Hop: A Modern Transport and Remote Access Protocol

Paul Flammarion
Stanford University

Daniel Rebelsky
Stanford University

George Hosono™
Georgia Tech

Gerry Wan

Abstract

Since SSH’s standardization nearly 20 years ago, real-world
requirements for a remote access protocol and our under-
standing of how to build secure cryptographic network pro-
tocols have both evolved significantly. In this work, we intro-
duce Hop, a transport and remote access protocol designed
to support today’s needs. Building on modern cryptographic
advances, Hop reduces SSH protocol complexity and over-
head while simultaneously addressing many of SSH’s short-
comings through a cryptographically-mediated delegation
scheme, native host identification based on lessons from TLS
and ACME, client authentication for modern enterprise en-
vironments, and support for client roaming and intermittent
connectivity. We present concrete design requirements for a
modern remote access protocol, describe our proposed pro-
tocol, and evaluate its performance. We hope that our work
encourages discussion of what a modern remote access pro-
tocol should look like in the future.

1 Introduction

SSH (Secure Shell or Secure Socket Shell) is the de facto net-
work protocol for server remote access and one of the most
widely used cryptographic protocols after Transport Layer
Security (TLS) [16,62,120]. First introduced in 1995, SSH-1
replaced rsh, rlogin, and rexec, and enabled secure remote
shell access [123]. The Internet Engineering Task Force
(IETF) later standardized SSH-2 in 2006, both addressing
several security issues and formally documenting the proto-
col. Since then, SSH has been iteratively updated and is now
standardized across 20 RFCs. Today, SSH usage remains
widespread [44,54,76], used for both remote access and tun-
neling cleartext protocols like rsync [116].

Despite SSH’s longevity, the protocol has several recog-
nized shortcomings. At its cryptographic foundation, re-
cent work has uncovered downgrade attacks [13] and sur-

*Work conducted primarily at Stanford University.
I'Source code available: https://github.com/hop-proto/hop-go

Stanford University

Wilson Nguyen Laura Bauman
Stanford University Stanford University

David Adrian Zakir Durumeric
Independent Stanford University

faced privacy leaks [2, 89,92]. A long string of work has
also demonstrated shortcomings in SSH’s user and host au-
thentication mechanisms [11,39,58,117,119] resulting in the
original creator of SSH, Tatu Ylonen, calling for fundamen-
tally re-thinking SSH’s host authentication [124]. Beyond
the protocol itself, there have been repeated challenges with
common implementations. The de facto OpenSSH imple-
mentation is heavyweight and has deviated from the SSH-2
protocol to meet user needs; the IETF revived the SSH work-
ing group in 2024 to reconcile these differences [65]. Alter-
natives like Dropbear have attempted to shrink the protocol’s
software footprint, but have been riddled with remotely ex-
ploitable vulnerabilities [4,6,41,63,68,84,111].

Several prior works have proposed iterative improvements
to SSH that maintain its fundamental structure. Winstein
et al. introduced Mosh [121], a remote terminal protocol that
uses SSH for authentication, but transitions connections to
UDP to support roaming users and intermittent connectivity.
Kogan et al. proposed Guardian Agent to better protect user
credentials [74]. Separately, Michel et al. proposed rebuild-
ing SSH on QUIC and HTTP/3 [86]. None of these patches
have seen widespread adoption. Yet, in other domains, pro-
tocols like Wireguard [43] have shown that our community
is willing to adopt altogether new approaches.

The significant changes to SSH that would be needed to
address modern security requirements suggest that it may
be time to consider a clean-slate approach to server remote
access. In this work, we systematize today’s requirements
and we introduce Hop, a simple and secure remote access
protocol. Beyond introducing a lightweight cryptographic
foundation, Hop addresses several long-standing problems in
SSH by (1) adding secure credential delegation, (2) eliminat-
ing “trust-on-first-use” server authentication through a native
Automatic Certificate Management Environment (ACME)
inspired protocol [1], and (3) enabling roaming and unreli-
able tunneling through a UDP-based transport. We provide a
reference implementation in Go!, which we evaluate across
a geographically distributed testbed. We demonstrate com-
parable throughput to OpenSSH, but with faster connection

https://github.com/hop-proto/hop-go

establishment and improved terminal responsiveness.
Our work makes the following contributions:

1. We survey prior cryptanalysis of the SSH protocol, re-
ported weaknesses, proposed improvements, and mod-
ern enterprise needs, from which we systemize the de-
sign requirements for a modern remote access protocol;

2. We introduce Hop, a three-layer network protocol en-
semble that provides a lightweight cryptographic foun-
dation, reliable and unreliable network transport, and a
more secure SSH remote access alternative;

3. We evaluate Hop under real-world conditions and show
that it can provide comparable throughput, lowered la-
tency, and improved security and privacy guarantees.

‘We hope that our work prompts conversation on the future of
server remote access protocols.

2 Protocol Requirements

Here, we overview shortcomings in SSH and modern needs,
which we use to develop concrete protocol requirements.

2.1 Simple Cryptographic Protocol

In 2023, Baumer et al. demonstrated that SSH is vulnerable
to cipher attacks, showing that an attacker can downgrade
the public key algorithms for user authentication and
disable eavesdropping protections because SSH does not
protect the full handshake transcript [13]. Historically,
protocol complexity has repeatedly led to protocol logic
bugs [2,3,10,20,23,57,90,104]. In contrast, WireGuard [43]
stands out in the Virtual Private Network (VPN) domain
as a simple versioned protocol composed of modern cryp-
tographic primitives. Despite WireGuard’s simple design,
the protocol improved VPN performance [82] over historic
options like OpenVPN and IPsec [71].

Requirement 1. Hop’s handshake must provide down-
grade resistance, handshake integrity, session uniqueness,
and replay resistance. The handshake should use a fixed,
versioned set of cryptographic primitives with no in-band
negotiation, such that any unsupported version or parameter
results in explicit handshake failure. These properties must
hold against an active network adversary capable of observ-
ing, modifying, replaying, and reordering packets.

2.2 Trustworthy Host Identification

Today, SSH users primarily rely on “trust-on-first-use”
(“tofu”) to authenticate servers [119]. Unfortunately, Gut-
mann showed that most users will blindly accept SSH server
keys [58]. Several works have explored whether alternative
key representations help users more effectively verify iden-
tity keys [11,39, 117]. Wendlandt et al. proposed Perspec-
tives, a system in which multiple vantage points are used to

verify server host keys [119]. However, none of these meth-
ods have been adopted by the core protocol.

In 2019, the creator of SSH, Tatu Ylonen, agreed with
Gutmann, noting that “users do not understand the warnings
about changed host keys and even for experts, verifying the
keys is too cumbersome to do reliably.” Critically, he argued
that “the host authentication in SSH is not reliably serving its
function of preventing man-in-the-middle attacks. Thus, the
mechanism needs to be augmented or replaced by a mech-
anism that provides better security and smoother operations
in large environments.” and called for a new approach [124].

Requirement 2. Hop must enable clients to reliably ver-
ify servers’ identities to prevent man-in-the-middle attacks
during any connection, including the first. Server authenti-
cation must fail if identity verification cannot be completed
successfully. This requirement must hold against an active
network adversary capable of intercepting, modifying, or in-
jecting messages, even if the attacker compromises the hand-
shake initiator’s long-term authentication key (KCI).

2.3 Extensible Client Verification

SSH is primarily used in situations where a relationship and
out-of-band communication channel exist between client and
server operators. Despite this, there is no in-protocol mech-
anism built-in for providing or verifying key material dis-
tributed out-of-band, short of distributing known_hosts and
authorized_keys files, and non-standard authentication re-
mains a challenge for many enterprises [106]. Recently, in
2025, Kayali et al. introduced SSH-Passkeys as a password-
less approach to client authentication [70]. Similarly, Cloud-
flare has implemented OAuth-based SSH authentication us-
ing OPKSSH [61]. Other authentication mechanisms include
external, hardware-backed FIDO2 authentication [126].

Requirement 3. Hop must natively support client authen-
tication mechanisms that leverage existing out-of-band trust
relationships. Authentication must fail under long-term iden-
tity compromise or unauthorized reuse of delegated author-
ity. These guarantees must hold even when authentication is
performed via intermediate hosts or delegated actions.

2.4 Privacy and Confidentiality

The SSH protocol acts as an oracle that allows querying
whether a given public key is accepted by a server, without
first proving ownership of the private key [89,92,105]. While
OpenSSH does not recognize this as a vulnerability [88], op-
erators typically do not expect such information to be ex-
posed, and it can unintentionally reveal the server ownership
unless all users have single-use keys. Passively observable
SNI values have also been used for censorship [127].

Requirement 4. Hop servers must not act as oracles for ac-
tive adversaries and must hide private information, including
SNI, from passive network observers. Additionally, Hop’s

handshake must ensure client identity hiding with forward
secrecy against unknown or unauthenticated servers.

2.5 Secure Credential Delegation

Key forwarding attacks are a known shortcoming of SSH,
which “allows remote machines (delegates) to authenticate
as the user, without knowing which remote machine is ask-
ing, what command it will run, and what server it will run
it on.” [74]. To support delegation, SSH uses ssh-agent to
“forward” keys from the client to a delegate server, allow-
ing the delegate to access the target server using the user’s
identity. This forwarding model enables any process with
root access on the delegate server to authenticate as the user
without user confirmation [74]. This weakness has enabled
lateral movement in repeated attacks where adversaries pivot
across systems using stolen or forwarded credentials [95].
Despite bundling ssh-agent, many users fail to configure it
correctly, and instead copy their private key material to re-
mote hosts, which is an even larger security weakness.

Requirement 5. Hop must support secure client creden-
tial delegation without exposing long-lived credentials. Del-
egated credentials must be bound to a specific user, action,
target, and validity period, and must not be reusable beyond
their intended scope. These guarantees must hold even if
delegate hosts are compromised.

2.6 Secure Transport for Unreliable Traffic

QUIC [67] popularized the use of UDP for HTTP, eliminat-
ing the need for a three-way handshake to establish a trans-
port connection. UDP further supports roaming, intermittent
connectivity, fast session resumption, and efficient transmis-
sion of small amounts of data at a time. This allows securely
tunneling UDP-based protocols, avoids potential slowdowns
associated with tunneling TCP over TCP [34], and enables
native support for UDP-based applications. A prominent ex-
ample is Mosh: a UDP-based alternative to SSH that “sup-
ports intermittent connectivity, allows roaming, and specu-
latively and safely echoes user keystrokes for better interac-
tive response over high-latency paths.” [121]. Mosh relies
on SSH for connection setup and authentication before tran-
sitioning to a secondary UDP channel for remote access.

Requirement 6. Hop must support secure communication
over unreliable networks while preventing an unauthenti-
cated adversary from causing the server to emit responses
larger than the triggering request. Intermittent connectivity
and roaming must preserve authentication and must not en-
able session hijacking or spoofing.

2.7 Constrained Environment Support

A large body of work has shown that (D)TLS and QUIC
remain unnecessarily heavyweight for embedded devices

where SSH is often deployed [8, 76], despite numerous pro-
posed modifications [12, 31, 60, 94, 99, 115, 118]. These
characteristics make them poor alternatives to a dedicated
lightweight protocol, regardless of their recent updates, for-
mal proofs, and suggestions as potential alternatives to
SSH [21,22, 35, 36,40, 85, 86]. Beyond the protocols them-
selves, server authentication in both (D)TLS and QUIC is
typically achieved through a supporting PKI in which Cer-
tificate Authorities (CAs) issue ASN.1-based X.509 certifi-
cates; the flexibility and inherent complexity of ASN.1 and
X.509 continue to pose challenges for the WebPKI ecosys-
tem [29,32,46,72,77,108, 114].

Several papers have proposed modifications to QUIC and
(D)TLS to better suit embedded devices. Raza discusses how
(D)TLS needs to be altered to fit within 6LoWPAN packets
(e.g., when transporting CoAP requests) [103]. Gallenmiiller
identified that cryptographic operations are the main cost
factor of (D)TLS and suggested using more efficient ciphers
like ChaCha20 [53]. Others propose altering (D)TLS to sup-
port more efficient handshakes without X.509 and public-key
exchanges [28, 60, 80, 102, 107]. Others propose modifica-
tions to X.509 certificates for IoT environments [52,83,110].
Tange introduces ratchetTLS, a symmetric-ratchet-based ex-
tension to TLS 1.3 that allows IoT devices to more efficiently
use O-RTT TLS sessions [113].

Requirement 7. Hop must operate in computationally
constrained environments without requiring complex parsing
or validation logic. Protocol credentials must follow a fixed,
deterministic validation path with a bounded size. These
properties must hold under adversaries attempting to exploit
implementation complexity.

