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Abstract

Foundation models are now a major focus of leading technology organizations due to their
ability to generalize across diverse tasks. Existing approaches for adapting foundation models
to new applications often rely on Federated Learning (FL) and disclose the foundation model
weights to clients when using it to initialize the global model. While these methods ensure client
data privacy, they compromise model and information security. In this paper, we introduce
Federated Learning Aggregation Biased by a Foundation Model (FedBaF), a novel method
for dynamically integrating pre-trained foundation model weights during the FL aggregation
phase. Unlike conventional methods, FedBaF preserves the confidentiality of the foundation
model while still leveraging its power to train more accurate models, especially in non-IID and
adversarial scenarios. Our comprehensive experiments use Pre-ResNet and foundation models
like Vision Transformer to demonstrate that FedBaF not only matches, but often surpasses
the test accuracy of traditional weight initialization methods by up to 11.4% in IID and up
to 15.8% in non-IID settings. Additionally, FedBaF applied to a Transformer-based language
model significantly reduced perplexity by up to 39.2%.

1 Introduction

Developing foundation models [ZCL23] has become a major focus for leading technology companies
like OpenAl, Microsoft, and Amazon AWS. These deep learning models are often trained with
vast amounts of high-quality data [BHAT21] and their ability to generalize across different tasks
and domains has made them essential assets for industry, government, and academia. Foundation
models have been applied to natural language processing (e.g., text generation, translation, sum-
marization), image generation and recognition, healthcare diagnostics, finance predictive analytics,
and customer service and virtual assistant tasks [CTLT23, HZD"21, DLJ*21, JPS22, YCBL14].
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When a foundation model’s training data distribution overlaps with a new application, it provides
a robust starting point for fine-tuning and customization. Instead of training a model from scratch,
with limited data and computes, we can leverage pre-trained foundation models to enable faster
training.

For many applications, data that could be used to customize or fine-tune foundation models
is often distributed across multiple clients, such as a network of clinics or small companies spread
across different jurisdictions. For example, fine-tuning a recommendation model to fit a small com-
pany’s product offering may require data from clients in various regions; and adapting a healthcare
model for a network of clinics would involve confidential, distributed data sources. Therefore,
effective generalization requires access to diverse data from multiple clients [PM24].

Federated Learning (FL) is a promising solution for fine-tuning these models without sharing
client data: FL clients train models on diverse local data, and a central FL server aggregates
the client updates to build and refine a global model [LWW*21, MMR*17, SVGR19, LYZY20,
NDP*21, WYS*20, LZA23, SZP*24]. Using a foundation model to initialize the global FL model
leads to effective customization that leverages diverse, distributed data without directly accessing
the client data [NMSR22, CTL*23]. However, there are significant risks associated with sending a

foundation model to clients, as required in traditional FL fine-tuning methods.
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Figure 1: A visualization of a Model Inversion Attack. Since FedBaF does not initialize the global
model with a pre-trained foundation model, it becomes difficult for malicious clients to reconstruct
the pre-training data from the distributed global model.

First, disclosing a foundation model’s weights to FL clients poses a significant security risk.

For example, malicious actors could carry out membership inference attacks, identifying whether



specific data was part of the foundation model’s training dataset. Then, an attacker could disrupt
the global model’s training by introducing updates that degrade performance on identified data
through backdoor attacks, deliberately leading to targeted misclassification [DAATM23, HSS 22,
WWW23]. Similarly, for model inversion attacks, attackers use known model weights to reverse-
engineer sensitive training data (see Figure 1) [FJR15, LRC*22, ZJP*20]. Protecting foundation
models, often trained on sensitive, proprietary data, is critical for safeguarding the training data
and maintaining model integrity [BVH20, KLM*23].

Second, in competitive business contexts, disclosing foundation model weights to clients risks
leaking strategic insights and proprietary information to adversaries [HZD 21, YWZ"23]. This
undermines a company’s competitive advantage and substantial investments in data collection and
training.

To address these challenges, we present Federated Learning Aggregation Biased by a Foundation
Model (FedBaF). Rather than using a foundation model to initialize the global model, FedBaF is
a novel method for server-side foundation model integration during the task-specific global model
aggregation phase of each FL round (see Figure 2). Since the server uses the foundation model in the
aggregation phase, FedBaF ensures that the foundation model is not disclosed to clients. FedBaF
also gradually reduces the foundation model’s influence as training progresses, thereby improving

personalization for the client pool’s data and matching or outperforming existing methods.
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Figure 2: Visualization of FedBaF: in each FL round’s aggregation phase (after client updates),
the server integrates a foundation model into the global model.

FedBakF is particularly beneficial for a FL. operator who owns the foundation model and needs
to maintain security and integrity while fine-tuning it with a new set of clients. For instance, large
technology companies such as Microsoft and Amazon, develop their own foundation models and
often act as FL operators for domain-specific tasks across various industries.

When client data distributions are biased or non-IID, e.g., different ratios or a lack of certain

labels, clients optimize correspondingly diverse local objective functions [PM23] and may send



conflicting updates to the server that skew the global model [ZLL"18]. In FedBaF, the foundation
model continuously serves as a form of regularization and stabilizes the global model by reducing the
influence of these conflicting updates during the aggregation phase [CTL*23, LRJ*22, TLM*22,
YCBL14].

Furthermore, FedBaF uses a fixed foundation model as an anchor and continuously incorporates
it throughout the FL training process. This adds a layer of protection from adversarial attacks
beyond those introduced by disclosing foundation model weights — such as misclassification attacks
or backdoor attacks, where compromised clients feed malicious updates to the server [LYZY20,
BVH™20].

Our contributions:

1) To the best of our knowledge, we are the first to propose an algorithm that integrates
foundation models into FL without distributing the foundation model to clients.

2) We provide theoretical analysis of FedBaF’s effectiveness that reveals how foundation
models can promote convergence in non-IID (not independent and identically distributed) and
non-convex settings.

