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Abstract

Training vision-language models via instruction tuning often relies on large mix-
tures of data spanning diverse tasks and domains. However, these mixtures fre-
quently include redundant information, increasing computational costs without
proportional performance gains—necessitating more effective data selection strate-
gies. Existing methods typically rely on task-agnostic heuristics to estimate data
importance or focus on optimizing single tasks in isolation, limiting their effective-
ness in multitask settings. In this work, we introduce ICONS, a gradient-based
Influence CONsensus approach for vision-language data Selection. Our method
leverages first-order training dynamics to estimate the influence of individual train-
ing examples on validation performance and aggregates these estimates across
tasks via majority voting over task-specific influences. This cross-task consensus
identifies data points that are consistently valuable across tasks, enabling us to
prioritize examples that drive overall performance. The voting-based design fur-
ther mitigates issues such as score calibration and outlier sensitivity, resulting in
robust and scalable data selection for diverse multitask mixtures. With only 20%
of the data from LLAVA-665K and CAMBRIAN-7M, our selected subsets retain
98.6% and 98.8% of the performance achieved with full datasets—and can even
surpass full-data training at a 60% selection ratio on LLAVA-665K. Our approach
also generalizes to unseen tasks and architectures, demonstrating strong trans-
fer. We release two compact, high-utility subsets—LLAVA-ICONS-133K and
CAMBRIAN-ICONS-1.4M —preserving impactful training examples for efficient
and scalable vision-language model development.

1 Introduction
Visual instruction tuning is a crucial step in training multimodal language models [25, 26], enabling
them to follow language instructions grounded in visual content. Recent approaches rely on large-
scale datasets such as LLAVA-665K [25] and CAMBRIAN-7M [42], which contain 665K and 7M
examples, respectively. While effective, these datasets introduce significant barriers to iteration and
deployment: prolonged training times [3, 17], high storage demands [39, 8], and substantial compute
costs [30, 43]. Moreover, not all examples contribute equally to all tasks—naively scaling up diverse
data mixtures can introduce redundancy and inefficiency. This raises a fundamental question:

Can we identify a compact, multitask-effective subset of training data that preserves model
capabilities arcoss tasks while enabling faster experimentation?

Prior work has explored various data selection strategies, including gradient-based approaches [45,
6], influence functions [47, 19], and diversity-based sampling [48, 4]. However, many of these
methods either optimize for single tasks in isolation or maximize source diversity without aligning to
downstream needs. In multitask visual instruction tuning, this is particularly limiting: optimizing for
one task may hurt generalization, and task-agnostic diversity may dilute impact. Rather than selecting
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Figure 1: Influence consensus for vision-
language data selection. (Left) Given a large
scale visual instruction tuning dataset (LLAVA-
665K), our method uses majority voting across
task-specific influence scores to identify training
samples that are consistently influential across
multiple tasks, forming a compact 20% subset
(LLAVA-ICONS-133K) with data points achiev-
ing influence consensus. (Right) The radar plot
compares performance between LLAVA-665K
and our selected subset, showing the selected sub-
set achieves comparable results to the full dataset.

data based on per-task influence, we aim to iden-
tify samples that are broadly useful—training ex-
amples that consistently contribute across tasks.
To do this, we aggregate gradient-based influ-
ence scores using a simple yet effective majority
voting scheme.

We introduce ICONS (Influence CONsensus
vision-language data Selection), a method that
builds upon the gradient-based selection ap-
proach LESS [45]. Given access to validation
data for each target task, our method: (1) com-
putes first-order gradient influence scores to
measure how each training sample impacts task-
specific performance, and (2) uses influence con-
sensus through majority voting to identify train-
ing samples that show consistent positive value
across multiple tasks. This consensus-based
mechanism identifies universally valuable train-
ing examples: while some samples might be
highly influential for individual tasks, we prior-
itize those that demonstrate broad utility across
the task spectrum. While the computational cost
of influence estimation is expensive, this front-loaded, one-time investment yields a standardized,
compact dataset that can significantly accelerate development of multimodal models, and enables
reusable gradient datastores that amortize costs across iterations and deliver long-term savings.

Using ICONS, we create LLAVA-ICONS-133K and CAMBRIAN-ICONS-1.4M, automatically
curated 20% subsets of the LLAVA-665K dataset [25] and CAMBRIAN-7M [42] dataset, respectively.
These compact datasets maintain 98.6% and 98.8% of their original performance across multiple
vision-language tasks, providing significant improvements over randomly selecting same-sized
subsets (95.8% and 95.4%) and eliminating approximately two-thirds of the performance drop
from shrinking the training data. Moreover, our ICONS outperforms all baselines across different
selection ratios, and remarkably achieves above-full-dataset performance, surpassing the original
datasets at a 60% selection ratio for LLAVA-665K. Importantly, the selected subset shows strong
transferability, e.g., LLAVA-ICONS-133K maintains 95.5-113.9% relative performance across
unseen tasks, suggesting that ICONS identifies fundamentally valuable training data. We summarize
our key contributions:

1. We propose ICONS, a simple yet effective method for multitask vision-language data
selection that identifies broadly valuable training examples via majority voting over task-
specific gradient influence scores.

2. Our consensus-based selection outperforms all baselines (§3.2) and we ablate influence
aggregation strategies and show the advantage of voting-based consensus (§3.3). We further
show that ICONS exceeds 102% of full-dataset performance at a 60% selection ratio on
LLAVA-665K (§3.5).

3. We release LLAVA-ICONS-133K and CAMBRIAN-ICONS-1.4M, compact 20% subsets
of LLAVA-665K and CAMBRIAN-7M respectively, achieving near-full performance (98.6%
and 98.8%), transferring well to unseen tasks (§3.4), and serving as standardized training
sets for resource-efficient development.

2 Influence consensus for vision-language data selection

We propose a consensus-driven, gradient-based data selection framework (Fig. 2) for visual instruction
tuning datasets. We formalize the problem setup in §2.1 and establish gradient-based influence
estimation preliminaries in §2.2. Our two-stage data selection framework consists of: the specialist
stage (§2.3), which computes task-specific influence scores, and the generalist stage (§2.4), which
builds cross-task consensus through voting-based aggregation.
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Figure 2: ICONS. The Specialist stage (left) processes each task individually through three steps:
(1) warmup training on a small subset of data, (2) gradient computation for both training and target
task validation data, and (3) influence matrix computation to generate per-task influence scores. This
process is repeated for each target task. The Generalist stage (right) performs Influence Consensus
to aggregate information across tasks, where samples scoring above the 80th percentile threshold for
each task receive a vote. The final selection is made by summing votes across tasks and selecting
the top 20% most influential samples, creating a compact yet highly effective training dataset that
performs well across all tasks.

2.1 Problem formulation

Given a large-scale visual instruction tuning dataset D = {(Ii,xi,yi)}Ni=1 containing N samples,
where each data point zi = (Ii,xi,yi) includes an image Ii, natural language instruction xi, and
corresponding target response yi

1, and given access to validation data Vk for each downstream
task Tk 2 T = {T1, ..., TK}, our goal is to select a compact subset S ⇢ D of size M ⌧ N that
maximizes model performance across multiple downstream tasks:

S
⇤ = argmax

S⇢D,|S|=M

KX

k=1

Rel(fS , Tk), Rel(fS , Tk) =
Score(fS , Tk)

Score(fD, Tk)
, (1)

where fS and fD denote models trained on subset S and full dataset D, respectively. Score(f, Tk) is
the task-specific evaluation score achieved by model f on task Tk. We define the average relative
performance across all tasks as Rel. =

PK
k=1 Rel(fS , Tk)/K. Rel. quantifies the subset-trained

model’s performance relative to that of the model trained on the entire dataset, with values close to 1
indicating that the subset maintains the performance of full training [21]. Our objective is to select a
subset where Rel. ⇡ 1, i.e., the model trained on the subset achieves comparable performance to the
one trained with full dataset.

