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Abstract

Training vision-language models via instruction tuning often relies on large mix-
tures of data spanning diverse tasks and domains. However, these mixtures fre-
quently include redundant information, increasing computational costs without
proportional performance gains—necessitating more effective data selection strate-
gies. Existing methods typically rely on task-agnostic heuristics to estimate data
importance or focus on optimizing single tasks in isolation, limiting their effective-
ness in multitask settings. In this work, we introduce ICONS, a gradient-based
Influence CONsensus approach for vision-language data Selection. Our method
leverages first-order training dynamics to estimate the influence of individual train-
ing examples on validation performance and aggregates these estimates across
tasks via majority voting over task-specific influences. This cross-task consensus
identifies data points that are consistently valuable across tasks, enabling us to
prioritize examples that drive overall performance. The voting-based design fur-
ther mitigates issues such as score calibration and outlier sensitivity, resulting in
robust and scalable data selection for diverse multitask mixtures. With only 20%
of the data from LLLAVA-665K and CAMBRIAN-7M, our selected subsets retain
98.6% and 98.8% of the performance achieved with full datasets—and can even
surpass full-data training at a 60% selection ratio on LLAVA-665K. Our approach
also generalizes to unseen tasks and architectures, demonstrating strong trans-
fer. We release two compact, high-utility subsets—LLAVA-ICONS-133K and
CAMBRIAN-ICONS-1.4M —preserving impactful training examples for efficient
and scalable vision-language model development.

1 Introduction

Visual instruction tuning is a crucial step in training multimodal language models [25, 26], enabling
them to follow language instructions grounded in visual content. Recent approaches rely on large-
scale datasets such as LLAVA-665K [25] and CAMBRIAN-7M [42], which contain 665K and 7M
examples, respectively. While effective, these datasets introduce significant barriers to iteration and
deployment: prolonged training times [3, 1 7], high storage demands [39, &], and substantial compute
costs [30, 43]. Moreover, not all examples contribute equally to all tasks—naively scaling up diverse
data mixtures can introduce redundancy and inefficiency. This raises a fundamental question:

Can we identify a compact, multitask-effective subset of training data that preserves model
capabilities arcoss tasks while enabling faster experimentation?

Prior work has explored various data selection strategies, including gradient-based approaches [45,

], influence functions [47, 19], and diversity-based sampling [48, 4]. However, many of these
methods either optimize for single tasks in isolation or maximize source diversity without aligning to
downstream needs. In multitask visual instruction tuning, this is particularly limiting: optimizing for
one task may hurt generalization, and task-agnostic diversity may dilute impact. Rather than selecting
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data based on per-task influence, we aim to iden-
tify samples that are broadly useful—training ex-
amples that consistently contribute across tasks.
To do this, we aggregate gradient-based influ-
ence scores using a simple yet effective majority
voting scheme.

We introduce ICONS (Influence CONsensus
vision-language data Selection), a method that
builds upon the gradient-based selection ap-
proach LESS [45]. Given access to validation
data for each target task, our method: (1) com-
putes first-order gradient influence scores to
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Figure 1: Influence consensus for vision-
language data selection. (Leff) Given a large

scale visual instruction tuning dataset (LLAVA-

measure how each training sample impacts task-
specific performance, and (2) uses influence con-
sensus through majority voting to identify train-
ing samples that show consistent positive value
across multiple tasks. This consensus-based
mechanism identifies universally valuable train-
ing examples: while some samples might be
highly influential for individual tasks, we prior-
itize those that demonstrate broad utility across
the task spectrum. While the computational cost
of influence estimation is expensive, this front-loaded, one-time investment yields a standardized,
compact dataset that can significantly accelerate development of multimodal models, and enables
reusable gradient datastores that amortize costs across iterations and deliver long-term savings.

Using ICONS, we create LLAVA-ICONS-133K and CAMBRIAN-ICONS-1.4M, automatically
curated 20% subsets of the LLAVA-665K dataset [25] and CAMBRIAN-7M [42] dataset, respectively.
These compact datasets maintain 98.6% and 98.8% of their original performance across multiple
vision-language tasks, providing significant improvements over randomly selecting same-sized
subsets (95.8% and 95.4%) and eliminating approximately two-thirds of the performance drop
from shrinking the training data. Moreover, our ICONS outperforms all baselines across different
selection ratios, and remarkably achieves above-full-dataset performance, surpassing the original
datasets at a 60% selection ratio for LLAVA-665K. Importantly, the selected subset shows strong
transferability, e.g., LLAVA-ICONS-133K maintains 95.5-113.9% relative performance across
unseen tasks, suggesting that [CONS identifies fundamentally valuable training data. We summarize
our key contributions:

665K), our method uses majority voting across
task-specific influence scores to identify training
samples that are consistently influential across
multiple tasks, forming a compact 20% subset
(LLAVA-ICONS-133K) with data points achiev-
ing influence consensus. (Right) The radar plot
compares performance between LLAVA-665K
and our selected subset, showing the selected sub-
set achieves comparable results to the full dataset.

1. We propose ICONS, a simple yet effective method for multitask vision-language data
selection that identifies broadly valuable training examples via majority voting over task-
specific gradient influence scores.

2. Our consensus-based selection outperforms all baselines (§3.2) and we ablate influence
aggregation strategies and show the advantage of voting-based consensus (§3.3). We further
show that ICONS exceeds 102% of full-dataset performance at a 60% selection ratio on
LLAVA-665K (§3.5).

3. We release LLAVA-ICONS-133K and CAMBRIAN-ICONS-1.4M, compact 20% subsets
of LLAVA-665K and CAMBRIAN-7M respectively, achieving near-full performance (98.6%
and 98.8%), transferring well to unseen tasks (§3.4), and serving as standardized training
sets for resource-efficient development.

2 Influence consensus for vision-language data selection

We propose a consensus-driven, gradient-based data selection framework (Fig. 2) for visual instruction
tuning datasets. We formalize the problem setup in §2.1 and establish gradient-based influence
estimation preliminaries in §2.2. Our two-stage data selection framework consists of: the specialist
stage (§2.3), which computes task-specific influence scores, and the generalist stage (§2.4), which
builds cross-task consensus through voting-based aggregation.
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Figure 2: ICONS. The Specialist stage (/eft) processes each task individually through three steps:
(1) warmup training on a small subset of data, (2) gradient computation for both training and target
task validation data, and (3) influence matrix computation to generate per-task influence scores. This
process is repeated for each target task. The Generalist stage (right) performs Influence Consensus
to aggregate information across tasks, where samples scoring above the 80™ percentile threshold for
each task receive a vote. The final selection is made by summing votes across tasks and selecting
the top 20% most influential samples, creating a compact yet highly effective training dataset that
performs well across all tasks.

2.1 Problem formulation

Given a large-scale visual instruction tuning dataset D = {(I;, z;,y;)}}\, containing N samples,
where each data point z; = (I;, x;,y;) includes an image I;, natural language instruction x;, and
corresponding target response y; , and given access to validation data V), for each downstream
task T, € T = {Th, ..., Tk }, our goal is to select a compact subset S C D of size M <« N that
maximizes model performance across multiple downstream tasks:

X Score(fs,Ty)
S* = argmax Y Rel(fs,Ty), Rel(fs,T)) = 025k (1)
SCD,\S|:MkZ:1 ( ) ( ) Score(fp, Tk)

where fs and fp denote models trained on subset S and full dataset D, respectively. Score(f, T}) is
the task-specific evaluation score achieved by model f on task 7). We define the average relative

performance across all tasks as Rel. = Zszl Rel(fs,Tk)/K. Rel. quantifies the subset-trained
model’s performance relative to that of the model trained on the entire dataset, with values close to 1
indicating that the subset maintains the performance of full training [2|]. Our objective is to select a
subset where Rel. ~ 1, i.e., the model trained on the subset achieves comparable performance to the
one trained with full dataset.

2.2 Preliminaries

Building on the problem formulation in §2.1, we formalize how to estimate the influence of training
samples on downstream task performance. Since our goal is to maximize Rel( fs, T} ) across tasks as
defined in Eqn. |, we need an efficient way to estimate how each training sample contributes to the
Score(fs, T)) term in the numerator. Denote a training data point as z and a validation data point as
z' from validation set V), for task T},. Following [37, 45], we estimate how z € D affects validation
loss by measuring its gradient alignment with reducing validation loss on V,, which directly impacts
task-specific evaluation. When training with SGD and batch size 1, using data point z at timestep
t leads to a model update 0,1 = 0, — 7, V{(z;0,), where 7, is the learning rate. To reduce the
computational cost, we use the first-order Taylor expansion to estimate the loss on a given validation

'The framework supports multi-turn conversational data, yet we formalize the problem setup for single-turn
instruction-tuning for clarity and simplicity.



data point 2’ at time step ¢ + 1 as:
02'5011) =~ 0(2';0,) + (VI(2';6,),0,41 — 0y).
The influence of a training data point z on a validation data point 2’ is:
Ti(z — 2') = 0(2';0,11) — (2 0;) =~ —n(VE(Z'50,),VI(z;6)),
which we refer to as an influence score.

