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A�������

Visual instruction tuning (VIT) datasets are constructed from randomly sampled
image-question pairs, without regard to the informativeness of each pair. Recent
dataset selection methods have shown that a small fraction of such datasets enriched
with informative samples can lead to efficient finetuning of Multimodal Large
Language Models. In this work, we explore the impact of sample complexity on
informative data curation and introduce COMPACT (COMPositional Atomic-to-
complex Visual Capability Tuning), a VIT data recipe that scales training sample
complexity by combining multiple atomic visual capabilities in a single training
example. Concretely, we synthesize rich and informative text questions for each
image, allowing us to significantly reduce the number of training examples required
for effective visual instruction tuning. COMPACT demonstrates superior data
efficiency compared to existing data reduction methods. When applied to the
LL�VA-665K VIT dataset, COMPACT reduces the data budget by 90% while still
achieving 100.2% of the full VIT performance (compared to only 97.5% by the
state-of-the-art method) across eight multimodal benchmarks. Further, training
on the COMPACT data outperforms training on the full-scale data on particularly
complex benchmarks such as MM-Vet (+8.6%) and MMStar (+2.9%). COMPACT
offers a scalable and efficient synthetic data generation recipe to improve on visual
language tasks.

1 I�����������

Visual instruction tuning (VIT) data for Multimodal Large Language Models (MLLMs) have contin-
uously scaled over time. Cambrian-10M (Tong et al., 2025) is 15 times larger than LL�VA-665K (Liu
et al., 2024a), and Eagle 2 (Li et al., 2025) instruction tuning data is 2.6 times larger than Cambrian-
10M. As a result, state-of-the-art MLLMs like LLaVA (Liu et al., 2023; 2024a), Cambrian (Tong
et al., 2025), and Eagle (Shi et al., 2024; Li et al., 2025) have shown impressive progress in a wide
range of vision-language tasks (Bai et al., 2023; Alayrac et al., 2022; Li et al., 2022). The prevailing
axiom of quantity over quality (Li et al., 2024a) in multimodal training shifted the attention of
subsequent works away from the fundamental question: Can we develop more effective data curation
methods beyond blind scaling?
Visual reasoning often relies on combining multiple fundamental visual capabilities (Ke et al., 2025;
Wu et al., 2024b; Zerroug et al., 2022). Consider the question, “What color is the object on the
left side of the car?”. A model needs to see the car (object recognition), find what is on the left
side (spatial relationship), and identify its color (color attribution) to answer the question. However,
VIT datasets typically focus on individual or limited combinations of visual capabilities (e.g. “What
color is the car?”), ignoring the crucial relationship between these capabilities and how they might
be combined to solve complex tasks. The resulting visual reasoning questions are often simplistic
and refer to a limited region in the image, under-utilizing the rich visual information within. We
therefore ask whether scaling the complexity of each sample can lead to more informative datasets.

We first define a set of fundamental visual capabilities essential for visual reasoning, called atomic
capabilities (Tab. 1), by analyzing the LL�VA-665K VIT dataset (see §3.1 and §A.4 for more details
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Figure 1: Complexity k. We show that increasing the complexity of LL�VA-665K improves
performance. (left) Examples of questions with different k-values, where k is the number of atomic
capabilities required. (middle) Distribution of k-value in VIT subset (LLaVA) and VIT subset
augmented with 1 additional capability (LLaVAk+1). (right) Performance on downstream tasks (§4.1)
for VIT subset (LLaVA), VIT subset regenerated with no capability augmentation (LLAVAk+0) and
VIT subset augmented with 1 additional capability (LLaVAk+1).

on the curation process). Using these as building blocks, we define a complexity measure, called
k-value, as the number of atomic capabilities required to answer a question. This measure allows
us to quantify the complexity of each sample and identify combinations of capabilities that improve
information density. For example, instead of the k = 2 question, “What color is the car?” (object
recognition and color attribution), we can ask a k = 3 question, “What color is the object on the
left side of the car?” (object recognition, color attribution, and spatial understanding). Analysis of
existing VIT datasets reveals an over-representation of simpler (k Æ 2) questions that under-exploit
the visual information in images.

We conduct an exploratory experiment where we take a small amount of VIT data and increase the
k-value for a subset of examples. We first identify the atomic visual capabilities required to answer
each question. We then regenerate the questions with Gemini-2.0-Flash (Team et al., 2023) after
adding a randomly selected atomic visual capability. The distribution of k in the dataset shifts to the
right by 1, effectively increasing the average complexity of the training dataset. Fig. 1 shows that
VIT on higher k dataset leads to higher performance on downstream tasks, after controlling for the
data generation method. These results motivate our complexity-aware VIT data curation method.

We propose COMPACT (COMPositional Atomic-to-complex Visual Capability Tuning), an efficient
VIT data recipe that controls the complexity of each sample by combining atomic visual capabilities.
We summarize our key contributions:

1. We show that increasing the complexity of training samples allow more effective use of
information content in a given dataset. We introduce COMPACT to address limitations in
complexity-agnostic scaling of conventional VIT methods.

2. We define the k-value to quantify the complexity of a vision-language task. We analyze the
optimal distribution of complexity in the data for maximum efficiency and performance.

3. We demonstrate the effectiveness of COMPACT. With only 10% volume of the LL�VA-
665K (Liu et al., 2024b) VIT dataset, training with our COMPACT data matches the
performance of full-scale VIT (100.2% relative performance), and even outperforms on
particularly complex multimodal benchmarks like MM-Vet (Yu et al., 2023) (29.2 when
trained with full LL�VA-665K vs 31.7 when trained with COMPACT) and MMStar (Chen
et al., 2024a) (35.1 vs. 36.1).

2 R������ W���

Visual Instruction Tuning. Instruction following is an essential capability in language models (Wei
et al., 2021; Zhou et al., 2023). Misalignment between a model’s response and the format requested
by a question can hinder the precise evaluation of its performance (He et al., 2024; Hsieh et al.,
2023; Salido et al., 2025; Balepur et al., 2025). VIT involves training a model on a fixed set
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Table 1: Taxonomy of atomic capabilities. We identify 10 atomic capabilities that are necessary for
visual reasoning. We categorize them into attribution, recognition, and relation. Atomic capabilities
serve as building blocks for building complex tasks.

Group Capability Definition Example Question

Attribution Color Identifying or comparing colors of objects in the image What color is the car?
Shape Recognizing and describing the shapes of objects in the image What shape is the dining table?

Recognition

Object Recognition Identifying and naming objects present in the image What object is on the table?
Action Recognition Identifying what action is being performed What is the person doing in this image?
Text Recognition Reading and interpreting text visible in the image What word is written on the sign?
Spatial Recognition Understanding the overall spatial layout and arrangement of the entire scene How is the furniture arranged in this room?
Counting Determining the number of instances of something in the image How many people are in the room?

