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Abstract

Large language models (LLMs) excel across diverse tasks but face sig-
nificant deployment challenges due to high inference costs. LLM infer-
ence comprises prefill (compute-bound) and decode (memory-bound) stages,
with decode dominating latency particularly for long sequences. Current
decoder-only models handle both stages uniformly, despite their distinct
computational profiles. We propose OverFill, which decouples these stages
to optimize accuracy-efficiency tradeoffs. OverFill begins with a full model
for prefill, processing system and user inputs in parallel. It then switches
to a dense pruned model, while generating tokens sequentially. Lever-
aging more compute during prefill, OverFill improves generation quality
with minimal latency overhead. Our 3B-to-1B OverFill configuration out-
performs 1B pruned models by 83.2%, while the 8B-to-3B configuration
improves over 3B pruned models by 79.2% on average across standard
benchmarks. OverFill matches the performance of same-sized models
trained from scratch, while using significantly less training data. Our code
is available at https://github.com/friendshipkim/overfill.

1 Introduction

Large language models (LLMs) have achieved remarkable success on a broad spectrum of
tasks, from question answering to code generation. Yet, their massive parameter counts
pose significant challenges for practical deployment, with inference emerging as a chief
bottleneck. In modern LLMs, inference typically comprises two stages: prefill and decode.
The prefill stage, where all input tokens are processed in parallel to build a Key-Value (KV)
cache, is usually compute-bound: the performance is primarily limited by the utilization of
computational units. The subsequent decode stage is memory-bound, where it generates each
output token autoregressively. The main bottleneck here is repeatedly loading the model’s
large feed-forward (FFN) layers into memory.

However, current LLM architectures do not exploit the distinct computational characteristics
of these two stages. Our motivation stems from the distinct computational profiles of the
prefill and decode stages, which have led to a growing trend of disaggregating them. The
first line of work (Zhong et al., 2024; [Patel et al.} 2024) is system-oriented, focusing on
stage-specific resource allocation and parallelism while still using a single model across
both stages. The second line of work (algorithmic-oriented) (Nair et al., 2024; Bergner et al.,
2024) explores using models of different sizes for each stage, but often requires complex
frameworks or delivers only small accuracy improvements. The question of interest is
how to decouple the prefill and decode stages to achieve a stronger balance of accuracy and
efficiency.

We propose OverFill, a two-stage system that dedicates maximal capacity to the prefill
stage, while pruning the costly decode stage to reduce parameter loading. Specifically,
the larger model is used only once to process the user input into a vector representation,
and a smaller, pruned model subsequently handles token-by-token generation. As a result,
OverFill drastically cuts the memory footprint and latency of decoding, especially for longer
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Figure 1: Overview of OverFill. OverFill uses the full model for prefill and a pruned model
for sequential decoding. The yellow blocks represent the full model used for prefill. The
decoder is initialized by selecting important channels (green blocks) from the full model.
The blocks on the decoder side are in darker shades because they are updated during
OverFill training. However, the full prefill model is kept frozen.

sequences. While it incurs a small prefill overhead compared to the standalone pruned
model, this difference in cost is negligible compared to the dominant decoding latency.
Moreover, OverFill starts with a single model and prunes it to build a smaller decoder,
eliminating the extensive process of aligning two distinct models. Since only the small
decoder is updated during training, OverFill is compatible with the original full model
during serving. Importantly, OverFill is end-to-end trainable and does not require additional
modules, allowing it to be optimized like any standard transformer architecture. Figure
illustrates the overview of our framework.

We validate OverFill in diverse decoder scales and compare OverFill accuracy on tasks such
as question answering, math, and chain-of-thought reasoning. In a 3B-to-1B configuration,
OverFill outperforms standalone pruned models by 83.2% and instruction-tuned model
by 52.6% in average. OverFill matches or even outperforms similarly sized models trained
from scratch, while using significantly fewer training tokens. We also demonstrate OverFill
is pareto-optimal in both scales. OverFill achieves significant accuracy gain over standalone
small models while posing minimal latency overhead. These efficiency gains become even
more pronounced when long outputs or multiple candidates are generated, as the pruned
model remains active throughout the autoregressive process.