The gradient-based selection approach selects training samples {z} that maximize the gradient inner
product (V{(z';0;),V{(z;0;))” through a greedy, first-order approximation, which leads to larger
reductions in validation loss for point z’. While it omits second-order terms compared to influence
functions [19], it provides an efficient approximation to rank the impact of training samples [45].

2.3 Specialist: individual task influence ranking

To rank the influence of training data for each target task, we compute the influence score of each
training data point on a validation set that represents the target task distribution. Following LESS [45],
the process involves three steps: (1) training the model on 5% randomly selected data as a lightweight
warm-up to initialize visual instruction-following capabilities, (2) computing gradients for training
and validation data and compressing the gradients via random projection, and (3) computing the
influence score to quantify the impact of each training data on validation set.

Step 1: Warm-up Training. Following LESS [45], we first apply LoRA [12] on a small random
subset Dyarmup C D (5%) to obtain fwarmup = LoRA( fpase; Dwarmup). This allows the model to
develop basic visual instruction-following capabilities.

k

v from

Step 2: Gradient computation. For each training data z; € D and validation data zg- €D
Ti., we compute their gradients with respect to fyarmup parameters 6.,

gi = VQU,‘C(fWarmup(zi)v yi)v g;‘ = VQW‘C(fwarmup(z;‘)v y;)
where y; and y;- are the targets for z; and z.;-, respectively. In order to reduce computational and
storage overhead, we apply random projection to the gradient feature: g; = Rg; and g; = Rg3,
where R € R %4 is a random projection matrix with d’ < d that preserves inner products with high

probability [16]. We further normalize the projected gradients, g; = H;mg , g;. = ”;ﬁ to prevent
i 3

bias from sequence length differences [45].

Step 3: Influence matrix computation. We compute the influence matrix I € RIP/*IP%! where

each entry I;; = (i, g;) is the influence of the training data z; on the validation data zé-, and then
the average influence of training data z; on the target task k is calculated as:
1Dl
- 1

Ik(Zi) = — I” (2)

This influence estimation process provides a task-specific ranking for the training set D with respect
to task 7y, where a higher influence score I; suggests a higher influence 7.

We can select a small training subset Sy, for a given task k by selecting the training examples z;
with the highest-influence values I} (z;). This simple greedy approach has been shown by LESS to
be successful, and thus we use it as our task-specific (“specialist”) baseline. However, recall that
our goal is to select a single compact subset that maximizes the performance across all tasks. We
address this disconnection between task-specific rankings and overall optimization by proposing a
voting-based generalist approach to identify the most broadly impactful training data.

2.4 Generalist: cross-task influence consensus

Our goal is to identify a training set subset S C D of size M < N such that its performance across
all tasks remains high as defined by Eqn. 1. There are multiple ways to tackle this, depending on the

*In practice, we use cosine similarity instead of direct inner products to avoid biasing selection toward shorter
sequences, since gradient norms tend to be inversely correlated with sequence length as noted in [45].



assumptions one makes about the task-specific influence scores I (z;). The simplest approach is to
merge together all the different tasks’ validation sets DX (normalizing for their different sizes) and
compute the total influence score for a training example z; as:

K
IMerge(zi) = Z jk(zi)~ (3)
k=1

A similar aggregation approach is the one suggested in LESS [45]:
Ivax(2i) = kirllé}iiK I (zi), “4)

i.e., the influence of the data is measured as its highest influence on any tasks. The set of M training
examples with the highest aggregated influence scores would be selected for inclusion in the training
set Smerge (correspondingly, Spax). Both approaches, however, require that the influence scores I, be
well-calibrated across the different tasks; as we show in §3.3 this may not necessarily be the case.

An alternative approach which does not require directly comparing influence scores I, across tasks k
is to leverage the relative rank of the training examples within each task. Concretely, we compute
ranky (z;) for each example z; relative to other examples for task k according to their influence
scores (higher influence scores correspond to lower rank). We can have a couple of options. First,
we can select the training subset either using the Round Robin (RR) approach [15] where we iterate
over tasks and select the lowest-rank example which has not yet been selected to add to our set Sgr.
Alternatively, we can select the training subset Syinrank Such that all the examples within it have a
low rank for some task k. Mathematically, albeit somewhat confusingly, this corresponds to:

SMinRank = argmax min  rankg(z;), 5)
SC'D,‘S|=M task k
example z; ¢S

i.e., all examples that are not included in S would have high relative ranks ranky,(z;) for all tasks .
However, this approach does not consider the potential interplay between tasks. Recall that in Eqn.
we aim to maximize sum of the relative performance across all tasks k; thus, if a training example is
beneficial for multiple tasks, we may want to include it even at the expense of a lower-ranked example
for a different task k. Thus, we introduce a simple consensus-based voting strategy that identifies
training samples that consistently show a high influence score across various tasks. Concretely,
we leverage the specialist training sets Sy as defined in §2.3 consisting of the M highest-influence
training examples for each task. We then select a combined training set as follows:

K
Sicons = arg max Z Z 1[z; € S 6)
SCDISI=M 2| S cs

This simple approach offers a key advantage: it does not rely on calibration of influence scores across
tasks, and does not make any a-priori assumptions about the relationship between tasks (e.g., that
every task needs to have its highest-scoring examples included in the combined training set). Our
generalist stage converts each task’s ranked list into a binary vote (‘“above threshold” or not) and then
combines these votes across tasks, eliminating the need for task-specific normalization. As a result,
the selection remains insensitive to scale differences while still capturing relative importance within
each task. Meanwhile, a training sample is selected only when several tasks independently rank it as
influential, preventing over-representation of single-task outliers and ensuring the cross-task utility.

3 Experiments

In this section, we first discuss our experiment setup and evaluation benchmarks (§3.1). We then
present our main results by comparing ICONS with the state-of-the-art methods (§3.2), followed by
analysis of different selection strategies (§3.3). We further evaluate the transferability of ICONS
(§3.4). Lastly, we provide analyze performance trends under different selection ratios (§3.5).

3.1 Evaluation test-bed

Datasets & model. We apply ICONS on major visual instruction tuning (VIT) training datasets:
LLAVA-665K [25], CAMBRIAN-7M [42] and VISION-FLAN-186K [46]. The majority of our



Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench LLaVA-W | Rel. (%)

en cn Bench
Full | 791 63.0 47.8 68.4 58.2 86.4 14769 66.1 589 67.9 | 100
Random 75.7 58.9 443 68.5 55.3 84.7 1483.0 622 548 65.0 95.8
CLIP-Score [38] 73.4 51.4 43.0 65.0 54.7 85.3 1331.6 552 52.0 66.2 91.2
EL2N [36] 76.2 58.7 43.7 65.5 53.0 84.3 1439.5 532 474 64.9 92.0
Perplexity [31] 75.8 57.0 47.8 65.1 52.8 82.6 13414 52.0 458 68.3 91.6
SemDeDup [1] 74.2 54.5 46.9 65.8 55.5 84.7 13769 522 485 70.0 92.6
D2-Pruning [29] 73.0 58.4 41.9 69.3 51.8 85.7 13912 65.7 57.6 63.9 94.8
Self-Sup [41] 74.9 59.5 46.0 67.8 49.3 83.5 13359 614 538 63.3 93.4
Self-Filter [5] 73.7 583 53.2 61.4 52.9 83.8 1306.2 48.8 453 64.9 90.9
COINCIDE [21] 76.5 59.8 46.8 69.2 55.6 86.1 1495.6 63.1 545 67.3 97.4
RDS [15, 45] 75.1 57.9 48.6 68.0 54.9 86.3 13938 612 52.7 63.7 95.2
ICONS (ours) 76.3 60.7 50.1 70.8 55.6 87.5 1485.7 63.1 55.8 66.1 98.6

Table 1: Selection results on LLLAVA-665K. Performance comparison of different data selection
approaches when trained on 20% of the LLAVA-665K dataset. The best and second best results
for each benchmark are shown in bold and underlined, respectively. Our method ICONS achieves
the highest overall Rel. (98.6%), consistently outperforming existing approaches including COIN-
CIDE [21] (97.4%) and D2-Pruning [29] (94.8%).

analysis and ablation experiments are conducted on LLAVA-665K. For our experiments, we use
the LLaVA-v1.5 model [25] checkpoint after Stage 1 (pre-training for feature alignment) as defined
in the original LLaVA training pipeline, with a default size of 7B parameters and LLAVA-665K
unless otherwise specified. This checkpoint’ corresponds to the model after training the projector
but before any visual instruction tuning in Stage 2. Importantly, this model has not been exposed to
the LLAVA-665K VIT dataset prior to the data selection process. In all experiments, we train the
models for one epoch following the official finetuning hyperparameters using LoRA. More details on
computation, including hardware specifications and runtime are in Appendix

Target tasks. We evaluate ICONS across diverse multimodal benchmarks (Appendix C, Tab. 5)
that test different capabilities of vision-language models: 1) Multiple-choice understanding: MM-
Bench [51] and MME [7] * 2) Visual question answering: VQAv2 [9], GQA [13], and VizWiz [10];
3) Text understanding in images: TextVQA [40]; 4) Scientific reasoning: ScienceQA [28]; 5)
Open-ended generation: LLaVA-W Bench [26]; 6) Factual consistency: POPE [24].

