
FedAST: Federated Asynchronous Simultaneous Training

Baris Askin1 Pranay Sharma1 Carlee Joe-Wong1 Gauri Joshi1

1Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract

Federated Learning (FL) enables edge devices or
clients to collaboratively train machine learning
(ML) models without sharing their private data.
Much of the existing work in FL focuses on effi-
ciently learning a model for a single task. In this
paper, we study simultaneous training of multiple
FL models using a common set of clients. The few
existing simultaneous training methods employ
synchronous aggregation of client updates, which
can cause significant delays because large models
and/or slow clients can bottleneck the aggregation.
On the other hand, a naïve asynchronous aggrega-
tion is adversely affected by stale client updates.
We propose FedAST, a buffered asynchronous fed-
erated simultaneous training algorithm that over-
comes bottlenecks from slow models and adap-
tively allocates client resources across heteroge-
neous tasks. We provide theoretical convergence
guarantees of FedAST for smooth non-convex ob-
jective functions. Extensive experiments over mul-
tiple real-world datasets demonstrate that our pro-
posed method outperforms existing simultaneous
FL approaches, achieving up to 46.0% reduction
in time to train multiple tasks to completion.

1 INTRODUCTION

Federated Learning (FL) is a distributed learning paradigm
where edge devices or clients collaboratively train ma-
chine learning (ML) models using privately held local data
[McMahan et al., 2017, Kairouz et al., 2021]. Clients iter-
atively update their local models, which are periodically
sent to a central server for aggregation. The aggregated
model is then sent to the clients to begin the next round
of local updates. Since its introduction in [McMahan et al.,
2017], various practical and theoretical aspects of FL, in-

cluding client selection [Nishio and Yonetani, 2019, Cho
et al., 2022], communication challenges [Ang et al., 2020,
Chellapandi et al., 2023], scalability and fast training [Xie
et al., 2019, Wang et al., 2020b], have been extensively stud-
ied. However, these works almost exclusively assume that
the server aims to learn model(s) for a single task. Some FL
frameworks attempt to learn models personalized to each
client [Mansour et al., 2020, Li et al., 2021, Tan et al., 2022],
but these models are still intended for the same learning
task, e.g., next-word prediction on keyboards.

Many practical applications need devices to perform a wide
range of learning tasks, which require training of multiple
ML models. For instance, our phones need language models
for keyboard next-word prediction as well as image recom-
mendation models to highlight images more likely to be
shared [McMahan et al., 2017]. Yao et al. [2023] propose
training multiple models in federated smart car networks for
different tasks, such as pothole detection and maneuver pre-
diction. Another example can be a chat application requiring
speech recognition and response text generator models con-
currently, while Le et al. [2022] suggest federated learning
of multiple models for air quality index forecasting. Thus,
in this paper, we seek to answer the following question:

How can we efficiently train models for multiple tasks in a
federated setting using a shared pool of clients?

Simple Solutions that Extend FedAvg. A naïve approach
to training multiple models is sequential training, where the
models corresponding to different tasks are trained one at
a time, each utilizing all the clients. The total training run-
time of this approach scales linearly with the number of
tasks. An alternative is for all the clients to train all tasks
at the same time. However, with this approach each client
will have to keep all models in memory, which is infeasible
for resource-limited edge clients such as smartphones. To
preserve memory, clients will have to queue the training
requests and process them sequentially, again resulting in
the runtime linearly increasing with the number of tasks. On
the other hand, parallel or simultaneous training (ST) of all

ar
X

iv
:2

40
6.

00
30

2v
1

 [c
s.L

G
]

1
Ju

n
20

24

mailto:%3Cbaskin@andrew.cmu.edu%3E?Subject=About%20FedAST%20paper%20in%20UAI%202024

the models with time-varying subsets of clients assigned to
each task can strike a better trade-off between accuracy and
runtime. Bhuyan et al. [2023]’s approach assigns a disjoint
subset of clients to each model in each round, which signif-
icantly improves the time taken to reach a target accuracy
as compared to sequential training. However, these feder-
ated simultaneous training (FST) approaches leave room
for significant improvement. There are two particular draw-
backs: 1) straggler delays due to synchronous aggregation,
and 2) the lack of adaptation to the training progress of
heterogeneous tasks, which we address in this work.

Synchronous Aggregation and Straggler Delays. Con-
ventional FL employs synchronous aggregation, where in
each round, the server waits to receive updates from all
the participating clients before each aggregation. However,
when the clients have diverse hardware and communication
capabilities, faster clients must remain idle until slow or
straggling clients finish, causing a large wallclock runtime
to complete each communication round. This problem is fur-
ther exacerbated in FL with multiple simultaneous models
[Bhuyan et al., 2023, Zhou et al., 2022], where the aggre-
gation is synchronized across tasks as well. Therefore, the
server has to wait for the slowest client across all the parallel
tasks. Solutions proposed to alleviate the straggler problem
in the single-model context include allowing faster clients to
run more local steps [Wang et al., 2020b], aggregating only
the client updates that arrive before a timeout [Bonawitz
et al., 2019], and sub-sampling from the set of available
clients [Luo et al., 2022]. Although these approaches per-
form well when stragglers appear uniformly at random, they
do not work well in the simultaneous training setting be-
cause some models (e.g., larger ones) are naturally slower
to train. When the multiple models have inherently differ-
ent training times, synchronized global aggregation rounds
are bottlenecked by the slowest client assigned to the most
computationally intensive model, leading to large idle times.

Asynchronous Aggregation and Staleness Issues. An-
other solution to the straggler problem is asynchronous
aggregation at the server, as proposed in AsyncFL [Xie
et al., 2019], where the server updates the global model
whenever it receives any client update. While asynchronous
aggregation has been extensively studied in single-model
federated learning [Chen et al., 2020, Wang et al., 2022, Xu
et al., 2023, Yu et al., 2023a], it has not been well-explored
for simultaneous federated training. Although AsyncFL ad-
dresses the straggler issue, it suffers from undesired stale-
ness even in the standard FL setting, since the received client
updates are often based on outdated models. To alleviate the
staleness problem in single-model FL, Nguyen et al. [2022]
proposed storing the incoming client updates in a buffer at
the server and aggregating when the buffer is full.

Adaptive Allocation of Clients to Heterogeneous Tasks.
In this work, we employ asynchronous buffered aggregation
to overcome the straggler issue while controlling staleness.
However, extending single-model FL algorithms [Xie et al.,
2019, Nguyen et al., 2022] to the simultaneous training of
multiple models is not straightforward — running multiple
independent instances of asynchronous FL can be subop-
timal. This is because the tasks can have heterogeneous
computation complexities and different data heterogeneity
that affect both the number of rounds required to achieve a
given target accuracy as well as the wall-clock time taken to
complete each round. Since a shared set of clients is used to
train the models, the training processes are coupled – more
resources assigned to one task implies less for the others.
Moreover, the optimal resource requirement for each task
can change over time according to its data heterogeneity
and training progress and may be difficult to predict before
training. Therefore, we propose an adaptive algorithm that
dynamically reallocates clients across tasks depending on
their training progress, and also adapts the buffer size used
for asynchronous aggregation of updates.

Our Contributions. We formalize the FST setting in Sec-
tion 2 and then make the following main contributions:

• We introduce FedAST, a Federated Asynchronous
Simultaneous Training algorithm1 to simultaneously train
models for multiple tasks (Section 3). Our work is one
of the first to mitigate the straggler problem faced by
synchronous FST methods that extend vanilla FedAvg.

• The proposed algorithm addresses the problem of bal-
ancing resources across heterogeneous tasks, a unique
challenge to the FST framework, using novel dynamic
client allocation, and it also dynamically adjusts the buffer
size used in asynchronous aggregation to strike the best
trade-off between staleness and runtime.

• We provide a theoretical convergence analysis of FedAST
(Section 4), which improves previous analyses even in the
single-model FL setting. It improves upon [Koloskova
et al., 2022] by considering multiple local updates and
the buffer, and on [Nguyen et al., 2022] by relaxing the
restrictive assumptions.

• We experimentally validate FedAST’s performance (Sec-
tion 5) in terms of its wall-clock training time and model
accuracy on multiple real-world datasets compared to
synchronous and asynchronous FL baselines.

We conclude and discuss future work in Section 6.

Related Work. Only a few recent works [Zhou et al.,
2022, Bhuyan and Moharir, 2022, Siew et al., 2023, Bhuyan
et al., 2023] consider federated simultaneous training of
multiple models. In [Zhou et al., 2022], clients are selected

1Our code is provided at https://github.com/
askinb/FedAST.

https://github.com/askinb/FedAST
https://github.com/askinb/FedAST

with either Bayesian optimization or reinforcement learning
to minimize training time and unfairness in participation.
Bhuyan and Moharir [2022] formulate the client assignment
FL as a bandit problem leveraging local training losses as
scores. Siew et al. [2023] introduce biased client sampling,
favoring the clients with higher local losses. These methods
lack convergence guarantees. Bhuyan et al. [2023] assign
clients uniformly at random or in a round-robin fashion
and analyze the convergence assuming convex objective
functions and bounded gradients. While these works only
consider synchronous aggregation, Chang et al. [2023] pro-
pose a fully asynchronous FST algorithm. Their approach
entails solving a non-convex optimization problem to opti-
mize client assignment, which requires information about
delays and models that may be difficult to obtain in practice.
Also, the obtained bound does not converge to a stationary
point in the presence of data heterogeneity and suffers from
increased staleness when the number of clients increases.
Lastly, Liu et al. [2023] propose an extension of their single-
model adaptive asynchronous approach to the multi-model
setting. However, they do not carefully handle heteroge-
neous data distributions across clients and the staleness of
updates in their theoretical guarantees for a single model,
and they lack these guarantees for multiple models. Also,
their method under-utilizes client resources, since after send-
ing a model update to the server, the clients are idle until
the next training round.

2 PROBLEM FORMULATION

Notations. For a positive integer c, we define [c] ,
{1, . . . , c}. er denotes stochastic gradients. Bold lowercase
letters (e.g., x) denote vectors. |A| denotes the cardinality
of set A. k · k denotes the Euclidean norm.

We now formally introduce the federated simultaneous
training (FST) setting, where N clients train M models
x1, . . . ,xM corresponding to M independent tasks. For
each task m 2 [M], our goal is to find the model that solves
that following optimization problem:

min
x2Rdm

(
fm(x) :=

1

N

NX

i=1

fm,i(x)

)
, (1)

where fm is the global loss function for task m, and fm,i is
the local loss for task m at client i.

First, we examine a simple extension of FedAvg [McMahan
et al., 2017] to simultaneous training of models for M tasks.
At the start of each round, the server randomly partitions the
available set of clients across the tasks [Bhuyan et al., 2023].
The server sends the current models {x(tm)

m }
M
m=1 for all

the tasks to the corresponding subset of clients. The clients
perform local training (Algorithm 1) and return their updates
to the server, which synchronously aggregates the updates
for each task. This naïve simultaneous training extension of

Algorithm 1 LocalTrain(m,⌧m,x
(tm)
m ,⌘cm) at client i

1: Set x(tm,0)
m,i x(tm)

m

2: for k = 1, . . . , ⌧m do
3: x(tm,k)

m,i x(t,k�1)
m,i � ⌘cm erfm,i(x

(t,k�1)
m,i)

4: end for
5: Return �m (x(tm)

m � x(tm,⌧m)
m,i)/(⌧m⌘cm)

FedAvg performs poorly due to stragglers. The time it takes
for a client to return its updates depends on its resources and
the size of the model assigned. Since the server waits for the
slowest update across all the tasks before commencing the
next round, the server waits much longer if a large model
is assigned to a slow client. We mitigate this problem via
asynchronous training in FedAST, discussed next.

3 ALGORITHM DESCRIPTION

Next, we describe FedAST (Algorithm 2), our proposed
Federated Asynchronous Simultaneous Training algorithm,
illustrated in Figure 1 for M = 2 tasks. For each task
m 2 [M], the server maintains a round index tm that is
initialized to tm = 0, the number of active training requests
R(tm)

m , and buffer size b(tm)
m . R(tm)

m and b(tm)
m quantify the

resources (client computation and memory) allocated to
task m in round tm. We provide two versions of FedAST
based on the value of option 2 {S,D}. When option is S
(static), the resource allocation for each task remains the
same throughout the training process (i.e., R(tm)

m ⌘ Rm

and b(tm)
m ⌘ bm). With option = D (dynamic), FedAST

dynamically reallocates resources across tasks using the
Realloc subroutine (Algorithm 3).

Assignment of Local Training Requests to Clients and
Their Execution. Consider task m 2 [M]. The server be-
gins by sending out R(0)

m local training requests for task m to
clients selected uniformly at random, along with the initial
model x(0)

m (Algorithm 2, Line 4). The number of local train-
ing requests R(tm)

m is adapted over time using the Realloc
function (Algorithm 3), enabling us to dynamically reallo-
cate client resources across tasks. Each client processes the
training request by performing ⌧m local mini-batch SGD
iterations (see Algorithm 1) and sends the resulting model
update �m back to the server. If a client receives multiple
requests, they are queued and processed in a first-come-
first-served manner.2 Therefore, the number of active clients
(clients working on training requests) at any time might be
less than the number of active training requests (that clients
are working on or are stored in their queues).

2Processing the requests in parallel would require clients to
keep all the M models in local memory, which can be infeasible.

Algorithm 2 FedAST
1: Input: Client and server learning rates {⌘cm, ⌘sm}

M
m=1,

option 2 {S,D}, no. of local updates {⌧m}
M
m=1

2: Initialize: 8m 2 [M]: tm 0 (round index), model
x(0)
m , buffer Bm ;. Total no. of updates c 0

3: for Models m = 1, . . . ,M (in parallel) do
4: Randomly select R(0)

m clients and send
LocalTrain(m, ⌧m, x(0)

m , ⌘cm) requests
5: while tm < Tm do
6: Wait until server receives an update �m

7: Bm Bm [{�m}, c c+ 1

8: {(R(ti+1)
i , b(ti+1)

i)}Mi=1 Realloc(option, c)
9: if |Bm| = b(tm)

m then
10: x(tm+1)

m x(tm)
m �⌘sm⌘cm⌧m

1

b(tm)
m

P
�2Bm

�

11: tm tm + 1 and Bm ;

12: end if
13: Select K(tm)

m random client(s) and send
LocalTrain(m, ⌧m,x(tm)

m , ⌘cm) request(s)
14: end while
15: end for
16: Output: Trained models {x(Tm)

m }
M
m=1

Buffered Asynchronous Aggregation at the Server. The
updates �m sent by the clients are aggregated at the server
in an asynchronous manner as follows. To keep staleness in
check, the server maintains a buffer Bm for task m, which
stores the received client updates for model m (Algorithm 2,
Line 7). The buffer size b(tm)

m can be adapted over time
(using the Realloc function). Whenever the server re-
ceives an update for task m, it randomly selects K(tm)

m

client(s) to send a new training request along with the cur-
rent global model (Algorithm 2, Line 13). As we explain
below, K(tm)

m = 1 (respectively, K(tm)
m 2 {0, 1, 2}) for

option = S (option = D). When the buffer for model m
gets full (formally, |Bm| = b(tm)

m) the server aggregates
the updates stored in the buffer to update the global model
(Algorithm 2, Line 10).

Dynamic Adaptation of the Number of Active Requests
and Buffer Size using Realloc (Algorithm 3). With
the static option (option = S), the Realloc subroutine
always runs its Line 6 to maintain the initial values of Rm

and bm throughout the whole training process. The resource
allocation across tasks does not change over time. On the
other hand, with the dynamic option, the Realloc subrou-
tine adjusts the resource allocation during the training. The
server maintains a counter c, tracking the total number of
updates received across all M tasks (Algorithm 2, Line 7).
If option = D (dynamic), this counter is used to periodi-
cally trigger the dynamic adaptation of the number of active
training requests Rm and the buffer size bm across tasks
(Algorithm 2, Line 8). Intuitively, we should allocate more

Server

Returning update

New training request

Server

Returning update

New training request

Figure 1: In our proposed algorithm FedAST, the server
assigns local training requests (shown in striped and orange
blocks for two simultaneous tasks), which are queued at the
clients and processed in a first-come-first-served manner.
Completed requests are aggregated asynchronously at the
server. In the figure, snapshots of the process at two different
times are seen. Adjusting the number of requests, FedAST
periodically reallocates the resources shared across models.

clients (and consequently, more training requests Rm) to
tasks with larger inter-client data heterogeneity. To empiri-
cally estimate this heterogeneity, the server stores the last
V (V is a tunable parameter) updates �m for each task m
(denoted {�m,i}

V
i=1) and computes

�̂2
g,m /

1

V
⇥

XV

i=1

���m,i ��m
��2

���m
��2

, (2)

where �m is the empirical mean of the �m,i’s.3 Further,
in our experiments, we empirically observe that the optimal
choice of buffer size bm is proportional to the number of
active requests Rm. See Appendix C.5 for our extensive
experiments. Using (2) and these empirical observations,
the optimal resource allocation emerges as the solution to
the following constraints.