2.2 Preliminaries

Building on the problem formulation in §2.1, we formalize how to estimate the influence of training
samples on downstream task performance. Since our goal is to maximize Rel(fS , Tk) across tasks as
defined in Eqn. 1, we need an efficient way to estimate how each training sample contributes to the
Score(fS , Tk) term in the numerator. Denote a training data point as z and a validation data point as
z0 from validation set Vk for task Tk. Following [37, 45], we estimate how z 2 D affects validation
loss by measuring its gradient alignment with reducing validation loss on Vk, which directly impacts
task-specific evaluation. When training with SGD and batch size 1, using data point z at timestep
t leads to a model update ✓t+1 = ✓t � ⌘tr`(z;✓t), where ⌘t is the learning rate. To reduce the
computational cost, we use the first-order Taylor expansion to estimate the loss on a given validation

1The framework supports multi-turn conversational data, yet we formalize the problem setup for single-turn
instruction-tuning for clarity and simplicity.
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data point z0 at time step t+ 1 as:
`(z0;✓t+1) ⇡ `(z0;✓t) + hr`(z

0;✓t),✓t+1 � ✓ti.

The influence of a training data point z on a validation data point z0 is:
It(z ! z0) = `(z0;✓t+1)� `(z0;✓t) ⇡ �⌘thr`(z

0;✓t),r`(z;✓t)i,

which we refer to as an influence score.

The gradient-based selection approach selects training samples {z} that maximize the gradient inner
product hr`(z0;✓t),r`(z;✓t)i2 through a greedy, first-order approximation, which leads to larger
reductions in validation loss for point z0. While it omits second-order terms compared to influence
functions [19], it provides an efficient approximation to rank the impact of training samples [45].

2.3 Specialist: individual task influence ranking

To rank the influence of training data for each target task, we compute the influence score of each
training data point on a validation set that represents the target task distribution. Following LESS [45],
the process involves three steps: (1) training the model on 5% randomly selected data as a lightweight
warm-up to initialize visual instruction-following capabilities, (2) computing gradients for training
and validation data and compressing the gradients via random projection, and (3) computing the
influence score to quantify the impact of each training data on validation set.

Step 1: Warm-up Training. Following LESS [45], we first apply LoRA [12] on a small random
subset Dwarmup ⇢ D (5%) to obtain fwarmup = LoRA(fbase,Dwarmup). This allows the model to
develop basic visual instruction-following capabilities.

Step 2: Gradient computation. For each training data zi 2 D and validation data z0
j 2 D

k
val from

Tk, we compute their gradients with respect to fwarmup parameters ✓w:

gi = r✓wL(fwarmup(zi),yi), g0j = r✓wL(fwarmup(z
0
j),y

0
j)

where yi and y0j are the targets for zi and z0j , respectively. In order to reduce computational and
storage overhead, we apply random projection to the gradient feature: g̃i = Rgi and g̃0j = Rg0j ,
where R 2 Rd0⇥d is a random projection matrix with d0 ⌧ d that preserves inner products with high
probability [16]. We further normalize the projected gradients, g̃i = g̃i

kg̃ik2
, g̃0j =

g̃0
j

kg̃0
jk2

to prevent
bias from sequence length differences [45].

Step 3: Influence matrix computation. We compute the influence matrix I 2 R|D|⇥|Dk
val| where

each entry Iij = hg̃i, g̃0ji is the influence of the training data zi on the validation data z0
j , and then

the average influence of training data zi on the target task k is calculated as:

Īk(zi) =
1

|Dk
val|

|Dk
val|X

j=1

Iij . (2)

This influence estimation process provides a task-specific ranking for the training set D with respect
to task Tk, where a higher influence score Īi suggests a higher influence Tk.

We can select a small training subset Sk for a given task k by selecting the training examples zi
with the highest-influence values Īk(zi). This simple greedy approach has been shown by LESS to
be successful, and thus we use it as our task-specific (“specialist”) baseline. However, recall that
our goal is to select a single compact subset that maximizes the performance across all tasks. We
address this disconnection between task-specific rankings and overall optimization by proposing a
voting-based generalist approach to identify the most broadly impactful training data.

2.4 Generalist: cross-task influence consensus

Our goal is to identify a training set subset S ⇢ D of size M ⌧ N such that its performance across
all tasks remains high as defined by Eqn. 1. There are multiple ways to tackle this, depending on the

2In practice, we use cosine similarity instead of direct inner products to avoid biasing selection toward shorter
sequences, since gradient norms tend to be inversely correlated with sequence length as noted in [45].
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assumptions one makes about the task-specific influence scores Īk(zi). The simplest approach is to
merge together all the different tasks’ validation sets Dk

val (normalizing for their different sizes) and
compute the total influence score for a training example zi as:

IMerge(zi) =
KX

k=1

Īk(zi). (3)

A similar aggregation approach is the one suggested in LESS [45]:

IMax(zi) = max
k=1,...K

Īk(zi), (4)

i.e., the influence of the data is measured as its highest influence on any tasks. The set of M training
examples with the highest aggregated influence scores would be selected for inclusion in the training
set Smerge (correspondingly, Smax). Both approaches, however, require that the influence scores Īk be
well-calibrated across the different tasks; as we show in §3.3 this may not necessarily be the case.

An alternative approach which does not require directly comparing influence scores Īk across tasks k
is to leverage the relative rank of the training examples within each task. Concretely, we compute
rankk(zi) for each example zi relative to other examples for task k according to their influence
scores (higher influence scores correspond to lower rank). We can have a couple of options. First,
we can select the training subset either using the Round Robin (RR) approach [15] where we iterate
over tasks and select the lowest-rank example which has not yet been selected to add to our set SRR.
Alternatively, we can select the training subset SMinRank such that all the examples within it have a
low rank for some task k. Mathematically, albeit somewhat confusingly, this corresponds to:

SMinRank = argmax
S⇢D,|S|=M

min
task k

example zi /2S

rankk(zi), (5)

i.e., all examples that are not included in S would have high relative ranks rankk(zi) for all tasks k.
However, this approach does not consider the potential interplay between tasks. Recall that in Eqn. 1
we aim to maximize sum of the relative performance across all tasks k; thus, if a training example is
beneficial for multiple tasks, we may want to include it even at the expense of a lower-ranked example
for a different task k. Thus, we introduce a simple consensus-based voting strategy that identifies
training samples that consistently show a high influence score across various tasks. Concretely,
we leverage the specialist training sets Sk as defined in §2.3 consisting of the M highest-influence
training examples for each task. We then select a combined training set as follows:

SICONS = argmax
S⇢D,|S|=M

KX

k=1

X

zi2S

[zi 2 Sk] (6)

This simple approach offers a key advantage: it does not rely on calibration of influence scores across
tasks, and does not make any a-priori assumptions about the relationship between tasks (e.g., that
every task needs to have its highest-scoring examples included in the combined training set). Our
generalist stage converts each task’s ranked list into a binary vote (“above threshold” or not) and then
combines these votes across tasks, eliminating the need for task-specific normalization. As a result,
the selection remains insensitive to scale differences while still capturing relative importance within
each task. Meanwhile, a training sample is selected only when several tasks independently rank it as
influential, preventing over-representation of single-task outliers and ensuring the cross-task utility.

3 Experiments

In this section, we first discuss our experiment setup and evaluation benchmarks (§3.1). We then
present our main results by comparing ICONS with the state-of-the-art methods (§3.2), followed by
analysis of different selection strategies (§3.3). We further evaluate the transferability of ICONS
(§3.4). Lastly, we provide analyze performance trends under different selection ratios (§3.5).