Baselines. We compare our ICONS against several baselines, including random selection, CLIP-
Score [38] for measuring image-text alignment, EL2N [36] based on embedding L2 norms, and
Perplexity [31] using language model scores. We also compare against SemDeDup [ 1] for semantic
deduplication and D2-Pruning [29] for distribution-aware pruning. Additional baselines include Self-
Sup [4 1] leveraging self-supervised signals, while Self-Filter [5] and COINCIDE [2 1] are designed for
vision-language data selection. We reference LLAVA-665K baseline results from COINCIDE [21].
Additionally, we compare with representation-based data selection baseline (RDS) [15, 45].

3.2 Main results

LLAVA-665K selection. As shown in Tab. |, ICONS achieves the best overall performance with
98.6% Rel. on LLAVA-665K, outperforming all baselines with LLAVA-ICONS-133K, 20% of the
training data. Remarkably, we achieve comparable or better performance than full dataset training
on several tasks: SQA-I (70.8 vs. 68.4), MME (1485.7 vs. 1476.9) and POPE (87.5 vs. 86.4).
While COINCIDE achieves strong performance (97.4% Rel.), it falls short of ICONS on key tasks.
Approaches like EL2N, Perplexity, SemDeDup achieve only 91-92% Rel., showing limitations in
preserving performance.

CAMBRIAN-7M & VISION-FLAN-186K selection. We further provide results on VISION-FLAN-
186K and CAMBRIAN-7M in Tab. 2. On VISION-FLAN-186K, our method achieves near-full
performance (99.8% Rel.) using just 37k samples, significantly outperforming random selection
(91.6%) across tasks. Similarly, on CAMBRIAN-7M, ICONS maintains a strong performance (98.8%
Rel.) with 1,414k samples, while random selection achieves 95.4%. These results demonstrate

3 , which has no prior exposure to the visual instruction

tuning data.
“For MME, we focus on its perception section following [21], which evaluates vision capablities.
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Dataset #Data | Method VOAZ GQA ViaWiz SQAY TextVQA POPE MME MMBench LLAVA'W | Rel. (%)
en Bench
| 186k | Full | 680 492 417 608 504 834 12632 526 459 633 | 1000
VISION-FLAN-186K Random 641 458 375 587 453 829 10798 465 396 587 916
ICONS (ours) | 674 488 441 602 499 830 12525 519 454 631 998
| 7,068k | Full | 802 629 584 753 609 865 15246 691 589 616 | 1000
CAMBRIAN-TM. 1 © 1 | Random 742 575 619 710 57.1 864 14657 633 496 704 954
: ICONS (ours) | 79.6 621 607 739 508 862 15031 678 558  67.0 98.8

Table 2: Selection results on VISION-FLAN-186K and CAMBRIAN-7M. Performance compari-
son of different data selection approaches when trained on 20% of the VISION-FLAN-186K [40]
and CAMBRIAN-7M [42] datasets. ICONS achieves strong performance (99.8% and 98.8% Rel.
respectively) while using only 20% of the training data, significantly outperforming random selection
which is one of the strongest baselines, and approaching full performance.

Aggregation | VQAV2 GQA VizWiz SQA-I TextVQA POPE MME MMB (en) MMB (cn) LLaVA-W | Rel. (%)
Full | 79.1 63.0 47.8 68.4 582 86.4 14769 66.1 58.9 67.9 | 100
Merge 757 59.6 479 65.5 55.5 86.0  1422.1 59.0 51.0 66.2 96.4
Max 75.2 59.8 48.1 66.2 55.5 85.5 14707 58.3 51.8 66.2 96.1
Merge-GausNorm 75.1 60.1 46.4 69.8 54.5 85.6  1482.6 58.9 52.5 66.3 96.8
Merge-SumNorm 75.5 59.1 51.7 68.7 43.5 87.1 14783 59.5 50.9 69.8 95.3
Round Robin 75.4 59.1 48.3 70.6 55.2 86.6 14745 61.6 51.5 66.9 96.7
MinRank 75.2 59.0 49.7 70.4 55.1 86.9  1456.3 61.1 52.4 68.4 97.1
Vote (ours) 76.3 60.7 50.1 70.8 55.6 87.5  1485.7 63.1 55.8 66.1 98.6

Table 3: Comparison of aggregation approaches. Performance of different influence aggregation
methods when selecting 20% of the LLAVA-665K dataset. Our proposed aggregation approach (Vote)
consistently achieves the best overall performance (98.6% Rel.), outperforming both score-based
(Merge, Max), their noramlized variants (Merge-GausNorm, Merge-SumNorm) and rank-based
(Round Robin, MinRank) baselines.

that our approach scales effectively to both small and large datasets, consistently preserving model
capabilities while drastically reducing the training data required.

Comparisons with representation-based data selection. We compare our method against RDS
(Representation-based Data Selection)[ |5, 45], a strong baseline in language-only instruction tuning.
RDS computes training-validation similarity using final-layer representation of the last token in each
sequence instead of gradients. For a fair comparison, we use the same influence matrix formulation
(Eqn.2) and apply majority voting to reach influence consensus. Our method consistently outperforms
RDS across all tasks, particularly those requiring perceptual grounding — e.g., higher scores on GQA
(60.7 vs. 57.9), SQA-I (70.8 vs. 68.0), and MME (1485.7 vs. 1393.8). While RDS is effective in
selecting large-scale text-only data (e.g. TULU-2/3 [14, 20]), its evaluation has largely focused on
language-only tasks, where semantic similarity alone is often sufficient. In contrast, vision-language
tasks demand alignment between modalities, where representation similarity is limited as it only
reflects current embedding proximity and gradient-based approaches directly estimate each sample’s
contribution to the validation loss. Our gradient-based approach directly estimates each sample’s
impact on validation loss, capturing cross-modal training dynamics and prioritizing impactful training
points. We further provide qualitative comparisons in Appendix §I.

3.3 Analysis of aggregation strategies

Ablations. As introduced in §2.4, we explore multiple strategies for aggregating task-specific
influence rankings into a single compact subset. We compare our majority voting approach (Vote)
with different aggregation approaches for combining task-specific influence scores: 1) score-based
methods (Merge, Max) and their normalized variants (Merge-GausNorm, Merge-SumNorm),
2) rank-based methods (Round Robin, MinRank). Our voting-based strategy outperforms all
alternatives (Tab. 3), achieving the highest overall Rel. (98.6%). This shows that building a cross-task
consensus via majority voting is a simple yet effective strategy for identifying consistently influential
examples across tasks, without assuming calibration or comparability of scores.

Limitations of score-based aggregation. Score-based methods like Merge (Eqn. 3) and Max
(Eqn. 4) assume calibrated influence scores across tasks, which is rarely the case. We observe
substantial variation in the distribution of influence scores across tasks with standard deviations
spanning from 8.15x 10~3 (MME) to 1.26 x 10~3 (VQAV2), indicating that influence scores for MME
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Figure 3: Pairwise overlap heatmap be- Figure 4: Data overlap between specialists and gener-
tween specialists. The values show over- alist selection. Overlap varies significantly, from 3.27%
lap percentages between benchmarks’ se- (VQAv2) to 24.21% (LLAVA-W Bench), reflecting varying

lected samples. alignment between task-specific and consensus selections.

are much more spread out, while those for VQAv2 are tightly concentrated. Similarly, mean influence
scores vary in both magnitude and sign: MME has a relatively high positive mean (1.68 x 1073),
while tasks like POPE (—2.83 x 10~%) and GQA (—8.89 x 107°) have negative means. These
divergent patterns show that certain tasks have much wider influence scores distributions, making a
sample helpful for one task but neutral or harmful for another. Aggregating raw scores thus biases
selection toward tasks with higher variance or skewed means. To address this calibration issue, we
experimented with normalization strategies: Merge-SumNorm, which rescales each task’s influence
scores by dividing them by a task-specific normalization factor (i.e., sum), and Merge-GausNorm,
which normalizes the scores using task-wise mean and standard deviation before averaging:

K
Z I (2i) Z Iy (2i) —
[Merge SumNorm zz IMerge—GausNorm(zi) = -
Z I(25) = Ok

However, as shown in Tab. 3, both methods still underperform compared to our voting-based strategy,
reinforcing the limitations of relying on score magnitudes directly.

Limitations of rank-based aggregation. Rank-based methods sidesteps the challenge of com-
paring raw influence scores by focusing on within-task ranking. Round Robin selects samples by
cycling through each task and picking the highest-scoring remaining sample for that task, ensuring
balanced coverage. MinRank (Eqn. 5) selects samples that have the best minimum rank across all
tasks, prioritizing examples that perform exceptionally well in at least one task regardless of their
performance in others. Although these methods ensure balanced coverage across tasks, they can
overfit to outlier tasks. This is particularly evident with LLaVA-W Bench [26], which is an outlier
in its influence ranking: both Round Robin and MinRank achieve relatively high scores on it (e.g.
MinRank: 68.4), but this comes at the cost of lower performance on all other tasks (Tab. 3). This
suggests that purely rank-based selection can trade off some overall efficacy on the mainstream tasks
and hurt multi-task balance. In contrast, our Vote approach is more robust and avoids this by focusing
on multi-task consensus rather than forcing equal representation, yielding better balance and higher
overall performance (98.6% Rel.), highlighting the importance of identifying broadly influential
examples rather than narrowly optimizing per-task rankings.