XM

i=1
R(ti+1)

i =
XM

i=1
R(ti)

i ,

R
(t1+1)
1

�̂g,1
=

R
(t2+1)
2

�̂g,2
= · · · =

R
(tM+1)
M

�̂g,M
,

(3)

where the first set of constraints maintains the total compu-
tation budget across tasks, and the second set ensures the
allocation of a larger number of training requests to clients
with higher heterogeneity. We elaborate on the theoretical
motivation for the second set of constraints in Section 4,
once we establish our convergence results. We also refer the
reader to Appendix A for more details on Realloc.

Sending out New Requests to Reach the New Resource
Allocation. To transition from one allocation {R(ti)

m }m to

3We normalize by
���m

��2 to account for different model sizes
since larger models often have larger unnormalized variance.

Algorithm 3 Realloc(option,c)
1: if option = D and c mod cperiod = 0 then
2: {�̂2

g,m}
M
m=1 EstimateVariances()

3: Find {R(tm+1)
m }

M
m=1 that solves (3)

4: b(tm+1)
m

�
b(tm)
m R(tm+1)

m
�
/R(tm)

m for all m 2 [M]

5: else: for all m 2 {i : R(ti+1)
i not defined} do

6: (R(tm+1)
m , b(tm+1)

m) (R(tm)
m , b(tm)

m)
7: end if
8: Return {(R(tm+1)

m , b(tm+1)
m)}Mm=1

another {R(tm+1)
m }m in an asynchronous setting, we must

adjust the number of new requests that are sent out every
time the server receives a client update. The number of new
requests K(tm)

m sent out on receiving any update �m is
always 1 in the static (option = S) case since Rm remains
constant throughout training. In the dynamic case (option =

D), K(tm)
m can be 0 (when R(tm+1)

m < R(tm)
m), 1 (when

R(tm+1)
m = R(tm)

m), or 2 (when R(tm+1)
m > R(tm)

m). We
employ this gradual transition to the desired new number of
active training requests {R(tm+1)

m }m for each task instead
of a sudden change in allocation to avoid possible longer
queues at the clients during the transition phase.

4 CONVERGENCE ANALYSIS

In this section, we provide the convergence result for
FedAST with the static option (S). Since R(tm)

m and b(tm)
m

are constant when option = S, we drop time indices for
simplicity. The convergence with dynamic allocation (op-
tion = D) can be shown with an additional assumption. We
relegate this to Appendix F due to space limitations.

Next, we discuss the assumptions used in our analysis.

Assumption 1 (Smoothness). The loss functions are L-
smooth, i.e., for all i 2 [N], for all m 2 [M], and for all
x,y 2 Rdm , krfm,i(x)�rfm,i(y)k  L kx� yk.
Assumption 2 (Bounded Variance). The stochastic gra-
dient at each client is an unbiased, bounded-variance es-
timator of the true local gradient, i.e., for all x 2 Rdm ,
i 2 [N], and m 2 [M], E[erfm,i(x)] = rfm,i(x) and
Ekerfm,i(x)�rfm,i(x)k2  �2

l,m.
Assumption 3 (Bounded Heterogeneity). The local gra-
dients are within bounded distance of the global gra-
dient, such that for all m 2 [M] and x 2 Rdm ,
max
i2[N]

krfm,i(x)�rfm(x)k2  �2
g,m.

Assumption 4 (Bounded Staleness). The client updates
of task m are received within at most �max

m server model
updates after the server sends the training request.

These assumptions are standard in the literature. Assump-
tions 1-3 are commonly used in the synchronous [Wang

et al., 2020b, Jhunjhunwala et al., 2022] and asynchronous
[Koloskova et al., 2022, Nguyen et al., 2022] FL analyses.
Assumption 4 is used in the convergence proof to guarantee
that none of the requested client updates takes an arbitrarily
large time to return to the server and is also common in
asynchronous FL works [Koloskova et al., 2022, Nguyen
et al., 2022]. Furthermore, the maximum staleness can be en-
forced by dropping over-delayed updates in practice during
the training.

Theorem 1 (Convergence of FedAST). Suppose that
Assumptions 1 - 4 hold, and there are Rm active lo-
cal training requests corresponding to task m 2 [M],
and the server and client learning rates, {⌘sm, ⌘cm}

respectively, satisfy ⌘sm 
p
⌧mbm and ⌘cm 

min{(6L⌧m
p
⌧mbm)�1, (4L⌧m

p
⌧mRm�max

m)�1
} for all

tasks m 2 [M]. Here, bm is the buffer size, and ⌧m
is the number of local training steps. Then, the iterates,
{{x(t)

m }
Tm
t=1}

M
m=1, of Algorithm 2 satisfy:

1

Tm

PTm�1
t=0 Ekrfm(x(t))k2  O

⇣
�m

Tm⌘cm⌘sm⌧m

⌘

| {z }
FedAvg Error - I

+O

⇣⇣
L⌘cm⌘sm

bm
+ L2[⌘cm]2⌧m

⌘
(�2

l,m + ⌧m�2
g,m)

⌘

| {z }
FedAvg Error - II

+O

✓
L2[⌘sm]2[⌘cm]2⌧mRm

b2m
(�2

l,m + ⌧mRm�2
g,m)

◆

| {z }
Asynchronous Aggregation Error

,

(4)

where �m = fm(x(0)
m)�minx fm(x).

Proof. See Section E in the Appendix.

Comparison with Synchronous FL Analyses. The
FedAvg Error - I and - II terms in (4) capture the error
bound for synchronous FedAvg [Jhunjhunwala et al., 2022,
Theorem 1]. Since the server updates for model m involve
aggregating bm client updates, the buffer size bm is analo-
gous to the number of participating clients in FedAvg. The
third error term in (4) arises due to asynchronous aggre-
gation and increases with Rm, the number of active local
training requests. Intuitively, given the same buffer size bm,
increasing Rm leads to higher worst-case staleness �max

m .
However, as long as L⌘sm⌘cmR2

m⌧m  bm, asynchrony is
not the dominant source of error in (4), and we achieve
the same rate of convergence as synchronous FedAvg (see
Corollary 1.1).

Comparison with Asynchronous FL Analyses. FedBuff
[Nguyen et al., 2022] considers buffered asynchronous ag-
gregation for a single model. Still, comparing [Nguyen
et al., 2022, Corollary 1] and the bound in (4) for M = 1,
their convergence result (i) depends on stronger assump-
tions (bounded gradient norm and uniform arrivals of client

updates), and (ii) has worse asynchronous aggregation er-
ror. Moreover, our analysis is more general compared to
[Koloskova et al., 2022] as they do not consider multiple
local SGD steps and the buffer. Simultaneous asynchronous
training is considered by [Chang et al., 2023], but we ob-
serve that they do not achieve convergence unless the data
distribution across clients is identical (see [Chang et al.,
2023, Eq. (19)]). We discuss the comparison of FedAST
to single-model and simultaneous asynchronous federated
training baselines in more detail in Appendix Section B.

Corollary 1.1 (Asymptotic convergence after setting learn-
ing rates). Let Tm � ⌧m max {36bm, 16Rm�max

}. Setting
the learning rates ⌘cm = (⌧mL

p
Tm)�1, ⌘sm =

p
⌧mbm ,

the bound in Theorem 1 reduces to:
1

Tm

PTm�1
t=0 Ekrfm(x(t))k2  O

⇣
�mL

p
bm⌧mTm

⌘

+O

⇣⇣
1

p
Tmbm⌧m

+
1

⌧mTm

⌘
(�2

l,m + ⌧m�2
g,m)

⌘

+O

⇣
Rm

Tmbm
(�2

l,m + ⌧mRm�2
g,m)

⌘
. (5)

Although the given bound in Corollary 1.1 does not seem
to depend on the staleness bound �max (Assumption 4), its
effect is implicit in the number of active requests Rm and
buffer size bm. The maximum staleness is positively cor-
related with Rm and negatively correlated with bm. In our
experiments (Appendix C.5), we tune the buffer size to
maintain the update staleness at a reasonable level.

Looking at the bounds in (4) or (5), increasing Rm makes
the bound worse because to reach the same accuracy in
(5), we need to run a higher number of server updates Tm.
However, increasing Rm also shortens the duration between
two successive server updates, making the algorithm faster
in wall-clock time. We illustrate this effect with a wall-clock
comparison to FST baselines below.

Impact of Rm on Wall-clock Time. Suppose the ar-
rival times of all the client updates (assuming there is
no queue on the clients) are distributed as Exp(�). The
expected time to fill the buffer corresponding to task m
is bm/(Rm�). Therefore, in FedAST, the expected time
to complete one round at the server is inversely propor-
tional to Rm. On the other hand, the expected time to finish
one round of synchronous simultaneous FedAvg training
is 1

�

PR1+···+RM

k=1
1
k ⇡

1
� log(

PM
k=1 Rk), which increases

with Rm. Also, the summation over simultaneously trained
tasks shows an exacerbated straggler effect since all the
clients wait for the slowest client across all the tasks.

Design of Realloc (Algorithm 3). Next, we theoreti-
cally justify the dynamic allocation of resources across tasks
described in Section 3 (Algorithm 3, with option = D),
which adjusts the number of active requests ({Rm}

M
m=1).

Given the limited number of available clients (which lim-
its the total number of active training requests), to achieve

the best possible allocation, we minimize the sum of the
most dominant terms in the bounds (FedAvg Error-II in (4))
across tasks. We also use the empirical observation that the
optimal choice of buffer-size bm scales linearly with Rm

(Appendix C.5). The resulting optimization problem is

min
{Rm,bm}M

m=1

MX

m=1

⌘sm⌘cm⌧m
Rm

�2
g,m s.t.

MX

m=1

Rm = R, (6)

where R is the budget for the total number of training
requests across all tasks in the system depending on the
number of available clients. The Realloc function (Al-
gorithm 3) solves the optimization problem (6). See Ap-
pendix A for more details.

5 EXPERIMENTAL RESULTS

We outline our experimental setup in Section 5.1, discuss the
existing baselines in Section 5.2, and compare the baselines
with FedAST under varied settings in Section 5.3.

5.1 DATASETS AND IMPLEMENTATION

We consider image classification tasks with the MNIST
[Deng, 2012], Fashion-MNIST [Xiao et al., 2017] and
CIFAR-10 [Krizhevsky et al., 2009] datasets, and next char-
acter prediction with the Shakespeare [Caldas et al., 2019]
dataset using the same models as in previous works [Acar
et al., 2021, Yu et al., 2023b, Lecun et al., 1998]. We com-
pare the wall-clock time required by different algorithms to
reach some predetermined target test accuracy levels (see
Table 1). In Appendix D.5, we present experiments with
other target accuracy levels to show the consistency of our
results. We also validate our results with ResNet-18, a larger
model, trained for the CIFAR-100 classification task in Ap-
pendix D.4. In all experiments, we conduct three Monte
Carlo runs with different random seeds and report the aver-
age results.

Table 1: The datasets and models used in experiments, along
with corresponding target test accuracy levels.

Dataset Model Target Accuracy
MNIST MLP 93%

Fashion-MNIST LeNet-5 82%
CIFAR-10 CNN 63%

Shakespeare LSTM 42%

For image classification tasks, we partition the training data
across clients using the Dirichlet distribution with ↵ = 0.1
to create inter-client data heterogeneity [Yurochkin et al.,
2019]. The Shakespeare dataset is naturally heterogeneous
as the lines of each role in the plays of Shakespeare are as-
signed to a different client. There are a total of 1000 clients,

Figure 2: Mean test accuracy for compared algorithms on six
identical CIFAR-10 tasks trained simultaneously. FedAST
trains faster than synchronous methods. The synchronous
method without straggler mitigation is by far the slowest.

30% of which are available to accept new training requests,
independent of the past.

Modeling Client Delays. As suggested in [Lee et al.,
2018, Dutta et al., 2021, Shi et al., 2021, Zhou et al., 2022],
we use shifted-exponential (exponential plus constant) ran-
dom variables to model the time taken by a client to com-
plete a local training request and return the update to the
server. We pick the run-time generation parameters of each
task according to real measurements on NVIDIA GeForce
GTX TITAN X GPUs. To simulate hardware heterogeneity
across clients, we divide them into 25% slow, 50% normal-
speed, and 25% fast clients [Leconte et al., 2023]. We rele-
gate additional implementation details to the Appendix.

5.2 BASELINE ALGORITHMS

We explain the synchronous and asynchronous baseline
methods to which we compare FedAST:

Synchronous Simultaneous Training. The following
synchronous methods differ only in client selection.
1. Sync-ST [Bhuyan et al., 2023]: randomly partition the

client set across tasks at each round;
2. Sync-Bayes-ST [Zhou et al., 2022]: Bayesian

optimization-based assignment of clients to tasks;
3. Sync-UCB-ST [Bhuyan and Moharir, 2022]: client se-

lection as a multi-armed bandit problem.
In Figure 2, we first simultaneously train six CIFAR-10
models and compare the performance of all synchronous
baselines and FedAST. As synchronous methods perform
poorly due to a severe straggler issue, we augment them
with a straggler mitigation method by aggregating only
the first k client updates for each task and discarding
the rest [Bonawitz et al., 2019] as the default option. We
choose k = 30 by validation experiments across datasets
in Appendix D.1. This extra augmentation makes the base-
lines more competitive. In Figure 2, we also add the result
of Sync-ST -NoStrag.Mit., which is the Sync-ST

Figure 3: The mean final test accuracy values of FedAST
(blue), FedAST-NoBuffer (olive green) and centralized
training (violet) with varying active client ratio, when train-
ing 3 identical models. The left (right) figure is for CIFAR-
10 (Fashion-MNIST) dataset. With more active clients, the
importance of buffer increases due to increasing staleness.

Figure 4: The mean test accuracy values of FedAST and
FedAST-NoBuffer, when simultaneously training one
model for CIFAR-10 and one for Fashion-MNIST. FedAST
achieves higher and more stable accuracy levels.

without our augmented straggler mitigation. It shows that
the synchronous baselines have a large straggler effect with-
out our extra augmentation.

Asynchronous Federated Simultaneous Training. To
our knowledge, [Chang et al., 2023] is the only other
work that mainly studies asynchronous simultaneous FL.
However, their client selection scheme requires the knowl-
edge of network-wide staleness and smoothness constants,
which are hard to estimate. If the tasks have similar model
complexity and task difficulty, their client selection is
similar to that of FedAST with a buffer size of 1. We
thus include this no-buffer version of FedAST (we call
it FedAST-NoBuffer) as a baseline.

5.3 RESULTS AND INSIGHTS

We assess the performance of FedAST under various sce-
narios. In homogeneous-task experiments, where multiple
independent copies of the same model are trained simultane-
ously using the same dataset, we report the average accuracy
over time. In heterogeneous-task experiments involving dif-
fering tasks and models, efficiently distributing resources to
accelerate the completion of all tasks is the main challenge.
For homogeneous tasks, we use FedAST with the static
option (S) and uniform client distribution across tasks. In
heterogeneous-task experiments, we use dynamic allocation
(option = D) to enhance resource allocation efficiency. To

Figure 5: Mean training times of FedAST and Sync-ST to attain target accuracy levels in (Table 1) on 2/4/6 tasks with
CIFAR-10, Fashion-MNIST, MNIST, and Shakespeare datasets. FedAST requires consistently lower wall-clock time for
training compared to Sync-ST; the percentages represent these time gains.

show the benefits of dynamic allocation over static allo-
cation, we also explore heterogeneous-task scenarios with
option = S. Dynamic allocation reduces overall training
time by up to 11.9%, with comprehensive results shown in
Appendix D.6.

To quantify the time saved by using FedAST over some
competing baseline, we define time gain as

Gain , TBaseline � TFedAST
TBaseline

⇥ 100%,

where TBaseline (TFedAST) is the simulated time for
Baseline (FedAST) to reach the target accuracy.

Comparison with All Synchronous FST Methods. First,
we compare the synchronous baselines discussed in Sec-
tion 5.2 on the CIFAR-10 dataset (Figure 2), where
we simultaneously train six identical models. We ob-
serve that synchronous methods without straggler mit-
igation converge very slowly. Among the straggler-
mitigated synchronous variants that we implement, Fig-
ure 2 shows that Sync-Bayes-ST, has similar per-
formance to Sync-ST because it struggles due to the
large search space of the optimization problem, stemming
from the exponential number of possible client sched-
ules. Further, we do not observe any performance gains
from using Sync-UCB-ST over Sync-ST. Given that
Sync-Bayes-ST and Sync-UCB-ST have similar per-
formance as Sync-ST, in subsequent experiments, we
choose Sync-ST as the sole synchronous baseline.