3.1 Evaluation test-bed

Datasets & model. We apply ICONS on major visual instruction tuning (VIT) training datasets:
LLAVA-665K [25], CAMBRIAN-7M [42] and VISION-FLAN-186K [46]. The majority of our
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Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench LLaVA-W Rel. (%)
en cn Bench

Full 79.1 63.0 47.8 68.4 58.2 86.4 1476.9 66.1 58.9 67.9 100

Random 75.7 58.9 44.3 68.5 55.3 84.7 1483.0 62.2 54.8 65.0 95.8
CLIP-Score [38] 73.4 51.4 43.0 65.0 54.7 85.3 1331.6 55.2 52.0 66.2 91.2
EL2N [36] 76.2 58.7 43.7 65.5 53.0 84.3 1439.5 53.2 47.4 64.9 92.0
Perplexity [31] 75.8 57.0 47.8 65.1 52.8 82.6 1341.4 52.0 45.8 68.3 91.6
SemDeDup [1] 74.2 54.5 46.9 65.8 55.5 84.7 1376.9 52.2 48.5 70.0 92.6
D2-Pruning [29] 73.0 58.4 41.9 69.3 51.8 85.7 1391.2 65.7 57.6 63.9 94.8
Self-Sup [41] 74.9 59.5 46.0 67.8 49.3 83.5 1335.9 61.4 53.8 63.3 93.4
Self-Filter [5] 73.7 58.3 53.2 61.4 52.9 83.8 1306.2 48.8 45.3 64.9 90.9
COINCIDE [21] 76.5 59.8 46.8 69.2 55.6 86.1 1495.6 63.1 54.5 67.3 97.4
RDS [15, 45] 75.1 57.9 48.6 68.0 54.9 86.3 1393.8 61.2 52.7 63.7 95.2
ICONS (ours) 76.3 60.7 50.1 70.8 55.6 87.5 1485.7 63.1 55.8 66.1 98.6

Table 1: Selection results on LLAVA-665K. Performance comparison of different data selection
approaches when trained on 20% of the LLAVA-665K dataset. The best and second best results
for each benchmark are shown in bold and underlined, respectively. Our method ICONS achieves
the highest overall Rel. (98.6%), consistently outperforming existing approaches including COIN-
CIDE [21] (97.4%) and D2-Pruning [29] (94.8%).

analysis and ablation experiments are conducted on LLAVA-665K. For our experiments, we use
the LLaVA-v1.5 model [25] checkpoint after Stage 1 (pre-training for feature alignment) as defined
in the original LLaVA training pipeline, with a default size of 7B parameters and LLAVA-665K
unless otherwise specified. This checkpoint3 corresponds to the model after training the projector
but before any visual instruction tuning in Stage 2. Importantly, this model has not been exposed to
the LLAVA-665K VIT dataset prior to the data selection process. In all experiments, we train the
models for one epoch following the official finetuning hyperparameters using LoRA. More details on
computation, including hardware specifications and runtime are in Appendix A.

Target tasks. We evaluate ICONS across diverse multimodal benchmarks (Appendix C, Tab. 5)
that test different capabilities of vision-language models: 1) Multiple-choice understanding: MM-
Bench [51] and MME [7] 4 2) Visual question answering: VQAv2 [9], GQA [13], and VizWiz [10];
3) Text understanding in images: TextVQA [40]; 4) Scientific reasoning: ScienceQA [28]; 5)
Open-ended generation: LLaVA-W Bench [26]; 6) Factual consistency: POPE [24].

Baselines. We compare our ICONS against several baselines, including random selection, CLIP-
Score [38] for measuring image-text alignment, EL2N [36] based on embedding L2 norms, and
Perplexity [31] using language model scores. We also compare against SemDeDup [1] for semantic
deduplication and D2-Pruning [29] for distribution-aware pruning. Additional baselines include Self-
Sup [41] leveraging self-supervised signals, while Self-Filter [5] and COINCIDE [21] are designed for
vision-language data selection. We reference LLAVA-665K baseline results from COINCIDE [21].
Additionally, we compare with representation-based data selection baseline (RDS) [15, 45].

3.2 Main results

LLAVA-665K selection. As shown in Tab. 1, ICONS achieves the best overall performance with
98.6% Rel. on LLAVA-665K, outperforming all baselines with LLAVA-ICONS-133K, 20% of the
training data. Remarkably, we achieve comparable or better performance than full dataset training
on several tasks: SQA-I (70.8 vs. 68.4), MME (1485.7 vs. 1476.9) and POPE (87.5 vs. 86.4).
While COINCIDE achieves strong performance (97.4% Rel.), it falls short of ICONS on key tasks.
Approaches like EL2N, Perplexity, SemDeDup achieve only 91-92% Rel., showing limitations in
preserving performance.

CAMBRIAN-7M & VISION-FLAN-186K selection. We further provide results on VISION-FLAN-
186K and CAMBRIAN-7M in Tab. 2. On VISION-FLAN-186K, our method achieves near-full
performance (99.8% Rel.) using just 37k samples, significantly outperforming random selection
(91.6%) across tasks. Similarly, on CAMBRIAN-7M, ICONS maintains a strong performance (98.8%
Rel.) with 1,414k samples, while random selection achieves 95.4%. These results demonstrate

3llava-v1.5-mlp2x-336px-pretrain-vicuna-7b-v1.5, which has no prior exposure to the visual instruction
tuning data.

4For MME, we focus on its perception section following [21], which evaluates vision capablities.
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Dataset #Data Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench LLaVA-W Rel. (%)
en cn Bench

VISION-FLAN-186K
186k Full 68.0 49.2 41.7 60.8 50.4 83.4 1,263.2 52.6 45.9 63.3 100.0

37k Random 64.1 45.8 37.5 58.7 45.3 82.9 1,079.8 46.5 39.6 58.7 91.6
ICONS (ours) 67.4 48.8 44.1 60.2 49.9 83.0 1,252.5 51.9 45.4 63.1 99.8

CAMBRIAN-7M
7,068k Full 80.2 62.9 58.4 75.3 60.9 86.5 1,524.6 69.1 58.9 67.6 100.0

1,414k Random 74.2 57.5 61.9 71.0 57.1 86.4 1,465.7 63.3 49.6 70.4 95.4
ICONS (ours) 79.6 62.1 60.7 73.9 59.8 86.2 1,503.1 67.8 55.8 67.0 98.8

Table 2: Selection results on VISION-FLAN-186K and CAMBRIAN-7M. Performance compari-
son of different data selection approaches when trained on 20% of the VISION-FLAN-186K [46]
and CAMBRIAN-7M [42] datasets. ICONS achieves strong performance (99.8% and 98.8% Rel.
respectively) while using only 20% of the training data, significantly outperforming random selection
which is one of the strongest baselines, and approaching full performance.

Aggregation VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMB (en) MMB (cn) LLaVA-W Rel. (%)
Full 79.1 63.0 47.8 68.4 58.2 86.4 1476.9 66.1 58.9 67.9 100

Merge 75.7 59.6 47.9 65.5 55.5 86.0 1422.1 59.0 51.0 66.2 96.4
Max 75.2 59.8 48.1 66.2 55.5 85.5 1470.7 58.3 51.8 66.2 96.1
Merge-GausNorm 75.1 60.1 46.4 69.8 54.5 85.6 1482.6 58.9 52.5 66.3 96.8
Merge-SumNorm 75.5 59.1 51.7 68.7 43.5 87.1 1478.3 59.5 50.9 69.8 95.3
Round Robin 75.4 59.1 48.3 70.6 55.2 86.6 1474.5 61.6 51.5 66.9 96.7
MinRank 75.2 59.0 49.7 70.4 55.1 86.9 1456.3 61.1 52.4 68.4 97.1
Vote (ours) 76.3 60.7 50.1 70.8 55.6 87.5 1485.7 63.1 55.8 66.1 98.6

Table 3: Comparison of aggregation approaches. Performance of different influence aggregation
methods when selecting 20% of the LLAVA-665K dataset. Our proposed aggregation approach (Vote)
consistently achieves the best overall performance (98.6% Rel.), outperforming both score-based
(Merge, Max), their noramlized variants (Merge-GausNorm, Merge-SumNorm) and rank-based
(Round Robin, MinRank) baselines.

that our approach scales effectively to both small and large datasets, consistently preserving model
capabilities while drastically reducing the training data required.

