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Abstract

A fundamental challenge in the empirical sciences involves uncovering causal
structure through observation and experimentation. Causal discovery entails link-
ing the conditional independence (CI) invariances in observational data to their
corresponding graphical constraints via d-separation. In this paper, we consider a
general setting where we have access to data from multiple experimental distribu-
tions resulting from hard interventions, as well as potentially from an observational
distribution. By comparing different interventional distributions, we propose a set
of graphical constraints that are fundamentally linked to Pearl’s do-calculus within
the framework of hard interventions. These graphical constraints associate each
graphical structure with a set of interventional distributions that are consistent with
the rules of do-calculus. We characterize the interventional equivalence class of
causal graphs with latent variables and introduce a graphical representation that
can be used to determine whether two causal graphs are interventionally equiva-
lent, i.e., whether they are associated with the same family of hard interventional
distributions, where the elements of the family are indistinguishable using the
invariances from do-calculus. We also propose a learning algorithm to integrate
multiple datasets from hard interventions, introducing new orientation rules. The
learning objective is a tuple of augmented graphs which entails a set of causal
graphs. We also prove the soundness of the proposed algorithm.

1 Introduction

Understanding the behavior of complex systems through their causal relationships is a fundamental
problem in science. Researchers collect data and perform experiments to analyze how specific
phenomena arise or to investigate the structure and function of underlying systems, whether social,
biological, or economic [Hiinermund and Bareinboim, 2023, Petersen et al., 2024, Sanchez et al.,
2022]. Causal discovery focuses on identifying causal relationships from both observational and
interventional data [Pearl, 1995, Spirtes et al., 2001, Peters et al., 2017]. A widely used approach for
causal discovery models the underlying system as a causal graph, represented by a directed acyclic
graph (DAG), where nodes denote random variables and directed edges between nodes (A — B)
signify causal relations [Pearl, 2009, Spirtes et al., 2001].
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Causal discovery involves deriving constraints from data to infer the underlying causal graph. How-
ever, in practice, these constraints are rarely enough to identify the exact causal graph. Instead, they
typically define a set of graphs consistent with the data, collectively referred to as an equivalence class
(EC) [Ali et al., 2012, Meek, 2013a]. Conditional independence (CI) relations are the primary markers
of the underlying causal structure and are used to define an equivalence class. These fundamental
probabilistic invariances have been widely explored within the framework of graphical models [Pearl,
1995, Peters et al., 2017]. Conditional independencies (Cls) are a powerful tool and serve as the
foundation for many causal discovery algorithms, e.g., PC and FCI [Spirtes et al., 2001].

When only observational data is available, the Markov equivalence class (MEC) comprises all causal
graphs that exhibit the same set of conditional independences (CIs) among the measured variables,
as defined by the d-separation criterion [Verma and Pearl, 1992]. The availability of interventional
(experimental) data allows us to reduce the size of the equivalence class, potentially facilitating the
recovery of the causal graph [Hauser and Biithlmann, 2012, Kocaoglu et al., 2017]. Hard and soft
interventions are two methods for manipulating variables. A hard intervention directly sets a variable
to a fixed value, removing natural dependencies, while a soft intervention alters the mechanism
through which the parents of a variable influence the target variable. While soft interventions are
more common in biology as, e.g., in gene knockout experiments [Meinshausen et al., 2016] since we
do not have precise control of mechanisms, in computer systems hard interventions are feasible and
have been used for learning causal relations, e.g., in microservice architectures [Wang et al., 2023].

Although a hard intervention can be seen as a special case of a soft one, it can be more informative
in the presence of latent variables in many cases. For instance, consider the causal graph D; =
{X - Z - Y,Z < Y}. We use the bidirected edge to represent a latent confounder between
two nodes. A hard intervention on Z breaks the inducing path! (X, Z,Y’), which implies that after
a hard intervention on Z, the variables X and Y are no longer dependent. In contrast, in the case
of a soft intervention, the incoming edges to Z are not removed, so a soft intervention will not
break the inducing path. It is also worth noting that hard interventions may change d-separation
statements non-locally, as seen here between X, Y after do(z), which the existing representations of
interventional Markov equivalence classes cannot encode. Now consider another graph Dy = {X —
Z —Y,Z + Y, X — Y}, which is the same as D; with the additional edge X — Y. With access
to a hard intervention on Z, we can distinguish these graphs; however, with a soft intervention, one
cannot differentiate between them. This example demonstrates that hard interventions can be more
informative in the presence of latent variables and narrow down the search space more effectively than
soft ones. We conducted empirical experiments in Appendix F to compare hard and soft interventions
in learning the causal graph with latents. The results verify this observation. A fundamental question
is how can we extract as much causal knowledge as possible from a collection of hard interventional
datasets. To the best of our knowledge, this problem has been open before this work.

Motivated by this, our paper considers a general setting where multiple experimental distributions
resulting from hard interventions are available alongside (optionally) observational distributions.
Prior work has focused on characterizing the Z-Markov equivalence class through distributional
invariances both within and across a set of observational and interventional distributions [Hauser and
Biihlmann, 2012, Yang et al., 2018]. The closest work to ours is Kocaoglu et al. [2019]. However,
they deal with soft interventions, whereas we consider a setting where experimental data comes from
hard interventions. This can lead to more invariances that can be inferred from the experimental data
compared to the soft intervention case, which can potentially further reduce the size of Z-Markov
equivalence class. However, the existing work cannot utilize these additional invariances.

We propose using do-constraints with hard interventions, a concept that emerges from comparing
observational and experimental distributions, extending Pearl’s do-calculus to uncover new structural
insights in causal graphs [Kocaoglu et al., 2019, Jaber et al., 2020]. They emerge as the converse of
the causal calculus developed by Pearl [1995]. These constraints, distinct from traditional conditional
independence (CI) relations, are derived by contrasting distributions such as P(y|z) and P(y|do(z))
through a do-see test. When differences are detected, they reveal open backdoor paths in the graph,
aiding structure learning. We leverage F-nodes, introduced by Pearl, to explicitly encode intervention
effects in augmented graphs [Pearl, 1993]. These nodes make the effects of interventions visible
within the graph, enabling the application of do-calculus tests and capturing key structural knowledge

"Inducing paths are paths between non-adjacent variables that cannot be blocked by conditioning on any
subset of observed variables. They only exist in the presence of unobserved confounders.



such as the existence of a backdoor path from X to Y when F'x is not d-separated from Y given X.
Such augmented representations, widely used in inference and identification, highlight the utility of
do-constraints alongside CI relations for learning causal structures [Yang et al., 2018, Kocaoglu et al.,
2019, Mooij et al., 2020].

We say that a set of interventional distributions satisfies the Z-Markov property with respect to a graph
if these distributions adhere to the invariance constraints imposed by the causal calculus rules of that
graph. We first extend the causal calculus rules to operate between arbitrary sets of hard interventions.
We say that two causal graphs, D; and D, are Z-Markov equivalent if the set of distributions that
are Z-Markov to both D; and D, is the same. Using the augmented graph, we identify a graphical
condition that is both necessary and sufficient for two Causal Bayesian Networks (CBNs) with latents
to be Z-Markov equivalent under the framework of hard interventions. Finally, we propose a sound
algorithm for causal discovery from hard-interventional datasets. Our main contributions can be
summarized as follows:

* We propose a characterization of Z-Markov equivalence between two causal graphs with
latent variables for a given intervention set Z, based on a generalization of do-calculus under
hard interventions.

* We provide a graphical characterization of Z-Markov equivalence for causal graphs with
latent variables under the framework of hard interventions.

* We introduce a learning algorithm for inferring the graphical structure using a combination
of different interventional data, while utilizing the corresponding new constraints. This
procedure includes a new set of orientation rules, and we formally prove its soundness.

* We conducted experiments (Appendix F) to compare the size of Z-Markov equivalence class
under hard and soft interventions to show that hard interventions on average provide more
information about the causal graph.

2 Background and Related Works

In this section, we briefly describe related background knowledge and notations in this paper.
Throughout this paper, we use upper case letters to denote variables, lower case letters to denote
realizations, and bold letters for sets.

Causal Bayesian Network (CBN): Given a set of variables V, P(v) represents the joint distribution
for V.= v. A hard intervention do(X = x) refers to setting a subset X C V to constants x. It
breaks the causal relationship between the intervened variables and their parents. The interventional
distribution is Py (v). Let P denote the tuple of all interventional distributions for all X C V. Then,
a directed acyclic graph (DAG) D = (V, E) is said to be a causal Bayesian network compatible
with P if and only if, for all X C 'V, Px(v) = [[;v;¢x; P(vilpa;), for all v consistent with x, and
where pa,; is the set of parents of V; in D. D is said to be causal if it satisfies this condition. V'[D] and
E[D] denote the set of all nodes and all edges of graph D respectively. Causal graphs entail specific
conditional independence (CI) relationships among observable variables via d-separation statements.
The d-separation serves as a criterion to determine whether a set of variables X is independent of
another set Y, given Z.

If a causal graph has latent variables, it is denoted as D = (V UL, E) where V represents observable
variables, L represents latent variables, and E denotes the edges. If a latent variable L € L is a
common cause of two observable variables, we use a curved bidirected edge between the two children
variables. Such a causal graph is called Acyclic Directed Mixed Graph (ADMG). However, unlike
causal graphs with sufficiency, the observed distribution is obtained by marginalizing L out as the
Markovian condition does not hold in this case: P(v) = > _p, 17, eruvy P(tilpai). Two causal
graphs are called Markov equivalent if they encode the same set of CI statements over V.

Ancestral graphs: Ancestral graphs are a graphical representation for a class of Markov equivalent
causal graphs with latent variables. In an ADMG, X is an ancestor of Y if there is a directed path
from X to Y 2. X is a spouse of Y if X <+ Y is present. An inducing path relative to Z is a
path on which every non-endpoint vertex T' ¢ Z is a collider on the path and every collider is an

2We follow the convention that a node is an ancestor of itself.



ancestor of one of the endpoints. A directed path is a cycle if it starts and ends at the same node.
An almost directed cycle can be constructed by changing an arrowtail to an arrowhead in a cycle.
An ADMG is ancestral if it does not contain any almost directed cycle. It is maximal if there is no
inducing path (relative to the empty set) between any pair of non-adjacent vertices. It is called a
Maximal Ancestral Graph (MAG) if it is both maximal and ancestral [Richardson and Spirtes, 2002].
In Zhang [2008a], the authors show how to uniquely construct a MAG for a causal graph with latents
D = (V UL, E), such that all the (conditional) independence statements and ancestral relationships
over V are preserved. Such CI statements are called m-separation statements in ADMGs.

In a graph D, a triple (X, Y, Z) is unshielded if X, Y are adjacent and Y, Z are adjacent while X, Z
are not adjacent. If both edges are into Y, then it is an unshielded collider. A path between X and Y,
p={(X,...,W,Z,Y), is a discriminating path for Z if (1) p includes at least three edges; (2) Z is a
non-endpoint node on p, and is adjacent to Y on p; and (3) X is not adjacent to Y, and every node
between X and Z is a collider on p and is a parent of Y. Two MAGs are Markov equivalent if and
only if (1) they have the same skeleton; (2) they have the same unshielded colliders; and (3) if a path
p is a discriminating path for Z in both MAGs, then Z is a collider on the path in one graph if and
only if it is a collider on the path in the other. A partial ancestral graph (PAG) represents a Markov
equivalence class of MAGs. It can be learned from CI statements over the observable variables under
faithfulness. When observational data is provided, FCI algorithm is a commonly used algorithm to
recover the PAG and is proved to be sound and complete in Zhang [2008b].

Related works: There are many works in the literature [Chickering, 2002, Hyttinen et al., 2013,
Eberhardt, 2007, Shanmugam et al., 2015, Kocaoglu et al., 2017] related to learning the causal
structure from a combination of observational and interventional data. Under the assumption of
sufficiency, Hauser and Biithlmann [2012, 2014] introduced the Markov equivalence characterization.
Yang et al. [2018] further showed that the same characterization can be used for both hard and
soft interventions. More works aimed at the cases where latents are present in the graph. If only
observational data is available, Zhang [2008b] showed the property and proposed the sound and
complete FCI algorithm to learn a PAG. Spirtes et al. [2001], Colombo et al. [2012], Spirtes et al.
[1991], Colombo et al. [2014], Ghassami et al. [2018], Kocaoglu et al. [2017] proposed FCI-variant
algorithms under different settings. Kocaoglu et al. [2019] introduced a characterization for Z-
Markov equivalence class for soft interventions using augmented graphs with F' node and proposed
an FCI-variant algorithm to learn it. Following this, Jaber et al. [2020] characterized the ¥-MEC
for unknown soft interventions and proposed a learning algorithm. Li et al. [2023] introduced the
S-Markov property and learning algorithm when data from multiple domains are provided.

Notations: For disjoint sets of variables X, Y, Z, a CI statement ’X is independent of Y conditioning
on Z’ is represented by X 1L Y|Z. Similarly, in a causal graph D, the d-separation statement "X is
independent of Y conditioning on Z in graph D’ is denoted as (X L Y|Z)p. A set of interventions
isZ C 2V, where 2V is the power set of V. For two interventions I, J € Z, the symmetric difference
is IAJ := (I\ J) U (J \ I). D¢/Dx is the graph obtained by removing all the edges into/out of
X from D. For Dm, Y (Z) is the subset of Y that are not ancestors of Z in the graph D In
a PAG, a circle mark in an edge Xo— Y can be either an arrowtail or an arrowhead which is not
determined. A star mark in an edge X*— Y is used as a wildcard which can be a circle, arrowhead,
or arrowtail. We assume that there is no selection bias.

3 Combining Experimental Distributions under Do-Calculus

One of the most renowned contributions to causal inference is the development of do-calculus (also
known as causal calculus) [Pearl, 1995, 2009]. Do-calculus is a set of three inference rules that enable
the transformation of distributions associated with a causal graph. It leverages the graphical structure
to determine when and how interventions can be adjusted or "removed" from expressions. In the
context of hard interventions, the theorem is stated as follows>:

Theorem 3.1. (Theorem 3 in Pearl [1995]). Let D = (V UL, E) be a causal graph. Then the
following statements hold for any distribution that is consistent with D

Rule 1 (see-see): For any X C 'V and disjoint Y,Z, W CV

3Here we put condition on z for Rule 2. While this is redundant, we aim to show its clear connection with
the corresponding F' node d-separations in the augmented graphs (see Section 4), which requires conditioning.



