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Fine-tuning vision-language models (VLMs) on robot teleoperation data to create vision-language-
action (VLA) models is a promising paradigm for training generalist policies, but it suffers from a
fundamental tradeoff: learning to produce actions often diminishes the VLM’s foundational reasoning
and multimodal understanding, hindering generalization to novel scenarios, instruction following, and
semantic understanding. We argue that this catastrophic forgetting is due to a distribution mismatch
between the VLM’s internet-scale pretraining corpus and the robotics fine-tuning data. Inspired by
this observation, we introduce VLM2VLA: a VLA training paradigm that first resolves this mismatch
at the data level by representing low-level actions with natural language. This alignment makes it
possible to train VLAs solely with Low-Rank Adaptation (LoRA), thereby minimally modifying the
VLM backbone and averting catastrophic forgetting. As a result, the VLM can be fine-tuned on robot
teleoperation data without fundamentally altering the underlying architecture and without expensive
co-training on internet-scale VLM datasets. Through extensive Visual Question Answering (VQA)
studies and over 800 real-world robotics experiments, we demonstrate that VLM2VLA preserves the
VLM’s core capabilities, enabling zero-shot generalization to novel tasks that require open-world se-
mantic reasoning and multilingual instruction following. Website with additional information, videos,
and code: https://vlm2vla.github.io/.
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Figure 1 We present VLM2VLA, a data pipeline and training methodology for fine-tuning VLMs into VLAs while
preserving their foundational perceptual and reasoning capabilities. Our policy retains its pretraining knowledge,
enabling strong VQA performance and superior generalization in real robotic manipulation tasks.

The pursuit of generalist robot policies capable of understanding and executing human commands has been
significantly advanced by the integration of vision-language models (VLMs) [1-3] throughout the autonomy
stack. Trained on internet-scale datasets of image-text pairs, these models have acquired sophisticated capa-
bilities in perception, semantic understanding, and commonsense reasoning. To endow robots with similar
capabilities, the prevailing paradigm involves fine-tuning pretrained VLMs on robot demonstration data,
transforming them into vision-language-action models (VLAs) that map from natural language commands
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and visual observations to robot actions. This approach has yielded impressive results across a wide range
of robotic manipulation tasks [4-11].

However, the standard methodology of fundamentally modifying the VLM’s architecture, tokenization vo-
cabulary, or a combination thereof, coupled with full parameter fine-tuning on robot imitation learning data,
introduces a crucial yet often overlooked trade-off. In adapting the VLM for robotic control, we risk overfit-
ting to the robot fine-tuning data, thereby overwriting the general-purpose world knowledge acquired during
pretraining (see Fig. 2). The consequences of this trade-off are far-reaching: current VLAs often exhibit a
diminished ability to generalize to novel objects, handle linguistic variations, be robust to distractions, or
reason about concepts outside the narrow scope of their robotic training data [4, 9, 12, 13].
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fitting to robot datasets, thereby mit-
igating the loss of its foundational ca-
pabilities [6, 9, 14]. While these meth-
ods can mitigate knowledge loss, co-
training with VLM-scale datasets is in-
herently expensive and requires a care-
fully constructed dataset mixture for
optimal performance.

Figure 2 Traditional VLA training procedures often overfit to the
robot training data, sacrificing their original reasoning capabilities for
low-level action prediction (center). In contrast, VLM2VLA (right)
preserves the world understanding of the nominal VLM (left), allowing
the model to reason about potential safety risks instead of just motor
commands.

This paper aims to preserve the world knowledge of the VLM
while adapting it for robotic control without co-training. We
address this issue by resolving the distribution mismatch be-
tween the low-level action spaces needed for robotic control and
the image-text distributions of the VLM’s pretraining corpus.
This mismatch often compels researchers to use full param-
eter fine-tuning when training VLAs, which contributes to
catastrophic forgetting by overfitting to the robot teleopera-
tion data.
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Figure 3 Distribution of action probabilities
under Gemma-3-12B-IT before fine-tuning on
robot teleoperation data. The model assigns
significantly higher log-probabilities to actions
represented as language compared to those

defined by explicit tokenization modifications,
e.g., least likely token assignment.

Our key insight is that while parameter-efficient methods like
Low-Rank Adaptation (LoRA) [15] can avert catastrophic
forgetting, their effectiveness relies on the fine-tuning data
being sufficiently close to the model’s pretrained representa-
tions. We therefore propose resolving this representational
mismatch at the data level. Our data-centric approach re-
represents robot actions as natural language descriptions,
thereby aligning the VLA fine-tuning data directly with the VLM’s pretrained representation space. This
alignment enables LoRA to effectively adapt the VLM for robotic control without significantly perturbing its
pretrained weights. Fig. 3 illustrates this idea, showing our language-based actions are assigned significantly
higher probabilities by the VLM backbone than actions mapped to arbitrary tokens, a common strategy in
state-of-the-art VLAs [4, 8-11]. Our method is model agnostic and simple to implement, obviating the need
for sophisticated architectures, complex co-training schemes, or multi-stage training procedures to achieve
robust knowledge retention and superior generalization capabilities.

Statement of Contributions. We present VLM2VLA, a data pipeline and training methodology for fine-
tuning VLMs into VLAs while preserving their foundational perceptual and reasoning capabilities. Our core
contributions are as follows: 1) Representing actions as language: We propose translating low-level robotic



imitation data into text, thereby aligning the VLA fine-tuning data with the VLM’s pretraining distribution
to mitigate catastrophic forgetting. 2) A data re-labeling and training pipeline for knowledge retention:
Building on our action representation, we present a scalable methodology for re-labeling robot teleoperation
datasets for fine-tuning a VLM into a VLA through LoRA. 3) Empirical validation of action and reasoning
capabilities: We provide extensive empirical validation showing our VLA preserves a suite of crucial capabil-
ities that are often lost in other state-of-the-art models. Specifically, our method’s efficacy is demonstrated
through extensive real-world evaluation (over 800 robotic experiments), showing generalization to novel tasks
with objects and language instructions unseen during training. Moreover, our policy averts catastrophic
forgetting, retaining over 85% of the base model’s performance across challenging VQA benchmarks.

2 Related Work

2.1 Vision-Language Action (VLA) Models

VLA models, which fine-tune pretrained VLM backbones for robotic control, have become the dominant
paradigm in training generalist robotic policies [4, 5, 8-11, 14, 16-23]. The central promise of this approach
is knowledge transfer: one can translate the rich semantic knowledge of the VLM, learned from internet-scale
pretraining, directly to action prediction. One challenge in adapting transformer-based VLMs for action
prediction is bridging the gap between their discrete, token-based nature and the continuous, vector-valued
representations utilized in robotic control. Consequently, many state-of-the-art VL As diverge architecturally
in how they address the problem of action generation.

2.1.1 Action Representation in VLAs

The first dominant strategy is discretization, where continuous action vectors are explicitly mapped to a finite
set of tokens [11, 24], typically the VLM’s least likely tokens [4, 8-10]. This approach casts robot control as
a standard next-token prediction problem, allowing the VLA to generate outputs autoregressively.

The second paradigmatic strategy augments the VLM with a separate, lightweight action head (e.g., using
diffusion or flow-matching) to generate continuous actions directly [5, 6, 13, 21, 25, 26]. While this design
choice enables faster action prediction [24], it introduces new, randomly initialized parameters to the VLM
during VLA fine-tuning which can corrupt the original pretrained representations [13, 26, 27].