2.8 Post-Quantum Security

Current secure-channel protocols are in the process of tran-
sitioning to post-quantum key establishment [5,7,9, 18, 64,
101]. NIST has standardized ML-KEM as a replacement for
classical Diffie-Hellman key exchange [97], and has explic-
itly stated that Internet protocols may retain classical authen-
tication (peer identity establishment) mechanisms during the
transition to post-quantum cryptographic standards [47].

Requirement 8. Hop must ensure post-quantum forward
secrecy against adversaries capable of recording encrypted
traffic. Compromise of long-term authentication keys must
not retroactively compromise confidentiality.

3 Threat Model

We describe the threat model that Hop protects against:

Network Adversary. An adversary with full control over
the network may observe all traffic [112], interfere with
packet delivery, and actively manipulate message contents
or timing [42]. Such an adversary can attempt scanning or

HTTPS Quic SSH Hop
- HTTP
Application l HTTP ‘ Connection
--------------------------------- Streams o I—,Userauth o)
Security LS
_________________________________ [rmn | | e |
Transport TCP TCP
UDP

Network [P]

Figure 1: Layered Architecture—Hop is composed of three
sub-protocols: Hop Transport, Hop Tubes, and Hop Remote
Access. Similar to QUIC, Hop is responsible for transport-
layer functionality through application-layer functionality.

probing to discover running services [44,45,54,92], launch
replay or downgrade attacks [13], or try to shape the hand-
shake transcript in ways that induce inconsistent or malicious
states [13]. We also assume the attacker may abuse UDP-
based network protocols [75].

Endpoint Adversary. An attacker may compromise
semi-trusted delegate hosts [74], steal long-term private
keys, obtain previously issued intent-grant credentials, or ex-
ploit implementation vulnerabilities such as unchecked pars-
ing logic or memory-safety errors [14, 55]. We also as-
sume the adversary may record encrypted traffic today and
attempt decryption in the future using large-scale quantum
resources [18], known as (“harvest now, decrypt later”).

4 Hop Protocol Overview

In this section, we introduce Hop, a new protocol that pro-
vides secure, modern, and privacy-preserving remote access
and meets the requirements set forth in the previous section.
Hop is composed of three sub-protocols: (1) a lightweight
cryptographic transport layer (Hop Transport), (2) a reliable
and best-effort connection multiplexing layer (Hop Tubes),
and (3) an application-layer protocol (Hop Remote Access)
that provides a remote shell (Figure 1). While the top-most
application layer depends on functionality provided by the
lower layers, the lower Hop Transport and Hop Tubes layers
can be used in other contexts (e.g., [oT-cloud communica-
tion). In this section, we briefly describe each layer and the
motivation behind the proposed division of responsibilities.

Hop Transport. Hop Transport is a lightweight transport-
layer cryptographic foundation that foregoes per-handshake
cryptographic agility and instead uses a single duplex con-
struction [37] for all symmetric cryptographic operations.
Hop Transport operates over UDP, delegating reliability and
ordering responsibilities to the upper Tubes layer. This al-
lows efficiently tunneling UDP protocols (e.g., Mosh [121]),

supporting both reliable and best-effort streams over a single
tunnel, providing seamless client roaming, and supporting
other use cases that do not require reliability.

Hop Tubes. Hop Tubes extend the cryptographic trans-
port layer to provide multiplexed reliable and best-effort
communication channels, which we term ‘“tubes.” (We
choose not to call these “channels” due to a naming colli-
sion with Go Channels.) Hop supports multiple simultane-
ous tubes over a single transport connection, each of which
can have their own reliability and congestion control config-
uration. For example, the Hop Remote Access application-
layer protocol uses a reliable channel for control messages,
but a best-effort channel for UDP port forwarding.

Hop Remote Access. Building upon the lower transport
and connection layers, we introduce a new secure remote ac-
cess protocol that improves SSH by providing secure identity
forwarding, IP roaming, improved client authentication, and
server identity (e.g., automatic server certificate issuance and
short-lived client certificates).

We implement Hop in approximately 18K Lines of Code
(LoC) in Go (Transport: 6k LoC, Tubes: 2k LoC, Remote
Access: 5k LoC, Tests: 5k LoC) as reported by cloc [38].
In the following three sections, we detail each layer, their
security guarantees, and their interactions.

S Hop Transport Protocol

Hop Transport provides a lightweight cryptographically pro-
tected channel between two mutually authenticated end-
points. Contrasting complex protocols like TLS, SSH, and
QUIC, which allow for cryptographic agility, Hop Transport
defines a static set of lightweight cryptographic primitives
for authentication and key exchange derived from the Noise
Protocol Framework [100]. Noise provides several formally
verified handshake patterns [24,73,81] that minimize imple-
mentation and reduce network round-trips (Req. 1). Since
remote access users typically have a preexisting relationship
or established communication channel with server operators,
Hop uses protocol versioning to adapt to cryptographic de-
velopments rather than in-handshake negotiation.

In addition, we introduce a lightweight certificate format
and an ACME-like [1] extension that enables automated cer-
tificate issuance (Req. 2). This allows consistent but flexible
client and server identity verification without incurring the
complexity and overhead associated with ASN.1 and X.509.

5.1 Connection Establishment

Hop Transport supports two modes of operation: discover-
able mode, which uses the Noise XX handshake, and hidden
mode, which uses the Noise IK handshake [100]. While the
standard Noise XX handshake pattern requires 1.5 round-
trips for key exchange and authentication, we extend the

handshake by one round-trip to prevent denial-of-service at-
tacks and to enable post-quantum forward secrecy. This ex-
tra round-trip is not required in Hop hidden mode as a client
ensures the same security properties in a single round-trip,
but must know the server static key a priori through out-
of-band communication. Beyond the handshake efficiency
(two messages), Hop hidden mode—built on UDP—also en-
ables Hop servers to remain completely transparent to scan-
ners and unauthenticated clients, in part fulfilling our privacy
Req. 4. Hop servers will immediately fail the handshake if
the version number does not match the one advertised in the
first client message (§5.4).

We mitigate the ‘“harvest now, decrypt later” attack
posed by future quantum computers [109] by ensuring that
ephemeral key exchanges use NIST standardized PQ-safe
Key Encapsulation Mechanisms (KEMs) [97]. While the
Noise Framework was originally designed to be instantiated
with Diffie—-Hellman functions [100], we specifically build
on Angel et al.’s proposed PQNoise as a secure replacement
of Diffie-Hellman key exchanges with KEMs [7]. How-
ever, unlike PQNoise, Hop’s authentication remains based
on static Diffie-Hellman keys. This allows each primitive
to serve a distinct security goal, without conflating assump-
tions. This approach reduces the transmission of large post-
quantum KEM keys and secrets, while ensuring long-term
post-quantum forward secrecy (Req. 8).

While Noise is used for Hop’s handshake pattern, it does
not dictate the cryptographic primitives used for key deriva-
tion, hashing, encryption, and authentication. To minimize
code size and complexity, Hop Transport relies on duplex
objects based on a single permutation from which all of sym-
metric cryptography can be derived. Specifically, we use
the Cyclist [37] duplex construction instantiated with Kec-
cak (the permutation used for SHA-3 [48]). Cyclist is a
modern, lightweight duplex construction that can be instanti-
ated using any sponge permutation. Hop could similarly use
ASCON in place of Keccak, now that it has won the NIST
Lightweight Cryptography contest [96]. In the case of an
update of the cryptographic primitives, we will deprecate the
current version and move to a new major one, thus prevent-
ing cryptography downgrade attacks (Req. 1).

We extend Noise with Cyclist, similar to the Disco [122]
and Strobe [59] frameworks. Since duplex objects can be
used to implement pseudorandom functions (PRFs), hash
functions, authenticated encryption, message authentication
codes (MACs), key derivation functions, and support ratchet
operations, Hop Transport replaces all symmetric crypto-
graphic algorithms and objects with a single duplex object
that is continuously updated. In each handshake message,
the transport parameters, KEM keys and their shared secret
keys, and Diffie-Hellman results are sequentially “absorbed”
into the running duplex state, and MACs are “squeezed” out
and appended to each sent message to provide message in-
tegrity and transcript consistency (Req. 1). After the hand-

>

Client Hello [ekem] Client Request

e | o

Server Hello [E(ekem), cookie]
e i

<

Server Response

Client Ack [e, cookie, SNI] Transport Messages

>
>

i Server Auth [e, certs, connID]
<

<

Client Auth [certs, connID]

Transport Messages

(a) Discoverable Mode (b) Hidden Mode

Figure 2: Connection Establishment—Hop supports two
modified handshakes that use Diffie—Hellman static keys for
authentication and post-quantum ML-KEM for forward se-
crecy. Hop Discoverable Mode extends Noise XX, and Hop
Hidden Mode adapts PQNoise IK.

shake is completed, Hop Transport uses a standard AEAD
record construction using the same primitives.

Both handshake participants maintain their own duplex
state and verify that their views of the ongoing handshake
are identical by validating received MACs on each mes-
sage. Duplex objects also allow for incrementality [15], en-
abling output MACs and derived keys to be computed with-
out buffering handshake data or maintaining multiple hash
chains, making them efficient at authenticating the full tran-
script of operations at each step of the protocol. As a result,
implementations of Hop Transport benefit from a significant
reduction in code size and working memory, which facili-
tates security audits, a factor important for many embedded
devices with limited resources (Req. 7).

5.2 Discoverable Mode Handshake

The Hop Discoverable Mode handshake extends the Noise
XX pattern (Figure 2a). In a standard XX construction,
the client initiates the connection by sending a clear-text
ephemeral public key, to which the server replies with its
own clear-text ephemeral public key, followed by its static
public key encrypted using the Diffie-Hellman result be-
tween both ephemerals (ee). In the last handshake message,
the client sends its static key encrypted using key material
influenced by the Diffie-Hellman result between the client
ephemeral and server static (es) and all prior transport pa-
rameters. Finally, both parties perform a Diffie-Hellman
key exchange between the client static key and the server
ephemeral key (se) to complete the handshake.

To provide post-quantum forward secrecy and prevent
Hop servers from becoming UDP DoS amplifiers, Hop in-
troduces an additional round trip before the standard Noise
XX sequence. This modification is inspired by PQNoise [7]

and integrates ML-KEM for the initial key exchange.

— ekem
— Encaps(ekem),cookie

— e, ekem,cookie
—e,ee, s, es

— S,5€

Fields highlighted in blue in the Hop handshake are ad-
ditions beyond the original Noise XX pattern. ekem de-
notes the client ephemeral ML-KEM encapsulation key.
Encaps() is the ML-KEM ciphertext encapsulating the post-
quantum shared secret using that key. e and s represent the
Diffie-Hellman ephemeral and static public keys, respec-
tively, and ee, es, and se denote the corresponding derived
Diffie-Hellman shared secrets.

A client initiates a handshake by sending a Client Hello
message to the server, which communicates the client’s ML-
KEM ephemeral encapsulation key for the session. As with
all handshake messages, the client’s duplex object com-
putes a MAC and attaches it to the client hello. The client
hello elicits a Server Hello with a ML-KEM encapsulated
shared secret and a handshake cookie: an authenticated-
encryption block that encrypts the server ephemeral shared
secret key with associated data consisting of the client ML-
KEM ephemeral encryption key, IP address, and port.

The client sends this cookie back to the server in the next
message, demonstrating that it is maintaining handshake
state prior to being authenticated. The cookie decryption key
can be rotated by the server on a regular basis (e.g., every two
minutes), and the corresponding encryption key never needs
to be revealed beyond the server process, nor is it directly
used as part of the handshake. This symmetric construction
does not compromise the long-term post-quantum security
of the handshake and enables a stateless handshake from the
server’s perspective before client authentication. The size of
the server hello message is equivalent to the client hello to
account for Req. 6 and DDoS amplification.

After the client receives the cookie, the handshake in-
formation is encrypted with the post-quantum shared secret
from the ephemeral KEM keys. Hop’s handshake then re-
turns to the traditional Noise structure using Diffie—Hellman
keys. The client replies with a Client Acknowledgement
to send its Diffie—-Hellman ephemeral public key, echo the
cookie back to the server, and indicate the hostname or
Server Name Identification (SNI) it is trying to connect to.
This design follows our specification of Req. 4, hiding the
SNI to eavesdroppers. Since the duplex state is fully en-
coded in the cookie, the server can use it to reconstruct the
full handshake transcript and decrypt the hostname.

The server replies with a Server Authentication message
that contains (1) a unique connection ID, (2) an encrypted
server certificate chain, and (3) a certificate authentication

tag. The connection ID identifies the Hop Transport connec-
tion for post-handshake transport messages independent of
the IP/port 4-tuple, allowing connections to roam across IP
addresses (Req. 6) in a manner similar to QUIC [78]. Cer-
tificate chains in Hop Transport are always linear and are at
most length three (leaf, intermediate, root). We further de-
tail Hop Transport identity and authentication in Section 5.6.
The certificate authentication tag is derived from the duplex
state and allows the remote party to validate the authenticity
of the certificate prior to parsing it and performing key ex-
change. When the client receives the server authentication,
it validates the server and sends a symmetric Client Authen-
tication message, which completes the handshake.