2 Related work

Model compression. Pruning enhances the efficiency of LLMs by removing model com-
ponents that contribute the least to the output. Structured pruning eliminates entire gro
of parameters such as channels, attention heads (Dery et al., [2024; Ma et al.| 2023 E(%‘
et al. 0235,|Ashkboos et al.,[2024) or layers (Men et al.|,[2024;Yang et al., 2024; Kim et al
2024). Structured pruning results in a more compact model while preserving the underlyin
architecture, keeping it hardware-friendly. In this work, we adopt width pruning
let al., 2024} Ma et al | 023t Xia et al.} 2023b};|Ashkboos et al 2024), which preserves accuracy
better than depth pruning. We specifically use the approach from [Sreenivas et al|(2024) but
without the additional KL loss term, focusing on optimizing pruning to balance performance
and computational efficiency.

Quantization (Frantar et al., 2022} [Lin et al} 2024; [Xiao et al., 2023a) is another effective
model compression method. Standard quantization methods accelerate both prefill and
decode. In our two-stage decoding process, we can also consider high-precision prefill and
low-precision decode, which we leave for future work.




Published as a conference paper at COLM 2025

Decoding targeted speedups. Various methods tackle the serial bottleneck in LLM decod-
ing. Speculative decoding (Leviathan et al.,[2023)) leverages available compute to propose
tokens in parallel using a small draft model. Researchers have explored specialized draft
models (Sun et al., 2021} Xia et al,[2023a) and subnetworks of the target model (Schuster
et al.}|2022; Elhoushi et al.|[2024; Zhang et al., 2023a; |Liu et al.,|2024a; Ankner et al.,[2024).
Among these,|Du et al.| (2024); [Li et al.| (2024) are particularly relevant to our work as they
reuse target model representations to enhance drafting. Unlike speculative decoding, our
approach eliminates rollbacks and calls the large model only once during prefill, avoiding
parallel execution with the small model during decoding. This significantly reduces memory
usage. We provide a theoretical analysis in the Appendix.

KV cache compression. Many studies have explored KV cache compression to address
memory bottlenecks with heavy batching and long contexts, using methods like token
eviction (Xiao et al., 2023b}; Zhang et al.,[2023b; |/Adnan et al.,2024), quantization (Sheng
et al.,[2023; |Liu et al., 2024b), and prompt compression (Pan et al., 2024; Wingate et al.,[2022).
Our approach targets scenarios where loading weights is the primary memory bottleneck.
While KV cache can dominate memory usage in certain scenarios, this typically occurs only
at very long sequence lengths when using smaller models. For instance, in a 7B parameter
model with batch size 4, model weights is the primary bottleneck up to 5K tokens (Adnan
et al., 2024). Several works target the opposite challenge as ours: reducing prefill costs
for very long contexts, where prefill becomes costly. These methods include architectural
modifications (Sun et al., 2024), chunking (Zeng et al., 2024), token dropping (Fu et al.|2024),
and prompt packing (Zhao et al.,[2024). Notably, such KV cache compression and prefill
acceleration approaches can be applied on top of our method for further optimization.

3 Method

We are interested in the setting of continual training of LLMs targeting instruction-tuning.
In this setting we assume we have a large number of supervised examples of the form (x,y)
where x = (x1,x2,...,xym) and 'y = (y1,Y2,...,YN) are sequences of tokens, assumed for
simplicity to be of a fixed length. We are particularly focused on N > M since the model
may use methods like chain-of-thought to answer problems.

Formally LLMs model the probability of a sequence y in a conditional autoregressive
manner: P(y | x) = [V, P(yt | y<t,x;0), where x; denotes all tokens preceding x;,
where 6 is the model. The core probability of P(y; | y<,x;6) is defined as a function of the
Transformers cached hidden state,

P(y: | y<1,%0) o f(Cache([y<(,x]))

Where Cache is defined recurrently for any sequence of tokens a, b as,
Cache([a, b]) = Transformer(a, Cache(b); ).
Due to this cache structure, when sampling from a language model, the computation
happens in two-stages, prefill and decode. During prefill, the primary work is computing,
hpre < Transformer(x, @;6),

which can be done in parallel for all x = (x1, xp, ..., x)). This stage is generally compute
bound, since 6 can be loaded once and compute is parallelized across M.