Our work introduces a third approach: representing actions as natural language descriptions all within the
VLM’s existing vocabulary. For instance, the command ‘move forward by 4.2 centimeters’ is treated as a
standard text string, allowing our method to bootstrap the VLM’s intrinsic understanding of numerical
magnitude for grounding in physical space. We provide extensive experimental evidence in Section 4.2
that this ‘actions as language’ representation is more effective for policy learning via LoRA fine-tuning
than strategies based on least likely token assignment. Unlike the concurrent work of [28], which use full
parameter fine-tuning and co-training, we use only LoRA and our action representation to preserve the VLM’s
foundational reasoning capabilities.

2.1.2 Reasoning Models

To improve performance on complex, long-horizon tasks, a growing body of work has focused on enabling
VLASs to perform explicit reasoning. These methods typically use a chain-of-thought approach [29], where
the model first generates a high-level plan or reasoning trace that then conditions the prediction of low-level
actions. The form of this reasoning varies across the literature. One set of approaches provides task-level
context, leveraging (vision) language models to generate natural language sub-goals or task plans that guide
the policy [6, 30-38]. A second set of works condition the policy on more structured, mid-level representations
like trajectory sketches, code, or spatial affordances [39-45].

Our method utilizes a similar staged inference procedure, first generating subtasks (e.g., ‘move to object’),
then predicting mid-level trajectory plans (e.g., ‘move primarily downward and slightly right’), before finally
generating action commands conditioned on both. Architecturally, our approach aligns more closely with the
recent trend toward monolithic models, where a single VLM is responsible for the entire reasoning hierarchy



[45-47]). This stands in contrast to modular pipelines that use distinct models for each stage of reasoning
and control [31, 33, 35, 41, 43].

Moreover, our work is distinct from prior VLAs and embodied reasoning models [5, 6, 13, 26, 30, 36, 39] in
that (1) we not only represent high-level reasoning in language, but also represent low-level actions (e.g., end-
effector movements) using text, (2) we do not utilize any explicit action decoders, and (3) we train the VLA
solely with LoRA. We posit that modifications to the VLM, combined with full-parameter fine-tuning, create
a distribution shift deleterious to the VLM’s world knowledge and reasoning capabilities. We demonstrate
evidence of this claim in Section 4.1.

2.2 Averting Catastrophic Forgetting

A critical and often overlooked phenomenon of many VLAs is catastrophic forgetting, where the rich, general-
purpose knowledge of the base VLM is lost during fine-tuning on narrow robotics data [13]. By compromising
the visual and semantic understanding of the base VLM, existing VL As often fail to generalize when prompted
with scenarios outside the scope of their robot fine-tuning data [12, 13].

2.2.1 Co-Training for Knowledge Retention

To combat this, the most common effective strategy has been large-scale co-training [6, 9, 11, 13, 18, 26, 48, 48],
which involves mixing robot teleoperation data with large, non-robotic datasets (e.g., VQA, image captioning).
Co-training effectively regularizes the VLA fine-tuning process, whereby the VLM is continuously trained on
data drawn from its pretraining distribution to preserve general reasoning and visual understanding.

However, co-training does not fundamentally resolve the underlying distribution shift problem between the
VLM’s pretraining corpus and the VL A’s robotic fine-tuning data. Instead, it attempts to mitigate the effects
of this mismatch by introducing an additional hyperparameter, namely the mixture ratio of robotics and web
data. This ratio is non-trivial to tune, requiring numerous training runs and real-world evaluations to find
an effective setting for both VQA performance and dexterous robotic control. The difficulty of this search is
compounded by the substantial computational cost of training even a single VLA often billions of parameters
[4, 5, 9, 10], making a thorough hyperparameter sweep impractical in many settings.

2.2.2 Advanced Training Schemes

Sophisticated VLA training procedures in Mixture-of-Experts (MoE)-style VLAs have recently been devel-
oped as an alternative means of preventing catastrophic forgetting. For instance, [27] attempt to shield the
VLM from otherwise destructive gradient updates of the action module via stop-gradient operators. Moreover,
[26] have explored a sequential training procedure whereby the VLM’s weights are frozen during training of
the action expert. Our work challenges the necessity of co-training and other sophisticated training schemes to
prevent catastrophic forgetting; by representing robot actions as natural language, our VLA can be effectively
fine-tuned with only low-rank adaptation, a simple procedure requiring no major architectural changes.

3 Methodology

In this section, we discuss our VLA training pipeline. Our approach is predicated on a simple principle:
to successfully leverage LoRA fine-tuning and avert catastrophic forgetting, we must first align the robot
data with the VLM’s existing representational space. To this end, we begin by first translating robot tele-
operation datasets into natural language descriptions. We posit that this data transformation minimizes
distribution shift incurred during LoRA fine-tuning (as evidence by Fig. 3), thereby retaining the VLM’s
nominal capabilities while enabling effective robot control.
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Figure 4 VLM2VLA’s pipeline for annotating existing robot datasets Drob into Dian described via natural language.
We use Gemini 2.5 [3] to decompose each trajectory into sub-trajectories, each with an associated subtask, motion
plan, and action chunk.

3.1 Actions as Language: A Hierarchical Representation

VLM2VLA frames action prediction as a three-stage VQA hierarchical reasoning process, which has been
shown to improve generalization to new tasks and environments [6, 45]; the fundamental difference between
our action representation and other VLAs [4, 9, 10, 36, 39, 45] is that high-level and low-level actions are
represented directly via language. Let the main task be broken into a series of N steps, indexed by i:

High-Level Subtask Prediction (I;): given observation o; and language instruction L, the model first describes
what immediate subtask [; is necessary to complete the main task.

Mid-Level Motion Planning (m;): conditioned on the current subtask and observation, the model generates
a spatially informative motion plan m;, with respect to the robot’s end-effector, detailing the movements
necessary to complete the subtask. Our motion plans describe only directional movements, e.g., ‘move left’
and ‘move down and slightly forward.” This coarse description was specifically chosen to benefit from the
VLM’s latent spatial reasoning, which excels at these types of tasks [1, 2].

Low-Level Action Generation (a;): conditioned on the current subtask and motion plan, the policy generates
a variable-length action-chunk a; to execute directly on the robot. In practice, the action-chunk is a list of
lists, where each inner list contains the individual commands represented as text for each degree of freedom
(DoF) of the robot. In this work, we only considered translational DoFs.

Formally, the distribution we seek to capture with our VLA is pg(a;, m;, 1;|0;, L), which we decompose as:

po(@i, mi, 1;|0;, L) = po(l:[0i, L) po(mi|li, 0:) po(ailma, li, 0:), (1)
1) Subtask 2) Motion 3) Action
Prediction Planning Generation

where parameters 6 are the weights of the robot policy. This parameterization corresponds to a vision-
language model (transformer) taking as input a sequence of multimodal image-text input tokens and predict-
ing a sequence of output text tokens. All observations reside in RGB image space.

3.1.1 Inference-Time Procedure

The decomposition given in Equation (1) describes how our VLA operates at test-time. Every action-chunk
prediction is conditioned on the current observation, subtask description, and proposed motion-plan; in
practice, we generate all N subtasks at once given the initial observation oy and keep this set fixed for the
duration of the rollout. To improve robustness of the policy, we operate in closed-loop fashion with a verifier.
At the end of every action-generation cycle, the verifier determines if the model should re-try the current
subtask or proceed onto the next one, a process which continues until all N subtasks are completed. In this
work, we utilize Gemini 2.5 Pro [3] as the verifier (with details in Appendix C.5).