Relation
Spatial Relationship Identifying how specific objects are positioned relative to each other What is next to the red car?
Object Interaction Analyzing how multiple objects interact with each other How is the woman interacting with the laptop?
Scene Understanding Identifying the type of environment/setting Where is this scene taking place?

of response patterns that can be repeated during inference (e.g., multiple-choice, short- and long-
response questions) (Liu et al., 2023; 2024b). Although VIT has shown performance improvements
in general multimodal capabilities (Huang et al., 2023), recent work (Ghosh et al., 2024) has shown
that optimizing for response formatting potentially limits the quality of language model responses.

While VIT (Liu et al., 2024b) relies on simple questions to train instruction following capability,
COMPACT leverages more complex questions to achieve the same goal. Higher k questions facilitate
learning by encouraging the model to learn from more visual features in each image.

Complex Tasks in LLMs and MLLMs. Complexity in the space of vision-language tasks has
been loosely conceptualized by different interpretations of compositionality. Some studies view
compositionality as a sequential arrangement of basic tasks (Chen et al., 2024b; Li et al., 2024c).
Compositionality as integrations of basic capabilities has been examined in geometric reasoning
(Chae et al.) and general visual reasoning (Hua et al., 2024), but mainly in the context of evaluation.

We argue that compositional complexity can be studied in the context of training MLLMs. Studies
highlight that while MLLMs do show signs of compositional capability (Ossowski et al., 2024),
they struggle when constituting components and their combined patterns are not strongly learned
or missing during training (Campbell et al., 2025). COMPACT builds on this insight by defining
complexity as the combination of atomic visual capabilities and widening the range of complexity
represented in the dataset.

Scaling Visual Instruction Tuning Data. VIT is a data- and compute-heavy step in training (Xu
et al., 2023). Prior work has approached this challenge from mainly two directions. First, upscaling-
based approaches (Tong et al., 2025; Liu et al., 2024b) argue that ever larger corpora can continue
to improve visual capabilities, partially addressing the challenge of low information density through
sheer volume of data. Second, data selection studies argue that full performance can be reproduced
with smaller amounts of data (Lee et al., 2024; Liu et al., 2024c). ICONS (Wu et al., 2024a) shows
that models can achieve near-full performance across a suite of MLLM benchmarks using only a
fraction of the original VIT dataset.

However, these approaches treat complexity as a byproduct of scale rather than a controllable metric.
COMPACT exposes the model to more complex tasks without scaling the dataset size by explicitly
targeting higher k-values during sample generation.

3 M�����

We aim to construct a training dataset in which each sample requires knowledge of the fundamental
visual capabilities and their meaningful combinations that progressively increase the complexity of
the task. Inspired by the compositional nature of visual reasoning, we first define complexity as a
metric that arises from combining basic visual capabilities. This requires identification of a set of
fundamental visual capabilities that can be combined, called atomic visual capabilities (§3.1). A
subset of these capabilities are combined to generate a new sample with target complexity, which
corresponds to COMPACT’s four-step data recipe (§3.2).
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Figure 2: COMPACT data generation pipeline. (Left): We design a data recipe that can scale the
complexity of each training example. We randomly sample kgen œ {1, 2, 3} atomic capabilities such
as color, object recognition, and spatial relationship. (Center): We generate questions that integrate
all kgen sampled capabilities and verify their quality. (Right): We combine the synthetically
generated compositional tuning data with instruction tuning data for response formatting.

3.1 A����� V����� C�����������

Atomic capabilities are foundational skills that can be combined to solve complex tasks. For example,
a model needs to acquire object recognition, color attribution, and spatial relationship understanding
capabilities to identify how objects of different colors are spatially oriented. For each task T , we
identify a set of atomic visual capabilities {c1, . . . ck} required to solve this task. We define the
number of atomic capabilities required to solve the task T as its complexity k.

We build the taxonomy of atomic capabilities (Tab. 1) based on two key considerations. First,
we focus on vision-centric skills that can encourage the model utilize the visual information in
the image. Therefore, we exclude non-perceptual capabilities (e.g. cultural knowledge, historical
context, coding, and math) that require external information beyond the image. Second, we include
capabilities that can also be found in existing VIT data curation methods (Liu et al., 2023; Tong et al.,
2025; Li et al., 2025), for fair comparison of our approach to others. As a result, we create a list of
10 atomic capabilities which can be divided into three major categories: 1) Attribution: identifying
visual properties (e.g., color and shape). 2) Recognition: identifying visual entities, including
objects, actions, and text. 3) Relation: identifying visual interactions and spatial orientations.

We note that the atomic capabilities in Tab. 1 are not expected to cover the entire multimodal task
space or be completely orthogonal (see Appendix Fig. 8). Rather, we aim to find sufficiently distinct
capabilities that allow meaningful combinations to generate diverse visual reasoning tasks. We
provide more details and discussion on the taxonomy curation in Appendix §A.4.

3.2 V����� C������������ T����� D��� R�����

COMPACT generates multi-capability questions Dcomp by prompting vision-language models to
create questions that require natural1 integration of multiple atomic visual capabilities. This process
involves four key steps: (1) sampling a subset of capabilities from our predefined set of atomic visual
capabilities (Capability Sampling), (2) prompting Gemini-2.0-Flash (Team et al., 2023) to generate
questions that integrate all the selected capabilities (Conversation Generation), (3) validating the
capability requirement and the quality of each question (Quality Verification), and (4) combining
our generated compositional tuning data with a small portion of the LL�VA-665K (Liu et al., 2024b)
VIT data for response formatting (Dataset Assembly).

Step 1: Capability Sampling. We start by taking a random sample of images from LL�VA-
665K (Liu et al., 2024b). For each image, we repeatedly sample kgen œ {1, 2, 3} capabilities from

1We use the term “natural” to denote combination of visual capabilities that correspond to their co-occurrence
patterns in real-world settings, wherein multiple capabilities are integrated in a way that is contextually and
semantically meaningful.
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our predefined pool of 10 atomic visual capabilities. At this stage, kgen functionally serves as the
lower bound of the actual k-value of the generated conversation. We sample kgen with the expectation
that the final k-value of the sample will eventually be higher (kgen Æ k), as some atomic capabilities
are weakly correlated in practice (see Fig. 8 in Appendix). In order to maximize capability coverage,
we do the following in each round of capability sampling: (a) prioritize the capabilities that have not
been selected for that image, and (b) drop duplicate combinations of capabilities for the same image.
These efforts ensure that our training examples capture diverse visual information.

Step 2: Conversation Generation. For each capability combination that is sampled, we prompt
Gemini-2.0-Flash (Team et al., 2023) to generate a conversational question-answer pair that in-
tegrates all capabilities in the combination, as well as a score between 0 and 100 that represents
its confidence in the quality of the conversation. Our carefully designed prompt (see Appendix
§B) enforces several key constraints: (a) questions must require the use of visual information from
the image and cannot be answered from its text alone, (b) answers must be concise, (c) questions
must integrate the specified capabilities naturally (without using conjunctions to simply conjoin
single-capability questions), and (d) questions must reference objects and features actually present
in the image. The purpose of these constraints is to produce vision-centric conversations that are
unambiguous and natural.