During decode, we autoregressively sample each y; and recurrently update,
hge., < Transformer(y;, Cache(h);6).

This stage has a serial dependency in that it requires previously generated tokens in order
to update the cache. As such, it is memory-bottlenecked in terms of speed as it needs to
reload in 8 at each step and cannot fully use available parallel compute. Our primary goal
will be to speed this stage up in practice by reducing the effective size of the § during the
decode stage.
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Figure 2: Width pruning strategy: Diamonds indicate activation aggregation points for
measuring channel importance. Yellow represents the hidden dimension, while green
denotes the intermediate dimension.

Finally, to train instruction models, we simply maximize the likelihood of each (x,y) in-
stance. During this stage, we do not maximize the probability of the conditioning term x
but only of the generated y.

3.1 OverFill

We propose a simple approach of using the model’s capacity asymmetrically during the
prefill and decode stage. The approach uses a better model at prefill time to better utilize
(overfill) the same cache of a smaller model. In our method, the same LLM parameters are
used in two configurations:

* Full Parameters (6) for processing prefill.
* Pruned Parameters (¢’ C 6) a subset of the full parameters for processing decode.

Our contribution modifies both training and inference procedures so that the tokens x use
the full network and the tokens y use a pruned sub-network. Formally, we define a single
set of model parameters but allow two “modes” (full vs. pruned), or more directly

hpre < Transformer(x, @;0),
hgec, + Transformer(y;, Cache(h);6’).

Upon deciding on the prune subset to use, we freeze the full model and train only the
pruned model with standard teacher forcing on the output tokens y. This approach ensures
that the full model retains its well-initialized weights while accelerating training. Also, it
allows the pruned decoder to be seamlessly integrated into existing models.

3.2 Compatible pruning

In order for OverFill to be a compatible method for LLM generation, it requires two aspects:
(1) The pruned model must be significantly smaller than the original [¢'| < [6| and (2)
they must have a compatible cache representation h. In Transformers, the KV Cache
representation h is R>*1*P per sequence length, where D is the embedding dimension
of the Transformer keys and values, and L is the number of layers. While there are many
different pruning methodologies that fit criteria (1), e.g. depth pruning and unstructured
pruning, we target methods that can maintain criteria (2). Specifically we utilize a targeted
form of width pruning, that avoid changing the cache dimension.

Our approach is based on the static channel pruning strategy from [Sreenivas et al.|(2024).
Figure [2| gives a schematic overview of the pruning template. Following the standard
notation for transformers for the attention projections and FFNs we define our pruned
parameters 6’ as,

W1, Wk W? ¢ RV'*D, wo e RP*Y, Wl e RV wi ¢ R4D'x
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Full (|]) Pruned (|¢|) | Pruning ratio (P) Hidden dim. (D) Layers (L)

3.21B 0.52B 0.7 921 28
3.21B 1.24B 0.45 1689 28
3.21B 2.01B 0.25 2304 28
8.03B 3.19B \ 0.43 2334 32
14.76B 7.62B \ 0.43* 2944 48

Table 1: Model sizes and width pruning configurations. *For the 14B model, we use a
hardware-friendly configuration by default, where different pruning ratios are applied to
the hidden dimension and the intermediate dimension. See Table

This new network keeps a subset D’ < D for each of the weight matrices in the network.
Layer norm and embedding parameters are defined similarly.

To obtain the best starting compact sub-network, we first pick the pruning ratio P =
1 — D’/D and then select the best rows and columns. To decide on what to prune, we pass
a small calibration set through the model and aggregate activations as in Figure 2|at three
points per layer: 1) before the attention projection, 2) before the FFN, and 3) within the FFN.
After aggregation we end up with a tensor of shape batch by sequence length by dimension.
We reduce this tensor using the L2 norm across the batch, and the mean across the sequences
to derive an importance scores for each dimension. Finally, we retain the top (1 — P)% of
channels to calculate 6.

As mentioned above, this pruning acts as a starting point for determining the shape of ¢’
Once determining this shape, additional finetuning is run on set of instruction examples to
adjust the weights of the parameters to this new setting.

