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Abstract

Effective reasoning is crucial to solving complex mathematical problems.
Recent large language models (LLMs) have boosted performance by scaling
test-time computation through long chain-of-thought reasoning. How-
ever, transformer-based models are inherently limited in extending con-
text length due to their quadratic computational complexity and linear
memory requirements. In this paper, we introduce a novel hybrid linear
RNN reasoning model, M1, built on the Mamba architecture, which allows
memory-efficient inference. Our approach leverages a distillation process
from existing reasoning models and is further enhanced through RL train-
ing. Experimental results on the AIME and MATH benchmarks show that
M1 not only outperforms previous linear RNN models but also matches
the performance of state-of-the-art Deepseek R1 distilled reasoning models
at a similar scale. We also compare our generation speed with a highly
performant general purpose inference engine, vLLM, and observe more
than a 3x speedup compared to a same size transformer. With throughput
speedup, we are able to achieve higher accuracy compared to DeepSeek R1
distilled transformer reasoning models under a fixed generation time bud-
get using self-consistency voting. Overall, we introduce a hybrid Mamba
reasoning model and provide a more effective approach to scaling test-time
generation using self-consistency or long chain of thought reasoning. Code
and pre-trained checkpoints are open-sourced at github.com/jxiw/M1.

1 Introduction

Robust and effective reasoning is the cornerstone for successfully performing tasks in do-
mains such as mathematics and programming. Additionally, performance on reasoning
tasks can often be boosted by generating longer sequences and/or generating many se-
quences in parallel (Snell et al., 2024). However, current transformer-based large language
models (LLMs) face significant challenges when tasked with processing long sequences
with large batch sizes. These models are constrained by a quadratic increase in computa-
tional complexity as the sequence length grows, coupled with a linear escalation in memory
requirements. This combination makes it increasingly difficult for models to scale efficiently
when handling large inputs.

Although linear hybrid RNN models (Gu & Dao, 2024; Dao & Gu, 2024; Beck et al., 2024; Yang
et al., 2024; Peng et al., 2023) have shown great potential as an alternative to transformer-
based on general language models, their effectiveness on reasoning tasks remains unclear.
Since modern reasoning models typically generate long chains of thought for challenging
math questions, it is uncertain whether the performance of hybrid linear RNNs diminishes
in such scenarios.

∗Work done when interned at TogetherAI
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In this paper, we propose M1 and show that it is possible to derive strong hybrid reasoning
models by efficiently transferring reasoning capabilities from a large transformer model.
Our training process involves distilling knowledge, incorporating math and reasoning
abilities through supervised fine-tuning (SFT), and finally, boosting performance using
reinforcement learning (RL) training. In total, the training process requires fewer than
50 billion tokens. In contrast, DeepSeek-R1-Distill-Qwen-1.5B is finetuned from Qwen2.5
MATH 1.5B which is trained using over 1 trillion MATH tokens on top of Qwen2.5.

We demonstrate that our hybrid models achieve a 3x speedup compared to transformers
of the same size when served using a highly performant general purpose inference engine,
vLLM, at large batch sizes. This gain is mainly due to large batches and long sequences,
decoding being generally memory-bound. Lower memory usage of hybrid models can
transform this advantage into a speed gain. The decoding speedup is approximately linear
with the volume of model’s memory access (Yuan et al., 2025).

Notably, this speedup can be converted to a gain in reasoning accuracy. Studies (Snell et al.,
2024; Li, 2025; Chen et al., 2025) show that techniques such as self-consistency (Wang et al.,
2023) and verification (Cobbe et al., 2021) at test time can significantly boost model reasoning
performance. Under these conditions, a high-throughput model can further enhance its
performance by generating more samples.

The paper is organized as follows. Section 2 covers related work, Section 3 introduces
our pipeline for distilling a hybrid reasoning model, and Section 4.1 presents our results
evaluating M1 on math benchmarks. Sections 4.2 and 4.3 evaluate the performance gains of
M1 in terms of both inference speed and scaling test-time compute. Section 5 provides some
additional analysis of the impact of different generation lengths when training on RL, and
of the impact of the different steps of the distillation pipeline we propose on performance.