Step 3: Quality Verification. We include a verification process with Gemini-2.0-Flash (Team
et al., 2023) to ensure the quality and diversity of the training dataset. We filter out questions with
uninformative answers (e.g., “unknown”, “not visible”) or those with confidence scores below 70%.
We discard questions that share more than 60% of the words with those previously accepted.

We then perform capability verification by prompting Gemini-2.0-Flash (Team et al., 2023) to
analyze whether each question indeed requires the kgen specified capabilities. The generation and
verification processes in steps 2 and 3 repeat iteratively until we collect 2-3 high-quality conversations
per kgen for each image or reach a maximum of 10 verification attempts.

Step 4: Dataset Assembly. We address the challenge of aligning the response format by mixing
our synthetically generated compositional tuning data with a random 5% subset of the LL�VA-
665K (Liu et al., 2024b) VIT dataset. This mixture of instruction tuning and compositional tuning
data has the following effects. First, the VIT subset maintains the model’s ability to handle diverse
response formats and instructions required by modern MLLM benchmarks (e.g., multiple-choice
questions (Fu et al., 2023), open-ended answers (Liu et al., 2024b)). Second, our compositional
tuning data leverages complex questions to facilitate learning with higher information density. In
this way, we delegate the instruction following capability training to the original VIT data and allow
our compositional tuning data to focus on visual reasoning.

The size of the compositional tuning data is determined by the minimum number of images needed
to match full LL�VA-665K (Liu et al., 2024b) VIT performance. COMPACT preserves the contents
of the images, which enables us to fairly compare against existing methods in their ability to extract
rich visual information.

4 E����������

In this section, we evaluate the baseline approaches and COMPACT on existing multimodal bench-
marks. First, we discuss our evaluation setup and the benchmarks (§4.1). Second, we compare the
performance of COMPACT with relevant baselines, including LL�VA-665K (Liu et al., 2024b) VIT
(§4.2). Third, we investigate the source of COMPACT’s performance improvement. (§4.3). Finally,
we ablate the various design choices of COMPACT (§4.4).

4.1 E��������� T������

Model. We train LLaVA-v1.5-7B-LoRA (Liu et al., 2024b) model’s pre-visual-instruction-tuning
checkpoint2 on our COMPACT training dataset. This checkpoint has not been exposed to any visual

2LLaVA-v1.5-mlp2x-336px-pretrain-vicuna-7b-v1.5, which has no prior exposure to visual instruction tun-
ing data.
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Table 2: Baseline comparisons. COMPACT outperforms baseline VIT data recipes on multimodal
benchmarks. With only 5% of the LL�VA-665K (Liu et al., 2024b) VIT data and 32K of our
compositional tuning data (65K total), COMPACT outperforms the random subset of the VIT data
(Random), various data reduction methods, as well as the full VIT data. The best and second best
results for each benchmark are shown in bold and underlined, respectively. We further provide
results using an open-source generator (Qwen3-VL-4B-Instruct) for COMPACT in Table 9.

Recipe # Data InfoVQA SeedBench2Plus MME TextVQA MM-Vet CV-Bench MMStar LLaVA-W Rel. (%)

LL�VA-665K 665K 20.80 41.72 1478.48 46.99 29.22 60.92 35.11 68.50 100.00
Random 65K 20.05 41.85 1327.70 42.88 30.46 54.71 34.13 64.30 95.38
EL2N 65K 20.52 42.95 1378.58 42.41 33.53 50.92 33.82 66.40 97.09
Perplexity 65K 20.46 41.90 1375.32 42.95 30.32 52.72 33.47 68.40 96.09
SemDeDup 65K 20.54 43.96 1431.36 42.71 28.39 42.24 34.18 62.10 93.31
D2-Pruning 65K 20.90 43.70 1343.34 41.82 31.61 48.49 36.63 68.40 97.13
Self-Sup 65K 20.61 42.51 1434.30 42.68 30.18 54.30 34.33 61.20 96.04
Self-Filter 65K 19.99 41.33 1290.34 36.59 28.21 45.17 33.67 66.40 90.51
ICONS 65K 21.0 42.03 1402.75 43.12 31.23 55.96 35.96 61.8 97.47
COMPACT (ours) 65K 23.68 43.13 1379.94 44.37 31.74 55.28 36.13 64.50 100.18

Figure 3: Performance across compositional tuning data scales. We show that COMPACT’s
compositional tuning data scales more efficiently than conventional VIT. We fix the VIT subset (5%
of LL�VA-665K (Liu et al., 2024b)) and scale the compositional tuning data in COMPACT from 2K
to 32K. We compare each mix with VIT only datasets with equal data budgets. COMPACT (solid
lines) consistently outperforms LL�VA-665K VIT (dashed lines) with fewer data. COMPACT’s
compositional tuning data scales particularly well on SeedBench2Plus (Li et al., 2024b), which
consists of spatially complex tasks of navigating charts and maps.

instruction tuning data prior to COMPACT training. The training dataset includes 32K-sample
compositional tuning data unless otherwise stated. Additionally, we mix 5% of LL�VA-665K (Liu
et al., 2024b) to preserve instruction following capability. We train the model for one epoch with its
official LLaVA-v1.5 LoRA fine-tuning settings.

Baselines. We compare the effectiveness of our COMPACT data recipe with several baseline
datasets by training models with the same architecture under identical training configurations.
LL�VA-665K: The full LL�VA-665K (Liu et al., 2024b) VIT dataset (665K samples) used in
LLaVA-v1.5. This serves as our primary performance baseline. Random: A 65K-sample random
subset of LL�VA-665K that matches our training data size. This baseline controls for data volume.
We further evaluate on 65K-sample subsets curated with various data reduction methods: EL2N (Paul
et al., 2021), Perplexity (Marion et al., 2023), SemDeDup (Abbas et al., 2023), D2-Pruning (Maha-
rana et al., 2023), Self-Sup (Sorscher et al., 2022), Self-Filter (Chen et al., 2024c), and ICONS (Wu
et al., 2024a).