Px(y|w,z) = Pc(y|w), if Y 1L Z|W,X in D¢

Rule 2 (do-see): For any disjoint X, Y, Z C Vand W CV\ (ZUY)
Pea(ylw,z) = Px(ylw,z), if Y LL Z|W, X inDx 4

Rule 3 (do-do): For any disjoint X, Y,Z C Vand W CV\ (ZUY)

where Z(W) C Z are non-ancestors of W in Dx.

Similar to the observations in Kocaoglu et al. [2019] that the converse of the rules can be utilized to
derive insights of the graph structures, here we also need a set of statements for hard interventions.
With soft intervention, the interventional graph remains the same as no causal relationship is broken
by soft interventions. However, hard interventions induce changes to the causal graph, making
it potentially more informative in learning the graph structure. The intuition is that with hard
interventions, the causal graph becomes more sparse and thus more do-invariance statements can be
found to constrain the graph. Accordingly, we show the following Proposition that characterizes the
graph conditions from the invariance of two arbitrary intervention sets. Throughout the paper, for a
pair of targets I, J and a conditioning set W, we define the following useful sets: K = IAJ, Kj =
K\J,KJ =K\ILW=KinW,W; =K;nW,R=K\W,R; =RnNK,R; = RnNKj.

Proposition 3.2. (Generalized do-calculus for hard interventions). Let D = (V UL, E) be a causal
graph with latents. Then, the following holds for any tuple of hard-interventional distributions
(Py)1ez consistent with D, where T C 2V

Rule 1 (conditional independence): For any 1 C 'V and disjoint Y, Z, W C (V\ 1)
Pi(ylw,z) = Pi(y|w), if Y 1L Z|W,IinDg

Rule 2 (do-see): For any 1,J C 'V and disjoint Y, W C V \ K, where K := IAJ
Pi(ylw,k) = Prs(ylw, k) = Ps(ylw, k), if (Y LKW, I)p,, A(Y LKW, J)

D35,
Rule 3 (do-do): For any 1,J C 'V and disjoint Y, W C V \ K, where K := IAJ
Pi(y|lw) = Pray(ylw) = Py(ylw), if (Y 1L K5/W,I)p ANY UL KW, J)p

TR (W)

LK; (W)
Rule 4 (mixed do-see/do-do): For any 1,J C 'V and disjoint Y , W C V, where K := IAJ

PI(y|w) = PI,J(y|Wa k) = PJ(y|w)’ lf (Y AL RJ|W3 I)DW A (Y AL
W; W, 1) A(Y 1L RfW,J)p A (Y UL Wi W, J)

Di,m J,R1 (W) Dj,&
Note that Rule 2 and 3 are special cases of Rule 4. We present them to make the connection to standard
causal calculus rules more explicit. In the following sections, we will show how the generalized rules

can be crucial in characterizing and learning the Z-Markov Equivalence Class (Z-MEC).

4 7-Markov Equivalence Class

In this section, we will characterize the graphical conditions for interventional Markov equivalence
class. First of all, we start by introducing the definition of interventional Markov equivalence based
on the new do-constraint rules.

Definition 4.1. Consider the tuples of absolutely continuous probability distributions (Pr)1ez over a
set of variables V. A tuple (Pr)1cz satisfies the Z-Markov property with respect to a causal graph
D = (V UL, E) if the following holds for disjoint Y,Z, W C V:

1. ForI € Z: Pi(y|lw,z) = Pi(ylw) if Y 1L Z|W,Iin D5

2. For L] € 7. P(ylw) = Py(ylw) if (Y 1L R;|W,I)p

W AY 1L
W;|W, 1) A (Y 1L Ry|W,J)p A (Y 1L Wi[W,J)

DT,WJ J,R1 (W) DE,&

The set of all tuples that satisfy the Z-Markov property with respect to D are denoted by Pz(D, V).



The two conditions of Z-Markov property correspond to the first Rule in Theorem 3.1 and Rule 4
in Proposition 3.2 respectively. When Z = (), i.e. we only have access to observational distribution,
this definition aligns with the well-known definition of Markov equivalence. It only implies the first
condition on the observational distribution P(V). Accordingly, two causal graphs are said to be
Z-Markov equivalent if they induce the same constraints to the interventional distribution tuple which
we formalize as follows:

Definition 4.2. Given two causal graphs D; = (V ULy, E;) and Dy = (V U Ly, E5), and a set of
intervention targets Z C 2", D; and D, are Z-Markov equivalent if Pz(D;, V) = Pz(Ds, V).

The challenge of checking the Z-Markov property in Definition 4.1 involves checking multiple graph
conditions in different graph mutilations of D. In order to construct a more compact representation of
D that captures all the graph conditions, we construct the augmented pair graph defined as follows*.

Definition 4.3 (Augmented Pair Graph). Given a causal graph D = (V U L,E) and a set of
intervention targets Z C 2V, for a pair of interventions I, J € Z, the augmented pair graph of D,
denoted as Augy 5)(D), is constructed as: Augy 5y(D) = (VIWUVDU{FED} EDUEWD UE),
where F(IY) is an auxiliary node with the superscript representing the pair of intervention targets it
refers to, D = E[Dg], EY) = E[D4], € = {(FIY, )} gexmuk @, with S as a singleton.

In words, for each pair of interventions I, J, we create the augmented pair graph by creating two copies
of vertices VD, V¥) and adding the edges between the vertices with those in the corresponding
interventional graphs Dy, Dy, and then connecting the auxiliary node [ to all the nodes in the
symmetric difference of I, J. We will omit the subscript for the graph and superscript for F' node
when the pair of interventions is clear from the context. This kind of construction has been proposed
and used in the causality literature before [Eberhardt and Scheines, 2007, Hauser and Biithlmann,
2012, Pearl, 2009, Dawid, 2002]. The constructed augmented pairs allow us to test the m-separation
statements as listed in Definition 4.1 without looking into mutilations of the original graph D. This is
illustrated by the following Proposition.

Proposition 4.4. Given a causal graph D = (V UL, E) and a set of intervention targets T C 2V,
for each pair of interventions 1,J € T, K = IAJ, and the corresponding augmented pair graph
Aug(y y(D) = (VO UV U{FENY EDUED UE), € = {(FO, )} g gy, we have
the following equivalence statements:

For disjoint Y, Z, W C V:
(Y L ZIW,D)p, <= (Y WL ZW,LFO)\ 0 ) (1)

For disjoint Y, Z, W C V :
(Y 1L Ry|W,I)p

R (W)
Y LWy [W\ Wy, Dp, . { (FOD 1 YO[EO, W), o

(
Le 2
EY UL Re|W,J)p (FOD) 1L Y@ 3O, WD), "y P

J,R1 (W)

Y 1L Wi W\ Wi, J)p

J, W

While the augmented pair graphs encode the same CI statements as the original graph, we know that
different graphs may entail the same CI statements. To characterize the Z-Markov equivalence, we
utilize the structure of Maximal Ancestral Graphs (MAGs). MAGs represent the Markov equivalence
class of the original graph, making it possible to compare and analyze equivalence classes without
needing the full graph with latent variables. We introduce the following definition to construct a
graph structure that captures the Z-Markov equivalence.

Definition 4.5. (Twin Augmented MAG). Given a causal graph D = (V U L,E) and a set of
interventions Z C 2V, for each pair of intervention targets I,J € Z, K = IAJ, and the corre-
sponding augmented pair graph Augy 3)(D) = (VD U VWD y {FED} ED UED U €),€ =
{(FED) 9} sexmuk @, construct the MAG® of the augmented pair graph and denote it as

*Throughout this paper, we use the superscript for (a set of) nodes to denote the interventional domain.

>We use the conventional steps to construct the MAG from an ADMG: For each pair of nodes X, Y, if X is
Y’s ancestor/descendant/spouse and there is an inducing path between them, we orient X — Y/X «+ Y/X
Y between them, otherwise they are not adjacent.



MAG (Augq,g)(D)). The twin augmented MAG, denoted as Twiny 5)(D), is constructed by adding
edges (F,SM) and (F,SY) to MAG(Augq 5)(D)) if for the singleton S € 'V, SM or SU) s
adjacent to F'in MAG(Augy,5)(D)).

Lemma 4.6. Tiwin augmented MAGs are valid MAGs.

The motivation of adding extra edges to F' nodes comes from the fact thata query F 1L YD Y e V
itself is not testable by comparing the invariances using Pr, Py. It requires access to Py y which is
not necessarily given. Therefore, when the invariance does not hold, we cannot distinguish if F' is
non-separable to Y in only one domain or in both domains. Next, we give a graphical characterization
of Z-Markov equivalence between causal graphs using Definition 4.5.

Theorem 4.7. Given two causal graphs D1 = (V ULy, E;) and Dy = (V U Ly, Es), and a set of
intervention targets T C 2V, D1 and D5 are I-Markov equivalent with respect to T if and only if for
each pair of interventions 1,J € 7, My = Twin(y 5)(D1), Mo = Twing 5)(D2):

1. My and Mo have the same skeleton;
2. M1 and Mo have the same unshielded colliders,

3. If a path p is a discriminating path for a node Y in both My and Mo, then'Y is a collider
on the path if and only if it is a collider on the path in the other.

To illustrate how we construct twin augmented MAGs step by step and compare Z-Markov equivalence
for two causal graphs, we construct the examples in Figure 2 in Appendix D.

S Z-Augmented MAG

We have demonstrated that the characterization of Z-Markov equivalence between two causal graphs
can be effectively captured using the proposed twin augmented MAGs. However, for an intervention
target set of size k, we will have to inspect all (’;) such structures. This is undesirable, as there exists
only one underlying causal graph, and a more compact graph representation is preferred. Additionally,
each twin augmented MAG encodes information for only a single pair of distributions, whereas we
aim for an objective that encapsulates as much information as possible. To address these challenges,
we propose a new graphical structure defined as follows:

Definition 5.1 (Z-augmented MAG). Given a causal graph D = (V, E) and a set of intervention
targets Z, construct all twin augmented MAGs Twiny 5y (D) for all J € Z \ {I}. ForeachI € Z,
the Z-augmented MAG related to 7 is defined as Augy(D,Z) = (V U F,E(Dg) U &) where

F={FE N} yerny, & = {(FID), X(I))}(F<LJ>,X(I))eE(Twm(u)(D)),Jez\{l}- In other words, it

is the graph union of each twin augmented MAG’s induced subgraph on V(D U {F@J ) }.
The Z-augmented MAG tuple is a tuple of all Z-augmented MAGs N7 (D) = (Augy(D,Z))1ez-

Remark: The Z-augmented MAG Aug; (D, Z) preserves all the m-separation statements in the
domain of do(T) from the twin augmented MAGs with I in the intervention pair, Twiny 5 (D),J €

T\ {I}. The structure of V() U F’ within each twin augmented MAG is preserved in the Z-augmented
MAG and is not affected by the other domains.

The constructed Z-augmented MAG tuple consists of only k graphs, each of which encapsulates more
information on the domain than a twin augmented MAG. Specifically, the set of ADMGs consistent
with a twin augmented MAG in one domain is a superset of those consistent with an Z-augmented
MAG, as the Z-augmented MAG imposes stricter constraints of separations across other domains
on the causal graph. Furthermore, the graphical conditions for two causal graphs to be Z-Markov
equivalent, as stated in Theorem 4.7, remain valid when using the Z-augmented MAG. Hence, the
T-augmented MAG serves as the unified and compact graphical representation. Below, we illustrate
the steps of how to construct an Z-augmented MAG.

In Figure 1, we demonstrate the construction of Z-augmented MAGs with respect to three datasets:
observational data and interventions on X and Z, i.e., Z = {I; = 0,1, = {X},I3 = {Z}}, for
the graph D; = [X - Y — Z,Y <« Z]. For simplicity, we relabel the observational domain and
the interventional domains for X and Z as 1, 2, and 3, respectively, in the Z-augmented MAGs
shown in Figure 1. Figure la, Figure 1b, and Figure 1c are the twin augmented MAGs given



(0,{X}),(0,{Z}),and ({X },{Z}) respectively. Based on the twin augmented MAGs, we construct
the Z-augmented MAGs as shown in Figure 1d, Figure 1e, and Figure 1f for the domains (J, { X } and
{Z} respectively. Each Z-augmented MAG has the domain-specific skeleton in the center with the F
nodes around it indicating the invariances from other domains. The Z-augmented MAGs entail the
same information about the causal graph as the twin augmented MAGs, but they have a much more
compact representation. Proposition 5.2 shows the equivalence between the two representations.

X0 5 z0 2y Y05 70 3y @ 5 70 3ye
AN T Nt S
F(1,2) F(I,S) F(2,3)

i Lo R
X (2) jzm Yy (@) x®) 7@ —vy® X (3) 73) — y©3)
(a) TWin(@A’{X})(Dl) (b) TWin<@7{Z})(D1) (C) TWin({X}y{Z})('Dﬂ

F(1.2) F(1.3) F(1,2) F(2:3) F(13) F(23)

\Z/ {// 4 M 1
XO 220 Zzyh X220 Ve x0T 20 Sye

(d) Augy(D1,7) (e) Augx,(D1,7) () Augz,(D1,7)

Figure 1: Illustration of the construction of Z—augmented MAGs from twin augmented MAGs.
Figure 2a is the ground truth graph. The intervention targets are Z = {I; = (, I, = {X }, I3 = {Z}}.
(a), (b), and (c) are the twin augmented MAGs. (d), (e), and (f) are the Z-augmented MAGs.

Proposition 5.2. Given two causal graphs D1 = (V ULy, Eq), Dy = (V ULg, Es) and a set of
intervention targets T C 2V, construct the T-augmented MAGs following the steps in Definition 5.1
of D1, Ds. Dy and Dy are T-Markov equivalent with respect to I if and only if for each 1 € T,
Aug(D1,T) and Augy(Ds,T) satisfy the 3 conditions in Theorem 4.7.

6 Learning by Combining Experiments

In this section, we develop an algorithm to learn the causal structure from given datasets. We do not
assume that observational data is given. Like any learning algorithm, a faithfulness assumption is
necessary to infer graphical properties from the distributional constraints. Accordingly, we assume
that the provided interventional distributions are h-faithful to the causal graph D, defined below.

Definition 6.1 (h-faithful). For a causal graph D = (V UL, E), a tuple of distributions (Pr)rez €
P(D, V) is called h-faithful to D if the converse for each of the conditions in Definition 4.1 holds.