4 Experimental setup

4.1 Data

We use two instruction-tuning datasets for training: OpenHermes-2.5 and Infinity-Instruct.
For main experiments, we adopt Infinity-Instruct (BAAI} 2024) with 7M instances. We filter
out non-English data using the provided language tags. For pruning ratio sweeps, we
use OpenHermes-2.5 (Teknium) [2023) which has 1M instances, of which 997k are used for
training and 3k for validation. The total training tokens amount is 38M for OpenHermes-2.5
and 212M for Infinity-Instruct.

These datasets are well-suited for our task due to their natural separation between context
and input. Both datasets are formatted with distinct tags: System, User, and Assistant. The
System and User parts are concatenated to the context, which is processed by the full model.
The Assistant part serves as the target output to be predicted by the pruned model. To
construct the model inputs, we inherit each dataset’s original chat template.

4.2 Model

We evaluate our method on three base models in two model families: Llama 3.2-3B-Instruct,
Llama 3.1-8B-Instruct (Dubey et al., 2024), and Qwen 2.5-14B-Instruct (Team), [2024). For
pruning, we apply the strategy outlined in Section We do not prune attention heads or
layers to preserve the dimensionality of the KV cache and retain as much information as
possible passed to the pruned decoder. Table I presents the full and pruned model sizes
along with their pruning configurations. We adopt the training hyperparameters from
Tunstall et al| as presented in Table
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Model | Pruned* OverFill*  1B-Tuned* | 1B-Inst 3B-Inst
Decoder Size | 1.2B 1.2B 1.2B | 1.2B 3.2B
GSMSK-CoT | 45.4 (£1.4) 59.2 (£1.4) 47.6(+14) | 45.7 (£14) 784 (£L1)
ARC 364 (£1.4) 77.8(£12) 42.5(+14) | 565 (£1.5) 782 (£1.2)
MMLU 33.7 (£0.4) 63.7 (£0.4) 387 (£0.4) | 47.9 (£0.4) 63.3 (+0.4)
MATH 6.1(£03) 83(+£04) 52(+03) | 167(+0.5) 35.0 (+0.6)
WMT16-DE-EN | 14.7 (£0.3) 314 (£0.5 28.0 (£0.4) | 29.7 (£0.4) 36.9 (£0.4)
IFEval 264 (£1.9) 442 (£21) 26.1(£1.9) | 48.1 (£2.2) 69.5 (+2.0)
NQ 52(+04) 121(+£05) 7.8(+£05) | 10.8(£0.5) 19.7(+0.7)
MMLU-Redux 26.06 40.93 27.29 18.21 56.95
CRUX 8.62 8.75 4.88 9.00 25.71

Table 2: Results in 1B scale. Bold indicates the best models under the same training data
regime. * means identically trained with the same data (less data compared to the Instruct
models).

Model | Pruned* OverFill *  3B-Tuned* | 3B-Inst 8B-Inst
Decoder Size ‘ 3.2B 3.2B 3.2B ‘ 3.2B 8.0B
GSMSK-CoT | 55.4 (£14) 69.8 (£1.3) 61.8(+1.3) | 784 (£1.1) 84.6 (£1.0)
ARC 425 (+14) 83.4(+12) 617 (+1.4) | 782 (£12) 83.4 (+1.1)
MMLU 35.8 (+£0.4) 69.4(+£0.4) 483 (£0.4) | 63.3(+04) 69.4(£0.4)
MATH 72(£04) 151 (£05) 17.3 (£0.5) | 35.0 (£0.6) 36.2 (£0.7)
WMT16-DE-EN | 185 (£0.3) 35.6 (£0.5) 25.8 (£0.5) | 36.9 (£0.4) 41.0 (£0.4)
IFEval 284 (+£1.9) 44.0 (£2.1) 32.3 (£2.0) | 69.5 (£2.0) 73.9 (£1.9)
NQ 8.0(+0.5) 14.5(+0.6) 54 (4+04) | 19.7 (+0.5) 19.1 (0.7)
MMLU-Redux 28.80 43.12 43.95 56.95 61.66
CRUX 6.12 27.00 24.88 25.71 39.38

Table 3: Results in 3B scale. Bold indicates the best models under the same training data
regime. * means identically trained with the same data (less data compared to the Instruct
models).