Benchmarks. We evaluate models trained with different data recipes on established multimodal
benchmarks that assess complex visual capabilities. 1) MM-Vet (Yu et al., 2023) includes 16 types
of complex multimodal tasks integrated from 6 core capabilities (recognition, OCR, knowledge,
language generation, spatial awareness, and math). 2) MME (Fu et al., 2023) contains 10 perception
(e.g., color, count, OCR) and 4 cognition (e.g., commonsense reasoning, text translation, code
understanding) related visual subtasks. 3) LLaVA-in-the-Wild (Liu et al., 2024b) is an open-
ended visual question answering benchmark that asks complex questions on real-world images. 4)
SeedBench2Plus (Li et al., 2024b) evaluates visual comprehension skills of MLLMs with a focus on
charts, maps, and webs. 5) MMStar (Chen et al., 2024a) contains 1,500 visual questions that span
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Table 3: Matching LL�VA-665K distribution. We show that performance improvements of
COMPACT can be attributed to increased complexity k. COMPACTllava capability distribution
exactly matches that of random LL�VA-665K subset, controlling for complexity. Note that we use
16K compositional data here (different from 32K in Tab. 2) for faster iteration. Roughly half of the
performance gain in COMPACT can be attributed to the higher k compositional tuning data.

Recipe #Data InfoVQA SeedBench2Plus MME TextVQA MMVet CV-Bench MMStar LLaVA-W Rel. (%)

LL�VA-665K 665K 20.80 41.72 1478.48 46.99 29.22 60.92 35.11 68.50 100.00
Random 49k 20.33 42.38 1290.45 42.22 30.18 54.75 34.3 70.5 96.28
COMPACTllava 49k 22.76 43.43 1308.52 43.94 28.81 52.39 36.08 66.8 97.55
COMPACT 49k 22.68 42.82 1362.68 43.73 30.78 54.69 35.59 66.6 98.83

6 core capabilities (fine-grained perception, coarse perception, mathematics, science & technology,
logical reasoning and instance reasoning), carefully curated to evaluate multimodal understanding. 6)
CV-Bench (Tong et al., 2025) is a MLLM benchmark specialized for 2D and 3D visual understanding
that includes spatial relationship, object count, relative distance, and depth order. 7) TextVQA (Singh
et al., 2019) evaluates visual understanding of texts in the image. 8) InfoVQA (Mathew et al., 2022)
measures visual understanding of infographic images. These benchmarks cover a broad range of
vision-centric capabilities. We also note that some of these benchmarks include non-visual questions
involving such skills as knowledge and math, which are not our primary focus. We provide a more
detailed discussion of these tasks in Appendix §A.2 and §A.3.

4.2 M��� R������

Overall Performance. As shown in Tab. 2, COMPACT performs on par with the LL�VA-665K (Liu
et al., 2024b) baseline with only 10% of its data volume. COMPACT’s training dataset contains a
mixture of 32K compositional tuning data and 5% of LL�VA-665K (Liu et al., 2024b) VIT data
(33K). The compositional tuning data trains the model on complex questions, and the VIT subset
maintains the model’s instruction-following capability.

Across all benchmarks, our COMPACT achieves an average relative performance of 100.2%, out-
performing the full LL�VA-665K (Liu et al., 2024b) (100.0%), random baseline (95.4%), and
ICONS (Wu et al., 2024a) (97.5%). COMPACT achieves strong gains on tasks like MM-Vet (Yu
et al., 2023) (+8.6% over LL�VA-665K (Liu et al., 2024b)), MMStar (Chen et al., 2024a) (+2.9%),
InfoVQA (Mathew et al., 2022) (+13.8%), and SeedBench2Plus (Li et al., 2024b) (+3.4%) while
maintaining competitive performance on TextVQA (Singh et al., 2019) and LLaVA-in-the-Wild (Liu
et al., 2024b). This highlights the effectiveness of the COMPACT data recipe. Additionally, we
provide qualitative results in Appendix §C.

Complex Training Data is Efficient. We study the data efficiency of complex samples by analyzing
how COMPACT’s performance changes as we scale the amount of compositional tuning data. We fix
the VIT subset (5% of LL�VA-665K (Liu et al., 2024b)) and scale the compositional tuning data in
COMPACT from 2K to 32K. For comparison, we match the size of each dataset purely with VIT data.
Fig. 3 shows that as the number of compositional tuning data samples increases, the performance of
COMPACT on multimodal benchmarks steadily improves unlike the random baseline. Interestingly,
models trained on smaller amount of compositional tuning data (2K-8K samples) often match or
exceed the performance of random baseline models trained on much larger VIT data. For instance,
COMPACT’s 2K model achieves 30.8 on MM-Vet (Yu et al., 2023), outperforming the random
baseline’s 32K model at 30.5. This demonstrates that COMPACT makes more effective use of
training data compared to the baselines.

This improvement in data efficiency comes from several factors. COMPACT training data has higher
k samples that encourage the model to extract more visual information from the image. The learning
potential of lower k samples that LL�VA-665K (Liu et al., 2024b) relies on are limited by the amount
of visual information that the model can afford to ignore. However, a range of simple to complex
training samples are still necessary to properly disentangle each atomic capability from complex
questions. COMPACT’s complexity-aware data generation process that progressively increases the
complexity of the samples achieves balance these effects.

7



COMPACT

4.3 A�������

Complexity Distribution in LL�VA-665K. We characterize the complexity distribution of LL�VA-
665K (Liu et al., 2024b) VIT dataset that serves as the primary baseline for COMPACT. We use
Gemini-2.0-Flash (Team et al., 2023) to analyze the k-value of 5,400 questions that belong to 1,000
randomly sampled images (see the details of the system prompt in Appendix §B). Fig. 1 shows
that the mean k value of the samples is approximately k = 1.95, and the mode is k = 2. 77%
of the questions require two or fewer atomic visual capabilities. Interestingly, a small fraction of
the questions (0.06%) require as many as 10 capabilities (e.g., “Question: Describe this photo in
detail.”). We also observe that 0.9% of the questions require zero capabilities. We further provide
k = 0 examples (see Appendix §C.2).

Complexity Distribution in COMPACT. We confirm that COMPACT increases the com-
plexity distribution of the training dataset previously established by LL�VA-665K. We use
Gemini-2.0-Flash (Team et al., 2023) to analyze 7200 questions that belong to 1000 randomly
sampled images in the compositional tuning data. The mean k-value of the data is k = 2.89, and
mode is k = 3, which are higher than the LLaVA counterparts. We also find that the representation of
each capability in the dataset is more balanced compared to LL�VA-665K (see Appendix Fig. 6). We
provide more details on the data statistics of COMPACT and LL�VA-665K data in Appendix §A.5.

COMPACT successfully scales the k-value distribution of the training dataset. The number of
capabilities sampled during generation (kgen) in the Capability Sampling step (§3.2) practically
acts as the lower bound of the question’s final k-value for two reasons: 1) Object recognition
capability is implicitly assumed by the conversation generator (i.e. Gemini (Team et al., 2023))
during generation and verification steps (see Fig. 7 in Appendix). We hypothesize that “object-
oriented”ness is implicitly required to generate high-quality questions about the image, likely due
to the biases in the image sources. We note that COMPACT does not change the visual contents of
the images. 2) We find that spatial capabilities such as scene understanding, spatial recognition, and
spatial relationship are often related in practice as the question becomes spatially complex (see Fig. 8
in Appendix). The spatial orientation of objects can be influenced by the overall layout of the scene.
For example, what is “on the left side of” an object could be described as “behind”, depending on
their relative depth.