Comparisons with representation-based data selection. We compare our method against RDS
(Representation-based Data Selection)[15, 45], a strong baseline in language-only instruction tuning.
RDS computes training-validation similarity using final-layer representation of the last token in each
sequence instead of gradients. For a fair comparison, we use the same influence matrix formulation
(Eqn.2) and apply majority voting to reach influence consensus. Our method consistently outperforms
RDS across all tasks, particularly those requiring perceptual grounding – e.g., higher scores on GQA
(60.7 vs. 57.9), SQA-I (70.8 vs. 68.0), and MME (1485.7 vs. 1393.8). While RDS is effective in
selecting large-scale text-only data (e.g. TULU-2/3 [14, 20]), its evaluation has largely focused on
language-only tasks, where semantic similarity alone is often sufficient. In contrast, vision-language
tasks demand alignment between modalities, where representation similarity is limited as it only
reflects current embedding proximity and gradient-based approaches directly estimate each sample’s
contribution to the validation loss. Our gradient-based approach directly estimates each sample’s
impact on validation loss, capturing cross-modal training dynamics and prioritizing impactful training
points. We further provide qualitative comparisons in Appendix §I.

3.3 Analysis of aggregation strategies
Ablations. As introduced in §2.4, we explore multiple strategies for aggregating task-specific
influence rankings into a single compact subset. We compare our majority voting approach (Vote)
with different aggregation approaches for combining task-specific influence scores: 1) score-based
methods (Merge, Max) and their normalized variants (Merge-GausNorm, Merge-SumNorm),
2) rank-based methods (Round Robin, MinRank). Our voting-based strategy outperforms all
alternatives (Tab. 3), achieving the highest overall Rel. (98.6%). This shows that building a cross-task
consensus via majority voting is a simple yet effective strategy for identifying consistently influential
examples across tasks, without assuming calibration or comparability of scores.

Limitations of score-based aggregation. Score-based methods like Merge (Eqn. 3) and Max
(Eqn. 4) assume calibrated influence scores across tasks, which is rarely the case. We observe
substantial variation in the distribution of influence scores across tasks with standard deviations
spanning from 8.15⇥10�3 (MME) to 1.26⇥10�3 (VQAv2), indicating that influence scores for MME
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Figure 3: Pairwise overlap heatmap be-
tween specialists. The values show over-
lap percentages between benchmarks’ se-
lected samples.

Figure 4: Data overlap between specialists and gener-
alist selection. Overlap varies significantly, from 3.27%
(VQAv2) to 24.21% (LLAVA-W Bench), reflecting varying
alignment between task-specific and consensus selections.

are much more spread out, while those for VQAv2 are tightly concentrated. Similarly, mean influence
scores vary in both magnitude and sign: MME has a relatively high positive mean (1.68 ⇥ 10�3),
while tasks like POPE (�2.83 ⇥ 10�4) and GQA (�8.89 ⇥ 10�5) have negative means. These
divergent patterns show that certain tasks have much wider influence scores distributions, making a
sample helpful for one task but neutral or harmful for another. Aggregating raw scores thus biases
selection toward tasks with higher variance or skewed means. To address this calibration issue, we
experimented with normalization strategies: Merge-SumNorm, which rescales each task’s influence
scores by dividing them by a task-specific normalization factor (i.e., sum), and Merge-GausNorm,
which normalizes the scores using task-wise mean and standard deviation before averaging:

IMerge-SumNorm(zi) =
KX

k=1

Ik(zi)P
j Ik(zj)

IMerge-GausNorm(zi) =
KX

k=1

Ik(zi)� µk

�k

However, as shown in Tab. 3, both methods still underperform compared to our voting-based strategy,
reinforcing the limitations of relying on score magnitudes directly.

Limitations of rank-based aggregation. Rank-based methods sidesteps the challenge of com-
paring raw influence scores by focusing on within-task ranking. Round Robin selects samples by
cycling through each task and picking the highest-scoring remaining sample for that task, ensuring
balanced coverage. MinRank (Eqn. 5) selects samples that have the best minimum rank across all
tasks, prioritizing examples that perform exceptionally well in at least one task regardless of their
performance in others. Although these methods ensure balanced coverage across tasks, they can
overfit to outlier tasks. This is particularly evident with LLaVA-W Bench [26], which is an outlier
in its influence ranking: both Round Robin and MinRank achieve relatively high scores on it (e.g.
MinRank: 68.4), but this comes at the cost of lower performance on all other tasks (Tab. 3). This
suggests that purely rank-based selection can trade off some overall efficacy on the mainstream tasks
and hurt multi-task balance. In contrast, our Vote approach is more robust and avoids this by focusing
on multi-task consensus rather than forcing equal representation, yielding better balance and higher
overall performance (98.6% Rel.), highlighting the importance of identifying broadly influential
examples rather than narrowly optimizing per-task rankings.

Divergent multi-task influence patterns. As shown in Fig. 3, the pairwise overlap heatmap shows
notable variation in training data influence across tasks. High overlap – e.g., VQAv2 and VizWiz
(49.0%) or POPE and GQA (60.2%), suggests that certain samples are beneficial across similar
tasks. However, low overlap, like the 3.3% between MMBench (en) and GQA, highlights that highly
influential samples for one task may have limited impact on others. Even closely related tasks, such
as MMBench in different languages (English and Chinese), share 67.4% of influential samples. To
understand task-specific influence matrices from the specialist stage, we select the top 20% samples
per task (Specialists). Overlap with our generalist subset (Fig. 4) varies significantly, from minimal
in tasks like VQAv2 (3.27%) and VizWiz (3.28%) to substantial agreement in tasks like LLAVA-W
Bench [26] (24.21%). These findings empirically demonstrate significant overlap in influential
samples across tasks and validate our approach: by analyzing task-specific gradient-based influence
patterns and building consensus across tasks, we can identify a compact subset that captures broadly
useful samples across tasks, yielding strong performance with significantly less data.
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AI2D ChartQA DocVQA InfoVQA MMVet Naturalbench RealworldQA CMMMU Rel. (%)
Full 55.4 17.5 28.9 26.5 31.1 12.4 52.4 22.1 100.0

Random 50.2 15.1 25.2 24.3 27.6 11.1 49.8 21.9 91.6
LLAVA-ICONS-133K 53.9 17.1 27.9 27.5 29.7 12.8 55.0 25.2 98.7

Per-task Rel. (%) 97.3 97.7 96.5 103.8 95.5 103.2 104.4 114.0 -

Table 4: Unseen-task generalization. Performance comparison on unseen benchmarks when trained
on selected subsets. Notably, we observe improvements on InfoVQA (103.8%), RealWorldQA
(104.4%), and CMMMU (114.0%), highlighting strong generalization to unseen tasks.

3.4 ICONS generalizes to unseen tasks
LLAVA-ICONS-133K demonstrates exceptional generalization on entirely unseen benchmarks that
were not used during data selection. As shown in Tab. 4, we test across a diverse spectrum of tasks
including MMVet [49], NaturalBench [22], AI2D [18], ChartQA [32], DocVQA [34], InfoVQA [33],
RealWorldQA [44] and CMMMU [50]. LLAVA-ICONS-133K achieves 95.5-113.9% (Rel.) com-
pared to full dataset training (InfoVQA: 103.8%, NaturalBench: 105.5%, RealWorldQA: 104.4%,
and CMMMU: 113.9%), suggesting that, in some cases, training on LLAVA-ICONS-133K may
even outperform training on the full dataset, despite these tasks not being included in the selection
process. Importantly, LLAVA-ICONS-133K significantly outperforms random selection across all
benchmarks. This suggests that our selection approach successfully captures fundamental visual-
language understanding capabilities that transfer well across different task formats and domains. We
further provide the cross-architecture generalization results in Appendix §D.

3.5 ICONS outperforms baselines across ratios and exceeds full-data training at 60%

Figure 5: Different selection ratios. ICONS
consistently outperforms all baselines across
different selection ratios and remarkably ex-
ceeding 102% at 60% selection ratio.