6.1 Learning Objective

Similar to the case when only observational data is available, it is hard to recover the whole graph
in general. Therefore, the objective of the algorithm is to learn a graphical representation that
demonstrates a set of Z-Markov equivalent graphs. However, although the MAG of the augmented
pair graphs proposed in Definition 4.5 denotes the ground truth, it is not always a fundamentally
learnable structure from the distributions. To witness, let us consider the example in Figure 2c. The
edge (F,Y ) is not in MAG(Aug g {zy)(D1)). While we can learn only that from the distributions,
Pops(y|w) # Py (y|w) for some W C {X, Z}. The inequality tells us that there is an inducing path
from F to Y1) or Y@ which we cannot distinguish. Therefore, we proposed the twin augmented
MAG to be able to capture the characterization for Z-Markov equivalent graphs. Based on that, we
construct the Z-augmented MAG which is a more compact graphical structure and we use it as the
learning objective. Accordingly, we define the Z-augmented graph as follows.

Definition 6.2 (Z-augmented Graph). Given a causal graph D and a set of intervention targets Z, for
eachI € 7, let M = Augy(D,Z) and let [M] be the set of Z-augmented MAGs corresponding to all
the causal graphs that are Z-Markov equivalent to D given Z. For any I € 7, the Z-augmented graph,
denoted as Gi(D, Z), is a graph such that:

1. G1(D,T) has the same adjacencies as M, and any member of [M] does; and



2. every non-circle mark in Gy(D,Z) is an invariant mark in [M].

The Z-augmented graph tuple £z(D) is a tuple of all Z-augmented graphs Lz(D) = (Gi(D, ) )1ez-
We will omit the graph D or the intervention targets Z when it is clear from the context for simplicity.

6.2 The Learning Algorithm

Algorithm 1 Main Causal Discovery Algorithm

Input: Intervention targets Z, interventional distributions (P )¢z, observable variables V
Initialize £7 as an empty tuple, SepSet as an empty set;
Phase I: Initialize with Complete Graphs;
for Iin Z do

Duplicate V to create VI, run Algorithm 2 on Z, T to get Fy as F nodes;

Put a circle edge (0—o) between every pairof X € VD and Y € VI U F;
Phase II: Learning the Skeleton and Separating Sets;
for Iin Z do

E(Gr) + 0, V(Gr) + VD U Fy;

for JinZ do

Run Algorithm 3 on I, J, (Py)1ez, V, JF1 to get 5, SepSet;
E(Gr) < E(G1) U&;, SepSet + SepSet U SepSety;

L1+ L7z UG,
Phase III: Apply Orientation Rules to each Gy, I € 7;
Rule 0: For every unshielded triple (XM Y™ 7MY in G T € Z, orient it as X Wx— YD
*ZWifY ¢ SepSet1(X, Z).
First apply Rule 0, then apply 7 FCI rules in Zhang [2008b] together with the following 4 additional
rules to each Gz until none applies.
Rule 8: For any edge adjacent to an F’ node, orient the edge out of the F' node.
Rule 9: Forany I € 7, if X €1, X(I), YD are adjacent in Gy, then orient XWo—sx YD a5
X0 5 y®,
Rule 10: If XU — YD in Gy for some I € Z, replace the circle mark at Y') between X ?) and
Y™ in Gy with an arrowhead for any J € 7 \ {I}.
Rule 11: In G, IJ € Z,if J = TU {X}, FAI) g adjacent to YDy ¢ J, then orient
XDy 5 y® g xO 5 y@,
Output: Z-augmented graph tuple L1

We propose Algorithm 1 to learn the Z-augmented graph tuple from the given experiments. The
algorithm is inspired by the FCI algorithm. It learns the Z-augmented graph tuple £z by iteratively
recovering Gy for each I € Z. In Phase 1, it initializes the Z-augmented graph Gy for each I € 7.
It puts a circle edge between each pair of nodes X,Y € V. This constructs the domain-specific
skeleton G under target I. After that, we attach the F' nodes to the Z-augmented graph using
Algorithm 2 and then put a circle edge between any F' node and any X € V. In Phase II, we learn the
skeleton for each Z-augmented graph Gy. For each I € Z, we retrieve the Z-augmented graph Gr with
all circle edges. Algorithm 3 tests if there is a separating set between any pair of nodes X, Y in Gy. If
both nodes are non-F nodes, this can be tested by checking whether Py(y|w, z) and Pr(y|w). If one
of them is an F’ node, this can be tested by checking the equality between P;(y|w) and Py(y|w) for
Y € V, W C V. Two F nodes are separated by default. If there is no such set W, we preserve the
circle edge between X and Y. Otherwise, we remove the circle edge from Gr. In Phase III, we apply
orientation rules to learn more edges in the constructed Z-augmented graphs. Notice that the skeleton
G in Gy is a PAG; thus, the FCI rules are still applicable here. We first use Rule 0 to orient all the
unshielded triples by checking if the node in the center of the triple is in the separating set of the two
end nodes. After that, Algorithm 1 will repeatedly apply the FCI rules (Rules 5 to 7 are not included
here as they are related to selection bias nodes) together with 4 new rules until none apply. Here we
briefly describe the intuition of Rule 9, 10, and 11 (Rule 8 is sound by construction).

Rule 9 (Intervened nodes): The intuition of this rule is that since X is intervened, all the non-
descendants of X become separable from X in Dy. Thus, Y has to be a descendant of X in Dy.
Rule 10 (Consistency of Skeletons): The intuition of this rule stems from the fact that each skeleton
is obtained from the same causal graph D. The ancestral relationship between any pair of nodes



cannot be reversed by hard interventions.

Rule 11 (Inducing Path): The intuition is that the F' nodes cannot be separated from ¥V ¢ K,
meaning there is an inducing path to YD or YY) through XD or X¥)_ If X is intervened, the
inducing path cannot go through X ).

To illustrate how each step in Algorithm 1 works, we show an example in Appendix E. We establish
the soundness of the proposed algorithm.

Theorem 6.3. Consider a set of interventional distributions (Pr)1ez that are h-faithful to a causal
graph D = (VUL,E), where T is a set of intervention targets. Algorithm 1 is sound, i.e., every
adjacency and arrowhead/tail orientation in the returned T-augmented graph Gy(D,T) is common
Sor all T-augmented MAGs of D', G1(D', ) for any D’ which is T-Markov equivalent to D.

7 Experiments

In this experiment, we
compare the Z-MEC Table 1: Comparison of Z-MEC size under hard and soft interventions

size under hard and

soft interventions. For n Mean of Hard Mean of Soft Graph Ratio

a given number of 2 2.03+0.15 2.93+0.29 Random  0.69 4 0.05

observable nodes n, 2 2.37+0.12 3.67+£0.22 Complete  0.65 + 0.05

we create an arbitrary 3 19.50 £+ 3.41 30.57 £ 4.36 Random  0.64 £0.11

ADMG by first con- 3 14.03 £ 2.69 24.70 £4.12 Complete  0.57 +0.05

structing a DAG and 4 677.13+£227.72 1218.83+361.83 Random  0.56 £ 0.18
4  721.37£276.36 1529.57 £ 368.68 Complete 0.47 £ 0.07

then adding bidirected
edges to it. Then, we
enumerate all ADMGs of the same size and check if the ADMG is in the Z-MEC. For hard inter-
ventions, we construct the Z-augmented MAGs according to the steps in Definition 5.1, and then
check if Theorem 4.7 holds. For soft interventions, we refer to the construction in Definition 4 and
criteria in Theorem 2 in Kocaoglu et al. [2019]. We count the number of ADMGs that are in the
T-MEC and take average over 50 random ADMGs and compute the standard error. The results are
shown in Table 1. ’Complete’ means the DAG is complete while 'Random’ means the DAG has a
density of 0.5. It is obvious that on average, the size of Z-MEC is smaller under hard interventions
and the ratio tends to decrease while n increases, meaning hard interventions become more powerful
for larger graphs. We can only enumerate the ADMGs for small graphs as the total number grows
super-exponentially with n. For the experiment details and additional experiments, see Appendix F.

8 Conclusion

We address the challenge of learning the causal structure underlying a phenomenon of interest using
a combination of several experimental data. Different from Kocaoglu et al. [2019], we study the
problem under hard interventions. The motivation comes from the observation that hard interventions
provide more information about the causal graph than soft ones. We verify the observation through
empirical experiments that compare the Z-MEC size under hard and soft interventions (Appendix F).
Our approach builds on a generalization of the converse of Pearl’s do-calculus, which introduces new
tests that can be applied to data. These tests translate into structural constraints. We define Z-MEC
based on these criteria (Definition 4.1) and provide a graphical characterization for the equivalence of
two causal graphs (Theorem 4.7) using the proposed twin augmented MAG structure (Definition 4.5).
To construct a unified graphical representation that is closer to the ground truth ADMG, we combine
the twin augmented MAGs into an Z-augmented MAG (Definition 5.1) and show the equivalence of
the two representations (Proposition 5.2). Finally, we propose an algorithm (Algorithm 1) to learn
the interventional equivalence class represented by the Z-augmented graphs (Definition 6.2) from
data, incorporating novel orientation rules. We also prove the soundness of the proposed learning
algorithm (Theorem 6.3). The proofs can be found in Appendix B.
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A Detailed Related Works

Equivalence Class: The learning process uses data constraints to infer the causal diagram. However,
these constraints often cannot uniquely identify the complete diagram. As a result, the analysis
typically focuses on an equivalence class (EC) of causal diagrams that captures the constraints
implied by the underlying causal system. When only observational data is available, such EC is called
MEC. It characterizes causal graphs with the same set of d-separation statements over observable
variables [Spirtes et al., 2001, Verma and Pearl, 1992, Spirtes et al., 2013, Meek, 2013a]. Under
causal sufficiency, Hauser and Biihlmann [2012], Yang et al. [2018] characterizes the Z-MEC. Tian
and Pearl [2001] first considers the equivalence class under local changes. When there are latents
under soft intervention with known targets, Kocaoglu et al. [2019] characterize the Z-MEC while
with unknown targets, it is called ¥-MEC [Jaber et al., 2020]. When there is access to multiple
domains, Li et al. [2023] propose S-MEC.

Learning from Combined Datasets: There are plenty of works in the literature on learning the
causal structure from experiments (or across domains). However, most of them provide empirical
approaches without theoretical analysis. Approaches like Perry et al. [2022], Peters et al. [2016],
Ghassami et al. [2017], Heinze-Deml et al. [2018], Huang et al. [2020] often assume Markovianity or
specific functional models (e.g., linearity), or combinations of observational and interventional data
with both known and unknown targets. In contrast, JCI combines all data into a single dataset and
performs learning on the pooled data [Mooij et al., 2020]. Ke et al. [2019], Brouillard et al. [2020]
introduces neural-network-based frameworks that leverages observational and interventional data
to identify causal structures, even when intervention targets are unknown, demonstrating superior
performance in structure recovery tasks but there is no soundness analysis. Acharya et al. [2018]
demonstrates that with O(logn) interventions and O(n/€?) samples per intervention, one can
effectively distinguish whether an unknown CBN matches a given model or differs by more than € in
total variation distance. Jiang and Aragam [2023] offers the first results to characterize conditions
under which causal representations are identifiable without parametric assumptions, even in settings
with unknown interventions and without assuming faithfulness. Addanki et al. [2021] aims to
determine the directions of all causal or ancestral relations in G' using a minimum-cost set of
interventions. GIES [Hauser and Bithimann, 2012] and IGSP [Wang et al., 2017] are score-based
and aim at learning a single DAG under known targets; there is no soundness or equivalence class
analysis either. Lopez et al. [2022] developed a differentiable causal discovery for large and high-
dimensional data. Tigas et al. [2022] proposed an experiment design algorithm to adaptively choose
the intervention targets. Zhou et al. [2024], Mascaro and Castelletti [2023] proposes Bayesian causal
discovery algorithms under causal sufficiency.

B Proofs

B.1 Proof for Proposition 3.2

In this section, we extend the do-calculus rules to enable their application across two arbitrary
interventions. This extension is crucial for characterizing our equivalence class when arbitrary sets of
interventional distributions are provided.

Proof. Rule 1: The results follow from rule 1 of Theorem 3.1.
Rule 2: From (Y 1L K3|W,I)p, «,» e can derive from rule 2 of Theorem 3.1 that Pi(y|lw,z) =
Pr.3(y|w,z). Similarly, given (Y 1 Ki|W,J)

gether, we have Pi(y|w,z) = Py(y|w,z). Here, we use Py j as the intermediate distribution to
show the equality and use rule 2 in Theorem 3.1 twice. This is necessary, as forany S C IU J, Dg
would be a denser graph that contains fewer m-separation statements than Dyy. Next, we show that
it is also sufficient.

LemmaB.1. [f35 C W\ (1UJ), s.. (Y LK, S|W,I)p, A (Y UL K, S|W, J)p,
then (Y AL K3|W.,D)p, A (Y L Ki|W,J) o

L we have P;(y|w,z) = Pry(y|w,z). To-

Dj,K

Dj,KI :

Proof. Suppose otherwise (Y U K JlW,I)DiKJ, then there is an m-connecting path p from

Y eYtoUeKyinDiy,. Given (Y UL Ky, S|W.I)p, . wehave (Y L K;[W,I)p,

3.8°
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Comparing (Y X K;|W, I)DT.KJ and (Y 1L K3|W,I)p, «, s the only difference between the

two statements is the edges outgoing from S. Removing the edges creates p. Consider the case
that S € S is in p. For p to be m-connecting, S can only be a collider. However, such a m-
connecting path indicates that there is also a m-connecting path from Y to S which contradicts the
given conditions. Thus, S cannot be in p. Then, there has to be a collider in p activated by some
S € Sin Dy . Consider a collider C' that is closest to Y in p. C'is an ancestor of S. Then

the path created by concatenating the subpath from Y to C' and C to S is an m-connecting path
which is also in D g | g. This is a contradiction. Following the same process we can also show that

DIKI !

Lemma B.1 shows that the graphical conditions for Pi(y|w,z) = P1 3(y|w,z) = Py(y|w,z) are
sufficient to use another interventional distribution Py j s as the intermediate distribution to show the
equality.

