (1), right? So it would be (1)(1), (1)(1 2 3),
(1)(1 3 2), and that would give you a coset. Which
is going to be itself, right?
Terry: Which is going to be that. So if 𝑎 = (1), if 𝑎
equals the identity, we’re just going to get the same
group.
Richard: The same subgroup, yeah.
Terry: Yeah, but if it equals (1 2) –
Richard: Are you understanding what we’re doing
here?
Will: Yeah. And 𝑎 can be any of these, right?
Richard: Yeah, 𝑎 is all of them. We do all of them.
Each one will generate a different coset.

Later, students were asked to discuss and record any re-
lationships they noticed among the left cosets:

Will: Did y’all notice any relationships?
Terry: Well, the order of the coset is the order of
the subgroup, which is pretty obvious.
Richard: Interesting that some of them don’t have
the identity in there.

These transcript segments illustrate how the team’s ex-
ample generation (building a left coset by picking an el-
ement 𝑎 and composing 𝑎 with each element of the sub-
group) set students up to make a key observation about
the size of each coset. They also illustrate that while the
tasks elicit valuable mathematical thinking from students,
they are not a panacea for issues of participation that some-
times emerge in small-group work. Claims that a mathe-
matical relationship is “obvious” can function as a form of
mathematical microaggression [CARW23], [Su1510] and
may discourage participation from students to whom the
relationship might not seem obvious.

Meanwhile, Paolo, whose team was generating left
cosets of the subgroup {0, 4, 8} of ℤ12, noticed a relation-
ship between subgroup size, number of cosets, and group
order that had been mentioned in passing during a whole-
class discussion:

Paolo: I don’t remember if we ever proved it,
but I remember something about a correlation be-
tween the order of your main group 𝐺 and di-
vide that by the number of elements you’re us-
ing from your subgroup, and that’s how many
unique cosets you’re going to get. So like {0, 4, 8};
{1, 5, 9}; {3, 7, 11}. Four, right. We’ve got order 12,
we’re using three elements from a subset or a sub-
group. Twelve divided by three, four. We’ve got
four unique cosets. But I just don’t remember if
that’s a legitimate rule or if it’s happenstance.

As we see from these snapshots of student discussions,
this small-group exploration of examples gives students
the opportunity to gain two insights that can be hard to
obtain through syntactic thinking alone: why all left cosets
must be the same size as the subgroup (we generate a left
coset by picking a group element and multiplying it by
each element of the subgroup), and why the union of the
left cosets is the whole group (each group element is in
the coset it generates). It also allows students to see that
distinct left cosets are disjoint, though additional work
(and usually somewhole-class discussion) is needed to see
why. Part of what makes this segment of the lesson power-
ful is that it allows students to begin making connections
(such as Paolo’s dividing 12, the number of elements of
ℤ12, by 3 elements per subset) that infuse meaning into
the equation |𝐺| = |𝐻| ⋅ [𝐺 ∶ 𝐻] at the heart of Lagrange’s
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theorem. It is an additional bonus if it sparks students’ cu-
riosity about whether this relationship exists for all groups
and subgroups or is “happenstance.” Ultimately, the goal
is for these insights and wonderings to occur consistently
for many students as a result of the design of the task, and
not only for a few fortunate students as they work on a
proof in isolation.

What I found especially intriguing about the implemen-
tation of the ODAP tasks was the space they seemed to
provide for students to talk about aspects of mathematical
practice that are not strictly part of proof writing as tradi-
tionally conceived in the undergraduate curriculum. For
example, during the coset generation process Paolo talked
about the utility of having a standard form for expressing
mathematical objects such as sets:

Paolo: The order that the elements are in doesn’t
matter as long as they are all there. It’s just that
standard form is you put them from smallest to
largest. The way he explained it to me is that if
you’ve got a bunch of people working on the same
thing, but you’re not keeping them in a specific
order . . . it’s harder to track if you’ve got multiples
[instances of the same coset] . . .

When I implemented the proof analysis task while
teaching the structural property theorem lesson described
above as Task 1, the contrasts between the two proofs
raised questions for some students. Two groups indepen-
dently asked a key question about the “𝐺-first” proof:

Blaise: How does it show that 𝐻 is abelian?
Jeff: Well, because with—because you originally
start off with 𝜙(𝑎𝑏). You can change it up with hav-
ing 𝑏 composed with 𝑎 since 𝐺 is abelian . . .And
so because of that you end up having 𝜙(𝑎)𝜙(𝑏) is
the same thing as 𝜙(𝑏)𝜙(𝑎).
Blaise: See, the only problem though is that I don’t
think this implies anywhere that this is in 𝐻.
Jeff: Yes. That is true.
Blaise: ’Cause you never said let 𝑎 and 𝑏 be in 𝐺,
you never said let anything be in 𝐻.