Need for Buffer. As discussed earlier, incorporating the
buffer mitigates the negative impact of highly stale up-
dates. Since staleness increases with the number of ac-
tive clients, asynchronous FL methods without a buffer
exhibit limited scalability as the number of clients grows.
To demonstrate this, in Figure 3, we conduct two experi-
ments: 1) training three models for CIFAR-10 simultane-
ously, and 2) training three models for Fashion-MNIST
simultaneously. We plot the final accuracy values varying
the ratio of the active clients. We observe that for small

active client ratios, FedAST and FedAST-NoBuffer
have comparable performance. However, with more active
clients, the staleness of the updates increases, resulting in
significantly worse performance of the fully asynchronous
FedAST-NoBuffer algorithm. Then, in Figure 4, we si-
multaneously train two models, one each for CIFAR-10 and
Fashion-MNIST. Observing the unsteady learning curves of
FedAST-NoBuffer, we conclude that the buffer makes
the system more robust to stale updates.

Comparison with Sync-ST. Next, we compare
FedAST with the chosen synchronous method, Sync-ST.

Figure 6: Training curves of a single Monte Carlo run of
the heterogeneous experiment. Dashed vertical lines show
times when tasks reach their target accuracy, with FedAST
reaching it faster than Sync-ST.

1) Homogeneous Tasks: We conduct experiments training
2, 4, and 6 identical models for each of MNIST, Fashion-
MNIST, CIFAR-10, and Shakespeare datasets. Figure 5
shows the average finish times of the algorithms, and the
significant time gains of our algorithm FedAST over syn-
chronous Sync-ST (even after incorporating straggler mit-
igation). We observe that the gain increases with the number
of simultaneously trained tasks because Sync-ST is espe-
cially vulnerable to the straggler problem.

2) Heterogeneous Tasks: The heterogeneous experiment
trains 4 models simultaneously, one each for the MNIST,
Fashion-MNIST, CIFAR-10, and Shakespeare datasets.
Once one model reaches its target accuracy, its training

Figure 7: Mean time required to reach target accuracy and
time gain of FedAST over Sync-ST in the heterogeneous
experiment. While FedAST does not require manual fine-
tuning, the client allocation in Sync-ST is tuned at 100, 84,
48, and 68 clients for MNIST, Fashion-MNIST, CIFAR-10,
and Shakespeare tasks respectively. FedAST has notable
time gain (40.1%) over Sync-ST to finish all tasks.

stops, and its clients are reallocated to other tasks. We use
FedAST with option = D for dynamic client allocation.
For the synchronous baseline Sync-ST, we ran 30 dif-
ferent client allocation schemes, including our proposed
allocation scheme and uniform allocation across tasks. We
report the results achieved with the best-performing scheme.

Figure 6 shows learning curves for FedAST and Sync-ST
from a single Monte Carlo run. The dashed vertical lines
denote the time instants when a model reaches its target
accuracy, following which the clients training this model get
reallocated to other tasks. Figure 7 shows the average finish
times for 4 simultaneously trained models with FedAST
and Sync-ST. For example, with FedAST, the model for
MNIST dataset hits its target accuracy at 99, after which the
clients training this model get reallocated to the other mod-
els. At 619, the training of the final model (for CIFAR-10)
is complete. Comparing the finish times for the last model,
FedAST provides a 40.1% time gain over Sync-ST.

We observe that thanks to dynamic client allocation,
FedAST automatically detects which tasks have higher het-
erogeneity across clients and need a larger buffer. We notice
that the Shakespeare task is allocated fewer clients because it
is estimated to be less heterogeneous, which is true based on
the label distribution of data samples across clients. We also
repeat this experiment (Appendix D.6) using FedAST with
static option (S) to validate the proposed dynamic client
allocation strategy. Dynamic client allocation consistently
has time gain up to 11.9% compared to the static version.

6 CONCLUSION

In this paper, we present FedAST, a federated learning
framework to simultaneously train multiple models using
buffered asynchronous aggregations. We theoretically prove

the convergence of our algorithm for smooth non-convex
objective functions. Experiments across multiple datasets,
demonstrates the FedAST’s superiority over existing simul-
taneous FL baselines, achieving up to 46.0% reduction in
training time. In future work, we plan to enhance FedAST
by incorporating client selection based on local data distri-
butions and computational powers of clients.

ACKNOWLEDGEMENTS

This work was partially supported by the US National
Science Foundation under grants CNS-1751075 and CNS-
2106891 to CJW and NSF CCF 2045694, CNS-2112471,
CPS-2111751, and ONR N00014-23-1-2149 to GJ and the
Ben Cook Presidential Graduate Fellowship to BA.

References

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew
Mattina, Paul Whatmough, and Venkatesh Saligrama.
Federated learning based on dynamic regularization. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=B7v4QMR6Z9w.

Fan Ang, Li Chen, Nan Zhao, Yunfei Chen, Weidong Wang,
and F Richard Yu. Robust federated learning with noisy
communication. IEEE Transactions on Communications,
68(6):3452–3464, 2020.

Neelkamal Bhuyan and Sharayu Moharir. Multi-model
federated learning. In 2022 14th International Conference
on COMmunication Systems & NETworkS (COMSNETS),
pages 779–783. IEEE, 2022.

Neelkamal Bhuyan, Sharayu Moharir, and Gauri Joshi.
Multi-model federated learning with provable guarantees.
In Esa Hyytiä and Veeraruna Kavitha, editors, Perfor-
mance Evaluation Methodologies and Tools, pages 207–
222, Cham, 2023. Springer Nature Switzerland. ISBN
978-3-031-31234-2.

K. A. Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloé M
Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan
McMahan, Timon Van Overveldt, David Petrou, Daniel
Ramage, and Jason Roselander. Towards federated learn-
ing at scale: System design. In SysML 2019, 2019. URL
https://arxiv.org/abs/1902.01046. To ap-
pear.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu,
Tian Li, Jakub Konečný, H. Brendan McMahan, Virginia
Smith, and Ameet Talwalkar. Leaf: A benchmark for
federated settings, 2019.

https://openreview.net/forum?id=B7v4QMR6Z9w
https://openreview.net/forum?id=B7v4QMR6Z9w
https://arxiv.org/abs/1902.01046

Zhan-Lun Chang, Seyyedali Hosseinalipour, Mung Chiang,
and Christopher G. Brinton. Asynchronous multi-model
dynamic federated learning over wireless networks: The-
ory, modeling, and optimization, 2023.

Vishnu Pandi Chellapandi, Antesh Upadhyay, Abolfazl
Hashemi, and Stanislaw H Żak. On the convergence
of decentralized federated learning under imperfect infor-
mation sharing. IEEE Control Systems Letters, 2023.

Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rang-
wala. Asynchronous online federated learning for edge
devices with non-iid data. In 2020 IEEE International
Conference on Big Data (Big Data), pages 15–24. IEEE,
2020.

Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Towards un-
derstanding biased client selection in federated learning.
In Gustau Camps-Valls, Francisco J. R. Ruiz, and Is-
abel Valera, editors, Proceedings of The 25th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 151 of Proceedings of Machine Learn-
ing Research, pages 10351–10375. PMLR, 28–30 Mar
2022. URL https://proceedings.mlr.press/
v151/jee-cho22a.html.

Li Deng. The mnist database of handwritten digit images
for machine learning research [best of the web]. IEEE
Signal Processing Magazine, 29(6):141–142, 2012. doi:
10.1109/MSP.2012.2211477.

Sanghamitra Dutta, Jianyu Wang, and Gauri Joshi. Slow
and stale gradients can win the race. IEEE Journal on
Selected Areas in Information Theory, 2(3):1012–1024,
2021. doi: 10.1109/JSAIT.2021.3103770.

Divyansh Jhunjhunwala, Pranay Sharma, Aushim Na-
garkatti, and Gauri Joshi. Fedvarp: Tackling the variance
due to partial client participation in federated learning.
In Uncertainty in Artificial Intelligence, pages 906–916.
PMLR, 2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Au-
rélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista
Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, et al. Advances and open problems in fed-
erated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

Anastasia Koloskova, Sebastian U Stich, and Martin Jaggi.
Sharper convergence guarantees for asynchronous SGD
for distributed and federated learning. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/
forum?id=4_oCZgBIVI.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Duy-Dong Le, Anh-Khoa Tran, Minh-Son Dao, Kieu-
Chinh Nguyen-Ly, Hoang-Son Le, Xuan-Dao Nguyen-
Thi, Thanh-Qui Pham, Van-Luong Nguyen, and Bach-
Yen Nguyen-Thi. Insights into multi-model federated
learning: An advanced approach for air quality index
forecasting. Algorithms, 15(11):434, 2022.

Louis Leconte, Van Minh Nguyen, and Eric Moulines.
Favano: Federated averaging with asynchronous nodes,
2023.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998. doi:
10.1109/5.726791.

Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dim-
itris Papailiopoulos, and Kannan Ramchandran. Speeding
up distributed machine learning using codes. IEEE Trans-
actions on Information Theory, 64(3):1514–1529, 2018.
doi: 10.1109/TIT.2017.2736066.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia
Smith. Ditto: Fair and robust federated learning through
personalization. In International Conference on Machine
Learning, pages 6357–6368. PMLR, 2021.

Jianchun Liu, Hongli Xu, Lun Wang, Yang Xu, Chen Qian,
Jinyang Huang, and He Huang. Adaptive asynchronous
federated learning in resource-constrained edge comput-
ing. IEEE Transactions on Mobile Computing, 22(2):
674–690, 2023. doi: 10.1109/TMC.2021.3096846.

Bing Luo, Wenli Xiao, Shiqiang Wang, Jianwei Huang,
and Leandros Tassiulas. Tackling system and statistical
heterogeneity for federated learning with adaptive client
sampling. In IEEE INFOCOM 2022-IEEE conference
on computer communications, pages 1739–1748. IEEE,
2022.

Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Ben-
jamin Recht, Kannan Ramchandran, and Michael I. Jor-
dan. Perturbed iterate analysis for asynchronous stochas-
tic optimization. SIAM Journal on Optimization, 27(4):
2202–2229, 2017. doi: 10.1137/16M1057000. URL
https://doi.org/10.1137/16M1057000.

Yishay Mansour, Mehryar Mohri, Jae Ro, and
Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning.
arXiv preprint arXiv:2002.10619, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized
data. In Artificial intelligence and statistics, pages 1273–
1282. PMLR, 2017.

https://proceedings.mlr.press/v151/jee-cho22a.html
https://proceedings.mlr.press/v151/jee-cho22a.html
https://openreview.net/forum?id=4_oCZgBIVI
https://openreview.net/forum?id=4_oCZgBIVI
https://doi.org/10.1137/16M1057000

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan
Yousefpour, Mike Rabbat, Mani Malek, and Dzmitry
Huba. Federated learning with buffered asynchronous
aggregation. In Gustau Camps-Valls, Francisco J. R.
Ruiz, and Isabel Valera, editors, Proceedings of The
25th International Conference on Artificial Intelligence
and Statistics, volume 151 of Proceedings of Machine
Learning Research, pages 3581–3607. PMLR, 28–30 Mar
2022. URL https://proceedings.mlr.press/
v151/nguyen22b.html.

Takayuki Nishio and Ryo Yonetani. Client selection for fed-
erated learning with heterogeneous resources in mobile
edge. In ICC 2019-2019 IEEE international conference
on communications (ICC), pages 1–7. IEEE, 2019.

Wenqi Shi, Sheng Zhou, Zhisheng Niu, Miao Jiang, and
Lu Geng. Joint device scheduling and resource allocation
for latency constrained wireless federated learning. IEEE
Transactions on Wireless Communications, 20(1):453–
467, 2021. doi: 10.1109/TWC.2020.3025446.

Marie Siew, Shoba Arunasalam, Yichen Ruan, Ziwei Zhu,
Lili Su, Stratis Ioannidis, Edmund Yeh, and Carlee Joe-
Wong. Fair training of multiple federated learning models
on resource constrained network devices. In Proceedings
of the 22nd International Conference on Information Pro-
cessing in Sensor Networks, pages 330–331, 2023.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang.
Towards personalized federated learning. IEEE Transac-
tions on Neural Networks and Learning Systems, 2022.

Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. Opti-
mizing federated learning on non-iid data with reinforce-
ment learning. In IEEE INFOCOM 2020 - IEEE Confer-
ence on Computer Communications, pages 1698–1707,
2020a. doi: 10.1109/INFOCOM41043.2020.9155494.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and
H. Vincent Poor. Tackling the objective inconsistency
problem in heterogeneous federated optimization, 2020b.

Zhongyu Wang, Zhaoyang Zhang, Yuqing Tian, Qianqian
Yang, Hangguan Shan, Wei Wang, and Tony QS Quek.
Asynchronous federated learning over wireless communi-
cation networks. IEEE Transactions on Wireless Commu-
nications, 21(9):6961–6978, 2022.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asyn-
chronous federated optimization. CoRR, abs/1903.03934,
2019. URL http://arxiv.org/abs/1903.
03934.

Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang
Gao. Asynchronous federated learning on heterogeneous
devices: A survey. Computer Science Review, 50:100595,
2023.

Yongtao Yao, Nejib Ammar, and Weisong Shi. Flow: A
scalable multi-model federated learning framework on
the wheels. In 2023 IEEE International Conference on
Mobility, Operations, Services and Technologies (MOST),
pages 11–22. IEEE, 2023.

Jieling Yu, Ruiting Zhou, Chen Chen, Bo Li, and Fang
Dong. Asfl: Adaptive semi-asynchronous federated learn-
ing for balancing model accuracy and total latency in
mobile edge networks. In Proceedings of the 52nd Inter-
national Conference on Parallel Processing, ICPP ’23,
page 443–451, New York, NY, USA, 2023a. Associa-
tion for Computing Machinery. ISBN 9798400708435.
doi: 10.1145/3605573.3605582. URL https://doi.
org/10.1145/3605573.3605582.

Xiaofan Yu, Lucy Cherkasova, Harsh Vardhan, Quanling
Zhao, Emily Ekaireb, Xiyuan Zhang, Arya Mazumdar,
and Tajana Rosing. Async-hfl: Efficient and robust asyn-
chronous federated learning in hierarchical iot networks.
In Proceedings of the 8th ACM/IEEE Conference on In-
ternet of Things Design and Implementation, IoTDI ’23,
page 236–248, New York, NY, USA, 2023b. Associa-
tion for Computing Machinery. ISBN 9798400700378.
doi: 10.1145/3576842.3582377. URL https://doi.
org/10.1145/3576842.3582377.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh,
Kristjan Greenewald, Nghia Hoang, and Yasaman Khaza-
eni. Bayesian nonparametric federated learning of neural
networks. In International conference on machine learn-
ing, pages 7252–7261. PMLR, 2019.

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, and
Dan Alistarh. Communication-efficient federated learn-
ing with data and client heterogeneity, 2023.

Chendi Zhou, Ji Liu, Juncheng Jia, Jingbo Zhou, Yang Zhou,
Huaiyu Dai, and Dejing Dou. Efficient device scheduling
with multi-job federated learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36,
pages 9971–9979, 2022.

https://proceedings.mlr.press/v151/nguyen22b.html
https://proceedings.mlr.press/v151/nguyen22b.html
http://arxiv.org/abs/1903.03934
http://arxiv.org/abs/1903.03934
https://doi.org/10.1145/3605573.3605582
https://doi.org/10.1145/3605573.3605582
https://doi.org/10.1145/3576842.3582377
https://doi.org/10.1145/3576842.3582377

FedAST: Federated Asynchronous Simultaneous Training
(Appendix)

Baris Askin1 Pranay Sharma1 Carlee Joe-Wong1 Gauri Joshi1

1Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

A ADJUSTING THE NUMBER OF ACTIVE REQUESTS AND REALLOC

Before designing Realloc algorithm for dynamic client allocation option (D), we conduct initial validation experiments
with the static option (S), wherein the allocation of active local training requests across clients and buffer sizes remain
unchanged throughout the training. Note that with the static option, Algorithm 3 only executes its Line 6 and returns the
previous round’s values always. We empirically observe that setting the ratio of the number of active local training requests
to buffer size fixed and below 37 works well. Refer to Section C.5 for the validation experiments. Then, incorporating
this ratio (Rm ⇡ 37bm) within the convergence bound in Equation 4 of Theorem 1, we find out that the dominant term
(excluding smoothness constants) becomes: O

⇣
⌘s
m⌘c

m⌧m
Rm

⌘
�2
g,m. Further, given the limited number of available clients, we

cannot increase the total number of active local training requests arbitrarily without increasing the staleness. Thus, we
employ

PM
m=1 Rm = R where R is a constant of how many active training requests we assign in total depending on the

number of available clients in the setting. Since the goal of federated simultaneous training is to minimize the objective
functions of all tasks concurrently, we propose to adjust {Rm}

M
m=1 by solving,

min
{Rm}M

m=1

MX

m=1

⌘sm⌘cm⌧m
Rm

�2
g,m subject to

MX

m=1

Rm = R. (7)

The solution of the minimization problem in (7) suggests allocating local training requests, {Rm}
M
m=1, in proportion to

�g,m
p
⌘sm⌘cm⌧m for each model m. Using this approach, Algorithm 3 adjusts resource allocation. Further, as the update

variance across clients may vary in time during training, we employ adaptive periodical reallocation of resources across
models (Line 1 in Algorithm 3). Therefore, we use round indices to denote the changing number of active training requests
and buffer sizes.