4.3 Downstream evaluation

We evaluate OverFill on downstream generation tasks, including math, code, question
answering, and machine translation, using the LM Eval Harness (Gao et al.,2024). Details
on evaluation metrics and the number of few-shot examples are provided in Table@ We use
generation-based evaluation for all tasks, including multiple-choice question answering,
whereas an alternative approach is to compare the probability of answer choices. To
assess longer-form generation, we use MMLU-Redux and CRUXEval from the ZeroEval
benchmark (Lin, 2024). ZeroEval is designed for evaluating instruction-tuned models, with
MMLU-Redux focusing on general knowledge reasoning and CRUXEval assessing code
reasoning, understanding, and execution capabilities. Models are prompted to provide both
detailed reasoning steps and final answers in a JSON-formatted output. We use greedy
decoding for all generations.

5 Results

51 Accuracy

Table 2] presents the downstream evaluation results at the 1B scale. OverFill begins with a
3B model and then pruned to a 1B-scale model for decoding. Our roofline model, Llama-3B-
Instruct, handles both prefill and decoding.
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Model \ Pruned* OverFill *  7B-Tuned* \ 7B-Inst 14B-Inst
Decoder Size \ 7.6B 7.6B 7.6B \ 7.6B 14.8B
GSMS8K-CoT 75.3(+1.2) 781 (+1.1) 81.0(+1.1) | 81.7(£1.1) 759 (+£1.1)
ARC 70.8 (£1.3) 90.6 (+£0.9) 83.0(+1.1) | 89.5(£0.9) 90.6 (£0.9)
MMLU 51.2 (£0.4) 77.9 (£0.3) 65.3 (£0.8) | 72.2 (£0.4) 77.9 (£0.3)
WMT16-DE-EN | 32.0 (£0.3) 38.2(40.4) 37.6(4+0.4) | 37.5(+0.4) 38.6 (+0.4)
IFEval 40.5 (+£2.1) 51.0 (£2.1) 32.2(£2.0) | 71.5(£2.0) 78.3(£1.7)

Table 4: Results in 7B scale. Bold indicates the best models under the same training data
regime. * means identically trained with the same data (less data compared to the Instruct
models).

We compare accuracy across models trained under the same 1B decoder size and data
regime. One baseline is the standalone pruned model, derived from the same original
model, where a single model performs both prefill and decoding. Additional baselines
include Llama 1B variants: (1) Llama 1B-base model finetuned on the same data as our
pruned models and (2) Llama 1B-Instruct, a highly optimized model with more extensive
instruction tuning. We observe that further tuning of Llama-Instruct consistently hurts
performance across all tasks, as shown in Table[7} Therefore, we focus on comparisons with
untuned Instruct models.

Our results highlight the following: OverFill consistently outperforms the standalone
pruned model and finetuned 1B-Base model across all tasks by a significant margin, demon-
strating the effectiveness of the two-stage approach. OverFill shows accuracy improve-
ments on both multiple-choice tasks, such as ARC-Challenge (Clark et al., 2018) and
MMLU (Hendrycks et al., [2020), which typically involve short generations, and tasks
requiring longer responses, such as GSM8K (Cobbe et al., 2021), MMLU-Redux (Gema et al.,
2024), and CRUXEval (Gu et al., 2024). This demonstrates that smart prefill benefits not only
tokens close to it but also those generated later. When generation is short, OverFill can even
match the full performance of the roofline model while maintaining a lower decoding cost.
OverkFill also outperforms Llama 1B-Instruct on 7 out of 9 tasks. This is particularly notable
given that Llama 1B-Instruct is a highly optimized model at this scale, likely benefiting from
more extensive data than our approach.

A similar trend is observed for 3B-scale models (Table [3). Here, OverFill with an 8B prefill
and 3B decode outperforms the pruned model on all tasks and the trained 3B-Base model on
7 out of 9 tasks. The 3B-Instruct model is a strong compact baseline, with performance close
to that of 8B models, yet OverFill matches it on several tasks. This pattern also extends to
the Qwen2.5 family and a larger scale (14B to 7B). OverFill with a 7B decoder outperforms
both the pruned model and the trained 7B-Base model on most tasks.