Jake: So what makes sense is that this is abelian.
𝜙(𝑎)𝜙(𝑏) is equal to 𝜙(𝑏)𝜙(𝑎). But how are we sup-
posed to know—the question is, how are we sup-
posed to know 𝜙(𝑎)𝜙(𝑏) is in 𝐻?
Joseph: Because . . .𝜙 is a function𝐺 goes to𝐻, but
it’s not stated. But I guess we can assume it ’cause
they are isomorphic.

Both pairs had noticed that the 𝐺-first proof does not de-
fine 𝜙 as an isomorphism from 𝐺 to 𝐻, and therefore the
link between 𝜙(𝑎) and 𝜙(𝑏) and elements of 𝐻 is not ex-
plicit. Another pair noticed that the 𝐺-first proof did not
use a key property of isomorphisms:

Diego: How do we know this? We didn’t establish
like, let this be in 𝐺. We didn’t establish anything
like this.
Ochn: That’s the fundamental problem with this
proof. It only proves for some, because the thing
I noticed was they never used isomorphic. They
only used [homomorphism], so it’s like they are
proving a different statement almost.

Ochn’s comment foreshadows some importantmathemat-
ical work that an instructor can lead in the subsequent
whole-class discussion. While we want students to be at-
tentive to the overall validity of an argument, we would
also like for students to be able to dissect the argument,
identify parts that are valid, and even consider the possi-
bility that an alternative argument might prove a weaker,
stronger, or different claim. Because the elements of 𝐺 in
the 𝐺-first argument are arbitrary, the proof can be taken
(with perhaps some clarification) as an argument that the
image of 𝜙 is abelian. If 𝜙 is an isomorphism, this image
is 𝐻; however, this enables us to prove the more general
fact that the image of an abelian group under a homomor-
phism is abelian. (The𝐻-first argument can also prove this
fact with minor modification.)

By setting up encounters with proofs written by hypo-
thetical third parties, tasks like this allow students to en-
gage in collective analysis of the practice of proof-writing,
leveraging their own insights about features of proofs that
help (or hinder) understanding of an argument. Because
the source of the proofs is external, students are free to be
candid about parts of proofs that they find unclear or in-
correctly reasoned. This helps make students’ meta-rules
for proof public and available for instructors to treat as ob-
jects of inquiry—a practice that can be difficult when class
time consists primarily of student presentations of finished
proofs.
Broadening who participates in mathematical thinking.
When teaching a proof-based course, I often see a few stu-
dents distinguish themselves as highly confident early in
the term; this sometimes discourages other students from
participating in whole-class and even small-group discus-
sions. As an instructor, I want every student to see them-
selves and be seen by peers as capable mathematicians
who can contribute to the class’s work. Therefore, one as-
pect of implementation of the ODAP tasks that I particu-
larly enjoyed was that each task incorporated features that
set me up to highlight productive mathematical thinking
by many students, not just the few who start my course
with polished proving skills.
Facilitating students’ access to proof. Around the halfway
point of my algebra course, I facilitated the ODAP task
on the fundamental homomorphism theorem. During the
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Figure 1. The comprehension questions given to the group
responsible for explaining the proof that 𝛽 is well-defined.
Each question is given to one group member.

proof comprehension portion of the lesson, I divided stu-
dents into four groups, and tasked each group with devel-
oping an explanation of one part of the proof: (1) that
the proposed isomorphism 𝛽 ∶ 𝐺/(ker 𝜙) → 𝜙(𝐺) is well-
defined, (2) that it is homomorphic, (3) that it is injective,
and (4) that it is surjective. To support students’ making
sense of the mathematics and provide some indicators of
elements of each part of the proof that I wanted students
to be able to explain, I handed each student a card with a
comprehension question; for example, “Why do we get to
switch between 𝛽 and 𝜙 in lines of this proof?” (Both the
textbook proof and the proof comprehension questions
are standardized as part of the lesson; see Figure 1 for exam-
ples of comprehension questions.) I explained that each
student was responsible for leading a small-group discus-
sion of the question on their card, while clearly indicating
that understanding the proof and answering the questions
was a group responsibility, not an individual one.

When setting up groups for in-class tasks, I usually orga-
nized groups strategically based on my knowledge of who
worked well together and with the goal of ensuring that
each groupwould have enough ideas (and comfort sharing
them) tomake progress on the work we were doing. When
students organized into their small groups for the proof
comprehension task, I noticed that the group in charge of
explainingwhy 𝛽 is injective consisted of two students who
had struggled in the course up to that point, and one who
had attended only about 20% of class sessions. I was con-
cerned: what if nobody in the group could make progress
toward understanding the section of the proof they were
assigned? I was pleased to find my fears were unfounded:
the one student in the group who had been in class for
the previous part of the lesson presented on behalf of this

group, and gave a clear and thorough explanation of the
part of the proof that shows 𝛽 is injective.

