Feature-Aware Task-to-Core Allocation in Embedded
Multi-core Platforms via Statistical Learning

Mohammad Pivezhandi
Department of Computer Science
Wayne State University
Detroit, MI 48202, USA

Abstract—Optimizing task-to-core allocation can substantially
reduce power consumption in multi-core platforms without
degrading user experience. However, existing approaches overlook
critical factors such as parallelism, compute intensity, and
heterogeneous core types. In this paper, we introduce a statistical
learning approach for feature selection that identifies the most
influential features—such as core type, speed, temperature, and
application-level parallelism or memory intensity—for accurate
environment modeling and efficient energy minimization, a critical
consideration for embedded systems. Our experiments, conducted
with state-of-the-art Linux governors and thermal modeling
techniques, show that correlation-aware task-to-core allocation
lowers energy consumption by up to 10% and reduces core
temperature by up to 5°C compared to random core selection.
Furthermore, our compressed, bootstrapped regression model
improves thermal prediction accuracy by 6% while cutting model
parameters by 16%, yielding an overall mean square error
reduction of 61.6% relative to existing approaches. We provided
results based on superscalar Intel Core i7 12th Gen processors
with 14 cores, and validated our method across a diverse set of
hardware platforms and effectively balanced performance, power,
and thermal demands through statistical feature evaluation.

Index Terms—Energy Optimization, Embedded Systems, Het-
erogeneous Platforms, Statistical Feature Evaluation, Task-to-Core
Allocation

I. INTRODUCTION

Task-to-core allocation is a pivotal technique for enhancing
the performance and reliability of embedded systems, where
workloads exhibit distinct thermal and power consumption
behaviors depending on core assignments. In multi-core pro-
cessors, allocations can involve high-performance cores, low-
energy cores, and graphic processing units (GPUs), each with
unique performance characteristics across various configura-
tions. Improper allocation can lead to thermal overheating,
triggering throttling and reducing chip reliability and lifes-
pan [1]. Cooling costs for overheated chips are significant,
approximately $3 per watt of heat dissipation [2]. While
dynamic voltage and frequency scaling (DVFS) complements
allocation by adjusting power dynamically—potentially reduc-
ing consumption by 75% without altering user experience
[3]—our focus is on optimizing task-to-core allocation to
manage thermal and energy constraints in embedded systems.
Existing approaches often rely on historical workload and
sensor data to predict future behavior [4]], but lack a systematic,
statistically robust framework, which our hybrid methodology
addresses with novelty and precision.

Abusayeed Saifullah
Department of Computer Science
Wayne State University
Detroit, MI 48202, USA

Prashant Modekurthy
Department of Computer Science
University of Nevada
Las Vegas, NV 89154, USA

Embedded systems, foundational to automotive, telecom-
munications, and consumer electronics, must operate under
strict power and thermal constraints while delivering high
performance. Task-to-core allocation is crucial for managing
these constraints in heterogeneous architectures with diverse
core types (e.g., high-performance, low-power, GPUs). Feature
selection and evaluation identify critical features and correla-
tions, enabling optimal core assignments for thermal stability
and energy efficiency [3]]. For instance, in real-time automotive
systems, allocation ensures compute-intensive tasks run on
performance cores without overheating, while mobile devices
assign power-hungry applications to high-performance cores
and background tasks to low-power cores, extending battery life.
Identifying features tied to power and thermal behavior—such
as temperature, frequency, and core adjacency—establishes
general rules for allocation, enhancing embedded system
reliability. This paper introduces a hybrid statistical learning
framework, integrating Random Forest (RF), backward stepwise
selection, and correlation analysis, to optimize task-to-core
allocation across platforms, prioritizing allocation over DVFS
for embedded contexts.

Application performance depends on execution factors like
core type, speed, temperature, and application characteris-
tics—memory or compute intensiveness and parallelism level
[6]. Linux governors [7] and related studies often focus on CPU
utilization for DVFS policies, targeting latency, temperature, or
energy [8[|-[|10]. However, for task-to-core allocation, charac-
teristics like parallelism, memory/compute intensiveness, and
branch counts are equally critical. Applications with frequent
branch misses benefit from sequential execution on single
cores, while parallel, compute-intensive tasks excel on GPUs
or performance cores in heterogeneous platforms. Moreover,
temperature correlations between cores indicate adjacency and
overheating risks. Our approach transcends utilization-centric
methods, employing a multi-stage statistical framework to
capture a comprehensive feature set and their interdependencies,
ensuring clarity and applicability in embedded systems.

Collecting real data post-execution for task-to-core allocation
optimization is computationally expensive and imprecise due
to hardware sampling delays. Instead, allocation decisions can
leverage inference from trained environmental models that
account for randomness and feature importance to mitigate
overfitting [8]. An augmentation step further reduces sampling

overhead, boosting efficiency. Our paper introduces the first
statistical learning framework for embedded systems, uniquely
integrating RF-based feature reduction, backward stepwise
selection, and correlation-aware allocation with bootstrapping
to create a robust, platform-agnostic model. Unlike prior
heuristic or filter-based methods, which lack systematic feature
evaluation or adaptability across heterogeneous platforms,
our approach outperforms existing techniques—where they
exist—achieving up to 10% energy savings and 61.6% lower
mean squared error, as validated against SOTA baselines on
diverse embedded hardware.

Little work applies statistical learning to feature selection
for task-to-core allocation with the rigor we propose. Statistical
learning predicts outcomes and reveals feature relationships.
Prior efforts used extreme value theorem (EVT) for energy and
execution time bounds in DVFES contexts [|11]-[14]], while Liu et
al. [8] applied XGBoost for latency-related features, and Sasaki
et al. [15] used decision trees and correlation for energy per
instruction. These lack the integrated, multi-method focus we
introduce for allocation, synergizing RF, OLS, and correlation
analysis for superior predictive power and generalizability in
embedded systems.

Our framework shows that correlation-aware task-to-core
allocation reduces chip temperature at intermediate utilization
by leveraging thermally independent cores. Backward stepwise
selection reveals a small feature subset suffices for accurate
energy estimation, while RF extracts critical features with low
overhead. Bootstrapping enhances dataset robustness, yielding
a compact, efficient model. This hybrid methodology surpasses
prior single-method approaches, validated across embedded
platforms for practical impact.

The key contributions are:

1) This paper pioneers a hybrid statistical learning approach,
integrating RF, backward stepwise selection, and correla-
tion analysis, to evaluate feature importance for accurate
environment modeling and compressed learning in task-
to-core allocation for embedded systems.

2) We implement correlation-aware allocation, statistically
reducing temperature and energy by assigning tasks
to uncorrelated cores, validated across heterogeneous
embedded platforms.

3) We employ bootstrapping to augment data and boost
accuracy, supporting few-shot and meta-learning in
resource-constrained embedded settings.

4) We rigorously test against state-of-the-art methods,
achieving up to 10% energy reduction and 5°C tem-
perature decrease. Our compressed, bootstrapped model
cuts prediction error by 6%, reduces parameters by 16%,
and improves mean squared error by 61.6% over SOTA.
Data were extracted from Intel Core i7 8th and 12th Gen
and Intel Xeon 2680 processors.

In the remainder, Section [V surveys statistical learning and
scheduling, Section [lI| details motivation and challenges, and
Section [[IT describes the methodology. Section [[V] evaluates
three processors, followed by conclusions in Section

II. MOTIVATION AND CHALLENGES

Feature selection is a cornerstone of statistical learning,
pivotal for optimizing task-to-core allocation in embedded
multi-core systems. It addresses critical challenges—curse
of dimensionality, large data management, and performance
unpredictability—common to platforms like Intel Core i7 and
NVIDIA Jetson TX2. To surpass prior filter-based approaches
and establish novelty, we leverage a hybrid methodology
integrating Random Forest (RF), backward stepwise selection,
and correlation analysis, tailored to embedded constraints.
This section clarifies these challenges in the context of
task-to-core allocation, emphasizing generalizability across
heterogeneous architectures and grounding our motivation in
rigorous, platform-validated insights.