5.2 Efficiency

We show OverFill poses minimal overhead to the small standalone model by presenting
end-to-end latency in 1B and 3B scales. We use vLLM (Sreenivas et al., [2024) v0.8.5 for
benchmarking and separately measure prefill and decode latency. All experiments are
conducted on a single NVIDIA A100 GPU. We slightly modify OverFill configuration to
better leverage NVIDIA Tensor Cores, which is optimized for matrix multiplications in tiles
(typically 16x8 or 16x16). For a fair comparison, we maintain a larger parameter size than
the one used for accuracy evaluation. The exact configurations are provided in Table[8| We
report the mean and standard deviation of 10 runs with 2 warm-ups.

Figure 3] presents latency across varying generation lengths, with fixed prompt length and
batch size. The results show that OverFill asymptotically reaches the runtime of a small
model and this trend becomes more pronounced in longer generations, where decoding cost
dominates over prefill cost. At the 1B scale, both Pruned-1B and OverFill-1B exhibit higher
latency compared to Llama-1B, as they have more transformer blocks, and transformers are
more efficiently parallelized along width rather than depth. This suggests a limitation of
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Figure 5: Latency under different batch sizes. Prompt length and generation length are fixed
to 128.

width pruning, highlighting the need for a more balanced decoder architecture to improve
both efficiency and accuracy. Still, both remain significantly faster than the full 3B model.
At the 3B scale, where models have similar depth, Llama-3B, Pruned-3B, and OverFill-3B
show nearly identical latency. Overall, OverFill achieves higher accuracy while introducing
minimal latency overhead.

We measure latency while varying prompt lengths with a fixed generation length, as shown
in Figure[d] Decoding latency remains the dominant factor over prefill latency in all cases,
even when the prompt length is 16 times the generation length. Across all prompt lengths
and model scales, OverFill consistently achieves speedups compared to the full model.

We also sweep batch size to account for diverse serving environments. The results are
shown in Figure |5, where prompt and generation lengths are the same. In small batch
scenarios, OverFill introduces minimal latency overhead to the pruned models. However,
as batch size increases, prefill becomes relatively more expensive as decoding shifts from
being memory-bound to compute-bound.
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size indicates the corresponding decoder size.

6 Analysis
6.1 Pareto optimality

We demonstrate that OverFill is Pareto optimal compared to models under the same training
regime. Figure[f|plots end-to-end latency versus accuracy on GSM8K with Chain-of-thought
(CoT). CoT is a standard practice that prompts models to reason step-by-step before pro-
ducing a final answer, thereby boosting accuracy but resulting in longer generations. In
our experiments, the average prompt length is 613 tokens with 4 demonstrations, and the
average generation length is 120 tokens. Latency is measured using vLLM on a single
NVIDIA H100 GPU. We fixed the batch size to 1 across all experiments. OverFill achieves
Pareto-optimality compared to finetuned and pruned models. Interestingly, Pruned models
underperform compared to finetuned-Llama counterparts, likely because pruned architec-
tures require extensive adaptation (Sreenivas et al.,[2024) to recover their accuracy.

6.2 Comparison to speculative decoding

Speculative decoding and OverFill are similar in that both decode with the assistance of a
smaller model. We present speculative decoding latency results in Figure[6l The original
speculative decoding method (Xia et al.,|2023a) is theoretically lossless, meaning it exactly
matches the target model’s output. We also evaluate a lossy variant with lenient rejection
sampling (Zhou et al., 2023b), in which more tokens proposed by the draft model are
accepted to increase speedup. In our setup, the target model is a finetuned 3B model and the
draft model is a finetuned 1B model using the same data for both. We measure latency with
a single batch size, which is the most common setting for speculative decoding benchmarks.

Under temperature-1 decoding, OverFill achieves a better tradeoff. OverFill 3B-1B attains
a 1.06x speedup over lossy speculative decoding at the same accuracy level. However,
in near-greedy decoding (low temperature), speculative decoding performs particularly
well because the outputs of the target and draft models are already very similar. As a
result, lenient rejection sampling provides limited additional benefit in this regime, since
the acceptance rate is naturally high.

In more realistic serving scenarios with multiple concurrent requests, OverFill shows greater
potential. Using the same vLLM setup with a maximum batch size of 256, our pruned
decoder achieves a throughput of 7,913 tokens/s, compared to 2,871 tokens/s for standard
speculative decoding. This advantage comes from our approach accepting all tokens from
the drafter without rejection sampling, allowing more tokens to be emitted per second. While
recent speculative decoding variants have been proposed to improve throughput (Miao
et al.,[2024; Sadhukhan et al., 2024), we leave comparisons to these methods for future work.