Effect of Matching LL�VA-665K Distribution. We isolate the complexity effect from COM-
PACT’s performance gain by controlling for the sample generator. We generate a 16K-sample com-
positional tuning data whose capability and k-value distribution matches that of LL�VA-665K (Liu
et al., 2024b). Similar to the original COMPACT data recipe, we mix this complexity-matched
compositional tuning data with the random 5% subset of the VIT data. We compare this training
dataset with the following baselines: 1) a random subset of the VIT data with the same size, 2)
original COMPACT with 16K compositional tuning data, and 3) the full VIT dataset. As shown
in Tab. 3, the performance of complexity-matched COMPACT (COMPACTllava) stands at 97.6%
(compared to the full VIT baseline). The performance of original COMPACT jumps to 98.8%,
suggesting that at least half of the performance gain (1.3% out of 2.6% improvement over random
baseline) in COMPACT comes from higher complexity in the compositional tuning data.

4.4 A������� S������

We conduct ablation studies to understand how COMPACT addresses the aforementioned challenges
in using complexity as tool to control sampling for VIT data curation. First, we vary the range of
complexity in the data to show that training efficiency benefits from higher and wider ranges of k.
Second, we show that response formatting can be trained by mixing a relatively small amount of
prompt-engineered VIT dataset. Unless otherwise specified, all experiments use 5% of LL�VA-
665K (Liu et al., 2024b) VIT data and 16K compositional tuning data.

Effect of k-value Range. We analyze the relationship between information density and efficient
learning based on the learning potential of different ranges of complexity. We train the model on
COMPACT with five different versions of 16K compositional tuning data, each generated from using
kgen = 1, kgen = 2, kgen = 3, kgen = 1, 2 or kgen = 1, 2, 3 in the Capability Sampling step (§3.2).
For fair comparison, we maintain consistent sample counts and use an identical set of images in all
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Figure 4: Impact of k-value range: Perfor-
mance comparison across variations of COM-
PACT whose compositional tuning data is syn-
thesized with different ranges of kgen in the Ca-
pability Sampling step (§3.2). Models trained
on higher and wider ranges of complexity (darker
bars) achieve higher performance across bench-
marks.

Figure 5: Impact of instruction tuning data
ratio. Relative performance of COMPACT with
different amounts instruction tuning data from
LL�VA-665K (Liu et al., 2024b). The x-axis is
the percentage of LL�VA-665K used as instruc-
tion tuning data, and the y-axis is relative score.
The performance improves significantly with a
small amount of instruction tuning data and sta-
bilizes around 5%.

five settings. As shown in Fig. 4, increasing the number of sampled capabilities per question leads to
consistent improvements on all three benchmarks. Training on kgen = 1, 2, 3 compositional tuning
data achieves the highest performance on MM-Vet (Yu et al., 2023) and LLaVA-in-the-wild (Liu
et al., 2024b), and second highest on MMStar (Chen et al., 2024a). Surprisingly, sampling from
kgen = 1, 2, 3 demonstrates stronger performance on average compared to sampling only kgen = 3.
This suggests that although complex samples are more information dense, their benefit is maximized
in the presence of simpler samples. We provide more details on k-value range in Appendix §A.2.

Impact of Instruction Tuning Data Ratio. We show that the domain adaptation problem of fitting
model’s response to the format required by the test dataset can be resolved with a data mixture. We fix
the 16K compositional tuning data and scale the amount of VIT subset from 0% (pure compositional
tuning) to 7% of LL�VA-665K (Liu et al., 2024b). Fig. 5 shows that a small addition of VIT subset
improves the performance of the model on MMVet (Yu et al., 2023) (short answer), SeedBench2Plus
(Li et al., 2024b) (multiple choice) and LLaVA-in-the-Wild (Liu et al., 2024b) (long answer). We find
that the prompt engineered VIT subset is training the instruction following capability of the model
on various question types even at just 1%. Interestingly, further scaling gives diminishing returns,
and starts to lose absolute gains at 7%. These results suggest that instruction following capability is
potentially orthogonal to the capabilities of the base model and the atomic visual capabilities, and
can be acquired with minimal instruction tuning data.

5 D���������

Conclusion. In this work, we introduce COMPACT, a data recipe that increases the complexity
of the training samples by combining higher number of atomic visual capabilities (e.g., object
recognition, spatial reasoning, shape attribution). Our experimental results show that training on
more complex samples matches the full LL�VA-665K (Liu et al., 2024b) VIT performance across
benchmarks with less than 10% of the original data budget. Our work presents the potential of
complexity-enhanced learning as a scalable, data-efficient pathway toward multimodal models that
can solve multi-capability tasks.

Limitations. Our approach faces two key limitations. First, we mainly rely on data generated
from closed-source models (i.e., Gemini (Team et al., 2023)), which potentially introduce their
compositional limitations and biases to our dataset. We provide further discussion on failure modes
in Appendix §A.6. Additionally, this data generation process is costly, which could pose challenges
for reproducibility. To support future research, we will publicly release the data generated in
this project. Second, our approach focuses on the compositionality of vision-centric capabilities.
Therefore, our approach may not be optimal for addressing knowledge-intensive tasks that lie outside
the scope of visual reasoning. See Appendix §A.3 for a detailed discussion on knowledge-intensive
task results.
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Future Work. We aim to extend COMPACT by investigating the intersection of image complexity
and question complexity. Currently, our data recipe generates questions given fixed set of images.
Specifically, certain groups of atomic visual capabilities and complexity levels might be optimal for
different types of visual content present in the image. Additionally, investigating how complexity
impacts learning efficiency of different learning algorithms such as reinforcement learning would be
promising avenues of future research.
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Figure 6: Comparison of capability distribution. The bar plots show the frequency of each atomic
capability in LLaVA (left) and COMPACT (right) samples. In LLaVA, the distribution is notably
imbalanced: object recognition and scene understanding are some of the most frequent, while
shape and spatial recognition are less prevalent. In contrast, COMPACT exhibits a more balanced
distribution across capability categories.

Figure 7: Distribution of implicitly assumed
capabilities. The bar plot shows the frequency
of atomic capabilities that are implicitly as-
sumed during COMPACT’s compositional tun-
ing data generation. Object recognition is most
commonly assumed during question generation,
most likely to generate meaningful questions
with object centered images.

Figure 8: Correlation between capabilities.
The heatmap shows the correlation between
unique capabilities in COMPACT’s composi-
tional tuning data. Object recognition’s correla-
tions with other capabilities are relatively strong.
Spatial capabilities are also locally correlated, as
spatial questions require some understanding of
the scene, depth, and relative position in prac-
tice.
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Figure 9: Limited performance improvements
on knowledge-intensive benchmarks. Com-
parison shows modest improvements over ran-
dom baseline on tasks that require substantial
world knowledge or domain expertise. Num-
bers reported in accuracy (%) and relative per-
formance to full model (%).