After verifying the final MACs, both parties are authenti-
cated, have an identical view of the handshake transcript, and
have shared secrets from ML-KEM ephemeral and deriva-
tion of Diffie—-Hellman key pairs (ephemeral and static, pre-
venting KCI Req. 2). Hop Transport’s cryptography allows
subsequent transport messages to benefit from sender and re-
ceiver authentication, as well as strong message forward se-
crecy (Req. 8). Further details can be found in Appendix A.1.

5.3 Hidden Mode Handshake

To hide from network scanners and minimize abuse, Hid-
den Mode uses a single round-trip handshake that requires
the first handshake message to authenticate the client (Fig-
ure 2b). Hop Hidden Mode handshake’s design is based on
the PQNoise IK pattern [7], but uses Diffie—Hellman static
keys in Hop certificates for authentication. This change in
the PQNoise IK pattern enables Hop to conserve lightweight
certificates and results in the following flow:

<« skem

— Encaps(skem), ekem, s

+ Encaps(ekem), s,ss

Here, skem is the static ML-KEM encapsulation key and ss
is the Diffie-Hellman calculation of the certificates keys dur-
ing the key exchange. All other notations are the same as de-
scribed in the Hop Discoverable Mode. Fields highlighted in
green indicate modifications to the use of Diffie—Hellman
keys compared with the original PQNoise IK pattern [7].

In the Hidden Mode, the server ML-KEM static encapsu-
lation key is distributed out-of-band prior to handshake. It
can also be generated and transmitted during a previous ses-
sion using a Discoverable Mode handshake. Unlike the Dis-
coverable Mode, there is no need to modify the IK pattern to
prevent DoS attacks (Req. 6), as the client must authenticate
in the first message. The resulting security guarantees of the
Hop Transport connection remain identical to those provided
by the Hop Discoverable Mode handshake.

The client begins by sending a Client Request message
that contains: (i) the ML-KEM client ephemeral encapsula-
tion key, (ii) a (KEM) ciphertext of the shared secret keys
encapsulated by the ML-KEM server static key (iii) an en-
crypted Hop Certs chain authenticating the client, (iv) an au-
thentication tag, and (v) an encrypted timestamp. Like in
Discoverable Mode, the tag allows the remote party to vali-
date the authenticity of the certificate prior to parsing. The
timestamp is necessary to prevent replay attacks (Req. 6).
Note that the server does not respond to messages from
clients that do not know the server key, allowing it to re-
main “hidden”. The server responds with a Server Response
message that contains (i) a ML-KEM ciphertext of a second
shared secret encapsulated by the ML-KEM client ephemeral
key, (ii) an encrypted Hop Certs chain authenticating the
server, (iii) an authentication tag, and (iv) a connection ID.

After authentication, both client and server derive the fi-
nal transport keys in a manner identical to the discoverable
handshake. To retrieve the key pair used to encrypt the client
request, a server with a multi-host configuration will loop
through the configured hosts to match the static key used by
the client to encrypt the client request. The number of hidden
hosts should therefore be kept small to ensure performance.
Additional information about the Hop Hidden Mode hand-
shake and its messages is available in Appendix A.2.

5.4 Handshake Failure

By design, there are no branches in either handshake ex-
cept for failures due to a rejection, timeout, or error. On a
failed handshake or handshake packet loss, both sides will
discard local state and remain silent except for a certificate
validation failure. In this case, both parties still complete the
handshake, but the rejecting party will immediately close the
newly established connection by transmitting a Connection
Close message (encrypted to prevent UDP spoofing, Req. 6).

5.5 Key Derivation

After a successful Hop Transport handshake, the client and
server have a post-quantum safe shared secret key from the
ephemeral KEM and Diffie-Hellman results from client and
server static keys. They both have identical duplex objects
keyed using each of these key pairs. Hop Transport then
uses the duplex object to derive two encryption keys: one
for client-to-server transport messages and one for server-to-
client transport messages.

5.6 Identity and Authentication

Hop uses lightweight certificates to authenticate servers and
clients. While the Noise framework does not specify how to
verify a remote party’s static public key, Hop explicitly in-
tegrates PKI-based authentication into the handshake. Hop

Certificate Certificate
Requester Authority
B Hop Discoverable Mode Handshake
€ . g
2 Requester sends server identifier (e.g.,
'é domain name) and server connection key
-1
2 CA validates the
9 Requester CA sends CA deployment key and . i
o updates the a random challenge token s.erver |dem! er
) via a Hop Hidden
server with the Mode Handshak
i lode Handshake
= | challenge token Requester mfurms CA that "
- challenge is complete with the server to
» and CA
® 0 request the
= '.3 deployment key
E o CA verifies that requester controls challenge token
S the identifier
=22
- Requester makes certificate
Lo request for the identifier
® O
o c
£5
t o CAissues certificate
3e

Figure 3: Certificate Issuance Protocol for Servers—
ACME enables Hop Transport to support automatic certifi-
cate issuance. For Hop clients, Identifier Validation may take
some other form, such as an OAuth authorization request.

uses certificates that (1) minimize parsing and validation
complexity, (2) provide a fixed and deterministic validation
path, and (3) fit within a single handshake message without
fragmentation, consistent with Req. 7.

Existing certificate formats, including X.509, do not sat-
isfy these constraints. X.509 is complex [55], has a long
history of configuration errors [46], incorrectly issued certifi-
cates [77], and its processing overheads preclude constrained
devices [98]. While it is possible to fit X.509 certificates into
small enough packets for Hop [56], it is not possible to sim-
plify the parsing logic to meet Req. 7. X.509 certificates can
include arbitrary extensions [27], which means that any im-
plementation must parse and interpret extensions that it has
never seen before. Rather than adopt a subset of X.509, we
introduce a lightweight certificate structure with the minimal
fields needed to bind an identity to a public key (Appendix
Table 1).

Hop Certificates only support a single cryptographic algo-
rithm or scheme for each field, simplifying parsing and vali-
dation. To further simplify certificate validation, we enforce
that each certificate has at most one parent, which ensures
linear paths. We restrict the path length to be exactly three:
leaf, intermediate, and root. Hop Certs are sized such that all
Hop handshake authentication messages will never exceed a
1400 byte maximum transmission unit (MTU), eliminating
the need to reassemble certificates across L4 packet bound-
aries. Hop certificates are intentionally simple and scoped
for use within Hop, following recent guidance for maintain-
ing separate PKIs for different application domains [30].

5.6.1 Automatic Server Certificate Issuance

Hop supports clients and servers acquiring certificates signed
by a Certificate Authority (CA) through a protocol extension

based on the ACME protocol [1]. The ACME flow runs over
Hop Transport, ensuring that certificate issuance inherits the
security properties of Hop. It requires only that the certificate
application obtain the CA root certificate out-of-band (e.g.,
during ACME client or Hop installation).

The Hop issuance protocol consists of three phases: (1)
Registration, (2) Identifier Validation, and (3) Certificate Is-
suance (Figure 3). During Registration, the requester con-
nects to a CA using a Discoverable Mode handshake and
sends the identifier it wants a certificate for (e.g., domain
name) as well as any information needed to complete Iden-
tifier Validation. For example, the requester would send the
domain name and an ephemeral KEM key that the CA will
use to validate that the requester controls the domain name.

Identity validation can take various forms. For a Hop
server, identity validation means confirming that the re-
quester can operate a Hop server on the requested domain
name or IP address. For a client, identity validation may
include performing an OAuth authorization request or other
forms of verification. To validate that a Certificate Requester
owns a domain name, the CA sends the Requester a 256-bit
challenge string and a Hop client KEM key. The Requester
then creates a Hop server on the requested domain name and
creates a special authorization grant for the CA’s client KEM
key that allows the CA to retrieve the challenge. The CA then
connects to the Requester’s Hop server using a Hop hidden
mode handshake and verifies that the requester can correctly
echo back the challenge string. Finally, the Requester sends
the CA the name and public key they want signed in their
certificate. The CA ensures that the requested name matches
the validated name and sends over the signed certificate. This
mechanism allows server identity verification (Req. 2).

5.6.2 Client Authentication

Unlike TLS and QUIC, client authentication is required for
all Hop handshakes. Enterprises increasingly rely on client-
side certificates for remote-access authentication, while IoT
infrastructures use them for device authentication [33]. Hop
is designed to explicitly support these issuance profiles.
The Hop Cert format, with its root/intermediate/leaf hierar-
chy and symmetric authentication messages, makes the pro-
cess straightforward to implement and practical to deploy
(Req. 3). Hop also supports an authorized keys file for
static authentication of client keys that have been distributed
out-of-band. Hop supports three types of client certificates:

1. CA-Signed Client Certificates: Enterprises can issue
short-lived, CA-signed certificates to users as part of
their authentication infrastructure, for example, via Hop
ACME or custom distribution mechanisms.

2. Self-Issued Client Certificates: Clients may generate
their own certificates and distribute their public static
key out-of-band, similar to SSH public keys today.

3. Ephemeral Client Certificates: Hop’s delegation
scheme (§7.3) issues short-lived certificates to securely
enable delegation.

5.7 Session Establishment

Once a Hop Transport connection is established, the server
authenticates the client through certificate-based verification
before allowing access to network services. If the client is
authorized, the Hop session is considered fully established,
and the server begins processing service requests.

6 Hop Tubes Protocol

The Hop Tubes layer sits above Hop Transport, providing an
interface to build secure applications that run over the en-
crypted and authenticated transports. Applications can use a
single transport connection to multiplex several logical chan-
nels, called “tubes,” which support either reliable or best ef-
fort communication directly aligning with the Req. 6. Each
tube has a “tube type” (e.g., remote command execution, net-
work proxy, port-forwarding control), which is an identifier
that determines how the application layer should interpret
received data. The tube abstraction is inspired by a combina-
tion of stream multiplexing in QUIC and channel multiplex-
ing in SSH. Since latency is critical for interactive appli-
cations such as remote shells, Hop does not implement any
variant of Nagle’s algorithm [93].

Hop Tubes encapsulates a single tube frame (Appendix
Figure 11) within the Encrypted Data section of the trans-
port message (Appendix Figure 10). Each tube is identified
by a unique Tube ID in the frame header. Like QUIC, Hop
Tubes allocate odd-numbered Tube IDs for client-initiated
tubes and even-numbered IDs for server-initiated tubes to
avoid collisions during the tube creation. Unlike QUIC, tube
creation is explicit, much like opening a new channel in the
SSH Connection Protocol [125]. This allows each party to
restrict actions from the remote party (e.g., allowing packet
forwarding but not remote command execution) by denying
tube creation attempts for unsupported tube types.

6.1 Tube Creation

Tube creation involves a single round-trip handshake that be-
gins when the initiator sends a tube frame with the REQ bit
set to one and the Frame Number set to zero (this packet is
called a Tube Initiation Request), which eliminates the need
for sequence number synchronization. The Tube Initiation
Request contains a non-negotiable Tube ID and tube type
chosen by the initiator. The responder simply replies with a
Tube Initiation Response (RESP) indicating acceptance.
Since the entire frame (including the Frame Number) is
authenticated and encrypted within a Hop Transport mes-
sage, sequence number spoofing attacks [17] are not possi-

ble. Tube creation messages do not use explicit acknowledg-
ments, as the response is implicitly an acknowledgment of
the request. If the initiator does not receive a Tube Initia-
tion Response after some period of time, it will assume that
the tube was not created and will retransmit the request. The
initiator ignores all application data arriving before a Tube
Initiation Response and resends requests until it properly re-
ceives a corresponding response.

6.2 Tube Closing

Tubes can be closed without tearing down the entire Hop
connection. To close a tube, Hop Tubes uses the four-
way FIN-ACK/FIN-ACK handshake similar to TCP. If tube
frames are received by an endpoint after a FIN has been sent,
the endpoint will continue sending acknowledgments with
the FIN flag set to signal closing the tube. Once both end-
points have received acknowledgments for each FIN, the tube
is closed. While Tube IDs can be reused by the same Hop
connection, it is the responsibility of each end of the connec-
tion to manage its Tube IDs (odd or even) and ensure that it
does not reuse a Tube ID until it is confident that the Tube
ID is no longer in use. To prevent multiple tubes from be-
ing created with the same Tube ID, the side that initiated the
tube reserves the Tube ID for a duration of four times the
measured round-trip time (RTT) after the tube has closed.

6.3 Reliable Transport

Reliable Hop Tubes use acknowledgment-based loss detec-
tion and a congestion control algorithm similar to NewReno.
We describe these mechanisms below.