To understand how ICONS scales, we evaluate it
across different selection ratios, progressively scaling
the subset size from 5% to 60% of LLAVA-665K.
As shown in Fig. 5, our results reveal several key
patterns: First, ICONS shows particularly strong
performance in the low-selection regime (5-20%),
where identifying the most influential samples is cru-
cial. Second, as the selection ratio increases, the
performance gap between different methods gradu-
ally narrows. This convergence pattern is expected,
as larger sample sizes naturally capture more of the
dataset’s diversity and information. Despite this con-
vergence trend, ICONS consistently outperforms all
baselines across all selection ratios. Remarkably, it
even surpasses full dataset performance at the 60%
ratio, achieving over 102% relative score. One hy-
pothesis is that ICONS can also effectively filter out potentially harmful or noisy training samples
that might negatively impact model training, thereby surpassing the full training performance.

4 Conclusion
In this work, we introduce ICONS, a simple yet effective influence consensus-based approach
for visual instruction tuning data selection. By leveraging gradient-based influence estimation and
aggregating task-specific selections through majority voting, our two-stage specialist-to-generalist
approach selects training examples that are broadly beneficial across multiple downstream tasks.
ICONS addresses limitations of prior selection methods by avoiding assumptions about score com-
parability across tasks and reducing the sensitivity to outlier task rankings, which can bias selection
in both score-based and rank-based approaches. Beyond data selection, it provides a principled way
to reason about data influence in multitask mixtures. Through extensive experiments, we show that
ICONS builds compact, high-impact datasets without sacrificing performance or generalization,
achieving 98.6% of full dataset performance using only 20% of LLAVA-665K and generalizing well
to unseen tasks or architectures. We release LLAVA-ICONS-133K and CAMBRIAN-ICONS-1.4M,
20% subsets of the LLAVA-665K and CAMBRIAN-7M datasets, maintaining strong performance on
diverse tasks and transferring well to unseen ones. We hope our work inspires further exploration
into data-efficient methods for vision-language models across diverse applications.

9



References
[1] Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, and Ari S Morcos. Semdedup: Data-efficient

learning at web-scale through semantic deduplication. arXiv preprint arXiv:2303.09540, 2023.

[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for
few-shot learning. Advances in Neural Information Processing Systems, 35:23716–23736, 2022.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[4] Alexander Bukharin and Tuo Zhao. Data diversity matters for robust instruction tuning. arXiv preprint
arXiv:2311.14736, 2023.

[5] Ruibo Chen, Yihan Wu, Lichang Chen, Guodong Liu, Qi He, Tianyi Xiong, Chenxi Liu, Junfeng Guo, and
Heng Huang. Your vision-language model itself is a strong filter: Towards high-quality instruction tuning
with data selection. arXiv preprint arXiv:2402.12501, 2024.

[6] Zhiwei Deng, Tao Li, and Yang Li. Influential language data selection via gradient trajectory pursuit. arXiv
preprint arXiv:2410.16710, 2024.

[7] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin,
Jinrui Yang, Xiawu Zheng, et al. Mme: a comprehensive evaluation benchmark for multimodal large
language models. corr abs/2306.13394 (2023), 2023.

[8] Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen,
Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In search of the next
generation of multimodal datasets. Advances in Neural Information Processing Systems, 36, 2024.

[9] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 6904–6913, 2017.

[10] Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P
Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 3608–3617, 2018.

[11] Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey. Machine
Learning, 113(5):2351–2403, 2024.

[12] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

[13] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and
compositional question answering. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 6700–6709, 2019.

[14] Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep Dasigi, Joel
Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing climate: Enhancing lm
adaptation with tulu 2. arXiv preprint arXiv:2311.10702, 2023.

[15] Hamish Ivison, Muru Zhang, Faeze Brahman, Pang Wei Koh, and Pradeep Dasigi. Large-scale data
selection for instruction tuning. arXiv preprint arXiv:2503.01807, 2025.

[16] William B Johnson. Extensions of lipshitz mapping into hilbert space. In Conference modern analysis and
probability, 1984, pages 189–206, 1984.

[17] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[18] Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi. A
diagram is worth a dozen images. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pages 235–251. Springer, 2016.

[19] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pages 1885–1894. PMLR, 2017.

10



[20] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\" ulu 3: Pushing frontiers in open
language model post-training. arXiv preprint arXiv:2411.15124, 2024.

[21] Jaewoo Lee, Boyang Li, and Sung Ju Hwang. Concept-skill transferability-based data selection for large
vision-language models. arXiv preprint arXiv:2406.10995, 2024.

[22] Baiqi Li, Zhiqiu Lin, Wenxuan Peng, Jean de Dieu Nyandwi, Daniel Jiang, Zixian Ma, Simran Khanuja,
Ranjay Krishna, Graham Neubig, and Deva Ramanan. Naturalbench: Evaluating vision-language models
on natural adversarial samples. arXiv preprint arXiv:2410.14669, 2024.

[23] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training
with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597, 2023.

[24] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023.

[25] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
26296–26306, 2024.

[26] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in neural
information processing systems, 36, 2024.

[27] Zikang Liu, Kun Zhou, Wayne Xin Zhao, Dawei Gao, Yaliang Li, and Ji-Rong Wen. Less is more: Data
value estimation for visual instruction tuning. arXiv preprint arXiv:2403.09559, 2024.

[28] Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for science question
answering. Advances in Neural Information Processing Systems, 35:2507–2521, 2022.

[29] Adyasha Maharana, Prateek Yadav, and Mohit Bansal. D2 pruning: Message passing for balancing
diversity and difficulty in data pruning. arXiv preprint arXiv:2310.07931, 2023.

[30] Pratyush Maini, Skyler Seto, He Bai, David Grangier, Yizhe Zhang, and Navdeep Jaitly. Rephrasing the
web: A recipe for compute and data-efficient language modeling. arXiv preprint arXiv:2401.16380, 2024.

[31] Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker. When less is
more: Investigating data pruning for pretraining llms at scale. arXiv preprint arXiv:2309.04564, 2023.

[32] Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A benchmark for
question answering about charts with visual and logical reasoning. arXiv preprint arXiv:2203.10244, 2022.

[33] Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar.
Infographicvqa. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pages 1697–1706, 2022.

[34] Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document images.
In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pages 2200–2209,
2021.

[35] Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Winnie
Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized training
on points that are learnable, worth learning, and not yet learnt. In International Conference on Machine
Learning, pages 15630–15649. PMLR, 2022.

[36] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in neural information processing systems, 34:20596–20607,
2021.

[37] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data influence
by tracing gradient descent. Advances in Neural Information Processing Systems, 33:19920–19930, 2020.

[38] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748–8763. PMLR,
2021.

11



[39] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations toward
training trillion parameter models. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

[40] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and
Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8317–8326, 2019.

[41] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural scaling
laws: beating power law scaling via data pruning. Advances in Neural Information Processing Systems,
35:19523–19536, 2022.

[42] Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha Akula,
Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, et al. Cambrian-1: A fully open, vision-centric
exploration of multimodal llms. arXiv preprint arXiv:2406.16860, 2024.

[43] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria
Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmental implications, challenges
and opportunities. Proceedings of Machine Learning and Systems, 4:795–813, 2022.

[44] x.ai. Introducing Grok 1.5v: The Latest Advancement in AI, November 2024. [Online; accessed 14-
November-2024].

[45] Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Selecting
influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.

[46] Zhiyang Xu, Chao Feng, Rulin Shao, Trevor Ashby, Ying Shen, Di Jin, Yu Cheng, Qifan Wang, and
Lifu Huang. Vision-flan: Scaling human-labeled tasks in visual instruction tuning. arXiv preprint
arXiv:2402.11690, 2024.

[47] Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reducing
training data by examining generalization influence. arXiv preprint arXiv:2205.09329, 2022.

[48] Simon Yu, Liangyu Chen, Sara Ahmadian, and Marzieh Fadaee. Diversify and conquer: Diversity-centric
data selection with iterative refinement. arXiv preprint arXiv:2409.11378, 2024.