Model OK-VQA MMMU MMMU-Pro Rel.
Standard Vision (Avg.)

Random 49.30 32.89 18.15 11.44 92.0%
COMPACT 50.02 33.89 20.23 11.91 96.6%
LL�VA-665K (Liu et al., 2024b) 57.96 33.89 20.12 11.97 100%

Figure 10: Distribution of conversations per
image in LL�VA-665K. The overwhelming ma-
jority of images (97.69%) have Æ20 conversa-
tion pairs. The average of number of conver-
sations per image is 5.18 (‡ = 5.62). A small
subset (2.31%) exceeds 20 conversations, which
includes a sample with the maximum length of
275. Total conversations: 3,444,246.

A.1 R����������� ������� �-����� ��� ���������� �� ��� ����

We use TextVQA (Singh et al., 2019) to demonstrate that increasing the k-value makes the task progressively
more challenging. Every question in this benchmark contains one key atomic capability (text recognition) in
addition to potentially others. We split the TextVQA validation set according to the k-value of each question,
and report the results of the LLaVA-v1.5-7b model.

k = 1 k = 2 k = 3
Density 73.6% 19.1% 2.2%
LLaVA-v1.5-7B 46.4 45.6 39.8

Table 4: Performance of LLaVA-v1.5-7b on each k-value in TextVQA. k Ø 4 is excluded as it
contains less than 10 samples. Approximately 5% of the questions are k = 0, which are ambiguous
and do not strictly refer to the image (e.g., “Are Jordan products produced in Jordan?”).

Tab. 4 shows that the LLaVA-v1.5-7b model struggles more as other capabilities (e.g. color, spatial relation
understanding) are added to text recognition. This provides further evidence that complexity measured by
the k-value is related to the model’s ability to process visual information, and that the k-value characterizes
the complexity of the question in a meaningful way. In short, as the k-value increases, overall task difficulty
increases.

We report on the TextVQA benchmark because the results are more interpretable. Every question requires a
shared atomic capability (text recognition) and has the same answer format, allowing us to isolate the effect of
adding capabilities more strictly.

A.2 B�������� �� ����������� �� MMS���

Category-specific performance. We split the questions in MMStar (Chen et al., 2024a) by category (provided
by the dataset) and report category-specific results on the models. Tab. 5 shows that COMPACT improves
performance across most categories except math, which we exclude from our list of atomic capabilities for fair
comparison with training on LL�VA-665K data. We observe particularly large improvements on science &
technology (diagram and chart understanding) and instance reasoning (perception and relation understanding)
categories, suggesting that COMPACT broadly generalizes to visual tasks.

k-value specific performance. We provide further analysis to explain the mechanism of improvement in
COMPACT. We split the questions in MMStar by k-value and measure the performance of three models each
trained on three different datasets (kgen=1,kgen=1,2, and kgen=1,2,3; Fig. 4) with progressively higher k-value
distributions. Tab. 6 shows that kgen=1,2,3 outperforms others on higher k-value (k Ø 2) questions. The
improvement is larger when we compare kgen=1,2,3 and kgen=1, as opposed to kgen=1,2,3 and kgen=1,2.
These results suggest that increasing the k-value of the training data enables the model to perform well on higher
k-value questions in the test dataset.
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MMStar Data coarse fine-grained instance logical math science and
perception perception reasoning reasoning technology

Random 49K 59.5 28.9 38.1 29.9 28.7 25.2
COMPACT 49K 61.6 28.9 41.2 31.8 28.1 27.7
Improvement +3.5% 0% +8.1% +6.4% -2.1% +9.9%

Table 5: Performance of COMPACT and random LL�VA-665K subset on each category in MMStar.
COMPACT data has 33K VIT data and 16K compositional tuning data.

Tab. 6 also shows that training on kgen = 1, 2, 3 leads to a small drop in performance on lower k-value (k = 1)
questions, indicating a trade-off between lower and higher k-value regimes. This explains why both simple and
complex samples are necessary for training.

MMStar Data k = 1 k = 2 k = 3 k = 4
kgen = 1, 2, 3 vs kgen = 1 49K -0.5% +3.6% +22.7% +33.5%
kgen = 1, 2, 3 vs kgen = 1, 2 49K -1.3% +2.6% +14.1% +9.1%

Table 6: Performance improvements on each k-value in MMStar by kgen = 1, 2, 3 dataset compared
to kgen = 1 and kgen = 1, 2.

A.3 P���������� �� K��������-I�������� T����

While our compositional tuning approach shows general improvements on various benchmarks, we observe
more modest gains in knowledge-intensive tasks. Tab. 9 compares the performance of different approaches
on OK-VQA, MMMU, and MMMU-Pro benchmarks. COMPACT with 32k compositional tuning data shows
relatively small improvements over the random baseline: OK-VQA (50.02% vs 49.30%), MMMU (33.89% vs
32.89%), and MMMU-Pro (20.23% vs 18.15% on standard tasks, 11.91% vs 11.44% on vision tasks). Notably,
training on the full LL�VA-665K (Liu et al., 2024b) VIT dataset leads to limited performance improvements
on MMMU (33.89%). Although knowledge-related tasks are not our main focus, this inspires future work on
designing compositional tuning approaches that cover broader capabilities outside of the vision space.

A.4 A����� ���������� ���������

We conduct ablations on each atomic capability to analyze which capability is driving the most gains in
COMPACT. For each iteration, we prepare an ablated COMPACT training dataset after we exclude each atomic
capability in the data generation step (Step 2). Tab. 7 shows the average drop in relative performance across
multimodal benchmarks (§4.1) when we ablate each atomic capability. The results indicate that all atomic
capabilities contribute non-trivially to COMPACT’s performance.

Atomic Capability Rel. Performance Drop
w/o scene understanding -5.2%
w/o spatial relationship -4.9%
w/o text recognition -4.7%
w/o object recognition -4.0%
w/o color -3.7%
w/o counting -3.3%
w/o object interaction -3.2%
w/o spatial recognition -3.1%
w/o action recognition -2.1%
w/o shape -0.7%

Table 7: Average drop in relative performance as a result of ablating each atomic capability during
16K compositional tuning data generation in COMPACT.

Atomic Capability Selection. The original LL�VA-665K data curation process lays out 8 of the 10 atomic
capabilities in COMPACT; the two others (object interaction and shape attribution) we identify manually from
inspecting the dataset. We acknowledge that alternative taxonomies are possible depending on specific training
goals, and we view our 10 atomic capabilities as a practical starting point rather than a definitive set.
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Non-Orthogonality of Capabilities. We agree that perfect orthogonality is neither achievable nor necessary
for our framework. Real-world visual reasoning naturally involves overlapping skills—for example, spatial
reasoning often co-occurs with object recognition. The correlation analysis in Fig. 8 reveals these natural
dependencies, which we view as a feature rather than a limitation. The key insight is that combining multiple
capabilities, even correlated ones, requires the model to integrate more visual information, which increases
information density.