3.2 Data Curation: Translating Robot Trajectories into a Hierarchical Format

To teach a VLM the aforementioned spatially-grounded reasoning chain, we must first re-label existing robot
datasets in natural language. We assume access to a dataset of human teleoperated robot trajectories, Dyop,
where each trajectory is a state-action sequence 7 = { (o4, as)}1_, of length T controlling the relative position



of the robot’s end-effector [10, 49, 50]. Each trajectory comes equipped with a main-task language instruction
L. We do not assume access to state information such as joint angles or absolute positioning in a pre-defined
reference frame. Our goal is to automatically describe each trajectory 7 € D,o, at the high-, mid-, and
low-levels described in Section 3.1 to construct a new robot dataset annotated with natural language, Djay.
Herein, we utilize the subset of the Bridgev2 dataset equipped with main-task instructions as Dyop [50].

Our pipeline for constructing Dy, is similar in spirit to the data curation strategies of [36, 45]. We use Gemini
[3] to automatically annotate trajectories and construct our our natural language dataset (see Fig. 4 for an
illustration). Specifically, Gemini decomposes each trajectory into a sequence of N steps. To provide strong
spatial grounding for motion planning, we prompt Gemini with the robot’s base frame coordinate system,
where each axis corresponds to a DoF. We found this enabled Gemini to generate high-quality annotations for
relative end-effector movements. Each resulting step 7 comes equipped with an initial observation o;, subtask
l;, motion plan m;, and variable-length action chunk a;, allowing us to represent the trajectory described via
natural language, 7, as the tuple 7 = {(a;, li,mi,di)}fi_ol € Dian- See Appendix A.1 and A.2 for additional
details on dataset curation.

In summary, we transform our original robot dataset of state-action pairs into a dataset of image-text pairs,
thereby casting robotic control as a standard supervised fine-tuning task. We fine-tune the Gemma-3-12B-IT
model [1] using LoRA applied to all its linear modules using the cross-entropy loss. This approach instills
action prediction capabilities while preserving the VLM’s world knowledge. Additional training details are
outlined in Appendix D.

4 Experiments

In this section, we evaluate VLM2VLA on a suite of tasks to answer the following questions:

Q1-Multimodal Understanding: Does VLM2VLA effectively preserve the base VLM’s multimodal reasoning
ability in standard VQA tasks after fine-tuning on robot data Dy,,?

Q2-Robotic Manipulation: Can VLM2VLA achieve a level of in-distribution manipulation performance that
is competitive with state-of-the-art VLAs?

Q3—Reasoning Generalization: Does the preserved knowledge from Q1 directly enable VLM2VLA to gener-
alize to novel, out-of-distribution robotics tasks that require reasoning beyond the fine-tuning data Dy, 7

Baselines: We contrast our policy against two state-of-the-art tokenization-based VLAs: OpenVLA [4], an
autoregressive policy constructed from fine-tuning a pretrained 7B Prismatic VLM on the large-scale Open-
X-Embodiment dataset [10, 51], and Embodied Chain-of-Thought (ECoT), a variant of OpenVLA trained to
produce reasoning traces before action prediction [45]. ECoT, similar to VLM2VLA, is only fine-tuned on the
Bridgev2 dataset. The aforementioned models were chosen as baselines because they can run out-of-the-box
on our hardware setup, requiring no additional fine-tuning.

Ablations: We ablate our action representation by mapping the digits (0-9) in our robot action data to the
decoded strings of Gemma-3’s ten least likely tokens; therefore, during VLA fine-tuning, the model will learn
to autoregressively predict actions via these reserved tokens (see Appendix A.3). We call this variation of
our method, with action tokens, VLM2VLA-AT. To ensure an accurate comparison, both models are trained
identically and trained on the same data, except for the action representation.

4.1 Evaluation of Multimodal Understanding

Many real-world manipulation scenarios deviate from the VLA’s fine-tuning distribution, such as natural
language instructions with variations in phrasing [52], the presence of novel objects and backgrounds [6, 12],
or misaligned camera angles requiring fine-grained perceptual reasoning. In such settings, policies that retain
strong visual-semantic priors from pretraining are better equipped to generalize more effectively [6]. In this
section, we quantify the extent to which VLM2VLA, and its variants, preserve these priors by thorough
evaluation on numerous VQA benchmarks.



Table 1 Multimodal understanding evaluation. Comparison of VLMs and VLAs across multimodal understanding
benchmarks. We compare against Prismatic VLM [51], OpenVLA [4], ECoT [45], Gemma-3 [1], MolmoAct [11] and
mo.5 [6]. Our models preserve strong performance across diverse multimodal understanding tasks despite training on
robot data. The best and second best results for each benchmark are shown in bold and underlined, respectively.

Method #Params MMMU MMStar MME  OCRBench MMB-en MMB-cn TextVQA DocVQA InfoVQA  AI2D  ChartQA  RealWorldQA
Prismatic VLM Family
Prismatic VLM b 35.0 38.8 1456.6 32.0 66.2 55.7 42.5 17.5 19.7 54.6 16.7 30.8
OpenVLA b 26.3 0 0 0 0 43.0 0 0 0 0 0 0
ECoT b 26.6 0 0 0.01 3.7 4.1 0 0 0 0 0 25.6
Gemma-3 Family (with VLM2VLA)
Gemma-3-4B-IT 4b 39.3 37.1 1205.8 70.2 68.6 64.3 61.5 68.8 40.9 70.5 50.3 44.0
Gemma-3-12B-IT 12b 46.0 46.3 1182.3 75.0 76.9 74.7 68.9 80.6 50.4 78.5 55.1 50.6
VLM2VLA-AT 12b 45.9 45.2 1082.2 65.5 70.9 66.8 64.2 74.6 44.8 74.1 41.8 44.5
VLM2VLA (Ours) 12b 42.7 48.0 1391.7 63.9 68.5 67.6 64.9 78.4 46.2 74.0 58.3 43.3
Open-Source Co-Trained VLAs

MolmoAct 7b 28.4 1.2 1224.5 52.7 55.1 46.3 57.5 58.7 41.9 2.0 55.9 8.6
0.5 3b 24.0 21.7 1061.9 6.8 6.8 0.3 10.0 4.6 7.7 27.0 5.1 2.7

We report the results for all policies and their original VLM backbones in Tab. 1. As demonstrated, both
OpenVLA and ECoT suffer from catastrophic forgetting relative to the original Prismatic VLM [13, 51].
In contrast, VLM2VLA experiences only minor losses in performance across all VQA benchmarks, thereby
conclusively answering Q1. While the VLM2VLA-AT ablation achieved comparable VQA scores, suggesting
that our LoRA training scheme is primarily responsible for mitigating catastrophic forgetting, we argue this
is a necessary but not sufficient condition for creating a generalist policy. As we show in Section 4.2, the
choice of action representation is an important factor affecting generalization in downstream robotic tasks.

To compare VLM2VLA against state-of-the-art co-trained VLAs, we also evaluate two recently released
open-source models: MolmoAct [11] and 7y 5 [6]. While MolmoAct is strong in VQA ability, VLM2VLA
outperforms it across all reported benchmarks. We acknowledge that model size is a confounding variable
in the comparison, yet, the results in Tab. 1 demonstrate that our methodology is competitive with co-
trained VLAs. On the other hand, the significantly lower performance of m 5 across most VQA benchmarks
underscores that co-training is not a guaranteed solution to catastrophic forgetting.