[49] Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang, and
Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv preprint
arXiv:2308.02490, 2023.

[50] Ge Zhang, Xinrun Du, Bei Chen, Yiming Liang, Tongxu Luo, Tianyu Zheng, Kang Zhu, Yuyang Cheng,
Chunpu Xu, Shuyue Guo, et al. Cmmmu: A chinese massive multi-discipline multimodal understanding
benchmark. arXiv preprint arXiv:2401.11944, 2024.

[51] Yuanhan Zhang Bo Li-Songyang Zhang, Wangbo Zhao Yike Yuan Jiaqi Wang, Conghui He Ziwei Liu Kai
Chen, Dahua Lin Yuan Liu, and Haodong Duan. Mmbench: Is your multi-modal model an all-around
player. arXiv preprint arXiv:2307.06281, 2, 2023.

12



Appendices

A Computational complexity 14
A.1 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.2 Resource requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.3 Discussion on cost-benefit justification . . . . . . . . . . . . . . . . . . . . . . . . 14

B Related work 14
B.1 Visual instruction tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.2 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

C Additional experiment details & ablations 15
C.1 Additional task details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C.2 Projection dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C.3 Warm-up Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

D Additional analysis 15
D.1 From specialist to generalist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

D.2 Visual dependency influence ranking . . . . . . . . . . . . . . . . . . . . . . . . . 16

D.3 Cross-architecture generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

D.4 Consistency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

E Algorithm details 18

F Limitations 18

G Broader impact 19

H Future work 19

I Visualizations 19
I.1 Representation-based vs. Gradient-based data selection . . . . . . . . . . . . . . . 19

I.2 Specialists & Generalist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

13



A Computational complexity

A.1 Complexity analysis

Computing gradient-based influence requires a non-trivial amount of computational resources. In
the specialist stage, the complexity scales with both the dataset size |D| and the gradient dimension
d. This stage consists of three steps. First, the warm-up training has a complexity of O(|Dwarmup|).
Second, the gradient computation stage has a computational complexity of O(|D| + |Dval|) for
forward and backward passes, with storage requirements of O(|D| · d+ |Dval| · d) for the gradients.
Third (and finally), the influence matrix computation requires O(|D| · |Dval| · d0) compute cost, where
d0 is the reduced dimension after projection. The generalist stage, focusing on influence consensus
across tasks, has lower computational requirements. It begins with threshold computation, requiring
O(K · |D| log |D|) operations for sorting across K tasks. The voting process then takes O(K · |D|)
compute, followed by a final selection step with complexity O(|D| log |D|) for sorting the aggregated
votes. Storage requirements for this stage are minimal, primarily for the final selected subset.

A.2 Resource requirements

In practice, for LLaVA-665K training data, the warmup training phase requires 0.75 hours using eight
L40 GPUs. We parallelize the gradient computation across 100 A6000 GPUs, taking approximately
one hour and requiring 103GB of total storage for the gradients. The influence consensus stage is
notably efficient, completing in less than a minute on a single L40 GPU. While these computational
demands are substantial, they represent front-loaded, one-time costs that can be used across multiple
target tasks and model iterations. This makes our method extendable for new tasks, as the expensive
training data gradient computations only need to be performed once.

A.3 Discussion on cost-benefit justification

Although gradient-based data selection is computationally intensive, we argue that the initial cost
is justified by three key considerations. First, the computational expense is largely a one-time
investment: once gradients are computed, they can be stored in our gradient datastore and reused
across multiple model iterations, target tasks, and diverse downstream applications. This reusability
becomes especially valuable as the number of target datasets grows, because each new target dataset
can leverage existing gradient computations, making the selection increasingly efficient at scale.

Second, our empirical results demonstrate substantial performance benefits. Training on a strategically
chosen 60% subset of data not only reduces training time but also surpasses the performance obtained
by using the full dataset. This improvement underscores how directing more compute resources
toward a carefully selected subset can yield higher returns on a fixed set of data.

Lastly, the initial compute-intensive investment in data selection is amortized across future train-
ing iterations and future developers. By leveraging the curated, higher-quality dataset, they can
substantially reduce training costs.

B Related work

B.1 Visual instruction tuning

Multimodal large language models (MLLMs), e.g., Flamingo [2], LLaVA [26], BLIP2 [23], and
Cambrian [42], enhance the capabilities of large language models (LLMs) on various multimodal
tasks. A key component in advancing MLLMs is visual instruction tuning [26], a training process
that enables these models to interpret and follow instructions within a vision-language context,
transforming them into versatile multimodal assistants. This tuning process not only improves
the models’ instruction-following abilities but also aligns their outputs more closely with user
expectations, thus enhancing their utility in practical applications [26].

B.2 Data selection

Data selection methods [11] can be categorized based on the types of information they utilize for
selection. Representation-based approaches [1, 21] leverage neural embeddings to capture data

Back to Table of Contents 14 Back to the First Page



Task MME POPE SQA-I MMBench VQAv2 GQA VizWiz TextVQA LLaVA-W
en cn

|Dval| 986 500 424 1,164 1,164 1,000 398 800 84 84
|Dtest| 2,374 8,910 4,241 1,784 1,784 36,807 12,578 8,000 5,000 84

Task Type Y/N Y/N MCQ MCQ MCQ VQA VQA VQA VQA VQA

Table 5: Statistics of Target Tasks. Our target tasks include diverse benchmarks and answer formats,
covering different vision-language capabilities. Task types include Multiple-Choice Questions
(MCQ), Visual Question Answering (VQA), and Yes/No Questions (Y/N).

representations. Loss trajectory-based methods [35] prioritize data points that contribute most
significantly to reducing generalization error over training. Gradient-based techniques [36, 45, 6]
select data based on gradient information. Recent work has explored various approaches to select
optimal visual instruction tuning datasets. Concurrent work TIVE [27] employs gradient-based
selection to identify representative instances. TIVE assumes that the number of specialist data should
be proportional to task difficulty and thus samples specialist data based on an estimation of task
difficulty. Our method does not rely on this assumption – we directly select samples that benefit
the greatest number of tasks. COINCIDE [21] clusters data based on representations associated
with concept-skill compositions. Our work follows targeted instruction tuning selection approach
LESS [45] to utilize gradient information to calculate the specialist influence (i.e., the influence on a
specific task) and extends it to general scenarios by aggregating information from various tasks and
selecting data for multiple downstream tasks via majority voting.

C Additional experiment details & ablations

C.1 Additional task details

Here, we provide further details on the target tasks, as summarized in Tab. 5. These tasks cover a wide
range of multimodal benchmarks commonly used, including Yes/No questions (Y/N), multiple-choice
understanding questions (MCQ) and visual question answering (VQA).

C.2 Projection dimension

We primarily set the projection dimension to 5120, reducing features from 338.7M to 5120 dimen-
sions. The choice of 5120 was empirically validated for its trade-off between effective capturing
gradient representation and maintaining a manageable parameter space. Our LLaVA-v1.5-7b-lora
architecture includes a total of 7.4B parameters, with 338.7M parameters being trainable after LoRA
adaptation, accounting for approximately 4.58% of the total parameter count. We further ablate
different projection dimensions (1024, 2560, 5120, and 10240), with results provided in Fig. 6a.

C.3 Warm-up Ratio

To initiate training, we use 5% of the total training data. We conducted ablation studies to evaluate
the impact of varying warm-up ratios (5%, 10%, 20%, and 100%) on selection performance, as
shown in Fig. 6b. Our experiments reveal that increasing the warm-up data size does not lead to
performance improvements. Surprisingly, models trained with smaller warm-up ratios (5-20%)
consistently outperform those trained with the full dataset (100%). Specifically, the 5% warm-up ratio
achieves the best performance at 98.6%, while using the complete dataset results in a performance
drop to 97.8%. This finding suggests that a small subset of training data is sufficient and even
beneficial for model initialization, and potentially gives better signals in the early training stages.