6.3.1 Loss Recovery

Reliable Hop Tubes rely on duplicated acknowledgments
to detect packet loss and a complementary Retransmission
Timeout (RTO) strategy. When the sender receives a du-
plicate acknowledgment, it retransmits the missing frame
with the same data, unlike segment coalesce in TCP [49].
Upon receiving additional acknowledgments for the same
lost frame, the sender increments the missing frame number
index and proactively retransmits subsequent frames. This
strategy anticipates burst losses and reduces timeouts. Hop
must also account for packet reordering. In TCP, best prac-
tices for loss detection rely on a reordering threshold of three
duplicate acknowledgments [25, 26]. However, packet re-
ordering is expected to be more common in Hop than in
TCP, since network elements that may observe and reorder
TCP packets cannot do so for Hop, due to encrypted Frame
Numbers. To mitigate spurious loss detection, we empiri-
cally set the reordering threshold in Hop to ten. This thresh-
old is maintained by the receiver, which issues a duplicate
acknowledgment only when the threshold is reached. The

receiver resets the reordering counter each time it transmits
a duplicate acknowledgment.

The second loss recovery mechanism in Hop using an es-
timated RTT of the network is the Retransmission Timeout
(RTO). Inspired by QUIC [66], Hop smooths its RTT cal-
culation using an exponentially weighted moving average,
assigning the new RTT sample a weight of 1/8 relative to
the previous estimate. To maintain an accurate RTT estimate
and avoid TCP retransmission ambiguity [69], Hop stores a
timestamp with each frame and updates it upon retransmis-
sion. This timestamp is only maintained on the sender side
and is not sent alongside the frame payload.

To account for network variability, the RTO is set to 9/8
of the smoothed RTT. When the RTO expires, the sender re-
transmits the oldest frame with an RTR flag. This flag no-
tifies the receiver of the congestion, requiring the receiver
to prioritize sending the latest acknowledged frame num-
ber. This mechanism serves two purposes: (i) to update the
sender with the most recently acknowledged frames in case
acknowledgments were lost, and (ii) to unblock the receiver
as frames are processed in order. If multiple consecutive
RTOs occur, the RTO timer is backed off exponentially by
duplication. If the RTO exceeds ten seconds, the sender re-
moves the corresponding frames from its retransmission list
in case the receiver has already interrupted the connection.

6.3.2 Congestion Control

Hop implements sender-side congestion using a loss-based
scheme similar to TCP NewReno [51] and its congestion
control phases: Slow Start, Additive Increase/Multiplicative
Decrease (AIMD), and Fast Recovery. In Hop, the win-
dow determines the number of outstanding frames in flight,
bounded with a minimum of ten frames and a maximum of
one thousand.

Congestion control begins in Slow Start with the conges-
tion window set to ten frames. The window doubles every
RTT until the first loss event (§6.3.1). On the first loss, the
slow start threshold is set to half of the current congestion
window, and Hop transitions out of Slow Start. On reception
of a new acknowledgment, Hop updates RTT and RTO esti-
mates, removes acknowledged frames, and adjusts the con-
gestion window. In AIMD, the window increases by one
frame per RTT. In Slow Start and Fast Recovery, the win-
dow doubles every RTT. When the window grows beyond
the slow start threshold, Hop transitions to AIMD.

When a loss occurs, Hop adjusts the window size conser-
vatively to 25% of its current size to avoid underutilization
of the network and indexes the slow start threshold on the
newly calculated value. The congestion window is never re-
duced below ten frames. For each loss, the missing frame is
immediately retransmitted to avoid further timeouts (§6.3.1).
On timeout, the sender retransmits the oldest outstanding
frame. A timeout also forces entry into Fast Recovery: the

congestion window is reduced by 25% on each retransmis-
sion. Consecutive timeouts trigger multiple retransmissions
to compensate for burst losses.

Unlike TCP, we define Hop Tubes’ congestion window as
a quantity of frames rather than bytes, which simplifies flow-
control logic at the cost of reduced precision. Hop intention-
ally overestimates the window size to better tolerate bursty
losses. Too aggressive reductions of the window size on each
loss event would require Hop to stop sending frames and
resynchronize with the receiver. Hop does not implement
pacing when transmitting frames, which results in short-term
bursts and transient congestion. We leave both pacing and a
pluggable congestion-control interface as future work.

7 Hop Remote Access Protocol

Building on the foundation provided by Hop Transport
and Hop Tubes, Hop Remote Access offers a significantly
smaller and simpler implementation (total of 18K LoC in
Go vs. 130K LoC in C for OpenSSH). In addition to the
improved security provided by lower layers such as server
identity verification, Hop introduces secure identity forward-
ing through a novel authorization grant mechanism and adds
support for roaming and intermittent connectivity.

7.1 Remote Access Services

Hop Remote Access initially supports four network services:
(1) opening a remote login shell, (2) executing a specific
command on a remote host, (3) local port forwarding, and (4)
remote port forwarding. A Hop Session can contain several
of these network services (e.g., a user can have a remote shell
and also use the same Hop Session to perform port forward-
ing). A Hop Session’s duration is tied to the lifetime of either
the remote login shell or the command being executed. If a
Hop Session is started in headless mode (no remote login or
command executed), then the session persists until the client
is manually terminated. Beyond forwarding TCP and Unix
domain socket connections over reliable tubes, Hop also sup-
ports UDP port forwarding using best-effort tubes.

7.2 Secure Delegation

SSH does not provide first-class support for delegating cre-
dentials. Rather, it uses workarounds like ssh-agent for-
warding [87], which prior work has demonstrated to be inse-
cure [74] as it gives any process with root privileges on the
remote third-party machine carte blanche to perform any ac-
tion as the user. For example, if a user forwards their key to
perform a git pull, an attacker could also open a shell on a
remote machine using that user’s forwarded key. In contrast,
a secure protocol should guarantee that the user’s local cre-
dentials will only be used to perform the requested action on
the desired server at the desired time.

Would you like to
allow
to run the command '
as
on

from Wed Apr 9 16:03:28 EDT 2025
until Wed Apr 9 16:04:28 EDT 20257
Yes

Figure 4: Secure Delegation—Intent dialogue presented
to the Principal during step @ of the authorization grant
protocol illustrated in Figure 5. If the intent is accepted
by the Principal and the Target, this intent will give the
permission to the Delegate (bob.cloud.com) to execute
a specific command as the user alice on the Target
(private.server.com) for a one-minute duration.

Kogan et al. have denoted that a delegation protocol ex-
ists between three parties: a principal, a delegate, and a tar-
get. According to their prior work, Secure Delegation Princi-
ple [74], a secure delegation protocol should guarantee that a
delegate may only act under a principal’s authority after the
principal can verify and enforce the delegate’s intent. The in-
tent consists of the who (the identity of the delegate request-
ing authorization), the what (a single action the delegate can
perform), the when (a window of time when the delegate is
authorized to perform the action) and the o whom (the iden-
tity of the target on whom the delegate can perform the ac-
tion). Hop provides users explicit control over delegation
when granting permissions. Figure 4 shows an example of a
dialog prompted to the user when a delegate server requests a
one-minute duration authorization to execute a specific com-
mand on a target server.

7.3 Authorization Grant Protocol

Hop natively provides a secure identity forwarding with a
novel delegation protocol that enables explicit delegation
through authorization grants. An authorization grant repre-
sents a short-lived, single-use, pre-approved token (called an
“intent”) that allows a semi-trusted machine (a Delegate) to
act with limited, specified authority on behalf of a trusted
machine (the Principal). Authorization grants provide the
Target with a cryptographic guarantee that the Principal gave
the Delegate permission to perform certain actions for a cer-
tain period of time. The authorization grant protocol flow
follows the design principles of Req. 5 and is illustrated in
Figure 5. There are three parties involved in the protocol:

1. Principal: A Hop client on a trusted user machine,
holding long-term credentials and managing the dele-
gation requests.

2. Delegate: A Hop client on a semi-trusted machine that
requests delegated access to the Target.

(O Connection proxied by host <—> Session establishment

®—> Authorization Grant message =~ ----- » Auth. Grant input / validation

m Delegate
Start Hop
Client Hop session establishment

>

O] Sart Hop
Intent request @
<
Hop session establishment
Approval N "
@ = e PN proxied by delegate in tube
Intent communication
® i >
Intent confirmation I:l
) N e
Intent confirmation
Auth. Grant session establishment

Figure 5: Authorization Grant Protocol—This protocol
enables secure identity forwarding, allowing a Principal to
grant a semi-trusted Delegate permission to act on a Target.
The process consists of: @ The Principal starts a Hop client
and establishes a Hop Session. @ The Delegate requests
authorization (Intent Request) for an action on the Target.
® The Principal verifies the request and asks for user confir-
mation via a dialogue (see Figure 4). If approved, the Prin-
cipal establishes a session through a handshake with the Tar-
get, proxied by the Delegate. @ The Principal sends an In-
tent Communication message to the Target. ® If the Target
approves the Intent Communication (e.g., alice is allowed
to reboot the Target), it allocates an authorization grant and
sends an Intent Confirmation message. ® The Principal re-
lays approval to the Delegate. @ The Delegate establishes
a Hop Session with the Target to execute the action, after
which the temporary authorization is revoked. Each intent,
and its corresponding action, is authorized only once, ensur-
ing controlled delegation. If either the Principal or the Target
denies the intent (® or ®), an Intent Denied message is for-
warded to the Delegate to terminate the authorization grant
process and no further steps are executed.

3. Target: A Hop server that the Delegate wants to access.

The authorization grant protocol begins with @ Hop Session
establishment between the Principal and the Delegate, au-
thenticated by the Principal identity. As the Delegate does
not have credentials to authenticate to the Target, @ it sends
an Intent Request to the Principal over the already estab-
lished Hop Session. This message includes a description
of the requested action that the Delegate wants to execute
(e.g., initiating a git pull or opening a shell) along with an
Ephemeral Client Certificate (§5.6).

Upon receiving the request, the authorization grant flow
stops and the Principal requests explicit approval from the
user (Figure 4). If the user does not consent, the Principal

sends an Intent Denied message to the Delegate and does
not proceed further in the authorization grant protocol. If
the user consents, @ the Principal initiates a proxied hand-
shake with the Target through its existing connection with
the Delegate. Once completed, @ the Principal sends an In-
tent Communication message to the Target, forwarding the
original Intent Request from the Delegate along with meta-
data indicating the Principal approval.

The Target evaluates the received Intent Communication
and, if the Delegate is authorized to perform the action on
the Target (e.g., git pull or rsync secret.txt), it cre-
ates an authorization grant for the Delegate and adds the ac-
tion information from the Intent Communication. The autho-
rization grant is stored in an in-memory mapping maintained
by the Target. This intent is scoped to a specific action and
session, and it cannot be reused. ® The target then confirms
and issues an Intent Confirmation message, which ® is sub-
sequently forwarded to the Delegate by the Principal. Using
its own identity, @ the Delegate can now establish a new Hop
session with the Target.

The Delegate may send additional Intent Requests to the
Principal if there are multiple actions it needs to perform. If
at least one of the Delegate’s Intent Requests is confirmed,
the Delegate can establish a Hop Session with the Target.
After the Delegate completes Hop Session establishment, the
Target removes the authorization grant from its in-memory
mapping so that it cannot be reused. It keeps track of the
approved actions from the authorization grant for the Hop
Session and allows each one to be performed at most once.

The authorization grants are bound to a specific set of
actions, Target, and Delegate, and are immediately invali-
dated after use or timeout. This makes this delegation non-
transitive, time-bound, and non-repayable by a semi-trusted
Delegate, and thus, limits lateral movements in a given in-
frastructure. This system can also be extended to multi-hop
delegation: if a Delegate connects to a Target that itself runs
a Hop client, that client can become a delegate in a further
chain, issuing its own intent requests back to the original
principal. This enables deep delegation chains without ex-
posing any credentials or keys to semi-trusted environments.

8 Evaluation

Having presented Hop’s design, we now evaluate both its
security properties and performance.

8.1 Security Requirements

We start by considering how our proposed protocol addresses
the requirements set forth in Section 2:

Requirement 1. Hop leverages the shared operational re-
lationship between client and server (§5) (cf. web servers
must support uncoordinated web browsers) and implements
a simple, versioned handshake protocol (§5.1) with a fixed

— 2.51 220 mm Hop-D
< 504 2.05 mm Hop-H
% L SSH
= Lo 0.98 l:'|l:8
g 1.04 9934 .

£ 0.5- 0.47 0.40

Europe Asia USA

Figure 6: Time to Shell—Hop and SSH session establish-
ment from the US. Hop initiates a session in 5 and 6 round-
trips for Hop-H and Hop-D compared to 12 round-trips for
SSH. In each case, Hop outperforms SSH due to its inher-
ent protocol design and demonstrates greater stability. RTT:
USA = 69 ms, Europe = 144 ms, Asia = 186 ms.

set of cryptographic primitives and no in-band negotiation,
ensuring downgrade resistance. All handshake messages are
authenticated using the Noise Framework (§5.2 and §5.3)
and bound to a duplex construction providing full transcript
integrity, session uniqueness, and replay resistance against
an active adversary.