Implicit Assumption of Object Recognition. Fig. 7 shows that object recognition is frequently implicitly
assumed during question generation. Object recognition serves as a foundational capability that often appears
alongside other skills, similar to how reading comprehension is fundamental to many NLP tasks. Rather than
undermining decomposability, this reflects the hierarchical nature of visual reasoning where basic perception
enables higher-level reasoning. This foundational role is consistent with the design of vision-centric instruction
tuning, where grounding responses in specific objects is essential for meaningful visual understanding.

A.5 A������� �� D��� S���������

Conversation length distribution in LL�VA-665K. Fig. 10 shows the distribution of the number of conver-
sations per image in LL�VA-665K (Liu et al., 2024b). 93.6% of the samples fall below the 10-pair threshold.
The distribution’s mean of 5.18 conversations per image (‡ = 5.62) shows that the data is heavily skewed
towards lower values. We fix the target number of conversations per image in the compositional tuning dataset
based on these findings. We ensure a fair comparison by aligning the distribution of our data with the baseline
distribution.

Token-level analysis on COMPACT data. We conduct token-level analysis comparing our COMPACT
generated compositional tuning data (32k samples) with an equivalent-sized LLaVA-665K subset (32k samples).
The results demonstrate that COMPACT achieves substantial token efficiency despite incorporating multiple
atomic questions. Tab. 8 reveals that COMPACT uses 104.87 tokens/samples (3.36M total tokens) compared
to LLaVA’s 197.42 tokens/samples (6.32M total tokens), achieving a 46.88% reduction (92.55 fewer tokens per
entry). Specifically, COMPACT’s input (question) tokens average 12.83 ± 4.18 (31% shorter than LLaVA’s
16.85 ± 25.49), and answer tokens average 1.70 ± 0.90 (92% shorter than LLaVA’s 21.74 ± 73.38). The token
reduction translates directly to faster training (≥47% fewer tokens to process), lower storage usage (shorter
sequences), and better data efficiency (more focused atomic capabilities per token).

Metric COMPACT LLaVA Difference
Input tokens (mean) 12.83 ± 4.18 16.85 ± 25.49 31% shorter
Output tokens (mean) 1.70 ± 0.90 21.74 ± 73.38 92% shorter
Tokens per Q&A turn 14.53 38.59 62% fewer
Total tokens per entry 104.87 197.42 46.88% reduction

Table 8: Token-level comparison between COMPACT and LLaVA datasets (32k entries each).

A.6 Q������ V����������� ��� F������ M��� A�������

We conduct a systematic analysis of failure modes in our generated compositional tuning data data to ensure
quality and transparency. To quantify the effectiveness of our quality control process, we perform a controlled
experiment generating questions for kgen = 1, 2, 3 on a sample of images.

Rejection Rates and Failure Modes. Our multi-stage filtering (described in Section 3.2 of the main paper)
rejected approximately 21% of generated questions across four primary failure modes: (1) Low confidence
scores (10%): questions where the VLM cannot answer confidently, often due to ambiguous phrasing or
requiring information not present in the image; (2) Uninformative responses (12.5%): questions with answers
like “unknown”, “not visible”, “yes”, or “no” that do not provide meaningful visual supervision (for example,
“What text is visible on the wooden tray?” answered with “None”); (3) High word overlap/near-duplicates
(40%): questions that share more than 60% of words with previously accepted questions for the same image
(for instance, generating both “What is the color of the bench in the image?” and “What is the color of the bench
located in the center of the scene?” with 70% word overlap); and (4) Capability mismatch (37.5%): questions
that do not naturally integrate the specified capabilities (for example, asking “What object is present in the image
without any action being performed?” for kgen = 2 with action recognition and object recognition, where the
question only requires object recognition, as the VLM correctly identified only 1 of 2 expected capabilities).
Notably, capability mismatch becomes increasingly important as k increases, accounting for 0%, 50%, and
66.7% of rejections for kgen = 1, 2, 3 respectively. This demonstrates that our verification successfully filters
questions that artificially force capability combinations.
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Table 9: Baseline comparisons (Qwen3 generator). Following Tab. 2, We report COMPACT results
using an open-source generator (Qwen3-VL-4B-Instruct), along with the full LL�VA-665K (Liu
et al., 2024b) baseline and our compact COMPACT recipe for reference.

Recipe # Data InfoVQA SeedBench2Plus MME TextVQA MM-Vet CV-Bench MMStar LLaVA-W Rel. (%)

LL�VA-665K 665K 20.80 41.72 1478.48 46.99 29.22 60.92 35.11 68.50 100.00
COMPACT (ours, Gemini) 65K 23.68 43.13 1379.94 44.37 31.74 55.28 36.13 64.50 100.18
COMPACT (ours, Qwen3) 65K 22.97 42.12 1370.76 43.07 30.78 56.38 34.04 65.70 98.31

Common Failure Patterns in Remaining Data. Despite our rigorous filtering, some failure patterns remain
in the final dataset: (1) Overly complex kgen = 3 questions: some high-complexity questions are difficult
even for humans to answer, potentially due to the challenge of naturally integrating three or more capabilities
in a single question; (2) VLM misidentification errors: cases where the VLM generator misidentifies image
content, leading to incorrect ground-truth answers (while our verification step mitigates this issue, it does not
eliminate it entirely); (3) Spatial reasoning errors: questions involving spatial relationships when objects are
ambiguously positioned, leading to potential disagreement about correct answers; and (4) Attribute questions
for occluded objects: color or shape questions about small or partially occluded objects where the attributes
are not clearly visible. However, COMPACT achieves consistent improvements across diverse benchmarks with
different evaluation protocols, suggesting these biases do not critically harm generalization. This multi-stage
quality control ensures that our training data maintains both high quality and natural capability integration.

A.7 A��������� E���������� ���� O���-������ D��� G��������

We evaluate COMPACT using an open-source generator (Qwen3-VL-4B-Instruct) to test whether our gains
persist without proprietary generation. Tab. 9 reports these results, alongside the full LL�VA-665K baseline
and our compact COMPACT recipe for direct comparison.

B S����� P������

System Prompts for Capability Analysis and Sample Generation. We provide the system prompt for our
capability analysis where we identify all the required capabilities for a given question (A). We also provide
the system prompts for compositional question generation (B) and verification (C). The generation prompt
includes structured guidelines to ensure that the generated multi-capability questions naturally blend different
capabilities and can only be answered by checking the corresponding images. The verification prompt checks
if the questions meet these guidelines and do not contain subjective interpretations or compositional flaws.