Overall, we show that M1 performs on par with DeepSeek-R1-Distill-Qwen-1.5B, achieving
scores of 82 on MATH500 (Hendrycks et al., 2021), 23 on AIME25 (MAA, 2025), 28 on
AIME24 (MAA, 2024), and 47 on OlympiadBench (He et al., 2024), while offering 3x faster
inference throughput, even compared to the highly optimized vLLM (Kwon et al., 2023)
implementation for Transformer models.

2 Related Work

2.1 Reasoning models

Recent models like Deepseek-R1 (DeepSeek-AI et al., 2025) have shown the potential of
RL training to improve performance on verifiable reasoning tasks, such as math problem
solving and programming. Additional work has proposed methods for inducing this
reasoning behavior via supervised fine-tuning, either on curated data (Muennighoff et al.,
2025) or on generated pairs of traces (Yang et al., 2025). Other approaches also combine
search procedures such as MCTS with language models (Qi et al., 2024) or alter standard
RL training schemes to control the length of generated outputs (Aggarwal & Welleck, 2025).
After training, these models solve complex tasks by generating long chains of thought,
which often include subtasks of the overall problem, multiple attempted solutions, and
backtracking over prior attempts (Gandhi et al., 2025). Since the performance of these
models, both during training and inference, relies on generating lengthy chains of thought,
more efficient architectures can enable larger scale training and less costly generation.

2.2 Enhancing Reasoning via Scaled Inference Compute

Increasing the computational budget during inference has become a promising approach
to boost LLM performance. Methods like Chain of Thought (CoT) and its derivatives
have achieved notable gains on reasoning benchmarks by breaking down complex tasks
into intermediate steps (Wei et al., 2023; Yao et al., 2023). Although decomposing tasks
improves reasoning, it also lengthens generation sequences and raises computational costs.
Some recent studies even indicate that this extra computation might itself enhance model
capabilities (Pfau et al., 2024). In addition, adaptive compute allocation during inference
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has been explored. For example, Goyal et al. (2024) incorporated pause tokens into the
vocabulary, allowing models to distribute compute more efficiently and improve both
reasoning and overall task performance. LightTransfer (Zhang et al., 2024c) introduces a
lightweight method that detects lazy layers and replaces their full attention with streaming
attention—slashing KV-cache overhead and boosting throughput.

Another strategy involves generating several outputs and selecting the best one. Researchers
have developed various sampling algorithms to diversify and enhance the quality of gener-
ated responses, thereby increasing the chances of retrieving the most accurate answer (Wang
et al., 2023; Renze & Guven, 2024; Zhang et al., 2023). Moreover, outcome and process
reward models (ORMs and PRMs) have been introduced to evaluate responses and steer
intermediate generation steps (Lightman et al., 2023; Zhang et al., 2024a; Luo et al., 2024;
Uesato et al., 2022).

Recent investigations reveal that, under fixed compute budgets, smaller LLMs augmented
with inference-time compute techniques (such as majority voting or PRM-guided search) can
outperform larger models (Snell et al., 2024; Wu et al., 2024; Beeching et al., 2024). However,
these results are mainly confined to Transformer-based architectures, leaving open questions
about whether similar scaling laws hold for subquadratic architectures, which offer faster
inference but might compromise on expressiveness.

2.3 Alternatives to Transformer Architectures

Even though most reasoning models are based on the Transformer architecture (Grattafiori
et al., 2024; Qwen et al., 2025), alternatives have been proposed to alleviate their high
computational cost. Models built on top of RNNs (Beck et al., 2024; Peng et al., 2023),
state space models (SSMs) (Gu et al., 2022; Gu & Dao, 2024), and linear attention mecha-
nisms (Katharopoulos et al., 2020; Yang et al., 2024) demonstrate superior inference and
memory efficiency, particularly for long-context tasks and large-batch generation. The
Mamba series (Mamba-1 and Mamba-2) notably introduced selective state spaces to enable
linear-time sequence modeling with strong performance (Gu & Dao, 2024; Dao & Gu, 2024).
In addition, hybrid architectures that combine a few self-attention layers with subquadratic
layers (e.g., Mamba) have emerged, showing advantages over both pure Transformer and
pure subquadratic designs (Lieber et al., 2024; Ren et al., 2024). Such architectures are
particularly suited to meet the high compute demands of inference-time scaling, and our
work investigates their scaling properties.