As we do not have access to true data heterogeneity levels, we need to estimate it (Line 2 in Algorithm 3). When FedAST is
run with option = D (dynamic client allocation option), the server keeps the latest V updates of each model. This requires
constant and small memory space kept in the server. To present how variance estimation (EstimateVariances())
works, assume that {�m,1,�m,2, . . . ,�m,V }

M
m=1 are the sets of latest received updates of tasks m 2 [M] where each

�m,k for k 2 [V] is the output of kth latest local training (Algorithm 1). As the output of any local training is the average of all
calculated stochastic gradients during that local training, we use those outputs as approximations of the gradients calculated on
the local data of clients. Algorithm 4 describes EstimateVariances(). It first calculates the mean of the latest updates
for each task, {�m}

M
m=1 = {

1
V ⇥

PV
i=1 �m,i}

M
m=1. Then, EstimateVariances() returns sample variance multiplied

with other terms (⌘sm⌘cm⌧m) suggested by (7) and normalized by the mean update norm (to prevent large models or models
with inherently large weights from dominating others), {�̂2

g,m}
M
m=1 = {

⌘s
m⌘c

m⌧m
V ⇥

PV
i=1

���m,i ��m

��2 /
���m

��2}Mm=1.
Then, Realloc algorithm allocates the number of active training requests proportionally to the square root of these values
(Algorithm 3, Line 3).

This approach is sensible both theoretically and intuitively. Based on our experimental observations regarding the relationship
between the number of active training requests and buffer size, increasing the number of active local training requests
necessitates an increase in buffer size. Moreover, a larger buffer proves beneficial in reducing the variance across updates,

mailto:%3Cbaskin@andrew.cmu.edu%3E?Subject=About%20FedAST%20paper%20in%20UAI%202024

Algorithm 4 EstimateVariances()
Require: The set of latest V updates {�m,1,�m,2, . . . ,�m,V }

M
m=1, server-side learning rates {⌘sm}

M
m=1, client-side

learning rates {⌘cm}
M
m=1, and the number of local SGD steps of all models {⌧m}

M
m=1.

1: {�m}
M
m=1 {

1
V ⇥

PV
i=1 �m,i}

M
m=1 . Calculate the means of the latest updates

2: {e�2
g,m}

M
m=1 {

1
V ⇥

PV
i=1

���m,i ��m

��2 /
���m

��2}Mm=1 . Calculate the normalized sample variances
3: {�̂2

g,m}
M
m=1 {⌘cm⌘sm⌧me�2

g,m}
M
m=1 . Multiply with other constants suggested by the convergence guarantee (7)

4: Return {�̂2
g,m}

the buffered updates are averaged during the aggregation. Realloc aims to allocate more clients and provide a larger buffer
size for tasks with higher heterogeneity. We choose the number of stored latest updates V = 8 and the period of number
of total updates from all clients to trigger reallocation in Realloc subroutine cperiod = 0.75⇥M ⇥

PM
m=1 Rm in our

experiments. The benefits of dynamic allocation (option = D) over static and uniform resource allocation (option = S) are
demonstrated when tasks/models are heterogeneous, as shown in Figures 21-26.

B THEORETICAL COMPARISON OF FedAST WITH BASELINES

We compare FedAST with single-model FL methods, too. [Nguyen et al., 2022] is the most similar algorithm to FedAST
(with single-model). However, even for the single-task case, FedAST differs by employing a uniform client assignment
to ensure unbiased participation of clients irrespective of their hardware speeds. This allows us to relax the assumptions
to prove the convergence guarantee. [Nguyen et al., 2022] relies on a strong assumption that the server receives updates
from clients uniformly at random and that the norm of gradients is bounded. Moreover, compared to [Koloskova et al.,
2022], our analysis is more general as FedAST uses multiple SGD steps in local training and a buffer. Some other recent
single-model asynchronous FL works, [Zakerinia et al., 2023] and [Leconte et al., 2023], do not have straightforward and
efficient simultaneous federated training extensions for multiple models.

[Chang et al., 2023] is another asynchronous simultaneous federated learning method. However, [Chang et al., 2023] indeed
fails to converge to a stationary point asymptotically unless data is homogeneous, and their assumptions include Bounded
Gradient Norm and Weak Convexity.

Table 2: Comparison of FedAST’s convergence guarantees to Nguyen et al. [2022] (single-task asynchronous buffered FL
algorithm) and Chang et al. [2023] (an asynchronous FST algorithm). T : #global rounds, ⌧ : #local steps, b: buffer size.

Algorithm Non-standard assumptions Convergence

Nguyen et al. [2022] Bounded Gradient & Receiving Updates Uniformly O

⇣p
⌧/(Tb)

⌘
(a)

Chang et al. [2023] Bounded Gradient & Weak Convexity Not converge
FedAST — O

⇣p
⌧/(Tb)

⌘

(a) Although the convergence guarantee in the published [Nguyen et al., 2022] paper seems to have a better rate, we pointed out a mistake
in their proof. Here, we use the corrected version we received via private communication.

C EXPERIMENTAL SETUP DETAILS

In our study, we explore a simultaneous federated learning (FL) setting for multiple models. We present the details of our
experiments in this section.

C.1 SIMULATION ENVIRONMENT

We simulate the training with PyTorch on NVIDIA GeForce GTX TITAN X graphics processing units (GPUs) of our
internal cluster. We build our code upon the public codes of [Wang et al., 2020a, Yu et al., 2023b].

C.2 SETTING OVERVIEW

We consider the federated training of M models simultaneously using N clients. N is 1000 in all experiments and M ,
specified for each experiment explicitly, varies between 2� 6.

C.3 TASKS AND MODELS

We use 5 different tasks across the experiments: MNIST [Deng, 2012], Fashion-MNIST [Xiao et al., 2017], CIFAR-10
and CIFAR-100 [Krizhevsky et al., 2009] image classification tasks, and Shakespeare [Caldas et al., 2019] next character
prediction task. We use a multilayer perceptron for MNIST as in [Acar et al., 2021], convolutional networks for Fashion-
MNIST as in [Lecun et al., 1998] and for CIFAR-10 as in [Acar et al., 2021], ResNet-18 model for CIFAR-100 as in Acar
et al. [2021], and a long short-term memory network for Shakespeare as in [Yu et al., 2023b].

C.4 DATASETS AND DATA DISTRIBUTION

We consider the data heterogeneity across clients in FL frameworks. We download MNIST, Fashion-MNIST, and
CIFAR-10/100 datasets from PyTorch built-in library methods. The train and test splits provided by the library are used
without any modifications. To simulate heterogeneous data distribution across clients, we use Dirichlet distribution with
↵ = 0.1 following the approach suggested in Yurochkin et al. [2019]. We ensure that each client has 300 data points for
MNIST, Fashion-MNIST, and CIFAR-10/100 tasks by repeating the train set if necessary. We obtain and preprocess the
Shakespeare dataset as described in [Caldas et al., 2019]. This dataset has inherently heterogeneous distribution across
clients as each client corresponds to a unique role from Shakespeare’s plays.

C.5 DESIGN PARAMETERS

In this section, we explain how we choose the design parameters.

Client dataset sizes, batch sizes, and number of local steps. While distributing CIFAR-10/100, MNIST, and Fashion-
MNIST datasets across clients, each client is allocated 300 data points from each dataset. The Shakespeare dataset, however,
maintains its original distribution of data points across roles, so clients have different numbers of data samples in the
Shakespeare task. For CIFAR-10/100, MNIST, and Fashion-MNIST tasks, we set the batch size to 32 while we employ a
batch size of 64 for the Shakespeare task. We fix the number of local steps in local training (⌧m parameter in Algorithm 1 in
the main text) of clients at 27 for all tasks. This makes 3 epochs for CIFAR-10/100, MNIST, and Fashion-MNIST tasks. As
the number of data points varies across clients for the Shakespeare dataset, there is no fixed number of epochs.

Buffer size. The buffer in FedAST is crucial for mitigating the negative impacts of highly stale updates, as extensively
discussed in the main text. The staleness of updates is influenced by the number of active local training requests, denoted
as Rm, and the buffer size, bm, associated with all model m 2 [M]. When FedAST is run with static option (S), these
numbers are kept constant during the training, but they may change (this time we denote R(tm)

m and b(tm)
m) when we use

dynamic client allocation option (D). A higher number of simultaneous local training requests leads to a higher staleness
because it increases the global model’s update frequency at the server. On the other hand, buffer size is inversely related to
staleness, given its opposing effect on the aggregation frequency. Based on our experimental observations, selecting the
number of active training requests and the buffer size of model m such that their ratio is fixed and below 37, (Rm/bm . 37

or R(tm)
m /btmm . 37), works well. Selecting the buffer size of FedAST based on this observation avoids the detrimental

effects of stale updates while benefiting from fast training thanks to the asynchronous algorithm. We show two experimental
results in Figures 8 and 9. In Figure 8, we train one Fashion-MNIST and one CIFAR-10 models simultaneously by assigning
175 active training requests to each task and observe that buffer size of 5 strikes a balance between high final test accuracy
and fast training to achieve the target accuracy for both tasks. In Figure 9, we repeat a similar experiment with MNIST and
CIFAR-10 tasks by assigning 105 active training requests to each. This time, we observe that a buffer size of 3 performs the
best for both tasks. These experimental results support our buffer size choice.

Figure 8: The final test accuracy and required time to get target accuracy (in Table 1) for simultaneous training (using
FedAST with static option) of one Fashion-MNIST and one CIFAR-10 model with different buffer sizes. We assign the
same number of local training requests (175) to each task.

Figure 9: The final test accuracy and required time to get target accuracy (in Table 1) for simultaneous training (using
FedAST with static option) of one MNIST and one CIFAR-10 model with different buffer sizes. We assign the same number
of local training requests (105) to each task.

Learning rate and weight decay. We search for the best learning rate and weight decay hyperparameters considering
the training speed and final accuracy levels. We seek client-side learning rate within the range of [1 ⇥ 10�3, 1 ⇥ 10],
server-side learning rate within [3⇥ 10�2, 3], and weight decays within [1⇥ 10�7, 1⇥ 10�2]. We observe that client-side
learning rates of 6⇥ 10�2 and 7 with weight decays of 3⇥ 10�4 and 7⇥ 10�5 work best respectively for Fashion-MNIST
and Shakespeare tasks for all methods. For CIFAR-10 task, a client-side learning rate of 1⇥ 10�1 with weight decays of
7⇥10�4 and 3⇥10�4 perform best for asynchronous and synchronous methods, respectively. For MNIST, we use client-side
learning rates of 1⇥ 10�1 and 2⇥ 10�1 for asynchronous and synchronous methods, respectively, with a weight decay of
3⇥ 10�4. For server-side learning rates, we observe that 1 for synchronous methods (Sync-ST, Sync-Bayes-ST, and
Sync-UCB-ST), 0.1 for FedAST, and 0.038 for FedAST-NoBuffer perform well for all tasks.

C.6 MODELING TRAINING TIMES, MODEL SIZES, AND CLIENT SPEED HETEROGENEITY

In our experiments, following [Lee et al., 2018, Shi et al., 2021, Zhou et al., 2022, Dutta et al., 2021], we employ the
shifted-exponential random variables to model the duration between when the server sends a local training request to a client,
and when it receives the update of the local training. The exponential component of the distribution reflects the stochastic
nature of the device speeds, while the shift component accounts for unavoidable delays such as disk I/O operations.

Whenever a client i performs local training for task m, we draw a random number from the distribution with a cumulative
distribution function (CDF) of,

P (X  x) =

(
1� exp{�x��i,m

2�i,m
}, x � �i,m

0, otherwise
,

where �i,m depends on the speed of client i and the size of the model associated with task m. Then, we multiply this random
number by the number of local steps to calculate the simulation time between when the server requests for the local training,
and when it receives the update back.

We quantify the effect of the model sizes based on the average time required to calculate one stochastic gradient for each
model on the GPUs of our internal cluster. By our measurements, we set,

�i,MNIST

0.148
=

�i,Fashion-MNIST

0.240
=

�i,CIFAR-10

0.228
=

�i,Shakespeare

0.555
=

�i,CIFAR-100

2.071
, 8i 2 [N].

In our experiments, we also take the heterogeneity in the speed of client devices into consideration. We categorize clients
into three speed groups: slow (%25), normal-speed (%50), and fast (%25). The speed rates for these categories are inversely
proportional to 1.3, 1, and 0.7, such that,

�slow client,m

1.3
=

�normal-speed client,m

1
=

�fast client,m

0.7
, 8m 2 [M].

D ADDITIONAL EXPERIMENTS

In this section, we present supplementary experiments.

D.1 TUNING PARAMETER k OF THE STRAGGLER MITIGATION TECHNIQUE USED FOR
SYNCHRONOUS METHODS (ACCEPTING ONLY THE FIRST-k UPDATES)

In our experiments, to mitigate the high straggler effect, the server in synchronous methods (Sync-ST, Sync-Bayes-ST,
and Sync-UCB-ST) only aggregates the first k client updates for each task and discards the rest, following [Bonawitz
et al., 2019]. To tune parameter k, we run validation experiments with Sync-ST on single CIFAR-10, MNIST, and
Fashion-MNIST tasks and evaluated the training performance with respect to simulated time and number of global rounds.
A larger k results in a longer simulated time per round since we wait for more clients. On the other hand, the variance in
aggregated updates on each round becomes smaller since we average more updates. Therefore, the target accuracy is attained
faster in terms of the number of global rounds. We also observed that keeping k too small yields lower final accuracy.
Navigating these trade-offs, we find that k = 30 strikes an effective balance.

Figure 10: Performance of Sync-ST with varying k in CIFAR-10 task. The chosen point is shown with a red star.

Figure 11: Performance of Sync-ST with varying k in Fashion-MNIST task. The chosen point is shown with a red star.

Figure 12: Performance of Sync-ST with varying k in MNIST task. The chosen point is shown with a red star.

D.2 TEST LOSS PLOTS OF FIGURES 3 AND 4 IN THE MAIN TEXT

We illustrate test loss plots of the experiments in Figures 3 and 4 in the main text.

Figure 13: The mean final loss values of FedAST (blue), FedAST-NoBuffer (olive green) and centralized training
(violet) with varying active client ratio, when training 3 identical models. The left figure is for CIFAR-10 dataset, while the
right figure is for Fashion-MNIST dataset. With a higher number of active clients, thanks to the buffer, FedAST remains its
performance while FedAST-NoBuffer gets worse.

Figure 14: The mean test loss values of FedAST and FedAST-NoBuffer, when simultaneously training one model for
CIFAR-10 and one for Fashion-MNIST. FedAST achieves lower and more stable loss levels.

D.3 TRAINING CURVES OF HOMOGENEOUS EXPERIMENTS

In Figure 15, we provide the average training curves of the homogeneous-task experiment in Figure 5.

500 1000 1500
Time

0.4

0.6

CIFAR-10 (FedAST)

500 1000 1500 2000
Time

0.4

0.6

CIFAR-10 (Sync-ST)

2 tasks
4 tasks
6 tasks
Target (0.63)

500 1000 1500
Time

0.4

0.6

0.8

Fashion-MNIST (FedAST)

500 1000 1500 2000
Time

0.4

0.6

0.8

Fashion-MNIST (Sync-ST)

2 tasks
4 tasks
6 tasks
Target (0.82)

100 300 400200
Time

0.7

0.8

0.9

1.0 MNIST (FedAST)

100 300 400200
Time

0.7

0.8

0.9

1.0 MNIST (Sync-ST)

2 tasks
4 tasks
6 tasks
Target (0.93)

200 400 600 800 1000
Time

0.2
0

0.3

0.4

0.5 Shakespeare (FedAST)

500 1000 1500
Time

0.2
0

0.3

0.4

0.5 Shakespeare (Sync-ST)

2 tasks
4 tasks
6 tasks
Target (0.42)

24.32%

41.98%

22.50%

21.29%

41.40%

28.26%

7.77%

21.36%

5.15%

24.70%

46.03%

1.35%

Figure 15: Training curves of FedAST and Sync-ST on 2/4/6 tasks with CIFAR-10, Fashion-MNIST, MNIST, and
Shakespeare datasets. Time gains of FedAST over Sync-ST to attain target accuracy are shown on the colored horizontal
lines. Horizontal black lines indicate target accuracy levels, same as the ones stated in Table 1.

D.4 AN ADDITIONAL EXPERIMENT WITH A LARGER MODEL (RESNET-18) ON CIFAR-100

We run a homogeneous-task experiment with a larger model, ResNet-18, as implemented by Acar et al. [2021] on the
CIFAR-100 dataset, a 100-class image classification dataset [Krizhevsky et al., 2009]. We use the same experimental settings
as those in other experiments except for a few differences elaborated here. We use the Dirichlet distribution with ↵ = 1 to
simulate heterogeneity following the approach suggested in Yurochkin et al. [2019]. We use a client-side learning rate (⌘s)
of 0.06 and the number of local SGD steps (⌧) of 5 for both FedAST and Sync-ST. We present the experimental results
in Figure 16. Our experiments show that FedAST outperforms the synchronous baseline with a ResNet-18 model on the
CIFAR-100 dataset by providing time gains of 22.0%, 40.7%, and 56.3% for 2, 4, and 6 simultaneously trained models
respectively.