4.2 Evaluating Robotic Manipulation

OpenVLA ECoT VLM2VLA-AT

- VLM2VLA

100
9?.? 75
58 60
é © 2 °7 49
£
e 33 30
T 25
o
o 1 5 0 0
Pick Up Pick and Place Pick, Place, and Lift Pick Up-T Pick Up-A

Figure 5 Comparative evaluation of VLA performance on in-distribution (ID) and out-of-distribution (OOD) robotic
manipulation tasks. VLM2VLA maintains high success rates on OOD tasks, highlighting its superior generalization
capabilities. Each bars corresponds to an average over thirty trials, except for the ‘Pick Up -T’ task, where each bar
corresponds to an average over ninety trials.

Having established that VLM2VLA and its variants retain their foundational pretraining knowledge, we now
evaluate if this training procedure translates to robotic control. Specifically, we assess VLM2VLA’s ability



to perform robotic manipulation tasks of varying complexity in in-distribution (ID) and out-of-distribution
(OOD) scenarios. All real-world policy evaluations receive a total of 30 trials and are performed on a 6-DoF
WidowX 2508 robotic arm in a toy kitchen environment, as prescribed in [50].

We compare VLM2VLA to the baselines and ablations on two ID tasks, one borderline ID task, and two
OOD tasks. The in-distribution experiments probe each policy’s action prediction capabilities over short and
long horizons. The out-of-distribution experiments investigate if the policies can leverage the latent world
knowledge of their VLM backbone to generalize beyond the VLA fine-tuning data. All skills tested are ‘pick
up’ or ‘pick and place’ tasks, which are common in policy evaluation [4, 7, 12, 45, 53], and we describe each
in detail below.

Pick Up the Carrot (Pick Up): A baseline task testing the model’s fundamental localization and grasping
capabilities. This task is considered in-distribution because the task object (carrot) and instruction are within
the VLA fine-tuning data.

Put the Carrot On the Yellow Plate (Pick and Place): A longer horizon baseline task testing the model’s
ability to perform more complex actions. This task is considered in-distribution because the object and
instruction are within the VLA fine-tuning data.

Put the Eggplant In the Pan, Then Lift the Fish (Pick, Place, and Lift): A long-horizon, multi-step task
requiring the robot to perform both pick-and-place and pick-up actions. This task is borderline in-distribution;
the objects and instructions, when considered separately, are in-distribution, but not when combined.

Pick Up the Carrot (Pick Up - T): A pick-up task with natural language instruction given in one of three
languages: Spanish (‘recoger la zanahoria’), Mandarin (‘SFEAAE 1N’), and Hindi (TSR 3&131). This task is
considered out-of-distribution because the instructions are not within the VLA fine-tuning dataset, thereby
requiring the model to implicitly translate the task. Two distractor objects are present in each trial to prevent
the policy from inferring the task from the observation alone.

Pick Up the Item Above Ash Ketchum (Pick Up - A): AA pick-up task requiring the model to first locate
the pop-culture figure ‘Ash Ketchum’ and lift the correct object. This task is considered out-of-distribution
because VL As are not trained to recognize semantic concepts like ‘Ash Ketchum,” thereby requiring the model
to leverage its latent world knowledge to succeed. Distractor logos (‘NASA’) and objects are present. The
item located above ‘Ash Ketchum’ varies in-between trials, as does its location in the environment.

We report the full task success rates for all models in Fig. 5 (see Appendices C.1 to C.6 for additional scoring
and experimental details). For the multilingual translation tasks (Pick Up -T), we report the average across
all languages, which amounts to ninety trials per model.

. 100 ECoT VLM2VLA-AT VLM2VLA
4.2.1 Results of Baselines L

On the ID pick-up and pick-and-place 75
tasks, OpenVLA performs the best.
This high performance is likely ex- 5
plained by fine-tuning on the much
larger Open-X-Embodiment dataset, ”s
which provides broader coverage of
common grasping skills. Nevertheless, o

the comparable success rates observed
for VLM2VLA answer Q2: the ‘action Figure 6 Analysis of task decomposition for OOD manipulation tasks.
as language’ approach enables competi- Points are awarded if the model’s task plan correctly identifies the task
tive action prediction in a specific robot object, and task destination if present. See Appendix C.3 for additional
embodiment. details.

Success Rate (%)
o

As task complexity increases, the advantage of a purely reactive policy, like OpenVLA, starts to diminish.
In the compositional task ‘Put the Eggplant In the Pan, Then Lift the Fish’, we found that OpenVLA often
successfully completes the first subtask (put the eggplant in the pan), but fails to attempt the second. ECoT,
on the other hand, normally generates motion plans to finish both subtasks, but fails to execute them as



accurately as OpenVLA. We found that of the three policies, for this task, VLM2VLA not only generates
correct hierarchical reasoning, but also executes them more frequently (see Fig. 5 and Fig. 6).

The OOD scenarios most clearly demonstrate the benefits of our knowledge-preserving pipeline. In the
multilingual translation experiment (Pick Up - T), our method significantly outperforms both OpenVLA and
ECoT. As shown in Fig. 6 and Fig. 7, VLM2VLA frequently translates the non-English language instruction
and identifies the correct object; this is a direct application of the multilingual capabilities retained by our
model as reported in Section 4.1. While ECoT does achieve a non-zero task success rate, the results presented
in Fig. 6 suggest it may be relying on heuristics, such as simply picking up the closest or most salient object
in the near vicinity, rather than a genuine understanding of the instruction.

This trend is even more pronounced in the ‘Pick Up the Item
Human: What subtasks are Above Ash Ketchum’ task, requiring a combination of both

required to 1T IB3T open-world semantic knowledge (recognizing a pop-culture
figure) and spatial reasoning. Here, VLM2VLA is the only
model to achieve a meaningful success rate. This result pro-
vides a positive answer to Q3: the foundational world knowl-
edge preserved by our method can be leveraged to solve novel
problems zero-shot.

"i VLM2VLA: ['Move to Carrot!,
-! 'Grasp Carrot','Lift Carrot High']

4.2.2 Results of Ablations

Section 4.1 demonstrated that LoRA fine-tuning can mitigate
catastrophic forgetting for both our method and the token-
Figure 7 A qualitative demonstration of  paged ablation, but does the ‘actions as language’ representa-
VLM2VLA’s zero-shot multilingual capabilities. i, 5ctually facilitate learning a more effective policy? The
Given the lan%uage lnStTUCtlc_)n m,Hmdl (‘pick results demonstrated in Fig. 5 and Fig. 6 show our approach
1P the'carrot .)’ our model identifies the cor- consistently outperforms the token-based ablation across all
rect object amidst distractors (eggplant and ba- . : .
nana), demonstrating a genuine understanding manipulation tasks. While VLM2VLA-AT performs compet-
of the task. itively on simple ID tasks, its performance degrades as task
complexity increases; this is seen most clearly in the OOD
setting despite retaining strong VQA capabilities. For instance, Fig. 6 shows VLM2VLA-AT struggles with
multilingual commands and scores only half as well as VLM2VLA in the ‘Pick Up the Item Above Ash
Ketchum’ task (achieving a success rate of just 30% to our model’s 60%). These findings are suggestive
of a disconnect between the VLM’s latent world knowledge and the action token assignment achieved after
fine-tuning.

