

Where do the Disks of Nearby, Massive Spiral Galaxies End?

**Michael Hardegree-Ullman¹ H. Alyson Ford¹ Jeremy Bailin²
Joel Bregman³ Edmund Hodges-Kluck⁴**

¹**The University of Arizona, ²University of Alabama, Tuscaloosa,**

³**University of Michigan, Ann Arbor, ⁴NASA/GSFC**

Published on: Jan 31, 2023

URL: <https://baas.aas.org/pub/2023n2i279p08>

License: [Creative Commons Attribution 4.0 International License \(CC-BY 4.0\)](https://creativecommons.org/licenses/by/4.0/)

The structure and properties of the circumgalactic medium (CGM) between $R \sim 30$ –100 kpc around nearby, massive spiral galaxies remain largely unknown. One hypothesis is that large quantities of gas are held in rotationally-supported disks of neutral hydrogen (HI) that extend out to ~ 100 kpc. While observations of individual galaxies have detected HI out to distances of 80 kpc, a larger sample is necessary to determine the frequency and characteristics of extended HI disks. Using the Green Bank Telescope (GBT) we conducted a comprehensive survey mapping HI along the major and minor axes of 20 mass-selected galaxies to distances of 100 kpc and a limiting column density of $2 \times 10^{18} \text{ cm}^{-2}$. We have determined the total extended HI mass and its distribution within each galaxy by fitting our data to HI distribution models. We have found rotationally-supported disks in $\sim 50\%$ of the sample that extend to distances between 40 and 100 kpc.