Requirement 2. Hop does not rely on any weak authen-
tication mechanisms and uses certificates for both client and
server authentication (§5.6.1), preventing man-in-the-middle
attacks during the first and following connections. Hop pre-
vents initiator KCI by either combining ephemeral and static
Diffie-Hellman keys or using an out-of-band shared KEM
key. Hop is also designed to enable a semi-trusted third-
party to operate an ACME [1] certificate issuer that validates
server identity and issues credentials that chain to a root of
trust distributed in the client (e.g., a cloud provider could op-
erate an ACME server and deploy a root certificate, option-
ally constrained to the cloud network or select hostnames).

Requirement 3. Hop can be used with a “key vending
machine” in Hop, backed by web service login or backed by
single-sign-on and multi-factor authentication in enterprise
settings for client identification. The key vending machine
issues a scoped and time-limited client certificates that form
a certificate-based chain of trust, which prevents credential
theft reuse (§5.6.2). Authorization Grants bind delegated ac-
tions and key usage to a specific remote context and require
user approval from the principal client (§7.3). In Hop, client
credentials are never exposed directly in server memory, nor
as a signing oracle via Remote Procedure Call.

Requirement 4. Hop does not disclose client and server
identities to network observers by encrypting with forward
secrecy all handshake identifiers, including certificates and
SNI (§5.2). In addition, in Hop hidden mode, servers only
respond to clients possessing the correct static public KEM
key, rendering them invisible to active scanners and unau-
thenticated probes (§5.3). Hop clients never reveal their

SSH
10 —e— Hop

5 /’”
20 80 100 0 100 200 300 400 500
Delay (ms)

Throughput (MB/s)
m

Throughput (MB/s)

40 60
Bandwidth (Mb/s)

"'*0—0—.—0\.*.

SSH
—e— Hop

SSH
—e— Hop

Throughput (MB/s)
Throughput (MB/s)

0 25 50 75 100 125 150 175 200 0 2 4 6
Jitter (ms) Loss (%)

Figure 7: Performance Under Simulated Conditions—
Hop and SSH in simulation during the transfer of 1 GB
of random data. Before isolated variation bandwidth =
100 Mb/s, delay = 10 ms, jitter = Oms, and loss = 0%. Hop
shows consistent reliability comparable to SSH.

identities to unknown or unauthenticated servers.

Requirement 5. Inspired by Guardian Agent [74], Hop’s
Authorization Grant Protocol provides a cryptographically
fine-grained control over specific actions on a remote server
for a short period of time, preventing additional lateral move-
ment even if delegate hosts are compromised (§7.3).

Requirement 6. Hop prevents DoS amplification by
either generating a stateless cryptographically protected
cookie during initial contact (§5.2) or requiring an authen-
ticated client request (§5.3). Encrypted Connection IDs pre-
serve authentication during roaming and prevent session hi-
jacking or UDP spoofing, including during handshake failure
(§5.4). Hop natively supports reliable and unreliable traffic
facilitated by Hop Tubes (§6).

Requirement 7. Hop is designed for constrained environ-
ments by using lightweight certificates with a fixed, deter-
ministic validation path, and bounded size (§5.1 and §5.6).
This minimizes parsing complexity and reduces implemen-
tation risk on resource-limited devices.

Requirement 8. Hop implements post-quantum key-
establishment mechanisms. During the handshake, end-
points first perform an ephemeral post-quantum ML-KEM
key exchange [97], ensuring confidentiality of session keys
against “harvest now, decrypt later” adversaries. Au-
thentication is provided separately using classical Diffie-
Hellman-based mechanisms (§5.1).

8.2 Performance

We evaluate Hop’s performance under simulation and real-
world end-to-end tests to match important use cases for a re-
mote access protocol, considering session establishment la-
tency, throughput, and terminal responsiveness across mul-
tiple scenarios. We emphasize that our goal is not to beat
SSH’s performance: OpenSSH is a highly optimized imple-
mentation written in C, and the Linux kernel implementation

-
o
o

USA Europe Asia
20 4 o 4 4 [SSH NewReno
o B Hop
8] I SSH CUBIC
8 4 i

L B S R
Eﬁ%& = ;ﬁiﬁ%{,

Speed (MB/s)
o
oo
o

-
o

o

o

P

T T T T T T T
i0MB 100MB 1GB iomB 100MB 1GB 10MB 100MB 1GB
File Size File Size File Size

Figure 8: File Transfer Speed—Hop and SSH using TCP
NewReno and CUBIC when uploading different files from
the US to cloud-hosted servers. Hop shows comparable
throughput to SSH NewReno across the experiments, espe-
cially for small files, due to its optimistic and larger win-
dow size in its congestion control. Hop remains consistent
over the same network configuration regardless of the trans-
fer size. Hop accurately evaluates its network capabilities,
leading to fewer outliers over the transfers.

of TCP is some of the most highly scrutinized network code.
Rather, we seek to show that Hop is a fully functional imple-
mentation, capable of operating in real-world environments
with similar characteristics.

Experimental Setup. We designed our experiment to
have a broad coverage to capture network congestion effects.
For real-world experiments, we set up three cloud-based Hop
servers in the US, Europe, and Asia. We used a client lo-
cated in the US to connect via WiFi to those servers using
both Hop and SSH to compare their performance. We used
ChaCha20-Poly1305 cryptography for SSH evaluations to
ensure no cryptographic hardware acceleration is involved.

Session Establishment (‘“Time to Shell’”). We first evalu-
ated the time required to establish a non-interactive shell and
execute an initial command using SSH and Hop. For each
host, we conducted 300 session establishments, cycling be-
tween the protocols. By design, Hop uses fewer round-trips
to establish a session: 5 round-trips for Hop Hidden Mode
(Hop-H), 6 round-trips for Hop Discoverable Mode (Hop-
D), and 12 round-trips for SSH. In Figure 6, Hop shows
lower variability in connection time. The “time to shell”
metric is strongly correlated with the RTT and the number of
round-trips required to complete the handshake, and serves
as a quantitative measure of connection latency.

File Transfer Speed. = We also evaluated Hop throughput
in a controlled simulation environment to isolate the effects
of network variation. Using Mininet [79], we connected two
hosts to a router with a bottleneck link initially configured at
100 Mb/s bandwidth, 10 ms delay, no jitter, and no loss. As
shown in Figure 7, Hop utilized the network similarly to SSH
over TCP NewReno, though it exhibited about 40% lower

Local === Hop USA Hop Europe ==== Hop Asia

= SSH USA SSH Europe = SSH Asia
1.00]
0.75 A
fa
3 0.50 1
0.25 A
000) T T T
0 50 100 150

Keystroke display time (ms)

Figure 9: Keystroke latency—CDF of keystroke display
times in the Vim editor for Hop and SSH sessions. Hop con-
sistently shows lower and more tightly clustered latencies,
suggesting a more responsive experience.

throughput under bandwidth variation across experiments.

To complement the simulation, we conducted real-world
experiments by sending different files (10 MB, 100 MB,
1 GB) using the rsync tool [116] from a US workstation to
globally distributed servers. Each file transfer was repeated
at least 50 times over three days to account for variability.
As shown in Figure 8, Hop achieved stable and predictable
performance across file sizes, in contrast to SSH with TCP
NewReno and CUBIC, which were more sensitive to band-
width and latency differences. Consistent with our simula-
tion results, the throughput gap between Hop and SSH nar-
rowed as network bandwidth decreased. For 100 MB files,
TCP NewReno demonstrated highly consistent performance,
with tightly clustered quartiles. TCP NewReno sometimes
experienced significantly low congestion, resulting in similar
throughput as CUBIC. A contrario, TCP CUBIC occasion-
ally overestimates its congestion window, producing lower
throughput. Nonetheless, SSH with TCP CUBIC consis-
tently delivered the highest throughput across all regions and
file sizes, especially in the US (the shortest distance).

We attribute Hop’s behavior to its current implementation,
which extends TCP NewReno. Hop benefits from a larger
initial congestion window that accelerates transfer startup.
However, its reliance on UDP without pacing leads to more
frequent burst losses, resulting in slower linear throughput
growth compared to TCP-based congestion control. These
characteristics affect real-world performance but are tunable
and independent of the Hop security protocol itself.

Keystroke Latency. We define keystroke latency as the
time between pressing a key and seeing the character appear
on the screen. We argue that it is a critical factor for user-
perceived responsiveness in remote access protocols. To iso-
late terminal performance, we conducted measurements over
already-established sessions with a 150 ms keystroke inter-
val. We followed the methodology of SSH3 evaluations [86],
and measured latency inside the Vim text editor [91] using
the Typometer tool [50] to record the keystroke latency.

Figure 9 shows that Hop has a consistently tighter la-
tency distribution, with values closer to the actual RTT than
SSH. While part of this difference comes from Hop’s use of
UDP, which avoids mechanisms such as Nagle’s algorithm
and head-of-line blocking, it also reflects Hop’s lightweight
framing and fast processing pipeline. Hop design choices
lead to more stable and responsive keystroke rendering with-
out implementing speculative keystroke prediction [121].

9 Conclusion

In this work, we introduced Hop, a reimagined remote access
protocol. Hop avoids the complexity of SSH by being cryp-
tographically opinionated, using a key exchange handshake
based on the Noise framework, and deploying lightweight
certificates for mutual authentication. Hop’s simpler proto-
col allows for smaller implementations that are practically
verifiable and easier to deploy on resource-constrained plat-
forms. Improving upon the functionality of SSH, Hop pro-
vides native support for secure identity forwarding through
the Authorization Grant Protocol. Ultimately, Hop maintains
the core functionality of SSH while aligning better with mod-
ern use cases and using modern cryptographic best practices.
Our evaluation of Hop’s Go implementation demonstrates its
practicality. We hope our work sparks conversation about
what a modern remote access protocol should look like go-
ing forward.

Acknowledgments

We thank Keith Winstein and members of the Stanford Em-
pirical Security Research Group. This work was supported
in part by a Sloan Research Fellowship and the National
Science Foundation under Grant Number #2319080. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the funding organizations.

Ethical Considerations

‘We discuss the ethical considerations of our work below:

Stakeholders. The stakeholders in this research are: end-
users of remote access protocols; operators of the DigitalO-
cean cloud infrastructure, which hosted virtual machines for
our real-world experiments; other tenants sharing the same
infrastructure; the broader research community; and the au-
thors themselves.

Ethical Principles. We use the the Menlo Report principles
to structure our ethical considerations:

* Respect for Persons: No personal or user data was col-
lected, and no human subjects were involved.

* Beneficence: We minimized risks by conducting con-
trolled experiments and conducting real-world experi-
ences using infrastructure that we fully controlled. The
benefits are the assessment of the functioning of a new
network protocol under real-world conditions.

* Justice: The research outcomes do not exclude or dis-
advantage any specific group.

* Respect for Law and Public Interest: All tests were
conducted within our own accounts on DigitalOcean,
complying with its terms of service and within allocated
resource limits.

Potential Harms and Mitigation. Potential harms include:
(1) excessive load on shared infrastructure; (2) unintended
interference with other tenants; and (3) insecure deployment
if Hop were prematurely adopted. To mitigate (1) and (2),
we limited traffic volumes to remain within typical usage
patterns for rented virtual machines and continuously moni-
tored for abnormal behavior (such as overconsumption of the
resources). We did not attempt to probe, measure, or inter-
act with other tenants. To mitigate (3), Hop was not publicly
deployed and was only used on controlled servers under our
own accounts, containing no sensitive or private data.
Decision to Publish. We judge that the benefits of sharing
this research outweigh the minimal risks. The protocol and
evaluation results advance the state of knowledge in secure
remote access protocols, which we argue can improve the
security and privacy of users globally long term.

Open Science

We make all artifacts including available online, including:

* Source code: Implementation of Hop client and server.

* Simulation scripts: Mininet scripts for controlled ex-
periments reproducing Figure 7.

* Measurement scripts: Scripts for session establish-
ment latency, file transfer throughput, and keystroke la-
tency experiments.

* Datasets and results: Plotting scripts used to generate
all evaluation figures.

* Documentation: A README with instructions for
running the software and reproducing experiments.

Artifacts are available at: https://doi.org/10.5281/
zenodo.17953397. We note that cloud experiments were
conducted on DigitalOcean infrastructure. Since commercial
cloud instances cannot be redistributed directly, we provide
scripts and configuration files to enable reproduction.

References

[1] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley,
A. Flores-Lopez, J. A. Halderman, J. Hoffman-Andrews, J. Kasten,
E. Rescorla, S. Schoen, and B. Warren. Let’s Encrypt: An Automated
Certificate Authority to Encrypt the Entire Web. In ACM Conference
on Computer and Communications Security, 2019.

https://doi.org/10.5281/zenodo.17953397
https://doi.org/10.5281/zenodo.17953397

(2]

[3]

(4]

[5]

(6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, et al.
Imperfect forward secrecy: How Diffie-Hellman fails in practice. In
ACM Conference on Computer and Communications Security, 2015.