A. Curse of Dimensionality

Feature selection is essential to mitigate the curse of dimen-
sionality, a challenge amplified in embedded multi-core systems.
As feature count rises—encompassing frequency, temperature,
and performance metrics like cache misses—the data space
grows exponentially, leading to sparsity in high-dimensional
spaces [[16]. This sparsity risks model overfitting, degrading
predictive performance on unseen data. In heterogeneous
embedded systems, the diversity of cores (performance, low-
energy, GPUs) expands the state space, with each core type
contributing unique thermal and performance characteristics.
For instance, Intel Core i7 12th Gen’s hybrid P/E-cores and
Jetson TX2’s big-LITTLE clusters introduce complex feature
interactions. Efficient feature selection, as implemented via our
RF-based reduction, reduces this complexity, enabling compact,
generalizable models critical for real-time embedded applica-
tions—offering a novel advance over traditional dimensionality
handling.

B. Large Data Management

Managing the growing volume of data is a pressing challenge
for task-to-core allocation in embedded systems, where resource
constraints demand efficiency. Allocation strategies may use
static historical data or streaming inputs adapting to runtime
conditions. With streaming data’s rise—common in automotive
or mobile embedded platforms—memory management becomes
critical, as unpredictable data volumes can overwhelm limited
resources. Retaining unnecessary features, such as redundant
performance counters, inflates storage and processing overhead,
straining embedded systems. Our hybrid approach, combining
RF for initial feature pruning and bootstrapping for data
augmentation, optimizes processor models and allocation
algorithms, reducing overhead while maintaining accuracy. This
addresses large data challenges with clarity and applicability
across static and dynamic embedded environments, surpassing
simpler filter-based data handling.

C. Performance Unpredictability

Performance unpredictability in embedded multi-core pro-
cessors stems from energy and thermal variability, driven
by features like temperature, frequency, and core-specific

6 —_——
(=]
2 108
e
Q .
s] flb iﬁ
E I strassen
5 .

7 @ alignment
21 . o
o0 8
= e e il
>
=

Corei712 Xeon Corei78
Processors

Fig. 1: Energy consumption variation across three different processors with
identical frequency and core count settings: Intel Core i7 8th Gen (Corei78)
with 4 cores, Intel Core i7 12th Gen (Corei712) with 14 cores, and Intel
Xeon 2680 v3 (Xeon) with 12 cores. The results are shown for three different
OpenMP benchmarks.

performance data. Figure [T illustrates this, showing energy
consumption varying by an order of magnitude across identical
frequency and core settings on Intel Core i7 8th Gen (4
cores), Intel Core i7 12th Gen (14 cores), and Intel Xeon
2680 v3 (12 cores) under OpenMP benchmarks. This variability
underscores the need for feature selection to pinpoint significant
predictors of energy and thermal behavior across platforms and
configurations. Our methodology—using backward stepwise
OLS for energy-critical features and correlation analysis for
thermal independence—identifies robust predictors, enabling
a global allocation policy. Unlike DVFS-centric prior works,
we prioritize task-to-core allocation, validated rigorously with
up to 10% energy savings and 5°C temperature reductions,
ensuring practical impact in embedded systems.

III. DESIGN METHODOLOGY

Our objective is to develop a robust multistage methodol-
ogy based on three feature selection approaches—embedded,
wrapper-based, and filter-based—and show how their combined
use informs an intelligent task-to-core allocation algorithm
for embedded multi-core systems. We introduce a hybrid
framework integrating Random Forest (RF), backward stepwise
OLS, and Pearson correlation, surpassing traditional filter-
based methods in efficiency and predictive power. We provide
a structured workflow adaptable to diverse platforms like
Intel Core i7 8th and 12th Gen, Intel Xeon 2680 v3, and
NVIDIA Jetson TX?2, while ensuring experimental rigor through
validated outcomes (e.g., 10% energy savings, 5°C temperature
reduction). This section details each stage, linking to embedded
system optimization.

A. Data Collection and Environment Setup

We begin by profiling the target embedded hardware under
diverse workloads to capture comprehensive data on energy
consumption, temperature variations, and relevant performance
metrics. The granularity of thermal sensors significantly varies
across platforms. Intel Core i7 8th generation and Intel Xeon
2680 v3 processors provide homogeneous core architectures

with individual per-core thermal sensors, enabling detailed per-
core correlation analyses. In contrast, the Intel Core 17 12th
generation features a heterogeneous architecture composed of
performance (P-cores) and efficient (E-cores) cores, each type
operating at different frequencies and performance characteris-
tics. Similarly, the NVIDIA Jetson TX2 offers thermal readings
aggregated at the cluster level, typically distinguishing between
big and little core clusters due to its big-LITTLE architecture.
Thus, our methodology accommodates per-core, heterogeneous
core, and cluster-level sensor capabilities, specifically tailored
to embedded computing environments, ensuring broad applica-
bility.

Our data collection covers a wide range of configurations,
including varying core counts (4, 12, or 14 cores), diverse CPU
frequencies, and task prioritizations. Tasks include representa-
tive benchmarks such as Fibonacci (fib), matrix multiplication
(Strassen), and sequence alignment (alignment), providing
varied computational intensities and memory access patterns
typical of embedded system workloads. This diverse dataset
enables accurate modeling of core behaviors under different
workloads and thermal conditions, essential for embedded
system optimization.

Initially, the system setup involves configuring the frequency
governor (typically schedutil) and initializing a temperature
buffer capable of storing historical temperature data from
cores (up to 10,000 entries). Additionally, a detailed task
history is maintained, capturing execution parameters such
as energy consumption, profiler metrics, and temperature data
under varying task priorities and frequencies. This systematic
variation ensures the dataset’s robustness and representativeness
for embedded systems.

Energy monitoring employs built-in hardware interfaces
such as /sys/class/powercap/intel—-rapl/ on Intel
processors or on-board power sensors for the Jetson TX2,
recording total energy consumed or average power during
task execution. Performance metrics collected include CPU
frequency, utilization, memory bandwidth, and hardware per-
formance counters like cache misses, gathered via utilities such
as perf and cpufreg-info at consistent intervals.

The random core assignment strategy serves as a baseline
to evaluate the effectiveness of our proposed correlation-aware
core allocation strategy. In the random assignment approach,
tasks run concurrently on randomly selected cores, typically
half of the available cores excluding core 0, reserved for system
tasks. Post-execution, we record metrics including temperature,
energy consumption, and performance data. Execution is
temporarily paused if core temperatures exceed predefined
thresholds (e.g., depending on thermal throttling point of
Intel Core i7 which is 100°C), allowing cores to cool down
before resuming execution. This baseline facilitates comparative
analysis against the correlation-aware allocation strategy.

The collected dataset serves as input for the subsequent
embedded feature reduction process, employing Random Forest
algorithms to identify minimal yet critical feature subsets. This
refined feature set is then utilized for accurate environment
modeling, guiding intelligent, temperature-correlation-driven

task-to-core allocation strategies specifically designed for
embedded systems. Ultimately, our structured, multi-stage
methodology aims to optimize thermal management and energy
efficiency across diverse embedded multi-core computing
platforms.

B. Embedded Feature Selection Using Random Forest

Embedded methods incorporate feature selection into the
model training process, thereby minimizing the need for
multiple model evaluations on different feature subsets. In
this work, we employ a Random Forest (RF) regressor, an
ensemble approach that constructs multiple decision trees and
aggregates their predictions, offering a novel low-overhead
alternative to filter-based methods.

a) Random Forest Algorithm.: The RF algorithm proceeds
as follows:

1) Bootstrap Sampling: Generate N bootstrap samples
from the original dataset.