Divergent multi-task influence patterns. As shown in Fig. 3, the pairwise overlap heatmap shows
notable variation in training data influence across tasks. High overlap — e.g., VQAvV2 and VizWiz
(49.0%) or POPE and GQA (60.2%), suggests that certain samples are beneficial across similar
tasks. However, low overlap, like the 3.3% between MMBench (en) and GQA, highlights that highly
influential samples for one task may have limited impact on others. Even closely related tasks, such
as MMBench in different languages (English and Chinese), share 67.4% of influential samples. To
understand task-specific influence matrices from the specialist stage, we select the top 20% samples
per task (Specialists). Overlap with our generalist subset (Fig. 4) varies significantly, from minimal
in tasks like VQAV2 (3.27%) and VizWiz (3.28%) to substantial agreement in tasks like LLAVA-W
Bench [26] (24.21%). These findings empirically demonstrate significant overlap in influential
samples across tasks and validate our approach: by analyzing task-specific gradient-based influence
patterns and building consensus across tasks, we can identify a compact subset that captures broadly
useful samples across tasks, yielding strong performance with significantly less data.



‘AIZD ChartQA  DocVQA InfoVQA MMYVet Naturalbench RealworldQA CMMMU ‘ Rel. (%)

Full | 554 17.5 28.9 26.5 31.1 12.4 52.4 22.1 | 100.0
Random 50.2 15.1 25.2 24.3 27.6 11.1 49.8 21.9 91.6
LLAVA-ICONS-133K | 53.9 17.1 27.9 27.5 29.7 12.8 55.0 25.2 98.7
Per-task Rel. (%) | 973 97.7 96.5 103.8 95.5 103.2 104.4 1140 |

Table 4: Unseen-task generalization. Performance comparison on unseen benchmarks when trained
on selected subsets. Notably, we observe improvements on InfoVQA (103.8%), RealWorldQA
(104.4%), and CMMMU (114.0%), highlighting strong generalization to unseen tasks.

3.4 ICONS generalizes to unseen tasks

LLAVA-ICONS-133K demonstrates exceptional generalization on entirely unseen benchmarks that
were not used during data selection. As shown in Tab. 4, we test across a diverse spectrum of tasks
including MM Vet [49], NaturalBench [22], AI2D [18], ChartQA [32], DocVQA [34], InfoVQA [33],
RealWorldQA [44] and CMMMU [50]. LLAVA-ICONS-133K achieves 95.5-113.9% (Rel.) com-
pared to full dataset training (InfoVQA: 103.8%, NaturalBench: 105.5%, RealWorldQA: 104.4%,
and CMMMU: 113.9%), suggesting that, in some cases, training on LLAVA-ICONS-133K may
even outperform training on the full dataset, despite these tasks not being included in the selection
process. Importantly, LLAVA-ICONS-133K significantly outperforms random selection across all
benchmarks. This suggests that our selection approach successfully captures fundamental visual-
language understanding capabilities that transfer well across different task formats and domains. We
further provide the cross-architecture generalization results in Appendix §

3.5 ICONS outperforms baselines across ratios and exceeds full-data training at 60 %

To understand how ICONS scales, we evaluate it 105
across different selection ratios, progressively scaling -

the subset size from 5% to 60% of LLAVA-665K.
As shown in Fig. 5, our results reveal several key o
patterns: First, ICONS shows particularly strong 5 )

performance in the low-selection regime (5-20%), é 7 T T pawop
where identifying the most influential samples is cru- . erploty = ICONS (o0
cial. Second, as the selection ratio increases, the % DT
performance gap between different methods gradu- = =
ally narrows. This convergence pattern is expected, 70 /

as larger sample sizes naturally capture more of the e 0% 20% a0% 60%

Sampling Ratio (%)
Figure 5: Different selection ratios. ICONS
consistently outperforms all baselines across
different selection ratios and remarkably ex-
ceeding 102% at 60% selection ratio.

dataset’s diversity and information. Despite this con-
vergence trend, ICONS consistently outperforms all
baselines across all selection ratios. Remarkably, it
even surpasses full dataset performance at the 60%
ratio, achieving over 102% relative score. One hy-
pothesis is that ICONS can also effectively filter out potentially harmful or noisy training samples
that might negatively impact model training, thereby surpassing the full training performance.

4 Conclusion

In this work, we introduce ICONS, a simple yet effective influence consensus-based approach
for visual instruction tuning data selection. By leveraging gradient-based influence estimation and
aggregating task-specific selections through majority voting, our two-stage specialist-to-generalist
approach selects training examples that are broadly beneficial across multiple downstream tasks.
ICONS addresses limitations of prior selection methods by avoiding assumptions about score com-
parability across tasks and reducing the sensitivity to outlier task rankings, which can bias selection
in both score-based and rank-based approaches. Beyond data selection, it provides a principled way
to reason about data influence in multitask mixtures. Through extensive experiments, we show that
ICONS builds compact, high-impact datasets without sacrificing performance or generalization,
achieving 98.6% of full dataset performance using only 20% of LLAVA-665K and generalizing well
to unseen tasks or architectures. We release LLAVA-ICONS-133K and CAMBRIAN-ICONS-1.4M,
20% subsets of the LLAVA-665K and CAMBRIAN-7M datasets, maintaining strong performance on
diverse tasks and transferring well to unseen ones. We hope our work inspires further exploration
into data-efficient methods for vision-language models across diverse applications.
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A Computational complexity

A.1 Complexity analysis

Computing gradient-based influence requires a non-trivial amount of computational resources. In
the specialist stage, the complexity scales with both the dataset size |D| and the gradient dimension
d. This stage consists of three steps. First, the warm-up training has a complexity of O(|Dyarmup|)-
Second, the gradient computation stage has a computational complexity of O(|D| + |Dya|) for
forward and backward passes, with storage requirements of O(|D| - d + |Dyal| - d) for the gradients.
Third (and finally), the influence matrix computation requires O(|D| - |Dya| - d') compute cost, where
d’ is the reduced dimension after projection. The generalist stage, focusing on influence consensus
across tasks, has lower computational requirements. It begins with threshold computation, requiring
O(K - |D|log |D|) operations for sorting across K tasks. The voting process then takes O(K - |D|)
compute, followed by a final selection step with complexity O(|D|log |D|) for sorting the aggregated
votes. Storage requirements for this stage are minimal, primarily for the final selected subset.

A.2 Resource requirements

In practice, for LLaVA-665K training data, the warmup training phase requires 0.75 hours using eight
L40 GPUs. We parallelize the gradient computation across 100 A6000 GPUs, taking approximately
one hour and requiring 103GB of total storage for the gradients. The influence consensus stage is
notably efficient, completing in less than a minute on a single L40 GPU. While these computational
demands are substantial, they represent front-loaded, one-time costs that can be used across multiple
target tasks and model iterations. This makes our method extendable for new tasks, as the expensive
training data gradient computations only need to be performed once.

A.3 Discussion on cost-benefit justification

Although gradient-based data selection is computationally intensive, we argue that the initial cost
is justified by three key considerations. First, the computational expense is largely a one-time
investment: once gradients are computed, they can be stored in our gradient datastore and reused
across multiple model iterations, target tasks, and diverse downstream applications. This reusability
becomes especially valuable as the number of target datasets grows, because each new target dataset
can leverage existing gradient computations, making the selection increasingly efficient at scale.

Second, our empirical results demonstrate substantial performance benefits. Training on a strategically
chosen 60% subset of data not only reduces training time but also surpasses the performance obtained
by using the full dataset. This improvement underscores how directing more compute resources
toward a carefully selected subset can yield higher returns on a fixed set of data.

Lastly, the initial compute-intensive investment in data selection is amortized across future train-
ing iterations and future developers. By leveraging the curated, higher-quality dataset, they can
substantially reduce training costs.

B Related work

B.1 Visual instruction tuning

Multimodal large language models (MLLMs), e.g., Flamingo [2], LLaVA [26], BLIP2 [23], and
Cambrian [42], enhance the capabilities of large language models (LLMSs) on various multimodal
tasks. A key component in advancing MLLMs is visual instruction tuning [26], a training process
that enables these models to interpret and follow instructions within a vision-language context,
transforming them into versatile multimodal assistants. This tuning process not only improves
the models’ instruction-following abilities but also aligns their outputs more closely with user
expectations, thus enhancing their utility in practical applications [26].