N. J. Al Fardan and K. G. Paterson. Lucky thirteen: Breaking the
TLS and DTLS record protocols. In IEEE Symposium on Security
and Privacy, 2013.

C. Alberca, S. Pastrana, G. Suarez-Tangil, and P. Palmieri. Security
analysis and exploitation of arduino devices in the internet of things.
In ACM International Conference on Computing Frontiers, 2016.

N. Alnahawi, J. Miiller, J. Oupicky, and A. Wiesmaier. A Compre-
hensive Survey on Post-Quantum TLS. [ACR Communications in
Cryptology, 1(2), 2024.

O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. SoK: Security
evaluation of home-based IoT deployments. In /IEEE Symposium on
Security and Privacy, 2019.

Y. Angel, B. Dowling, A. Hiilsing, P. Schwabe, and F. Weber. Post
quantum noise. In ACM SIGSAC Conference on Computer and Com-
munications Security, 2022.

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallit-
sis, et al. Understanding the Mirai botnet. In USENIX Security Sym-
posium, 2017.

B. Auerbach, Y. Dodis, D. Jost, S. Katsumata, and R. Schmidt. How
to compare bandwidth constrained two-party secure messaging pro-
tocols: a quest for a more efficient and secure post-quantum protocol.
In USENIX Security Symposium, 2025.

N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel,
J. Steube, L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni,
et al. DROWN: Breaking TLS using SSLv2. In USENIX Security
Symposium, 2016.

M. Azimpourkivi, U. Topkara, and B. Carbunar. Human distinguish-
able visual key fingerprints. In USENIX Security Symposium, 2020.

U. Banerjee, C. Juvekar, S. H. Fuller, and A. P. Chandrakasan. eedtls:
Energy-efficient datagram transport layer security for the internet of
things. In IEEE Global Communications Conference, 2017.

F. Biaumer, M. Brinkmann, and J. Schwenk. Terrapin attack: Break-
ing SSH channel integrity by sequence number manipulation. In
USENIX Security Symposium, 2024.

F. Biaumer, M. Maehren, M. Brinkmann, and J. Schwenk. Finding ssh
strict key exchange violations by state learning. In ACM Conference
on Computer and Communications Security, 2025.

M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptogra-
phy: The case of hashing and signing. In /4th Annual International
Cryptology Conference on Advances in Cryptology, 1994.

M. Bellare, T. Kohno, and C. Namprempre. Authenticated encryp-
tion in ssh: provably fixing the ssh binary packet protocol. In ACM
Conference on Computer and Communications Security, 2002.

S. M. Bellovin. Security Problems in the TCP/IP Protocol Suite. In
Computer Communication Review, 1989.

B. Bencina, B. Dowling, V. Maram, and K. Xagawa. Post-quantum
cryptographic analysis of SSH. Cryptology ePrint Archive, Paper
2025/684, 2025.

D. J. Bernstein. SYN cookies. cr.yp.to/syncookies.html.

B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue. A
messy state of the union: Taming the composite state machines of
tls. Communications of the ACM, 2017.

K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified models and
reference implementations for the TLS 1.3 standard candidate. In
IEEE Symposium on Security and Privacy, 2017.

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

(34]

[35]

(36]

[37]

[38]
[39]

[40]

[41]

K. Bhargavan, V. Cheval, and C. Wood. A symbolic analysis of pri-
vacy for TLS 1.3 with encrypted client hello. In ACM SIGSAC Con-
ference on Computer and Communications Security, 2022.

K. Bhargavan and G. Leurent. Transcript collision attacks: Breaking
authentication in TLS, IKE, and SSH. In Network and Distributed
System Security Symposium, 2016.

B. Blanchet. Modeling and verifying security protocols with the ap-
plied pi calculus and ProVerif. In Foundations and Trends in Privacy
and Security, 2016.

E. Blanton, M. Allman, L. Wang, I. Jdrvinen, M. Kojo, and
Y. Nishida. A Conservative Loss Recovery Algorithm Based on Se-
lective Acknowledgment (SACK) for TCP. RFC 6675, Aug. 2012.

E. Blanton, D. V. Paxson, and M. Allman. TCP Congestion Control.
RFC 5681, Sept. 2009.

S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and
D. Cooper. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 5280, May 2008.

E. Boo, S. Raza, J. Hoglund, and J. Ko. FDTLS: supporting DTLS-
based combined storage and communication security for IoT devices.
In IEEE Intl. Conf. on Mobile Ad Hoc and Sensor Systems, 2019.

C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov. Using
frankencerts for automated adversarial testing of certificate valida-
tion in ssl/tls implementations. In IEEE Symposium on Security and
Privacy, 2014.

CA/Browser Forum Code Signing Certificate Working Group. Base-
line requirements for the issuance and management of publicly-
trusted code signing certificates, v3.10.0.

A. Capossele, V. Cervo, G. De Cicco, and C. Petrioli. Security as
a CoAP resource: an optimized dtls implementation for the iot. In
IEEE International Conference on Communications (ICC), 2015.

Y. Chen and Z. Su. Guided differential testing of certificate validation
in ssl/tls implementations. In 10th Joint Meeting on Foundations of
Software Engineering, 2015.

Cloudflare. What is mTLS? https://www.cloudflare.com/
learning/access-management /what-is-mutual-tls/.

I. Coonjah, P. C. Catherine, and K. M. S. Soyjaudah. Experimental
performance comparison between TCP vs UDP tunnel using Open-

VPN. In International Conference on Computing, Communication
and Security (ICCCS), 2015.

C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe.
A comprehensive symbolic analysis of TLS 1.3. In ACM SIGSAC
Conference on Computer and Communications Security, 2017.

C. Cremers, M. Horvat, S. Scott, and T. van der Merwe. Automated
analysis and verification of TLS 1.3: 0-RTT, resumption and delayed
authentication. In IEEE Symposium on Security and Privacy, 2016.

J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and R. Van Keer.
Xoodyak, a lightweight cryptographic scheme. IACR Transactions
on Symmetric Cryptology, 2020.

A. Danial. cloc software v2.04. github.com/AlDanial/cloc.

S. Dechand, D. Schiirmann, K. Busse, Y. Acar, S. Fahl, and
M. Smith. An empirical study of textual Key-Fingerprint representa-
tions. In USENIX Security Symposium, 2016.

A. Delignat-Lavaud, C. Fournet, B. Parno, J. Protzenko, T. Ra-
mananandro, J. Bosamiya, J. Lallemand, I. Rakotonirina, and
Y. Zhou. A security model and fully verified implementation for
the IETF QUIC record layer. In IEEE Symposium on Security and
Privacy, 2021.

J.D.D. H. Diego, J. Saldana, J. Fernandez-Navajas, and J. Ruiz-Mas.
ITotsafe, decoupling security from applications for a safer IOT. IEEE
Access, 2019.

cr.yp.to/syncookies.html
https://www.cloudflare.com/learning/access-management/what-is-mutual-tls/
https://www.cloudflare.com/learning/access-management/what-is-mutual-tls/
github.com/AlDanial/cloc

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

D. Dolev and A. Yao. On the security of public key protocols. [EEE
Transactions on Information Theory, 29(2):198-208, 1983.

J. A. Donenfeld. WireGuard: Next Generation Kernel Network Tun-
nel. In Network and Distributed System Security Symposium, 2017.

Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halder-
man. A search engine backed by Internet-wide scanning. In ACM
Conference on Computer and Communications Security, 2015.

Z. Durumeric, M. Bailey, and J. A. Halderman. An internet-wide
view of internet-wide scanning. In USENIX Security Symposium,
2014.

Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman. Analysis
of the https certificate ecosystem. In ACM Internet Measurement
Conference, 2013.

Dustin Moody, Ray Perlner, Andrew Regenscheid, Angela Robin-
son, David Cooper. NIST IR 8547 - Transition to Post-Quantum
Cryptography Standards. Technical report, NIST, 2024. https://
doi.org/10.6028/NIST.IR.8547.1ipd.

M. J. Dworkin. SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions, 2015.

W. Eddy. Transmission Control Protocol (TCP). RFC 9293, 2022.
P. Fatin. typometer v1.0.1. github.com/pavelfatin/typometer.

S. Floyd, T. Henderson, and A. Gurtov. The NewReno modifica-
tion to TCP’s fast recovery algorithm. Technical report, REC Editor,
2004.

F. Forsby, M. Furuhed, P. Papadimitratos, and S. Raza. Lightweight
x.509 digital certificates for the internet of things. In Interoperability,
Safety and Security in IoT, 2018.

S. Gallenmiiller, D. Schoéffmann, D. Scholz, F. Geyer, and G. Carle.
DTLS performance: How expensive is security? arXiv:1904.11423.

O. Gasser, R. Holz, and G. Carle. A deeper understanding of SSH:
results from internet-wide scans. In IEEE Network Operations and
Management Symposium, 2014.

M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The Most Dangerous Code in the World: Validat-
ing SSL Certificates in Non-Browser Software. In ACM Conference
on Computer and Communications Security, 2012.

A. Ghedini and V. Vasiliev. TLS Certificate Compression. RFC 8879.

Y. Gluck, N. Harris, and A. Prado. BREACH: reviving the CRIME
attack. Unpublished manuscript, 2013.

P. Gutmann. Do users verify SSH keys. Login, 36(4):35-36, 2011.

M. Hamburg. The STROBE protocol framework. Cryptology ePrint
Archive, 2017.

A. Haroon, S. Akram, M. A. Shah, and A. Wahid. E-lithe: A
lightweight secure dtls for iot. In JEEE Vehicular Technology Con-
ference (VIC-Fall), 2017.

E. Heilman. Open-sourcing openpubkey ssh (opkssh): integrat-
ing single sign-on with ssh. https://blog.cloudflare.com/
open-sourcing-openpubkey-ssh-opkssh-integrating-
single-sign-on-with-ssh/, Mar. 2025. Cloudflare Blog.

N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Min-
ing your Ps and Qs: Detection of widespread weak keys in network
devices. In USENIX Security Symposium, 2012.

T. Horék, M. Simon, L. Huraj, and R. Budja¢. Vulnerability of smart
iot-based automation and control devices to cyber attacks. In Applied
Informatics and Cybernetics in Intelligent Systems, 2020.

A. Hiilsing, K.-C. Ning, P. Schwabe, F. J. Weber, and P. R. Zimmer-
mann. Post-quantum wireguard. In /[EEE Symposium on Security
and Privacy, 2021.

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

(73]

[74]

[751

[76]

[(77]

[78]

[791

[80]

[81]

[82]

(83]

[84]

[85]

IETF SSHM. Secure Shell Maintenance (sshm): Charter for working
group, 2024. datatracker.ietf.org/wg/sshm/about/.

J. Iyengar and I. Swett. QUIC Loss Detection and Congestion Con-
trol. IETF RFC 9002, 2021.

J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and
Secure Transport. IETF RFC 9000, 2021.

P.-M. Junges, J. Frangois, and O. Festor. Software-based analysis of
the security by design in embedded devices. In IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM), 2021.

P. Karn and C. Partridge. Improving round-trip time estimates in
reliable transport protocols. SIGCOMM CCR, 1987.

M. Kayali, J. Schmitt, and F. Roesner. Ssh-passkeys: Leveraging
web authentication for passwordless ssh, 2025.

S. Kent and K. Seo. Rfc 4301: Security architecture for the internet
protocol, 2005.

K. Kleine and D. E. Simos. Coveringcerts: Combinatorial methods
for x. 509 certificate testing. In IEEE International conference on
software testing, verification and validation (ICST), 2017.

N. Kobeissi, G. Nicolas, and K. Bhargavan. Noise Explorer: Fully
Automated Modeling and Verification for Arbitrary Noise Protocols.
In IEEE European Symposium on Security and Privacy, 2019.

D. Kogan, H. Stern, A. Tolbert, D. Maziéres, and K. Winstein. The
Case For Secure Delegation. In ACM Workshop on Hot Topics in
Networks, 2017.

M. Kiihrer, T. Hupperich, C. Rossow, and T. Holz. Exit from hell?
reducing the impact of amplification ddos attacks. In USENIX Secu-
rity Symposium, 2014.

D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov,
R. Gupta, and Z. Durumeric. All things considered: an analysis of iot
devices on home networks. In USENIX Security Symposium, 2019.

D. Kumar, Z. Wang, M. Hyder, J. Dickinson, G. Beck, D. Adrian,
J. Mason, Z. Durumeric, J. A. Halderman, and M. Bailey. Tracking
certificate misissuance in the wild. In IEEE Symposium on Security
and Privacy, 2018.

A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi. The QUIC Transport Protocol:
Design and Internet-Scale Deployment. In SIGCOMM, 2017.

B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In ACM SIGCOMM
Workshop on Hot Topics in Networks, 2010.