3) We conduct extensive empirical evaluation and show that FedBaF matches or exceeds
the training performance of traditional weight initialization methods — with better test
performance in 10 out of 14 cases. Our experiments use Pre-ResNet and more complex architectures
like Vision Transformer and Transformer-based language models frequently used as foundation
models [XZC23, KKH24]. Compared to standard FedAvg [MMR*17] and FedProx [LSZ'20] with
foundation models used for weight initialization, FedBaF achieves accuracy improvements of up
to 10.8% in IID and up to 37.5% globally and 5.9% locally in non-IID settings. Simultaneously,
FedBaF safeguards the foundation model. Similarly, applying FedBaF to a Transformer-based
language model significantly reduced perplexity by up to 76.0%.

Under adversarial misclassification attacks, FedBaF demonstrates increased robustness by im-
proving FedAvg and FedProx test performance by up to 19.4% in IID environments, up to 64.7%
globally, and 7.2% locally in non-IID environments. Additionally, in 8 out of 12 cases, FedBaF was
more robust than traditional weight initialization methods.

We outline related works in Sec. 2. We then detail our approach, FedBaF, in Sec. 3. In Sec. 4, we
present theoretical analysis and, in Sec. 5, we provide extensive experimental evaluation. Finally,

we conclude our research findings and discussion in Sec. 6.

2 Related Work

Traditionally, pre-trained models are used in FL to initialize the weights of the global FL model.
The server distributes this model to local clients, and the clients update it by using their local data.
We refer to this approach as “weight initialization” throughout this paper. Such fine-tuning of a pre-

trained model can significantly improve performance of the learned FL global model by integrating



data from new clients [NMSR22]. Several recent studies devised methods that leverage weight ini-
tialization to further improve performance: Federated Nearest Class Means (FedNCM) [LBPC*23]
for last-layer guidance, Federated Recursive Ridge Regression (Fed3R) [FCCC24], Fractal Pair
Similarity (FPS) [CTL*23], and FedPCL [TLM*22].

Several works also explore the use of foundation models in FL. These include cases where a
subset of the weights of a large foundation model are chosen to initialize and fine-tune a smaller
model [XCV124] and when clients have diverse model architectures [WHC'23, PJW24]. Partic-
ularly in scenarios with limited pre-training data [CTL'23], approaches often rely on synthetic
data [Nik21, CTL*23] for pre-training. Federated Prototype-wise Contrastive Learning (FedPCL)
is a significant development that improves communication efficiency in FL by using class proto-
types [TLM™22] and enhances personalized learning by having clients share class-specific informa-
tion more effectively.

The related works discussed in this section so far achieve good performance, but they do not
consider the significant security vulnerabilities that result from sharing a foundation model with
local clients, which compromise data privacy and the integrity of the global model. Malicious clients
with access to foundation models can exploit them through: Model Inversion Attacks, recovering
original training data or sensitive attributes from the model’s outputs [FJR15, ZJP*20, LRC*22];
Membership Inference Attacks, analyzing model predictions to determine whether specific data
records were used in training [HSST22, DAATM23, WWW23|. These attacks compromise the
security of the FL system, necessitating the development of more secure methods for leveraging
pre-trained foundation models in FL settings.

FedBaF addresses these security challenges by not sharing the foundation model with clients
during the weight initialization stage. Instead, it dynamically integrates the foundation model’s
pre-trained weights during the aggregation phase of each training round. We show that FedBaF

improves privacy while matching or exceeding the performance achieved by weight initialization.

3 Methodology

In this section, we introduce FedBaF, whose approach is illustrated in Figure 2. FedBaF involves
the server repeatedly leveraging pre-trained foundation model weights throughout the aggregation
phases of the FL training process. For example, the pre-trained weights corresponding to feature
extraction layers provide valuable representation mappings that guide the new model’s feature
extractor during training.

To mimic the performance gains of weight initialization, the server uses the foundation model as
a strong anchor in the earlier FL rounds. To enable the FL global model to evolve and fit the clients’
data as FL training continues, the server assigns rapidly decaying importance to the foundation
model that is on the order of 1//t and proportional to the change in model parameters caused by

client updates. To further maintain foundation model confidentiality, the server randomly samples



the aggregation weights (or importance) of the foundation model from a uniform distribution in
each round. These aspects of FedBaF maintain foundation model privacy while enabling further
application-specific tuning to achieve performance on par or exceeding that of weight initialization

methods.

Algorithm 1 Federated Learning Aggregation Biased by a Foundation Model (FedBaF).
1: Initialize global model weights wyq
2: for each round t =0,1,2,...,7 do
33 m <+ max(C - K, 1)
St < (random set of m clients)
for each client k£ € S; in parallel do
wj, 1 + ClientUpdate(wy, Dy,)
end for
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12: end for

13: ClientUpdate(w, D)

14:  Initialize local model weights with w

15:  Update local model weights using local data D
16: return updated model weights

Algorithm 1 describes how FedBaF fits into the traditional FL framework by incorporating
foundation model weights during aggregation, as illustrated in Lines 9-11 [MMR'17]. FedBaF is
versatile and can be embedded into many existing FL algorithms, e.g., SCAFFOLD [KKM*20],
FedProx [LSZ"20], FedAdam [RCZ*21], or other FL strategies, by modifying their aggregation
methods (Lines 8-11) and using their existing ClientUpdate(w, D) logic for clients’ local training
in Line 13.

Modifying FL aggregation. FedBaF’s aggregation process in each training round begins
with the aggregation step of an existing FL algorithm, which, as mentioned above, includes FedAvg,
SCAFFOLD, FedProx, and FedAdam. To illustrate an example with FedAvg, Line 8 of Alg. 1 uses
FedAvg’s aggregation step and computes a weighted sum of the updated model parameters from
each client. After this aggregation, Line 11 incorporates the pre-trained model weights (W) into
the global FL. model, controlled by the factor 7; defined in Line 9.