5 Conclusion and Discussion

In this work, we present VLM2VLA: a novel VLA training paradigm that addresses the challenge of catas-
trophic forgetting often experienced when adapting a VLM for robotic control. We demonstrate that by
grounding the action prediction problem in natural language, LoRA can be used to train manipulation
policies without significantly degrading the backbone VLM’s foundational capabilities. Our data-centric ap-
proach of treating ‘actions as language’ obviates the need for major architectural modifications to the VLM or
expensive co-training schemes. As our experiments show, the retained latent world knowledge of VLM2VLA
enables zero-shot generalization to novel tasks that require open-world semantic reasoning. Ultimately, this
work offers one path toward building generalist policies by closing the gap between large-scale foundation
models and real-world robotic control.

5.1 Limitations and Future Work

While VLM2VLA demonstrates one promising path toward better leveraging the foundational capabilities of
VLMs for generalist policies, our approach has several limitations that present clear avenues for future work.

Inference latency. VLM2VLA generates actions autoregressively, which is inherently slow; in our experi-
ments, the median run-time required for one cycle of action generation was 6.1 seconds, though subject to high



variance (see Appendix C.6 for additional inference details). Future work could explore more advanced decod-
ing techniques to accelerate our hierarchical prediction scheme without compromising the VLM’s pretrained
representations.

Dexterous tasks. Our work has focused on translational end-effector control, which is suitable for many
simple pick-and-place tasks. While this design choice afforded strong action labeling from Gemini, it pre-
cludes dexterous manipulation tasks which require nuanced action prediction, e.g., rotation. Moreover, the
granularity at which we predict motion plans is coarse, and a logical next step is to obtain fine-grained lan-
guage annotations when constructing our VLA fine-tuning dataset. As vision-language models become more
adept at spatial reasoning, we anticipate this re-labeling scheme will enable more precise robotic control.

Cross-embodiment learning. The scope of our work limited training to a specific robot embodiment,
thereby preventing the same policy from readily adapting to other robots, especially those which utilize
other means of low-level control, such as joint angles, which do not map easily to spatial affordances. Yet,
we believe our ‘actions as language’ relabeling scheme is a promising solution. Using language as a common
medium, it ought to be possible to describe all robot actions regardless of embodiment. Therefore, performing
VLM2VLA’s relabeling scheme could potentially be used to train a cross-embodiment policy.

Improving or eliminating the verifier. Our method currently relies on a separate verifier module to
transition between subtasks, further slowing down inference speed. Future work could explore how to better
train the base VLM as a verifier, or investigate how the policy could automatically reason about subtask
completion given the observation and task description alone, thereby averting the this step altogether.

Larger-scale training. We are working towards scaling our training pipeline with larger robotics datasets.
We hypothesize that combining our language-based action representation with large-scale training may unlock
zero-shot generalization, open-world semantic reasoning, and instruction following capabilities that go well
beyond the state-of-the-art.
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Appendix

A Data Curation

A.1 Prompting

In this section, we showcase our Gemini prompting strategy to generate language-annotated robot trajectories
at scale. Our example is specific to the WidowX 250S robot embodiment, focusing solely on translational
degrees of freedom. All text within the prompt is invariant across robot trajectories, except for words/phrases
designated in color, which are trajectory-dependent.

Gemini Inputs and Prompt Template

Gemini is provided with the robot trajectory data 7 = {(os,a¢)}I_, consisting of RGB observa-
tions o; and actions a; controlling the relative position of the robot’s end-effector. Additionally,
Gemini is provided with the main-task instruction L. We combine all actions and instruction
into a text file called trajectory log content.

Gemini Prompt

Attached are images of a robot performing a task, and the real actions in a text file called trajec-
tory log content. You are programming a 4-DoF robot arm (x,y,z,gripper). Positive x points
forward (negative x points backward) with respect robot’s end-effector. Positive y points left
(negative y points right) with respect to the robot’s end effector. Positive z points up (negative
z points down) with respect to the robot’s end-effector. The gripper takes a binary value of 1 for
open and 0 for closed.

Your task is to analyze the language instruction found in the trajectory log. Crucially, first think
step-by-step and explain your reasoning for each action phase necessary to complete the instruc-
tion given all the images and their ordering during the trajectory. Be short and concise. Output
your reasoning as a structured JSON file.

Then, after you've explained your reasoning, give the actions with respect to (dx, dy, dz, gripper)
that the robot must execute to achieve this goal given the orientation described previously, asso-
ciating each action or group of actions with the natural language decomposition you decided on.
Store these actions in JSON format as a list of dictionaries, where each dictionary has ’step_ de-
scription’ (string) and ’actions’ (list of lists representing [dx, dy, dz, gripper]). Make sure your
actions match what is provided in the attached .txt file. For example:

i

"step_description": "Grasp the Pepper",

"actions": [
[0.010, 0.026, 0.002, 1.0],
[0.017, 0.033, 0.008, 1.0],
[0.003, 0.007, -0.018, 1.0],
[-0.006, 0.0, -0.015, 1.0],
[0.003, 0.002, 0.001, 0.0]

]
1}

Here is the trajectory log content: trajectory log content

In summary, Gemini 2.5 [3] is given the entire trajectory 7 = {(0s, a;)}1_y € Drob and main-task instruction
L as context, as well as the robot’s coordinate system and sign convention in the base frame. For example,
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the Bridgev2 dataset [50] utilizes the 6-DoF WidowX 250S robotic arm, where movement in the positive
‘x’ direction corresponds to ‘forward’, negative movement in the ‘y’ directions corresponds to ‘right,” and so
forth. Since all action sequences are given as relative movements of the robot’s end-effector, the aforemen-
tioned coordinate system provides strong spatial grounding for Gemini to construct high-quality language
annotations and determine the most appropriate timesteps to carve the trajectory into sub-trajectories. To
address potential concerns about auto-labeling errors, we manually inspected a random subset of Gemini’s
generated data for accuracy in subtask decomposition, motion-planning, and action prediction.

Initially, we solely used Gemini 2.5 Pro, but later switched to Gemini 2.5 Flash to save on costs. In total, gen-
erating the entire dataset costed roughly $900. Finally, we provide an example of single language-annotated
trajectory from the Bridgev2 dataset. We additionally include the first and last observations of the robot
trajectory for reference.

Figure 8 Key observations throughout the original, robot trajectory, which are provided to Gemini as context.

(a) Observation: 0 (Initial) (b) Observation: 10 (c) Observation: 20 (d) Observation: 28 (Final)

Gemini Language Annotation Example

Below is the structured JSON output generated by Gemini for the task of L =
‘open the silver pot’. Gemini first decomposes the trajectory into sequence of steps, then per-
forms a chain-of-thought reasoning to generate a motion plan. Finally, it copies the corresponding
actions to each step.

"STEP_DESCRIPTION": "Move to Lid Handle",

"REASONING": "The robot must first navigate its end-effector to be directly above
the 1id handle. This requires moving downwards (-dz) and adjusting the
horizontal position (likely backward -dx and right -dy based on the initial
position and target). The gripper must remain open (1) for grasping.",

"MAIN_MOVEMENTS": "Primarily backward (-dx), right (-dy), and downward (-dz)
movements. Gripper remains open (1).",

"ACTIONS": [

(0.0, 0.0, 0.0, 1.01,

[ -0.002, -0.002, -0.013, 1.01,
[ -0.023, -0.007, -0.005, 1.0 1],
[ -0.018, -0.006, 0.022, 1.0 1],
[ -0.018, -0.005, -0.003, 1.0 1],
[ -0.018, -0.006, -0.005, 1.0 1,
[ -0.015, -0.014, -0.014, 1.0 1,
[ -0.004, -0.010, -0.007, 1.0 1],
[ 0.0, -0.005, -0.003, 1.0 ]
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"STEP_DESCRIPTION": "Grasp Lid Handle",

"REASONING": "Once positioned correctly, the robot needs to grasp the handle.
This involves closing the gripper (0). There might be a final small downward
adjustment (-dz) just before or during the grasp.",

"MAIN_MOVEMENTS": "Close gripper (0), minor downward adjustment (-dz).