I saw several similar occurrences during the lesson.
When I chose a student from each group to summarize
their part of the proof, I tried to avoid the group member
I knew was the most comfortable sharing their thoughts
publicly during class. As a result, I (and the class) got to
see deep, careful reasoning about the proof from students
who had not previously had many public opportunities
to be seen as competent. My postmortem lesson notes
to the project team highlighted the work of a student I
had taught in several courses, including an introduction to
proofs course, which he had passed only by a slim margin.
Of his presentation of the part of the proof that shows 𝛽 is
well-defined, I wrote, “Today I loved that he spontaneously
made the connection between Well-Defined [question] 4
and my question about ‘okay but what is this part of the
proof doing?’ He’s been surprising me in a lot of positive
ways this semester.”
Fostering egalitarian group dynamics. Other ODAP tasks sup-
ported my goal of equitable participation in different ways.
In past implementations of the ODAP structural property
theorem lesson, the instructor had asked students to con-
struct their own proofs of the property for homework; the
in-class portion of the task then depended on sorting stu-
dents into groups so that each group represented multiple
different approaches. This often led to some pairs or small
groups inwhich one student had a valid proof that they un-
derstood and could explain fluently, and another student
had a proof but was not confident in it. This sometimes
resulted in one student dominating the small-group dis-
cussion and pointing out errors in the other student’s ar-
gument rather than identifying interesting logical relation-
ships between different arguments, which was our goal.
We wanted to give students time to work together to fa-
miliarize themselves with multiple arguments, but did not
want one student to run away with the group’s activity dur-
ing this time.

The ODAP team addressed this design challenge by
adapting two student proofs collected from prior research,
pairing students up with each student positioned as the
“expert” on a different proof, and providing students with
a discussion template in which they take turns sharing
what makes sense and where they have questions about
each proof. The goal of this discussion template was to
mitigate lopsided power dynamics among groupmembers
and ensure that each student has something unique to con-
tribute to the discussion. We also wanted to steer students
away from evaluation of the proofs; we have found that the
impulse to evaluate impedes some students’ participation
and can bar students from going deeper and uncovering
more interesting insights about how different proofs can
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be related. In my implementation of the task, I found that
giving each student a proof to explain, rather than asking
them to explain their own proof under some duress, took
some of the pressure out of this part of the task for stu-
dents who might have had difficulty writing a proof for
homework, and enabled their participation.

Through my implementation of the ODAP tasks, I
found that diversifying the ways in which students inter-
act with proof in the classroom—giving them a “textbook”
proof of an important result and providing them with a
framework to assist comprehension of the proof, or hav-
ing them work together to analyze and critique different
drafts of a proof—gave me a wider window into the pro-
ductive ways of thinking that students have about proof. It
also created a different threshold for participation in these
lessons so that more students could make meaningful con-
nections between proofs and themathematical objects and
relationships they describe.

Where Are We Headed?
After the ODAP project completed, we branched into two
follow-up projects. The first project, StEP UP (Structur-
ing Equitable Participation in Undergraduate Proof) has
focused on developing group-worthy tasks following the
same design principles for other undergraduate proof-
based classes. This work has been done in collaboration
with mathematicians with a wide range of backgrounds.
We have focused on more equitable participation in group
work and developing tasks where students can engage in
an array of proof activities. Using the three ODAP task
structures, we have created tasks for linear algebra, intro-
duction to proof, real analysis, and topology. Our first fac-
ulty workshop took place in Summer 2023, and the tasks
created are currently being piloted in different courses. We
are continuing this work providing workshops for math-
ematicians and developing a bank of tasks for different
courses.

The second project called RAMP (Reading and Appre-
ciating Mathematical Proofs) is developing introduction
to proof curriculum materials centered around two kinds
of reading activities. The first is reading rich and com-
plex proofs to demonstrate the power and beauty of proofs
while supporting students in learning how to read proofs
for understanding. We compare this to a literature course
in which students learn to read and read to learn. Like
ODAP, this invites, develops, and rewards different kinds
of mathematical competencies than are commonly fea-
tured in proof-based classes. The second reading activ-
ity focuses on author stories written by women mathe-
maticians or mathematicians of color who selected and
crafted the proofs that students read. The stories cover
their backgrounds and how they became mathematicians.

These readings seek to humanizemathematics and provide
diverse representation from within the mathematical sci-
ences.

As educators who care deeply about abstract mathemat-
ics and our students’ humanity, we are also striving to im-
prove proof-based courses. We hope this article provided
some new ideas to think about in these classes. If you have
interest in any of the materials, feel free to reach out to us.
You can also learn more about our research group’s work
at https://rume.txst.edu.
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