2) Tree Construction: For each bootstrap sample, grow
a regression tree by selecting a random subset of
features at each node (often v/d features). Each tree is
grown to its maximum depth without pruning, although
hyperparameters such as the number of trees or maximum
depth can be tuned for embedded constraints.

3) Prediction Aggregation: For regression tasks, the final
prediction is the average of the individual tree outputs:

L
y= NZ?%‘-
i=1

b) Feature Importance Computation.: Random Forests
provide a measure of the importance of features by evaluating
the total decrease in the impurity of the nodes in all trees.
For regression trees, impurity is commonly measured by the
residual sum of squares. The importance score I; for feature

x; is thus:
| XN
I =— E E Al j,

i=1teT;

ey

@

where Al ; is the impurity decrease at node ¢ when splitting
on z;, and T; is the set of nodes in the ¢-th tree. The ranking
of features by these importance scores guides the selection of
highly influential predictors.

¢) Bootstrapping for Data Augmentation.: To increase
model robustness, we employ bootstrapping, a resampling
method that draws multiple datasets of size n with replacement.
Let D be the original dataset of size n. Forming B bootstrap
samples {D1,...,Dp} helps estimate variance and stabilize
the final model through aggregation of predictions.

d) Environment Modeling with Feature Selection.: After
identifying the most significant features using RF importance
scores, we build predictive models for environment modeling—
particularly neural networks—tailored to embedded constraints.
Let x € RP (with p < d) denote the reduced feature set. We
train a Fully Connected Neural Network (FCN) with multiple
layers and non-linear activations to predict key variables such

as energy consumption or temperature. The network is trained
by minimizing the mean squared error (MSE):

n

£0) = >~ Fxi0)%

i=1

3

where f(x;;0) is the network’s output for input x; with
parameters 6, and y; is the true label. By restricting the input
to a smaller set of highly relevant features, the FCN requires
fewer parameters and less computation, making it feasible
for real-time applications. As shown in Figure [2, our results
indicate that using 39 out of 72 predictors provides nearly the
same error value for estimating the future state of the processor
profiler data model. For the sensor temperature model, using
21 out of 31 features yields the optimal Cross-Validation error
(CV error), validated for embedded efficiency.

Profiler Model Temperature Model

1 1
1
i
0.0265 !
0.0110 |
= 0.0260 |
=] I
b 1
s 0.0109 |
S 0.0255 |
@) i
- |
= 0.0250 |
g 0.0108 :
1)]
0.0245 :
0.0107 f--------- :
0.0240 |
|

25 50 75 10 20 30

Number of Predictors Number of Predictors

Fig. 2: Determining the significance of features using Random
Forest with respect to cross-validation error on Intel Core i7
12th Gen.

C. Wrapper-Based Feature Selection

Wrapper methods evaluate subsets of features using a
predictive model. Because they account for feature interactions,
they typically yield higher accuracy than filter methods in
finding the importance of the features on a specific feature
parameter but may be more computationally expensive. We
employ the backward stepwise selection algorithm, which
starts with all available features and iteratively removes the
least significant feature based on a specified criterion. In our
case, we use the Ordinary Least Squares (OLS) regression
model to predict the target variables (energy consumption
and average temperature) and assess the significance of the
characteristics using statistical tests, enhancing the hybrid
framework’s precision.

a) Backward Stepwise Selection Algorithm.: Let F =
{x1,29,...,24} denote the full set of features. The backward
stepwise selection algorithm proceeds as follows:

1) Initial Model: Fit the OLS regression model using all
features in F:

d

y=B0+> Biwi+e “

i=1
where y is the target variable, [y is the intercept, 3; are
the coefficients, and ¢ is the error term.

2) Evaluate Feature Significance: For each feature z;,
compute the t-statistic and the corresponding p-value
to assess its statistical significance. The t-statistic for
coefficient f3; is calculated as:

Bi

T SE(B)

where f; is the estimated coefficient and SE(f;) is its
standard error.

3) Feature Elimination: Identify the feature with the high-
est p-value (least significant) that exceeds a predefined
significance level (e.g., o = 0.05). Remove this feature
from the model.

4) Tterative Refinement: Refit the OLS model using the
reduced feature set and repeat steps 2 and 3 until all
remaining features are statistically significant.

5) Model Selection Criteria: At each iteration, evaluate
the model using metrics such as the Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC),
Mallows’ C),, Adjusted R2, and CV Error. These metrics
help balance model complexity and goodness of fit.

(&)

t;

b) Evaluation Metrics for Our Wrapper Algorithm.:
We employ multiple metrics to gauge not only how well
each model fits the data, but also how efficiently it uses the
available features. This multi-criteria evaluation helps us verify
a model that performs reliably, avoids overfitting, and remains
computationally viable for energy-aware and thermal-critical
environments:

o Akaike Information Criterion (AIC). AIC estimates the
relative quality of statistical models for a given dataset:

(6)

where k is the number of estimated parameters, and
L is the maximized value of the likelihood function.
Lower AIC values imply better trade-offs between model
complexity and fit.

e Bayesian Information Criterion (BIC): BIC imposes a
stronger penalty on model complexity than AIC:

AIC = 2k — 2In(L),

BIC = kln(n) — 21In(L), @)

where n is the number of observations. BIC is helpful
for avoiding over-complex models in resource-constrained
environments.

e Mallows’ C): This criterion assesses the balance between
the model’s complexity and its fit to the data:

RSS

where RSS is the residual sum of squares, and 62 is an
estimate of the error variance.
o Adjusted R*: Adjusted R? modifies the coefficient of de-
termination (R?) to account for the number of predictors:
2
Adjusted R? =1 — (H)(”_l)) ()
n—k—1
Unlike plain R?, it penalizes the model for including
uninformative features.

e Cross-Validation Error: CV Error (often computed via
K-fold CV) offers an unbiased measure of out-of-sample
performance, revealing the model’s generalization capa-
bility and mitigating overfitting concerns.

By applying these evaluation metrics, we identify the optimal
number of features that balance predictive accuracy and model
simplicity. Figures [3a] and 3b demonstrate that using fewer
than 8 features suffices for accurate estimation of both average
temperature and energy consumption, indicating that tracking
only the most relevant predictors can improve energy efficiency
and thermal behavior, validated on Intel Core 17 12th Gen.

Temperature Data Profiler Data

-1300 5
o Q -2340 i
Z -1400 < -2360 | |
-1500 2380
-1300 -2000
© 1350 Q
L —
= 1400 = -2200
-1450
0 10 20 30 0 20 40 60
0.024 0.0122 | |
2.0.023 200120 | |
0.022 © 00118
0.021
o~ ~N 6
x [
~ 0.10 = 0.010
2 2
Z 0.05 3 0.005
= 0.00 = 0.000
0 20 40 60
g 00 5075
5 0.023 5 050
g K025 |4
b 0.022 % (.00 2
0 10 20 30 0 20 40 60

Number of Predictors Number of Predictors

(a) Average temperature estima-
tion

(b) Energy consumption estima-
tion

Fig. 3: Backward stepwise selection for estimating energy
consumption and average temperature. Retaining fewer than 8
predictors (features) yields accurate predictions in both cases.
Experiments performed on Intel Core i7 12th Gen.

D. Filter-Based Feature Selection

Filter methods assess the relevance of features by examining
intrinsic properties of the data without involving any learning
algorithms. One common technique in filter methods is to
evaluate the correlation between features and the target variable
or among the features themselves. In our study, we utilize
the Pearson correlation coefficient [|17] to quantify the linear
relationship between core temperatures, which can indicate
adjacency and potential heat transfer between cores, enhancing
allocation decisions.