Gripper changes to 0.",

"ACTIONS": [

[ 0.002, -0.007, -0.010, 0.0 1]

]

"STEP_DESCRIPTION": "Lift Lid",

"REASONING": "After securing the handle, the robot must lift the 1lid vertically
(+dz) to clear the base of the pot. It also needs to move it slightly away
from the pot base, involving some horizontal movement (likely forward +dx
and left +dy). The gripper remains closed (0) to hold the 1lid.",

"MAIN_MOVEMENTS": "Primarily upward (+dz), forward (+dx), and left (+dy).
Gripper remains closed (0).",

"ACTIONS": [

[ 0.007, 0.0, -0.001, 0.01,
[ 0.002, 0.0, 0.0, 0.01,

[ -0.002, -0.002, 0.0, 0.01,
[ -0.004, 0.0, 0.002, 0.01,
[ 0.0, 0.004, 0.004, 0.01],

[ 0.015, 0.014, 0.017, 0.0 1],
[ 0.023, 0.007, 0.020, 0.0 ]

]

"STEP_DESCRIPTION": "Move Lid to Placement Spot & Lower",

"REASONING": "The goal is to open the pot, implying the 1lid needs to be placed
somewhere else. This involves horizontal movement (forward +dx, left +dy)

towards the placement spot and then lowering the 1lid (-dz). The gripper
stays closed (0).",

"MAIN_MOVEMENTS": "Primarily forward (+dx), left (+dy), and downward (-dz).
Gripper remains closed (0).",

"ACTIONS": [

[ 0.027, 0.008, -0.003, 0.01],

[ 0.021, 0.017, -0.007, 0.0 1],

[ 0.018, 0.007, -0.011, 0.0 1,

[ 0.015, 0.007, -0.010, 0.0 1,

[ 0.010, 0.004, -0.014, 0.0 1]
]

"STEP_DESCRIPTION": "Release Lid",

"REASONING": "Once the lid is resting on the surface, the robot must release it
by opening the gripper (1).",

"MAIN_MOVEMENTS": "Open gripper (1). Gripper changes to 1.",

"ACTIONS": [
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[ 0.003, 0.001, -0.002, 1.0 1]

"STEP_DESCRIPTION": "Retract",
"REASONING": "Finally, the robot should move its arm away from the 1id and
the pot to a safe, neutral position, typically upwards (+dz) and potentially
backward (-dx). The gripper remains open (1).",
"MAIN_MOVEMENTS": "Primarily upward (+dz) and backward (-dx).
Gripper remains open (1).",
"ACTIONS": [
[ -0.002, -0.002, 0.0, 1.0
[ -0.005, -0.005, 0.006, 1.
[ 0.0, -0.003, 0.022, 1.01,
[ -0.010, 0.002, 0.022, 1.01],
[ -0.010, -0.001, 0.017, 1.01],
(0.0, 0.0, 0.001, 1.0]

>

]
01,

—

A.2 Data Preparation

After Gemini splits each trajectory into sub-trajectories, we found it helpful in policy training to chunk
the actions along a single dimension to have larger magnitudes; in particular, we found that without this
step, VLM2VLA often provided negligible action predictions, even though its predicted motion-plans appears
sensible.

In this work, we used a threshold along a single dimension, without sign change, of 2.5 centimeters and an
absolute threshold of 5 centimeters. We include an example of the data for training Gemma-3 before and
after this post-processing step below:

Original Sub-Trajectory Action Data

The model is provided with the subtask 'Grasp the Yellow Pepper’ and image file: obs 0.jpg.

Human Prompt

You are programming a 4-DoF robot arm. Based on the image (obs_0.jpg) and subtask 'Grasp
the Yellow Pepper’, output the sequence of low-level [x, y, z, gripper] actions needed to accomplish
the task.




Model Output

([ 0.000, 0.000, 0.000, 1.0],
[-0.002, 0.000, -0.007, 1.0],
[ 0.000, -0.004, -0.016, 1.0],
[ 0.002, -0.002, -0.014, 1.0],
[ 0.003, 0.000, -0.008, 1.0],
[ 0.002, 0.000, -0.011, 1.0],
[ 0.000, 0.000, -0.005, 1.0],
[ 0.000, 0.000, -0.007, 1.0],
[ 0.000, 0.000, -0.006, 1.0],
[ 0.001, -0.003, -0.003, 0.0]]

Post-Processed Sub-Trajectory Action Data

Inputs:

The model is provided with the subtask 'Grasp the Yellow Pepper’ and image file: obs 0.jpg

Human Prompt

You are programming a 4-DoF robot arm. Based on the image (obs 0.jpg) and subtask 'Grasp
the Yellow Pepper’, output the sequence of low-level [x, y, z, gripper] actions needed to accomplish
the task.

Model Output

[[-0.002, -0.004, -0.023, 1.0],
[0.007, -0.002, -0.045, 1.0],
[0.0, 0.0, -0.006, 1.0],
[0.001, -0.003, -0.003, 0.0]]

We further augment our dataset with two additional sets of data. First we construct positive and negative
examples of subtask completion, each consisting of a tuple (0;,0;,l;) with j distinct from i: the robot
successfully completed subtask i if and only if j = ¢ + 1. In principle, this data could train the VLM as the
verifier, but we found our model unable to reliably perform this step. We leave addressing this shortcoming
as future work.

Secondly, we train the model to predict which direction (e.g., left, right, or none) the robot should move
to complete a given subtask, using the same movement threshold of 2.5 centimeters. While we do not
query our VLA in this manner at run-time, we found this auxiliary training signal beneficial for downstream
performance.

A.3 Actions as Tokens

For the action representation ablation, we cast the digits 0-9 to the tenth least likely tokens under the
Gemma-3-12B-IT model. We describe this mapping in the table provided in Table 2. In addition, we provide
an example of decoded model output under this mapping, identical to the one provided above.
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Table 2 Mapping of digits to the least likely tokens under the Gemma-3 model.

