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Abstract
Recent advances in vision backbones have yielded
powerful and diverse visual and video encoders.
Yet, current Video Large Language Models en-
code visual inputs using an encoder from a single
backbone family, limiting the amount and type of
visual information they can process. We propose
MERV, a Multi-Encoder Video Representation,
which utilizes multiple encoders for a compre-
hensive video representation. To optimize het-
erogeneous features from a broad spectrum of
encoders and ensure efficient and coherent fea-
ture integration, MERV first aligns encoder fea-
tures spatio-temporally, then projects them into a
unified structure, and finally fuses them through
cross-attention. Under fair comparison, MERV
achieves up to 4.62% higher accuracy than its base
model, while introducing minimal extra param-
eters and training faster than equivalent single-
encoder methods after parallelizing visual pro-
cessing. Qualitative analysis shows MERV suc-
cessfully captures and integrates domain knowl-
edge from each encoder, opening new possibilities
for scaling enhanced video understanding.

1. Introduction
Inspired by the sophisticated reasoning abilities of recent
Large Language Models (LLMs) (Chiang et al., 2023;
Chowdhery et al., 2023; OpenAI, 2023), researchers have fo-
cused on using them in many other domains to great success.
The video counterparts, known as Video Large Language
Models (VideoLLMs) (Bain et al., 2021; Li et al., 2023c;
Lin et al., 2024; Luo et al., 2023; Maaz et al., 2024; Yu
et al., 2024b), connect pre-trained vision encoders to LLMs
by training a modality bridge from the vision space to the
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Figure 1. Examples where a single encoder model is the only
model to correctly answer Perception Test questions (Pătrăucean
et al., 2023), while MERV can correctly answer all types.

language space, allowing for reasoning to happen in the
highly expressive language domain.

Most multimodal LLMs, such as LLaVA (Liu et al., 2023)
for images and Video-LLaVA (Lin et al., 2024) for videos,
opt for contrastively pre-trained encoders like CLIP (Rad-
ford et al., 2021) and LanguageBind (Zhu et al., 2024a).
Their vision-language pre-training naturally lends itself as a
bridge between the vision input and the LLM, circumventing
the need to train heavy vision-language alignment modules
like a QFormer (Li et al., 2022). These encoders are al-
most always pre-trained separately and vary in architecture,
training data, and optimization strategy. Consequently, the
features extracted by these encoders exhibit unique charac-
teristics, each with inherent strengths and limitations. Con-
trastive encoders like CLIP may be better suited with their
multimodal semantic alignment, but are inferior to models
such as DINOv2 (Oquab et al., 2023) at fine-grained object
level understanding. They also fail to take advantage of
models trained specifically on videos, such as ViViT (Arnab
et al., 2021). Despite this clear tension between vision back-
bones, previous research in VideoLLMs has relied on only

one vision encoder for visual processing as one was thought
to be sufficient for visual understanding, and already dif-
ficult enough to achieve vision-language alignment with.
Any more encoders was unnecessary and not an effective
tradeoff of runtime for compute.

In this paper, we argue that this choice to not use multi-
ple encoders in existing VideoLLMs unnecessarily restricts
their capabilities. For example, in Figure 1 we can see
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Figure 2. MERV architecture and performance. (Left) MERV proceeds in three main stages. First, we feed in our input video into each
of visual encoders to get different representations. They are then spatio-temporally aligned before being fused by a cross-attentive mixer.
The output is a visual embedding with an additive mix of information from all the encoders, which is combined with the text query to
generate the result. (Right) We only compare MERV to the 7B prior models trained with comparable training data mixes. MERV is
on-par or better than these single-encoder prior works, while deliver considerable gains over Video-LLaVA (Lin et al., 2024), from which
MERV was initially adapted to form a Multi-Encoder Video Representation.

cases where only one of four different single-encoder mod-
els answers a given question correctly. While simple scene
descriptions can be answered by image-level models, other
questions require temporal and action-level comprehension,
benefiting from features encoded with video models like
ViViT (Arnab et al., 2021). Consequently, the reasoning
capabilities of these VideoLLMs are directly limited by the
inherent weaknesses of their respective pre-trained encoders.
Therefore, employing multiple encoders could allow us to
complement one encoder’s weaknesses with another en-
coder’s strengths. It also offers a cheap way to broaden the
input distribution, leveraging different encoder’s training
mixtures. The wide adoption of the LLaVA paradigm is
also indication that vision-language alignment is simple to
achieve, even without language-aware vision models.

We propose MERV, a Multi-Encoder Representation of
Videos, as a new method for integrating multiple visual
encoders into a single VideoLLM using a cross-attentive
encoder mixer for fusing representations. We introduce a
spatio-temporally aligned representation for mixing the in-
formation from multiple types of visual encoders. Given
the computational complexity of video tasks, we carefully
experiment with optimization strategies and parallelizing
the visual experts, allowing us to combine four distinct vi-
sual encoders with minimal computational overhead. Our
frozen method outperforms all individual encoder methods,
is up to 4.6% better than prior works (Lin et al., 2024) on
video reasoning benchmarks, i.e., from 37.66% to 42.28%
on TVQA (Lei et al., 2018), and on par with SeViLA (Yu
et al., 2024b) on Perception Test (Pătrăucean et al., 2023), a
challenging perception and reasoning diagnostic for video
models. Finetuning the full model improves MERV past
SeViLA (Yu et al., 2024b) by 2.2%, from 46.2% to 48.4%.
Finally, we do a detailed qualitative study of our model’s

capabilities on the Something-Something v2 dataset (Goyal
et al., 2017). We show that MERV can accurately capture
both contrastive encoders’ (Zhai et al., 2023; Zhu et al.,
2024a) strengths on general vision-language understand-
ing, as well as ViViT’s (Arnab et al., 2021) specialty on
temporally-sensitive tasks (e.g. distinguishing pushing left
vs. right), without trading off performance between these
specializations as single encoder models do. 1

2. Related Works
VideoLLMs build upon the powerful reasoning capabil-
ities of LLMs by utilizing them as language decoders
to enable instruction-followed video understanding. Key
advancements include VideoChat (Li et al., 2023c) and
Video-LLaMA (Zhang et al., 2023) for chat-based video
understanding, LLaMA-Adapter (Zhang et al., 2024b) for
pre-alignment, Valley (Luo et al., 2023) with multilingual
LLMs, InternVideo (Wang et al., 2022) with a dedicated
video encoder training phase, and Video-ChatGPT (Maaz
et al., 2024) combining video-adapted encoders with LLMs.
GPT4Video (Wang et al., 2023) supports video understand-
ing and generation, while MovieChat (Song et al., 2024)
focuses on long video comprehension. Models like Chat-
UniVi (Jin et al., 2024), LLaMA-VID (Li et al., 2024b),
and VTM (Lee et al., 2024) optimize token usage for video
representation. Other notable models include Vamos (Wang
et al., 2024b), which flexibly uses visual embeddings, ac-
tion labels, and video captions as input; VideoChat2 (Li
et al., 2024a), developed through three-stage progressive
training; Video-LLaVA (Lin et al., 2024), which aligns im-
age and video representations before projecting them to the