B.2 Data selection

Data selection methods [ 1 1] can be categorized based on the types of information they utilize for
selection. Representation-based approaches [, 21] leverage neural embeddings to capture data
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Task \MME POPE SQA-I MMBench VQAv2 GQA VizWiz TextVQA LLaVA-W

\ en cn
| Dya 986 500 424 1,164 1,164 1,000 398 800 84 84
| Diest| 2,374 8910 4,241 1,784 1,784 36,807 12,578 8,000 5,000 84
Task Type | YN YN MCQ MCQ MCQ VQA VQA VOQA VQA VOQA

Table 5: Statistics of Target Tasks. Our target tasks include diverse benchmarks and answer formats,
covering different vision-language capabilities. Task types include Multiple-Choice Questions
(MCQ), Visual Question Answering (VQA), and Yes/No Questions (Y/N).

representations. Loss trajectory-based methods [35] prioritize data points that contribute most
significantly to reducing generalization error over training. Gradient-based techniques [36, 45, 6]
select data based on gradient information. Recent work has explored various approaches to select
optimal visual instruction tuning datasets. Concurrent work TIVE [27] employs gradient-based
selection to identify representative instances. TIVE assumes that the number of specialist data should
be proportional to task difficulty and thus samples specialist data based on an estimation of task
difficulty. Our method does not rely on this assumption — we directly select samples that benefit
the greatest number of tasks. COINCIDE [21] clusters data based on representations associated
with concept-skill compositions. Our work follows targeted instruction tuning selection approach
LESS [45] to utilize gradient information to calculate the specialist influence (i.e., the influence on a
specific task) and extends it to general scenarios by aggregating information from various tasks and
selecting data for multiple downstream tasks via majority voting.

C Additional experiment details & ablations

C.1 Additional task details

Here, we provide further details on the target tasks, as summarized in Tab. 5. These tasks cover a wide
range of multimodal benchmarks commonly used, including Yes/No questions (Y/N), multiple-choice
understanding questions (MCQ) and visual question answering (VQA).

C.2 Projection dimension

We primarily set the projection dimension to 5120, reducing features from 338.7M to 5120 dimen-
sions. The choice of 5120 was empirically validated for its trade-off between effective capturing
gradient representation and maintaining a manageable parameter space. Our LLaVA-v1.5-7b-1lora
architecture includes a total of 7.4B parameters, with 338.7M parameters being trainable after LoORA
adaptation, accounting for approximately 4.58% of the total parameter count. We further ablate
different projection dimensions (1024, 2560, 5120, and 10240), with results provided in Fig.

C.3 Warm-up Ratio

To initiate training, we use 5% of the total training data. We conducted ablation studies to evaluate
the impact of varying warm-up ratios (5%, 10%, 20%, and 100%) on selection performance, as
shown in Fig. 6b. Our experiments reveal that increasing the warm-up data size does not lead to
performance improvements. Surprisingly, models trained with smaller warm-up ratios (5-20%)
consistently outperform those trained with the full dataset (100%). Specifically, the 5% warm-up ratio
achieves the best performance at 98.6%, while using the complete dataset results in a performance
drop to 97.8%. This finding suggests that a small subset of training data is sufficient and even
beneficial for model initialization, and potentially gives better signals in the early training stages.

D Additional analysis

In this section, we provide additional analyses to better understand different aspects of our ICONS.
We begin by analyzing the effectiveness of task-specific selections and their aggregation into a
generalist subset (§.1). We further explore whether incorporating visual dependency information
into the selection process affects performance across different types of vision-language tasks (§0.2).
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(a) Projection Dimension Ablation. We show the (b) Warm-up Ratio Ablation. The blue line rep-
performance of ICONS at different projected dimen-  resents ICONS performance across different warm-
sions (1024, 2560, 5120, 10240), compared to the up ratios (5%, 10%, 20%, and 100%), while the red
random baseline. The performance increases with the ~ dashed line shows the random baseline performance.

projected dimension and reaches a plateau around di- ~ Results show that smaller warm-up ratios (5-20%)
mension 5120. achieve better performance compared to using the full
dataset (100%).

Figure 6: Ablation studies on (left) projection dimension and (right) warm-up ratio.

Method ‘VQAVZ GQA VizWiz SQA-I TextVQA POPE MME MMBench (en) MMBench (cn) LLaVA-W Bench

Full ‘ 79.1 63.0 47.8 68.4 58.2 86.4  1476.9 66.1 58.9 67.9
Specialist 77.1 61.1 53.1 69.8 55.7 86.6  1506.1 66.0 56.4 67.1
Generalist 76.3 60.7 50.1 70.8 55.6 87.5 1485.7 63.1 55.8 66.1
Delta (%) ‘ 1.04 0.65 5.65 -1.43 0.18 -1.04 1.35 434 1.06 1.49

Table 6: Single-task Selection (Specialist) vs. Consensus-aware Multi-task Selection (Generalist).
The single-task data selection approach selects 20% of LLAVA-665K per task, while our consensus-
aware multi-task data selection approach selects a total of 20% data across all tasks.

We also evaluate the transferability of our selected subset across different model scales (§D.3).
Additionally, we evaluate the consistency of our method across multiple runs (§0.4), showing its
robustness and reliability.

D.1 From specialist to generalist

To understand the intermediate task-specific influence matrices we obtained from the specialist
stage, we select 20% of data for each individual task. The task-specific data (Specialists) achieves
comparable or superior performance than full data training (Tab. 6). With influence consensus at the
generalist stage, we select a 20% subset with only a 1.33% average drop across tasks compared to
specialist baselines. This validates our approach: by understanding task-specific influence patterns
and building consensus across tasks, we can identify a compact, universal training set that maintains
strong performance with significantly less data.

D.2 Visual dependency influence ranking

Recent work [42] has shown that vision-language tasks vary in their reliance on visual information:
tasks like MMBench [51] depend heavily on visual grounding, while others like SQA-I [28] can
be handled primarily through language, showing only a 5% drop in performance when visual input
is removed [42]. To take visual dependency of training data into account, we further explored
gradient-based Visual Dependency Score (VDS). For each data point, we calculate the gradient of the
model’s auto-regressive cross-entropy loss with both the original image and a Gaussian noise image
Tnoise ~ N(0,1), keeping the text input constant. This quantifies how much the visual component
contributes to model performance. We construct an adapted influence matrix: visual influence matrix
Iyps € RIPI*[Dul , which quantifies the visual influence of each training sample z; on each validation
sample zg- w.r.t the model’s gradient alignment and visual dependency. Zyps is computed as:

IVDS,ij — <v0£(z7{)7 Vaﬁ(a:jv Ij) - Vﬂﬁ(xj» Inoise)>7 (7)

where VgL (x;, I;) and VgL(x;, Insise) are the gradients computed with the original and Gaussian
noise images, respectively. The visual influence matrix Zyps provides insights into which training
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‘VQAVZ GQA VizWiz SQA-I TextVQA POPE MME MMBench(en) MMBench (cn) LLaVA-W Bench

Full [ 791 63.0 47.8 68.4 58.2 864 14769 66.1 58.9 67.9
w/o VDS 76.3 60.7 50.1 70.8 55.6 87.5  1485.7 63.1 55.8 66.1

w/ VDS 75.8 60.9 50.3 69.5 54.8 86.8  1489.3 64.3 56.3 67.9
Delta (%) | -0.66  +0.33  +0.40 -1.84 -1.44 -0.80  +0.24 +1.90 +0.90 +2.72

Table 7: Impact of Visual Dependency Score (VDS) on Selection Performance. Rows show perfor-
mance without VDS, with VDS, and the performance change (Delta). VDS improves performance on
LLaVA-W Bench (+2.72%), MMBench (en) (+1.90%), and MMBench (cn) (+0.90%), but decreases
performance on SQA-I (-1.84%), TextVQA (-1.44%), and POPE (-0.80%).

| VQAv2 GQA Vizwiz SQA-I TextVQA POPE MME MMBench (en) MMBench (cn) LLAVA-W | Rel. (%)

Full | 80.0 63.3 58.9 71.2 60.2 86.7 1541.7 68.5 61.5 69.5 | 100.0
Random 77.3 60.7 57.6 69.1 56.8 829 15172 63.2 56.3 67.5 95.7
7B-selected 78.8 60.4 574 70.4 58.3 84.3 1527.5 64.9 59.7 68.2 97.3
13B-selected 78.9 61.2 57.5 71.3 584 859 15352 66.1 59.8 68.8 98.1

Table 8: Cross-Architecture Generalization. Our LLAVA-ICONS-133K selected via LLaVA-
v1.5-7B model (7B-selected) shows strong cross-architecture transferability, achieving 97.3% Rel.,
while the data selected via LLaVA-v1.5-13B model (13B-selected) reaches 98.1%, showing that our
selected subset generalizes well to different architectures.

samples have the most influence on the validation samples from a visual perspective. This matrix can
be used to further rank and select training data that are most impactful for tasks requiring strong visual
grounding, ensuring that the selected subset effectively supports vision-dependent performance.

Our empirical results demonstrate that VDS-based data selection has varying effectiveness across
different vision-language tasks (Tab. 7). The approach shows substantial improvements on tasks
requiring strong visual understanding, such as open-ended generation (LLaVA-W Bench: +2.72%)
and multiple-choice understanding (MMBench-EN: +1.90%, MMBench-CN: +0.90%). However,
tasks that primarily rely on textual reasoning show decreased performance, including SQA-I (-
1.84%) and TextVQA (-1.44%). These results align with and extend the findings in Cambrian [42],
demonstrating that the effectiveness of VDS corresponds to a task’s visual dependency - tasks
that maintain performance without visual inputs show limited or negative impact from VDS-based
selection, while visually-dependent tasks benefit significantly. This pattern suggests that VDS
effectively identifies training samples where visual information plays an important role in training.