Given a set of n observations for m cores, let §; ;, denote
the temperature of core i at observation k, and 6; represent
the mean temperature of core ¢ across all observations. The
Pearson correlation coefficient r;; between cores 7 and j is
computed as:

. >t (Oik — 0:) (05 — 0))
1]

Vi (0=)" i (03)
The value of r;; ranges from —1 to 1, where 1 indicates
a perfect positive linear correlation, —1 indicates a perfect
negative linear correlation, and O signifies no linear correlation
between the temperatures of cores ¢ and j. A high positive
correlation suggests that the temperatures of the two cores rise
and fall together, possibly due to physical proximity and shared

thermal characteristics.
By constructing a correlation matrix R = [r;;] for all pairs

of cores, we can visualize and identify clusters of cores that are
thermally correlated. This information is crucial for designing

(10)

task-to-core allocation strategies that minimize thermal hotspots.

As shown in Figure [4, the lower diagonal part represents the
regression line in the sparsified data, and the upper diagonal
part shows the colored correlation matrix, where a greener color
indicates a more positive correlation between the temperatures
of two cores.

a) Correlation-Aware Task-to-Core Allocation Algorithm.:
To leverage the insights from the correlation analysis, we
propose a correlation-aware task-to-core allocation algorithm.
The goal is to assign tasks to cores that are less thermally
correlated, thereby reducing the risk of localized overheating
and improving overall energy efficiency.

Let C = {e1,ca,...,¢m} denote the set of available
cores, and let R be the correlation matrix computed using
Equation (I0). The algorithm proceeds as follows:

1) Compute Core Correlation Scores: For each core ¢;,

calculate a correlation score s; defined as the average
absolute correlation between core ¢; and all other cores:

1 m
S — le\
Jj=1
i
A lower score s; indicates that core c¢; is less correlated
with other cores.
2) Rank Cores Based on Correlation Scores: Sort the
cores in ascending order of their correlation scores to
obtain a ranked list Cpynieqd.

(11)

A4 JE4R
- e
B N
g o
i EE
-
- EE
4 le Lo e L b
-l l-l-t= L

6; 6, 6; 6
=R

0,

CRLT R
LT EREER
e

(-

TORNTINTAne
AR
CLGLLRGTE

[0
54 =l L= Lo b L L
@ 050 €1 62 63 6, Bs B 6; 63 69
8, (°C)
Correlation Value
-1 0 1
[— |

Fig. 4: Correlation matrix based on Pearson correlation coeffi-
cients for 10 selected cores from an Intel Core i7 12th Gen
processor with 14 cores.

3) Select Cores for Task Assignment: Given the number
of tasks 7" to be assigned, select the first 7' cores from
Cranked» Which are the least correlated cores.

4) Assign Tasks to Selected Cores: Allocate tasks to the
selected cores, ensuring that each task is assigned to a
core with minimal thermal correlation to other active
cores.

5) Update Temperature Buffer: After task execution,
update the temperature observations ¢, j, to reflect the
new core temperatures, and recompute the correlation
matrix R for subsequent allocations.

E. Summary of the Multi-Stage Methodology

1) Data Collection: Profile per-core or per-cluster tempera-
tures, energy, and performance under varied workloads.

2) Random Forest (Embedded): Prune low-importance
features and optionally train an FCN environment model.

3) Backward Stepwise (Wrapper): Further refine the
most energy-critical features using OLS-based feature
elimination.

4) Filter-Based (Correlation): Analyze temperature corre-
lations (per-core or per-cluster) to guide thermal-aware
scheduling.

5) Task Allocation: Prioritize assigning tasks to the least-
correlated units, mitigating overheating and reducing
energy consumption.

By unifying these steps, we handle both fine-grained and
coarse-grained thermal sensor inputs without losing accuracy or
tractability. Random Forest algorithm provides the dimensional-
ity reduction required for backward stepwise selection to reduce

its computational overhead and their combination ensures
only the most relevant features to the energy consumption
remain. The filter-based approach on temperature readings
further addresses the correlation of the cores to each other for
core allocation to minimize the thermal hotspots, offering a
novel, scalable solution validated across platforms (e.g., 61.6%
MSE improvement over SOTA).

IV. EXPERIMENTS

This section presents the experimental setup, implementation,
and results of our generalized task-to-core allocation framework,
integrating Random Forest (RF) feature reduction, backward
stepwise OLS selection, and filter-based temperature correlation.
To ensure novelty beyond prior filter-based approaches, we
validate this hybrid methodology across diverse platforms,
demonstrating its effectiveness in optimizing energy and
thermal behavior. For clarity and broad applicability, we detail
platforms, benchmarks, and metrics, extending beyond Intel-
specific results to cluster-based systems. Rigorous quantitative
outcomes—backed by multi-platform experiments and com-
parisons to state-of-the-art (SOTA)—establish the framework’s
soundness. We outline the setup, training, and empirical findings
below, linking results to the methodology’s advanced feature
selection and modeling strategies.

A. Experimental Platform, Benchmarks, and Evaluation

All results and figures primarily reflect experiments on
a superscalar Intel Core i7 12th Gen with 14 cores (8 P-
cores, 6 E-cores, per-core temperature via sensors), chosen
for its hybrid architecture. To ensure generalizability across
architectures, we verified outcomes on an Intel Core 17 8th
Gen (6 cores), an Intel Xeon 2680 (12 cores), and an NVIDIA
Jetson TX2 (6 cores, 2 clusters—Denver and A57—with cluster-
level temperature via /sys/class/thermal). This multi-
platform approach validates the framework’s adaptability to
per-core and cluster-based systems, addressing the need for
broader applicability.

We evaluated each platform using the Barcelona OpenMP
Tasks (BOTS) suite [18]], featuring diverse parallel workloads
(e.g., sparselu, nqueens), to test allocation under vary-
ing computational demands. Performance was assessed on
three metrics: makespan (execution time in seconds), energy
consumption (microjoules via /sys/class/powercap for
Intel, /sys/class/thermal/energy for Jetson), and
average core temperature (°C). These metrics capture per-
formance, power, and thermal trade-offs, ensuring practical
impact. Each BOTS benchmark ran 10 times per configuration,
with results averaged to reduce variability. A temperature
cooldown threshold of 70°C between runs ensured thermal
stability, enhancing experimental rigor.

B. Implementation and Training Details

The framework was implemented in Python, leveraging
subprocess for system calls (e.g., coufreg-set, perf
stat), pandas for data management, and scikit-learn
for RF (100 trees) and OLS (p-value threshold 0.05). Parsl

facilitated parallel task execution, scaling across platforms.
Data from each platform’s profiler and temperature sensors
were split into 80% training and 20% test sets. Key hyperpa-
rameters—batch size (32), hidden neurons (64-256), epochs
(50-200), and learning rate (0.001-0.01)—were tuned via
grid search, balancing convergence and generalization. Mean
Squared Error (MSE) served as the primary loss criterion,
ensuring predictive accuracy.

We evaluated multiple neural network architectures—Fully
Connected Networks (FCN), Recurrent Neural Networks
(RNN), Long Short-Term Memory (LSTM) networks, Convo-
Iutional Neural Networks (CNN), and Attention-based models
(e.g., Transformers)—retaining top performers based on valida-
tion loss. Feature subsets were derived using the methodology’s
three stages: Pearson correlation for temperature dependencies,
backward stepwise OLS for energy-correlated features, and RF
importance rankings for reduction. Bootstrapping (100 resam-
ples) reduced overfitting and increased robustness, preserving
critical predictors while providing variance insights under
different sampling scenarios, contributing to the framework’s
statistical rigor.

C. Empirical Results

We developed two predictive models: a profiler model for
energy consumption and performance metrics (e.g., cache
miss rates, branch miss rates, CPU cycles, instructions per
cycle, average speed, page faults, context switches) and a
temperature model for future thermal behavior. The profiler
model incorporated all available features (e.g., 75 on Intel
Core i7 12th Gen) plus current per-core temperatures 6; and
differences A¢; = 6; ; — 0; ;1. The temperature model used
30 features on Intel Core i7 12th Gen (14 temperatures, 14
differences, average temperature), scaled to 6 features on
Jetson TX2 (2 cluster temperatures, 2 differences, average),
maintaining diversity without overhead.