Here, (Wpye \ Wy) refers to the subset of layers from the foundation model (Wye) that have
the same architecture as the corresponding layers in the global FL model (w;), ensuring that only
compatible layers are used during aggregation. When the foundation and FL models have the
same architecture except that the input and output layers (i.e., first and last layers) differ due to
variations in input features or the number of classes, FedBaF excludes these input and output layers

from the aggregation and integrates only the shared intermediate (hidden) layers. The differing



layers are randomly initialized and then trained using data from the client pool, as in standard FL.

Foundation and Global Model Architecture Mismatch. In practice, the foundation
model and the global model architectures may differ beyond the input and output layers. These
differences can arise in terms of the number of layers or the number of parameters per layer. Since
foundation models are typically larger than global FL. models — consistent with their role as highly
expressive networks pre-trained on extensive data [MSJ*23, ANK™'25] — we consider the following
two cases:

e Foundation model with more layers: When the foundation model is deeper than the
global FL. model, only a subset of its layers is used during aggregation. We take advantage of the
fact that most large models have layers grouped into sections. Here, a section is a contiguous
subset of layers within a model that shares similar structural properties, such as the number
of parameters, functional roles, or connectivity patterns. FedBaF selects and matches sections
between the foundation and global models, prioritizing feature extraction sections near the input
layer. Within each matched section, only layers that align with the global model’s architecture
are integrated into FL training. Methods for selecting compatible layers during aggregation are
explored in [PJW24, XCV124].

e Foundation model with more parameters per layer: If the foundation model has layers
with more parameters than the global model, only a subset of parameters within each section and
layer is selected to match the global FL. model. Since different sections may have varying parameter
distributions, the aggregation is performed iteratively per section and per layer. To consider these

mismatches, Line 11 of Alg. 1 is expanded:

1: for each section s in shared sections between wy,. and w’; do

2 for each layer [ in section s do

3 for each parameter subset p in layer [ up to Pt(s’l) parameters do
v Wi e s (W + amwiie”)

5: end for

6: end for

7: end for

Here, Pt(s’l) denotes the number of parameters selected per layer [ within section s. Only the first
Pt(s’l) parameters in each layer are incorporated into the global model.

FedBaF can be analogously modified to handle the case where the foundation model is smaller
than the global FL model. By applying these modifications, FedBaF can seamlessly adapt to
different network architectures, ensuring that foundation model knowledge is effectively transferred
while maintaining structural compatibility with the FL model.

Designing 7;. Our careful design of 7 uses the L2 norm of the difference between consecutive
normalized weights of w’; ;1 and wy, divided by v/t + 1. This change in the model’s weights between
rounds reflects how much the global model adapts to new client updates. The normalization

prevents 7y from becoming too large. The factor v/t + 1 ensures that, as training progresses, the



influence of w,. gradually diminishes, but not too quickly, and w;;1 approaches the improving
averaged weights w’;, 1. This strategy is critical to keeping the global model flexible and effective,
especially when client data differs from the data used to train the foundation model [KKM*20)].

Depending on the network architectures (e.g., the number of weights or scale of the initialized
weights), the scale of 7; can vary. In non-IID situations and during adversarial attacks, the factor
7+ becomes significant. In particular, a large 7; can indicate the presence of non-IID data or an
attack, as such scenarios often result in large differences in consecutive weight updates. To keep 7
within a suitable range, we introduce the parameter oy in Line 10, which depends on 7y and the
hyper-parameter 1. We empirically find that setting a; such that a;7g is less than 2 in the initial
round (¢t = 0) prevents excessively large values that could overly bias the global model towards
the foundation model. A lower bound of 1 for a;7y also ensures that the minimum impact of the
foundation model is significant for small ¢. We thus ensure the influence of the foundation model
in the critical initial training stages, while still allowing the global model to adapt as training
progresses.

Designing «;. Sampling oy from the uniform distribution T%U(l, 2) for every round makes it
difficult for clients to reverse-engineer the foundation model, thus meeting FedBaF’s model security

guarantees. To see this, Line 11 can be rearranged for wy,. as

(14 o) Weg1 — Wign

Wopre =
P QT

In the worst-case scenario, where all local clients are malicious and collaborating to extract the
foundation model’s weights, they can access 7;, wy11, and w'y1 1. However, because a; is randomly
chosen in each round ¢ and known only to the server, the foundation model’s weights cannot be
extracted. If oy were static, even if the server did not disclose it, malicious clients could determine

this constant value by solving the residual equations from two successive rounds,
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This would eventually reveal the foundation model’s weights. More details, along with empirical
analysis on the role of ay and the security advantages of FedBaF are provided in Appendiz G.

We formally examine this idea in the next section.

4 THEORETICAL ANALYSIS

In this section, we focus on deriving performance guarantees for FedBaF, focusing on its convergence
properties. Sec. 4.1 examines the general convergence behavior of FedBaF, while Sec. 4.2 shows
specifically on how FedBaF manages convergence in the presence of diverse, non-IID local client
data distributions.

The following notation, problem setup, and assumptions are used throughout our analysis.



Given m clients, let the kth device’s training data be drawn from Djy. The FL problem can be

formulated as the following global objective,

m

. 1
mlnm;nkﬁ)k(w)» (1)

w
where w are model (usually, deep neural network) weights and the fp, are L-smooth local objective
functions. The convergence analysis presented in this section also makes the following standard
assumptions made by [KKM™20] and detailed in Appendix E. Each client locally optimizes w
using stochastic gradient descent, where the stochastic gradients are (i) unbiased and (ii) have
bounded variance. We also assume (iii) bounded gradient dissimilarity: the norm of the difference
between the gradient of the global objective and the gradients computed using different local
objective functions is bounded. Lastly, we assume that (iv) the foundation model has the same
architecture as the global model, ensuring compatibility during aggregation. See Appendix E.1.1

for mathematical details regarding the assumptions.