Rule 3: From (Y 1 K;|W,I)p

LK (W)
Pr3(y|w). From (Y 1L KI|W’J)DJ‘KI(W)’
Pi(y|w) = Py(y|lw). Similarly, we apply the do-do rule twice and use Pp y as an intermediate
distribution to show the equality. Likewise, any distribution that corresponds to a denser graph
indicates the conditions. Next, we show the sufficiency of the conditions.

Lemma B.2. [f3S ¢ V\ TUJUW), such that (Y 1L Kj,S|W,I)p

LKj(W),8(W)
Kj, S|W,J)D then (Y AL K‘]‘W,I)DW A\ (Y AL KI|W,J)D

T K[ (W)’

, we can tell using rule 3 of Theorem 3.1 that P;(y|w) =

we have Pp j(y|w) = Py(y|w). Together, we have

ACY 1L

I K{(W),S(W)’

Proof. Suppose otherwise (Y U K;[W,I)p. W then there is an m-connecting path p
fromY € Y to U € Kj(W) in Dy Given (Y 1L Kj,S|W,I)p

TR . ., we
K3 (W) TR (W),8(W)
have (Y L KJ|W,I)'DW. Comparing (Y 1 Kj|W,I)p and (Y )L

LKy (W),S(W)

Kj|W,I)p._____, the only difference in the graph is the edges into S(W). Consider the case

LK;j(W)
that there is some S € S(W) in p. Consider S that is closest to Y. .S cannot be a collider on p since
it is not an ancestor of any W € W, and thus p will be blocked. Let us consider the 2 cases:

If S has an outgoing edge towards Y on p, then there is a directed path from S to Y because otherwise
there has to be a collider C € W in between Y and .S, and .S will be an ancestor of C'. However, the

subpath from Y to S in p would then be m-connecting in DW’ which is a contradiction.

If S has an incoming edge from Y on p, then there is a directed path S to U on p. Otherwise, there
has to be a collider C in the subpath between .S and U on p. Such C that is closest to .S makes S an
ancestor of C' € W, a contradiction. Nevertheless, if there is a directed path from S to U, S is an
ancestor of U. If U is an ancestor of any W € W, S will also be an ancestor of W, a contradiction.
Thus U cannot be an ancestor of any W € W, and the edges into U will be removed in Dy

LKjs(W)
which contradicts the assumption that p is an m-connecting path.

Therefore, S cannot be on p. While S has to be an ancestor of some W € W to activate p if it
is not on p, this contradicts the assumption that S € S(W). To conclude, we show that (Y L

K;|W, I)DW Following the same process, we can also show that (Y 1 K;|W, J)DW.

Lemma B.2 shows that the graphical conditions for Pi(y|w) = P; 5(y|w) = Pj(y|w) are sufficient
to use another interventional distribution P j g as the intermediate distribution to show the equality
by using rule 3 of Theorem 3.1 twice.

Rule 4: We begin by introducing a useful lemma.

Lemma B.3. Fordisjoint X, Y, W CV,SCV\(XUY),SNW #£0,S #W, then Py(y|lw) =
Px7s(y|w) if: (SR A Y|W,X)D A (SW A Y|W \ Sw,X)D where Sw = SN

X, Sw
W,Sp =S\ W.

X, SR(W)

Proof. Denote the statement (Sg 1L YW, X)p____ A (Sw L Y|W \ Sw,X)

X, SR (W) DY.Sl
Cy1. We first show that, by applying rule 3 and rule 2 in Theorem 3.1 sequentially, we can trans-
form from Px to Pyxs. Specifically, Px(y|w) = Pxsp(ylw) if (S 1L YW, X)p

as

X, Sg(W)’
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and Py s (Y|W) = Pxspsw ¥|W) if (Sw 1L YW\ Sw, X, SR)DW . By definition,
Py srsw (Y[W) = Pes(y|w).
Denote the statement (Sg L Y|W, X)Dx.sR(W) A (Sw 1L YW\ Sw, X, SR)DX_SR -

Next, we show that C; and C, are equivalent. Notice that they share the same statement, and we just
need to show that the other one holds true.

(C1 = Cs): Suppose otherwise, (Sw U Y|W\Sw, X, SR)Dx,sR,s
pathpfromY € Y toU € Sw in Dm’sw. Comparing (Sw _11_7Y|W \ Sw,X,Sr)py .

X.Sr.Sw

and (Sw L Y|W \ Sw, X)pzsw, the difference is the Sg in the conditioning set and the edges

Sw

as Co.

, then there is an m-connecting
W

into Sg. Consider the case that there is some S € Sg in p. Since the edges into S are removed, S
can only have outgoing edges, but conditioning on .S will then block p. Thus, .S cannot be in p. If S
is not in p, since the edges into S are removed, conditioning on S will not activate any path. Thus the
supposition cannot hold.

(Ca = Cy): Suppose otherwise, (Sw U YW \ Sw, X)p, . Then there is an m-connecting
pathpfromY € Y to U € Sw in Dx g - Comparing (Sw 1L YW\ Sw,X,Sr)p. . . and

X,Sr.Sw

(Sw L Y|W \ Sw, X)Df.sw , the difference is the Sg in the conditioning set and the edges into
Sg. Consider the case that there is some S € Sg that is closest to Y in p.

If S is a colliser on p, then .S is an ancestor of some W € W. There is a m-connecting path from .S

toY in Dm. A contradiction.

If S has an outgoing edge towards Y in p, there has to be a collider C' ¢ W between S and Y in
p. Otherwise, the subpath between S and Y will be m-connecting in Dm which contradicts
the supposition. Since p is m-connecting, C' has to be an ancestor of some W € W in Dg g . To

block p in Dgg— g there has to be some S’ € S that is in between C and W. This will create an

m-connecting path from S’ to Y in DW(W)’ which is a contradiction.

If S has an outgoing edge towards Sy in p, then S has to be an ancestor of some W € W in

DW’ which is a contradiction.

Therefore, S is not in p. There has to be a collider C ¢ W in p. Consider such C closest to Y.
There is a directed path from C to .S and a directed path from S to some W € W in Dg g for p to
be m-connecting. However, this makes S an ancestor of W in DW(W)’ and the path created by

concatenating the directed path from C' to S and the subpath from C to Y in p would be d-connecting
in Dm A contradiction. The supposition does not hold.

This concludes the proof of this lemma. O

By applying Lemma B.3 twice, we can derive the graphical condition for Pi(y|w) = Pr j(y|w) =
Py (y|w) for two arbitrary interventions I, J. The following lemma shows that this is a sufficient
condition.

Lemma B4. If3S ¢ V\ (IUJ),Sg = S\ W,Sw = SNW, such thar (Y
RJ,SR|W,I)D A\ (Y A WJ,Sle \ (SW U WJ),I) then (Y

LK; (W), Sg (W)
RJ|W7I>DW A\ (Y AL WJlW \ WJ,I)

s
DTWJ,SW’ A

DT,WJ :

)

Proof. We first consider (Y 1L Rj|W, I)DI_RJ ;- Suppose otherwise (Y JL Rj|W, I)Dw

then there is an m-connecting path p fromY € YtoU € Ry in Dm. From the given condition,

we know that (Y 1L Ry|W,I)p_________. The only difference is the edges into Sg (W) in Dy.

. . LEGW) SR(W) - . . .
If there is any S € Sy in p, then it has only outgoing edges. Since p is m-connecting, the subpath

from S to Y on p is also m-connecting in Dm, which is a contradiction. Thus Sg
cannot be on p. To block p in DW, there is a collider C in p that is an ancestor of some

W € W. C is activated in p in DW but not activated in D—LRJ W) Sn(W) This requires some

S € Sgr(W) to be an ancestor of W, which is impossible. Therefore, the supposition does not hold.
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Di,w

Next, we consider (Y 1L W3|W\W;, 1) .- Suppose otherwise, (Y UL W3IWA\W . I)p, W,
then there is an m-connecting path p fromY € Y to U € Wy in Dj vy, - p is blocked in DiW.L;'
Comparing (Y 1L Wy3|W \ Wy,I) and (Y 1L Wy[W\ (Sw UWy),I)p, . the

only difference is the edges outgoing from Syy. If there is some S € Swy in p, then S has to be a
collider. Consider such S closest to Y. Since p is m-connecting, then the subpath from S to Y is
also m-connecting in DTWJ Sw> which is a contradiction. Thus, S cannot be in p. For S to block

DT,WJ

pin Dy | o, While notin p, it has to be an ancestor of some W € W and a descendant of some

collider in p. However, since S € W, it can still activate the collider in p in DTWJ Sw* Therefore,
the supposition does not hold. O

By applying Lemma B.4 twice, we can show that it is sufficient to transfer through P 3. This
concludes the proof of this theorem. [

B.2 Proof for Proposition 4.4

We show the graphical conditions on the augmented pair graphs are equivalent to those given in the
generalized causal calculus rules.

Proposition B.5. Consider a CBN (D = (V UL, E), P) with latent variables L and its augmented
pair graph Augy 5)(D) = (VOUVOU{FY, EOUEDUE) with respect to a pair of interventions
I,J € T. Let S = IAJ be a set of nodes, F is adjacent to SV, S We have the following
equivalence relations:
Suppose disjoint Y, Z, W C V. We have

(Y L ZIW Dp, = (YO L ZOWD IO F)yp o) 3)

Suppose Y, W are disjoint subsets of V' \ S. We have

(Y 1L W3|W\ Wy, I)Drm (F 1L YD|WD, I(I))AugayJ)(D) 4)
(Y 1L W{|W \ WI’J)DE,m (F L YD WD), J(J))Aug(I,J)(D)
(Y L RyW. Dp s { (F LYOID WD) 40,5 D) (5)
(Y 1L Ri|W, J)Dm (F Y(J)|J(J)»W(J))Au9<I,J>(D)

For disjoint Y, Z, W C V,where K1 = K\J,K; = K\, W = K;n"W,W; = K;NnW,R =
K\W,RI =RNK;, Ry =RnNKj;
(YJ.LRJ'W,I)DW

Y U W3|W\ Wy, I)Df,wJ { (F 1L YD IO, W(I))Aug(lﬂn(’D)

(
6
EY UL Ry|W, D)p (F AL YDID WD) 00y ©

TR (W)

Y 1L Wi |W\ Wi, J)p

T, Wy

Proof. Consider Equation 3. For the right statement, conditioning on I’ is equivalent to removing
it and the subgraph induced by V() from Aug(L 7 (D). Then the statements on the two sides are
equivalent.

Consider Equation 4. We need to show that (Y 1 W3W \ WJ,I)DrWJ < (F oL
Y@ |W(I), I(I))Auga,J)(D)'

(=) Suppose otherwise (F ). YD|WD, I(I))Aug(I,J)(p), then there is an m-connecting path p
from F to YD € Y in Augq 5)(D). Since W is conditioned on, p cannot be a frontdoor path.

Also, edges into I are removed, thus p cannot be a backdoor path through Wy. However, given
(Y 1L W3W\ Wj,I)p. there is no backdoor path through W . The supposition does not

hold.
(<) Suppose otherwise (Y 1L W3|W \ WJ,I)DT_WJ, then there is an m-connecting path p
from YO € Y to U € Wy. It has to be a backdoor path from U. However, (F L

W 3 ’
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LYDIWD IW) 5 (o) will not hold, if there is a backdoor path from U to Y. Thus the
supposition does not hold.

For the same reason, we can show that (Y 1 W;|W \ Wr,J)
Y(J)‘W(J)aJ(J))Aug(LJ)(D)~

Consider Equation 5. We need to show that (Y L RJ|W,I)D“RJW < (FOAL
Y@ |I(I), W(I))Aug<1,J>(D)'

Di,wl

(=) Suppose otherwise (F . YD 1D, W(I))Aug(I,J)(D)’ then there is an m-connecting path p
from F to YM € Y in Augy 5)(D). Since IV is conditioned on and the edges into I are

removed, p cannot be through IV If F has a frontdoor path to Y through Rf,l), then Y to Ry
will also be m-connecting in Dm. Else if it is a backdoor path, it can only go through some

IAONS RSI) (W); it contradicts (Y 1L R3|W,I)p . Thus the supposition does not hold.

LRy (W)

, then there is an m-connecting path p fromY € 'Y

(«) Suppose otherwise (Y )L Rj|W,I)p__ -

s
toU € Ry in DW‘ If p has an outgoing from U, then F' would have a frontdoor path through
UM to YD that is m-connecting. This contradicts (F 1L Y®|TM, W(I))Aug(I 5 (D). Thus p can
only be a backdoor path from U. If U is not an ancestor of any W € W in Dy, the edges into U are
removed and p do not exist in this case. Else if U is an ancestor of some W € W, the same backdoor
path would also be activated in Augy (D). Therefore, the supposition does not hold.

For the same reason, we can show that (Y 1. R;i/W,J)p < (FoW
Y(J)‘J(J)vw(J))Allg(LJ)(D)~

Consider Equation 6. We need to show that (Y 1L Rj|W,I)p
WJv:[)DI And (F J'I-Yv(I)‘]:(1)7VV(I))Aug(IJ)(D)'

TRy (W)

/\(Y AL WJ|W\

LR; (W)
Wy
(=) Suppose otherwise (F 4. YD1, W(I))Aug(I.J)(D), then there is an m-connecting path p
from F to YW € YD, in Augy 5)(D). If p is a frontdoor path through S, since I, W® are
conditioned on, only RSI) could be in p. However, the path from Ry to Y would be m-connecting in

Drg; cwy Which is a contradiction. If p is a backdoor path from F'to U € SMto Y™ € YD since

the edges into IM are removed, U can only be from RF]I) or Wg). IfU € WSI), then it contradicts
(Y L Wy|W\W3,I)p, , . IfU € R{", U could be cither an ancestor of some W® € W® or

a non-ancestor of any 1/ (D '« WO, For the case that U is not an ancestor of any W € WD, pis
blocked by U as an inactivated collider. If U is an ancestor of some W € W then the subpath
from U to YU would indicate an m-connecting path from Ry to Y in Ds v, which contradicts

(Y 1L Ry|W,I)p . Thus, the supposition does not hold.

LR; (W)
or (YL

(<) Suppose otherwise, there are two cases to consider, either (Y . R3|W, I)DW
Ry
W;iW\ Wy, I)p

ILwjy'

If (Y L W3|W\ Wy, I)Df,wJ’ there is an m-connecting path p fromY € Y to U € Wy in
Dj vy, - p cannot be a frontdoor path at U, since all edges outgoing from Wy are removed. While
a valid backdoor path at U indicates that there is also a valid path from F to Y through U™ in
Augq 5)(D). Thus, this case is impossible.