2.4 Knowledge Distillation Strategies

Knowledge distillation has proven to be an effective means of transferring capabilities from
large teacher models to smaller, more efficient student models (Hinton et al., 2015). In LLMs,
this process compresses a larger pre-trained model into a more compact version while
preserving core knowledge and functionality (Gu et al., 2024; Xu et al., 2024). Although
larger models tend to exhibit superior reasoning abilities due to scaling properties (Xu
et al., 2025; Wei et al., 2022), distillation techniques have enabled smaller models to achieve
competitive reasoning performance (DeepSeek-AI et al., 2025; Labs, 2025). While most
efforts have focused on intra-architecture distillation (e.g., Transformer-to-Transformer),
recent studies have ventured into cross-architecture distillation. For instance, pretrained
Transformers have been distilled into architectures such as RNNs (Kasai et al., 2021; Mercat
et al., 2024), linear attention models (Zhang et al., 2024b; Zhang et al.), convolutional
networks (Ralambomihanta et al., 2024), and SSMs (Bick et al., 2024; Wang et al., 2024b;
Paliotta et al., 2025). Whether the robust reasoning abilities of Deepseek R1 (DeepSeek-AI
et al., 2025) distilled models can be effectively transferred across different architectures
remains an open question.

3 The M1 Reasoning Model

In this section, we present a multi-stage process for building our hybrid linear RNN rea-
soning model, M1. The approach has three stages: distillation, SFT, and RL. We begin by
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Algorithm 1 Initializing MAMBAINLLAMA

1: Shapes: B - Batch, L - Length, D - embed size, N = D/Attention heads,N′ - expand
2: Input: ot: (B, D)
3: Output: output: (B, D)
4: New Params: MLP, A
5: for each head WK , WQ, WV , Wo : (N, D)

after expanding to same dimension do
6: Head Parameter: A : (N, N′)
7: for all positions t:
8: xt : (B, N)←WVot
9: Bt : (B, N)←WKot

10: Ct : (B, N)←WQot
11: ∆t : (B, N′)← MLP(xt)
12: A1:T , B1:T , C1:T : (B, N, N′)← DISC(A, B, C, ∆)
13: y← LINEARRNN(A, B, C, x)
14: output← output + WO⊤y
15: end for
16: return output

distilling a Transformer model into a Mamba architecture, adapting the method of Wang
et al. (2024a), which initializes the hybrid model’s weights from a transformer model. We
then perform math-specific supervised fine-tuning (SFT) on general mathematical datasets
to enhance the model’s mathematical performance, first without yet incorporating datasets
generated by reasoning-focused models, and then with reasoning data leveraging multiple
large-scale datasets generated by the R1 model series. Finally, we apply R1’s GRPO method
to further enhance the model’s math reasoning capability.

Stage 1: Distillation. The first step in building our M1 model is distilling a pretrained
transformer model into a Mamba model. We adapt the distillation approach introduced by
Wang et al. (2024a).

The MAMBAINLLAMA framework (Wang et al., 2024a) proposes distilling hybrid
Transformer-Mamba models by reusing weights from attention layers. In this distilla-
tion procedure, outlined in Algorithm 1, linear projections for Q, K, V, and O are initialized
from the corresponding projections for C, B, X, and O, respectively. The newly introduced
parameters in the Mamba layers are the sampling rate ∆ and the dynamic parameter A,
which control the resulting Mamba module via a discretization function. Specifically, the
sampling rate ∆ ∈ RN′ discretizes Bt, Ct ∈ RN×1, yielding Bt, Ct ∈ RN′×N×1, as detailed in
Algorithm 1. Different from Wang et al. (2024a), we introduce two additional linear layers
to project from head dim * kv head to head dim * n head. This is because GQA (Ainslie
et al., 2023) is used in the transformer model to reduce the KV cache. As Mamba does not
utilize a KV cache, this expansion can increase the expressiveness of B and X.