4.1 General Convergence Analysis

Proposition 1. Let w* be a (bounded) local minimum of the global objective function in (1).
Consider an FL algorithm that converges to w* and let wj be its global model in each training
round t. Suppose we run the same algorithm but using FedBaF for the aggregation, and let w; be
the FedBaF global model at round t. Let oy satisfy

2[[wiyy —w*?

(2)

o <
(Iwpre = w2 = Wiy, — w*[*)7
for all t where |wi ; — w*||? < ||[wpre — W*||2. Then Vit [[w; — w*|| < ||w} — w*||.

This means that, at any given round t, FedBaF’s model weights are closer to w*.

Using the same restrictions on local and global learning rates placed by the FedAvg convergence
analysis in [KKM™20], the aforementioned bounded gradient variance, bounded gradient dissimi-
larity, and L-smoothness assumptions ensure that our method converges to w* faster than FedAvg.
Similar convergence rate arguments for other FL. methods with appropriately modified aggregation

can be shown, as discussed in Sec. 3.

4.2 Effectiveness of FedBaF with Diverse Client Data

This section shows the impact of integrating a foundation model close to the optimal weights on
the learning process and convergence behavior in non-IID settings.
In round ¢, client k£ uses multiple SGD steps to update the global model w; and obtains the

local model w¥. Letting S; represent the randomly selected set of active clients at time ¢, we define



0; as the maximum deviation of the client models from w*:
o k *
0t := max |[|[wy — w"|.
keSt

Aggregating the updated models from clients according to Alg. 1 Lines §-10 forms the global model
w;. By the triangle inequality, we get

[wi — W[l < 0.

Assumption: Foundation Model Proximity. The foundation model’s pre-trained weights,
Wpre, are close to the optimal weights w*, i.e., ||Wpe — W*|| < 7 for a small v > 0. Furthermore,
we assume that v < §; for earlier rounds (small ¢ which makes 7, > 0), i.e., the foundation model
is closer to the optimal model than clients’ local weights.

These are reasonable assumptions in practice since selecting a foundation model with a large ~

would correspond to selecting an unsuitable foundation model that hampers the training process.

Proposition 2. Let w* be a (bounded) local minimum of the global objective function in (1).
Consider an FL algorithm that converges to w* and let w} be its global model. Consider FedBaF
based on the same FL algorithm (with appropriately modified client updates and Lines 8-10 in
Alg. 1) and let wy be the FedBaF' global model. FedBaF’s global model error has an upper bound of

[wy — w|| < STy g,

Similar to (29) in Sec. 4.1, we bounded the distance between the FedBaF global model w; and
w* in terms of §;. Prop. 2 shows that the integration of the foundation model not only helps in
stabilizing the learning process but also accelerates the convergence rate. The foundation model
acts as a stabilizing factor and reduces the impact of this variance on the global model’s convergence.
This is particularly significant in the early stages of learning with non-IID data, when local models’

weights are more prone to diverge from each other.

5 Experimental Evaluations

In this section, we conduct a detailed evaluation of FedBaF’s performance on both local and global
test datasets, comparing its performance to the no foundation model and weight initialization
baseline algorithms for training FL models.

e No foundation model: The global FL model is trained from scratch without weight initial-
ization or FedBaF (i.e., no use of foundation models).

e Weight initialization: The global model’s initial weights are set to equal the foundation
model’s weights, and the FL training then proceeds as usual.

We aim to 1) illustrate that FedBaF offers security advantages over weight initialization while

attaining equivalent performance. Furthermore, by verifying how 7 in line 9 of Algorithm 1 con-
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Figure 3: FedBaF maintains higher test accuracy when used with Fed Avg with different propor-
tions of malicious clients, ¢ (0%, 10%, 20%, 50%), and attack intensity, A (1, 5), executing mis-
classification attacks, under IID and non-IID settings. Three different foundation models, trained
with different datasets, are used for three tasks. Red, blue, and gray bars respectively represent
FedBakF, weight initialization, and no foundation model cases.

verges to 0, we also 2) establish FedBaF’s ability to effectively adapt the influence of the foundation
model.

More detailed testing results are provided in Appendix C, including the 1) computational
efficiency of FedBaF and 2) additional evaluations using foundation models of varying quality
trained on different amounts of data and real-world foundation model weights that are publicly

available online.

5.1 Experimental Setup

Our experiments with popular image classification tasks encompass experiments using the CIFAR-
10 and Rome Weather Image [Vaz21] datasets. We use Pre-ResNet and Vision Transformer [DBK*21]
architectures as Vision Transformers are popular foundation model architectures known for achiev-
ing remarkable performance [ZLL124] for ImageNet challenges [DBK*21]. We train the foundation
models on the Tiny ImageNet-200 and Weather Image [Xia21] datasets. Our evaluations consider
both IID and non-IID settings (see Appendix A). To demonstrate FedBaF’s generalizability to
other tasks, we also evaluate it on a next-word prediction task using a Transformer language model
pre-trained on the WikiText-2 dataset and tested on the Penn Treebank dataset.

Attack setup. To assess security robustness of FedBaF, we randomly shuffle local data labels

for a subset of clients, treating them as backdoor attackers aiming to induce misclassification. We
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Figure 4: FedBaF maintains higher test accuracy than both baselines when used with FedProx
with different proportions of malicious clients, attack intensity, and IID as well as non-I1ID settings.
All other settings are identical to those in Figure 3.

also increase the attack intensity by varying the number of local epochs for malicious clients. For
image classification tasks (Pre-ResNet and Vision Transformer), we increase the local epochs by a
factor A > 1, which introduces more bias from the initial global model and strengthens the attack’s
impact. For the language task (Transformer), we decrease the local epochs by a factor 1/A < 1 to
prevent convergence to a small loss, ensuring the calculated perplexity remains high regardless of
misclassification, thereby intensifying the attack. We vary the proportion of attacking clients, (,
and evaluate algorithm resiliency when 0%, 10%, 20%, and 50% of the client base are attackers.