D Additional analysis

In this section, we provide additional analyses to better understand different aspects of our ICONS.
We begin by analyzing the effectiveness of task-specific selections and their aggregation into a
generalist subset (§D.1). We further explore whether incorporating visual dependency information
into the selection process affects performance across different types of vision-language tasks (§D.2).
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(a) Projection Dimension Ablation. We show the
performance of ICONS at different projected dimen-
sions (1024, 2560, 5120, 10240), compared to the
random baseline. The performance increases with the
projected dimension and reaches a plateau around di-
mension 5120.

(b) Warm-up Ratio Ablation. The blue line rep-
resents ICONS performance across different warm-
up ratios (5%, 10%, 20%, and 100%), while the red
dashed line shows the random baseline performance.
Results show that smaller warm-up ratios (5-20%)
achieve better performance compared to using the full
dataset (100%).

Figure 6: Ablation studies on (left) projection dimension and (right) warm-up ratio.

Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench (en) MMBench (cn) LLaVA-W Bench

Full 79.1 63.0 47.8 68.4 58.2 86.4 1476.9 66.1 58.9 67.9

Specialist 77.1 61.1 53.1 69.8 55.7 86.6 1506.1 66.0 56.4 67.1
Generalist 76.3 60.7 50.1 70.8 55.6 87.5 1485.7 63.1 55.8 66.1

Delta (%) 1.04 0.65 5.65 -1.43 0.18 -1.04 1.35 4.34 1.06 1.49

Table 6: Single-task Selection (Specialist) vs. Consensus-aware Multi-task Selection (Generalist).
The single-task data selection approach selects 20% of LLAVA-665K per task, while our consensus-
aware multi-task data selection approach selects a total of 20% data across all tasks.

We also evaluate the transferability of our selected subset across different model scales (§D.3).
Additionally, we evaluate the consistency of our method across multiple runs (§D.4), showing its
robustness and reliability.

D.1 From specialist to generalist

To understand the intermediate task-specific influence matrices we obtained from the specialist
stage, we select 20% of data for each individual task. The task-specific data (Specialists) achieves
comparable or superior performance than full data training (Tab. 6). With influence consensus at the
generalist stage, we select a 20% subset with only a 1.33% average drop across tasks compared to
specialist baselines. This validates our approach: by understanding task-specific influence patterns
and building consensus across tasks, we can identify a compact, universal training set that maintains
strong performance with significantly less data.

D.2 Visual dependency influence ranking

Recent work [42] has shown that vision-language tasks vary in their reliance on visual information:
tasks like MMBench [51] depend heavily on visual grounding, while others like SQA-I [28] can
be handled primarily through language, showing only a 5% drop in performance when visual input
is removed [42]. To take visual dependency of training data into account, we further explored
gradient-based Visual Dependency Score (VDS). For each data point, we calculate the gradient of the
model’s auto-regressive cross-entropy loss with both the original image and a Gaussian noise image
Inoise ⇠ N (0, 1), keeping the text input constant. This quantifies how much the visual component
contributes to model performance. We construct an adapted influence matrix: visual influence matrix
IVDS 2 R|D|⇥|Dval|, which quantifies the visual influence of each training sample zi on each validation
sample z0

j w.r.t the model’s gradient alignment and visual dependency. IVDS is computed as:

IVDS,ij = hr✓L(z
0
i),r✓L(xj , Ij)�r✓L(xj , Inoise)i, (7)

wherer✓L(xj , Ij) andr✓L(xj , Inoise) are the gradients computed with the original and Gaussian
noise images, respectively. The visual influence matrix IVDS provides insights into which training
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VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench (en) MMBench (cn) LLaVA-W Bench
Full 79.1 63.0 47.8 68.4 58.2 86.4 1476.9 66.1 58.9 67.9

w/o VDS 76.3 60.7 50.1 70.8 55.6 87.5 1485.7 63.1 55.8 66.1
w/ VDS 75.8 60.9 50.3 69.5 54.8 86.8 1489.3 64.3 56.3 67.9

Delta (%) -0.66 +0.33 +0.40 -1.84 -1.44 -0.80 +0.24 +1.90 +0.90 +2.72

Table 7: Impact of Visual Dependency Score (VDS) on Selection Performance. Rows show perfor-
mance without VDS, with VDS, and the performance change (Delta). VDS improves performance on
LLaVA-W Bench (+2.72%), MMBench (en) (+1.90%), and MMBench (cn) (+0.90%), but decreases
performance on SQA-I (-1.84%), TextVQA (-1.44%), and POPE (-0.80%).

VQAv2 GQA Vizwiz SQA-I TextVQA POPE MME MMBench (en) MMBench (cn) LLAVA-W Rel. (%)
Full 80.0 63.3 58.9 71.2 60.2 86.7 1541.7 68.5 61.5 69.5 100.0

Random 77.3 60.7 57.6 69.1 56.8 82.9 1517.2 63.2 56.3 67.5 95.7
7B-selected 78.8 60.4 57.4 70.4 58.3 84.3 1527.5 64.9 59.7 68.2 97.3
13B-selected 78.9 61.2 57.5 71.3 58.4 85.9 1535.2 66.1 59.8 68.8 98.1

Table 8: Cross-Architecture Generalization. Our LLAVA-ICONS-133K selected via LLaVA-
v1.5-7B model (7B-selected) shows strong cross-architecture transferability, achieving 97.3% Rel.,
while the data selected via LLaVA-v1.5-13B model (13B-selected) reaches 98.1%, showing that our
selected subset generalizes well to different architectures.

samples have the most influence on the validation samples from a visual perspective. This matrix can
be used to further rank and select training data that are most impactful for tasks requiring strong visual
grounding, ensuring that the selected subset effectively supports vision-dependent performance.

Our empirical results demonstrate that VDS-based data selection has varying effectiveness across
different vision-language tasks (Tab. 7). The approach shows substantial improvements on tasks
requiring strong visual understanding, such as open-ended generation (LLaVA-W Bench: +2.72%)
and multiple-choice understanding (MMBench-EN: +1.90%, MMBench-CN: +0.90%). However,
tasks that primarily rely on textual reasoning show decreased performance, including SQA-I (-
1.84%) and TextVQA (-1.44%). These results align with and extend the findings in Cambrian [42],
demonstrating that the effectiveness of VDS corresponds to a task’s visual dependency - tasks
that maintain performance without visual inputs show limited or negative impact from VDS-based
selection, while visually-dependent tasks benefit significantly. This pattern suggests that VDS
effectively identifies training samples where visual information plays an important role in training.

D.3 Cross-architecture generalization

We further conduct experiments on cross architecture generalization to evaluate the transferability
of our selected data across different model scales. While our subset was initially selected using
LLaVA-v1.5-7B as the base model, we investigate whether these same examples remain effective for
training larger architectures like LLaVA-v1.5-13B. This tests whether our selection criteria identify
universally valuable training examples rather than model-specific patterns. Our results in Tab. 8 show
cross-architecture generalization, with 13B model trained on 7B-selected subset achieving 98.1%
Rel.. Both 7B-selected and 13B-selected subsets outperform random selection (95.7%), with the
13B-selected option showing particular strength in reasoning tasks like MMBench and POPE. This
suggests that our selected subset captures fundamental visual-language understanding patterns that
generalize well across different model architectures.

D.4 Consistency analysis

Figure 7: Rel. (%) Across Runs. We show the
performance across three different runs for random
selection and our ICONS.

To evaluate the consistency of ICONS, we
conduct three independent runs of the experi-
ments. As shown in Fig. 7, our method demon-
strates high consistency across different runs,
achieving 98.6±1.2% Rel., which shows a no-
table improvement over random baseline, which
achieves 95.8±2.7%. The lower standard de-
viation (1.2% vs 2.7%) further indicates that
our approach produces more stable and reliable
outcomes compared to the random baseline.
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E Algorithm details

We provide detailed pseudocode for our two-stage ICONS framework. Stage 1 (specialist) computes
task-specific influence scores through gradient-based analysis with efficient random projections.
Stage 2 (generalist) implements our voting-based consensus mechanism to select samples that are
influential across multiple tasks.