1Our code and pretrained weights are available at https:
//github.com/princetonvisualai/merv.
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LLM space; and VideoPrism (Zhao et al., 2024), which also
further trains a video encoder through masked distillation.
Specialized models like VTimeLLM (Huang et al., 2024)
focus on fine-grained video moment understanding and time-
bound reasoning, while models like Elysium (Wang et al.,
2024a) and Merlin (Yu et al., 2024a) can predict object tra-
jectories. SeViLA (Yu et al., 2024b) uses LLM for frame
localizer of the video for multiple-choice tasks. Finally, re-
cently LLaVA-Hound-DPO (Zhang et al., 2024a) explored
using DPO and a higher quality training set for better instruc-
tion following. Distinct from these aforementioned works,
our approach centers on utilizing a diverse array of visual
and video encoders, which are RGB-based but coming from
different visual backbone families, each with its own unique
strengths, to significantly enhance the capabilities of the
VideoLLM framework. By strategically using these spe-
cialized encoders, we aim to capture a broader spectrum of
visual information, enriching VideoLLMs’ understanding
of videos.

Combining multiple encoders for multimodal LLMs is
gaining attention. Eyes Wide Shut (Tong et al., 2024b)
explored mixing DINOv2 and CLIP features for LLaVA,
but their results signal that mixing features effectively re-
quires investigation. Both Mipha (Zhu et al., 2024b) and
Prismatic-VLMs (Karamcheti et al., 2024) found that image
encoders like CLIP and SigLIP, which are trained using
vision-language contrastive loss, surpass other image en-
coders such as ViT and DINOv2, with SigLIP showing
further improvements over CLIP. SPHINX-X (Gao et al.,
2024) and SPHINX (Lin et al., 2023) combines multiple
image encoders by concatenating features along the chan-
nel dimension, while BRAVE (Kar et al., 2024) concate-
nates features from multiple encoders sequence-wise, fol-
lowed by a QFormer with masked modeling. More recently,
Cambrian-1 (Tong et al., 2024a) creates a multimodal LLM
which spatially aligns their inputs across different resolu-
tions. This also reproduces our finding of the importance
of spatio-temporal alignment. There is also the popular
body of research on multimodal LLMs using many modali-
ties including image, video, audio and/or 3D (Chen et al.,
2023; Han et al., 2023; Li et al., 2023a; Lyu et al., 2023;
Panagopoulou et al., 2023; Su et al., 2023; Sun et al., 2023a;
Zhang et al., 2023; Liu et al., 2024a; Han et al., 2024; Liu
et al., 2024b; Jain et al., 2024). In contrast, this paper dives
into the video-language domain, exploring combining multi-
ple image and video encoders and exploiting their structural
similarities. Our multi-encoder feature alignment and fu-
sion are both performant and efficient in FLOPs, and results
in an all-encompassing additive mixture of features which
previous works could not achieve.

3. MERV: Multi-Encoder Representation of
Videos

Our goal for MERV is to systematically build a video model
that leverages multiple encoders with an LLM to process
a video following the LLaVA/PrefixLM (Liu et al., 2023;
2018) paradigm (see Figure 2). Unlike previous works, our
focus is not on combining multiple encoders of different
modalities that make use of additional information (depth,
audio, etc) (Bachmann et al., 2022; Zhu et al., 2024a), but
instead focus on RGB-encoders trained on different datasets
and objectives that offer different visual understanding. We
extensively ablate three key aspects to make this possi-
ble: our selection of multiple encoders, i.e., which visual
encoders and how many to use (Sec 3.1); how we align

the spatio-temporal representations of each encoder to mix
the information together, especially in an efficient manner
(Sec 3.2); and our implementation efficiencies, from the
parallel visual processing to the training recipes (Sec 3.3).

3.1. Multi-Encoder Feature Extraction

Our final architecture uses four distinct types of models: spa-
tial experts, fine-grained temporal experts, image-language
experts, and video-language experts. We found experimen-
tally that our choice of four performed the best across all
types of questions, and ablate our choices in Sec. 4.2. More
details about these four encoders are in Appendix Table 4.

Spatial expert: DINOv2 (Oquab et al., 2023) is trained
using unsupervised learning on local-to-global correspon-
dences in image data. The resulting features have robust
object part understanding, as well as semantic image under-
standing, but can suffer from poor language grounding.

Temporal expert: ViViT (Arnab et al., 2021) is trained
using supervised learning on short videos. The architecture
is designed for modeling the interactions between frames
using spatial and temporal attention, which lets it capture
longer temporal dependencies than pure image models can.

Image-Language contrastive expert: SigLIP (Zhai et al.,
2023) is trained using sigmoid contrastive learning on image-
text pairs. The model is designed to learn a joint embed-
ding space for images and text, which makes it good at
understanding vision-language associations. However, it
can overlook the finer details of an image which are not well
described by text in its training data.

Video-Language contrastive expert: Finally, our video-
language expert is LanguageBind (Zhu et al., 2024a). Used
by Video-LLaVA (Lin et al., 2024), LanguageBind is trained
through joint multimodal learning between text and mul-
tiple modalities (videos, infrared, etc.,) and understands
the relationship between video and text and their high-level
semantics. We only use the video encoder of LanguageBind.
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3.2. Spatio-Temporally Aligned Representations for
Feature Fusion

Our input is a batch of text, image-text, or video-text queries.
The visual part of the input, either images or videos, is
passed through each of the visual encoders to extract the
respective features. Here we describe the detailed care we
took in pre-processing to prepare the features for alignment.

First, images are treated as videos with repeated frames, so
assume all inputs are videos from here on out. A video is of
shape T ⇥H ⇥W , where T is the number of frames and
H,W are the height and width of the frames, and produce
an output of shape te ⇥ he ⇥ we for an encoder e. One
obstacle with using different visual encoders is that each
model outputs features with a different structure. For exam-
ple, given an input of shape 16⇥ 224⇥ 224, ViViT outputs
a feature of shape 8 ⇥ 14 ⇥ 14 whereas LanguageBind’s
features are of shape 16⇥ 16⇥ 16. Image-based encoders
will not change the temporal dimension, whereas ViViT
downsamples the frames by a factor of 2.

For temporal alignment, as each encoder is flexible enough
to handle varying input frames, we simply choose our input
T for each encoder so that each output te is the same across
all encoders, i.e. t.

Pre-fusion projection. Now we need to achieve spatial
alignment among the features. Naı̈vely combining them
will not work as they all have different spatial shapes. Us-
ing the full resolution features would also be prohibitively
expensive. We design a pre-fusion projector to tackle both
issues by aligning and compressing the features.

Suppose our feature from encoder e is ve 2 Rt⇥he⇥we⇥de ,
where de is the dimension of encoder e, and assume the
output spatial representations are square (i.e. he = we, but
we keep notation for clarity). Our pre-fusion projector uses
an adaptive 2D average pool P for each encoder to resize
the spatial dimensions to the same h⇥ w for all encoders,
where h < he and w < we. As t is the same across each
ve, this spatio-temporally aligns the representations.