Digit Token Token ID
9 <unused6142> 262044
<unused6141> 262043
<unused6140> 262042
<unused6139> 262041
<unused6138> 262040
<unused6137> 262039
<unused6136> 262038
<unused6135> 262037
<unused6134> 262036
<unused6133> 262035

SO N W o 3

Post-Processed Sub-Trajectory Action Data Under Action Tokenization

Model Output

[[-<unused6133>.<unused6133><unused6133><unused6135>, -<unused6133>.<unused6133>
<unused6133><unused6137>, -<unused6133>.<unused6133><unused6135><unused6136>, <u
nused6134>.<unused6133>],

[<unused6133>.<unused6133><unused6133><unused6140>, -<unused6133>.<unused6133><
unused6133><unused6135>, -<unused6133>.<unused6133><unused6137><unused6138>, <un
used6134>.<unused6133>],

[<unused6133>.<unused6133>, <unused6133>.<unused6133>, -<unused6133>.<unused613
3><unused6133><unused6139>, <unused6134>.<unused6133>],

[<unused6133>.<unused6133><unused6133><unused6134>, -<unused6133>.<unused6133><
unused6133><unused6136>, -<unused6133>.<unused6133><unused6133><unused6136>, <un
used6133>.<unused6133>]]

B VQA Experiment Details

We build our evaluation pipeline using the open-source framework lmms-eval’, which provides standardized
implementations of multimodal benchmark datasets, evaluation metrics, and inference wrappers for a wide
range of models. We report results for our VLM2VLA model (finetuned with Gemma-3-12B backbone), two
strong baselines (OpenVLA and ECoT, both Prismatic-7B backbone), and the original instruction-tuned
Gemma-3-4B and Gemma-3-12B models.

MolmoAct and my 5 are designed to handle inputs from multiple cameras (e.g., exterior and wrist views).
However, since standard VQA benchmarks provide only a single image per sample, we use the multi-view
vision-language model to process single-image VQA benchmarks by utilizing only the primary image input
from each sample and masking the other image inputs. We use the m( 5-base checkpoint for all 7y 5 experi-
ments.

C Robot Manipulation Tasks and Detailed Results

C.1 Experiments and Manipulation Evaluation Metrics

As described in Section 4.2, we evaluate all generalist robot policies on two in-distribution tasks, one borderline
in-distribution task, and two out-of-distribution tasks. Each policy received a total of 30 roll-outs for each

Thttps://github.com/EvolvingLMMs-Lab/lmms-eval
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task. In this section, we provide additional details on the scoring rubric used to evaluate each method, giving
special care to fairly evaluate planning and non-planning policies.

Pick Up the Carrot: The robot’s goal is to navigate to and lift up the carrot. There are no distractor objects
present. This experiment is considered within distribution because it is part of the Bridgev2 dataset.

Between trials, the carrot’s initial position varied between three possibilities: (i) directly below the robot’s
gripper, (ii) directly in front of the robot, (iii), in front and to the left or right of the robot. The robot’s
initial position was constant between trials.

Scoring: Partial credit (1 out of 2) is assigned if the robot makes contact with the carrot.

Put the Carrot On the Yellow Plate: The robot’s goal is to grasp the carrot, move to the plate, and
successfully release it on the plate. There are no distractor objects present. This experiment is considered
within distribution because it is part of the Bridgev2 dataset.

Between trials, the carrot’s initial position varied between two possibilities: (i) directly in front of the robot
and (ii) in front and to the left or right of the robot. The robot’s initial position was constant between trials.

Scoring: Partial credit (1 out of 2) is assigned if the robot makes contact with the carrot.

Put the Eggplant In the Pan, Then Lift the Fish: The robot’s goal is to grasp the eggplant, move and release
it in the pan, then navigate to and successfully lift the fish. This task is considered borderline in-distribution
because the individual subtasks are within distribution, but the combination is not.

The eggplant is located to the right of the fish between all trials, which is located in front of and to the right
of the robot’s initial condition; all starting positions for the eggplant, pan, fish, and robot are invariant across
trials.

Scoring: For non-planning policies (OpenVLA), partial credit (1 out of 5) is awarded if the robot makes
contact with the eggplant, (2 out of 5) if the robot places the eggplant in the pan, (3 out of 5) if the robot
moved toward the fish, (4 out of 5) if the robot contacts the fish, and (5 out of 5) if the robot lifts the fish.

For planning policies (ECoT, VLM2VLA), partial credit (1 out of 5) is awarded if the policy generates a
subtask decomposition or motion-plan with the correct primitives: grasping the eggplant, moving to the pan,
lifting the fish. The remaining partial credit is awarded the same as for non-plannign policies: (2 out of 5) if
the robot makes contact with the eggplant, (3 out of 5) if the robot places the eggplant in the pan, (4 out of
5) if the robot contacts the fish, and (5 out of 5) if the robot lifts the fish.

Pick Up the Carrot (Multilingual Translation): The robot’s goal is to navigate to and lift up the carrot.
Instructions are given in one of three languages: Spanish (‘recoger la zanahoria’), Mandarin (‘EfCEE ),
and Hindi (7SR 33181). This task is considered out of distribution because the language commands are not
within the Bridgev2 dataset.

Between trials, the carrot’s initial position varied between three possibilities: (i) directly below the robot’s
gripper, (ii) directly in front of the robot, (iii), in front and to the left or right of the robot. The robot’s
initial position was constant between trials. Two distractor objects (banana and eggplant) are present in
each trial in an attempt to prevent the policy from inferring the task from the observation alone.

Scoring: For non-planning policies (OpenVLA), partial credit (1 out of 2) is awarded if the robot makes
contact with the carrot. For planning policies (ECoT, VLM2VLA), partial credit (1 out of 2) is awarded if
the policy’s planning included the correct item ’carrot’ and the robot makes contact with the carrot.

Pick Up the Item Above Ash Ketchum: The robot’s goal is to navigate to and lift up the object situated
above the pop-culture figure ’Ash Ketchum. This task is considered out of distribution because the picture
of "Ash Ketchum’ is not present in the Bridgev2 dataset.

Between trials, the picture of ’Ash Ketchum’ varied between being either to the left or right of the robot’s
starting position, which remained invariant across trials. The target object is placed a few centimeters above
the picture to preclude partial observability.
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Scoring: For non-planning policies (OpenVLA), partial credit (1 out of 2) is awarded if the robot makes
contact with the correct object. For planning policies (ECoT, VLM2VLA), partial credit (1 out of 2) is
awarded if the policy’s planning included the correct item and the robot makes contact with the item.

C.2 Hardware Details

All real-world policy evaluations were performed on a 6-DoF WidowX 250S robotic arm in a toy kitchen
environment, as prescribed in [50]. Images were captured with a Realsense D435 camera mounted on the
right side of the robot to provide a third-person point of view. The initial conditions of task and distractor
objects between trials were varied to ensure an accurate appraisal of policy performance. Like the environment,
all objects are drawn from the Bridgev2 dataset to minimize out-of-distribution failures. To prevent damage
to our setup, a safety filter was applied to all policies evaluated in this work. The filter prevented further
execution of actions which would drive the robot into the environment, e.g., zero out downward or forward
commands if the end-effector was contacting the counter or wall.

C.3 Task Decomposition Evaluation Metrics

In this section, we describe the scoring procedure used to generate Fig. 6. The objective was to quantify each
policy’s ability to interpret and break down a variety of user instructions. Performance was measured by
analyzing the textual output of each model’s chain-of-thought reasoning, or subtask decomposition, whenever
available.

For each task considered from Appendix C.1, a model’s reasoning was considered successful if the model’s
textual output contained a specific set of required keywords. The evaluation was case-insensitive and manually
checked to ensure all policies received a fair appraisal. The keywords and synonyms are defined as follows:

eggplant: purple, aubergine

carrot: orange, gajar

pan: (no synonyms defined)

fish: (no synonyms defined)

We now specify the scoring rubric for each experiment which required analysis:

Put the Eggplant In the Pan, Then Lift the Fish: success required the simultaneous presence of synonyms
for ’eggplant,” 'pan,” and ’fish’

Pick Up the Carrot (Multilingual Translation): success required the presence of a carrot synonym in the
model’s output. Interestingly, some subtask decompositions from VLM2VLA occasionally contained the
word ’gajar,” the Hindi synonym for carrot, demonstrating direct translation abilities of our method. This
phenomena was not observed for Spanish nor Mandarin inputs.