We directly reuse the MLP layers; however, unlike the original approach, we replace the
attention layers with Mamba layers in a single step. Subsequently, we fine-tune the entire
model to expedite the training process. The distillation step involves minimizing the token-
level KL divergence, aligning the entire probability distribution of the student model, p(·; θ),
with the teacher model, p(·; θT), for every candidate token at position t. We use the reverse
KL divergence, DKL(p(·; θ) ∥ p(·; θT)), as our loss function rather than the forward KL
divergence. We choose the reverse KL divergence due to its mode-seeking properties, which
results in improved empirical performance.

We reimplement the distillation and SFT framework using the Axolotl 1training framework.
We apply the model chat template, mask the user prompt, and compute the loss only over
the tokens generated in the assistant’s output. To speed up training, we use data packing to
merge different sequences into a single one until we reach the maximum sequence length
which is set to 8192. We find that data packing achieves significantly better results compared

1https://github.com/axolotl-ai-cloud/axolotl
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to the non-packing version in distillation for the same training steps. We use the AdamW
optimizer with learning rate 1× 10−5 with cosine decay, β = (0.9, 0.95) and a weight decay
of 0.1.

Stage 2: SFT Following the distillation procedure, we finetune the model on a large set of
math problems, OpenMathInstruct-2 (Toshniwal et al., 2024). As in the distillation stage, we
apply the chat template to the prompts, mask the user prompt, and compute the loss only
over the tokens generated in the assistant’s output. We train for two epochs using the same
optimizer as distillation.

After the initial fine-tuning stage, we finetune on an additional set of math problems and
solutions generated by reasoning models. We collect a mixed reasoning dataset, including
OpenR1-Math-220k 2, OpenThoughts-114k-math3, and ServiceNow-AI-R1-Distill4, Magpie-
Reasoning-250K5 for a total of 10B reasoning tokens. The first two datasets were generated
from R1, while the last two was generated from the R1 distilled Qwen 32B model and R1
distilled Llama 70B model. We extended the training length to 24,576 because we found that
it covers 99% of the data items. We train the model for five epochs using the same optimizer
as before but changing the peak learning rate to 6× 10−6.

Stage 3: Reasoning RL. To further enhance performance, we integrate Mamba with a
RL pipeline for further training.6 We use GRPO as the loss function. Differing from (Shao
et al., 2024), we remove the KL penalty term as empirically we find it destabilizes training.
Additionally, we include an entropy bonus to encourage a more diverse policy. The resulting
formula is,

LGRPO(θ) = Eτ∼πθold

[
πθ(a|s)

πθold
(a|s) Â(s, a)

]
+ η H(πθ) (1)

where Â(s, a) is the estimate of the advantage from multiple rollouts. We use a batch size of
128 and a PPO batch size of 64, which also determines the number of PPO iterations, µ = 2.
We set the number of generations for each sequence to 8 and the maximum generation
length to 32k. For optimization, we use the Adam optimizer with a learning rate of 1× 10−6.
We train for 50 steps, and pick the best checkpoint with the highest critic reward. We append
the simple prompt ”Let’s think step by step and output the final answer within \boxed{}” to the
end of each question in both training and evaluation.

4 Experiments

Model. We adopt the Llama3.2-3B-Instruct models as distillation target models. For
Mamba layers, we set the SSM state size to 16. Consequently, the number of SSM groups
after expansion is 3072/16 = 192 for the 3B model. We use 6 interleaved attention layers
among 28 total layers.

Evaluation Dataset. Following common practice in evaluating reasoning models,
we use a similar set of math benchmarks, including competition-level problems:
MATH500 (Hendrycks et al., 2021), AIME25 (MAA, 2025), AIME24 (MAA, 2024),
AMC23 (MAA, 2023), and OlympiadBench (He et al., 2024).