Finally, we need to connect the varying embedding dimen-
sions de to a same dimensional space. We add a linear layer
to project the features from dimension de to d, the LLM’s
dimension. In total, our pre-fusion projection is

xe := P(ve)We 2 R`⇥d for e 2 Encoders (1)

where We 2 Rde⇥d is each encoder’s output linear layer,
and ` = t⇥h⇥w. This projector is lightweight, having only
d ⇥

P
e de trainable parameters for dimension matching,

making it easy to scale to an arbitrary number of visual
encoders. For detailed ablations, see Section 4.2.1.

Feature fusion strategies. The final part of our pipeline is
fusing the multi-encoder information together using cross-

attention with learnable queries to additively mix the dif-
ferent representations together. The visual features deter-
mine the weights of the linear mixture, which we find suf-
ficient for our task. We use a single randomly initialized
query Q 2 R1⇥d, keys as X = [x1 . . . xN ] 2 RN⇥d,
where xe 2 Rd is each encoder’s features (after Eq. 1)
averaged over the sequence dimension ` for a faster com-
putation, and N the number of encoders, and values as
X = [x1 . . . xN ] 2 RN⇥`⇥d. We calculate our final
unified feature as

O := Softmax

 
QX

>

p
d

!
X 2 R`⇥d

. (2)

The final step is to concatenate the visual embedding and
tokenized text together into the LLM. We use the base
LLaMA-2 7B model (Touvron et al., 2023b), which we
found performs better than the chat model. We test multiple
alternate feature fusion strategies in Section 4.2.2.

3.3. Implementation Efficiencies

Parallelized visual encoding. At a first glance, using multi-
ple encoders seems to be a large cost to pay when comparing
the raw FLOPs and parameters. However, a key benefit of
the LLaVA style architecture is that the entire feature ex-
traction and projection pipeline can happen in parallel. To
make this possible, we build on top of recent powerful ad-
vances in parallel processing for LLMs and use PyTorch’s
Fully Sharded Data Parallel (Zhao et al., 2023). As the
video encoders themselves are much smaller than the LLM
blocks, and their visual encoding processes are completed
in roughly the same amount of time, most of the overhead in
running four encoders is already covered by having just one
encoder (ref. Figure 3). We provide some timing numbers
in Section 4.2.3 and find that our step time is similar to that
of the single-encoder methods.

Our code is built on top of the Prismatic VLM code-
base (Karamcheti et al., 2024), which efficiently implements
vision-language model (VLM) training. We add the ability
to handle videos and an arbitrary number of visual encoders,
along with many useful features for training. Our training is
efficient for using multiple visual models, completing in un-
der 24 hours using 8 L40-48GB GPUs, and down to 8 hours
using 8 H100s. In contrast, the Video-LLaVA codebase runs
the Stage-2 training in around 38 hours on the same L40
setup and could not easily support multiple encoders in our
initial attempts.

MERV frozen and full. Many different recommendations
for training LLaVA style models have been made since
its inception. This is only made more complicated by the
introduction of new datasets with every new VideoLLM
architecture, making it difficult to properly determine the
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Table 1. Comparison of different multimodal LLMs on video reasoning benchmarks. We employ ChatGPT to evaluate performance
following Video-ChatGPT where applicable (version gpt-3.5-turbo-0613). * denotes our evaluation of using the author provided
checkpoint. The first five datasets were used as evaluation test sets during development; the last three were held-out for our final evaluation.

Methods MSVD-QA MSRVTT-QA TGIF-QA Perception ActivityNet-QA NExT-QA VLEP TVQA
Acc Score Acc Score Acc Score Acc Acc Score Acc Acc Acc

Alternative data mixes -
Video-Chat (Li et al., 2023c) 56.3 2.8 45.0 2.5 - - - 26.5 2.2 - - -
LLaMA-Adapter (Zhang et al., 2024b) 54.9 3.1 43.8 2.7 - - - 34.2 2.7 - - -
Video-LLaMA (Zhang et al., 2023) 51.6 2.5 29.6 1.8 - - - 12.4 1.1 - - -
Video-ChatGPT (Maaz et al., 2024) 64.9 3.3 49.3 2.8 - - - 35.2 2.7 - - -
SeViLA (Yu et al., 2024b) - - - - - - 46.2 - - 63.6 64.4 38.2
LLaMA-VID-7B* (Li et al., 2024b) 69.30 3.74 57.84 3.24 51.31 3.26 41.64 46.45 3.22 60.61 57.65 37.43
LLaMA-VID-13B* (Li et al., 2024b) 70.25 3.77 58.58 3.26 51.26 3.26 41.54 46.79 3.23 60.03 61.98 41.33

Same data mixes -
Video-LLaVA* (Lin et al., 2024) 67.74 3.69 56.90 3.18 47.99 3.17 44.22 47.08 3.27 59.61 61.21 37.66
MERV (frozen) / MERV 70.97 3.76 59.03 3.25 51.1 3.26 46.21 50.87 3.34 63.09 58.66 42.28
Gains to Video-LLaVA* +3.23 +.07 +2.13 +.07 +3.11 +.09 +1.99 +3.79 +.07 +3.48 -2.55 +4.62

MERV (full) 70.48 3.79 57.25 3.24 51.39 3.28 48.41 49.93 3.33 61.36 60.07 39.42
Gains to Video-LLaVA* +2.74 +.10 +0.35 +.06 +3.40 +.11 +4.19 +2.85 +.06 +1.75 -1.14 +1.76

best recipe for one’s own setup. We intentionally fix our
dataset to be the same as Video-LLaVA’s so we can iso-
late the impacts of the training setup, from which we find
two viable settings: MERV (frozen) and MERV (full). The
original Video-LLaVA’s recipe has two stages: a Stage 1
pre-training on captioning data to align only the connector
between the pre-trained vision encoder and LLM, and a
Stage 2 instruction tuning on both connector and the LLM.

• MERV (frozen), which performs only the Stage 2 in-
struction tuning inspired by Karamcheti et al. (2024);
it achieves similar results to the original Video-LLaVA
recipe in only 43% of the time;

• MERV (full), which undergoes both of the Stage 1 cap-
tioning pre-training and the Stage 2 instruction tuning,
but also unfreezes the LLM during Stage 1 for a slight
improvement on a few benchmarks.

As MERV (frozen) is faster to train with similar perfor-
mance, we adopt that recipe by default for analysis, and
interchangeably use MERV to refer to it for simplicity from
here on out. Detailed analysis is provided in Section 4.2.3.

4. Experimental Results
In this section, we show that our method outperforms prior
works across standard video-language benchmarks before
moving onto an in-depth analysis of our method and its
specializations in the next section.

Datasets and training procedure details. For fair com-
parison, our data mix is the same as Video-LLaVA (Lin
et al., 2024). The Stage 1 data is single-turn concise cap-
tioning, with 558k (image, text) pairs from LAION filtered
by LLaVA (Liu et al., 2023) and 702k (video, text) pairs
from Valley (Luo et al., 2023). The Stage 2 data is multi-
turn conversations, detailed captioning and reasoning, with
665k (image, text) pairs from LLaVA and 100k (video, text)

instructions from Video-ChatGPT (Maaz et al., 2024).