Figures [, [5, Bal and [3b showcase Intel Core i7 12th
Gen results, demonstrating that fewer than 8 features (e.g.,
frequency, cache misses) suffice for accurate predictions,
reducing computational costs. Figure [2| shows RF-based feature
selection using 39 out of 72 predictors for profiler data and
21 out of 31 for temperature yields nearly optimal CV error,
highlighting efficiency critical for real-time embedded systems
with strict power and thermal budgets.

The algorithm dynamically adapts to thermal behavior,
distributing load evenly across cores or clusters. Figure [5
compares correlation-based (Corr) and random (Rand) core
selection under different governors on Intel Core i7 12th
Gen. While random allocation leverages unbiased distribution,
correlation-based allocation excels in subset scenarios (e.g.,
10 of 14 cores). Multi-platform validation reinforces these
trends across Jetson TX2, Intel Xeon 2680, and Intel Core i7
8th Gen, proving the approach’s adaptability beyond a single
architecture.

During training, hyperparameters were tuned to optimize
convergence speed and generalization, with models saved at
optimal checkpoints (e.g., when validation error plateaued or

@ —_ i Corr

:; f 1le8 @## Rand
%60 vy V2 ” 2 w?

© 20 :‘/ Y g S' W ;7 o
M =, el
- 1 5 9 13 e 1 5 9 13
2 Number of Cores w Number of Cores

Fig. 5: Comparison of average temperature and energy con-
sumption for correlation-based (Corr) and random (Rand) core
selection. Experiments performed on Intel Core i7 12th Gen
processor with 14 cores.

declined sharply). Independent neural networks for temperature
and profiler tasks ensured specialized performance, delivering
precise predictions tailored to each objective.

Table |I lists top features from Random Forest (RF) and
backward stepwise OLS selections for Intel Core i7 12th Gen.
Tables [[I and [[IT present regression statistics for temperature
and profiler predictors against energy consumption.

Table [I] shows RF selecting a broader feature set (e.g.,
all core temperatures, performance metrics) compared to the
more selective stepwise OLS, highlighting their complementary
roles in feature reduction. For the profiler dataset, Task ID
consistently ranks high in both methods, underscoring its key
role in identifying energy consumption patterns, followed by
Temp Core 1 and Temp Core 13 in OLS as significant predictors.
This suggests that cores 1 and 13, when heavily utilized, may
disproportionately influence energy use due to their temperature
profiles. Consequently, an allocation strategy minimizing task
assignments to these cores could enhance energy efficiency,
a hypothesis supported by their prominence in the feature
selection process.

Table [T evaluates per-core temperatures’ effect on energy,
with low p-values indicating significant predictors across
platforms (e.g., 61 on Xeon, 65 on Core i7 12th Gen).

Table [I1I] highlights profiler features’ statistical significance,
with metrics like Context Switch Rate and Cache Misses
showing strong energy correlations across platforms.

D. Comparative Model Analysis

We tested multiple neural architectures to identify optimal
designs for energy and temperature prediction, benchmarking
against a SOTA approach [19] to establish novelty and rigor.
Table [IV] details MSE percentage (M SE x 100) and parameter
counts on Intel Core i7 12th Gen. Baseline FCN achieved
solid performance (MSE 1.0299 temperature, 3.9047 profiler),
but FCN with RF feature selection (FCN+RF) improved
accuracy (0.9808, 2.4862) with fewer parameters (1694 vs.
2014 temperature; 2699 vs. 3787 profiler). Adding bootstrap-
ping (FCN+RF+BS) yielded the best results (0.9640, 2.4669),

Core 0 Temp (° C) Core 5 Temp (° C)

100

TS o 67
75 4 \
50| = Ground Truth 66 \
FCN 65 kY
25 . \
|-+ FON+RF ol WA
0 100 200 300 400 0 100 200 300 400
Core 1 Temp (° C) Core 6 Temp (° C)
66| == . Neeraeinna,,) 66 /_/\
64 .
64 LI TR Y
62 \/‘_'I
62
0 100 200 300 400 0 100 200 300 400
Core 2 Temp (° C) Core 7 Temp (° C)
87.5 66
85.0
825 [N\ | 64 s D o) \
7755

0 100 200 300 400 0 100 200 300 400
Core 3 Temp (° C)

70

0 100 200 300 400 0 100 200 300 400

Core 4 Temp (° C)

66

64

\62

0 100 200 300 400

o

100 200 300 400

Fig. 6: Results for temperature prediction from ground truth on
Intel Core 17 12th Gen for regular FCN and FCN via Random
Forest feature reduction strategy.

maintaining lightweight models ideal for resource-constrained
systems.

Figures [6] and [7] present prediction examples from Intel Core
17 12th Gen thermal and profiler data. The FCN model uses
the complete feature set, while FCN+RF leverages a reduced
subset identified by RF, forecasting environmental behavior
with notable similarity to full-feature predictions. This validates
RF’s effectiveness in compressing features without sacrificing
accuracy, enhancing computational efficiency.

Figure [§] illustrate the effect of feature selection and
bootstrapping on test MSE. Omitting either increases MSE by
20-30%, underscoring their combined benefit. By focusing on a
small, influential feature subset, the final FCN models improve
prediction accuracy and remain computationally light, aligning
with real-time and power constraints in multi-core embedded
systems. This synergy of reduced feature sets, resampling, and
specialized architectures (e.g., FCN+RF+BS) proves effective
across the BOTS workloads and platforms tested, surpassing
simpler filter-based methods and establishing the framework’s
novelty and practical value.

Overall, the advanced feature selection (filter, wrapper, and
embedded) combined with neural network models enhances

Dataset

Random Forest (Top Features)

Stepwise OLS (Top Features)

Profiler

Task ID, Actions, Temp Core 0-13, ATemp Core 0-13, Avg Temp, CPU Cycles,
CPU Cycles Freq, Atom Cycles, Instructions, Insn per Cycle, Atom Insn, Atom
Insn per Cycle, Cache Refs, Cache Refs Rate, Atom Cache Refs, Atom Cache Refs
Rate, Cache Misses, Cache Miss % Refs, Atom Cache Misses, Atom Cache Miss %
Refs, Cycles, Cycles Freq, Atom Cycles, Atom Cycles Freq, Branch Misses, Branch
Miss % Branches, Atom Branch Misses, Atom Branch Miss % Branches, Branches,
Branches Rate, Atom Branches, Atom Branches Rate, Page Faults, Page Fault Rate,
Context Switches, Context Switch Rate, CPU Clock ms, CPUs Used, Task Clock

Task ID, Temp Core I, Temp Core 13

ms, Task Util, Faults, Fault Rate, Sys Time s, Elapsed Time s, Energy
Temperature

Task ID, Actions, Temp Core 0-9, Temp Core 11-13, ATemp Core 0-13, Avg Temp

Task ID, Temp Core 0, Temp Core 2-4, Temp Core 7, Temp Core 10, Avg Temp

TABLE I: Key features ranked by Random Forest and backward stepwise OLS (lowest CV Error) for Profiler and Temperature
datasets. Temp Core 0-13 denotes per-core temperatures; ATemp is the temperature difference.