If (Y L WHW\ Wy, I)Di,wJ’ there is an m-connecting path p fromY € Y to U € Ry in
DW. p cannot be a frontdoor path at U, because otherwise the path constructed by adding

F—-UWDtopin Augq 5y (D) will be m-connecting. Thus, p can only be a backdoor path at U. If
U is not an ancestor of any W € W in Dy, the edges into U are removed and such p do not exist.
Else if U is an ancestor of some W € W in Dy, W@ will activate the path constructed by adding
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F — U to pin Augq 5)(D), which contradicts (F 1L YO ID, WD) o, 0 5. Therefore, the
supposition does not hold.

For the same reason, we can show that (Y 1L Ry|W,J)p TR
(F iR Y(J)|J(J)aW(J))Aug(I.J)(D)' N -

/\(YJLWﬂW\WI,J)Dj =

Wy

Proof of Proposition 4.4: The follows from Proposition B.5. O

B.3 Proof for Lemma 4.6

Proof. The extra cycles contain F', while F' has only outgoing edges. Thus, the twin augmented
MAGs are ancestral. Suppose there is an inducing path (F, X1, X5, ..., X}), F' and X} are not
adjacent. Then X, has a directed edge to X}, in MAG(Aug(D)) while MAG(Aug(D)) is a MAG
by definition. Thus, a contradiction arises, and the supposition does not hold. The twin augmented
MAGS are maximal O

B.4 Proof for Theorem 4.7

Proof. (If) Suppose that the twin augmented MAGs T'winy 3y(D1), Twin,y)(D2) for all I,J €
T satisfy the 3 conditions. Then they induce the same m-separations and vice versa. Then by
Proposition 4.4 that D; and D, impose the same constraints over the distribution tuples. Thus
Pz(D1,V) = Pz(D2, V).

(Only if) Suppose for a pair of interventions I, J € Z, My = Twin 5)(D1), M2 = Twin 5)(D2)
do not fully satisfy the 3 conditions. Then they must induce at least one different m-separation
statement. We need to show that all the differences in m-separation statements induced by different
M structures can be captured by some m-separation statements that are testable by the distribution
tuples, and therefore, the difference in m-separation would be inducing different constraints on
Pz(D1, V) and Pz(D3, V). Thus the condition that Pz (D1, V) = Pz(D2, V) will no longer hold,
which is a contradiction.

We start by showing all testable m-separation statements. For an arbitrary twin augmented MAG
M= (VOUVIU{F},EDUEVY UE), the testable m-separation statements are as follows:

T={(X®Y 1L YDZO 1D ) X, Y CV,ZCV\(XUY)U
{(XD 1L YDZD 3O P\ X, Y CV,ZCV\ (XUY)U
{(F LYDID ZzM) A (F LYDID ZD) Y CV,ZCV\Y}
Next, we show that My and M should have the same skeleton.

First, we show that they have the same skeleton on V). Suppose otherwise, in M1, XD and YD are
adjacent but they are non-adjacent in My. Then it implies that (X 1 Y(D|ZD F) A (XD L
L Y®D|ZD | F) 4, for some Z C V. Then we can further condition on I while preserving the
m-separations since edges into I are removed and thus conditioning on it will not activate any extra
path. Therefore, we have (X 4 YD|ZD 1O ) A(XD 1L YD|ZO 1D F)»y, which
is a pair of different testable statements in 7. Similarly, M; and M also have the same skeleton
in V(J), What remains to be demonstrated is that the ' nodes share the same adjacencies in both
graphs.

By the construction of twin augmented MAGs, F' is adjacent to K K@) in both M; and M. We
need to show that F' has the same adjacencies to X ¢ K in both graphs. Suppose otherwise, F is
adjacent to X @ in M, but non-adjacent to X @ in M. According to our construction of My, My,
F is adjacent to XU, X in M; but non-adjacent to them in M,. We introduce the following
lemma which shows that in this case, we can still find a pair of different testable m-separation
statements which reflect this structural difference.

Lemma B.6. Consider a causal graph D = (V UL, E) given a set of intervention targets T C 2V,
Construct its twin augmented MAG M = (VO UV U{F}, EWUEWD UE), for 1, J € T. If there
exists minimal W1, Wy C 'V, such that (F 1L X(I)|I(I),W§I))M A(F 1L X(J)|J(J),W§J))M,
then (F 1L XOIO WD)\ A (F 1L XD IO WD) o where W = W U W,
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Proof. Suppose otherwise (F ). XM|TIM WD)/ meaning that conditioning on W activates
extra paths from F to X in M. Obviously, I") can neither be on the paths nor activate a collider
on the paths. Consider a m-connecting path p(» from F to X given W in M. Then there is
a collider CfI) on p» which is activated by some Wz(l) € ng). Let the subgraph of M induced
by V) U Fbe G;. F and X are blocked by W, meaning that the corresponding path p¥) in
G ; is either blocked by inactivated colliders or does not exist due to removed edges into J. In both
cases, p¥) is blocked by (). However, due to the minimality of W, it has to block some path other

than p(J). Consider W, € W5 which is closest to X and is a descendant of a collider Cf‘]) on
pP). Denote the path created by concatenating direct paths from C{J) to W;c] ) and C’f‘]) to X as

p;(;]). Suppose there is a path pg‘]) from F to X that is blocked by W,EJ). Since pg‘]) is blocked

by WQEJ), m(']) cannot be a collider on pg']). If there is an edge into ngJ) from F’s side, then the

) will be m-connecting. The subpath from F' to WJEJ) has to be blocked by inactivated

colliders or conditioning on a non-collider. In either case, W, is not necessary for blocking ng).

subpath of p§f

Conversely, there has to be an outgoing edge from ng‘]) towards F'. Consequently, on pg']), F has
an outgoing edge towards Wg(c‘]), while WéJ) has an outgoing edge towards F'. Thus there has to
be a collider in between F and W.”). Consider such a collider 02(.]) € Wé‘]) that is closest to I
Nevertheless, according to the minimality of Wy, CSJ) has to block another path. If we repeat this
process for n = [V| times, we show that |[W3| > n, which is impossible. Thus the supposition that
(F 4 XD WD), does not hold. Similarly, we can show that (F 1L X|JD) W)
which concludes the proof. O

Therefore, according to Lemma B.6, the structural difference implies that we can find some
W € W\ {X} such that (F § XOIO WD), v (F 4 XDIJD WD), while
(F 1 XOIO WD)y A (F 1L XONID WD) o which is a pair of different testable
m-separation statements. To conclude, M, M5 have the same skeleton.

Next, we show that M; and M5 have the same unshielded colliders. We start by showing that
they have the same unshielded colliders in the vertex induced subgraph on V(D and V). Suppose
otherwise, (XM, YD 7ZD) is an unshielded collider in M/ but not in Ms. Since Y@ is not a
collider in M, it has to be conditioned on to make X (¥ and Z(!) m-separable. Then we have (XD L
L ZOIO WD) o A (XD o zOIO WD y®)cand (XD 1L Z2OIO WD) 0 A
(X® 1L ZzMW IO WO yD) o for some W C V \ {Y'}, which contains a pair of different
testable statements.

Then we need to show that unshielded colliders which include F' nodes are also the same in both
graphs. Due to the construction, F' can only have outgoing edges, thus it can only be an end node in
the collider. Suppose (F, YD Z(D) is an unshielded collider in M but not in My. More specifically,
FoYD aZOWinMyand F - YD — ZM® in M. There are 2 cases: Y e Kor Y ¢ K.

First, consider Y € K. Y has to be in J \ I, then in the induced subgraph of vV,
we cannot have YJ) 7 in M; or M,. Thus we can find some W C V \ {Y},
such that (F U ZMWIO WD yD) o v (F U ZOIO WO vy, while (F 1L
ZOIO WO yD) oA (F U ZODNID W Yy, which is a pair of different testable
m-separation statements.

Second, consider the case that Y ¢ K, but is adjacent to F' in both M; and Ms. Then there
is an inducing path from F to Y or Y9 in the augmented pair graphs. According to our
construction of twin augmented MAGs, F is adjacent to both YU and Y ) in both M; and
M. Since F is not adjacent to Z (I), Z) in M, we know according to Lemma B.6 that there
exists W C V such that (F 1L ZWIO WD) oo A (F 1L ZD| IO W), W has to
contain Y, otherwise F is m-connecting to Z or ZJ) in My through Y or Y¥). We need
to further show that there cannot be YY) ««Z() in My. Suppose otherwise, if Y¥) « Z(J)
in Mo, then there is a cycle in D,. Else if YY) « ZU) in My, then there is a latent common
ancestor of Y, Z in Ds. This will create an inducing path (F, Y™ Z(M) in My which contradicts
the condition that F' and Z® are non-adjacent. In M, since there is F' — Y <=2, we have
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(FyY ZzOIO Wh) A (F UL XDNTO) W), which contains a pair of different testable
statements in 7. Therefore, M; and M have the same unshielded colliders.

Suppose (U, Wy, W, ..., W}, Y, Z) is a discriminating path in both M; and Mo, Y is a collider in
M but a non-collider in M3. By our construction, F' can only be U or Y in the path. There are 3
cases.

First, if F is not in the path. Then all the nodes in the path are in VI or V(¥), Suppose the path is in
V@, Then in Mo, there exists some W C V, such that (UM 1L ZOID FWD) W,V €
W,i € [k]. While in M, we have (UM 1 ZM IO F W), , since conditioning on YD)
would activate the path. Thus there is a pair of testable m-separation statements.

Next, if F'is Y in the path, this case is not valid, since F' can only have outgoing edges. Therefore, if
Fis Y in the path, it should have the same collider status in M; and M.

Lastly, F'is U in the path. All of the other nodes in the path have to be all in either V(D or V(9.
Suppose that all other nodes are in V(U Since F' is non-adjacent to ZD in M, and My, we know
that F' is also non-adjacent to Z (C)) according to Lemma B.6. Thus in M, there exists W C V,
such that (F 1L ZMWIO WD) oo A (F 1L ZDID W)\ W, Y € Wi € [k]. Wy, Y
are in W because otherwise F' is m-connecting with Z( through the path. However, in M; we
have (F 1L ZMW[IO WD) o A (F 1L ZD IV W)\, because conditioning on Wi(I), y®
will activate every collider in the path from F to Z(I. Therefore, there is a pair of different testable
statements in 7. To conclude, for each discriminating path in M; and Mo, F is a collider in M if
and only if it is a collider in M. Up to now, we showed that if M, and M5 do not satisfy the three
graphical conditions in the theorem, then there exists a testable m-separation statement that holds in
one graph but not the other.

When there exists a pair of intervention targets I,J € Z such that M; =
Twin(g y)(D1) and My = Twin( g)(D2) do not satisfy either of the three conditions mentioned
in the theorem statement, this implies that D; and D, are not Z-Markov equivalent. This is
because there is a m-separation statement that appears as a condition in the definition of Z-Markov
equivalence that is different in the two graphs M; and M. There is a m-separating path in M,
that is m-connecting in Ms. We now show that Pz (D5, V) contains tuples of distributions that are
not in Pz(D;, V). We leverage a key result from Meek, demonstrating that the set of unfaithful
distributions has Lebesgue measure zero. Building on this, we construct a jointly Gaussian structural
causal model that incorporates latent variables.

Lemma B.7. Meek [2013b] Consider a causal DAG D = (V,E), where (A L B | C)p. Let
D, = (V, Ey) be the subgraph that contains all the nodes in the m-connecting path that induces
(A A B | C)p. Then any distribution P over V s where every adjacent pair of variables is dependent
satisfies (A L B | C),.

The proof of Lemma B.7 uses weak transitivity and an inductive argument and can be found in
Meek [2013b]. Suppose that X, Y,Z C V such that (X 1L Y | Z,F)Aug(I‘J)(Dl) and (X A
Y | Z, F)Aug(u)(p?). Suppose that both X, Y are observed variables. In this case, any tuple of
interventional distribution obtained from an observational distribution that is faithful to the causal
graph with latent variables constitutes a valid example. Suppose X = F' for some and Y € V.
Therefore, an F'-node is m-connected to an observed node in Augy j) (D3) but not in Augrg) (Dy).

Consider the causal graph Dy = (V U L, E) with latent variables. Focus on the subgraph of D, that
includes all variables contributing to the m-connecting path of (X /L Y | Z, F) g (.3 (D2)- An

example can be found in Meek [2013b]. Let us call this subgraph Dp,q, = (Vpath, Epath). Consider a
jointly Gaussian distribution on Vi, that is faithful to Dpm. Such a distribution exists by construction
in Meek (Theorem 7, [Meek, 2013b]). Denote this distribution by Fan. We will focus on P and
later expand it by adding the remaining variables in Dy, as jointly independent and independent
of the variables in Dy,. Now, consider two intervention targets I and J on the CBN (Dpat}n Ppath),
where IAJ = K. This implies that the distributions Py and Py account for the graphical separation
of F7. For this proof, we treat F; as a regime variable indicating when we switch between P and Pjy.
This treatment is valid because we add only this single F' node, without introducing others. Define
the distribution P* as follows:

P | Fr=0)=PA(), P([Fr=1)=PFs(),
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and let F; follow a uniform distribution. We need to show that the invariances implied by the
graph separation in the generalized causal calculus rules fail for P; and P5. This is equivalent
to demonstrating that F7 is dependent on Y given Z in the distribution P*. To construct the
interventional distributions, we use a SCM that implies the given CBN. Let x represent the vector of
all variables in the graph, including latent ones. Consider the SCM given as follows:

x=Ax+e,

where A is a lower triangular matrix describing the graph structure and parent-child relationships in
Dypa, and e is the vector of exogenous Gaussian noise terms, |x| = n.