5000 10000 15000 20000
Time

0.2

0.3

0.4

0.5

0.6

CIFAR-100 (FedAST)

10000 20000 30000
Time

0.2

0.3

0.4

0.5

0.6

CIFAR-100 (Sync-ST)

2 tasks
4 tasks
6 tasks
Target (0.5)

40.65%

56.29%

22.02%

(a) Training curves of FedAST and Sync-ST on 2/4/6 simultaneous
CIFAR-100 tasks. Time gains of FedAST over Sync-ST to attain target
accuracy are shown on the colored horizontal lines. Horizontal black lines
indicate the target accuracy level, %50.

(b) Mean training times of FedAST and Sync-ST to attain
target accuracy level, %50, on 2/4/6 simultaneous tasks with
CIFAR-100 dataset. FedAST requires consistently lower wall-
clock time for training compared to Sync-ST; the percent-
ages represent these time gains.

Figure 16: Experimental results on simultaneous repeated tasks with FedAST and Sync-ST on CIFAR-100.

D.5 EXPERIMENTS WITH DIFFERENT TARGET ACCURACY LEVELS

To see how FedAST and the competitor Sync-ST work with different target accuracy, we conduct the experiment in
Figure 7 with +3% higher and �10% lower target accuracy levels as presented in Table 3. We observe that proposed
FedAST reduces the overall training time by 55.9% and 16.3%, respectively for higher and lower target accuracy levels.

We conclude that the advantage of FedAST over Sync-ST increases with the difficulty of the task (i.e., reaching higher
accuracy).

Table 3: Different target accuracy levels used in experiments to validate the proposed methods, with lower and higher
accuracy targets.

Dataset Lower Target Accuracy Target Accuracy in the Main Text Higher Target Accuracy
MNIST 83% 93% 96%

Fashion-MNIST 72% 82% 85%
CIFAR-10 53% 63% 66%

Shakespeare 32% 42% 45%

Figure 17: Training curves of a single Monte Carlo run of the het-
erogeneous experiment with higher target accuracy levels in Table 3.
Dashed vertical lines show times when tasks reach their target accu-
racy. The setting is the same as the experiment in Figure 7.

Figure 18: Mean time required to reach target accu-
racy and time gain of FedAST over Sync-ST in the
heterogeneous experiment with higher target accu-
racy levels in Table 3. The setting is the same as the
experiment in Figure 7.

Figure 19: Training curves of a single Monte Carlo run of the het-
erogeneous experiment with lower target accuracy levels in Table 3.
Dashed vertical lines show times when tasks reach their target accu-
racy. The setting is the same as the experiment in Figure 7.

Figure 20: Mean time required to reach target accu-
racy and time gain of FedAST over Sync-ST in the
heterogeneous experiment with lower target accuracy
levels in Table 3. The setting is the same as the exper-
iment in Figure 7.

D.6 PERFORMANCE OF FedAST WITHOUT STATIC RESOURCE ALLOCATION

We conduct heterogeneous-task experiments to validate the performance gain of dynamic resource allocation (FedAST (D))
over static option (FedAST(S)) with uniform allocation across tasks in heterogeneous settings. For uniform resource

allocation, we allocate the same number of active training requests to each task in FedAST(S). To show the consistency of
our results, we run experiments at all target accuracy levels in Table 3. We present the results in Figure 22 (higher target
accuracy), Figure 24 (the target accuracy in the main text), and Figure 26 (lower target accuracy). We conclude that our
dynamic client allocation based on the variance estimates of the updates reduces the total training time compared to the
uniform static client allocation. The advantage of dynamic resource allocation becomes more prominent with more difficult
tasks (i.e., higher target accuracy level).

Figure 21: Training curves of a single Monte Carlo run in the exper-
iment with dynamic resource allocation option (FedAST(D)) and
static option with uniform resource allocation (FedAST(S)). The
setting is the heterogeneous experiment with higher target accuracy
levels in Table 3. Dashed vertical lines show times when tasks reach
their target accuracy.

Figure 22: Mean training times required to reach tar-
get accuracy and time gain of dynamic resource allo-
cation option (FedAST(D)) over static option with
uniform resource allocation (FedAST(S)). The set-
ting is the heterogeneous experiment with higher tar-
get accuracy levels in Table 3.

Figure 23: Training curves of a single Monte Carlo run in the exper-
iment with dynamic resource allocation option (FedAST(D)) and
static option with uniform resource allocation (FedAST(S)). The
setting is the heterogeneous experiment with the target accuracy levels
used in the main text in Table 3. Dashed vertical lines show times
when tasks reach their target accuracy.

Figure 24: Mean training times required to reach tar-
get accuracy and time gain of dynamic resource allo-
cation option (FedAST(D)) over static option with
uniform resource allocation (FedAST(S)). The set-
ting is the heterogeneous experiment with the target
accuracy levels used in the main text in Table 3.

E PROOFS OF THE CONVERGENCE ANALYSIS OF FedAST WITH STATIC OPTION (S)

In this section, we present the proofs of the mathematical claims made in the paper. First, we define and explain the notations
used in this section. After that, we introduce intermediate lemmas used in the main proof (Section E.2). Then, we present
the proofs of Theorem 1 and Corollary 1.1 (Section E.3). Finally, we prove intermediate lemmas (Section E.4).

Figure 25: Training curves of a single Monte Carlo run in the exper-
iment with dynamic resource allocation option (FedAST(D)) and
static option with uniform resource allocation (FedAST(S)). The
setting is the heterogeneous experiment with lower target accuracy
levels in Table 3. Dashed vertical lines show times when tasks reach
their target accuracy.

Figure 26: Mean training times required to reach tar-
get accuracy and time gain of dynamic resource allo-
cation option (FedAST(D)) over static option with
uniform resource allocation (FedAST(S)). The set-
ting is the heterogeneous experiment with lower target
accuracy levels in Table 3.

E.1 NOTATIONS AND DEFINITIONS

FedAST enables us to divide the convergence analyses of simultaneous tasks into individual ones. We focus on the
convergence analysis of a single task within a simultaneous multi-model setting and the analysis holds for all tasks trained
together. For brevity, we provide the proofs for a single task of multiple models trained simultaneously. Therefore, we drop
all model indices in our analysis. We also drop time indices from the number of active requests (R) and buffer size (b) terms
as they remain the same during the training with the static option of FedAST. Table 4 summarizes all notation. Please note
that the analysis presented here holds for every model m 2 [M] simultaneously trained within FedAST framework.

E.1.1 The Update Rules of FedAST

We first revisit the local training and global update rules of FedAST. The notation may vary slightly from those in the main
paper due to dropping model indices, but still accurately depicts the same algorithmic procedures, Algorithms 1 and 2 in the
main text.

Local update rule. During local training, clients perform ⌧ consecutive local stochastic gradient steps and return the
output to the server. When a client receives the tth version of the global model, x(t), it takes ⌧ mini-batch stochastic gradient
descent steps (for k = 1, . . . , ⌧) with following rule:

x(t,k)
i x(t,k�1)

i � ⌘c erfi
⇣
x(t,k�1)
i

⌘
, (8)

where x(t,0)
i , x(t) and er denotes stochastic gradients. We define the average of local stochastic gradients as

�(t)
i , 1

⌧

⌧�1X

k=0

erfi
⇣
x(t,k)
i

⌘
. Then, the client returns

x(t)
� x(t,⌧)

i

⌧⌘c
=

1

⌧

⌧�1X

k=0

erfi
⇣
x(t,k)
i

⌘
= �(t)

i to the server. The server

stores the updates in a buffer.

Staleness. The server receives the updates of local training requests asynchronously. It means that the received updates
may come in a different order than local training requests sent to clients. Therefore, an aggregated update may have been
calculated with an older version of the model, and this is called staleness. We quantify the staleness of an update in terms of
the number of global rounds passed between the times when the server sends the local training request and receives the
update. The staleness is random for each update, depending on client selections for all tasks and all clients’ availability,
computation, and communication speeds. We denote the staleness of client i’s update received at the server at the tth round
as �t

i . Recall that Assumption 4 (Bounded Staleness) bounds this random value above at �max.

Global update rule. On each global round t, when the buffer at the server, B(t), is full (|B(t)
| = b, where b is the buffer

size), the server aggregates the updates to proceed to the next global round. Here, B(t) is the set of clients whose updates are
received after (t� 1)th and before tth aggregation. The aggregation rule can be written as follows:

x(t+1)
 x(t)

� ⌧⌘s⌘c
1

b

X

i2B(t)

�
(t��t

i)
i = x(t)

� ⌘s
1

b

X

i2B(t)

⇣
x(t��t

i) � x
(t��t

i ,⌧)
i

⌘
(9)

= x(t)
� ⌘s⌘c

1

b

X

i2B(t)

⌧�1X

k=0

erfi
⇣
x
(t��t

i ,k)
i

⌘
.

E.1.2 Virtual Sequence and Set Definitions

We utilize the perturbed iterate idea from Koloskova et al. [2022], Mania et al. [2017].

First, let us introduce some helpful sets and notations. Consider A(t), which represents the set of clients chosen by the
server to receive the tth version of the model. Recall that the server in FedAST selects the clients uniformly at random with
replacement from all clients. The size of this set, |A(t)

|, is always equal to the buffer size, b, (except initialization, t = 0)
because b new local training requests are made on each round. For instance, if b is set to 3, and the server selects the 2nd,
16th, and 31st clients during the 4th aggregation round, then A

(4) is {2, 16, 31}. The server sends x(4) to the 2nd, 16th, and
31st clients and requests local training with this model. In practical terms, A(t) is a multiset, allowing multiple occurrences
of the same client if a client is selected more than once. Throughout the proof, we consider each occurrence of the same
client in multiset as a distinct update calculated on that particular client. While we acknowledge a slight abuse of notation,
this does not lead to any mathematical flaw, and we believe that this significantly enhances the clarity and comprehensibility
of the proof.

Now, let us define C
(t) as the set of clients that have incomplete local training requests at the time of the tth aggregation

because of the asynchronous nature of FedAST. The size of this set, |C(t)
|, is always equal to the number of active local

training requests, R, because the server sends a new local training request for every update it receives. For instance, if R
is 4, and the server has sent local training requests to the 12th, 27th, 41st, and 55th clients prior to the 5th aggregation, yet
these clients are still processing their updates, then C

(5) would be {12, 27, 41, 55}. Note that C(0) is an empty set, as there
are no active local training requests before the algorithm starts. It is worth noting that C(t) is a multiset, allowing multiple
occurrences of the same client if a client has more than one active local training request (recall that multiple requests are
queued at the client side). Each occurrence of a client within this multiset represents a different local training calculated on
that client. We again acknowledge a slight abuse of notation, but this does not lead to any mathematical flaw, and we believe
that this makes the flow of proof significantly easier.

Next, we define the virtual sequence z(t) for t = 0, 1, . . . , T as the model that receives local training updates of the global
model, x(t) for t = 0, 1, . . . , T , in the correct order. Namely, unlike x(t), z(t) receives the local training updates in the order
in which the server sends those requests. However, it is crucial to note that the local training updates are still calculated with
the global model, x(t). The update rule of the virtual sequence is:

z(t+1)
 z(t) � ⌧⌘s⌘c

1

b

X

i2A(t)

�(t)
i = z(t) � ⌧⌘s⌘c

1

b

X

i2A(t)

1

⌧

⌧�1X

k=0

erfi
⇣
x(t,k)
i

⌘
, (10)

for t = 0, 1, . . . , T � 1 where z(0) , x(0).

Remark 1. Now, we state an observation using the definitions of C(t), the virtual sequence, and the global model. When the
tth aggregation happens at the server, the virtual sequence, z(t), has received all the updates from all previous local training
requests on rounds 0, 1, . . . , t� 1. At the same time, the global model, x(t), has received the same updates except for the
updates of clients in C

(t). By the update rules in (9) and (10), note that each received update at the server contributes to the
global model and virtual sequence equally. Therefore, we can express their difference as:

z(t) � x(t) = �⌧⌘s⌘c
1

b

X

i2C(t)

�
(t��t

i)
i . (11)

Remark 2. If we count the number of occurrences of the round index y among the model versions of assigned updates in set
C
(t) over all rounds t = 0, . . . , T � 1, we can bound this value as:

T�1X

t=0

X

i2C(t)

1{t� �t
i = y}  b�max, 8y = 0, . . . , T � 1, (12)

where 1 is an indicator function that returns 1 if the statement is true, and returns 0 otherwise. The reasoning for this
observation is as follows. On each round, the server selects b clients (since the server selects one new client for each received
and buffered update where the buffer size is b) and sends them the up-to-date global model. We also know that all local
training requests must be returned to the server within �max rounds by Assumption 4 (Bounded Staleness). Therefore, over
the rounds t = 0, . . . , T � 1, any round indices can appear at most b�max times in the summation in the left-hand side of the
inequality in (12). We will use this remark later in the proof.

E.1.3 Notation

We define some useful variables used in the proof and present the notation used in FedAST in Table 4. Also, we again want
to remind the reader that we dropped all model indices in the proof as the theoretical results we present here hold for any of
multiple tasks trained simultaneously, satisfying Assumptions 1 - 4.

Table 4: Summary of notations used in the mathematical analysis of FedAST.

fi (·): The loss function at client i L: Smoothness constant in Assumption 1

f (·): The global loss function ⌧ : Number of local SGD steps

x(t): The global model at the tth round ⌘c: Client-side learning rate

x(t,k)
i : The local model of client i at the kth local step of the

tth round
⌘s: Server-side learning rate

z(t): The virtual sequence at the tth round (Section E.1.2) b: Buffer size

r, r̃: Gradient and stochastic gradient operators �2
l : Maximum local variance in Assumption 2

g(t,k)
i = erfi

⇣
x(t,k)
i

⌘
: Local stochastic gradient of client i

at round t and local step k
�2
g : Maximum global variance in Assumption 3

�(t)
i =

1

⌧

⌧�1X

k=0

g(t,k)
i : The update of client i at round t R: Number of total active local training requests anytime

h(t)
i = E

h
�(t)

i

i
: The expected update of client i at round t �max: Maximum staleness in Assumption 4

e⌘s = ⌘s⌧ : Server learning rate multiplied by the number

of local training steps
�t
i : The staleness of client i’s update at round t

A
(t): The set of clients to which the server sends

the tth version of the model (Section E.1.2)

C
(t): The set of clients which are requested local training, but

have not returned their updates to the server yet (Section E.1.2)

E.2 INTERMEDIATE LEMMAS

We present intermediate lemmas used through the proof.

Lemma 1. For a set of Q vectors, u1, . . . ,uQ, where Q is a positive integer,
�����

QX

q=1

uq

�����

2

 Q
QX

q=1

kuqk
2 .

Proof. The lemma is a direct consequence of Jensen’s inequality with a convex function k·k2 and uniform random
distribution over the set of vectors u1, . . . ,uQ.

Lemma 2. Suppose that fi (·) satisfies Assumption 1 (Smoothness) and Assumption 2 (Bounded Variance) for all i 2 [N],
and assume that ⌘c  1

L⌧ . Then the iterates of FedAST satisfy,

E
���rfi

⇣
x(t)

⌘
� h(t)

i

���
2


L2⌘2c⌧

2 (1�D)
�2
l +

D

1�D
E
���rfi

⇣
x(t)

⌘���
2
, 8i 2 N,

where D , L2⌘2c⌧ (⌧ � 1).

Further, suppose Assumption 3 (Bounded Heterogeneity) holds. Then, the iterates of FedAST satisfy,

1

N

NX

i=1

E
���h(t)

i �rfi
⇣
x(t)

⌘���
2


L2⌘2c⌧

2 (1�D)
�2
l +

D

1�D
E
���rf

⇣
x(t)

⌘���
2
+

D

1�D
�2
g .

Remark 3. The true gradient at any client using the global model is close to the local update of that client.

Lemma 3. The iterates of FedAST and defined virtual sequence satisfy,

T1 , �
*
rf

⇣
z(t)
⌘
,
1

N

NX

i=1

h(t)
i

+
 �

1

2

���rf
⇣
x(t)

⌘���
2
+
1

2

���rf
⇣
z(t)
⌘
� f

⇣
x(t)

⌘���
2
+
1

2

�����

NX

i=1

⇣
h(t)
i �rfi

⇣
x(t)

⌘⌘�����

2

.

Lemma 4. Suppose that fi (·) satisfies Assumption 2 (Bounded Variance and Unbiased Stochastic Gradients) for all i 2 [N],
then the iterates of FedAST satisfy,

T2 , E

������
1

b

X

i2A(t)

�(t)
i

������

2

 E

������
1

b

X

i2A(t)

h(t)
i

������

2

+
�2
l

⌧b
.

Remark 4. The noisy global update due to stochastic gradients is close to the expected update calculated with full gradients.
The buffer and multiple local steps are useful to reduce the variance due to local SGD steps.