Evaluation metrics. To evaluate testing performance, we calculate the global testing accuracy
using a global test dataset after the aggregation phase of an FL round. In non-IID settings, we
also use local test datasets that are extracted from the global test dataset and reflect the class
distribution of the local clients. After local training and prior to aggregation, we test the local
models to determine an average local testing accuracy. For the Transformer model, we use global
perplezity to assess the performance of the global language model. Perplexity is inversely related
to how well a probability model predicts a sample.

Details of other deep neural network architectures employed in our experiments and additional

training specifics are provided in Tables 1 and 2 in Appendix A.
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Figure 5: FedBaF maintains lower test perplexity when used with FedAvg and FedProx with
different proportions of malicious clients and attack intensities. Note: lower perplexity is
better
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5.2 Experimental Results

Figures 3, 4, and 5 display the extensive test accuracy /perplexity evaluation results for FedBaF and
our two baselines (no foundation model and weight initialization). We evaluate the three methods
using both FedAvg and FedProx [LSZ'20] as the base FL training algorithms. We incorporate
FedBaF into FedProx by modifying Line 8 and the ClientUpdate routine in Algorithm 1, including
both IID and non-1ID settings, with one non-adversarial scenario and four adversarial scenarios. We

use FedProx’s aggregation step: wi, | < > s wfﬂ — M(Wfﬂ — wy). Here, u represents

ng
2 kes; Mk
the regularization term that controls the trade-off between the local and global objectives. FedBaF

then incorporates the foundation model weights as in Lines 9-11 of Algorithm 1.

5.2.1 Testing FedBaF Performance

In non-adversarial scenarios, FedBaF showcased superior testing performance compared to the no
foundation model and weight initialization methods across both IID and non-IID configurations.
Figures 3 and 4 respectively show test accuracies of all three methods using FedAvg and Fed-
Prox for both Pre-ResNet and the Vision Transformer. In comparison to Pre-ResNet trained with
no foundation model, FedBaF improved global model accuracy by 1.3% for FedAvg and 1.6% for
FedProx in IID scenarios, and by 21.8% for FedAvg and 22.6% for FedProx in non-IID scenar-
ios. For the Vision Transformer, FedBaF improved global performance relative to no foundation
model by 10.8% for FedAvg and 0.0% for FedProx in IID settings and by 37.5% for FedAvg and
15.8% for FedProx in non-IID settings. We observe that both FedAvg and FedProx benefit
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from FedBaF’s inclusion of the foundation model, with particular benefits in more challeng-
ing scenarios with non-IID client data. Incorporating the foundation model mitigates slower FL
convergence caused by non-IID data.

The weight initialization method, which also incorporates a foundation model but does not keep
it private, exhibits similar performance gains as FedBaF compared to training without a foundation
model. For example, on Pre-ResNet weight initialization exhibited global performance gains of
19.7% for FedAvg and 20.4% for FedProx in non-IID scenarios, while on Vision Transformers it
achieves gains of 18.8% for both FedAvg and FedProx in non-IID scenarios.

In the next-word prediction task using a Transformer, FedBaF significantly outperformed train-
ing with no foundation model, reducing perplexity by 76.0% with FedAvg, whereas weight initial-
ization yielded a 67.8% decrease relative to training without a foundation model with FedAvg.

Collectively, these findings indicate negligible differences between the test accuracies at-
tained by FedBaF and those achieved with weight initialization. Simultaneously, FedBaF
achieves privacy advantages as, unlike weight initialization, it does not reveal the foundation
model weights to FL clients. Moreover, FedBaF showed better testing performance than the weight
initialization or no foundation model methods in 10 out of the 14 experiment settings.

In Appendix C.3, we provide additional examples of FedBaF achieving privacy and test perfor-
mance improvements. They include comparisons with FedAdam [RCZ121], a state-of-the-art FL

method leveraging pre-trained models.

5.2.2 FedBaF’s Robustness to Attacks

FedBaF remains effective in maintaining robustness when faced with misclassification attacks and
shows a more modest performance degradation in comparison to both baseline methods.

We evaluate the robustness of FedBaF and our two baselines in the presence of adversarial
clients. As the proportion of attacking clients (¢ in Figures 3, 4, and 5) increases, test accuracy
declines in all cases. This matches our intuition since neither FedBaF nor the two baselines are
designed to perfectly defend against these attacks, which become more effective as more clients act
as attackers.

The test accuracy for the no foundation model baseline method drops significantly when 50%
of the clients are attackers and the attack intensity A = 5. For Pre-ResNet under such attacks,
the global performance drop, when compared to the case with no attackers, is 11.8% for FedAvg
and 11.2% for FedProx in IID scenarios and 38.2% for FedAvg and 37.4% for FedProx in non-I11D
scenarios. With the Vision Transformer, these accuracy drops are 32.4% for FedAvg and 34.2% for
FedProx in IID and 21.9% for FedAvg and 25.0% for FedProx in non-IID scenarios. Thus, training
with no foundation model results in vulnerability to attacks in both ITD and non-IID
settings. This matches our expectations since it has no built-in defenses.

In contrast, FedBaF experiences a much more modest performance decline under

attack, demonstrating its robustness. For Pre-ResNet, FedBakF’s global performance decreases
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by 6.0% for FedAvg and 6.4% for FedProx in IID settings and by 16.5% for FedAvg and 16.3%
for FedProx in non-IID settings, where the decrease is again measured for the most intense attack
(¢ = 50%, A = 5) relative to no attack. These accuracy drops are less than half of those experienced
by the no foundation model method. With the Vision Transformer, FedBaF’s global performance
decreases by only 4.9% for FedAvg and FedProx in IID settings and by 25% for both FedAvg and
FedProx in non-IID settings.