All the preprocessing, including frame extraction, adheres
to the original method that each encoder is trained with.
We extract 16 uniformly sampled frames from each video,
except for ViViT which extracts 32 frames by default but
produces a 16-frame output feature.

For MERV (frozen), we train on only Stage 2 data for 1
epoch with a learning rate of 2⇥ 10�5 and a batch size of
128 with gradient accumulation. For MERV (full), we first
train on Stage 1 data with a learning rate of 1⇥10�4 and the
projectors, feature fusion, and LLM unfrozen with similar
settings. Both recipes use an initial warmup ratio of 0.03
and a cosine schedule.

Evaluation. We evaluate our model on a compre-
hensive suite of video understanding benchmarks, in-
cluding the open-ended MSVD-QA (Xu et al., 2017),
MSRVTT-QA (Xu et al., 2017), TGIF (Jang et al., 2017),
and ActivityNet-QA (Yu et al., 2019), as well as the
multiple-choice benchmarks NExT-QA (Xiao et al., 2021),
VLEP (Lei et al., 2020), TVQA (Lei et al., 2018), and Per-
ception Test (Pătrăucean et al., 2023). We emphasize that
NExT-QA, VLEP, and TVQA datasets are held-out datasets
that we did not use during our experiments, and only evalu-
ated once after all the design is completed. We report both
accuracy and score following the Video-ChatGPT evalua-
tion protocol where applicable, and all evaluations are done
zero-shot without any dataset-specific fine-tuning. Results
using GPT-3.5-turbo for evaluation are done with the June
13th, 2023 cutoff date.

4.1. Comparison to State of the Art

Table 1 tabulates the performance of MERV (frozen) and
(full). We compare our model to the existing works, in-
cluding Video-LLaVA (Lin et al., 2024) that share our train-
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Table 2. Ablating design choices. We highlight our defaults in orange and bold the best results. Average accuracy is on MSVD,
MSRVTT, TGIF, and Perception Test. Full metric results are in the Appendix.

(a) Pre-fusion projectors. * is 16
frames instead of 8. Top two rows are
projector-free baselines.

Projector Avg Acc Params FLOPs
257 tok 54.76 - -
class tok 52.05 - -
2D Avg 54.96 0 2.1M
2D Avg* 55.86 0 4.2M
2D Attn 52.12 12.7M 9.7G
2D Conv 54.23 237M 241G
3D Avg* 55.09 0 4.2M
3D Conv 55.42 113M 232G

(b) Pre-fusion output token. We ablate
the optimal token size per frame for the
pre-fusion projector.

Tkns MSVD MSRVTT TGIF
1 61.94 54.64 41.41
4 64.47 55.72 45.32
16 67.23 56.44 47.75
64 69.08 58.00 50.01
100 68.38 57.47 48.78
144 68.65 57.73 48.81
256 68.46 57.72 48.66

(c) Feature fusion strategy. Cross-Attn
additive mixing is the best overall among all
the strategies on accuracy, for its FLOPs.

Strategy Avg Acc FLOPs
Cross-Attn 56.83 17.19 T
Concat (Seq.) 54.45 43.09 T
Concat (Ch.) 56.64 16.29 T
Learnable W 55.01 16.24 T
25% - Mixed 54.19 16.39 T

ing data mixture, and other VideoLLMs (Li et al., 2023c;
2024b; Maaz et al., 2024; Yu et al., 2024b; Zhang et al.,
2023; 2024b). We find that our method, generating video
representations using multiple visual encoders that special-
ize in different skills of video understanding, outperforms
Video-LLaVA across nearly all of the benchmarks, with a
4.1% gain on Perception Test, a 3.7% gain on ActivityNet
and a 4.6% gain on TVQA. Both of our methods perform
better overall than Video-LLaVA, even when using less data
with just Stage 2 as shown by the MERV (frozen) numbers.
While MERV (full) is not a strict improvement to MERV,
it still improves on some difficult benchmarks (e.g., Per-
ception Test) with its additional video-language alignment.
We believe that this makes MERV (full) generalize better
in unseen settings outside of these testing benchmarks, and
recommend using this recipe when possible. Compared
to LLaMA-VID-7B, which uses a different training mix,
we are better in nearly all benchmarks, up to around 4.5%
across Perception Test, ActivityNet, and TVQA. Moreover,
MERV (full) outperforms SeViLA on the Perception Test
zero-shot with 48.4%, compared to 46.2%. Overall, our
design shows a significant improvement over Video-LLaVA
and prior methods as a whole.

4.2. Ablations

In this section, we justify our design choices for the pro-
jectors, feature fusion strategies, and training recipes. Our
ablations are done with the MERV (frozen) recipe.

4.2.1. PRE-FUSION PROJECTORS

The first module we investigate is our projectors, which
serve to connect each encoder from its pre-trained embed-
ding space to a common embedding space. We test two
types of projectors: image-level, which operate on frames
independently, and video-level, which aggregate informa-
tion across frames. Projector details are provided in Sec-
tion A.3 in the Appendix. We report average performance
across our development sets of MSVD, MSRVTT, TGIF,
and Perception Test.

Pre-fusion projector. Table 2a tabulates our projector abla-
tion on average accuracy, parameter count, and FLOPs, with
the default settings of LanguageBind as the single vision
encoder and an 8 frame 64 token projection output. We find
that 2D average pooling is the best, with 55.86% average
accuracy, even better than using no projector on the full 257
token representation (as in Video-LLaVA (Lin et al., 2024)),
with 54.76% average accuracy. It also has no trainable pa-
rameters and the fewest FLOPs. The projection serves as a
form of feature selection, allowing the LLM to efficiently
reason only about the most relevant information.

One result worth noting is the poor performance (52.12%,
3.7% lower) of the attentive resampler, a popular projector
choice. The attentive resampler is less responsive to the in-
put spatio-temporal structure compared to other projectors,
which leads it to being a weaker projector for us. However,
it would likely be better with higher quality data from which
the transformer can learn. Increasing the frame resolution
from 8 to 16 was also a large improvement, showing that
increasing temporal resolution is still important. This high-
lights the importance of aligning representations with their
spatial and temporal structure, especially for video models,
which extract many more frames of visual information.

Projector token length. Similarly, we ablate the output
token length of the projector. Table 2b tabulates the per-
formance of producing 1 to 256 tokens for a 2D average
pooling projector with 16 frames as input. We see that the
performance peaks at 64 tokens with 69.08% MSVD ac-
curacy, with worse performance for longer token lengths
(max. 68.65%). This balances the number of tokens used
for condensing the visual embedding while also minimizing
the extra processing needed by the LLM.

4.2.2. FEATURE FUSION STRATEGIES

Next, we test different strategies for fusing the informa-
tion from all of the features, with detailed breakdowns in
Table 2c. First, we evaluate two popular concatenation meth-
ods, in either the token sequence dimension, or the channel
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dimension followed by an MLP for matching the LLM di-
mension. While sequence-wise concatenation is widely
used in multimodal LLMs (Tong et al., 2024b), our method
outperforms it while using significantly less computation,
with a 56.8% average accuracy compared to 54.4%, while
also using 2.5⇥ fewer FLOPs. Concatenation channel-wise
reaches a similar performance of 56.6% and a lightweight
cost. However, our cross-attention shows better average
performance, better or on par on 3 out of 4 benchmarks (ref.