Lemma 5. The iterates of FedAST satisfy,

E

������
1

b

X

i2A(t)

⇣
rfi

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘⌘
������

2

=
1

bN

NX

i=1

E
���rfi

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘���
2
.

Further, suppose Assumption 3 (Bounded Heterogeneity) holds. Then, the iterates of FedAST also satisfy,

T3 , E

������
1

b

X

i2A(t)

h(t)
i

������

2


3

N

NX

i=1

E
���h(t)

i �rfi
⇣
x(t)

⌘���
2
+

3�2
g

b
+ 3E

���rf
⇣
x(t)

⌘���
2
.

Remark 5. FedAST benefits the global variance reduction thanks to the buffer.

Lemma 6. The virtual sequence and the iterates of FedAST satisfy,

1

T

T�1X

t=0

E
���rf

⇣
z(t)
⌘
�rf

⇣
x(t)

⌘���
2


✓
1 +

3RL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cR

b2⌧
�2
l

+
1 +D

1�D

3L2e⌘2s⌘2cR2

b2
�2
g +

3L2e⌘2s⌘2cR�max

b

1 +D

1�D

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2
.

Remark 6. As discussed in Remark 1, although the virtual sequence and global model get updates in a different order, they
receive the same updates. Therefore, we can bound their difference.

E.3 PROOFS OF MAIN STATEMENTS

We present and prove Theorem 1 and Corollary 1.1 here.

E.3.1 Theorem 1 (Convergence bound)

First we restate the theorem:

Theorem 1. (Convergence bound): Suppose Assumptions 1 - 4 hold, there are R active local training requests, and the
server and client learning rates, ⌘s, ⌘c respectively, satisfy ⌘s 

p
⌧b and ⌘c  min

n
1

6L⌧
p
⌧b
, 1
4L⌧

p
⌧R�max

o
, where b is the

buffer size, and ⌧ is the number of local training steps. Then, the iterations of Algorithm 2 (FedAST) satisfy:

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2
 O

f
�
x(0)

�
�minx f (x)

T⌘s⌘c⌧

!
+O

✓✓
L⌘s⌘c

b
+ L2⌘2c⌧ +

L2⌘2s⌘
2
c⌧R

b2

◆
�2
l

◆

+O

✓✓
L⌘s⌘c⌧

b
+ L2⌘2c⌧ (⌧ � 1) +

L2⌘2s⌘
2
c⌧

2R2

b2

◆
�2
g

◆
.

Proof. Using the update rule of the virtual sequence (10) and Assumption (Asm.) 1 (Smoothness), and taking the conditional
expectation with respect to z(t), we have,

E
h
f
⇣
z(t+1)

⌘i
 f

⇣
z(t)
⌘
+
D
rf

⇣
z(t)
⌘
,E
h
z(t+1)

� z(t)
iE

+
L

2
E
���z(t+1)

� z(t)
���
2

= f
⇣
z(t)
⌘
+

*
rf

⇣
z(t)
⌘
,E

2

4�e⌘s⌘c
1

b

X

i2A(t)

�(t)
i

3

5
+

+
L

2
E

������
e⌘s⌘c

1

b

X

i2A(t)

�(t)
i

������

2

Asm. 2
= f

⇣
z(t)
⌘
� e⌘s⌘c

1

b

*
rf

⇣
z(t)
⌘
,E

2

4
X

i2A(t)

h(t)
i

3

5
+

+
L

2
e⌘2s⌘2cE

������
1

b

X

i2A(t)

�(t)
i

������

2

Uniform
client

selection= f
⇣
z(t)
⌘
+ e⌘s⌘cE

2

66664
�

*
rf

⇣
z(t)
⌘
,
1

N

NX

i=1

h(t)
i

+

| {z }
,T1

3

77775
+

L

2
e⌘2s⌘2c E

������
1

b

X

i2A(t)

�(t)
i

������

2

| {z }
,T2

.

Using Lemmas 3 and 4, we can bound T1 and T2. Then, dividing both sides by e⌘s⌘c:

E
⇥
f
�
z(t+1)

�⇤
� f

�
z(t)
�

e⌘s⌘c
 �

1

2
E
���rf

⇣
x(t)

⌘���
2
+

1

2
E
���rf

⇣
z(t)
⌘
�rf

⇣
x(t)

⌘���
2

+
1

2N

NX

i=1

✓
E
���h(t)

i �rfi
⇣
x(t)

⌘���
2
◆
+

Le⌘s⌘c
2

E

������
1

b

X

i2A(t)

h(t)
i

������

2

| {z }
,T3

+
Le⌘s⌘c

2

�2
l

⌧b
.

Using Lemma 5, we can bound T3:

E
⇥
f
�
z(t+1)

�⇤
� f

�
z(t)
�

e⌘s⌘c

 �
1

2
E
���rf

⇣
x(t)

⌘���
2
+

1

2
E
���rf

⇣
z(t)
⌘
�rf

⇣
x(t)

⌘���
2
+

1

2N

NX

i=1

✓
E
���h(t)

i �rfi
⇣
x(t)

⌘���
2
◆

+ Le⌘s⌘c

3

2N

NX

i=1

E
���h(t)

i �rfi
⇣
x(t)

⌘���
2
+

3�2
g

2b
+

3

2
E
���rf

⇣
x(t)

⌘���
2
+

�2
l

2⌧b

!

=

✓
�
1

2
+

3Le⌘s⌘c
2

◆
E
���rf

⇣
x(t)

⌘���
2
+

1

2
E
���rf

⇣
z(t)
⌘
�rf

⇣
x(t)

⌘���
2
+ Le⌘s⌘c

3�2

g

2b
+

�2
l

2⌧b

!

+

✓
3Le⌘s⌘c

2
+

1

2

◆
1

N

NX

i=1

E
���h(t)

i �rfi
⇣
x(t)

⌘���
2

Lemma 2


✓
�
1

2
+

3Le⌘s⌘c
2

◆
E
���rf

⇣
x(t)

⌘���
2
+

1

2
E
���rf

⇣
z(t)
⌘
�rf

⇣
x(t)

⌘���
2
+ Le⌘s⌘c

3�2

g

2b
+

�2
l

2⌧b

!

+

✓
3Le⌘s⌘c

2
+

1

2

◆✓
L2⌘2c⌧

2 (1�D)
�2
l +

D

1�D
E
���rf

⇣
x(t)

⌘���
2
+

D

1�D
�2
g

◆

=

✓
�
1

2
+

3Le⌘s⌘c
2

+
D

2 (1�D)
+

3Le⌘s⌘cD
2 (1�D)

◆
E
���rf

⇣
x(t)

⌘���
2
+

1

2
E
���rf

⇣
z(t)
⌘
�rf

⇣
x(t)

⌘���
2

+

✓
Le⌘s⌘c
2⌧b

+
3L3⌘3c e⌘s⌧
4 (1�D)

+
L2⌘2c⌧

4 (1�D)

◆
�2
l +

✓
3Le⌘s⌘c

2b
+

3Le⌘s⌘cD
2 (1�D)

+
D

2 (1�D)

◆
�2
g ,

where D , L2⌘2c⌧ (⌧ � 1). Using the tower property of conditional expectation, telescoping the inequality over the round
indices t = 0, 1, . . . , T � 1, and using Lemma 6, we get,

1

T

T�1X

t=0

✓
1

2
�

3Le⌘s⌘c
2

�
D

2 (1�D)
�

3Le⌘s⌘cD
2 (1�D)

◆
E
���rf

⇣
x(t)

⌘���
2


1

2T

T�1X

t=0

E
���rf

⇣
z(t)
⌘
�rf

⇣
x(t)

⌘���
2

+
f
�
z(0)

�
� E

⇥
f
�
z(T)

�⇤

T e⌘s⌘c
+

✓
Le⌘s⌘c
2⌧b

+
3L3⌘3c e⌘s⌧
4 (1�D)

+
L2⌘2c⌧

4 (1�D)

◆
�2
l +

✓
3Le⌘s⌘c

2b
+

3Le⌘s⌘cD
2 (1�D)

+
D

2 (1�D)

◆
�2
g

Lemma 6


✓
1 +

3RL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cR
2b2⌧

�2
l +

1 +D

1�D

3L2e⌘2s⌘2cR2

2b2
�2
g +

3L2e⌘2s⌘2cR�max

2b

1 +D

1�D

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

+
f
�
z(0)

�
� E

⇥
f
�
z(T)

�⇤

T e⌘s⌘c
+

✓
Le⌘s⌘c
2⌧b

+
3L3⌘3c e⌘s⌧
4 (1�D)

+
L2⌘2c⌧

4 (1�D)

◆
�2
l +

✓
3Le⌘s⌘c

2b
+

3Le⌘s⌘cD
2 (1�D)

+
D

2 (1�D)

◆
�2
g .

Suppose the learning rates satisfy ⌘s 
p
⌧b (which also makes e⌘s  ⌧

p
⌧b) and ⌘c  min

n
1

6L⌧
p
⌧b
, 1
4L⌧

p
⌧R�max

o
, the

following inequality holds:

1

2
�

3Le⌘s⌘c
2

�
D

2 (1�D)
�

3Le⌘s⌘cD
2 (1�D)

�
3L2e⌘2s⌘2cR�max

2b

1 +D

1�D
�

1

11
. (13)

Also, notice that z(0) is equal to x(0) by definitions (Section E.1.2) of these sequences and minx f (x)  f
�
z(T)

�
.

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2
 11

f
�
x(0)

�
�minx f (x)

T e⌘s⌘c
(Using (13))

+ 11

✓
Le⌘s⌘c
2⌧b

+
3L3⌘3c e⌘s⌧
4 (1�D)

+
L2⌘2c⌧

4 (1�D)
+

✓
1 +

3RL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cR
2b2⌧

◆
�2
l

+ 11

✓
3Le⌘s⌘c

2b
+

3Le⌘s⌘cD
2 (1�D)

+
D

2 (1�D)
+

1 +D

1�D

3L2e⌘2s⌘2cR2

2b2

◆
�2
g .

Define � , f
�
x(0)

�
�minx f (x). After reducing high-order terms using the assumptions, ⌘s 

p
⌧b (which also makes

e⌘s  ⌧
p
⌧b) and ⌘c  min

n
1

6L⌧
p
⌧b
, 1
4L⌧

p
⌧R�max

o
, and incorporating the constants into the O(·) notation, we have:

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2
 O

✓
�

T⌘s⌘c⌧

◆
+O

✓✓
L⌘s⌘c

b
+ L2⌘2c⌧ +

L2⌘2s⌘
2
c⌧R

b2

◆
�2
l

◆

+O

✓✓
L⌘s⌘c⌧

b
+ L2⌘2c⌧ (⌧ � 1) +

L2⌘2s⌘
2
c⌧

2R2

b2

◆
�2
g

◆
.

This concludes the proof.

E.3.2 Proof of Corollary 1 (Convergence Rate)

First, notice that learning rates, ⌘s =
p
⌧b and ⌘c = min

n
1

⌧L
p
T
, 1
6L⌧

p
⌧b
, 1
4L⌧

p
⌧R�max

o
satisfy the assumptions (⌘s 

p
⌧b

and ⌘c  min
n

1
6L⌧

p
⌧b
, 1
4L⌧

p
⌧R�max

o
) used through the proof.

When T � max {36b⌧, 16⌧R�max
}; set learning rates ⌘s =

p
⌧b and ⌘c =

1
⌧L

p
T

. Then, the bound in Theorem 1 reduces
to:

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2
 O

✓
L
p
Tb⌧

◆
� +O

✓
1

p
Tb⌧

+
1

⌧T
+

R

Tb

◆
�2
l +O

✓r
⌧

Tb
+

1

T
+

⌧R2

Tb

◆
�2
g .

E.4 PROOFS OF INTERMEDIATE LEMMAS

Proof of Lemma 2. We borrow the proof technique from [Wang et al., 2020b, C.5].

E
���rfi

⇣
x(t)

⌘
� h(t)

i

���
2
= E

�����rfi
⇣
x(t)

⌘
�

1

⌧

⌧�1X

k=0

rfi
⇣
x(t,k)
i

⌘�����

2

Lemma 1


1

⌧

⌧�1X

k=1

E
���rfi

⇣
x(t)

⌘
�rfi

⇣
x(t,k)
i

⌘���
2

Asm. 1


L2

⌧

⌧�1X

k=1

E
���x(t)

� x(t,k)
i

���
2

| {z }
,Trecursive

=
L2⌘2c
⌧

⌧�1X

k=1

E
�����

k�1X

v=0

g(t,v)
i

�����

2

(14)

Lemma 2 in
[Wang et al., 2020b]

=
L2⌘2c
⌧

⌧�1X

k=1

0

@
k�1X

v=0

E
���g(t,v)

i �rfi
⇣
x(t,v)
i

⌘���
2
+ E

�����

k�1X

v=0

rfi
⇣
x(t,v)
i

⌘�����

2
1

A (Using Assumption 2)

Lemma 1


L2⌘2c
⌧

⌧�1X

k=1

k�1X

v=0

✓
E
���g(t,v)

i �rfi
⇣
x(t,v)
i

⌘���
2
+ kE

���rfi
⇣
x(t,v)
i

⌘���
2
◆

Asm. 2


L2⌘2c
⌧

⌧�1X

k=1

k�2

l + k
k�1X

v=0

E
���rfi

⇣
x(t,v)
i

⌘���
2
!


L2⌘2c
⌧

(⌧ � 1) ⌧

2
�2
l +

(⌧ � 1) ⌧

2

⌧�2X

k=0

E
���rfi

⇣
x(t,k)
i

⌘���
2
!

 ⌘2cL
2 ⌧ � 1

2

�2
l +

⌧�2X

k=0

E
���rfi

⇣
x(t,k)
i

⌘���
2
!

 ⌘2cL
2 ⌧ � 1

2

�2
l +

⌧�2X

k=0

✓
2E
���rfi

⇣
x(t,k)
i

⌘
�rfi

⇣
x(t)

⌘���
2
+ 2E

���rfi
⇣
x(t)

⌘���
2
◆!

Asm. 1
 ⌘2cL

2 ⌧ � 1

2

�2
l +

⌧�2X

k=0

✓
2L2E

���x(t,k)
i � x(t)

���
2
+ 2E

���rfi
⇣
x(t)

⌘���
2
◆!

 ⌘2cL
2 ⌧ � 1

2

�2
l +

⌧�1X

k=1

✓
2L2E

���x(t,k)
i � x(t)

���
2
+ 2E

���rfi
⇣
x(t)

⌘���
2
◆!

 ⌘2cL
2 ⌧ � 1

2

✓
�2
l + 2L2Trecursive + 2⌧E

���rfi
⇣
x(t)

⌘���
2
◆
. (15)

Using the recursive appearances of Trecursive in (14) and (15):

Trecursive

⌧
=

1

⌧

⌧�1X

k=1

E
���x(t,k)

i � x(t)
���
2
 ⌘2c

⌧ � 1

2
�2
l + ⌘2c⌧ (⌧ � 1)E

���fi
⇣
x(t)

⌘���
2
+ ⌘2cL

2 (⌧ � 1)Trecursive.

Arranging the terms, defining D , L2⌘2c⌧ (⌧ � 1), and assuming ⌘c 
1
L⌧ which makes D  1,

E
���rfi

⇣
x(t)

⌘
� h(t)

i

���
2


L2Trecursive

⌧


L2⌘2c (⌧ � 1)�2
l /2 + L2⌘2c⌧ (⌧ � 1)E

��rfi
�
x(t)

���2

1� L2⌘2c⌧ (⌧ � 1)


L2⌘2c⌧

2 (1�D)
�2
l +

D

1�D
E
���fi
⇣
x(t)

⌘���
2
, 8i 2 N.

This proves the first part of Lemma 2. Now, averaging it across clients:

1

N

NX

i=1

E
���h(t)

i �rfi
⇣
x(t)

⌘���
2


1

N

NX

i=1

✓
L2⌘2c⌧

2 (1�D)
�2
l +

D

1�D
E
���fi
⇣
x(t)

⌘���
2
◆

=
L2⌘2c⌧

2 (1�D)
�2
l +

D

1�D

1

N

NX

i=1

E
���rfi

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘
+rf

⇣
x(t)

⌘���
2

=
L2⌘2c⌧

2 (1�D)
�2
l +

D

1�D

1

N

NX

i=1

E
���rfi

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘���
2

+
D

1�D
E
���rf

⇣
x(t)

⌘���
2
+

D

1�D

2

N

NX

i=1

D
rfi

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘
,rf

⇣
x(t)

⌘E

Asm. 3


L2⌘2c⌧

2 (1�D)
�2
l +

D

1�D
E
���rf

⇣
x(t)

⌘���
2
+

D

1�D
�2
g . (Since 1

N

PN
i=1rfi

�
x(t)

�
= rf

�
x(t)

�
)

This concludes the proof of Lemma 2.

Proof of Lemma 3.