D.3 Cross-architecture generalization

We further conduct experiments on cross architecture generalization to evaluate the transferability
of our selected data across different model scales. While our subset was initially selected using
LLaVA-v1.5-7B as the base model, we investigate whether these same examples remain effective for
training larger architectures like LLaVA-v1.5-13B. This tests whether our selection criteria identify
universally valuable training examples rather than model-specific patterns. Our results in Tab. 8 show
cross-architecture generalization, with 13B model trained on 7B-selected subset achieving 98.1%
Rel.. Both 7B-selected and 13B-selected subsets outperform random selection (95.7%), with the
13B-selected option showing particular strength in reasoning tasks like MMBench and POPE. This
suggests that our selected subset captures fundamental visual-language understanding patterns that
generalize well across different model architectures.

D.4 Consistency analysis

To evaluate the consistency of ICONS, we 100 08,6612
conduct three independent runs of the experi- 98 : F :

ments. As shown in Fig. 7, our method demon- & o 95201223

strates high consistency across different runs, 3 o4

achieving 98.64+1.2% Rel., which shows a no- 92

table improvement over random baseline, which 90 Random ICONS

achieves 95.8£2.7%. The lower standard de-

viation (1.2% vs 2.7%) further indicates that Figure 7: Rel. (%) Across Runs. We show the
our approach produces more stable and reliable ~performance across three different runs for random
outcomes compared to the random baseline. selection and our ICONS.
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E Algorithm details

We provide detailed pseudocode for our two-stage ICONS framework. Stage | (specialist) computes
task-specific influence scores through gradient-based analysis with efficient random projections.
Stage 2 (generalist) implements our voting-based consensus mechanism to select samples that are
influential across multiple tasks.

Algorithm 1 ICONS Stage 1: Specialist (Task-specific Influence Computation)

Require: Training dataset D = {(x;, I;,y;) }¥.,, target tasks T' = {T1, ..., Tk }
Require: Warm-up ratio 7 (default 5%)
Ensure: Task-specific influence scores {1} }5_,

1: for each task T}, € T do

2: [/ Step 1: Warm-up Training

3: Sample warm-up set Dyqmup C D of size 7| D|

4 fwarmup «— LORA(fbase; Dwarmup)

5: /I Step 2: Gradient Computation

6:  for each training data z; € D do

T gi < V()w L(fwarmup(zi)a yz)

8 Ji < Normalize(Ryg;) {Random projection}
9

: for each validation data 2} € DEF, do
10: gj — VOU, (fwarmup( ) yj)
11: §; — Normalize(Rg;)

12:  // Step 3: Influence Matrix Computation
13:  foreach z; € D, 2} € Df, do

14: If «— (3i, 95)

15:  // Compute average influence per training sample
7 D

16 In(z) < g )0 Dl

17: return Task-specific influence scores {I; } 5,

Algorithm 2 ICONS Stage 2: Generalist (Influence Consensus-based Data Selection)

Require: Task-specific influence scores {I; } X,
Require: Selection ratio p, number of tasks K
Ensure: Selected subset S C D of size m < N
: // Compute voting thresholds
for each task T}, € T" do B
7k (1 — p)-th percentile of {1} (z;)} Y,
/I Voting process
for each training sample z; € D do
Ivote(zi) 0
for each task T}, € T do
votey(z;) < 1[Ik (zi) > 7%
Lioe(2i) < Lyore(2:) + votey(z;)
/I Select top samples based on total votes
: S < top-p samples by Ly
: return Selected subset S

PRADINE PR

_—
N2 0

F Limitations

Our approach primarily faces one practical limitation: computing gradients for large training datasets
is computationally expensive (Appendix § A). This computational overhead could potentially constrain
the method’s applicability when working with extremely large-scale datasets. To support broader
research community, we release LLAVA-ICONS-133K dataset to help research iteration and model
development under resource-constrained settings.
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G Broader impact

Our exploration focuses on scientific understanding and practical applications of vision-language
data selection. While our work does not directly imply negative impacts, it may indirectly propagate
existing biases present in the original datasets. Therefore, it is important to incorporate rigorous
bias-mitigation measurements for data selection. On the positive side, our method enables more
efficient and sustainable model development by reducing data redundancy, computational cost while
maintaining or even improving performance. Discussion on these critical aspects should remain a
priority as we further explore the potential of vision-language data selection.

H Future work

Our work opens several promising research directions for improving vision-language data selection.
While our work focuses specifically on visual instruction tuning data, our influence consensus
approach can be naturally extended to other stages of MLLM training, such as alignment stage. The
majority voting mechanism may under-represent tasks with unique characteristics or those in the long
tail, as it prioritizes samples that broadly benefit multiple tasks to build the main knowledge pool.
This can lead to limited support for specialized tasks or the reinforcement of spurious correlations
spanning multiple tasks. Future work could explore weighted voting mechanisms, in which tasks
are assigned weights based on their relative importance or contribution to overall model performance
for more balanced data selection. Additionally, investigating more efficient gradient computation
and storage methods would help scale these methods to larger datasets while maintaining strong
performance across diverse vision-language tasks.

I Visualizations

I.1 Representation-based vs. Gradient-based data selection

While ICONS leverages gradient-based influence signals, we explore how representation-based data
selection (RDS) performs in the same setting (§3.2). We analyze the top-ranked training examples
selected by RDS after the generalist stage in Fig. & vs. samples selected by ICONS in Fig.
Interestingly, we observe that the representation-based variants often favor training examples with
repeated images or instructions, which may dominate the learned representations without contributing
to better generalization. Some of the highest-scoring samples under representation-based similarity
are duplicated image-question pairs with only the answer choices shuffled. We hypothesize that this
is a side effect of the way multimodal representations are constructed—where visually dominant
or textually redundant samples occupy high-density regions in embedding space. However, these
samples do not necessarily translate into broader utility across tasks, as seen in the performance gap
in Tab. 1. This discrepancy raises broader questions about what it means for multimodal data to be
diverse. While we leave these questions open for future exploration, our results suggest that gradient-
based influence, though computationally more expensive, is better aligned with generalization and
multi-task data mixture settings.

I.2 Specialists & Generalist

We visualize the most influential top three examples across specialists (figs. 9 to 18) and the gener-
alist selection (Fig. 19), along with samples from their corresponding tasks. Notably, the selected
high-influence examples by specialists show strong task-specific characteristics both structurally
and contextually - they mirror the key attributes of their target tasks in terms of question structure,
reasoning patterns, and required visual-language understanding capabilities. Furthermore, the visual-
ization of top influential examples reveals distinct patterns in what makes training samples valuable
for different vision-language tasks. VQAv2, GQA, and SQA-I specialists favor multi-turn Q&A sce-
narios that test both visual comprehension and contextual understanding, while TextVQA, POPE, and
MME specialists emphasize text recognition, object verification, and spatial relationships respectively.
MMBench-EN and MMBench-CN show consistent patterns despite language differences, focusing on
clear, unambiguous scenes that translate well. The LLaVA-W Bench specialist prioritizes examples
requiring detailed explanations and multi-step reasoning, and the answers are generally longer. The
generalist model values diverse scenarios that combine multiple skills simultaneously. Common
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What are the floating blue objects Please provide a short

for? description for this region: [0.0, Right side of pizza
A. swimming 0.33,0.83, 0.55]

B. boundaries

C. decoration

D. first aid Please provide a short ) .
; ion description for this region: Piece of pizza closest to
Answer with the option's letter from [0.02, 0.42, 0.48, 0.55]. brown plate at bottom

the given choices directly

Please provide the bounding

B box coordinate of the region
this sentence describes: a
margarita pizza

[0.0, 0.33,0.83, 0.55]

Please provide the bounding
| box coordinate of the region
this sentence describes: far
edge of pizza

[0.0, 0.33, 0.83, 0.55]

Please provide the bounding

What are the floating blue objects box coordinate of the region [0.0, 0.33, 0.83, 0.55]
this sentence describes: pizza

for?

A. decoration

B. first aid

C. swimming Please p.rovifde ashort ) Pizza area on the right
D. boundaries description for this region: [0.0, side of the plate

N . 0.33, 0.83, 0.55].
Answer with the option's letter from !

the given choices directly

Please provide a short Closest slice with only a
D description for this region: little tomato.
[0.02,0.42,0.48, 0.55].

Figure 8: Top three samples selected by RDS. These highly-ranked samples are selected due to
representation-based similarity but do not necessarily contribute to better generalization, highlighting
a key limitation of representation-based selection in multimodal settings.

characteristics that make these examples particularly valuable include multi-turn interactions, clear
visual elements, factual and inferential reasoning, cross-modal interaction, and the ability to test
multiple capabilities within a single example. This suggests that the most effective training samples
are those that combine multiple types of reasoning while maintaining clear, unambiguous ground
truth that can be consistently learned across tasks.
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Is this a contemporary passenger train? What does the sofa appear

to be blocking? Window
No
What is the object in the
upper right? Lamp
Is this in the country?
What is the cat sitting on? Couch
Yes
What animal is on the couch? Cat
Is the train moving?
Is the cat sleeping? Yes
No
Do the cushions match the
color of the couch? No
What is the color of the side .
lamps? Pink
Is this toaster made out of stainless steel? Does the couch have legs
under it? No
Yes
What is on the couch? Cat
Why would someone leave this toaster on
the sidewalk? Is there a bed? No
Broken
What's on the sofa? Cat
Is the street cracked?
Are the cushions golden? No
Yes
How many pillows are on the 2
couch?