Let P represent the distribution obtained by introducing the noise vector e; into the system. The
vector e is non-zero only in the rows ¢ where x; € 1. Furthermore, the matrix A is modified to a new
matrix A1, which is identical to A except that all entries in the rows corresponding to ¢ (Vz; € I)
are set to zero. This modification effectively removes the influence of the parents of the variables in
the intervention set I, as required by the definition of a hard intervention. Consequently, P qualifies
as a valid hard interventional distribution. Similarly, let e ; denote the noise vector introduced for
an intervention on J. The matrix A is similarly replaced with Ao, where all entries in the rows
corresponding to j (Vz; € J) are set to zero, achieving the same effect for the variables in J. We
show that in the combined distribution p+ using these Py, Py every adjacent variable is dependent.
Clearly, when e; and e are different, F' variable is dependent with the variables in K := IAJ,
since P*(K | F = 0) # P*(K | F = 1), which implies (K /L. F' | ()) p». Therefore, we focus on
establishing that every pair of variables that are adjacent are correlated except for the F' variable. The
correlation of the variables in Dp,q, is calculated as follows:

x=Ai1xt+tet+e=I,-A))x=ete;=>x=(I,— A1) (e+te))
x=Axt+ete;=(I,—Ax)x=ete;=x=(I,— Az) *(et+ey)

Where I, is the identity matrix of size n by n. Let e; = e + e; and e; = e + e ;. The correlation
matrix between the observed variables, with respect to the distribution P* after marginalizing out the
binary regime variable, is computed as follows:

1T

E [xx"] =0.5(I, — A1) 'E [ere] | (I, — Al)*lT +0.5(I, — A2) " 'E [esel ] (I, — Az)

LetD; = F [elelT] and Dy, = F [egeQT] represent the diagonal covariance matrices for the noise
introduced by the hard interventions. Additionally, assume that all the noise variables, including e,
er, and e, follow zero-mean Gaussian distributions. Consider two adjacent variables, x; and x;,
within Dy,p,. We observe that the matrices I, — A and I, — Ay are full-rank, as A is a strictly
lower triangular matrix, and the same holds for A; and As. As a result, the matrix inverses in these
equations exist and are unique.

We now treat D; and D5, as variables in this system. When performing a hard intervention, we can
freely select the variance of each added noise term. Our objective is to demonstrate that there always
exist hard interventions, represented by D, and D>, such that x; and x; become dependent. Since
both x; and x; are jointly Gaussian, they are dependent if and only if they are correlated. Therefore,
we need to show that F [z;z;] # 0 for any adjacent pair x;, z;. If we set D; = Dy = 0, we return
to the observational system. By the assumption that the original distribution is faithful to the graph
Dpam» any adjacent variables are dependent. This implies that the corresponding system of linear
equations is not trivially zero. Hence, by randomly choosing the variances of the noise terms, we can
ensure that, with probability 1, any adjacent pair of variables will be dependent (by applying a union
bound).

Thus, we have shown that, in the graph Dy, along with the F' variable, every pair of adjacent
variables is dependent. Next, we can extend this distribution to include the variables outside Dpy.
To do this, we select the remaining variables to be jointly independent and independent from those in
Dpam- The interventional distributions can then be constructed by applying a similar hard intervention,
where extra noise terms are added to the variables being intervened upon and replacing the matrix A.
The resulting set of interventional distributions will belong to Pz (D2, V), but not to Pz (D, V).
This is because m-separation should imply invariance across the interventional distributions, but we
have constructed them in such a way that this condition does not hold. This concludes the proof. [
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B.5 Proof for Proposition 5.2

Proof. We have shown in Theorem 4.7 that two causal graphs are Z-Markov equivalent if and
only if their twin augmented MAGs satisfy the 3 conditions. Here we just need to show that the
twin augmented MAGs follow the 3 conditions if and only if the Z-augmented MAGs follow the 3
conditions.

(If:) Notice that each twin augmented MAG Twing 3(D) can be constructed by taking the graph
union of Augy(D,Z) and Augy(D,Z) and removing irrelevant F' nodes. Therefore, if Augy(D;,7)
and Augy(Ds,Z) have the same skeleton for any I € Z, Twing j(D;) and Twing 3(D2) will also
have the same skeleton. Furthermore, Twiny 5(D) and Aug;(D,Z) have the same unshielded

colliders within V(I U { F(1)} because they have the same subgraph on V() U {FI:D)}, Since
twin augmented MAGs do not have other F' nodes, Twing j(D;) and Twiny y(D2) have the same
unshielded colliders. Similarly, any discriminating path in Aug;(D,Z) will also be preserved in
Twing 5(D) while there cannot be discriminating paths that pass through the F' node in Twing y(D).
Therefore, Twing j(D;) and Twing 5(D2) have the same collider status on discriminating paths.

(Only if:) Now we show that if Twiny y(D;) and Twing 5(D2) satisfy the 3 conditions for any
I,J € Z, then Aug;(D;,Z) and Augy(D2,Z) also satisfy the 3 conditions for any I € Z. Since
Aug; (D1, T) is the graph union of Twing y(D;) on VI U {FED)} all the adjacencies are kept and
the same for Augy(D2,Z). Thus, they have the same adjacencies. For unshielded triples, if both
ends are F' nodes, then they have to be unshielded colliders in both Augy(D;,Z) and Augy (D2, T)
given F' nodes have only outgoing edges by construction. If at most one endpoint of the unshielded
triple is an F' node, then the same structure can be retrieved from the relevant twin augmented MAG.
Therefore, Aug;(D1,Z) and Augp(D2,Z) have the same unshielded colliders. Finally, we need
to show that if p = (U, W1, Wy, ..., W}, Y, Z) is a discriminating path in both Aug;(D;,Z) and
Aug; (Do, T), then p has the same collider status. If p is in VX, then p is also in Twing 5(D;) and
Twing j(Ds) for any J € 7 and thus it shows the same collider status in both Z-augmented MAGs.
If FO9) is an endpoint of p, then the path is also in Twiny y(D1) and Twing 5(D2) with the same
collider status. By the construction of Z-augmented MAGs, an F' node can only be Y in p if it is not

the starting node. Since F' nodes only have outgoing edges, p will have the same collider status in
both Aug;(D;,7) and Augy(Ds,Z), O

B.6 Proof for Theorem 6.3

The algorithm is learning the causal graph through finding the separating sets between each pair
of nodes using the distributional invariance tests. The invariance tests are tied to the m-separation
statements in the causal graph according to the h-faithfulness assumption, and the properties in Defini-
tion 4.1 are mapped to the m-separation statements in the twin augmented MAGs by Proposition 4.4.
We show that twin augmented MAGs are combined to construct Z-augmented MAGs which preserve
the m-separation statements in Proposition 5.2. Ideally, our algorithm would learn a structure that is
close to the Z-augmented MAGs. Therefore, to show the soundness of Algorithm 1, we need to first
define the Z-essential graph as follows:

Definition B.8 (Z-essential graph). Given a causal graph D = (V UL, E) and a set of intervention
targets Z C 2V, the Z-essential graph of D related to Z, denoted as £7(D, T) is the union graph of
the Z-augmented MAGs of D’ for all D’ that are ADMGs Z-Markov equivalent to D.

Definition B.9 (Union Graph of ¥ ADMGs). Let G1,Go, ..., Gy be kK ADMGs, where each graph
gi - (Vi; E’L)

The union graph of K ADMGs, denoted as G, = (V, Ey), where V, = Ule 'V, for each pair of
vertices (X,Y), the edge set of G, is determined by:

X =Y, if(X —Y)appearsinall G;, X,Y € V,.

£ X+Y, if(X<+Y)appearsinal G, X,Y € V,.
Y7 ) Xo—Y, if (X —Y)appearsinsome G;, (X <> Y) appears in some G;, X, Y € V;, V.
Xo—oY, if (X <+ Y) appears in some G;, (X — Y )appears in some G;, X,Y € V,;, V.
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The Z-essential graphs denote the structure that is ultimately learnable by any causal discovery
algorithm. Based on this definition, to demonstrate the soundness of our algorithm, it suffices to
address the following two questions:

(a) Do all the Z-augmented graphs returned by Algorithm 1 have the same adjacencies as the
T-essential graphs?

(b) Are the orientation rules sound, i.e. any arrowhead/arrowtail learned by the algorithm is also
present in the Z-essential graph?

We first address (a). Consider an Z-augmented graph Gj, the edges either contain a F' node or
not. There are no edges between any two F' nodes by our construction of Gy and Augy(D,Z).
Consider the edge (FX7) YD) in Gy. It is recovered because there does not exist W C V, such
that Pr(y|w) = Pj(y|w) under h-faithfulness. According to Definition 4.1 and Proposition 4.4, it
implies that F®Y) and YY) are also adjacent in Twiny 3)(D’) for any D’ that is Z-Markov
equivalent to D. Thus F ) and YD are also adjacent in Aug;(D’,T). Consequently, they are also
adjacent in the Z-essential graph. For the same reason, if F 1Y) and Y'() are not adjacent in G;, we
can derive that they are also not adjacent in £;(D, 7).

Next, consider the edges that do not contain F' nodes. There are no edges between two nodes
in different domains in both G; and Aug;(D,Z) by our construction. We call the vertex induced
subgraph on V9 J € 7 a domain. We just need to show that they have the same adjacencies
within each domain. According to our algorithm, within each domain, all the edges are connected by
applying the FCI algorithm, which is proved to be sound by Zhang [2008b]. Thus, Gi[V (D] will have
the same adjacencies as Aug;(D’,Z)[V®],1 € T for all D’ that are Z-Markov equivalent to D.

Finally, we address the soundness of orientation rules. In phase I of the learning algorithm, we use
FCI rules within each domain to learn the skeletons. Zhang [2008b] showed that FCI is sound and
complete. Thus, the orientations in the skeleton learned in this phase are shared across all Augy(D’),
for all D’ that is Z-Markov equivalent to D. In phase II, F' nodes are introduced and adjacent to
the symmetric difference of the targets, and the nodes that are not separable from F'. All the edges
induced to F' nodes are oriented outgoing from F' nodes by Rule 8. This is also true in Aug;(D’,T)
for all D’ that is Z-Markov equivalent to D. Thus, so far, all the orientations learned are sound. What
remains to be shown is the soundness of the extra orientation rules.

Remark: In Algorithm 3, for the interventional domains, we return the separating set that includes
the interventional target of the domain. This inclusion is required by the do-calculus rules. However,
in practice when running Algorithm 1, we can remove the targets from the separating sets to save
memory since removing them will not impose any modification on the orientation rules. To witness,
the only rules with use separating sets are Rule 0 and Rule 4. Both are deciding if the node of interest
is a collider. Since the targets are intervened, they have no incoming edges and thus removing them
from the conditioning sets will not drop off any possible colliders. Therefore, one has the flexibility
to include the targets in the separating set or not.

Soundness of Rule 0: If both end nodes are in V, then the soundness is guaranteed by the soundness
of FCL. Suppose (F, X(1)| Y1)} is an unshielded collider identified by the learning algorithm, i.e.,
there is some W C 'V \ I, such that, ' 1. Y(D|IM W while X ¢ W UL Suppose otherwise,
(F, XD YD) is not an unshielded collider, then it can only be F — X(I) — Y'(I)_ Since F, Y ()
are non-adjacent, the soundness of the skeleton indicates that there is a set of nodes that separates
F from YD, However, in this case, to separate I’ from yd ), X has to be in the condition set;
otherwise, the path ' — X () — Y (I) would be d-connecting.

Soundness of Rule 9: To address the soundness of Rule 9, we need to show that if X (I), YD are
adjacent, and X € I, then Y can only be a descendant of X in the interventional causal graph Dj.
Suppose otherwise, then Y is an ancestor of X or they have at least one common ancestor in Dj.
However, since X is intervened, there will be no ancestor of X in Dy, which is a contradiction.

Soundness of Rule 10: We need to show that if we recover X — Y in the domain G®, there cannot
be X « Y in another domain of J. Suppose otherwise, it indicates that there is a directed
path from Y to X in Dy. However, there is also a directed path from X to Y in D;. Dy and Dy are
subgraphs of D, thus there is at least 1 cycle in D which is a contradiction.
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Soundness of Rule 11: FI7) is adjacent to Y, Y'J) while Y ¢ T shows that there does not exist
any W C V such that Py(y|w) = Pj(y|w). This means that there is no separating set that separates
both F&I) Y@ and F&I) | YD) This indicates that there is an inducing path from ) to YD or
from F&J) to Y9 relative to the latent variables in the augmented pair graph. Due to the definition
of the inducing path, it has to go through X or X) as K = {X}. However, in GV, since X is
intervened, X ™ cannot serve as a collider in the path. Consequently, we can infer that the inducing
path has to go through X ) to Y'(¥), Furthermore, X ) has to be a parent of one of the end nodes of
the path. Given that F' nodes are source nodes, we can orient X @) 5 y@), O
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C Algorithms

C.1 Algorithm for Creating F' Nodes

Algorithm 2 Algorithm for Creating ' Nodes

Input: Intervention set Z, intervention I
Initialize F < (;
for JinZ \ {I} do
F « Fu{Fa}
Output: The set of F' nodes F

C.2 Algorithm for Finding Separating Sets

Algorithm 3 Algorithm for Finding Separating Set

Input: Target I and J, interventional distributions (Pr)1ez, observable variables V, F nodes F
Initialize £ « 0;
if I = J then
for X,Y in V do
SepFlag < False;
for W C V do
if Pi(y|w,z) = Pi(y|w) then
SepFlag < True
SepSet( XD, yD)=wO y Fui®,
if SepFlag = False then
E— U (XD yDy,
else
for Y in V do
SepFlag < False;
if Y in IAJ then
Pass;
else
for W C V do
if P1(y|w) = Py(y|w) then
SepFlag < True;
SepSet(F, YD) « 10 y W),
SepSet(F, YD) « JI ywO),
if SepFlag = False then
E— EU(FID YDy,
Output: Circle edges &, separating sets SepSet

C.3 Complexity Analysis

Since our algorithm is also constraint-based—Ilike FCI and PC—the bulk of the computational cost
comes from invariance tests, which can be seen as conditional independence tests involving the
F'-node. In the worst case, each pair of nodes may require an exponential number of tests to identify
a separating set. However, in practice, many implementations (including FCI and PC) limit the size
of the conditioning set (e.g., to a constant such as 3), which reduces the worst-case complexity to a
polynomial bound of O(n%) (see, e.g., Spirtes et al. [2001]).

For the new orientation rules we introduce: Rules 8, 9, and 11 operate in O(1) time since they only
check the adjacencies of a fixed number of nodes. Rules 10 and 11 have a complexity of O(n?) as
they potentially examine all pairs of nodes. In comparison, the FCI orientation rules can take up to
O(n®) in the worst-case.