Algorithm 1 ICONS Stage 1: Specialist (Task-specific Influence Computation)

Require: Training dataset D = {(xi, Ii, yi)}Ni=1, target tasks T = {T1, ..., TK}

Require: Warm-up ratio r (default 5%)
Ensure: Task-specific influence scores {Īk}Kk=1

1: for each task Tk 2 T do
2: // Step 1: Warm-up Training
3: Sample warm-up set Dwarmup ⇢ D of size r|D|

4: fwarmup  LoRA(fbase, Dwarmup)
5: // Step 2: Gradient Computation
6: for each training data zi 2 D do
7: gi  r✓wL(fwarmup(zi), yi)
8: g̃i  Normalize(Rgi) {Random projection}
9: for each validation data z0j 2 Dk

val do
10: g0j  r✓wL(fwarmup(z0j), y

0
j)

11: g̃0j  Normalize(Rg0j)

12: // Step 3: Influence Matrix Computation
13: for each zi 2 D, z0j 2 Dk

val do
14: Ikij  hg̃i, g̃

0
ji

15: // Compute average influence per training sample
16: Īk(zi) 

1
|Dk

val|
P|Dk

val|
j=1 Ikij

17: return Task-specific influence scores {Īk}Kk=1

Algorithm 2 ICONS Stage 2: Generalist (Influence Consensus-based Data Selection)

Require: Task-specific influence scores {Īk}Kk=1
Require: Selection ratio p, number of tasks K
Ensure: Selected subset S ⇢ D of size m⌧ N

1: // Compute voting thresholds
2: for each task Tk 2 T do
3: ⌧k  (1� p)-th percentile of {Īk(zi)}Ni=1

4: // Voting process
5: for each training sample zi 2 D do
6: Ivote(zi) 0
7: for each task Tk 2 T do
8: votek(zi) [Īk(zi) � ⌧k]
9: Ivote(zi) Ivote(zi) + votek(zi)

10: // Select top samples based on total votes
11: S  top-p samples by Ivote
12: return Selected subset S

F Limitations

Our approach primarily faces one practical limitation: computing gradients for large training datasets
is computationally expensive (Appendix §A). This computational overhead could potentially constrain
the method’s applicability when working with extremely large-scale datasets. To support broader
research community, we release LLAVA-ICONS-133K dataset to help research iteration and model
development under resource-constrained settings.
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G Broader impact

Our exploration focuses on scientific understanding and practical applications of vision-language
data selection. While our work does not directly imply negative impacts, it may indirectly propagate
existing biases present in the original datasets. Therefore, it is important to incorporate rigorous
bias-mitigation measurements for data selection. On the positive side, our method enables more
efficient and sustainable model development by reducing data redundancy, computational cost while
maintaining or even improving performance. Discussion on these critical aspects should remain a
priority as we further explore the potential of vision-language data selection.

H Future work

Our work opens several promising research directions for improving vision-language data selection.
While our work focuses specifically on visual instruction tuning data, our influence consensus
approach can be naturally extended to other stages of MLLM training, such as alignment stage. The
majority voting mechanism may under-represent tasks with unique characteristics or those in the long
tail, as it prioritizes samples that broadly benefit multiple tasks to build the main knowledge pool.
This can lead to limited support for specialized tasks or the reinforcement of spurious correlations
spanning multiple tasks. Future work could explore weighted voting mechanisms, in which tasks
are assigned weights based on their relative importance or contribution to overall model performance
for more balanced data selection. Additionally, investigating more efficient gradient computation
and storage methods would help scale these methods to larger datasets while maintaining strong
performance across diverse vision-language tasks.

I Visualizations

I.1 Representation-based vs. Gradient-based data selection

While ICONS leverages gradient-based influence signals, we explore how representation-based data
selection (RDS) performs in the same setting (§3.2). We analyze the top-ranked training examples
selected by RDS after the generalist stage in Fig. 8 vs. samples selected by ICONS in Fig. 19.
Interestingly, we observe that the representation-based variants often favor training examples with
repeated images or instructions, which may dominate the learned representations without contributing
to better generalization. Some of the highest-scoring samples under representation-based similarity
are duplicated image-question pairs with only the answer choices shuffled. We hypothesize that this
is a side effect of the way multimodal representations are constructed—where visually dominant
or textually redundant samples occupy high-density regions in embedding space. However, these
samples do not necessarily translate into broader utility across tasks, as seen in the performance gap
in Tab. 1. This discrepancy raises broader questions about what it means for multimodal data to be
diverse. While we leave these questions open for future exploration, our results suggest that gradient-
based influence, though computationally more expensive, is better aligned with generalization and
multi-task data mixture settings.

I.2 Specialists & Generalist

We visualize the most influential top three examples across specialists (figs. 9 to 18) and the gener-
alist selection (Fig. 19), along with samples from their corresponding tasks. Notably, the selected
high-influence examples by specialists show strong task-specific characteristics both structurally
and contextually - they mirror the key attributes of their target tasks in terms of question structure,
reasoning patterns, and required visual-language understanding capabilities. Furthermore, the visual-
ization of top influential examples reveals distinct patterns in what makes training samples valuable
for different vision-language tasks. VQAv2, GQA, and SQA-I specialists favor multi-turn Q&A sce-
narios that test both visual comprehension and contextual understanding, while TextVQA, POPE, and
MME specialists emphasize text recognition, object verification, and spatial relationships respectively.
MMBench-EN and MMBench-CN show consistent patterns despite language differences, focusing on
clear, unambiguous scenes that translate well. The LLaVA-W Bench specialist prioritizes examples
requiring detailed explanations and multi-step reasoning, and the answers are generally longer. The
generalist model values diverse scenarios that combine multiple skills simultaneously. Common
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Figure 8: Top three samples selected by RDS. These highly-ranked samples are selected due to
representation-based similarity but do not necessarily contribute to better generalization, highlighting
a key limitation of representation-based selection in multimodal settings.

characteristics that make these examples particularly valuable include multi-turn interactions, clear
visual elements, factual and inferential reasoning, cross-modal interaction, and the ability to test
multiple capabilities within a single example. This suggests that the most effective training samples
are those that combine multiple types of reasoning while maintaining clear, unambiguous ground
truth that can be consistently learned across tasks.
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Figure 9: VQAv2. Top-left: A sample from VQAv2 [9]. Remaining panels show top three influential
samples selected using the specialist influence ranking step.
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Figure 10: GQA. Top-left: A sample from GQA [13]. Remaining panels show top three influential
samples selected using the specialist influence ranking step.
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Figure 11: VizWiz. Top-left: A sample from VizWiz [10]. Remaining panels show top three
influential samples selected using the specialist influence ranking step.
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Figure 12: SQA. Top-left: A sample from SQA [28]. Remaining panels show top three influential
samples selected using the specialist influence ranking step.
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Figure 13: TextVQA. Top-left: A sample from TextVQA [40]. Remaining panels show top three
influential samples selected using the specialist influence ranking step.
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Figure 14: Pope. Top-left: A sample from Pope [24]. Remaining panels show top three influential
samples selected using the specialist influence ranking step.
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Figure 15: MME. Top-left: A sample from MME [7]. Remaining panels show top three influential
samples selected using the specialist influence ranking step.
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Figure 16: MMBench (en). Top-left: A sample from MMBench (en) [51]. Remaining panels show
top three influential samples selected using the specialist influence ranking step.
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Figure 17: MMBench (cn). Top-left: A sample from MMBench (cn) [51]. Remaining panels show
top three influential samples selected using the specialist influence ranking step.
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Figure 18: LLaVA-W Bench. Top-left: A sample from LLaVA-W Bench [26]. Remaining panels
show top three influential samples selected using the specialist influence ranking step.
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Figure 19: Generalist. We show top three influential samples selected after the generalist stage.
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