2https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
3https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k
4https://huggingface.co/datasets/ServiceNow-AI/R1-Distill-SFT
5https://huggingface.co/datasets/Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B
6We add it into the popular VeRL (Sheng et al., 2024) framework. In doing so, we addressed and

resolved the CUDA graph incompatibility issues that previously arose during training with PyTorch’s
FSDP module. As a result, the updated framework now efficiently supports Mamba generation with
CUDA graph enabled, making it 5x faster than with CUDA Graph disabled
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Evaluation Metrics. Our model’s performance is assessed using two key metrics: cov-
erage and accuracy. In fields such as coding and formal proofs, where answers can be
automatically verified, coverage translates directly to enhanced performance and is widely
utilized (Chen et al., 2021; Brown et al., 2024). Coverage is often measured using the pass@k
metric, with k indicating the number of samples per problem (Chen et al., 2021; Brown et al.,
2024). This metric estimates the likelihood that at least one correct solution exists among
the k samples. To minimize variance when calculating coverage, we employ the unbiased
estimation formula from Chen et al. (2021). Specifically, we generate N ≥ k total samples
per task. The probability that a correct solution exists among a pool of k generated samples
can then be determined given the total number of correct solutions Ci for each task.

pass@k =
1

# of problems

# of problems

∑
i=1

(
1−

(N−Ci
k )

(N
k )

)

We implement this formula using a numerically stable approach as recommended by Chen
et al. (2021).

When using additional compute, we employ multiple aggregation strategies. The most
straightforward method is majority voting, also known as self-consistency decoding (Wang
et al., 2023), which takes the majority response among k samples as the predicted answer,
and uses that to compute the accuracy.

4.1 Reasoning Evaluation

Model AIME25 AIME24 MATH500 AMC23 OlympiadBench

Qwen2.5-Math-7B-Instruct - 13.3 79.8 50.6 40.7
rStar-Math-7B (Guan et al., 2025) - 26.7 78.4 47.5 47.1
Eurus-2-7B-PRIME (Cui et al., 2025) - 26.7 79.2 57.8 42.1
Qwen2.5-7B-SimpleRL (Zeng et al., 2025) - 26.7 82.4 62.5 43.3
DeepSeek-R1-Qwen-1.5B 23.0 28.8 82.8 62.9 43.3
M1-3B 23.5 28.9 82.1 62.8 47.3

Table 1: Evaluation results for M1-3B, DeepSeek-R1-Distill-Qwen-1.5B and other MATH
models on MATH benchmarks

Model AIME25 AIME24 MATH500 AMC23 OlympiadBench

Pass@1 Maj@32 Pass@1 Maj@32 Pass@1 Maj@32 Pass@1 Maj@32 Pass@1 Maj@32

DeepSeek-R1-Qwen-1.5B 23.0 35.0 28.8 49.2 82.8 91.0 62.9 54.2 43.3 80.3
M1-3B 23.5 34.6 29.0 50.5 82.1 91.8 62.8 55.0 47.3 80.1

Table 2: Maj@32 results comparing M1-3B with DeepSeek-R1-Distill-Qwen-1.5B.

We evaluate our models using a temperature setting of 0.7 and a sequence length of 32k
with evaluation tools in VeRL. We use 32k because it has become the standard for evaluating
performance on reasoning models (DeepSeek-AI et al., 2025; Luo et al., 2025). We report the
pass@1 metric averaged over 64 runs; for majority voting, we repeat the metric calculation
100 times.