Pick Up the Item Above Ash Ketchum: success required identifying the correct object for that specific trial.
The required keyword was either a synonym of carrot or eggplant, depending on the ground truth object for
that trial.

C.4 Test-Time Prompting

In this section, we describe the prompting strategies used in VLM2VLA to elicit grounded subtask predictions,
spatial reasoning for motion-planning, and translational action prediction.

First, given the initial image, we prompt VLM2VLA to break the main language instruction into a series of
subtasks.

Subtask Prediction Prompt

Describe the sequence of remaining high-level steps required to complete the overall task 'main task’,
starting from the current state. Give your output as a list. Be specific and do not skip steps. Here

23



is an example for ’put the pot in the sink’: ["Move Down to Pot’, 'Grasp Pot’, "Lift Pot High’, "Move
Pot Left to the Sink’, Lower Pot to Sink’, 'Release’]. Start with "Move to’

For a given subtask, we prompt VLM2VLA with the current observation and subtask.
Motion-Planning Prompt

Given the image, reason about what high-level actions the robot arm should take to complete the
task "subtask”. +dx is forward, -dx is backward, +dy is left, -dy is right, +dz is up, -dz is down, 1 is
gripper open, 0 is gripper closed. Provide concise, accurate spatial reasoning.

Once a motion-plan is generated, VLM2VLA is prompted with that reasoning, current observation, and
subtask.

Action Generation Prompt

You are programming a 4-DoF robot arm (x,y,z,gripper). +dx is forward, -dx is backward, +dy is
left, -dy is right, +dz is up, -dz is down, 1 is gripper open, 0 is gripper closed. Based on the sub-
task ’subtask’ and the reasoning 'motion-plan reasoning’; output the sequence of low-level [dx, dy,
dz, gripper| actions needed as a python list of lists. Be concise in direction of movement. Example
format: [[dx1,dyl,dzl, gripl], [dx2,dy2,dz2, grip2]]. PROVIDE ONLY THE PYTHON LIST.

All outputs from VLM2VLA are generated using nucleus (top-p) sampling with p=0.95. We use distinct
temperature settings for each generation stage: 0.1 for motion planning and 0.5 for action prediction. For
the initial sub-task decomposition stage, the temperature is set to 0.5 for in-distribution tasks and 1.0 for all
other scenarios. The aforementioned hyperparameters were empirically found to work well.

We use the default setting of greedy decoding for both the OpenVLA and ECoT baselines. The task prompts
varied slightly between policies to maximize performance of each model on a given task. While all models

received near identical commands, we followed the prompt formats suggested by [4, 45] for the baselines, and
used our own for VLM2VLA and VLM2VLA-AT (see Appendix C.4).

C.5 \Verifier Prompting

To improve robustness of the policy, we operate in closed-loop fashion with a verifier V: Ox O X Lx L — L,
where O is the RGB image space and L is the language space; at the end of each action-generation cycle,
we query the verifier with the observations before (5;) and after (0,11) action execution (a;), as well as the
current (I;) and next (I;11) subtask. The verifier V(6;,0;41,0;,l;+1) will reason if the current subtask was
completed successfully, given the observations and the next subtask. The output from the verifier dictates
the subtask used in the next action-generation cycle, which continues until all N subtasks are completed. In
this work, we utilize Gemini 2.5 Pro [3] as the verifier, albeit one may train the model itself to do this step.

In this section, we describe the prompting strategies used in this work to query the external verifier if the
subtask was successfully completed.

Verifier Prompting Strategy

After having executed action chunk a;, Gemini is provided with two observations, (0;, 0;+1) and
the current and next subtask ([;, l;4).
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Verifier Instructions

You are a precision-oriented robot inspector. Your primary job is to evaluate the two images (0;,
0;+1) if the 'Current Subtask’ ([;) was executed with enough precision to guarantee the success
of the 'Next Subtask’ ({;11).

CRITICAL RULE: Judge the Precondition.

A 'move to’ action is ONLY successful if the final position is perfectly aligned for the subsequent
action, i.e., executing a grasp as the next step will result in a successful grasp. A ’close enough’
position is a FAILURE if it jeopardizes the next step.

For a ’grasp’ subtask to succeed, the gripper MUST be centered directly above the object’s grasp
point in the preceding 'move’ step. Any significant offset or misalignment in the ’after’ image is
a failure.

Provide your analysis in the specified JSON format, following the turn-based examples.

Expected Model Output (JSON)
{

"success": true,

"confidence": "High",

"reasoning": "This is a successful grasp because the
second image clearly shows the robot has successfully
grasped the eggplant."

C.6 Inference Latency

We conducted a series of rollouts and measured the wall-clock time for a single inference cycle, which we
defined as the generation of both the mid-level reasoning trace and low-level action prediction. All experiments
were conducted on an NVIDIA A100 GPU. We collected data across 30 evaluation runs and report the
summary statistics in Table 3.

Table 3 Inference Latency Statistics (N=30 trials)

Statistic Value
Median 6.1 [s]
Mean (Average) 10.5 [s]
Standard Deviation 14.3 [s]
Interquartile Range (IQR) 5.0 - 6.7 [s]
Minimum 3.8 [s]
Maximum 48.8 [s]

The median of 6.1 seconds and small interquartile range demonstrate VLM2VLA is capable of fast inference.
However, the high standard deviation of 14.3 seconds warrants discussion. Our analysis of the output logs
revealed that 1) approximately 10% of cases triggered our retry mechanism due to bad output formatting
from our model, causing additional run-time and 2) a small subset of trials exhibited unusually long run-times
(> 45 seconds), suggesting a computational bottleneck.

These results highlight the importance of developing fast decoding schemes for low-latency performance in
real-world scenarios, which we reserve for future work.



D Training Details

We fine-tune the Gemma-3-12B-IT [1] model using the TRL library [54]. Training is managed with Hugging
Face’s Accelerate framework, utilizing a DeepSpeed ZeRO Stage 2 configuration for efficient memory usage
across multiple GPUs. We employ parameter-efficient fine-tuning (PEFT) using low-rank adaptation (LoRA)
to update the model weights.

To obtain the final checkpoint, we train the model on a single node with 4 NVIDIA A100 GPUs. The final
model was fine-tuned for one epoch, which we found sufficient for this work. In total, our model required
approximately 300 GPU hours. The key hyper-parameters used for this training run are described in Table
4; notably, we found that using a small effective batch size worked well.

Table 4 VLM2VLA Training Hyper-parameters

Hyperparameter Value

Training Strategy

Base Model Gemma-3-12B-IT

Frameworks TRL, Accelerate, DeepSpeed (ZeRO Stage 2)

Fine-Tuning Method PEFT (LoRA)

Precision bfloat16 (BF16)
LoRA (PEFT) Configuration

Rank (r) 16

Alpha («) 32

Target Modules q_proj, k_proj, v_proj, o_proj, up_proj, down_proj, gate_proj
Optimization

Optimizer AdamW

Learning Rate 5e-5

LR Scheduler Linear Decay

Adam Betal 0.9

Adam Beta2 0.999

Adam Epsilon le-8

Dataloader Configuration

Global Batch Size 1
Per-Device Batch Size 1
Gradient Accumulation Steps 2
Effective Global Batch Size 8
Max Sequence Length 1024
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