P. Li, J. Su, and X. Wang. itls: Lightweight transport-layer security
protocol for iot with minimal latency and perfect forward secrecy.
IEEE Internet of Things Journal, 2020.

B. Lipp, B. Blanchet, and K. Bhargavan. A Mechanised Crypto-
graphic Proof of the WireGuard Virtual Private Network Protocol. In
IEEE European Symposium on Security and Privacy, 2019.

S. Mackey, 1. Mihov, A. Nosenko, F. Vega, and Y. Cheng. A perfor-
mance comparison of wireguard and openvpn. In ACM Conference
on data and application security and privacy, 2020.

M. Malik, M. Dutta, J. Granjal, et al. L-ECQV: lightweight ECQV
implicit certificates for authentication in the internet of things. IEEE
Access, 2023.

E. McMahon, R. Williams, M. El, S. Samtani, M. Patton, and
H. Chen. Assessing medical device vulnerabilities on the internet
of things. In IEEE International Conference on Intelligence and Se-
curity Informatics, 2017.

K. L. McMillan and L. D. Zuck. Formal specification and testing of
quic, 2019.

https://doi.org/10.6028/NIST.IR.8547.ipd
https://doi.org/10.6028/NIST.IR.8547.ipd
github.com/pavelfatin/typometer
https://blog.cloudflare.com/open-sourcing-openpubkey-ssh-opkssh-integrating-single-sign-on-with-ssh/
https://blog.cloudflare.com/open-sourcing-openpubkey-ssh-opkssh-integrating-single-sign-on-with-ssh/
https://blog.cloudflare.com/open-sourcing-openpubkey-ssh-opkssh-integrating-single-sign-on-with-ssh/
datatracker.ietf.org/wg/sshm/about/

[86]

[87]
[88]

[89]

[90]

[91]
[92]

[93]
[94]

[95]

[96]

[97]

[98]

[99]

[100]
[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

F. Michel and O. Bonaventure. Towards SSH3: how HTTP/3 im-
proves secure shells. arXiv preprint arXiv:2312.08396, 2023.

D. Miller. Openssh protocol vendor extensions, July 2008.

D. Miller. About OpenSSH “user enumeration” / CVE-2018-15473.
Message to the oss-security mailing list, Aug 2018. Message ID:

<alpine.BS0.2.21.1808241046220.67512C¢haru.mindrot.org>.

MITRE Corporation. CVE-2016-20012, 2016. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-20012.

B. Moller, T. Duong, and K. Kotowicz. This poodle bites: exploiting
the ssl 3.0 fallback. Security Advisory, 21:34-58, 2014.

B. Moolenaar. Vim, the editor, 2025. https://www.vim.org.

C. Munteanu, G. Smaragdakis, A. Feldmann, and T. Fiebig. Catch-
22: Uncovering compromised hosts using SSH public keys. In
USENIX Security Symposium, 2025.

J. Nagle. Congestion control in IP/TCP internetworks. RFC 896.

K. T. Nguyen, M. Laurent, and N. Oualha. Survey on secure com-
munication protocols for the internet of things. Ad Hoc Networks,
2015.

A. Niakanlahiji, J. Wei, M. R. Alam, Q. Wang, and B.-T. Chu. Shad-
owMove: A stealthy lateral movement strategy. In USENIX Security
Symposium, 2020.

NIST. Lightweight Cryptography. https://csrc.nist.gov/
Projects/Lightweight-Cryptography, 2017.

NIST. Module-Lattice-Based Key-Encapsulation Mechanism Stan-
dard. Technical report, NIST, 2025.

NXP. A light-weight TLS and X.509 profile. https://www.nxp.
com/docs/en/white-paper/LWTLSWP.pdf.

A. Oak and R. Daruwala. Assessment of message queue telemetry
and transport (mqtt) protocol with symmetric encryption. In Secure
Cyber Computing and Communication, 2018.

T. Perrin. The noise protocol framework, 2018.

M. Raavi, S. Wuthier, P. Chandramouli, X. Zhou, and S.-Y. Chang.
QUIC Protocol with Post-quantum Authentication. In Information
Security: 25th International Conference, 2022.

S. Raza, L. Seitz, D. Sitenkov, and G. Selander. S3k: Scalable secu-
rity with symmetric keys—DTLS key establishment for the internet
of things. IEEE Tran. on Automation Science & Engineering, 2016.

S. Raza, D. Trabalza, and T. Voigt. 6LoWPAN compressed DTLS
for CoAP. In IEEE Distributed Computing in Sensor Systems, 2012.

J. Rizzo and T. Duong. The crime attack. In ekoparty security con-

ference, 2012.

L. Roy, S. Lyakhov, Y. Jang, and M. Rosulek. Practical privacy-
preserving authentication for SSH. In USENIX Security Symposium,
2022.

K. Ruth, V. A. Rivera, G. Akiwate, A. Fass, P. G. Kelley, K. Thomas,
and Z. Durumeric. "perfect is the enemy of good": The ciso’s role
in enterprise security as a business enabler. In CHI Conference on
Human Factors in Computing Systems, 2025.

H. Sardeshmukh and D. Ambawade. A DTLS based lightweight au-
thentication scheme using symmetric keys for Internet of Things. In
International Conference on Wireless Communications, Signal Pro-
cessing and Networking, 2017.

Q. Scheitle, O. Gasser, T. Nolte, J. Amann, L. Brent, G. Carle,
R. Holz, T. C. Schmidt, and M. Wiihlisch. The rise of certificate
transparency and its implications on the internet ecosystem. In ACM
Internet Measurement Conference, 2018.

S. Schmieg, S. Kolbl, and G. Endignoux.
model for post-quantum cryptography, 2024.
bughunters.google.com/blog/5108747984306176/
google-s-threat-model-for-post-quantum-cryptography.

Google’s threat
https://

[110]

[111]

[112]

[113]

[114]

[115]

[116]
[117]

[118]

[119]

[120]
[121]

[122]
[123]

[124]
[125]
[126]

[127]

A
Al

S. Sciancalepore, A. Capossele, G. Piro, G. Boggia, and G. Bianchi.
Key management protocol with implicit certificates for iot systems.
In IoT challenges in Mobile & Industrial Systems, 2015.

M. Shobana and S. Rathi. IoT malware: An analysis of IoT device
hijacking. International Journal of Scientific Research in Computer
Science, Computer Engineering, and Information Technology, 2018.

D. X. Song, D. Wagner, and X. Tia. Timing analysis of keystrokes
and timing attacks on SSH. In USENIX Security Symposium, 2001.

K. Tange, D. Howard, T. Shanahan, S. Pepe, X. Fafoutis, and
N. Dragoni. rtls: Lightweight tls session resumption for constrained
iot devices. In Information and Communications Security: 22nd In-
ternational Conference, 2020.

C. Tian, C. Chen, Z. Duan, and L. Zhao. Differential testing of cer-
tificate validation in SSL/TLS implementations: an RFC-guided ap-
proach. ACM Tran. on Software Engineering & Methodology, 2019.

R. T. Tiburski, L. A. Amaral, E. de Matos, D. F. de Azevedo, and
F. Hessel. Evaluating the use of tls and dtls protocols in iot middle-
ware systems applied to e-health. In /4th IEEE Annual Consumer
Communications & Networking Conference (CCNC), 2017.

A. Tridgell, P. Mackerras, et al. The rsync algorithm, 1996.

D. Turner, S. F. Shahandashti, and H. Petrie. The effect of length
on key fingerprint verification security and usability. arXiv preprint
arXiv:2306.04574, 2023.

M. Vucini¢, B. Tourancheau, T. Watteyne, F. Rousseau, A. Duda,
R. Guizzetti, and L. Damon. Dtls performance in duty-cycled net-
works. In Symposium on Personal, Indoor, and Mobile Radio Com-
munications, 2015.

D. Wendlandt and A. Perrig. Perspectives: Improving ssh-style host
authentication with Multi-Path probing. In USENIX Annual Techni-
cal Conference (ATC), 2008.

S. C. Williams. Analysis of the ssh key exchange protocol. In Cryp-
tography and Coding: 13th IMA International Conference, 2011.

K. Winstein and H. Balakrishnan. Mosh: An interactive remote shell
for mobile clients. In USENIX Annual Technical Conference, 2012.

D. Wong. Noise extension: Disco, 2018.

T. Ylonen. SSH-secure login connections over the internet. In
USENIX Security Symposium, 1996.

T. Ylonen. Ssh key management challenges and requirements. In
IFIP Conf. on New Technologies, Mobility and Security, 2019.

T. Ylonen and C. Lonvick. The Secure Shell (SSH) Connection Pro-
tocol. IETF RFC 4254, 2006.

Yubico. Securing SSH with FIDO2. https://developers.
yubico.com/SSH/Securing_SSH_with_FIDO2.html.

A. Zohaib, Q. Zao, J. Sippe, A. Alaraj, A. Houmansadr, Z. Du-
rumeric, and E. Wustrow. Exposing and circumventing SNI-based
QUIC censorship of the great firewall of china. In USENIX Security
Symposium, 2025.

Appendix

Discoverable Mode

While Noise XX enables strong handshake security proper-
ties, it does not prove the validity of the public key and is not
post-quantum resistant. Over a UDP-based protocol, sending
a certificate chain does not prevent denial of service or am-
plification attacks from illegitimate clients. Consider a mali-
cious client that sends spoofed Client Hello messages, which

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-20012
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-20012
https://www.vim.org
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://www.nxp.com/docs/en/white-paper/LWTLSWP.pdf
https://www.nxp.com/docs/en/white-paper/LWTLSWP.pdf
https://bughunters.google.com/blog/5108747984306176/google-s-threat-model-for-post-quantum-cryptography
https://bughunters.google.com/blog/5108747984306176/google-s-threat-model-for-post-quantum-cryptography
https://bughunters.google.com/blog/5108747984306176/google-s-threat-model-for-post-quantum-cryptography
https://developers.yubico.com/SSH/Securing_SSH_with_FIDO2.html
https://developers.yubico.com/SSH/Securing_SSH_with_FIDO2.html

prompts the server to respond with a larger payload that in-
cludes certificates and maintain “half-open” cryptographic
state for each connection attempt. To prevent both types
of attacks and implement post-quantum forward secrecy, we
modify Noise XX to include an additional round-trip that en-
ables the server to forget all handshake state until the client
has acknowledged the server’s ML-KEM 512 ephemeral key
and proven that it is maintaining state for the connection,
and embeds KEM ephemeral key exchange for post-quantum
forward secrecy. The XX pattern in the PQNoise extension
is not ideal as it extends the handshake negotiation by one
more message. We detail the modified handshake in Fig-
ure 2. Note that reserved bytes in Hop messages are used for
alignment and protocol versioning flexibility.

Client Hello. The client initiates a handshake by sending
a Client Hello, which specifies the protocol version and com-
municates an unencrypted KEM ephemeral encapsulation
key. The client’s duplex object squeezes out a MAC for the
Client Hello, keyed on the message header and ephemeral
key. This MAC provides integrity only for the Client Hello
message, as it is not keyed using any private data.

Type (1 byte) | Version (1 byte) |
Client ML-KEM Ephemeral ekem, (800 bytes)
MAC (16 bytes)

Reserved (2 bytes)

The client keeps state for its own view of the handshake
transcript using a duplex object that it maintains through-
out the handshake duration. The client absorbs the header
and ephemeral encapsulation key into the duplex object, and
squeezes out a MAC keyed using the absorbed duplex mate-
rial. This MAC only provides integrity for the Client Hello,
as it is not keyed using any private data.

When the server receives a Client Hello, it instantiates a
new duplex object that represents the server’s view of the
handshake thus far. Mirroring the client, the server absorbs
the message header and the client ephemeral encapsulation
key into its own duplex object and verifies that the MAC at-
tached to the Client Hello matches. If this verification is suc-
cessful, the server can confirm that it is speaking the same
protocol and its view of the handshake (up to the Client
Hello) is identical to that of the client. The server then replies
with a Server Hello. Otherwise, it does not respond. We note
that discoverable servers respond to Client Hellos from unau-
thenticated clients, provided that both are speaking the same
Hop protocol and the computed MAC matches.

Server Hello.

* Acknowledge the start of the handshake
e Transmit the (KEM) ciphertext, which encapsulates a
shared secret key by using the client encapsulation key
* Prevent denial-of-service and amplification attacks
from stateless clients
The server produces a shared secret key and an associated
ciphertext as an output of applying the ML-KEM Encaps
algorithm with the client encapsulation key randomness.

Green indicates encrypted fields.