What kind of store is the
person in? None

. . . Who sleeps on the bed? Cat
Which national flag is in the segment

screen of this broadcast?
Q gz:gzr;ands How many pillows in the shot? 2
C. france

D. uk

Answer with the option’s letter from the
given choices directly.

What color is the pillow

on the right? Slue

What is covering the couch? Cat

Figure 9: VQAv2. Top-left: A sample from VQAvV2 [9]. Remaining panels show top three influential
samples selected using the specialist influence ranking step.
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Who is the catcher in front

of? Men
Is it overcast? No hollcin fror!t oftheimen Catcher
that are wearing a helmet?
E:isy.?u see both helmets and No Please provide the bounding Who is wearing a uniform? Men
i box coordinate of the region
this sentence describes: a [0.31,0.08, 0.49, 0.35] e P ————
? Yes large rock in back. re the men to the left of the No
Are the snow pants green? 9 catcher wearing a cap?
Is the snow both bright and Yes Hieasslprovicelheltotncing Who is wearing a helmet? Men
white? box coordinate of the region
this sentence describes: [0.43,0.37,0.58, 0.42]
Is there either a fence or a plackstripeslonizebraifiry Who wears the face mask? Men
7 Yes
snowboard in the photograph?
Please provide a short . .
What is the person in front of? Sky description for this region: A small zebra with big Who is wearing helmets? Catcher
[0.33,0.32,0.63, 0.58]. black stripes.
What's the person in front of? Sky ‘l;YhaI:’:(ind of clothing is Uniform
lack?
Please provide a short
q ing? i description for this region: Rock i b
What is the person doing? Snowboarding [0.33 011, 0.48, 0.34], ock structure in grass. Are the trousers white? Yes
What is the person in front of Snowboardin
the sky doing? g ) Who wears a face mask? Men
Please provide a short
description for this region: Black zebra hooves. B - pr———
How hard is the snowboard? Very [0.67,0.76, 0.76, 0.84]. h:ve tehr;usn;me;::br” Rl Yes
’I?o th:hnumber anld g‘e Shitt Yes Please provide the bounding Which place is it? Stadium
s amelcoon box coordinate of the region [0.31,0.44, 0.42, 0.58]
this sentence describes: the What pl. th
Does the snowboard look red Yes zebra is eating grass. Yha p‘alc(:e wi: e Stadium
and hard? image taken at?
Please provide the bounding What is thi in front
Aretherered Yes box coordinate of the region [0.65, 0.54, 0.81, 0.85] & t:elrsne:x:;ii(:‘r;;n ron Helmets
snowboards or kites? this sentence describes: a )
zebra having a snack.
Does that uniform look blue? No
Please provide a short A zebra shadow in
description for this region: grass. What is the catcher wearing? Helmets
[0.61,0.77,0.79, 0.86]. .
Which color is the shirt? White
. o Please provide a short An animal standing in
Which place is it? description for this region: place. What is the black clothing
[0.31,0.32, 0.66, 0.58]. item called? Uniform
Airport
Please provide the bounding Is the color of the uniform No
ich side i box coordinate of the region [0.33,0.32,0.63, 0.57] different than the belt?
? s s 3
EnTiEbEbBIDES this sentence describes: a
striped zebra eating.
Left Who is wearing the uniform? Men

Figure 10: GQA. Top-left: A sample from GQA [!3]. Remaining panels show top three influential
samples selected using the specialist influence ranking step.
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o . Would this be a good entree?
What is this? and what color is it?

When the provided information is
insufficient, respond with No
'Unanswerable'.

Answer the question using a single word

or phrase. What is the white cloth that

those snacks are sitting on

Black

Doily
Would this be an appropriate
food to serve to an infant?
No
What are the people holding
in their hands? Food
Is this a teddy bear? No
Is the girl feeding the elephant? No
Why are these people
gathered together? Zoo
Is this a man?
Is this some kind of celebration? No
No
Are there flowers on the Ye
girl's dress? €S .
Is there a parking lot?
Is this someone’s home? No
Yes
‘;‘i’?ﬁf;i"e the people in the Zoo Does this person look upset?
Was this photo taken in a zoo? Yes No
Is the sky clear? Yes Is the lady going up or down the mountain?
Is it summertime? Yes o

Figure 11: VizWiz. Top-left: A sample from VizWiz [10]. Remaining panels show top three
influential samples selected using the specialist influence ranking step.
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e v

toroiseshell  crown basketbal

Context: Select the best answer. Which
property do these three objects have in

Laptop

common?
A. shiny
B. slippery
C. opaque
Cc
Are there pipes in the bathroom?
Yes
What kind of floor is in the photo?
Black
What is color of the toilet seat?
White
Is the toilet functional?
Yes
What is Santa using?
What is the Santa doing?

Typing

Figure 12: SQA. Top-left: A sample from SQA [

How many stools are next to the
kitchen counter or island?

There are two stools next
to the kitchen counter or
island.

What color is the refrigerator in the
kitchen?

The refrigerator in the
kitchen is white.

What type of material is used for
the table and chairs?

The table and chairs are
made of wood.

Can you describe the layout of the
living space and kitchen?

The living space and kitchen have an
open floor plan, which means they are
situated next to each other without any
wall separations or partitions. This
design creates a spacious, airy, and
connected environment that allows for
easy socialization and movement
between the two spaces. In the kitchen,
there is a small island with two stools
near it, providing a casual seating area
for dining or conversation. The wooden
table and chairs, along with the white
refrigerator, further contribute to the
overall aesthetic and layout of the
combined living and kitchen area.

Could it be Christmas?

Yes

Is this indoors?

Yes

]. Remaining panels show top three influential

samples selected using the specialist influence ranking step.



What is the brand of this camera?

Dakota digital

The man wearing the suit and tie is

operating what object?
A. sedan

B. coupe

C. pickup truck

D. suv

Answer with the option’s letter from the

given choices directly.

Please provide a short description for
this region: [0.21, 0.4, 0.41, 0.74]

Bird biggest.

Please provide the bounding
box coordinate of the region
this sentence describes:
man in a brown tshirt.

Please provide a short
description for this region:
[0.31,0.32, 0.48, 0.73].

Please provide the bounding
box coordinate of the region
this sentence describes: man
standing with raquet in white
shirt on near side of net.

Please provide the bounding
box coordinate of the region
this sentence describes:
smiling black dude
congratulates the winners of
a tennis game.

Please provide a short
description for this region:
[0.66, 0.36, 0.81, 0.78].

Please provide a short
description for this region:
[0.21, 0.31, 0.34, 0.76].

Please provide the bounding
box coordinate of the region
this sentence describes: a
man in a white shirt holding
his hand out.

Please provide the bounding
box coordinate of the region
this sentence describes: the
bald older white man playing
tennis.

[0.21,0.31,0.34, 0.76]

This is a man wearing a
blue shirt, reaching to
shake hands with his
team mate.

[0.66, 0.36, 0.81, 0.78]

[0.31,0.32, 0.48, 0.73]

A man with a white
outfit and a tennis
racket with blue handle.

A man in a brown shirt.

[0.53, 0.35, 0.71, 0.73]

[0.53, 0.35, 0.71, 0.73]

Figure 13: TextVQA. Top-left: A sample from TextVQA [40]. Remaining panels show top three
influential samples selected using the specialist influence ranking step.
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Is there a baseball glove in
the image?

.

What shape is the dogs tag?
Answer the question using a single

On which side of the picture
is the white dog?

A.nswer the question using a No word or phrase. Apswer the question using a Left

single word or phrase. single word or phrase.
N Bone
Is there a dog in the Do you see any dogs or
image? No cats there? Yes
What kind of dog is this?
Is there a person in the image? Yes What is under the counter top? Drawers
R R Beagle )

Is there a car in the image? No What is under the countertop? Drawers
!s there a sports ball in the Yes What is the dog looking in? What kind of furniture is under Drawers
image? the counter top?

Is there a tennis racket in No Mirror What kind of furniture is Drawers
the image? under the countertop?
Is there a baseball glove in
the image? g No Is there a white dog or cat? Yes

Is there a cake in the No Are there both cabinets and No
image? bowls in the picture?

Is there a refrigerator in the No Does the trash can look large No
image? and white?

!s ther;e a sports ball in the Yes Is the woman happy? Answer the :lovo: Ifatrg%is;he trashcan on Small
ETER question using a single word or OLELEEE:

phrase.
Is there a cat in the image? Does the garbage can have a
9 e Y different color than the dog? b
es

Is there a baseball glove in No What animal has the same R Dog
the image? What sport is this girl trying out? color as the small trash can?