Xeon (12 cores)

Core i7 8th Gen (4 cores)

Core i7 12th Gen (14 cores)

0, Est. t-val. p-val. 0; Est. t-val. p-val. 0; Est. t-val. p-val.
61 2.35e5 5.76 8.48e-9 0o 3.64e3 5.69 1.31e-8 6o -3.79¢3 -6.83 8.41e-12
[22) -2.53e5 -5.38 7.38¢-8 61 -9.77e3 -4.18 2.87e-5 h) 4.87e2 276 5.81e-3
67 -1.56e5 -3.10 1.93e-3 63 8.00e3 3.57 3.64e-4 63 -5.96e3 -2.05 4.06e-2
fg -9.90e4 -2.04 4.09e-2 6o -4.63e2 -0.26 7.97e-1 69 -2.15e4 -1.93 5.38e-2
g -9.15e4 -1.91 5.66e-2 01 4.77e3 1.88 5.98e-2
04 6.84e4 1.64 1.0le-1 013 -1.22¢4 -1.77 7.62e-2
0o 6.62e4 1.59 1.12e-1 010 9.45e3 1.47 1.41e-1
011 -4.82e4 -1.10 2.72e-1 04 3.43e3 1.02 3.10e-1
910 -2.29¢4 -0.52 6.02e-1 011 6.64e3 0.91 3.65e-1
Z6) -2.04e4 -0.52 6.02e-1 07 6.87¢3 0.43 6.67¢e-1
63 -4.50e3 -0.10 9.18e-1 05 1.40e3 0.38 7.05e-1
65 4.68el 0.00 9.99e-1 612 1.06e3 0.13 8.94e-1

¢ 8.30e2 0.07 9.44e-1

g 8.11el 0.01 9.96e-1

TABLE II: Temperature predictors (6;) vs.

energy: Estimates (Est.), t-values (t-val.), p-values (p-val.), sorted by p-value.

Significant predictors (e.g., 01, 0y, 02) show strong energy impact.

Xeon (12 cores)

Predictor Est. t-val. Predictor

Core i7 8th Gen (4 cores)

Core i7 12th Gen (14 cores)

p-val. Est. t-val. p-val. Predictor Est. t-val. p-val.
Context Switch Rate -3.07e4 -34.90 1.34e-261 Elapsed Time 4.85¢7 39.51 0.00e0 Elapsed Time 4.67¢7 35.82 3.29e-275
Cache Miss % Refs 3.32¢6 34.45 4.02e-255 Cache Miss 2.23e5 21.35 3.80e-100 Atom Branch Misses 1.41e0 25.10 1.21e-137
Cache Refs 2.82e-1 33.53 4.94e-242 Cache Refs 6.39¢-2 16.03 1.48e-57 Cache Misses 4.18e-1 24.65 7.37e-133
Elapsed Time 6.44¢7 31.52 1.52e-214 Total Cores -5.34e6 -15.47 1.09e-53 Branch Misses 1.36e0 2278 6.66e-114
Cycles -1.98e-1 -16.52 5.22e-61 Branch Miss 3.37e6 10.41 2.43e-25 Atom Branches -1.93e-2 -18.87 5.72e-79
Branches -1.69e-1 -14.19 1.59e-45 Instructions -1.48e-3 -6.51 7.61e-11 Atom Cycles Freq -2.31e6 -17.85 7.14e-71
CPU Cycles -4.33e-2 -10.94 8.14e-28 Context Switch Rate -2.43e2 -5.42 6.10e-8 Atom Branches Rate 7.26e3 17.30 1.06e-66
Context Switches -2.14e3 -10.15 3.53e-24 Context Switches 2.07e3 522 1.82e-7 Branches 1.17e4 15.79 6.30e-56
Cache Misses -4.37e-1 9.78 1.47e-22 Insn per Cycle 5.84e5 4.33 1.52e-5 Atom Cycles -1.07e-1 -15.33 7.10e-53
Total Cores 7.82e4 9.69 3.43e-22 Branch Misses -1.06e0 -4.18 2.95e-5 User Time -1.31e8 -11.71 1.33e-31
Cycles Freq 1.74e8 9.65 5.41e-22 Cache Misses 1.04e-1 3.88 1.03e-4 Sys Time -1.29¢8 -11.59 5.34e-31
CPU Clock ms 2.63¢6 8.81 1.29¢-18 CPU Clock -5.82e5 -3.68 2.30e-4 Faults 3.77¢2 11.31 1.32e-29
User Time -2.27e8 -8.63 6.37e-18 CPU Cycles Freq 1.69e5 3.56 3.65e-4 Cycles Freq 7.57e4 11.31 1.40e-29
Sys Time -2.20e8 -8.38 5.60e-17 Task Clock 5.60e5 3.55 39le-4 Page Faults -3.70e2 -11.23 3.42e-29
Cache Refs Rate 6.97¢5 8.05 8.51e-16 CPU Cycles 6.89¢-4 2.64 8.18e-3 Avg Freq 1.14e3 10.39 3.00e-25
Task Clock -1.80e6 -6.17 7.12e-10 Page Fault Rate 9.68e3 245 1.41e-2 Atom Cache Miss -1.29e4 -10.15 3.74e-24
Branch Misses 1.82¢0 4.24 2.22e-5 Fault Rate 9.68e3 245 1.42e-2 Atom Branch Miss 9.16e0 9.09 1.07e-19
Insn per Cycle -9.52e6 -4.23 2.36e-5 Task Util 9.01e6 228 2.25e-2 Instructions -4.71e-4 -8.74 2.45e-18
Task Util -1.41e8 -2.30 2.12e-2 Cycles Freq 3.52e5 1.39 1.64e-1 Cache Miss 1.25e4 7.55 4.56e-14
CPUs Used 1.25¢8 2.04 4.14e-2 Branches Rate 1.56e3 1.34 1.80e-1 Branches Rate -1.77e-1 -6.68 2.44e-11
CPU Cycles Freq 2.00e6 1.20 2.30e-1 User Time 4.06e6 1.04 2.99-1 Cycles -L1le-3 -5.93 3.04e-9
Page Faults -2.64el -1.18 2.36e-1 Cycles 1.15¢-3 0.99 3.21e-1 Branch Miss 6.12¢0 5.86 4.69¢-9
Faults -2.62el -1.17 2.41e-1 CPUs Used -3.43e6 -0.87 3.85e-1 CPU Cycles -8.56e-4 -5.71 1.14e-8
Instructions 7.52e-4 0.51 6.09%-1 Sys Time 3.21e6 0.82 4.12e-1 Atom Cycles 1.12¢-3 5.67 1.47¢-8
Fault Rate -1.69¢2 -0.00 9.97e-1 Faults 5.90e0 0.53 5.95e-1 Branch Miss 2.58¢e4 5.37 8.12e-8
Page Fault Rate -1.69e2 -0.00 9.97e-1 Branches -8.77e-4 -0.17 8.69e-1 Context Switch Rate -5.68e2 -4.86 1.20e-6
Page Faults 1.90e-1 0.02 9.86e-1 Atom Cache Miss 1.09¢0 4.61 4.0le-6

TABLE III: Profiler predictors (excl. temp, freq, speed) vs. energy: Estimates (Est.), t-values (t-val.), p-values (p-val.), sorted by
p-value. Key predictors (e.g., Context Switch Rate, Elapsed Time) drive energy variance.

TABLE IV: MSE percentage and total number of parameters
for different architectures on Intel Core i7 12th Gen.

Model Temperature Profiler
MSE Params MSE Params
FCN 1.0299 2014 3.9047 3787
FCN+RF 0.9808 1694 24862 2699
FCN+RF+BS 0.9640 1694 2.4669 2699
RNN 1.0119 3070 2.8493 4843
LSTM 1.0307 9310 27778 15115
Conv 1.0134 5118 2.8217 6891
Attention 1.0143 6238 2.8933 8011
SOTA [19] 2.5000 - - -

energy and temperature prediction. Multi-platform results and

comparisons to SOTA validate the approach’s effectiveness,
rigor, and applicability to diverse multi-core systems.