We report the accuracy of M1-3B and DeepSeek-R1-Distill-Qwen-1.5B in Table 1 and 2. We
use the baseline DeepSeek-R1-Distill-Qwen-1.5B since a 3B R1 reasoning model is still not
available. Although M1-3B has more parameters than DeepSeek-R1-Distill-Qwen-1.5B, its
speed is still comparable even with shorter contexts, so we believe this is a fair comparison.
Our model’s performance is competitive with state-of-the-art open reasoning models in the
same model size range and outperforms larger nonreasoning math transformer models. Our
model performs slightly worse on AIME24 compared to the DeepSeek-R1-Distill-Qwen-1.5B
model. Notably, DeepSeek-R1-Distill-Qwen-1.5B is built on top of the Qwen2.5 MATH
models, which were finetuned with over 1T MATH tokens on top of the Qwen2.5 models,
significantly more training data than what M1-3B used in total.

6



4.2 Speed Evaluation

We benchmark inference time with our model against a transformer model (Llama-3.2.-
3B (Grattafiori et al., 2024)) of the same size. We use vLLM (version 0.6.3), which is the
version used in VeRL for efficient rollouts. We also compare against DeepSeek-R1-Distill-
Qwen-1.5B (DeepSeek-AI et al., 2025), a reasoning transformer model that is half the size of
M1. This model has the same number of layers as the 3B parameter transformer, but the
hidden dimension is half the size.

According to Luo et al. (2025), the average generation length of reasoning models on MATH
questions is 4k to 5k. We therefore fix a decoding length of 4096 (and prompt length of 256)
and benchmark our model across a range of batch sizes. We vary the batch size from 8 to
512, measuring the inference latency across different models.

We perform our benchmarking on a single NVIDIA H100 GPU with greedy decoding.
To ensure that every model generates up to the set maximum number of tokens, we use
ignore eos=True. Before recording results, we warm up the system with two runs. The final
performance metrics are then averaged over three subsequent runs. The inference speeds
of the models across batch sizes are shown in Figure 1. M1 achieves a 3× speedup over
similarly-sized transformers when using a batch size of 512 and a decoding length of 4096,
demonstrating its effectiveness in large-batch generation settings.

The maximum length of generated sequences is also an important factor in RL training,
as longer sequences allow the model to use more compute during learning by generating
longer chains-of-thought, shown in Figure 5. To benchmark our model in this setting, we
fix the batch size to 128, and vary the generation length. We compare against the same
two models as in the batch size varying case, and the results are shown in Figure 2. As
the generated sequence length increases, M1 achieves increasing speedups relative to the
baseline models, and consistently generates at least 2x faster than Llama-3.2-3B (2.64x faster
for the longest sequence length).
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Figure 1: Inference latency when using
prompt length 256 and decoding length
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Figure 2: Inference latency when using
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It is well-known that LLM inference comprises a prefilling (compute-bound) and a decoding
(memory-bound) stage. For math reasoning models, it is common to assume that decoding
takes much longer than prefilling, since prefilling only uses a short MATH question, while
decoding generates long answers. Under these settings, the process is memory-bound.
Given that Mamba is highly memory-efficient and we only use a SSM state size of 16, these
memory advantages translate into improved speed.

4.3 Test-Time Scaling

Given a fixed time budget, M1 can generate more sequences or longer sequences compared
to a transformer model, which can hopefully boost its performance. We evaluate the effect
of test-time compute scaling on model performance. We scale both the number of samples
generated as well as the length of generated samples, to see if M1 benefits from additional
compute along these axes. We aim to investigate whether the speed benefit from section 4.2
can translate into an accuracy gain.
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Figure 3: Number of samples vs. AIME25 accuracy (left) and generation time (seconds) vs.
AIME25 accuracy (right). Both graphs include pass@1 and majority voting accuracies for
M1 and DeepSeek-R1-Distill-Qwen-1.5B.

The left side of Figure 3 shows the effect of scaling the number of generated samples (while
fixing the maximum decoding length) on AIME25 accuracy. Both the baseline model and M1
see increasing accuracy as the number of samples increases, with M1 nearly matching the
baseline performance for larger sample sizes. The efficient generation of M1 also means that
generating large number of samples at test-time is faster than for the baseline transformer
model.