Finally, we comment that the results also show that the weight initialization method, which
naively incorporates the foundation model and reveals the foundation model weights to clients, does
confer some robustness to attacks. Weight initialization shows a performance decrease of 6.4% for
FedAvg and 6.9% for FedProx in IID settings and 17.5% for FedAvg and 17.2% for FedProx in
non-IID settings globally for Pre-ResNet. With the Vision Transformer, the decreases are 14.6%
for both FedAvg and FedProx in IID settings and 18.4% for both FedAvg and FedProx in non-I1ID
settings globally.

These findings demonstrate that, similar to weight initialization, FedBaF offers considerable
attack robustness compared to training with no foundation model. In 8 out of 12 cases, FedBaF
suffers the minimal loss in performance when compared with the other two baselines, indicating its

superior effectiveness in maintaining robustness under adversarial conditions.

6 Conclusion

This paper introduced Federated Learning Aggregation Biased by a Foundation Model (FedBaF).
FedBaF enhances adaptability and security in dynamic FL scenarios without sharing the foundation
model with clients. This is crucial in environments with ever-changing data and non-I1ID scenarios,
where foundation models are used across several domains as seed models. Our findings show that
FedBakF increases resilience against adversarial attacks while matching or outperforming traditional

weight initialization performance in both IID and non-IID settings.
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Appendix Overview

This appendix provides additional details and results to complement the main text, offering further
insight into the experimental setup, theoretical analysis, and security considerations for FedBaF.

The appendix is organized as follows:

Experimental Setup in Section A

This section details the experimental configurations, including data distributions, network archi-

tectures for vision and language tasks, and hyper-parameters under IID and non-IID settings.

Formulas for Evaluating Computational Complexity in Section B

We present the mathematical formulas used to compute the computational complexity of the Fed-
BaF algorithm, specifically focusing on multiply-accumulate (MAC) operations across clients and

training rounds.

Additional Experimental Evaluations in Section C

This section includes supplementary experimental results, analyzing the effect of varying foundation
model quality on FedBaF’s performance and comparisons using the official pre-trained foundation
model. Computational complexity is also compared to scenarios without foundation models and

weight initialization. Additionally, we include further experiments employing FedAdam [RCZ*21].

Training Curves in Section D

We provide training curves that display the progression of model accuracy over training epochs for
the Pre-ResNet and Vision Transformer models, illustrating comparisons between FedBaF, weight

initialization, and without foundation model cases under IID and non-IID conditions.

Convergence Analysis in Section E

This section provides a theoretical analysis of FedBaF’s convergence properties, detailing how
the algorithm performs under different client data distributions and demonstrating the theoretical

guarantees for its performance.

Proofs of Propositions in Section F

In this section, we include the formal proofs of Propositions 1 and 2, outlined in the theoretical anal-
ysis in Section 4, which support the claims made regarding FedBaF’s performance and convergence

behavior.
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Security Analysis in the Presence of Adversarial Attacks in Section G

This section provides an in-depth security analysis of FedBaF, focusing on its robustness against
adversarial attacks such as misclassification and backdoor attacks. We compare FedBaF’s resilience
to malicious clients with traditional methods, showing how FedBaF mitigates the negative impact

of attacks and preserves global model integrity.

23



A Experimental Setup

Table 1: The specific conditions under which our experiments were conducted, including data
distribution and model training settings.

Performance Comparison
. . .. From Tiny From From From ImageNet
Evaluation Pretrained Model Training ImageNet-200 Weather Image | WikiText-2 (PyTorch)
IID [Non-IID| IID [Non-IID - 1ID [Non-IID
Number of clients 1 100 10 100 100
Fraction of active clients C 1 0.1
Number of classes 100 1 - 10 2 5 2 - 10 2
for each client
Number of samples 50,000 2,500 640,000
for each client ~ 100,000 ~ 5,000 ~ 1,280,000 125~-250 10~20 7,680 ~ 8960 125~250
Tiny _ Rome Penn
Data fmageNet-200 Weather Image| WikiText-2 CIFAR-10 Weather Image Treebank CIFAR-10
Model Pre-ResNet Vision Transformer Pre-ResNet Vision Transformer Vision
Transformer Transformer Transformer
Local epochs £ 300 300 300 5
Local mini-batch size B 128 50 50 128 125
Communication rounds 1 200 | 250 200 | 250 200 200 | 250
Optimizer SGD
Momentum 0.9
Weight decay le-4
Learning rate 1 0.1 0.01 [ 0.01 [ 0.1 0.01
Learning rate 0.1x . .
decay schedule [150, 225] [150,225] Not applied Not applied
Batch normalization layer Non-static
p for proximal term . .
in FedProx Not applied 0.01 Not applied 0.01

In this section, we provide details about our experimental setup and network architectures. For
vision tasks using Pre-ResNets and Vision Transformers, we conduct evaluations in both IID and
non-IID environments. In IID settings, each client’s data distribution is uniform across all classes,
with an equal number of samples from each class. In non-IID settings, clients receive samples
from only 20% of the dataset’s classes for CIFAR-10 and 50% of the dataset’s classes for Rome
Weather Image, but maintain an equal number of samples for each class they have. During local
training in these settings, clients zero out logits for classes not present in their data. For language
tasks using Transformers, each client has specific numbers of tokenized words grouped sequentially.
Details of the experimental settings can be found in Table 1.

For the network architecture configuration, details for Pre-ResNets and Transformers can be
found in Table 2. For Vision Transformer, we used the standard ViT_B_16 model with no modifi-
cations except changing the last output layers according to the new data. This model was obtained
from the PyTorch library. Additionally, we also tested FedBaF with official pre-trained foundation
model weights that are available online (not developed by us). We specifically used the ImageNet
pre-trained weights for a standard Vision Transformer from PyTorch’s official model repository:
(ViT_B_16_Weights. IMAGENET1K_SWAG_E2E_V1).
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Table 2: This table presents the detailed structures of the neural networks (Pre-ResNet and Trans-
former) utilized in our Federated Learning experiments and making foundation models.