Appendix Table 6c), with the additional benefit of having
accessible encoder weightings for analysis, so we stick with
cross-attention for our final design. We also try different
methods of additive mixing as an ablation. The last two
rows of Table 2c show the performance when either learn-
ing the additive weights as a single scalar or by fixing the
weights to be 0.25 for each of the 4 encoders. We see that
using cross attention outperforms both methods by 1.8%
and 2.6%, as our feature fusion module can dynamically
generate better fused embeddings based on the visual input.

4.2.3. TRAINING RECIPES

Finally, we also compare different training recipes based on
the literature and our own expertise. Apart from training
recipes mentioned in Section 3.3, many recent works have
attempted some combination of other strategies, such as
unfreezing the vision encoders in Diao et al. (2024), which
usually requires more training data.

We systematically map out this landscape, fixing our dataset
to be the same as Video-LLaVA’s. Unlike them, we found
that the Stage 1 phase did not help much when training only
the projectors and feature fusion (ref. Appendix Table 5),
with roughly the same average accuracy. Stage 2 instruction
tuning alone leads to similar results in 43% of the total
time, so we adopt this recipe for efficiency and refer to it
as MERV (frozen). This recipe is still unsatisfying as it
leaves a large amount of data, approximately 1.3M vision-
text pairs, unused for training. In our empirical observations,
we found that the resulting video-language alignment was
suboptimal. The distributions of language used in video
training datasets and benchmarks sparsely overlap based on
their sentence embeddings, which could be impacting our
ability to generalize zero-shot on downstream benchmarks.
We address this by unfreezing the LLM during Stage 1 to
better learn this alignment, improving performance on a few
key benchmarks, especially Perception Test, by up to 2.2%.
We call this recipe MERV (full).

As another ablation, we train MERV on a single stage com-
prised of the Stage 1 and Stage 2 data mixed together (ref.

bottom of Appendix Table 5). Surprisingly, this does worse
than the explicit two stage training recipe. We attribute
this to the explicit types of data in each stage being a form
curriculum learning, showing that these stages are still im-

Figure 3. Extra encoders incur minimal step time overhead.
We add encoders in the order of DINOv2, LanguageBind, SigLIP,
ViViT, plotted alongside the slowest single encoder in each group.

portant for optimal performance.

Finally, we provide evidence for the efficiency of our
method (ref. Figure 3). We use the default FSDP shard-
ing strategy PyTorch provides; it is not currently possible
to specify explicit plans for which modules go where (but
may be possible as FSDP matures). However, even with
this basic strategy, our method is dominated by the slowest
single encoder present, incurring very little additional over-
head from extra encoders due to this parallelization, making
it cost-efficient to scale up in the number of encoders.

4.3. Ensemble Composition

The original motivation of our work was to choose encoders
with complementary visual knowledge to form a comprehen-
sive representation for our final model. The key questions
are 1) do we benefit by using more than one encoder, and 2)
do we need all four encoders, i.e. does each one meaning-
fully contribute to the final performance?

Can we make use of more encoders? The conventional
wisdom is to use a single encoder, typically a contrastively
trained vision-language model like CLIP, SigLIP, or Lan-
guageBind (Radford et al., 2021; Zhai et al., 2023; Zhu
et al., 2024a), in a VideoLLM. In Figure 4a ( ) , we show
the four single encoder models corresponding to each of our
chosen encoders using their full embeddings. They not only
all perform worse than MERV but also use more FLOPs, as
without our pre-fusion projectors, their sequence lengths are
at least 4⇥ ours.

Are each of the encoders contributing? To affirm that
this set of four encoders is actually beneficial for improving
understanding, we train three-encoder VideoLLMs under
the same strategy, but removing a different encoder each
time. Each of these models does worse based on the strength
of the encoder removed, meaning that MERV is using their
knowledge (ref. Fig. 4a, ). The minor drop in FLOPs
illustrates how most of the computation is still dominated
by the LLM, not the vision encoders.

7
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(a) (b)

Figure 4. Analysis plots supporting our design of multiple en-
coders, from their accuracy to their skill specializations.
(a) Visual Encoder Subsets. MERV outperforms single-encoder
VideoLLMs ( ), with our feature projectors unlocking more
computational efficiency. Removing any encoder also reduces
MERV performance ( ). Average accuracy is across MSVD,
MSRVTT, TGIF, and Perception Test. (b) SSv2-MCQ and Tem-
poral. Temporal denotes performance on 12 selected classes where
actions are indistinguishable if played in reverse (ref. Sec. 5.3).
Full results are in the Appendix Tables 7, 8, 10.

5. Analysis
5.1. Cross Attention Weights Activate on Corresponding

Videos

We first understand our method by looking at the cross at-
tention weights on our 4 benchmark datasets (MSRVTT,
TGIF, MSVD, and Perception Test), and visualizing the
videos which have the highest attention weight for each
of the encoders in Figure 5. This lets us see what types
of videos activate each encoder the most. As expected,
ViViT attention weights are highest on videos with large
motion, as ViViT has strong temporal understanding. Mean-
while, SigLIP is utilized for videos that have textual data in
the video, likely due to being vision-language contrastively
trained, especially with textual data during training. DI-
NOv2 and LanguageBind are both preferred by videos with
static scenes, but LanguageBind is preferred for videos with
foreground motion.

5.2. MERV Can Capture Visual Skills of Different
Encoders

Next, we ask if our model effectively captures knowledge
from its encoders. We first answer through our previous
open-ended QA benchmarks. To assess the performance
across different visual tasks, we create “pseudo”-skill cate-
gories by looking at the first word of the question sentence,
which are often WH-words. They can be viewed as a proxy
of skills required to solve the task. For example, Where
requires spatial understanding and When requires temporal
understanding. Figure 6 shows the relative performance of
different visual encoders. While the contrastive models gen-
erally dominate each category, no single encoder performs

LanguageBind

DINOv2

ViViT

SigLIP

Figure 5. Videos that give the highest attention weight for each
of the encoders. The right-most column shows the average frame
of the video. For more examples, see Figure 11 in the Appendix.

best in all tasks. LanguageBind, for example, performs
the best in TGIF-What with 46.23%, while DINOv2 per-
forms on par with the best in MSVD-Who with 82.12%.
Our method combines different encoders into an unified
representation and consistently matches or improves the
best-performing single-encoder model. Raw numbers are in
Table 9 in the Appendix.

5.3. MERV Can Intuit Motion and General
Understanding Simultaneously

We take another angle to quantifying how well our model
learns from each of its individual encoders by looking back
to classic video action recognition datasets. They are com-
monly used for general action understanding, but they can
also be used to evaluate finer-grained capabilities. We are
most interested in both general understanding and distin-
guishing actions which are temporally ambiguous, i.e., indis-
tinguishable when reversed in time, such as Pulling [some-

thing] from left to right and Pulling [something] from right

to left. This offers a fair analysis of both general and finer-
grained video understanding.