6.3 Impact of pruning ratio

We vary the pruning ratio while keeping the full model (3B) fixed to examine how the
capacity gap between the full and pruned models affects the benefits of OverFill. As shown
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Figure 7: Performance comparison between Pruned and OverFill across three tasks varying
pruning ratios.

in Fig. [7] OverFill consistently maintains significantly higher accuracy than the pruned
model with the same decoder configuration. Interestingly, in ARC, where most information
is processed during the prefill stage, a lightweight decoder with a pruning ratio of 0.7 shows
no performance degradation. However, in translation and instruction-following tasks, both
Pruned and OverFill experience performance drops with increased pruning. In some cases,
OverFill degrades at a slower rate than Pruned or follows a similar trend as more channels
are pruned.

6.4 Accuracy by generation length

We observe that the benefits of OverFill per-
sist for long generations. Figure [8| shows - Pnedis
the probabilities assigned to correct tokens 065 —
across their absolute positions in the out-
put. The results show that OverFill consis-
tently predicts tokens more accurately than
the pruned model, demonstrating that the
advantage of smart prefill extends to long
generations.

Mean Token Probability
a
vl

However, as the distance from the prefill 045

grows, the gap gradually narrows, as the

generation becomes more dependent on the 0 200 400 600 800 1000
smaller decoder. This suggests that while oven Postien

OverFill may not be optimal for extremely

long generations, it remains highly effec- Figure 8: Probability assigned to the correct
tive for many practical use cases, such as token up to the 1024-th position, averaged
bootstrapping multiple generations during across the sampled validation set.

testing. We plan to further explore whether

periodically refreshing the prefill can help maintain its benefits uniformly throughout the
entire sequence.

7 Conclusion & Future work

This work presents a method for improving LLM generation with minimal latency increase
by using a compatibly pruned subset of parameters for memory-bound decoding while
retaining the full model for compute-bound prefill. We show that this approach outperforms
fine-tuning base models of the same size and a standalone pruned model, with only minimal
latency slowdowns. Our method is one of many possible strategies for training compatible
pruned decoders and we believe there is a large design space of other architectures. For
instance, pruning attention could further optimize KV cache size and decoding efficiency.
Scaling this approach with larger training could also extend its benefits to even more
memory-constrained models.
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A Appendix

A1 Training hyperparmeters

LR LR scheduler Warmup Max seq length
2e-05 cosine 0.01 2048

Table 5: Training hyperparameters

A.2 Downstream evaluation details

Task Metric Few-shot
GSMBS8K (Cobbe et al.,2021) Accuracy 4
ARC-challenge (Clark et al., 2018) Accuracy 0
MMLU (Hendrycks et al.,[2020) Accuracy 4
MATH (Hendrycks et al.,2021) Accuracy 4
WMT16 (Bojar et al.,[2016) BLEU 4
IfEval (Prompt-level) (Zhou et al.,2023a) Accuracy 4
Natural Questions (Kwiatkowski et al., 2019) F1 4
MMLU-Redux (Gema et al., 2024) Accuracy 0
CRUXEval (Gu et al.,[2024) Accuracy 0

Table 6: Evaluation details.

A.3 Finetuning Instruct models

Model GSM8K ARC MMLU MATH WMT16 IfEval NQ
1B-Instruct 45.7 56.5 47.9 16.7 29.7 48.1 108
1B-Instruct-Tuned 40.8 494 424 6.9 28.9 34.4 3.1
3B-Instruct 78.4 782  63.3 36.9 78.5 69.5 19.7
3B-Instruct-Tuned 64.4 70.6 557 12.8 34.2 53.2 8.9

Table 7: Finetuning Llama-Instruct models.

A.4 Speed benchmark model configurations
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Model Hidden dim. Intermediate dim. Layers Params.
1B-Pruned 1689 4505 28 1.24B
1B-Pruned-standard 1792 4096 28 1.26B
3B-Pruned 2334 8171 32 3.19B
3B-Pruned-standard 2432 7680 32 3.21B
7B-Pruned-standard 2944 11776 48 7.62B

Table 8: Speed benchmark model configurations.
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