Model Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8
z
z [3 x 3,64] [3 x 3,128] [3 x 3,256] [3x3,512]
g |Bx3.6tx1 [[3 x3, 64]] x2 [[3 x3.128)| <2 3 x 3,256)| <2 [3x3,512)| <2 Netasses-d fe
&
e Encoder Decoder Classifier
% Attention FeedForward Attention FeedForward Attention FeedForward Attention FeedForward
g
s 192-d fe [3x3,64] 192-d fe [3x3,64] 192-d fe [3x3,64] 192-d fe [3x3,64]
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B Formulas for Evaluating Computational Complexity

In this section, we provide metrics for evaluating the computational complexity, as discussed in
Section C.4.

To evaluate computational complexity, we track the number of multiply-accumulate (MAC)
operations, denoted as MACS. MACS; represents the number of MAC operations required to
process all the local data samples held by client k. The average MAC per client, denoted as MACS,

is calculated by averaging the MACS values for all clients participating in a single round of FL:

1 &
MACS = . ; MACS,

Here, m is the number of participating clients in the given round. For each local training epoch,
the computational complexity, referred to as MACE (Multiply-Accumulate Complexity per Epoch),

is calculated as:

MACE = m x n x MACS.

Here, n is the median number of data samples per client. This metric reflects the computational
load incurred by m clients during local training in each epoch.

To compute the total computational load for the entire FL system, denoted as TMAC (To-
tal Multiply-Accumulate Complexity), we multiply the number of local epochs E, the number of
aggregation rounds 7', and the previously calculated MACE:

TMAC =T x E x MACE.

This provides the total number of MAC operations required for the entire training process across
all clients and rounds, accounting for both the number of local epochs and the aggregation rounds

in the FL system.
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C Additional Experimental Evaluations

In this section, we present additional experimental results that provide further insight into the
performance of FedBaF across various tasks and scenarios. These evaluations focus on the impact
of different qualities of foundation models, the application of the real pre-trained foundation model,
and computational complexities. We compare the use of foundation models in both IID and non-I1D

settings with weight initialization and cases where no foundation model is used.
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C.1 Differentiating the Quality of Pre-Trained Foundation Models

We conducted experiments to evaluate the generalized performance of FedBaF by varying the

quality of foundation models. Tables 3, 4, and 5 present the results for image classification tasks

using Pre-ResNet and Vision Transformer models, as well as a next-word prediction task using a

Transformer model.

Table 3: Image classification test accuracy results for Pre-ResNet using the no foundation, weight
initialization, and FedBaF methods (best of 3 trials).

FedAvg

Pre-trained | Malicious Clients () N;ID - Globa{"lléeisgtl:rtlg Accuracy ll;l'(])n-IID - Lo;:le;lée:tlmg Accuracy 1\11\;);-110 - Glo‘l')\jleli'gl‘;:tmg Accuracy
Samples Attack Intensity (1) Foundation | Initialization FedBaF Foundati Initialization FedBaF . Initiali FedBaF

=0%, A=1 829 84.1 84.0 95.6 98.0 98.2 573 68.6 69.8

=10%, A=1 81.7 82.4 82.8 95.1 97.5 98.1 49.0 62.1 63.8

50,000 =20%, A=1 80.1 81.0 82.0 94.0 97.3 97.6 43.6 573 58.2

=50%, A=1 73.0 78.2 78.6 85.9 90.3 91.3 394 56.6 57.7

=50%, A=5 73.1 78.7 79.0 87.7 934 94.0 354 56.6 58.3

=0%, =1 82.9 85.9 85.9 95.6 98.4 98.6 573 71.9 73.4

=10%, A=1 81.7 84.3 84.8 95.1 98.0 98.3 49.0 64.2 67.0

100,000 =20%, A=1 80.1 83.5 83.7 94.0 97.5 97.9 43.6 59.8 61.9

=50%, =1 73.0 80.6 80.8 85.9 91.1 92.0 394 60.1 60.8

=50%, A=5 73.1 80.6 80.8 87.7 94.0 94.8 354 564 61.0

FedProx

Pre-trained | Malicious Clients () N;ID - GIObais’/I:isgt;:g Accuracy :gn-IID - Lo::le;[::ttmg Accuracy T;):-IID - Glo‘l:\jleli'gl‘;:tmg Accuracy

Samples Attack Intensity () | . . . e . FedBaF . . . FedBaF . PR, FedBaF
F ion nitialization F I ion Initiali:

=0%, A=1 82.8 84.2 84.1 95.4 98.0 98.2 57.0 68.6 69.9

=10%, A=1 81.5 824 82.9 95.4 97.5 98.2 49.8 62.1 63.7

50,000 =20%, A=1 80.1 81.1 82.0 94.0 97.4 97.6 45.0 573 58.1

=50%, *=1 73.5 78.0 78.7 87.6 90.3 91.5 40.8 56.7 57.7

=50%, A=5 73.5 78.4 78.7 88.0 93.2 94.0 35.7 56.8 58.5

=0%, =1 82.8 85.9 85.8 95.4 98.4 98.6 57.0 71.9 73.4

=10%, A=1 81.5 84.4 84.8 95.4 98.0 98.3 49.8 64.4 67.3

100,000 =20%, *=1 80.1 83.8 84.0 94.0 97.6 97.9 45.0 59.8 61.9

=50%, =1 735 80.5 80.6 87.6 90.9 92.3 40.8 59.9 60.7

=50%, k=5 73.5 80.5 80.9 88.0 94.6 94.8 35.7 55.1 60.5
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Table 4: Image classification test accuracy results for Vision Transformer using no foundation,
weight initialization, and FedBaF methods (best of 3 trials).