Thus, for each Z-augmented MAG, our learning algorithm has a similar worst-case complexity as the
FCI algorithm, namely O(n®). If there are k targets, the total complexity becomes O(kn®).
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D An example of the Construction of Twin Augmented MAGs

Graph D; in Figure 2a is the original graph with a confounder between Z,Y. Assume that the
intervention setis Z = {I; = 0, I = {Z}}. Here we use the index of the targets in the superscripts
of the variables for simplicity. Figure 2b shows how we build the augmented pair graph by adding
the F' node and pointing it to both Zs in the two interventional subgraphs. In Figure 2c, we show
the MAG of Augy (7})(D1). The edge of (F, Y (M) is added because there is an inducing path

(F,ZM, YWY in Augy () (D1), which means that F' is not m-separable from Y!) and F is
an ancestor of Y1), Now that (F,Y (") is presented in MAG(Aug g (y(D1)) but not (F,Y®)),

according to Definition 4.5, we also add the edge of (F, Y (?)) to finally construct the twin augmented
MAG of D, which is Twin g, { z})(D1) as illustrated in Figure 2d.

Next, we repeat the same process for D, as illustrated in Figure 2e 2f 2g. Comparing Twin g ;z1)(D1)
and Twm(@ (z})(D2) (Figure 2h), we see that they do not satisfy the three conditions from Theo-
rem 4.7 since they have different skeletons. Hence, we conclude that Dy and D, are not Z-Markov
equivalent with respect to Z. This example also highlights that hard interventions can be more
informative than soft interventions because, under a soft intervention on Z, one cannot distinguish
the two graphs, and they will be Z-Markov equivalent using the results from Kocaoglu et al. [2019].
However, with a hard intervention, we can distinguish the two graphs D; and D, from one another.

v ¥ — Z(1) — (@) SN

X1 — 71 — y@) T+ A X1 — 71 — y(1)
T F T
F 1 F
v 1 x@ 7@ —y@® N
X —s7—3y X® 72 — y(©) © X2 7(2) — y(©2)
C
(a) Graph D, (b) Aug(w’{z}) (Dn) MAG(Aug(@,{Z}) (D1)) (d) Twingg,(z}) (Dh)
VN KO0 sy N
X1 — z1) — y@) T A X1 — 7z1) — yQ)
T F T
F 1 F
/\ ) XY@ 7@ —y® 1N
— xX® 72) — y(©2) ~__ xX@ 7(2) — y(2)
(e) Graph D () AUg(@,{z}) (D2) MAG(AUg(Q),{z}) (D2))  (h) Twing,(z3) (D2)

Figure 2: Illustration of the construction of twin augmented MAGs where D; and Ds are not
T—Markov equivalent. (a) and (e) are two causal graphs, D; and D, respectively, given intervention
targets Z = {I; = 0,1, = {Z}}. (b) and (f) are the augmented pair graphs for D; and D,
respectively. (c) and (g) are the MAG of the augmented pair graphs for D; and D, respectively. (d) and
(h) are the twin augmented MAGs for D; and D- respectively. F — Y (1) in MAG(Augg 7y (D1))

and MAG(Aug g 71)(D2)) because there is an inducing path (F, ZW Y)Y in both augmented

pair graphs. In the twin augmented graphs, we further add ' — Y (?) to make the adjacencies around
the F' node symmetric.
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E An Example of the Learning Process

e e N N

1 Jo—oz( 1)0—oy(1) X( o—oz( I)O—OY 1) X(2)O—oz(2 0—oy(2) X(2)O—oz(2 0—oy( )
(2) Initialize Gy(D1) (b) Initialize Gy (D2) (c) Initialize Gz} (D1)  (d) Initialize Gy ) (D2)
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X2 7@2p—ag/(2) X2 72p—a/(2)
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Figure 3: An example of the learning process of Algorithm 1.

Here we show an example of the learning process of Algorithm 1 in Figure 3. Consider the two
causal graphs D;, D, as shown in Figure 2a and Figure 2e respectively. Assume that we have
access t0 (Pyps, Pz), i.e. T = {I; = 0,I, = {Z}}. In Phase I, we initialize the Z-augmented
graphs under each interventional target for both graphs by constructing complete graphs with only
circle edges within the observable nodes. After that, we create the F' nodes between each pair
of intervention targets using Algorithm 2 and connect each F' node to all observable nodes. The
initialized Z-augmented graphs are shown in Figure 3a, Figure 3b Figure 3c, and Figure 3d. Here
we omit the superscript for F' nodes since there are only two domains. Then in Phase II, we learn
skeletons by using Algorithm 3 to check the invariance statements. Specifically, for each pair of
X,Y € V, if there exists some W C V that separates X, Y in any domain, we remove the circle
edge between X, Y accordingly. Similarly, if F' is separable from a vertex in V given a condition
set W C V,ie. Py(ylw) = Pz (y|w), then we remove the circle edge between F,Y in both
domains. Thus we construct the skeletons of Z-augmented graphs for D; and D5 as shown in
Figure 3e and Figure 3f respectively. The upper graphs are for the observational domain while the
lower graphs are for the domain of Pz. Next, in Phase III, we apply the orientation rules. We start by
finding all the unshielded colliders using Rule 0. In Gy(D; ), we notice that conditioning on Z @,
F is dependent on X (1) Similarly, conditioning on Y() | F'is dependent on X (1), We can then
orient XWo—0ZM0) xWo oYV Fo07Z0 and Fo—oY D as XMoo YV xD g z(1)
Fo— ZM, and Fo— Y () respectively. The same structure appears in Gy (D). However, in Gy(D5),
we can identify the unshielded triplets (X ), V() Z(2)) and (X(?), Y (?)| F) which help us orient
the colliders accordingly. The resulting graphs are plotted in Figure 3g and Figure 3h. Using Rule 8,
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we orient all edges incident to F' out of F'. The Z-augmented graphs after Rule 8 are presented in
Figure 3i and Figure 3j. Since only Z is intervened but not Y, we can orient the edge Z(?) — Y (?)
in both G 7}(D1) and G} (D2) using Rule 9. While Rule 10 helps us to orient Z(o— Y1), Rule
11 implies that we can orient Z(!) — Y1) since F' points to YY) in both Gy(D;) and Gy (D)
as Y is not intervened. Thus, there has to be an inducing path from F to Y)Y that goes through
ZW or Z() in both augmented pair graphs for D; and D,. Notice that these edges cannot be oriented
by the FCI rules. At this stage, none of the rules apply anymore; therefore, Gy (D), g{ 7} (Dy) and
Go(D2), Gz} (D2) are returned as the learned Z-augmented graphs of Algorithm 1. The final results
are shown in Figure 3k and Figure 31. Notice that the learned Z-augmented graphs of the two causal
graphs have different adjacencies and unshielded colliders. Therefore, they can be distinguished by
the conditions listed in Theorem 4.7.

F Experiment Details

F.1 Enumerate All ADMGs

In this experiment, we aim to demonstrate that the Z-MEC size under hard interventions is smaller
than that under soft interventions in general. Here is how we set up the experiments. Given the
number of observable variables n, we iterate through all possible ADMGs structures with n nodes.
The number of such ADMGs can be found as follows. We first generate all possible DAGs (not
necessarily connected) with n nodes. Then, for each pair of nodes in a DAG, there can be a bidirected

edge or not. Thus, the number of ADMGs under consideration is 2() multiplied by the number
of all DAGs. Each time, we randomly pick an ADMG G as the ground truth graph. Assuming
that the size of the intervention targets is 2, we construct the twin augmented MAG M; of G
following Definition 4.5 and the Augmented MAG M, of G following Definition 4 in Kocaoglu et al.
[2019]. We then enumerate all possible ADMGs, and for each candidate ADMG G, we construct
its corresponding M/ and M}, and compare M, M/ following Theorem 4.7, My, M}, following
Theorem 2 in Kocaoglu et al. [2019]. For each n, we repeat the experiment 30 times and calculate
the average size of Z-MEC size together with standard errors. We consider two types of sampling
ADMGs, random and complete. ’Random’ means the ADMG is constructed by randomly adding
directed and bidirected edges with a probability of 0.5 between each pair of nodes while not creating
any cycle. ’Complete’ means we first construct a random complete DAG and then randomly add
bidirected edges with a probability of 0.5 between each pair. For intervention targets, we assume
they are either atomic or an empty set. We only show the results for small n, as the number of
ADMGs grows super-exponentially with n. All the experiments are run on an NVIDIA GeForce
RTX 3090 graphics card. The numerical results are shown in Table 2. We notice that the number of
ADMGs grows very fast with n. The results have a high standard error. This is due to the differences
between the sampled graphs. Nevertheless, under hard interventions, the Z-MEC size tends to shrink
the Z-MEC size more efficiently than with soft interventions on average, showing the power of
hard interventions. Furthermore, as n grows, the ratio of hard Z-MEC divided by the soft Z-MEC
decreases, meaning that hard interventions extract more information on the causal graphs.

n | Mean under Hard | Mean under Soft Graph Ratio Number of ADMGs
2 2.03 £0.15 2.93 +£0.29 Random | 0.69 £ 0.05 6
2 2.37+0.12 3.67 £ 0.22 Complete | 0.65 £ 0.05 6
3 19.50 £+ 3.41 30.57 £4.36 Random | 0.64 £0.11 200
3 14.03 £ 2.69 24.70 £ 4.12 Complete | 0.57 +0.05 200
4 | 677.13£227.72 | 1218.83 £ 361.83 | Random | 0.56 £+ 0.18 34,752
4 | 721.37£276.36 | 1529.57 & 368.68 | Complete | 0.47 +0.07 34,752

Table 2: Estimation of Z-MEC size by enumerating all ADMGs of the same size. We consider
random ADMGs and ADMGs by adding bidirected edges to random complete DAGs. For each
setting we sample 30 ground truth ADMGs and calculate the mean and standard error of Z-MEC size
and the ratio.
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F.2 Sample ADMGs

When n = 5, the total number of valid ADMGs is 29,983,744, which is intractable to enumerate.
Instead, we can sample ADMGs to estimate the expectation of the probability of a randomly sampled
ADMG to be Z-Markov equivalent to a given ADMG using Hoeffding’s Inequality. To do this,
given n, we randomly sample a DAG that is a complete graph using the uniform CPDAG sampler
by Wienobst et al. [2021]. Then, for each sampled complete DAG, we add bidirected edges uniformly
to each pair of nodes to construct a ground truth ADMG. To compare with the ADMG, we randomly
pick two intervention targets that are either an empty set or atomic, and then randomly sample
ADMG:s following the same process and construct the augmented graphs. Suppose for each ground
truth ADMG, we draw M such random samples. For the i-th sample, S; = 1, if it is Z-Markov

equivalent to the true graph and .S; = 0 otherwise. We define S = Zf\il S; which shows the number
of Z-Markov equivalent ADMGs. We denote Egs as the expectation we are approximating. Thus,
according to Hoeffding’s Inequality, we have:

P(‘]\i —Es| > €) < exp(—2Meé?) @)

We choose € = 0.01 and exp(—2Me?) = 0.01 for M with M = 23025. For each setting, we
randomly sample 50 ground truth ADMGs and then take the average. The results are shown in
Table 3, Table 4, and Table 5. We can see that the estimated Eg‘"d is significantly lower than Egof ¢
meaning hard interventions can more efficiently learn the causal structure. Notice that as n becomes
larger, the number of ADMGs grows fast and thus the expectations get close to 0. Consequently, a
much smaller e would be necessary to approximate the expectations, leading to a much larger number

of samples M.

soft

n | Estimated E2*"? | Estimated Ej Ratio

2 0.417 +0.010 0.584 +£0.010 | 0.715+£0.011
3 0.143 £ 0.012 0.235+0.016 | 0.607 £ 0.022
4 0.058 +0.011 0.1124+0.015 | 0.514 £ 0.024
51 0.028+£0.011 0.061 £0.013 | 0.459 £0.028
6 | 0.015+0.010 0.036 £0.012 | 0.420 £ 0.030

Table 3: Estimation of Z-MEC size on complete DAGs with different sizes and 0.5 density of

bidirected edges.

n | Estimated E*"? | Estimated E3/ Ratio

3 0.151 £0.011 0.264 +0.015 | 0.571 £0.017
4 | 0.067£0.010 0.149 £0.013 | 0.451 £0.017
5 0.034 +0.010 0.091 +£0.013 | 0.373 £0.017
6 | 0.019+0.010 0.059 £0.012 | 0.317 £ 0.017

Table 4: Estimation of Z-MEC size with different n and fixed 0.45n(n — 1) bidirected edges

(approximately 0.9 in density).

soft

p | Estimated E2*" | Estimated E§ Ratio

0.1 0.020 £0.011 0.024 £ 0.011 | 0.804 +0.018
0.3 | 0.02240.011 0.040 £0.012 | 0.566 £ 0.030
0.5 | 0.028£0.011 0.061 +0.013 | 0.459 £ 0.028
0.7 | 0.031 £0.011 0.081+£0.013 | 0.395£0.021
0.9 | 0.034£0.010 0.093 £0.011 | 0.365 £ 0.015

Table 5: Estimation of Z-MEC size on completed DAGs with 5 nodes and different densities of
bidirected edges. It shows that when the density of bidirected edges goes up, hard interventions
shrink the Z-MEC size more efficiently than soft interventions.
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F.3 Comparison of Learning Objectives with Other Interventional Causal Discovery
Algorithms

Most existing interventional causal discovery algorithms aim to learn a single causal graph. However,
the goal of our learning algorithm is to learn a tuple of Z-augmented graphs that entails (a superset
of) Z-Markov equivalent ADMGs. None of the previous approaches outputs the same object.
Concretely, Z-FCI [Kocaoglu et al., 20191° (known targets)/1-FCI [Jaber et al., 2020] (unknown
targets) assume soft interventions and cannot exploit the additional invariance constraints incurred by
hard interventions. They use a single augmented MAG as the learning objective. JCI [Mooij et al.,
2020] claims it works for any interventions but it is overly simplistic and the learned PAG is less
informative (in Jaber et al. [2020] App. D shows that ¢)-FCI can learn more than JCI). GIES [Hauser
and Biithlmann, 2012] and IGSP [Wang et al., 2017] are score-based and aim at learning a single DAG
under known targets. They neither guarantee inclusion-minimality nor provide equivalence-class
certificates. Nevertheless, score-based methods usually impose parametric assumptions like linear
function or additive Gaussian noise to the causal models. Such methods are not robust when the
underlying mechanism deviates from those assumptions. Additionally, GIES and IGSP assume no
latents and therefore their outputs are less informative. Because the outputs are of different types, a
direct performance metric is unavailable to measure the performance of the methods. The previous
sections have shown that empirically how much smaller the Z-MEC is vs. the soft Z-MEC produced
by Z-FClI/1-FCI. Here we compare with GIES and IGSP with a simple example.