We turn to the Something-Something v2 (Goyal et al., 2017)
(SSv2) dataset, where the goal is to classify an input video
into one of 174 classes, e.g., Pulling [something] from left to

right. This allows us to analyze our model’s understanding
of temporal-spatial interaction with minimal distractions
from scene understanding and real-world semantics. How-
ever, evaluating SSv2 as a zero-shot open-ended task is
difficult with a long tail of specific categories. Thus we
reformat the dataset into 5-way multiple-choice questions

8



Unifying Specialized Visual Encoders for Video Language Models

Figure 6. Single encoder vs. MERV on different types of video
tasks. We plot the relative performance of VideoLLMs with dif-
ferent visual encoders. While each single encoder has its strength
in different tasks, our method shows better performance than all
the other single encoders in almost every task. We only plot tasks
with more than 500 samples. See Appendix for details.

(MCQ) and fix the prompt to be “How is the object in the
video being interacted with?”. Incorrect choices were ran-
domly sampled from the other 173 classes. We call this
benchmark “SSv2 - MCQ” to distinguish it from the origi-
nal classification task. Additionally, we selected 12 classes
a priori from SSv2, where the action is indistinguishable if
reversed in time, e.g., Pulling [something] from left to right

and Pulling [something] from right to left to form a subset
that can test the model’s ability in temporal understanding.

Figure 4b plots the performance of MERV and single-
encoder models on this temporal subset (x-axis) against the
full dataset (y-axis). We see that the ViViT single-encoder
model, which often falls short in other video QA bench-
marks, surprisingly performs better than other encoders at
39.77% on temporal subset, which is 9.19% higher than
the next closest model LanguageBind. However for the
full SSv2 - MCQ, ViViT suffers with a worse performance
of 26.78%, as ViViT’s strength is on temporal understand-
ing despite lacking in vision-language understanding. Con-
trastive encoders have the upper-hand in most other classes.

We believe that the architecture, datasets, and objective of
each model causes these difference. ViViT processes spatial-
temporal tubelets for embeddings, leading to better temporal
understanding despite only being pre-trained on Kinetics-
400 classification. SigLIP uses image-based ViT with no
temporal layer has limited temporal understanding, but has
a greater knowledge due to its larger training set and con-
trastive objective. MERV, at 42%, shows better performance
compared to all these single-encoder models via leveraging
strength of all the individual encoders. MERV (full) per-
forms better than both VideoLLaVA (Lin et al., 2024) and
the 7B and 13B variants of LLaMA-Vid (Li et al., 2024b).

Finally, we also plot the performances of six SSv2 classes
where the performance difference between ViViT and
SigLIP is largest in Figure 7. We see that actions which
cannot be inferred from a single frame are the ones that
ViViT performs better, e.g., Pushing [something] from left

to right is indistinguishable from Pushing [something] from

right to left if temporal information is omitted. Meanwhile,
SigLIP performs better for classes where understanding the

Figure 7. Single-Encoder Performance Difference in
Something-Something v2 - MCQ. ViViT shows better
performance on tasks where temporal understanding is crucial,
while LanguageBind (LB) and SigLIP show better performance
where task can be solved from single-frame understanding.

semantics of the scene can hint the action that is happening,
e.g., if a frame where a blanket is dropped on an object
is given, one can easily expect Covering [something] with

[something] without watching the full video. See Appendix
Figure 9 for sample videos of the these classes.

6. Conclusion
Previous VideoLLMs have been limited to relying on a
single visual model for feature extraction, which leads to
limited understanding capabilities of vastly different video
tasks. In our work, we break this paradigm and explore
various fusion strategies for combining information from
multiple visual experts to generate a representation that can
leverage the capabilities of different video encoders. We find
that our multi-encoder feature fusion is able to outperform
comparable methods by up to 4.62% on video reasoning
benchmarks. We show that the method can obtain better
performance than the best-performing single-encoder model
with minimal computational overhead. Finally, we quantita-
tively and qualitatively observe the skill specializations our
model learns on an MCQ format of Something-Something
v2, which confirms both that encoders can be specialized
and that our model captures both axes of knowledge. Our
paper proposes some initial steps in rethinking how we ap-
proach the use of multiple encoders. We hope that this
inspires others to also consider this problem as another di-
rection for scaling and improving their VideoLLMs.
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A.1. Limitations

Our work is based on the LLM, LLaMA-2 7B model (Touvron et al., 2023b), and as with many other VideoLLM
models, the performance of our method is hugely dependent on the capabilities of the LLM model, and better-performing
models often demand significantly more computation. MERV requires an LLM and running multiple encoders, which
can be computationally intensive and can lead to out-of-memory errors in resource-limited settings (while our efficient
implementation alleviates the issue). While FSDP (Zhao et al., 2023) allows us to easily and effectively train larger models
across multiple GPUs than would otherwise be possible, its generality also makes it difficult for us to design tailored sharding
strategies that would maximize the performance of our model. However, with future improvements to data parallelism,
our model can still benefit greatly and run even more efficiently. Also, despite the improved speeds, there is still an
upper bound for what constitutes a reasonable training time that still allows us to test many of our design assumptions,
which limits the scale and number of experiments we can run. While we show that our method can successfully leverage
information from different visual encoders, nevertheless if the encoders themselves are limited in video understanding
capability, MERV cannot fully compensate for that.

A.2. Model Details

A.2.1. BASELINE ENCODER AND LLM DETAILS

Table 3. Visual Encoder and LLM Information.

Model Visual Encoder LLM
Video-Chat (Li et al., 2023c) ViT-G (EVA-CLIP) (Sun et al., 2023b) StableVicuna (contributors, 2023)
LLaMA-Adapter (Zhang et al., 2024b) CLIP (Radford et al., 2021) LLaMA-1 7B (Touvron et al., 2023a)
Video-LLaMA (Zhang et al., 2023) ViT-G (EVA-CLIP) (Sun et al., 2023b) + BLIP-2 Q-Former (Li et al., 2023b) Vicuna-7B v0 (Chiang et al., 2023)
Video-ChatGPT (Maaz et al., 2024) CLIP (Radford et al., 2021) Vicuna-7B v1.1 (Chiang et al., 2023)
SeViLA (Yu et al., 2024b) ViT-G (EVA-CLIP) (Sun et al., 2023b) + BLIP-2 Q-Former (Li et al., 2023b) FlanT5-XL (3B) (Chung et al., 2024)
LLaMA-VID-7B (Li et al., 2024b) EVA-G (Fang et al., 2023) Vicuna-7B v1.5 (Chiang et al., 2023)
LLaMA-VID-13B (Li et al., 2024b) EVA-G (Fang et al., 2023) Vicuna-13B v1.5 (Chiang et al., 2023)
Video-LLaVA* (Lin et al., 2024) LanguageBind (Zhu et al., 2024a) Vicuna-7B v1.5 (Chiang et al., 2023)

A.2.2. MERV ENCODER DETAILS

Here, we detail the visual encoder details, LLM, and the training objectives. We plan to release our full code including
training and evaluation as well as all model checkpoints for the camera-ready version of the paper.