We quantify this efficiency in the right side of Figure 3, which compares the number of
seconds spent generating samples against the resulting accuracy. To compute the time
values on the x-axis, we find an optimal throughput value (in tokens per second) for each
model by increasing batch sizes until throughput decreases. The optimal values were 7263
T/s for DeepSeek-R1-Distill-Qwen-1.5B, and 15169 T/s for M1. We then assume that each
generated sample is maximum length (8K), and compute the seconds required for one
sample from one model as 8K divided by the throughput. We then convert the left graph of
Figure 3 into the right graph, by multiplying the number of samples for each datapoint by
the seconds required per sample for each model. As an example, M1 requires roughly a half
second (8K/15K) per sample, so the accuracy value for M1 at 32 samples on the left graph
appears at approximately 16 seconds on the right graph.

Scaling with longer sequences

Figure 4 shows the effect of scaling the maximum length of the generated answer, while
fixing the number of generated samples to one. For both the baseline and M1, increasing
the maximum sequence length leads to increased accuracy, as shown in the left graph in
Figure 4. After converting from generation length to the seconds required to generate (done
in the same way as Figure 3, but dividing the generation length by throughput), we can
see the accuracy gain per time spent generating on the right side of Figure 4. In this case,
M1 actually gets a higher accuracy for the same amount of time spent generating at 4 of
the 5 evaluated sequence lengths, showing the benefits of efficient generation for test-time
compute scaling.

5 Analysis

Increasing Training Length in RL boosts model performance

With more efficient models, we can increase the length of sequences used in RL training,
resulting in improved performance. Empirically, we see this in Figure 5, which shows an
increase in accuracy on AIME25 as we scale up the length of sequences generated when
training with GRPO. Training with sequences of maximum length 4096 results in accuracy
below 10%, while allowing sequences up to length 24K boosts the accuracy up to 23%.

MATH Accuracy at each training stage
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Figure 4: Generation length vs. AIME25 accuracy (left) and generation time (seconds) vs.
AIME25 accuracy (right). Sampling for both models is done using a temperature of 0.8.
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Figure 5: Pass@1 vs. maximum sequence length in GRPO training

MATH500 AIME24

Distill 38 0
Distill + SFT(MATH) 45 0
Distill + SFT(MATH) + SFT(Reason) 74 22
Distill + SFT(MATH) + SFT(Reason) + RL 82 28

Table 3: M1 Accuracy after each training stage on MATH500 and AIME24.

To identify which components of our training pipeline have the greatest impact on perfor-
mance, we also evaluate intermediate versions of the model on MATH500 (Hendrycks et al.,
2021) and AIME24 (MAA, 2024). The results of these evaluations are presented in Table 3.
Each step of the training pipeline provides a boost to performance, with particularly large
gains from fine-tuning on solutions from reasoning models (+29% on MATH500 and +17%
on AIME24).

Direct Distillation from Reasoning Models We also attempted to distill from Deepseek-R1-
Qwen-1.5B instead of Llama-3.2-3B. In this case, we did not SFT on OpenMathInstruct, and
instead only SFT on the 10B reasoning data that we collected after distillation. We found that
the distilled model’s performance was poor (38% and 3.3% pass@1 accuracy on MATH500
and AIME24, resspectively). Our hypothesis for why this occurs is that 10B tokens is
insufficient to effectively transfer reasoning skills from the transformer to Mamba. Although
curating a high-quality reasoning dataset demands significant time and effort, we begin
by leveraging the standard MATH distillation dataset from OpenMathInstruct (Toshniwal
et al., 2024) to first distill a strong MATH model. We then transform this MATH model
into a reasoning model via SFT on the dedicated reasoning dataset. This approach achieves
strong performance with a much smaller number of reasoning tokens.
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6 Conclusion