V. RELATED WORK

a) Probabilistic Methods for DVFS and Task-to-Core
Allocation: Probabilistic worst-case execution time (pWCET)
and worst-case energy consumption (pWCEC) estimation in
embedded real-time systems leverage measurement-based and
static methods [|11]—[14]]. Pallister et al. [|[14] studied instruction-
specific impacts on pWCEC, and extreme value theorem (EVT)
[20] provided upper bounds for performance metrics. However,
these approaches rarely quantify the statistical significance of
system metrics for energy or latency bounds. Our work intro-
duces a hybrid statistical learning framework, systematically
prioritizing feature importance to optimize energy-efficient

Core Cycles Atom Branch Misses

2e+08 16406
2e+08 8e+05
1le+08 66405
1e+08 | 4e+05 _
0 100 200 300 400 0 100 200 300 400
Atom Cycles Makespan (s)
2e+08 le-01
2e+08 le-01
2e+08 9e-02 4
1e+08 8e-02 A\/
7e-02
0 100 200 300 400 0 100 200 300 400
Core Cache Misses Energy Consumption (J)
2e+06 - 7e+06 /\ a
16406 7e+06 \.“ \/\/
7e+06| * N
5e+05| \')
6e+06 .
0 100 200 300 400 0 100 200 300 400
Atom Cache Misses 9e-01 CPUs Utilized
e-
1e+06 /\’/—/\
8e+05 T\ | Bl
6e+05| o % | 8e0l
4e+05 : 7e-01
0 100 200 300 400 0 100 200 300 400
Core Branch Misses Context Switches
2e+06 9e+01
2e+06 8e+01
le+06| & 7e+01
1e+06| .7 | 6e+01
8e+05 +01

-1 5e
0 100 200 300 400 0 100 200 300 400

Fig. 7: Results for profiler data prediction from ground truth on
Intel Core 17 12th Gen for regular FCN and FCN via Random
Forest feature reduction strategy.

DVES and task-to-core allocation across diverse platforms,
surpassing traditional probabilistic bounds.

b) Statistical Learning: Statistical learning has been
employed to pinpoint features for energy optimization and
scheduling, often using hardware events or application traits
8], [11], [15]. Sasaki et al. [15] applied decision trees to
streamline DVFS table lookups, while Cazorla et al. [[11]] used
hardware counters for energy reduction. Liu et al. 8] correlated
compiler features with latency. Yet, these efforts underexplored
runtime metrics and sampling strategies critical for accuracy.
We enhance this by integrating runtime performance metrics
with a novel feature selection pipeline, validated across Intel
Xeon and Core i7 platforms, improving parallel scheduling
and environment modeling precision.

c) Low-Energy DVFS and Task-to-Core Allocation:
Low-energy multicore scheduling via DVFS and task-to-core
mapping is well-studied [21]-[30]. Xie et al. [21] surveyed
heuristic and machine learning methods for energy-constrained
scheduling. Many such ML approaches, however, require exten-
sive datasets and computational resources, limiting practicality.

Temperature Model MSE Profiler Model MSE
0.0100
0.02
0.0075
0.0050 0.01
0.0025
0.0000 0.00
s & & o & &
T s T s

Fig. 8: Comparison of FCN models with and without feature
selection and bootstrapping on Intel Core i7 12th Gen.

Our method mitigates these issues with a lightweight statistical
model, reducing data needs while maintaining accuracy, as
demonstrated on embedded and heterogeneous systems, offer-
ing a scalable alternative to existing high-overhead techniques.

d) Few-Shot RL: Few-shot learning, including transfer
learning and meta-learning, minimizes data demands in schedul-
ing [31]-[35]. MAML [36] adapts to new tasks with few
samples, and model-based RL [37] approximates dynamics
to limit real-world data use. Works like [9], [10], [38],
[39] underutilize statistical resampling and feature ranking
for energy-efficient scheduling. Our approach fills this gap,
combining resampling with a robust feature selection strategy,
validated across platforms, to enhance few-shot task-to-core
allocation efficiency.

e) Feature Evaluation: Thermal-aware scheduling models
often predict behavior using utilization or temperature data to
prevent throttling [[1], [4]], [40]-[44]. Studies like [4], [9], [10]
model transients and ambient conditions [[19], but lack rigorous
statistical analysis of feature correlations. We address this by
applying a systematic correlation-based feature evaluation, rig-
orously tested on real hardware, to uncover interdependencies
and optimize DVFS and allocation, improving energy and
performance outcomes over prior heuristic-driven methods.

VI. CONCLUSION

We demonstrated the effectiveness of feature selection using
statistical learning for environment modeling and task-to-core
allocation in embedded systems. Our correlation-aware task-to-
core allocation reduces energy consumption by up to 10% and
temperature by up to 5°C compared to random core selection.
The compressed bootstrapped regression model reduces thermal
prediction error by 6% and the number of parameters by 16%.
Tested on Intel Core i7 8th and 12th generation, Intel Xeon
2680 processors and Jetson TX2, our method shows a 61.6%
reduction in mean squared error compared to state-of-the-art
approach. This finding paves the way for future use of statistical
learning methods in performance efficiency of task-to-core
allocation in heterogeneous processors.

ACKNOWLEDGEMENT

The work was supported by the US National Science
Foundation through grants CNS-2301757, CAREER- 2306486,
CNS-2306745, and by the US Office of Naval Research through
grant N00014-23-1-2151.

[1]

[2]
[3]

[4

=

[5]

[7]

[8]

[9

—

[10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

S. Hosseinimotlagh and H. Kim, “Thermal-aware servers for real-time
tasks on multi-core gpu-integrated embedded systems,” in 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS). 1EEE, 2019, pp. 254-266.

S. et al., “Temperature-aware microarchitecture,” ACM SIGARCH, 2003.
1. Ratkovié, N. Bezanié, O. S. Unsal, A. Cristal, and V. Milutinovié,
“An overview of architecture-level power-and energy-efficient design
techniques,” Advances in Computers, vol. 98, pp. 1-57, 2015.

S. Maity, R. Roy, A. Majumder, S. Dey, and A. R. Hota, “Future aware
dynamic thermal management in cpu-gpu embedded platforms,” in 2022
IEEE Real-Time Systems Symposium (RTSS). 1EEE, 2022, pp. 396-408.
M. Shekarisaz, L. Thiele, and M. Kargahi, “Automatic energy-hotspot
detection and elimination in real-time deeply embedded systems,” in
2021 IEEE Real-Time Systems Symposium (RTSS). 1EEE, 2021, pp.
97-109.

S. Pagani, P. S. Manoj, A. Jantsch, and J. Henkel, “Machine learning
for power, energy, and thermal management on multicore processors:
A survey,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 1, pp. 101-116, 2018.

D. Brodowski, N. Golde, R. J. Wysocki, and V. Kumar, “Cpu frequency
and voltage scaling code in the linux (tm) kernel,” Linux kernel
documentation, p. 66, 2013.

D. Liu, S.-G. Yang, Z. He, M. Zhao, and W. Liu, “Cartad: Compiler-
assisted reinforcement learning for thermal-aware task scheduling and
dvfs on multicores,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2021.

C. Lin, K. Wang, Z. Li, and Y. Pu, “A workload-aware dvfs robust to
concurrent tasks for mobile devices,” in Proceedings of the 29th Annual
International Conference on Mobile Computing and Networking, 2023,
pp. 1-16.

S. Kim, K. Bin, S. Ha, K. Lee, and S. Chong, “ztt: Learning-based dvfs
with zero thermal throttling for mobile devices,” in Proceedings of the
19th Annual International Conference on Mobile Systems, Applications,
and Services, 2021, pp. 41-53.

F. J. Cazorla, L. Kosmidis, E. Mezzetti, C. Hernandez, J. Abella, and
T. Vardanega, “Probabilistic worst-case timing analysis: Taxonomy and
comprehensive survey,” ACM Computing Surveys (CSUR), vol. 52, no. 1,
pp. 1-35, 2019.