LanguageBind We use the code from the original author, using the pre-trained weight
LanguageBind/LanguageBind Video merge uploaded on huggingface.
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Table 4. Encoder Information. Detailed information about the four encoders used in our experiments. They represent a broad coverage
of visual information and training objectives.

Model Architecture Expertise Training Datasets Training Objective
LanguageBind (Zhu et al., 2024a) ViT-L/14 Video+Language VIDAL-10M, five-modal video examples Contrastive
DINOv2 (Oquab et al., 2023) ViT-L/14 Spatial LVD-142M Self-Supervised
ViViT (Arnab et al., 2021) ViViT-B/16⇥2 Actions/Temporal Kinetics-400/600, short videos Supervised
SigLIP (Zhai et al., 2023) ViT-B/16 Image+Language 4B curated image/text pairs Contrastive

DINOv2 As DINOv2 is an image-model, we get embedding per frame, and concatenate them to be a video embedding. We
use ViTLarge model, pre-trained on LVD-142M dataset, and take the penultimate layer for the embeddings. Specifically,
we use timm’s vit large patch14 reg4 dinov2.lvd142m

ViViT We use ViTbase as our backbone, pre-trained on Kinetics-400 dataset. Specifically, we use
google/vivit-b-16x2-kinetics400 uploaded on huggingface. We use featurizer output as the video embed-
ding.

SigLIP As SigLIP is an image-model, we get embedding per frame, and concatenate them to be a video embedding.
We use ViTbase as our backbone, and take the penultimate layer for the embeddings. Specifically, we use timm’s
vit base patch16 siglip 224

We also considered multiple other options for encoders, such as CLIP-ViP (Xue et al., 2023) for our video-language
contrastive expert, V-JEPA (Bardes et al., 2024) and Hiera (Ryali et al., 2023) for our pure video model, and CLIP (Radford
et al., 2021) for our image-language contrastive expert, but found that our choices performed better overall.

A.3. Detailed Experimental Results

Here we tabulate the full experimental results that was abbreviated from the main paper. The first table (Table 5) ablates the
different training recipes we tried for MERV, with extended discussion in Section 4.2.3.

Table 5. Ablation of training stage recipes. We explore different training recipe strategies, starting with the standard LLaVA recipe
which Video-LLaVA adopted, along with some other variations.

Methods MSVD-QA MSRVTT-QA TGIF-QA Perception Test ActivityNet-QA
Acc Score Acc Score Acc Score Acc Acc Score

MERV (frozen) 70.97 3.76 59.03 3.25 51.1 3.26 46.21 50.87 3.34
MERV, Video-LLaVA recipe 70.92 3.78 58.74 3.25 51.67 3.27 47.48 50.42 3.33
MERV (full) 70.48 3.79 57.25 3.24 51.39 3.28 48.41 49.93 3.33
MERV, mixed Stage 1+2 69.9 3.73 55.14 3.08 51.53 3.26 45.65 39.98 2.95

Pre-fusion projector details. The image-level projectors are similar to those described in MM-1 (McKinzie et al., 2024):
2D adaptive average pooling, a shallow attention resampler similar to a Perceiver Resampler (Alayrac et al., 2022), and
convolutional pooling with 3 RegNet blocks on both sides of an average pool layer such as the C-Abstractor in Honeybee (Cha
et al., 2024). For video-level projectors, we use a 3D average pool, where we pool to the same spatial dimension but
furthermore pool the frame dimension by 2, and a 3D convolution where we add a single 2⇥ 3⇥ 3 convolution before the
same average pooling. For all projectors, we project to the same number of tokens t⇥ h⇥ w, using an adaptive average
pool or h⇥ w latent tokens for the attention resampler.

We also provide the full metric numbers in Table 6a, 6b and 6c for our ablations that are described in Sections 4.2.1 and 4.2.2.

Note on TGIF-QA Video-ChatGPT’s and Video-LLaVA’s author-reported numbers on TGIF are incomparable as they
were on a subset of the dataset. See https://github.com/PKU-YuanGroup/Video-LLaVA/issues/37.
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Table 6. Full design choice ablation numbers. Detailed experimental results of Tables 2a, 2b, 2c. We highlight our defaults in
orange and bold the best results.

(a) Pre-fusion projectors. * is 16 frames instead of 8. Top two rows are projector-
free baselines.

Projector MSVD MSRVTT TGIF Perc. Params FLOPs
257 tok 68.47 55.81 48.62 46.14 - -
class tok 65.98 55 43.7 43.51 - -
2D Avg 68.23 56.92 48.99 45.69 0 2.1M
2D Avg* 69.08 58 50.01 46.34 0 4.2M
2D Attn 65.76 55.23 43.35 44.14 12.7M 9.7G
2D Conv 67.48 56.78 47.6 45.04 237M 241G
3D Avg* 68.62 57.2 49.59 44.95 0 4.2M
3D Conv 68.56 57.03 49.28 46.81 113M 232G

(b) Pre-fusion output token. We ablate the
optimal token size per frame for the pre-fusion
projector.

Tkns MSVD MSRVTT TGIF Perc.
1 61.94 54.64 41.41 42.85
4 64.47 55.72 45.32 43.31
16 67.23 56.44 47.75 43.18
64 69.08 58.00 50.01 46.34
100 68.38 57.47 48.78 45.56
144 68.65 57.73 48.81 43.94
256 68.46 57.72 48.66 43.51

(c) Feature fusion strategy. We compare our feature fusion strategy with concatenating the visual embeddings in either
token sequence dimension or the channel dimension, learning an optimal embedding mixture weights, and training with
equal 25% mixture of visual embeddings.

Strategy MSVD MSRVTT TGIF Perc. FLOPs
Cross-Attn 70.97 59.03 51.1 46.21 17.19 T
Concat (Seq.) 66.99 56.95 48.20 45.67 43.09 T
Concat (Ch.) 70.02 58.08 51.1 47.36 16.29 T
Learnable W 68.06 56.54 48.82 46.6 16.24 T
25% - Mixed 68.38 56.99 47.71 43.66 16.39 T

Table 7. Effect of Each Encoder. Detailed results of Figure 4a.

Methods MSVD-QA MSRVTT-QA TGIF-QA Perception ActivityNet-QA Avg
Acc Score Acc Score Acc Score Acc Acc Score Acc

All 4 encoders 70.97 3.76 59.03 3.25 51.10 3.26 46.21 50.87 3.34 55.64
w/o LanguageBind 68.52 3.69 57.10 3.19 50.20 3.23 45.23 49.78 3.31 54.17
w/o DINOv2 69.75 3.74 57.70 3.23 49.94 3.23 46.57 51.43 3.34 55.08
w/o ViViT 70.12 3.75 58.26 3.23 50.45 3.22 46.94 51.36 3.33 55.43
w/o SigLIP 69.85 3.74 57.55 3.22 50.27 3.22 46.20 50.06 3.32 54.79

Table 8. MERV Captures Single Encoder Performances. Detailed experimental results of Figure 4a.