Consider the graph [X —,Z — Y,Z < L — Y] where L is a latent variable. We generate a
Bayesian network with binary variables according to the graph. We take 100k samples from the
observational distribution and 100k samples from Pz. We choose 100k as it is more than enough
to return correct CI tests. GIES returns [Y — Z — X] which has the wrong causal order and does
not belong to the same observational MEC. IGSP returns [X — Z — Y, X — Y] which is the
observational MAG of the true graph, but it cannot tell anything to judge if there is a latent confounder
between Z, Y. Under the same setting, when the simulated dataset is from a linear Gaussian structural
causal model, both GIES and IGSP output [X — Z — Y] which catches the right causal order
but does not belong to the observational MEC. In both settings, our algorithm is able to learn the
graphs illustrated in Figure 3k which preserve information from both domains. We use the Python
implementation of GIES by Olga Kolotuhina and Juan L. Gamella [Gamella, 2025]. The IGSP
implementation is from the causaldag package [Squires, 2018].

G Further Discussion

G.1 Assumptions

G.1.1 Positivity

In theory, Algorithm 1 does not require a strict global positivity assumption. All results rely solely on
h-faithfulness. “Strictly positive distribution” is added in some works on discovery as a convenience.
This is because within the space of strictly positive parameterizations, the subset that violates
faithfulness sits on algebraic varieties of lower dimension, hence has Lebesgue measure O (see
Robins et al. [2003] and many follow-ups). In practice, with finite data, a zero or near-zero cell makes
test statistics undefined or unstable, so implementations often impose minimum-count rules even
when the theory would allow the zero.

The positivity assumption is required for identifiability (for example, Kivva et al. [2022], Kandasamy
et al. [2019]). This is because that the manipulation of numerical expression explicitly require
the denominator to be strictly positive. By contrast, structural discovery uses only qualitative
independence relations. As long as we can evaluate a test where, no global support assumption is
required.

G.1.2 Faithfulness

There are weaker faithfulness assumptions. However, the soundness of Algorithm 1 requires h-
faithfulness. The Z-MEC we defined is based on the generalized do-calculus rules and so as the
learning algorithm and hence h-faithfulness is minimal for the algorithm to be sound.

5The algorithm was proposed in Kocaoglu et al. [2019] and later named as Z-FCI by Li et al. [2023].
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Like classic faithfulness, the set of parameterizations that violate h-faithfulness has Lebesgue measure
zero for standard SEM families with continuous noise if we consider linear models; i.e., it holds
generically (it also holds for many other models, see follow-ups of Robins et al. [2003]). It is therefore
no stronger in a measure—theoretic sense than ordinary faithfulness, but it is stronger logically: it rules
out a few additional, finely-tuned parameter combinations that would create the extra cancellations
specific to our Rules 1-4—those cancellations correspond exactly to our new orientation rules, so
dropping h-faithfulness would break thesoundness. From the high level, imagine a causal graph
under faithfulness assumption. It could be the case that for certain conditioning values Z = z, two
variables X and Y that are d-connected are independent. While faithfulness covers the case that X
is dependent with Y given Z (when the dependency metric is averaged over all z), h-faithfulness is
similar to saying X, Y are dependent given every Z = z. This analogy is exact if the intervened node
is a source node, but we believe it gives some insight on the leap from observational faithfulness to
h-faithfulness

G.2 Comparison between Hard Interventions and Soft Interventions

One may expect that hard interventions can always extract more information about the causal graph
than soft interventions when there are latents. Here, we show an example in Figure 4 where this
is not true. Consider the ground truth ADMG D in Figure 4a with intervention targets Z = {I; =
{X1, X2}, I, = {Y1,Y5}}. The Z-augmented MAGs under hard interventions are shown in Figure 4b
and Figure 4c respectively. The augmented MAG under soft interventions is shown in Figure 4d. We
suppress the superscript of F' nodes since they are the same. We notice that under hard interventions,
the skeletons in both domains are empty graphs because the hard interventions remove all the
bidirected edges in D. However, under soft interventions, the skeleton of D is preserved since soft
interventions do not modify the graphical structures. As a result, any graph that has only bidirected
edges between X; and Yj, ¢, j € {1,2} is Z-Markov to D given I, I, as hard interventions while this
is not true for soft interventions with the same targets. For example, consider the two graphs D1, Dy
plotted in Figure 4e and Figure 4f. Given Z, their domain-specific skeletons will all be empty graphs
as D when 7 is hard, thus they are Z-Markov equivalent to D. However, with soft interventions, their
skeletons can be preserved and thus not Z-Markov equivalent to D when Z is soft. Therefore, for
this kind of graphs and intervention targets, soft interventions may end up with a smaller Z-Markov
equivalence class than hard interventions.

AN

X 4o Y, 4 Xo ¢ Vs Xil) Yl(l) Xél) Y2(1) X£2) Y1(2) XéQ) Y2(2)

(a) Example graph D (b) Augy, (D, 7) (c) Augy, (D, T)
X,V Xo— Y, /\ /\
Xi+—YV1T+—Xo0—Y, Xi+— YV Xo+— Y5

(d) Augmented MAG of D under
soft interventions (e) Example graph D; (f) Example graph D,

Figure 4: An example that soft interventions lead to a smaller Z-Markov equivalence class
than hard interventions. (a) is the ground truth causal graph D with intervention targets 7 =
{{X1, X2}, {,Y1,Y>}}; (b) and (c) are the two Z-augmented MAGs under hard interventions; (d)
shows the augmented MAG under soft interventions; (e) and (f) are two examples graphs that are
Z-Markov equivalent to D when Z is hard but not Z-Markov equivalent to D when Z is soft.

If the observational distribution is provided, the skeleton is preserved for both hard and soft in-
terventions. However, the following example in Figure 5 shows that even given the observational
distribution, there still exist causal graphs which can be distinguished by soft interventions but
not so with hard interventions. Consider the causal graphs D; and D, as shown in Figure 5a and
Figure 5b with intervention targets Iy = (,Io = {Y'},and I3 = {X,Y}. Here we use the index
of the targets for superscripts and subscripts for simplicity. The augmented MAGs of D; and Dy
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under soft interventions are shown in Figure 5S¢ and Figure 5d respectively. We can see that the triple
(F23) XY forms an unshielded collider in the augmented MAG of D; but it is a non-collider
in the augmented MAG of Ds. Therefore, they do not satisfy the 3 conditions, meaning that they
are not Z-Markov equivalent when Z is soft. The Z-augmented MAGs for D; and D, are shown in
Figure 5e, 5f, 5g and Figure 5h, 5i, 5j respectively. We can see that all the 3 pairs of corresponding
T-augmented MAGs satisfy the 3 conditions. Therefore, D; and D, are Z-Markov equivalent under
hard interventions although the observational distribution is given. If an additional intervention
target I, = { X} is given, Dy, Dy will be non-Z-Markov equivalent with a different collider status of
the triple (F(1:4, X@W Y ®) in Augy (D1, Z) and Augy, (D2, Z). We conclude that although hard
interventions are stronger than soft interventions, they do not always lead to a smaller Z-Markov
equivalence class than soft interventions. It may also imply that using a mixture of hard and soft
interventions may be more efficient in causal discovery than using either of them alone.

X<—Y X—Y
(a) Example graph D; (b) Example graph D>
F(2 3) F(l 3) F(l 2) F(2 3) F(l 3) F(l 2)
X +—Y X —Y

(c) Augmented MAG of(d) Augmented MAG of
D1 under soft interven-D2 under soft interven-

tions tions
F(1.3) F12)  p(23) F(1,2) p(23) p(1,3)
XM +— y(@) xm  y@® xO  y@
(e) Augy, (D1,7) (f) Augy, (D1,7) (2) Augy, (D1, 1)
F(l 3) F(l 2) F(2’3) (1 2) F(2 3) F(l 3)
X1 — y(@) xO  y@ xO  y@
(h) Augy, (D2, 1) (i) Augy, (D2, 7) (i) Augy, (D2, T)

Figure 5: An example that given the observational distribution, soft interventions can distinguish the
given two causal graphs while hard interventions cannot. (a), (b) are the ground truth causal graph
D1, D, respectively with intervention targets Z = {0, {Y'},{X,Y}}; (c), (d) are the augmented
MAGs under soft interventions for D; and D5 respectively; (e), (f), (g) are the Z-augmented MAGs
under hard interventions for D;; (h), (i), (j) are the Z-augmented MAGs under hard interventions
for Dy. Notice that D; and D, are not Z-Markov equivalent when Z is soft because (F, X,Y")
have different unshielded collider status in the corresponding augmented MAGs. However, they are
T-Markov equivalent when 7 is hard because their Z-augmented MAGs corresponding to the same
domains all satisfy the 3 conditions.

G.3 Incompleteness of the Learning Algorithm

In this section, we will present an example in Figure 6 to show that Algorithm 1 is not complete, i.e.,
for some causal graphs and intervention targets Z, there exist circles marks in the Z-augmented graph
returned by Algorithm 1 that can be an arrowhead in the Z-augmented MAG of a causal graph that
is Z-Markov equivalent, and an arrowtail in another Z-augmented MAG. Let us consider the causal
graph D as shown in Figure 6a with intervention targets Z = {Iy = {X»},Io = {X4}}. Here we
use the domain index as the superscripts for simplicity. The Z-augmented MAGs Augy (D,Z) and
Augy, (D, ) are shown in Figure 6b and Figure 6¢ respectively. The Z-augmented graphs Gy, (D, 7)

and Gr, (D, Z) learned by Algorithm 1 are shown in Figure 6d and Figure 6e respectively. X2(1) —

X él) and X f) — X ?EQ) are oriented by the inducing path rule. However, our algorithm cannot orient
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Xil) — Xg() ) and X(z) — X(z) Without loss of generality, let’s consider Xi Jo—s X Vin Gr, (D).
Suppose that there exists a graph D’ such that there is X i ) Xél) in Gr, (D', Z). Since we have
X f) — X )in Gr, (D', ), this indicates that there is an inducing path and a directed path from
X4to X 3 in DL and thus in D’ as D’— is a subgraph of D’. The bidirected edge between X il)

and X ) in Gr, (D’ 7) indicates that the directed path from X, to X3 is broken in D’ . This can
only happen when X3 is in the directed path between X4 and X3 in D’ and thus D’X—4 as removing
the edges into X4 does not affect its descendants. Therefore, X4 has a child other than X3 and is
an ancestor of X5. Nevertheless, X f) has only one possible child Xg(,z) in G1,(D,T). Thus, the
supposition does not hold. For the same reason, we can orient the circle mark in X 52)0—> X 352) in
G1,(D,I). These circle marks can only be oriented by comparing the graphical structures across
domains. We need extra orientation rules to catch them.

¥ X ¥ X
X1 — Xo — X3 +— Xy +— X5

(a) Example graph D
F F
X0 x5 xM e xO « xO X® 5 x® 5 xP « x®  x@
(b) Augy, (D,7) (c) Augy, (D, I)
F F
X}l) Xél) — Xél) %OXS) eoXél)z X{2)O*> X;Z)C") X§2) — Xf) XéQ)z
(d) 61, (D, 1) (e) G1,(D, 1)

Figure 6: An example to show that Algorithm 1 is not complete. (a) is the ground truth causal graph
D with intervention targets Z = {{ X5}, {X4}}; (b) and (c) are the Z-augmented MAG under I; and
I, respectively; (d) and (e) are the domain-specific Z-augmented graphs learned by Algorithm 1 under
I, and I, respectively. The proposed Algorithm 1 cannot recover the circle marks at X and Xy, but
there does not exist a causal graph that has an arrowhead at the same places in their Z-augmented
MAG:s.

G.4 Limitations, Future Work, and Broader Impact

Limitations: While our work provides a general characterization of Z-Markov equivalence classes,
the resulting representation is a tuple of augmented graphs, rather than a single unified graph. This
makes the characterization less straightforward to interpret. In addition, although our proposed
algorithm is sound, it is not complete. We just illustrate this limitation with a concrete example
provided in Appendix G.3.

Future Work: This work opens several promising directions for future research. First, our empirical
results suggest that hard interventions tend to be more informative than soft interventions. It would
be valuable to formally analyze this observation and establish theoretical conditions under which
this holds. Additionally, while we have proven the soundness of our learning algorithm, extending it
with additional orientation rules to achieve completeness remains an open challenge. Finally, our
current framework assumes full access to interventional distributions. Developing methods that can
learn causal graphs from limited interventional samples is an important direction for making these
approaches more practical in real-world settings.

Broader Impact: This work contributes to advancing the theoretical and algorithmic foundations of
causal discovery, with the potential to improve decision-making/causal inference in critical domains
such as healthcare, economics, genomics, and social sciences [Sharma et al., 2022, Zhou et al.,
2022, Herndn and Robins, 2016, Sachs et al., 2005, Taubman et al., 2014, Lee, 2008, Belyaeva et al.,
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2021]. By combining observational and interventional data, the proposed methods can reduce reliance
on large-scale experimentation, making causal analysis more accessible in data-scarce or resource-
limited settings. This could empower practitioners to build more reliable models for understanding
complex systems, ultimately benefiting scientific discovery and evidence-based policy-making.

However, the use of causal discovery methods also carries risks. Incorrect or biased causal infer-
ences—whether due to data limitations, modeling assumptions, or algorithmic shortcomings—could
lead to misguided conclusions, especially in sensitive applications like healthcare or policy-making.
Furthermore, there is a risk of misuse if these methods are deployed without adequate validation or
oversight, potentially reinforcing harmful biases or supporting flawed decision-making processes.

To mitigate these risks, it is crucial to promote transparency, reproducibility, and the inclusion of
domain expertise when applying these methods. Future work should also explore techniques to
quantify uncertainty in causal conclusions, improve model interpretability, and develop guidelines or
safeguards for responsible deployment.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We discuss this in Section 1.
Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss this in Appendix G.4.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We discuss this in Section 3, Section 4, Section 5, Section 6. The proofs are in
the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We discuss this in Appendix F.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We discuss this in Appendix F.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss this in Appendix G.4.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not use any dataset or model that has this concern.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the assets and mention the license explicitly in the paper and Readme
of the code.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide the descriptions in the Readme file.
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is merely used for editing purposes in this work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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