T1 , �
*
rf

⇣
z(t)
⌘
,
1

N

NX

i=1

h(t)
i

+
= �

*
rf

⇣
z(t)
⌘
,
1

N

NX

i=1

⇣
h(t)
i �rfi

⇣
x(t)

⌘
+rf

⇣
x(t)

⌘⌘+

= �
D
rf

⇣
z(t)
⌘
,rf

⇣
x(t)

⌘E
�

*
rf

⇣
z(t)
⌘
,
1

N

NX

i=1

⇣
h(t)
i �rfi

⇣
x(t)

⌘⌘+

= �
1

2

���rf
⇣
z(t)
⌘���

2
�

1

2

���rf
⇣
x(t)

⌘���
2
+

1

2

���rf
⇣
z(t)
⌘
�rf

⇣
x(t)

⌘���
2
�

1

2

���rf
⇣
z(t)
⌘���

2

�
1

2

�����
1

N

NX

i=1

⇣
h(t)
i �rfi

⇣
x(t)

⌘⌘�����

2

+
1

2

�����rf
⇣
z(t)
⌘
�

1

N

NX

i=1

⇣
h(t)
i �rfi

⇣
x(t)

⌘⌘�����

2

Lemma 1
 �

���rf
⇣
z(t)
⌘���

2
�

1

2

���rf
⇣
x(t)

⌘���
2
+

1

2

���rf
⇣
z(t)
⌘
�rf

⇣
x(t)

⌘���
2

+
1

2

�����
1

N

NX

i=1

⇣
h(t)
i �rfi

⇣
x(t)

⌘⌘�����

2

+
���rf

⇣
z(t)
⌘���

2

= �
1

2

���rf
⇣
x(t)

⌘���
2
+

1

2

���rf
⇣
z(t)
⌘
�rf

⇣
x(t)

⌘���
2
+

1

2

�����
1

N

NX

i=1

⇣
h(t)
i �rfi

⇣
x(t)

⌘⌘�����

2

.

Proof of Lemma 4.

T2 , E

������
1

b

X

i2A(t)

�(t)
i

������

2

= E

������
1

b

X

i2A(t)

h(t)
i +

1

b

X

i2A(t)

⇣
�(t)

i � h(t)
i

⌘
������

2

= E

������
1

b

X

i2A(t)

h(t)
i +

1

b

X

i2A(t)

1

⌧

⌧�1X

k=0

⇣
g(t,k)
i �rfi

⇣
x(t,k)
i

⌘⌘!
������

2

= E

������
1

b

X

i2A(t)

h(t)
i

������

2

+ E

������
1

b

X

i2A(t)

1

⌧

⌧�1X

k=0

⇣
g(t,k)
i �rfi

⇣
x(t,k)
i

⌘⌘!
������

2

(Using Assumption 2)

Lemma 2 in
[Wang et al., 2020b]

= E

������
1

b

X

i2A(t)

h(t)
i

������

2

+
1

bN

NX

i=1

1

⌧2

⌧�1X

k=0

E
���
⇣
g(t,k)
i �rfi

⇣
x(t,k)
i

⌘⌘���
2

 E

������
1

b

X

i2A(t)

h(t)
i

������

2

+
�2
l

⌧b
.

Proof of Lemma 5.

E

������
1

b

X

i2A(t)

⇣
rfi

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘⌘
������

2

=
1

b2
E

2

66664

X

i2A(t)

���rfi
⇣
x(t)

⌘
�rf

⇣
x(t)

⌘���
2
+

X

i and r are
two different

items in A(t)

D
rfi

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘
,rfr

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘E

3

77775

(a)
=

1

bN

NX

i=1

E
���rfi

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘���
2
+ E

"
1

N2

NX

i=1

NX

r=1

D
rfi

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘
,rfr

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘E#

(b)
=

1

bN

NX

i=1

E
���rfi

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘���
2
, (16)

where (a) follows that the clients in A
(t) are selected uniformly at random with replacement among all clients (see

Section E.1.2), and (b) follows that
PN

i=1rfi
�
x(t)

�
= Nf

�
x(t)

�
. This proves the first part of Lemma 5.

T3 , E

������
1

b

X

i2A(t)

h(t)
i

������

2

= E

������
1

b

X

i2A(t)

⇣
h(t)
i �rfi

⇣
x(t)

⌘
+rfi

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘⌘
+rf

⇣
x(t)

⌘
������

2

Lemma 1
 3E

������
1

b

X

i2A(t)

⇣
h(t)
i �rfi

⇣
x(t)

⌘⌘
������

2

+ 3E

������
1

b

X

i2A(t)

⇣
rfi

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘⌘
������

2

+ 3E
���rf

⇣
x(t)

⌘���
2

Using (16)
and

Lemma 1


3

N

NX

i=1

E
���h(t)

i �rfi
⇣
x(t)

⌘���
2
+

3

bN

NX

i=1

E
���rfi

⇣
x(t)

⌘
�rf

⇣
x(t)

⌘���
2
+ 3E

���rf
⇣
x(t)

⌘���
2

Asm. 3


3

N

NX

i=1

E
���h(t)

i �rfi
⇣
x(t)

⌘���
2
+

3�2
g

b
+ 3E

���rf
⇣
x(t)

⌘���
2
.

Proof of Lemma 6. We start by using Assumption 1 (Smoothness) and Remark 1.

E
���rf

⇣
z(t)
⌘
�rf

⇣
x(t)

⌘���
2
 L2E

���z(t) � x(t)
���
2
= L2E

������
e⌘s⌘c

1

b

X

i2C(t)

�
(t��t

i)
i

������

2

= L2E

������
e⌘s⌘c
b

X

i2C(t)

⇣
�

(t��t
i)

i � h
(t��t

i)
i + h

(t��t
i)

i

⌘
������

2

Asm. 2
= L2e⌘2s⌘2cE

������
1

b

X

i2C(t)

⇣
�

(t��t
i)

i � h
(t��t

i)
i

⌘
������

2

+ L2e⌘2s⌘2cE

������
1

b

X

i2C(t)

h
(t��t

i)
i

������

2

= L2e⌘2s⌘2cE

������
1

b

X

i2C(t)

1

⌧

⌧�1X

k=0

⇣
g
(t��t

i ,k)
i �rfi

⇣
x
(t��t

i ,k)
i

⌘⌘
������

2

+ L2e⌘2s⌘2cE

������
1

b

X

i2C(t)

h
(t��t

i)
i

������

2

Asm. 2


L2e⌘2s⌘2cR
b2⌧

�2
l +

L2e⌘2s⌘2cR
b2

E

2

4
X

i2C(t)

���h(t��t
i)

i

���
2

3

5


L2e⌘2s⌘2cR

b2⌧
�2
l +

L2e⌘2s⌘2cR
b2

E

2

4
X

i2C(t)

���h(t��t
i)

i �rfi
⇣
x(t��t

i)
⌘
+rfi

⇣
x(t��t

i)
⌘
�rf

⇣
x(t��t

i)
⌘
+rf

⇣
x(t��t

i)
⌘���

2

3

5

Lemma 1


L2e⌘2s⌘2cR
b2⌧

�2
l

+
3L2e⌘2s⌘2cR

b2
E

2

4
X

i2C(t)

✓���rf
⇣
x(t��t

i)
⌘���

2
+
���h(t��t

i)
i �rfi

⇣
x(t��t

i)
⌘���

2
+
���rf

⇣
x(t��t

i)
⌘
�rfi

⇣
x(t��t

i)
⌘���

2
◆3

5


L2e⌘2s⌘2cR

b2⌧
�2
l +

3L2e⌘2s⌘2cR2

b2
�2
g +

3L2e⌘2s⌘2cR
b2

E

2

4
X

i2C(t)

✓���rf
⇣
x(t��t

i)
⌘���

2
+
���h(t��t

i)
i �rfi

⇣
x(t��t

i)
⌘���

2
◆3

5 .

Telescoping the inequality over t = 0, . . . , T � 1:

1

T

T�1X

t=0

E
���rf

⇣
z(t)
⌘
�rf

⇣
x(t)

⌘���
2


L2e⌘2s⌘2cR
b2⌧

�2
l +

3L2e⌘2s⌘2cR2

b2
�2
g

+
3L2e⌘2s⌘2cR

b2
1

T

T�1X

t=0

E

2

4
X

i2C(t)

✓���rf
⇣
x(t��t

i)
⌘���

2
+
���h(t��t

i)
i �rfi

⇣
x(t��t

i)
⌘���

2
◆3

5

Remark 2


L2e⌘2s⌘2cR
b2⌧

�2
l +

3L2e⌘2s⌘2cR2

b2
�2
g +

3L2e⌘2s⌘2cR�max

b

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

+
3L2e⌘2s⌘2cR

b2
1

T

T�1X

t=0

E

2

4
X

i2C(t)

���h(t��t
i)

i �rfi
⇣
x(t��t

i)
⌘���

2

3

5

Lemma 2


L2e⌘2s⌘2cR
b2⌧

�2
l +

3L2e⌘2s⌘2cR2

b2
�2
g +

3L2e⌘2s⌘2cR�max

b

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

+
3L2e⌘2s⌘2cR

b2
1

T

T�1X

t=0

E

2

4
X

i2C(t)

✓
L2⌘2c⌧

2 (1�D)
�2
l +

D

1�D

���rfi
⇣
x(t��t

i)
⌘���

2
◆3

5



✓
1 +

3RL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cR

b2⌧
�2
l +

3L2e⌘2s⌘2cR2

b2
�2
g +

3L2e⌘2s⌘2cR�max

b

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

+
3L2e⌘2s⌘2cR

b2
1

T

T�1X

t=0

E

2

4
X

i2C(t)

D

1�D

���rfi
⇣
x(t��t

i)
⌘���

2

3

5

Lemma 1


✓
1 +

3RL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cR

b2⌧
�2
l +

3L2e⌘2s⌘2cR2

b2
�2
g +

3L2e⌘2s⌘2cR�max

b

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

+
3L2e⌘2s⌘2cR

b2
1

T

T�1X

t=0

E

2

4
X

i2C(t)

✓
2D

1�D

���rfi
⇣
x(t��t

i)
⌘
�rf

⇣
x(t��t

i)
⌘���

2
+

2D

1�D

���rf
⇣
x(t��t

i)
⌘���

2
◆3

5

Asm. 3


✓
1 +

3RL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cR

b2⌧
�2
l +

1 +D

1�D

3L2e⌘2s⌘2cR2

b2
�2
g +

3L2e⌘2s⌘2cR�max

b

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

+
3L2e⌘2s⌘2cR

b2
1

T

T�1X

t=0

E

2

4
X

i2C(t)

2D

1�D

���rf
⇣
x(t��t

i)
⌘���

2

3

5

Remark 2


✓
1 +

3RL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cR

b2⌧
�2
l +

1 +D

1�D

3L2e⌘2s⌘2cR2

b2
�2
g +

3L2e⌘2s⌘2cR�max

b

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

+
3L2e⌘2s⌘2cR�max

b

2D

1�D

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

=

✓
1 +

3RL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cR

b2⌧
�2
l +

1 +D

1�D

3L2e⌘2s⌘2cR2

b2
�2
g +

3L2e⌘2s⌘2cR�max

b

1 +D

1�D

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2
.

F CONVERGENCE OF FedAST WITH DYNAMIC CLIENT ALLOCATION (OPTION = D)

With a similar approach to the proof of static client allocation, we can show the convergence of the FedAST with dynamic
client allocation (option = D), too. Adopting all of the previously used notation, we also need some new definitions to
analyze this version of the algorithm, as the number of active training requests and buffer size can change dynamically
during the training.

Notation for changing buffer size and number of active training requests. Let us define b(t) and R(t) as the buffer size
and the number of active local training requests of the model. Further, define bmin and bmax the minimum and maximum
value that the buffer size can take. Similarly, define Rmin and Rmax as the minimum and maximum number of active training
requests. Moreover, we define ⇢b , bmax/bmin as the measure of skewness in buffer size.

Global update rule and virtual sequence definition. Although the local update rule remains the same, the global update
rule slightly changes for dynamic client allocation due to changing buffer size:

x(t+1)
 x(t)

� ⌧⌘s⌘c
1

b(t)

X

i2B(t)

�
(t��t

i)
i = x(t)

� ⌘s
1

b(t)

X

i2B(t)

⇣
x(t��t

i) � x
(t��t

i ,⌧)
i

⌘
(17)

= x(t)
� ⌘s⌘c

1

b(t)

X

i2B(t)

⌧�1X

k=0

erfi
⇣
x
(t��t

i ,k)
i

⌘
,

where |B
(t)
| = b(t). Note that (17) is almost identical to (9), except the varying buffer-size b(t).

Next, we define ri(t) as the index of the global round when a local training request sent to client i in round t returns to the
server. Basically, it is the current round index t, added to the future value of staleness that the requested update will have.
We need to define a new virtual sequence y(t), which is different from the z(t) defined earlier.

y(t+1)
 y(t)

� ⌧⌘s⌘c
X

i2A(t)

1

bri(t)
�(t)

i = y(t)
� ⌧⌘s⌘c

X

i2A(t)

1

bri(t)
1

⌧

⌧�1X

k=0

erfi
⇣
x(t,k)
i

⌘
, (18)

for t = 0, 1, . . . , T �1 where y(0) , x(0). Here, A(t) is defined similarly as it was in Section E.1.2. Note that the probability
of being in A

(t) is equal across clients due to uniform client selection. However, this time, the size of this set does not have
to be equal to the buffer size at round t. Due to the new client selection rule (Line 13 in Algorithm 2), the server may assign
0, 1, or 2 clients for each received update. Therefore, we know that 0 < |A

(t)
|  2b(t).

Here, we need a simplifying assumption for the purpose of this proof:

Assumption 5 (bri(t) Values). We assume that any bri(t) value is known at the time when a local training request is sent to
client i at round t, and these values are independent of any future information including the received updates. We further
assume that bri(t) values are equal (denote br(t)) for all clients in A

(t).

Remark 7. When we keep the period of dynamic client allocation long enough, we observe that most of the assigned
local training requests at one round fall in the same window before the next dynamic client allocation happens (Line 8 in

Algorithm 2). Hence, based on our empirical observations, what assumption implies holds for most of the local training
requests. Further, this assumption can be avoided by taking an average of the updates during aggregation weighted
inversely with the number of local training requests sent at the same global round. In other words, one may have avoided this
assumption by weighting an update from client i with 1/|A(t��t

i)| instead of taking average over buffer during aggregation
at round t. However, we did not see any practical benefit of this type of weighting in our experiments, and this strange
weighting would be just for theoretical purposes. Therefore, we keep the current version.

We first state the theorem showing the convergence of FedAST with dynamic client allocation option.

Theorem 2. (Convergence of FedAST with option = D): Suppose Assumptions 1 - 5 hold, and the learning rates satisfy

⌘s  ⇢�3/2
b

p
⌧b and ⌘c  min

⇢
⇢�3/2
b

24L⌧
p
⌧b
,

⇢�3/2
b

16L⌧
p
⌧R�max

�
. Then, the iterations of Algorithm 1 (FedAST) with option = D

satisfy:

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2
 O

f
�
x(0)

�
�minx f (x)

T⌘s⌘c⌧

!
+O

✓✓
L⌘s⌘c⇢3b
bmin

+ L2⌘2c⇢
2
b⌧ +

L2⌘2s⌘
2
c⌧Rmax⇢2b
b2min

◆
�2
l

◆

+O

✓✓
L⌘s⌘c⌧⇢3b

bmin
+ L2⌘2c⌧ (⌧ � 1) ⇢2b +

L2⌘2s⌘
2
c⌧

2R2
max⇢

2
b

b2min

◆
�2
g

◆
.

Proof.
We will need one extra lemma corresponding to Lemma 6.

Lemma 7. The new virtual sequence
�
y(t)

�
and the iterates of FedAST satisfy,

1

T

T�1X

t=0

E
���rf

⇣
y(t)

⌘
�rf

⇣
x(t)

⌘���
2


✓
1 +

3RmaxL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cRmax

b2min⌧
�2
l

+
1 +D

1�D

3L2e⌘2s⌘2cR2
max

b2min
�2
g +

6L2e⌘2s⌘2cRmax⇢b�max

bmin

1 +D

1�D

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2
.