Is there a dining table in the . Are there any ovens or bowls

image? Mo Snowboarding in the photo? o

Is there a sports ball in the Does the girl have a serious face? Which side of the image are

image? Yes the drawers on, the right or Right

the left?
Is th inthei ? N No
SULCCCE R DINIEL Y © What animal is it? Dog

Figure 14: Pope. Top-left: A sample from Pope [24]. Remaining panels show top three influential
samples selected using the specialist influence ranking step.
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x =10

if x < 20:
print("Hello")

else:
print("World")

The image shows a python code. Is
the output of the code 'Hello'?
Please answer yes or no.

Yes

The image shows a python code. Is the
output of the code 'World'? Please answer

yes or no.

No

Does the small bike look orange?
Answer the question using a single
word or phrase.

Yes
Is the color of the seat different
than the sticker?

Yes
Which color does the sky have?
Answer the question using a single
word or phrase.

Blue
What is the tree covered in?

Leaves

Please provide the bounding
box coordinate of the region
this sentence describes: a
large rock in back.

Please provide the bounding
box coordinate of the region
this sentence describes:
black stripes on zebra fur.

Please provide a short
description for this region:
[0.33,0.32,0.63, 0.58].

Please provide a short
description for this region:
[0.33, 0.11,0.48, 0.34].

Please provide a short
description for this region:
[0.67,0.76, 0.76, 0.84].

Please provide the bounding
box coordinate of the region
this sentence describes: the
zebra is eating grass.

Please provide the bounding
box coordinate of the region
this sentence describes: a
zebra having a snack.

Please provide a short
description for this region:
[0.61,0.77,0.79, 0.861.

Please provide a short
description for this region:
[0.31,0.32, 0.66, 0.58].

Please provide the bounding
box coordinate of the region
this sentence describes: a
striped zebra eating.

[0.31,0.08, 0.49, 0.35]

[0.43,0.37,0.58,0.42]

A small zebra with big
black stripes.

Rock structure in grass.

Black zebra hooves.

[0.31,0.44,0.42,0.58]

[0.65, 0.54, 0.81, 0.85]

A zebra shadow in
grass.

An animal standing in
place.

[0.33,0.32,0.63, 0.57]

Figure 15: MME. Top-left: A sample from MME [7]. Remaining panels show top three influential
samples selected using the specialist influence ranking step.
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Question: Which of the following was a
dependent variable in this experiment?
A: the temperature of the soda

B: the size of the ice pieces

A
Is the machine turned on?
Answer the question using a single
word or phrase.

Yes
Where is this machine used?

Kitchen

Can you see through the bottle
on the right?

Yes

Why is the man midair in the middle of
the steps?

A. was thrown

B. he fell

C. stood up

D. performing trick

Answer with the option’s letter from the
given choices directly.

D
What type of bread is this?
Answer the question using a single
word or phrase.
Banana
What fruit is in the back?
Banana
Is the fruit ripe?
Yes

Figure 16: MMBench (en). Top-left: A sample from MMBench (en) [51]. Remaining panels show
top three influential samples selected using the specialist influence ranking step.
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ocean water potato chips

Question: X/ M FE (L HENE
%2

A B’ Is the machine turned on?

B: Rif Answer the question using a single
word or phrase.

B
Yes
Where is this machine used?
Kitchen

Can you see through the bottle
Is the window open? on the right?
Answer the question using a single
word or phrase. Yes

Yes

Could the bed’s metal leg be broken?

No
What color are the blinds/shutters?
White
What is seen in the room?
Why is the man midair in the middle of
the steps?
Bed A. was thrown
B. he fell
What kind of tree is closest to the house? C.stoodup
D. performing trick
Answer with the option’s letter from the
Oak given choices directly.
What is the blue object?
D
Bed

Figure 17: MMBench (cn). Top-left: A sample from MMBench (cn) [51]. Remaining panels show
top three influential samples selected using the specialist influence ranking step.
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What type of fruit is this?

This is a mangosteen fruit.

How many uncut fruits are in the
image?

There are three uncut
fruits in the image.

Describe this photo in detail.

This photo features four
mangosteens on a wooden table.
Three of them are uncut, showing
their round, dark purple exterior. The
fourth mangosteen is cut open,
revealing its white, fleshy interior,
which is divided into segments. The
table surface has a natural wood
grain pattern and adds a rustic touch
to the image.

Imagine the fragrance of the fruits in
the image. How would you describe
this to someone who has never had
this fruit before?

The fragrance of the mangosteens in
the image can be described as sweet
and slightly floral, with a hint of
citrus aroma. It is a delicate and
pleasant smell that entices you to try
the fruit.

Who is in the image?

In the image, there is a
person wearing skis and a
dog, both out in the snow.

Based on the image, what activity is
the person likely about to engage in?

Based on the image, the
person is likely about to
engage in skiing with
their dog.

What is the context of the photo?
Where is it likely taken?

The context of the photo is
that it is being taken outside
a ski patrol building. The
skier and their dog are likely

in a ski resort or mountainous

area suitable for skiing.

Could the skier be part of the ski
patrol team?

Itis possible that the skier could be

part of the ski patrol team, especially
since they are posing outside of a ski

patrol building. However, there isn’t
enough information in the image to

say for certain whether they are a ski

patrol official.

How could a dog participate or
contribute to skiing activities?

Dogs can participate in skiing activities
in several ways, often as companions or
support animals. Some common ways
dogs join skiing activities are:

- Skijoring: In this winter sport, a person
on skis is pulled by a dog (or a team of
dogs) on a harness. Skijoring combines
aspects of cross-country skiing and dog
sledding, and both the dog and the skier
work together to navigate snowy trails.
- Ski patrol dogs: Ski patrol teams may
have dogs trained for search and rescue
missions, avalanche response, and
providing comfort to injured skiers.
These dogs are typically of large breeds
like German Shepherds, Golden
Retrievers, or Labrador Retrievers, and
are specifically trained to handle
challenging winter conditions.

- Companion dogs: Many dog owners
bring their dogs along for recreational
cross-country or backcountry skiing.
These dogs do not necessarily have
formal training but are physically
capable of handling cold temperatures
and snowy terrain, and they accompany
their owners as companions on the
trails.

In the image provided, it's unclear what
specific role the dog may play or how
they will participate in the skiing activity.
However, it's evident that the dog will
accompany the skier during their skiing
session.

What are the key elements in this

Why might passengers need to pay
picture?

attention to the surroundings at the
train station?

Figure 18: LLaVA-W Bench. Top-left: A sample from LLaVA-W Bench [

The image features a city street where a
long row of parked motorcycles and
mopeds are lined up along the sidewalk.
There are several motorcycles of various
sizes and designs, creating a neat row
that extends across the side of the
street.

There is also a notable presence of
pedestrians in the area, as numerous
people can be seen walking around and
engaging in different activities. A
backpack is located close to one of the
people, placed on the pavement.

In addition to the motorcycles, other
vehicles are present on the street,
including a car and a truck parked near
the sidewalk, adding to the urban
scene’s atmosphere.

At the train station, passengers should be
alert to their surroundings for various
reasons. In the image, a train is moving along
the tracks, and a green light indicates that it
is safe to proceed. However, there are several
elements to be aware of in the scene, such as
other people near the tracks, cars nearby,
and potential transit-related changes
signaled by the traffic lights. Being attentive
to the surroundings can help people
anticipate changes in train schedules, ensure
they board the correct train, and avoid
accidents or other safety hazards.
Additionally, it is essential to be mindful of
fellow travelers’ presence and maintain a safe
distance from the tracks to ensure both
personal safety and the well-being of others.
This can help create a safe and efficient
environment at the train station for everyone.

show top three influential samples selected using the specialist influence ranking step.
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YOUR FUTURE
e PETER
DRUCKER WAY

eRuCE ROSENSTEM What precautions should these
young adults take to ensure safety
Who is the author of this book? while playing the Wii game?

To ensure safety while playing the Wii
game, these young adults should
maintain an adequate distance from
What is the title of this book? each other, the TV, and other objects
in the room. With the use of the Wii
remotes, they should have sufficient

Bruce Rosenstein

Create Your Future the space for movement to prevent
Peter Drucker Way: accidentally hitting or running into
Developing and Applying a each other, furniture, or nearby items.
Forward-Focused Mindset Furthermore, they should consider
using wrist straps for the remotes to
What type of book is this? reduce the risk of accidentally

throwing the controller during
gameplay. Finally, keeping the play
Business & Money area clean and free from obstructions,
such as loose cables or objects on the
floor, can help minimize the risk of trip

. . . 2
Is this a financial book? hazards and improve safety.

Yes
Is this a kids book?

No

What could be a possible use case
for the items on the desk?

A possible use case for the items on the desk
is a home office or a gaming setup. The desk
has a computer monitor, keyboard, mouse,
and a headset, which indicates that it is a
workstation that could be used for tasks
requiring a personal computer. These tasks
could involve remote work, video editing,
software development, or other professional
activities. In addition, the presence of the
headset and the gaming peripherals such as
the mouse and keyboard can also suggest a
gaming setup, where the person uses their
computer for playing video games,
communicating with other players using the
headset, or even streaming their gameplay
online. The desk might also be used for
general computer use, such as browsing the
internet, watching movies, or using social
media platforms, as evidenced by the
reference to Flickr on the computer monitor.

Figure 19: Generalist. We show top three influential samples selected after the generalist stage.
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