Type (1 byte) |
(KEM) Ephemeral Ciphertext ct (768 bytes)
Cookie := AEAD(K,, shared_secret_key, SHA3(ekem,,IP., Port.)) (64 bytes)
MAC (16 bytes)

Reserved (3 bytes)

To mitigate denial-of-service attacks, the server sends a
cookie, which encrypts the newly generated shared secret
key along with associated client metadata extracted from the
Client Hello. The cookie is constructed as follows:

cookie :=AEAD(K,,shared_secret_key, SHA3 (ekem,,IP., Port.))
where K, is a key known only to the server that is rotated
every 2 minutes (or up to the AEAD encryption limit). This
cookie eliminates the need for the server to store half-open
state about incomplete handshakes until it can verify that
the client is also maintaining connection state, similar to
TCP SYN Cookies [19]. It also reduces the impact of
UDP amplification attacks, since the Server Hello is not
significantly larger than the Client Hello. After sending
the Server Hello, the server discards all handshake state
associated with the connection.

Client Acknowledgment.

* Prove to the server that the client maintains the state
* Indicate the hostname the client is trying to connect to

Type (1 byte) | Reserved (3 bytes)

Client Ephemeral e (32 bytes)
Client ML-KEM Ephemeral ekem, (800 bytes)
Cookie (64 bytes)
Hostname := ID Type || ID Label (256 bytes)
MAC (16 bytes)

After verification of the Server Hello MAC, the client sends
a Client Acknowledgment. The client retransmits the client
encapsulation key alongside a newly generated Curve25519
ephemeral client public key (which will be used for later
Diffie-Hellman (DH) calculations), echoes the cookie back
to the server with the desired encrypted SNI. The plaintext
SNI consists of a 1 byte type indicator for the server ID
(e.g., domain name, IoT serial number) concatenated with
a 255 byte server ID. The client continues with its duplex
object and absorbs the Client Acknowledgment header (mes-
sage type and reserved bytes), client ephemeral public key,
ephemeral encapsulation key, the decapsulated shared secret,
and the cookie received from the Server Hello. A MAC is
then squeezed from the client’s duplex object and appended
to the Client Acknowledgment.

At this point, the server has no state associated with the
ongoing handshake. After receiving the Client Acknowledg-
ment, the server decrypts the cookie using the SHA-3 hash
of the provided client ephemeral encapsulation key, IP ad-
dress, and port as the associated data. Successful decryption
ensures that the cookie echoed back was originally encrypted
by the server, and indicates that the client had previously sent
a Client Hello with the same client ephemeral encapsulation

key. The server retrieves its shared secret key associated with
the session from the decrypted cookie. Now, the server has
all the data required to re-simulate the duplex. The server
instantiates a new duplex object, absorbs all prior handshake
data according to protocol (including the fields in the Client
Acknowledgment message), and squeezes out a MAC to ver-
ify the Client Acknowledgment MAC. Successful verifica-
tion proves that the owner of the encapsulation key sent both
the Client Hello and the Client Acknowledgment messages.

Server Authentication.

* Prove the server’s identity
* Transmit the server static (encrypted)
¢ Transmit the connection identifier

Type (1 byte) | Reserved (1 byte) | Certificates Length (2 bytes)

Connection ID (4 bytes)

Server Ephemeral e/’ (32 bytes)

Leaf Certificate (* bytes)

| Intermediate Certificate (* bytes)

Server Certificate Authentication Tag (16 bytes)
MAC (16 bytes)

The server authentication message authenticates the server
to the client and verifies that the identifier in the Client
Acknowledgment controls the server’s static key. Hop
uses PKI-based authentication, but avoids the complexity of
X.509 by using its own minimal certificate format (§5.6).
Certificates are encrypted using the server’s duplex state, and
an authentication tag is squeezed and appended to the mes-
sage payload for client verification. The server also chooses
a random 4 byte string as the Connection ID, which is used
to identify the Hop connection for post-handshake transport
messages. Like QUIC [78], the Connection ID allows Hop
to identify connections independent of the IP/port 5-tuple, al-
lowing connections to roam. The server generates and sends
its ephemeral key to perform DH exchanges.

Using the state of the duplex, which should be identical to
that of the client’s, the server decrypts the SNI. It searches
for the leaf certificate and intermediate certificate to authen-
ticate the server ID. Our PKI only uses a single intermediate
certificate to ensure that the Server Authentication message
fits into a single packet. At this stage, both parties begin
keeping session state, but are not yet authenticated to each
other. Continuing from the duplex prior, the server absorbs
the message header (message type, reserved bytes, and size
of the encrypted certificates), and the Session ID, which is a
random 4 byte opaque string chosen by the server.

The server performs a DH calculation between the
client ephemeral and the server ephemeral key pair
(DE(e?™, eP?)), and absorbs the server’s ephemeral public
key and the DH result. The server’s static public key is de-
livered as part of the certificate. It encrypts the leaf and
intermediate certificates using the current duplex state and
squeezes out the certificate authentication tag. As with the
ephemeral key, the server now performs a DH calculation
between the client ephemeral and the server static key pair

(0H(s?™ eP?)), and absorbs the DH result. The MAC is
squeezed out and appended to the Server Authentication.

Upon receiving the Server Authentication message, the
client absorbs the message header, Session ID, and the
ephemeral server public key. The client calculates and ab-
sorbs the DH result between the client ephemeral and the
server ephemeral and then decrypts the certificates using the
duplex material, and checks that its computed certificate au-
thentication tag matches. The client then verifies the cer-
tificate to prove that the sender of the Server Authentication
message owns the server static private key (s5""") (the server
is who it says it is) and that it is the actual owner of the
Server ID. Finally, the client calculates and absorbs the DH
result between the client ephemeral and the server static (ob-
tained from the certificate), and verifies that the handshake
transcript is identical via the squeezed MAC.

Client Authentication.

* Prove the client’s identity
* Transmit the client static (encrypted)

Type (1 byte) | Reserved (1 byte) |
Session ID (4 bytes)
Leaf Certificate (* bytes)

Certificates Length (2 bytes)

| Intermediate Certificate (* bytes)

Client Certificate Authentication Tag (16 bytes)
MAC (16 bytes)

The Client Authentication step is symmetric to that of Server
Authentication. At this point, both parties are authenticated,
have an identical view of the handshake transcript, and have
a shared secret derived from KEM ephemeral and static keys.

The client obtains a signed certificate from their iden-
tity provider, and absorbs the Client Authentication mes-
sage header and the Session ID. Using the current duplex
state, it encrypts the leaf and intermediate certificates and
squeezes out the client certificate authentication tag. The
client then absorbs the DH between the client static and the
server ephemeral (DH(sg”v,ef"h)), squeezes out the Client
Authentication MAC, and sends the Client Authentication
message to the server.

When the server receives the Client Authentication Mes-
sage, it verifies that it has an in-progress handshake and ab-
sorbs the message header. The server confirms that the Ses-
sion ID matches that of the existing handshake state, and ab-
sorbs the Session ID. Using the duplex object, it decrypts the
client certificate and verifies using the duplex state that the
client certificate authentication tag is correct and validates
the certificate. Finally, the server absorbs the DH between
the client static and server ephemeral, and verifies that the
squeezed MAC matches. This confirms that the sender of
the Client Authentication message owns the client static pri-
vate key (s£"") (the client is who it says it is). It also con-
firms that both parties have identical views of the handshake.
The Hop discoverable handshake completes after the client
authentication message is verified by the server.

A.2 Hidden Mode

Client Request.
¢ Indicate the start of the Hop Hidden handshake
* Transmit the client KEM ephemeral, static ciphertext
* Prove the client’s identity

Type (1 byte) | Version (1 byte) |
Client ML-KEM Ephemeral ekem, (800 bytes)

(KEM) Static Ciphertext ct (768 bytes)
Leaf Certificate (* bytes) |

Certificates Length (2 bytes)

Intermediate Certs. (* bytes)

Client Static Authentication Tag (16 bytes)

Timestamp (8 bytes)
MAC (16 bytes)

The client initiates a new duplex object that it maintains
throughout the handshake duration. It first absorbs the
header, including the type, the version, the certificate length,
and the newly generated ML-KEM 512 ephemeral encapsu-
lation key. It generates a shared secret and encapsulates it
with the previously received server’s static KEM key. Upon
the absorption of the post-quantum safe shared secret key, the
client can encrypt the Hop client certificates with the duplex
object. The client squeezes the client certificate authentica-
tion tag and includes in the client request an encrypted times-
tamp to prevent replay attacks, both absorbed. The client
now squeezes out the MAC for the integrity and appends it
to the message and sends it to the server. In Hop Hidden, the
server authenticates the client on the first request (removing
the UDP message size constraint) and does not respond to
invalid clients remaining “hidden”. This cryptographic con-
struction does not allow the SNI to be in the Client Request.
Server Response.

» Complete negotiation of transport keys

» Transmit the Ephemeral Ciphertext

* Prove the server’s identity

e Transmit the connection identifier

Type (1 byte) | Reserved (1 byte) |
Connection ID (4 bytes)

(KEM) Ephemeral Ciphertext ct (768 bytes)

Leaf Certificate (* bytes) |

Certificates Length (2 bytes)

Intermediate Certs. (* bytes)

Certificate Authentication Tag (16 bytes)
MAC (16 bytes)

If the client is authenticated and authorized to access the
server, the server issues a Server Response. It contains the
connection ID, the ephemeral ciphertext from the client’s
ephemeral KEM key, and the server certificates. As proof of
identity, the server performs the DH calculation between the
client’s public static key and its private static key. It absorbs
all the aforementioned information and squeezes the server
certificate authentication tag and the MAC. The server sends
the Server Response to the client, who decrypts and verifies
the certificates before deriving the final transport keys used
for post-handshake messages (§5.5).

A.3 Key Derivation and Message Structures

1 duplex.ratchet ()

> duplex.absorb("client_to_server_key")

3 client_to_server_key = duplex.squeeze ()
4 duplex.ratchet ()

s duplex.absorb("server_to_client_key")

6 server_to_client_key = duplex.squeeze ()

Subsequent transport data (Figure 10) is encrypted using
these shared session keys, which rotate every 26* messages.

Type (1 byte) | Reserved (3 bytes)
Session ID (4 bytes)

Counter (8 bytes)

Encrypted Data (* bytes)
MAC (16 bytes)

Figure 10: Hop Transport Message—The payload is in the

Encrypted Data segment (green) of the transport message.

01234567 8 91011121314151617 18 1920 21 22 23 24 25 26 27 28 29 30 31
Tube ID |§|%|E|§|E|E|Res.| Data Length

Acknowledgment Number

Frame Number
Data (* bytes)

Figure 11: Hop Tube Frame—Within the Encrypted Data
segment of the transport message (see Figure 10).

Type (1 byte) |
Start Time (8 bytes) |

Target Port Number (2 bytes)

Expiration Time (8 bytes)

Target Username (32 bytes)
Target SNI (<=256 bytes)
Delegate Client Certificate (<=660 bytes)

Associated Data (* bytes)

Figure 12: Intent—The Intent is authenticated and en-
crypted. The Data in Intent Confirmation messages is empty,
and Intent Denied messages can optionally indicate the rea-
son the Intent Request or Intent Communication was denied.

Field | Size (B) | Description
Protocol Version 1 | Version number indicator
Cert. Type 1 | Leaf (0x1), Int. (0x2), Root (0x3)
Reserved 2 | 0x0
IssuedAt 8 | Timestamp (not valid before)
ExpiresAt 8 | Timestamp (not valid after)
Public Static Key 32 | Leaf: x25519 (for key exchange)
Int./Root: ed25519 (for signature)
Parent Fingerprint 32 | SHA3(parent cert, no signature); Root: 0x0
ID Chunk Size 2 | Number of bytes (4512 bytes, aligned)
ID Chunk 4-512 | Array of ID Blocks
ID Block 4-256 | Identifier block
Size 1 | Total ID block length (label + 3 bytes)
Type 1 | DNSName, IPv4Addr, IPv6Addr, Raw
Label Size 1 | Number of ID label bytes
Label 1-253 | UTF-8 label
Parent Signature 64 | ed25519(parent (or self for root) static key,
SHA3(cert. bytes excluding signature))

Table 1: Certificate Fields

	Introduction
	Protocol Requirements
	Simple Cryptographic Protocol
	Trustworthy Host Identification
	Extensible Client Verification
	Privacy and Confidentiality
	Secure Credential Delegation
	Secure Transport for Unreliable Traffic
	Constrained Environment Support
	Post-Quantum Security

	Threat Model
	Hop Protocol Overview
	Hop Transport Protocol
	Connection Establishment
	Discoverable Mode Handshake
	Hidden Mode Handshake
	Handshake Failure
	Key Derivation
	Identity and Authentication
	Automatic Server Certificate Issuance
	Client Authentication

	Session Establishment

	Hop Tubes Protocol
	Tube Creation
	Tube Closing
	Reliable Transport
	Loss Recovery
	Congestion Control

	Hop Remote Access Protocol
	Remote Access Services
	Secure Delegation
	Authorization Grant Protocol

	Evaluation
	Security Requirements
	Performance

	Conclusion
	Appendix
	Discoverable Mode
	Hidden Mode
	Key Derivation and Message Structures