Methods MSVD-QA MSRVTT-QA TGIF-QA Perception ActivityNet-QA Avg Params
Acc Score Acc Score Acc Score Acc Acc Score Acc FLOPs Overall

MERV 70.97 3.76 59.03 3.25 51.10 3.26 46.21 50.87 3.34 55.64 17.19 T 7686.0 M

LangBind 68.47 3.71 55.81 3.16 48.62 3.19 46.14 44.72 3.17 52.75 41.3 T 7147.0 M
DINOv2 65.44 3.62 53.46 3.09 41.53 2.96 42.73 43.39 3.09 49.31 40.88 T 7046.0 M
ViViT 59.95 3.43 51.81 3.05 38.1 2.84 40.2 43.98 3.16 46.81 27.12 T 6830.0 M
SigLIP 66.68 3.64 56.41 3.16 48.22 3.16 45.09 49.41 3.31 53.16 31.08 T 6834.0 M
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Table 9. Performance on WH-words. Detailed experimental results of Figure 6.
MSRVTT-what MSRVTT-who MSRVTT-how MSRVTT-when MSVD-what MSVD-who TGIF-what TGIF-how TGIF-where

MERV 50.62 77.17 83.96 72.23 62.68 84.62 49.44 53.33 65.34
ViViT 43.06 70.43 78.90 68.54 50.10 75.90 32.90 50.10 50.62
DINOv2 44.54 73.00 76.95 65.73 55.71 82.12 37.14 50.69 58.40
LanguageBind 46.89 74.86 83.41 72.53 59.66 82.95 46.23 53.24 59.92
SigLIP 47.96 74.41 84.21 71.20 57.17 82.23 45.65 53.25 60.21

A.4. Something-Something v2 Details

Figure 8. Samples of MERV in SSv2. Due to our design, our method shows better temporal action understanding than other VideoLLMs.
(Top two rows) However, due to the difficulty of the task, we see failure cases for VideoLLMs. (Bottom two rows)
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Figure 9. Example video of Something-Something V2. We see that ViViT show better performance in classes where temporal movement
is critical for solving the task (Top row), while SigLIP performs better when the action can be inferred from the image without temporal
information (Bottom row).

A.4.1. SOMETHING-SOMETHING V2 - OPENENDED

Table 10. Performance on Something-Something V2 - OpenEnded. These are the performance in shown Figure 4b
MERV MERV-Full LanguageBind DinoV2 ViViT SigLIP LLaMA-Vid-7B LLaMA-Vid-13B VideoLLaVA

Smth-Smth V2-OE-Temporal 6.82 9.13 3.63 3.88 5.50 4.25 6.07 3.94 5.57
Smth-Smth V2-OE 17.70 20.65 13.83 11.03 10.53 13.84 16.47 15.62 19.18

Smth-Smth V2-MCQ-Temporal 36.84 40.65 30.58 28.08 39.77 25.39 27.14 17.89 22.47
Smth-Smth V2-MCQ 42.01 39.76 36.82 33.06 26.78 34.86 36.63 39.43 23.14

Additionally, we evaluate Something-Something V2 as an open ended QA task, where the question is ”How is the object in

the video being interacted with?”, and the answer is expected to be similar to the class label. We use Video-ChatGPT (Maaz
et al., 2024)’s LLM evaluation for validating the VideoLLMs’ output. Table 10 tabulates the results. We see similar
conclusions as with MCQ where ViViT excels at temporal subset than other single-encoder LLMs, but failing to match the
performance in full dataset. Nonetheless, our method shows the best performance overall.

A.4.2. SOMETHING-SOMETHING V2 - TEMPORAL

The 12 selected classes are as following:

• Approaching [something] with your camera
• Turning the camera downwards while filming [something]
• Turning the camera left while filming [something]
• Turning the camera right while filming [something]
• Turning the camera upwards while filming [something]
• Moving away from [something] with your camera
• Moving [something] away from the camera
• Moving [something] towards the camera
• Pulling [something] from left to right
• Pulling [something] from right to left
• Pushing [something] from left to right
• Pushing [something] from right to left
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Figure 10. Example VideoLLM output on Something-Something v2. While SigLIP performs better on object and scene recognition, it
fails to understand temporal actions. ViViT fails on the details of object recognition, but has better understanding in temporal movements.

A.5. Additional Experiments and Analyses

A.5.1. ADDING MORE ENCODERS

Additionally, we test with one more encoder Hiera (Ryali et al., 2023). The checkpoint we use was pretrained using the
Masked Autoencoder (MAE) self-supervised learning technique on Kinetics 400 (K400), and then finetuned on K400 using
supervised learning.

Table 11. Performance with Hiera (Ryali et al., 2023).

Methods MSVD-QA MSRVTT-QA TGIF-QA Perception ActivityNet-QA
Acc Score Acc Score Acc Score Acc Acc Score

VideoLLaVA 67.74 3.69 56.90 3.18 47.99 3.17 47.08 3.27 44.22
MERV 70.97 3.76 59.03 3.25 51.1 3.26 50.87 3.34 46.21
MERV, ViViT replaced with Hiera 69.68 3.74 57.64 3.22 50.38 3.24 50.24 3.34 47.50
MERV + Hiera 69.67 3.72 58.26 3.23 50.32 3.22 51.23 3.34 46.23
ViViT Single Encoder LLM 59.95 3.43 51.81 3.05 38.10 2.84 43.98 3.16 40.20
Hiera Single Encoder LLM 55.38 3.28 49.21 2.95 36.02 2.76 44.01 3.15 40.20

The results are presented in the Table 11, with the best result in bold. Replacing ViViT with Hiera demonstrates improvements
on the fine-grained spatio-temporal reasoning benchmark, Perception Test, with accuracy gain of 1.29%. Similarly, adding
Hiera yields an improvement on ActivityNet, achieving a 0.36% increase in accuracy. However, on other benchmarks, the
original MERV remains the strongest model. Overall, we observe no significant performance improvement when training
with Hiera, which aligns with expectations, since Hiera is under the same paradigm as ViViT, functioning as a temporal
expert trained on short videos. We also hypothesize that Hiera is more sensitive to the temporal stride than ViViT, as ViViT
can reasonably deduce motion from uniformly sampled frames. We expect performance to improve if we incorporate
encoders trained on different paradigms and data sources or process a much greater number of frames simultaneously, which
we will leave for future work.

A.5.2. ATTENTION WEIGHTS

Our analysis in Section 5.1 looks at how different cross-attention weights activate most on different videos, illustrated in
Figure 11.

A.6. More Qualitative Results

We present additional qualitative results in Figure 12 and Figure 13.
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LanguageBind

DINOv2

ViViT

SigLIP

Figure 11. Videos that give the highest attention weight for each of the encoders. The right-most column shows the average frame of
the video.
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Figure 12. Samples of MERV in video understanding.
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Figure 13. More qualitative results. MERV tends to show improved understanding in temporal-heavy videos as in Something-Something
v2 dataset (Goyal et al., 2017) (Top Row), while retaining the performance on scenic understanding, seen from popular video bench-
marks (Xu et al., 2017; Yu et al., 2019) (Bottom Row).
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