For conversation generation, we use Gemini-2.0-Flash (Team et al., 2023) with temperature 0.1, top-p 0.9,
max token 1000. We have 3 runs per question on average. We use 32 parallel processes to generate 32K
compositional tuning data. Each generation uses about 700 tokens on average. The total generation time is
roughly 2 hours and the API cost is $86.5.

(A) System Prompt for Capability Analysis

Prompt: You are an AI assistant that analyzes questions to identify the core capabilities required to
answer them.
Given a question, identify ALL the capabilities it requires from this list:
- spatial relationship (understanding relative positions)
- object interaction (how objects/people interact)
- scene understanding (understanding the background)
- text recognition (reading text in images)
- spatial recognition (understanding 3D space)
- action recognition (identifying actions/activities)
- object recognition (identifying objects)
- counting (counting objects/people)
- color (identifying colors)
- shape (identifying shapes)

Return ONLY a JSON array of the required capabilities, like: [“capability1”, “capability2”]
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(C) System Prompt for Question Verification

Prompt: You are an AI assistant that verifies if questions about images properly utilize specified
capabilities.
Given a question and its answer, analyze whether it NATURALLY requires using EXACTLY k specified
capabilities - no more, no less.
IMPORTANT:

• The question should require ALL specified capabilities to be answered
• The question should not require additional major capabilities beyond those specified
• The capabilities must be naturally integrated, not artificially forced

C V�������������

C.1 Q���������� C���������

We provide qualitative visualizations that compare the outputs from our compositionally-tuned COMPACT
model and the LL�VA-665K VIT model. Examples in Fig. 11 highlight the importance of compositional
tuning for handling complex multi-capability tasks (k Ø 3). These cases demonstrate COMPACT model’s
enhanced ability to integrate multiple visual capabilities, while showing the baseline model’s difficulty with
such compositionally complex queries.

C.2 Z���-C��������� S������ �� LL�VA-665K

We identify a subset of samples in the LL�VA-665K dataset that require no visual capabilities, which we refer to
as zero-capability samples. These include general knowledge queries, subjective prompts, or requests that can
be answered without inspecting the image at all. While such data may still be useful for instruction following,
it does not contribute to the development of vision-centric skills. In our analysis, we find that approximately
1.1% of the questions in LL�VA-665K fall into this zero-capability category.

Zero-Capability Samples

Zero-Capability Questions:
• How is the weather?
• Should I move to London?
• Can you provide some information about the Emirates airline?
• Give me a long list of what duties are considered rental activity
• Have the cat declare her new name as ruler
• rewrite it from the perspective of an expensive therapist
• Can you tell me how to prepare a Colombian dish
• how to do coding
• Can you explain Map Reduce to me?
• A 35 year old patient presented to the emergency department with shortness of breath. Before

this, he was at a crowded event. He does not have a history of diabetes or high blood pressure.
He had a positive PCR test at an outside hospital. What should be the next steps for the
physician?

• please convert those snomed codes to FHIR
• I’m running a used car dealership, what are some emerging opportunities for me brought by

large language models like GPT-3?
• answer it again in Chinese
• you are a legislator. You are asked to come up with a framework for new legislation that

adances the science of reading for grades K-3. Write that model legislation.
• I’m looking to create a podcast, can you help me?
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C.3 COMPACT D��� V������������

We provide a visualization of the COMPACT dataset to provide insights into its compositional structure. Figs. 12
and 13 show selected examples from COMPACT dataset. Each question is generated from a combination
of k atomic capabilities. These cases demonstrate our model’s enhanced ability to integrate multiple visual
capabilities simultaneously, while the baseline model often struggles with such compositionally complex queries.
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(B) System Prompt for Question Generation

Prompt: You are an AI assistant that generates challenging but well-defined questions and answers
about images. First, I will provide you with k specific capabilities. Generate 1 question that naturally
integrates EXACTLY these k capabilities.
IMPORTANT:

• If the question can be answered without looking at the image (e.g., the answer can be inferred
from the question itself or previous questions), it’s a BAD question

• Questions should be reasonably challenging but must have clear, unambiguous answers
• All answers must be extremely concise - use only a single word or short phrase
• Each question must be a single, integrated question that naturally combines all k given

capabilities
• DO NOT use “and” or commas to combine separate questions
• Questions should require careful observation and reasoning
• Only generate questions when you can determine the answer with high confidence
• Avoid subjective or ambiguous questions
• ONLY ask about objects and capabilities that are ACTUALLY PRESENT in the image
• NEVER create questions about objects or features that don’t exist in the image
• Generate diverse questions that differ in topic and required reasoning

CAPABILITY DEFINITIONS:
• spatial relationship: Identifying how specific objects are positioned relative to each other

(above, below, next to, inside, etc.) - focuses on the direct relationship between two or more
particular objects

• spatial recognition: Understanding the overall spatial layout and arrangement of the entire
scene - focuses on the general organization, depth, perspective, or environmental context,
rather than relationships between specific objects

• text recognition: Reading and interpreting text visible in the image
• action recognition: Identifying what action is being performed (can involve a single per-

son/object)
• object interaction: Analyzing how multiple objects interact with each other (requires at

least two objects) - MUST involve at least one moving/active object, not just static objects
positioned together - can include humans interacting with objects and humans interacting
with humans

• object recognition: Identifying and naming objects present in the image
• counting: Determining the number of instances of something in the image
• color: Identifying or comparing colors of objects in the image
• shape: Recognizing and describing the shapes of objects in the image
• scene understanding: Identifying where the image is taken or the type of environment/setting

(indoor/outdoor, beach, mountain, kitchen, office, etc.) - focuses on identifying the overall
scene, background, or context of the image

Examples:
• BAD: “What color is the car, and where is it located?” (two separate questions)
• BAD: “What might the person be thinking?” (subjective/ambiguous)
• BAD: “Is this a nice room?” (subjective)
• BAD: “What breed of dog is in the corner?” (when no dog exists in the image)
• BAD: “How are the fridge and desk interacting?” (static objects don’t qualify as interaction)
• BAD: “What is the color of the red car?” (answer can be inferred from the question itself

without seeing the image)
• GOOD: “What color car is parked next to the red brick building?” (specific, clear answer)
• GOOD: “How many yellow tennis balls are visible on the wooden court?” (requires counting

+ color)
• GOOD: “What is the person in blue using to interact with the television?” (proper object

interaction)
• GOOD: “Where is this image taken?” (scene understanding)
• GOOD: “Where is this scene happening?” (scene understanding)
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Figure 11: Qualitative comparison of model outputs. Examples showing responses from our
compositionally-tuned COMPACT model and LL�VA-665K (Liu et al., 2024b) VIT model on
complex queries that require multiple capabilities (k Ø 3). Our model demonstrates better integration
of visual capabilities which leads to more accurate responses.

Figure 12: Visualization of COMPACT compositional tuning samples.
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Figure 13: Visualization of COMPACT compositional tuning samples.
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