Now, using the update rule of the virtual sequence (18) and Assumption 1 (Smoothness), and taking the conditional
expectation with respect to y(t), we have,

E
h
f
⇣
y(t+1)

⌘i
 f

⇣
y(t)

⌘
+
D
rf

⇣
y(t)

⌘
,E
h
y(t+1)

� y(t)
iE

+
L

2
E
���y(t+1)

� y(t)
���
2

= f
⇣
y(t)

⌘
+

*
rf

⇣
y(t)

⌘
,E

2

4�e⌘s⌘c
X

i2A(t)

1

bri(t)
�(t)

i

3

5
+

+
L

2
E

������
e⌘s⌘c

X

i2A(t)

1

bri(t)
�(t)

i

������

2

 f
⇣
y(t)

⌘
� e⌘s⌘c

|A
(t)
|

br(t)
E

2

4
*
rf

⇣
y(t)

⌘
,

1

|A(t)|

X

i2A(t)

h(t)
i

+3

5 (Using Assumption 5)

+
L|A(t)

|
2

2(br(t))2
E

������
e⌘s⌘c

1

|A(t)|

X

i2A(t)

�(t)
i

������

2

(|A(t)
| is not random with conditional expectation)

= f
⇣
y(t)

⌘
+ e⌘s⌘c

|A
(t)
|

br(t)
E

2

66664
�

*
rf

⇣
y(t)

⌘
,
1

N

NX

i=1

h(t)
i

+

| {z }
,T1

3

77775
+ 2⇢2bLe⌘2s⌘2cE

������
1

|A(t)|

X

i2A(t)

�(t)
i

������

2

. (|A
(t)|

br(t)
 2⇢b)

Next, using Lemma 3 (with y(t) sequence) and Lemma 4 (with |A
(t)
|), using 1/⇢b  |A

(t)
|/br(t)  2⇢b, and dividing both

sides by e⌘s⌘c we obtain,

E
⇥
f
�
y(t+1)

�⇤
� f

�
y(t)

�

e⌘s⌘c
 �

1

2⇢b
E
���rf

⇣
x(t)

⌘���
2
+ ⇢bE

���rf
⇣
y(t)

⌘
�rf

⇣
x(t)

⌘���
2

+
⇢b
N

NX

i=1

E
���h(t)

i �rfi
⇣
x(t)

⌘���
2
+ 2⇢2bLe⌘s⌘cE

������
1

|A(t)|

X

i2A(t)

h(t)
i

������

2

+ 2⇢2bLe⌘s⌘c
�2
l

⌧bmin
.

Using Lemma 5, we get,

E
⇥
f
�
y(t+1)

�⇤
� f

�
y(t)

�

e⌘s⌘c

 �
1

2⇢b
E
���rf

⇣
x(t)

⌘���
2
+ ⇢bE

���rf
⇣
y(t)

⌘
�rf

⇣
x(t)

⌘���
2
+

⇢b
N

NX

i=1

E
���h(t)

i �rfi
⇣
x(t)

⌘���
2

+ ⇢2bLe⌘s⌘c

6

N

NX

i=1

E
���h(t)

i �rfi
⇣
x(t)

⌘���
2
+

6�2
g

bmin
+ 6E

���rf
⇣
x(t)

⌘���
2
+

2�2
l

⌧bmin

!

=

✓
�

1

2⇢b
+ 6⇢2bLe⌘s⌘c

◆
E
���rf

⇣
x(t)

⌘���
2
+ ⇢bE

���rf
⇣
y(t)

⌘
�rf

⇣
x(t)

⌘���
2
+ ⇢2bLe⌘s⌘c

6�2

g

bmin
+

2�2
l

⌧bmin

!

+
�
6⇢2bLe⌘s⌘c + ⇢b

� 1

N

NX

i=1

E
���h(t)

i �rfi
⇣
x(t)

⌘���
2



✓
�

1

2⇢b
+ 6⇢2bLe⌘s⌘c

◆
E
���rf

⇣
x(t)

⌘���
2
+ ⇢bE

���rf
⇣
y(t)

⌘
�rf

⇣
x(t)

⌘���
2
+ ⇢2bLe⌘s⌘c

6�2

g

bmin
+

2�2
l

⌧bmin

!

+
�
6⇢2bLe⌘s⌘c + ⇢b

�✓ L2⌘2c⌧

2 (1�D)
�2
l +

D

1�D
E
���rf

⇣
x(t)

⌘���
2
+

D

1�D
�2
g

◆
(Using Lemma 2)

=

✓
�

1

2⇢b
+ 6⇢2bLe⌘s⌘c +

⇢bD

(1�D)
+

6⇢2bLe⌘s⌘cD
(1�D)

◆
E
���rf

⇣
x(t)

⌘���
2
+ ⇢bE

���rf
⇣
y(t)

⌘
�rf

⇣
x(t)

⌘���
2

+

✓
2⇢2bLe⌘s⌘c
⌧bmin

+
3⇢2bL

3⌘3c e⌘s⌧
(1�D)

+
⇢bL2⌘2c⌧

2 (1�D)

◆
�2
l +

✓
6⇢2bLe⌘s⌘c

bmin
+

6⇢2bLe⌘s⌘cD
(1�D)

+
⇢bD

(1�D)

◆
�2
g ,

where D , L2⌘2c⌧ (⌧ � 1). Using tower property of conditional expectation, telescoping the inequality over the round
indices t = 0, 1, . . . , T � 1, and using Lemma 7, we get,

1

T

T�1X

t=0

✓
1

2⇢b
� 6⇢2bLe⌘s⌘c �

⇢bD

(1�D)
�

6⇢2bLe⌘s⌘cD
(1�D)

◆
E
���rf

⇣
x(t)

⌘���
2


⇢b
T

T�1X

t=0

E
���rf

⇣
y(t)

⌘
�rf

⇣
x(t)

⌘���
2

+
f
�
y(0)

�
� E

⇥
f
�
y(T)

�⇤

T e⌘s⌘c
+

✓
2⇢2bLe⌘s⌘c
⌧bmin

+
3⇢2bL

3⌘3c e⌘s⌧
(1�D)

+
⇢bL2⌘2c⌧

2 (1�D)

◆
�2
l +

✓
6⇢2bLe⌘s⌘c

bmin
+

6⇢2bLe⌘s⌘cD
(1�D)

+
⇢bD

(1�D)

◆
�2
g



✓
1 +

3RmaxL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cRmax⇢b

b2min⌧
�2
l +

1 +D

1�D

3L2e⌘2s⌘2cR2
max⇢b

b2min
�2
g +

6L2e⌘2s⌘2cRmax⇢2b�
max

bmin

1 +D

1�D

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

+
f
�
y(0)

�
� E

⇥
f
�
y(T)

�⇤

T e⌘s⌘c
+

✓
2⇢2bLe⌘s⌘c
⌧bmin

+
3⇢2bL

3⌘3c e⌘s⌧
(1�D)

+
⇢bL2⌘2c⌧

2 (1�D)

◆
�2
l +

✓
6⇢2bLe⌘s⌘c

bmin
+

6⇢2bLe⌘s⌘cD
(1�D)

+
⇢bD

(1�D)

◆
�2
g .

Suppose the learning rates satisfy ⌘s  ⇢�3/2
b

p
⌧b (which also makes e⌘s  ⇢�3/2

b ⌧
p
⌧b) and ⌘c 

min

⇢
⇢�3/2
b

24L⌧
p
⌧b
,

⇢�3/2
b

16L⌧
p
⌧R�max

�
, the following inequality holds:

1

2
� 6⇢3bLe⌘s⌘c �

⇢2bD

(1�D)
�

6⇢3bLe⌘s⌘cD
(1�D)

�
6L2e⌘2s⌘2cRmax⇢3b�

max

bmin

1 +D

1�D
�

1

11
. (19)

Also, notice that y(0) is equal to x(0) by definitions (Section F) of these sequences and minx f (x)  f
�
y(T)

�
.

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2
 11

f
�
x(0)

�
�minx f (x)

T e⌘s⌘c
⇢b (Using (19))

+ 11

✓
2⇢3bLe⌘s⌘c
⌧bmin

+
3⇢3bL

3⌘3c e⌘s⌧
(1�D)

+
⇢2bL

2⌘2c⌧

2 (1�D)
+

✓
1 +

3RmaxL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cRmax⇢2b

b2min⌧

◆
�2
l

+ 11

✓
6⇢3bLe⌘s⌘c

bmin
+

6⇢3bLe⌘s⌘cD
(1�D)

+
⇢2bD

(1�D)
+

1 +D

1�D

3L2e⌘2s⌘2cR2
max⇢

2
b

b2min

◆
�2
g .

Define � , f
�
x(0)

�
�minx f (x). After reducing high-order terms using the assumptions, ⌘s  ⇢�3/2

b

p
⌧b (which also

makes e⌘s  ⇢�3/2
b ⌧

p
⌧b) and ⌘c  min

⇢
⇢�3/2
b

24L⌧
p
⌧b
,

⇢�3/2
b

16L⌧
p
⌧R�max

�
, and incorporating the constants into the O(·) notation,

we have:

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2
 O

✓
�⇢b

T⌘s⌘c⌧

◆
+O

✓✓
L⌘s⌘c⇢3b
bmin

+ L2⌘2c⇢
2
b⌧ +

L2⌘2s⌘
2
c⌧Rmax⇢2b
b2min

◆
�2
l

◆

+O

✓✓
L⌘s⌘c⌧⇢3b

bmin
+ L2⌘2c⌧ (⌧ � 1) ⇢2b +

L2⌘2s⌘
2
c⌧

2R2
max⇢

2
b

b2min

◆
�2
g

◆
.

This concludes the proof.

Proof of Lemma 7: We start by using Assumption 1 (Smoothness) and observing that Remark 1 still holds with y(t) for the
dynamic client allocation option.

E
���rf

⇣
y(t)

⌘
�rf

⇣
x(t)

⌘���
2
 L2E

���y(t)
� x(t)

���
2
= L2E

������
e⌘s⌘c

X

i2C(t)

1

br(t��t
i)
�

(t��t
i)

i

������

2

= L2E

������
e⌘s⌘c

X

i2C(t)

1

br(t��t
i)

⇣
�

(t��t
i)

i � h
(t��t

i)
i + h

(t��t
i)

i

⌘
������

2

= L2e⌘2s⌘2cE

������

X

i2C(t)

1

br(t��t
i)

⇣
�

(t��t
i)

i � h
(t��t

i)
i

⌘
������

2

+ L2e⌘2s⌘2cE

������

X

i2C(t)

1

br(t��t
i)
h
(t��t

i)
i

������

2

= L2e⌘2s⌘2cE

������

X

i2C(t)

1

br(t��t
i)

1

⌧

⌧�1X

k=0

⇣
g
(t��t

i ,k)
i �rfi

⇣
x
(t��t

i ,k)
i

⌘⌘
������

2

+ L2e⌘2s⌘2cE

������

X

i2C(t)

1

br(t��t
i)
h
(t��t

i)
i

������

2

(Using Assumption 2)


L2e⌘2s⌘2cRmax

b2min⌧
�2
l +

L2e⌘2s⌘2cRmax

b2min
E

2

4
X

i2C(t)

���h(t��t
i)

i

���
2

3

5 (Using k
Pn

i=0 xik
2
 n

Pn
i=0 kxik

2 and |C
(t)
|  Rmax)


L2e⌘2s⌘2cRmax

b2min⌧
�2
l +

L2e⌘2s⌘2cRmax

b2min
E

2

4
X

i2C(t)

���h(t��t
i)

i �rfi
⇣
x(t��t

i)
⌘
+rfi

⇣
x(t��t

i)
⌘
�rf

⇣
x(t��t

i)
⌘
+rf

⇣
x(t��t

i)
⌘���

2

3

5


L2e⌘2s⌘2cRmax

b2min⌧
�2
l

+
3L2e⌘2s⌘2cRmax

b2min
E

2

4
X

i2C(t)

✓���rf
⇣
x(t��t

i)
⌘���

2
+
���h(t��t

i)
i �rfi

⇣
x(t��t

i)
⌘���

2
+
���rf

⇣
x(t��t

i)
⌘
�rfi

⇣
x(t��t

i)
⌘���

2
◆3

5


L2e⌘2s⌘2cRmax

b2min⌧
�2
l +

3L2e⌘2s⌘2cR2
max

b2min
�2
g +

3L2e⌘2s⌘2cRmax

b2min
E

2

4
X

i2C(t)

✓���rf
⇣
x(t��t

i)
⌘���

2
+
���h(t��t

i)
i �rfi

⇣
x(t��t

i)
⌘���

2
◆3

5 .

Telescoping the inequality over t = 0, . . . , T � 1:

1

T

T�1X

t=0

E
���rf

⇣
y(t)

⌘
�rf

⇣
x(t)

⌘���
2


L2e⌘2s⌘2cRmax

b2min⌧
�2
l +

3L2e⌘2s⌘2cR2
max

b2min
�2
g

+
3L2e⌘2s⌘2cRmax

b2min

1

T

T�1X

t=0

E

2

4
X

i2C(t)

✓���rf
⇣
x(t��t

i)
⌘���

2
+
���h(t��t

i)
i �rfi

⇣
x(t��t

i)
⌘���

2
◆3

5


L2e⌘2s⌘2cRmax

b2min⌧
�2
l +

3L2e⌘2s⌘2cR2
max

b2min
�2
g +

6L2e⌘2s⌘2cRmax⇢b�max

bmin

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

(Using Remark 2, however, this time,)

+
3L2e⌘2s⌘2cRmax

b2min

1

T

T�1X

t=0

E

2

4
X

i2C(t)

���h(t��t
i)

i �rfi
⇣
x(t��t

i)
⌘���

2

3

5 (the maximum appearance can be 2�maxbmax)


L2e⌘2s⌘2cRmax

b2min⌧
�2
l +

3L2e⌘2s⌘2cR2
max

b2min
�2
g +

6L2e⌘2s⌘2cRmax⇢b�max

bmin

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

+
3L2e⌘2s⌘2cRmax

b2min

1

T

T�1X

t=0

E

2

4
X

i2C(t)

✓
L2⌘2c⌧

2 (1�D)
�2
l +

D

1�D

���rfi
⇣
x(t��t

i)
⌘���

2
◆3

5 (Using Lemma 2)



✓
1 +

3RmaxL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cRmax

b2min⌧
�2
l +

3L2e⌘2s⌘2cR2
max

b2min
�2
g +

6L2e⌘2s⌘2cRmax⇢b�max

bmin

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

+
3L2e⌘2s⌘2cRmax

b2min

1

T

T�1X

t=0

E

2

4
X

i2C(t)

D

1�D

���rfi
⇣
x(t��t

i)
⌘���

2

3

5



✓
1 +

3RmaxL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cRmax

b2min⌧
�2
l +

3L2e⌘2s⌘2cR2
max

b2min
�2
g +

6L2e⌘2s⌘2cRmax⇢b�max

bmin

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

+
3L2e⌘2s⌘2cRmax

b2min

1

T

T�1X

t=0

E

2

4
X

i2C(t)

✓
2D

1�D

���rfi
⇣
x(t��t

i)
⌘
�rf

⇣
x(t��t

i)
⌘���

2
+

2D

1�D

���rf
⇣
x(t��t

i)
⌘���

2
◆3

5



✓
1 +

3RmaxL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cRmax

b2min⌧
�2
l +

1 +D

1�D

3L2e⌘2s⌘2cR2
max

b2min
�2
g +

6L2e⌘2s⌘2cRmax⇢b�max

bmin

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

+
3L2e⌘2s⌘2cRmax

b2min

1

T

T�1X

t=0

E

2

4
X

i2C(t)

2D

1�D

���rf
⇣
x(t��t

i)
⌘���

2

3

5



✓
1 +

3RmaxL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cRmax

b2min⌧
�2
l +

1 +D

1�D

3L2e⌘2s⌘2cR2
max

b2min
�2
g +

6L2e⌘2s⌘2cRmax⇢b�max

bmin

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

+
6L2e⌘2s⌘2cRmax⇢b�max

bmin

2D

1�D

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2

(Using Remark 2)

=

✓
1 +

3RmaxL2⌘2c⌧
2

2 (1�D)

◆
L2e⌘2s⌘2cRmax

b2min⌧
�2
l +

1 +D

1�D

3L2e⌘2s⌘2cR2
max

b2min
�2
g +

6L2e⌘2s⌘2cRmax⇢b�max

bmin

1 +D

1�D

1

T

T�1X

t=0

E
���rf

⇣
x(t)

⌘���
2
.

	Introduction
	PROBLEM FORMULATION
	ALGORITHM DESCRIPTION
	Convergence Analysis
	EXPERIMENTAL RESULTS
	Datasets and Implementation
	Baseline Algorithms
	Results and Insights

	CONCLUSION
	Adjusting the number of active requests and Realloc
	Theoretical Comparison of FedAST with Baselines
	EXPERIMENTAL SETUP DETAILS
	Simulation Environment
	Setting Overview
	Tasks and Models
	Datasets and Data Distribution
	Design Parameters
	Modeling Training Times, Model Sizes, and Client Speed Heterogeneity

	ADDITIONAL EXPERIMENTS
	Tuning Parameter k of the Straggler Mitigation Technique Used for Synchronous Methods (Accepting only the First-k Updates)
	Test Loss Plots of Figures 3 and 4 in the Main Text
	Training Curves of Homogeneous Experiments
	An Additional experiment with a larger model (ResNet-18) on CIFAR-100
	Experiments with different target accuracy levels
	Performance of FedAST without static resource allocation

	PROOFS OF THE CONVERGENCE ANALYSIS OF FedAST WITH STATIC OPTION (S)
	Notations and Definitions
	The Update Rules of FedAST
	Virtual Sequence and Set Definitions
	Notation

	Intermediate Lemmas
	Proofs of Main Statements
	Theorem 1 (Convergence bound)
	Proof of Corollary 1 (Convergence Rate)

	Proofs of Intermediate Lemmas

	Convergence of FedAST with Dynamic Client Allocation (option =D)