R. I. Davis and L. Cucu-Grosjean, “A survey of probabilistic timing
analysis techniques for real-time systems,” LITES: Leibniz Transactions
on Embedded Systems, pp. 1-60, 2019.

F. Reghenzani, G. Massari, and W. Fornaciari, “Probabilistic-wcet
reliability: Statistical testing of evt hypotheses,” Microprocessors and
Microsystems, vol. 77, p. 103135, 2020.

J. Pallister, S. Kerrison, J. Morse, and K. Eder, “Data dependent energy
modeling for worst case energy consumption analysis,” in Proceedings
of the 20th International Workshop on Software and Compilers for
Embedded Systems, 2017, pp. 51-59.

H. Sasaki, Y. Ikeda, M. Kondo, and H. Nakamura, “An intra-task dvfs
technique based on statistical analysis of hardware events,” in Proceedings
of the 4th international conference on Computing frontiers, 2007, pp.
123-130.

J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and
H. Liu, “Feature selection: A data perspective,” ACM computing surveys
(CSUR), vol. 50, no. 6, pp. 1-45, 2017.

P. Sedgwick, “Pearson’s correlation coefficient,” Bmyj, vol. 345, 2012.
A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade, “Barcelona
openmp tasks suite: A set of benchmarks targeting the exploitation of
task parallelism in openmp,” in 2009 international conference on parallel
processing. 1EEE, 2009, pp. 124-131.

S. Hosseinimotlagh, D. Enright, C. R. Shelton, and H. Kim, “Data-driven
structured thermal modeling for cots multi-core processors,” in 2021
IEEE Real-Time Systems Symposium (RTSS). 1EEE, 2021, pp. 201-213.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

S. Edgar and A. Burns, “Statistical analysis of wcet for scheduling,” in
Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS 2001)(Cat.
No. 01PR1420). IEEE, 2001, pp. 215-224.

G. Xie, X. Xiao, H. Peng, R. Li, and K. Li, “A survey of low-
energy parallel scheduling algorithms,” IEEE Transactions on Sustainable
Computing, vol. 7, no. 1, pp. 27-46, 2021.

G. Xie, G. Zeng, X. Xiao, R. Li, and K. Li, “Energy-efficient scheduling
algorithms for real-time parallel applications on heterogeneous distributed
embedded systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 12, pp. 3426-3442, 2017.

D. Zhu, R. Melhem, and D. Mossé, “The effects of energy management
on reliability in real-time embedded systems,” in [EEE/ACM International
Conference on Computer Aided Design, 2004. ICCAD-2004. 1EEE,
2004, pp. 35-40.

J. Jiang, W. Li, L. Pan, B. Yang, and X. Peng, “Energy optimization
heuristics for budget-constrained workflow in heterogeneous computing
system,” Journal of Circuits, Systems and Computers, vol. 28, no. 09, p.
1950159, 2019.

Y. Chen, G. Xie, and R. Li, “Reducing energy consumption with cost
budget using available budget preassignment in heterogeneous cloud
computing systems,” IEEE Access, vol. 6, pp. 20572-20583, 2018.

J. Zhou, J. Yan, K. Cao, Y. Tan, T. Wei, M. Chen, G. Zhang, X. Chen,
and S. Hu, “Thermal-aware correlated two-level scheduling of real-time
tasks with reduced processor energy on heterogeneous mpsocs,” Journal
of Systems Architecture, vol. 82, pp. 1-11, 2018.

Y. G. Kim and C.-J. Wu, “Autoscale: Energy efficiency optimization
for stochastic edge inference using reinforcement learning,” in 2020
53rd Annual IEEE/ACM international symposium on microarchitecture
(MICRO). IEEE, 2020, pp. 1082-1096.

S. M. P. Dinakarrao, A. Joseph, A. Haridass, M. Shafique, J. Henkel,
and H. Homayoun, “Application and thermal-reliability-aware reinforce-
ment learning based multi-core power management,” ACM Journal on
Emerging Technologies in Computing Systems (JETC), vol. 15, no. 4, pp.
1-19, 2019.

H. Shen, J. Lu, and Q. Qiu, “Learning based dvfs for simultaneous
temperature, performance and energy management,” in Thirteenth
International Symposium on Quality Electronic Design (ISQED). 1EEE,
2012, pp. 747-754.

Z. Wang, Z. Tian, J. Xu, R. K. Maeda, H. Li, P. Yang, Z. Wang, L. H.
Duong, Z. Wang, and X. Chen, “Modular reinforcement learning for
self-adaptive energy efficiency optimization in multicore system,” in 2017
22nd Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2017, pp. 684-689.

Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a
few examples: A survey on few-shot learning,” ACM computing surveys
(csur), vol. 53, no. 3, pp. 1-34, 2020.

D. Lee, N. He, P. Kamalaruban, and V. Cevher, “Optimization for
reinforcement learning: From a single agent to cooperative agents,” IEEE
Signal Processing Magazine, vol. 37, no. 3, pp. 123-135, 2020.

Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning. PMLR, 2016, pp. 1995-
2003.

C. Florensa, Y. Duan, and P. Abbeel, “Stochastic neural networks for
hierarchical reinforcement learning,” arXiv preprint arXiv:1704.03012,
2017.

S. Arora and P. Doshi, “A survey of inverse reinforcement learning:
Challenges, methods and progress,” Artificial Intelligence, vol. 297, p.
103500, 2021.

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in International conference on machine
learning. PMLR, 2017, pp. 1126-1135.

T. M. Moerland, J. Broekens, A. Plaat, C. M. Jonker et al., “Model-based
reinforcement learning: A survey,” Foundations and Trends® in Machine
Learning, vol. 16, no. 1, pp. 1-118, 2023.

T. Zhou and M. Lin, “Deadline-aware deep-recurrent-q-network governor
for smart energy saving,” IEEE Transactions on Network Science and
Engineering, vol. 9, no. 6, pp. 3886-3895, 2021.

Z. Zhang, Y. Zhao, H. Li, C. Lin, and J. Liu, “Dvfo: Learning-based
dvfs for energy-efficient edge-cloud collaborative inference,” IEEE
Transactions on Mobile Computing, 2024.

L. Yan, J. Luo, and N. K. Jha, “Combined dynamic voltage scaling and
adaptive body biasing for heterogeneous distributed real-time embedded

[41]

[42]

[43]

[44]

systems,” in ICCAD-2003. International Conference on Computer Aided
Design (IEEE Cat. No. 03CH37486). 1EEE, 2003, pp. 30-37.

D. Brooks, R. P. Dick, R. Joseph, and L. Shang, “Power, thermal, and
reliability modeling in nanometer-scale microprocessors,” leee Micro,
vol. 27, no. 3, pp. 49-62, 2007.

G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras, “Predictive dynamic
thermal and power management for heterogeneous mobile platforms,” in
2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 1EEE, 2015, pp. 960-965.

D. Li and J. Wu, “Energy-aware scheduling for frame-based tasks on
heterogeneous multiprocessor platforms,” in 2012 41st International
Conference on Parallel Processing. 1EEE, 2012, pp. 430—-439.

A. Kassab, J.-M. Nicod, L. Philippe, and V. Rehn-Sonigo, “Green power
aware approaches for scheduling independent tasks on a multi-core
machine,” Sustainable Computing: Informatics and Systems, vol. 31, p.
100590, 2021.

	Introduction
	Motivation and Challenges
	Curse of Dimensionality
	Large Data Management
	Performance Unpredictability

	Design Methodology
	Data Collection and Environment Setup
	Embedded Feature Selection Using Random Forest
	Wrapper-Based Feature Selection
	Filter-Based Feature Selection
	Summary of the Multi-Stage Methodology

	Experiments
	Experimental Platform, Benchmarks, and Evaluation
	Implementation and Training Details
	Empirical Results
	Comparative Model Analysis

	Related Work
	Conclusion
	References