In this paper, we introduced M1, a hybrid reasoning model built on the Mamba architecture,
designed to address the scalability challenges of the Transformer models. We demonstrated
effective techniques for distillation and finetuning to develop M1, which achieves mathe-
matical reasoning performance comparable to state-of-the-art reasoning models of similar
size. Notably, M1 delivers over 3x faster inference than similar-sized Transformer models,
even when using the heavily optimized vLLM inference engine, particularly at large batch
sizes. This improved efficiency can make the resource-intensive inference-time strategies,
such as self-consistency, more practical. Our findings establish M1 as a strong alternative to
Transformer-based architectures, paving the way for more efficient and high-performing
reasoning models.
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Ré, and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with
repeated sampling, 2024. URL https://arxiv.org/abs/2407.21787.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray,
Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, and et. al. Evaluating large language models trained on code,
2021. URL https://arxiv.org/abs/2107.03374.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang
Hu, Yuhang Zhou, Te Gao, and Wangxiang Che. Towards reasoning era: A survey of long
chain-of-thought for reasoning large language models. arXiv preprint arXiv:2503.09567,
2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems, 2021. URL
https://arxiv.org/abs/2110.14168.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan,
Tianyu Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards.
arXiv preprint arXiv:2502.01456, 2025.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms
through structured state space duality, 2024. URL https://arxiv.org/abs/2405.21060.

10

https://arxiv.org/abs/2503.04697
https://arxiv.org/abs/2405.04517
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://arxiv.org/abs/2408.10189
https://arxiv.org/abs/2408.10189
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2405.21060


DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, and et. al. Deepseek-
r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Good-
man. Cognitive behaviors that enable self-improving reasoners, or, four habits of highly
effective stars, 2025. URL https://arxiv.org/abs/2503.01307.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and
Vaishnavh Nagarajan. Think before you speak: Training language models with pause
tokens, 2024. URL https://arxiv.org/abs/2310.02226.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy
Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie
Sravankumar, Artem Korenev, Arthur Hinsvark, and et. al. The llama 3 herd of models,
2024. URL https://arxiv.org/abs/2407.21783.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces,
2024. URL https://arxiv.org/abs/2312.00752.
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A Limitations and Future Work

Speedup. Our current hybrid model is only 3× faster than a Transformer of the same size
when serving inference with vLLM. Recently, NVIDIA introduced a new hybrid Mamba
kernel7, which could further boost the speed of hybrid models. Additionally, our attention
implementation in hybrid models does not yet leverage the optimizations available in vLLM.
Integrating M1 into vLLM could further boost performance by taking advantage of these
attention speedups.

Why do we not distill Qwen2.5 1.5B MATH model. We considered using the Qwen2.5
1.5B MATH Instruct model as the distillation target in the first stage. However, we found
that the cross entropy loss of the Qwen 1.5B MATH model on the OpenMATH Instruct
dateset (Toshniwal et al., 2024) exceeded 1.8, which is much higher than that of the Llama
models (0.5). This suggests that, to mimic the Qwen2.5 model, we need a dataset generated
from a large Qwen2.5 series model rather than this one generated from the Llama models.
Dataset curation from Qwen Math models goes beyond the scope of this work.

7https://github.com/NVIDIA/Megatron-LM/commit/b957578e76a921209ef873cbbd389114a4042542
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Improvement on RL training speed Recently, DeepSeek R1 (DeepSeek-AI et al., 2025)
showed that reinforcement learning (RL) is a key component in improving model reasoning
performance during post-training. Since then, recent research has predominantly relied on
reinforcement learning (RL) as a training paradigm for reasoning models. However, training
with RL requires the efficient generation of long sequences. For example, in VeRL (Sheng
et al., 2024), the typical training batch size ranges from a few thousand to several thousand.
DeepscaleR (Luo et al., 2025) also shows a significant accuracy boost when training RL with
longer sequences, as it tends to enhance model performance by providing more steps for
thorough reasoning. However, this shift towards reinforcement learning has resulted in the
generation process becoming a significant bottleneck in reasoning model training, taking
more than three times as long as the actor’s weight update (forward + backward) according
to the time profiling done for DeepscaleR (Luo et al., 2025). This need for efficient generation
in RL presents a significant challenge for transformer models, namely due to the heavy
computational burden imposed by large key-value caches during generation, especially for
large batch sizes. Given their generation speed advantages, linear RNN models may be
better suited for scaling RL training.
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