FedAvg
Pre-trained | Malicious Clients () N;ID - GIOba{;;/I;;:Tg Accuracy ::n-llD - Locv::,le;l::ttmg Accuracy ]\Lo;-"l) - Glo‘l;aeligT::tm Accuracy
Samples Attack Intensity (2) Foundation | Initialization FedBaF Foundati Initializati FedBaF Foundati Initializati FedBaF

=0%, A=1 74.0 82.0 82.0 93.4 99.1 98.9 64.0 76.0 88.0

=10%, =1 72.0 78.0 80.0 94.9 96.7 96.8 62.0 72.0 82.0

2,500 =20%, k=1 72.0 74.0 78.0 91.4 96.7 94.0 58.0 74.0 74.0
=50%, A=1 72.0 70.0 74.0 90.3 91.4 92.0 60.0 64.0 66.0

=50%, A=5 50.0 70.0 78.0 91.4 913 89.7 50.0 62.0 66.0

=0%, A=1 74.0 72.0 72.0 93.4 98.0 98.0 64.0 78.0 76.0

=10%, =1 72.0 72.0 74.0 94.9 94.3 93.9 62.0 74.0 76.0

5,000 =20%, A=1 72.0 78.0 72.0 91.4 90.6 92.0 58.0 72.0 68.0
=50%, x=1 72.0 68.0 68.0 90.3 92.3 90.0 60.0 64.0 68.0

(=50%, A=5 50.0 72.0 70.0 914 92.3 90.5 50.0 66.0 66.0

FedProx
Pre-trained | Malicious Clients (O N;ID - GIOba{JVT;sgt]::g Accuracy ::)m-IID - Lo:;le;Fge:ttmg Accuracy 1;0;-"0 - Glo‘l;eli;:ftm Accuracy
Samples Attack Intensity (1) Foundation | Initialization FedBaF Foundati Initialization FedBaF Foundati Initializati FedBaF

=0%, A=1 76.0 82.0 82.0 93.5 99.1 98.9 64.0 76.0 88.0

=10%, =1 76.0 78.0 80.0 95.0 96.7 96.8 64.0 72.0 82.0

2,500 =20%, k=1 74.0 74.0 78.0 91.3 96.7 94.0 58.0 74.0 74.0
=50%, A=1 62.0 70.0 74.0 89.2 91.4 92.0 56.0 64.0 66.0

=50%, x=5 50.0 70.0 78.0 90.3 91.3 89.7 48.0 62.0 66.0

=0%, A=1 76.0 72.0 72.0 93.5 98.0 98.0 64.0 78.0 76.0

=10%. a=1 76.0 72.0 74.0 95.0 94.3 93.9 64.0 74.0 76.0

5,000 =20%, A=1 74.0 78.0 72.0 91.3 90.6 92.0 58.0 72.0 68.0
=50%, A=1 62.0 68.0 68.0 89.2 923 90.0 56.0 64.0 68.0

=50%, x=5 50.0 72.0 70.0 90.3 92.3 90.5 48.0 66.0 66.0

To assess the impact of foundation model quality, we varied the number of pre-trained samples
used for each model and assessed each method’s performance under a varying number of malicious
clients and attack intensity. Interestingly, larger sample sizes do not always lead to better results,
as seen in Table 3, where excessive pre-training can negatively impact performance. This trend is
further evidenced in Tables 4, 5. The reason behind this is likely due to overfitting or reduced adapt-
ability to new tasks. Despite these variations, FedBaF consistently outperforms models without
foundation models and delivers similar testing performance to weight initialization.

Training curves for selected cases can be found in Section D.

Table 5: Next-word prediction perplexity results for Transformer models using no foundation,

weight initialization, and FedBaF methods (best of 3 trials). Lower perplexity is better.

FedAvg
Pre-trained | Malicious Clients (9 N Gl"ba‘fvzf;:t" fnli):i’::’i'e""y

Samples Attack Intensity ()) Foundation Zzation FedBaF
=0%, A=1 536.5 172.8 128.6
=10%, A=1 549.4 191.8 137.8

640,000 =20%, A=1 531.3 213.7 159.4
(=50%, A=1 501.6 330.6 298.4
(=50%, A=5 680.4 311.7 275.1
=0%, A=1 536.5 202.6 183.3
=10%, A=1 549.4 2273 201.4

1,280,000 (=20%, =1 531.3 258.3 2242
=50%, A=1 501.6 3719 337.3
(=50%, A=5 680.4 3439 322.8
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C.2 Using the Official Pre-Trained Foundation Model

Table 6: Image classification test accuracy results for Vision Transformer using official pre-trained
foundation model weights from PyTorch. Comparisons are made between no foundation model,
weight initialization, and FedBaF methods (best of 3 trials).

FedAvg
Pre-trained | Malicious Clients (3) N;lD - GIOba:;\Zei;tl:Tg Accuracy ::))n-llD - Loii,le’i;e::mg Accuracy ]LOJI-HD - Glo‘l;;leligT::tm Accuracy
Samples Attack Intensity (1) Foundation | Initialization FedBaF Foundati Initializati FedBaF Foundati Initiali FedBaF
=0%, A=1 47.9 81.5 81.3 84.2 96.9 96.0 41.3 70.8 71.5
=10%, A=1 47.6 81.2 80.5 85.5 96.3 96.6 38.6 67.0 68.7
1,281,167 =20%, h=1 45.6 80.3 80.1 85.0 94.9 94.1 36.3 63.7 65.4
=50%, a=1 42.3 77.2 76.4 73.7 83.3 80.4 33.7 49.8 51.4
=50%, A=5 37.8 74.3 72.7 74.7 85.6 824 28.7 40.4 50.4
FedProx
Pre-trained | Malicious Clients (3) N‘:ID - GIOba;\’/I:i;::g Accuracy ::))n-llD - Lo;z:,le;l:hs:mg Accuracy ]Ll)‘:’l-l") - Glo\l;leligT::tm Accuracy
Samples Attack Intensity (1) Foundation | Initialization FedBaF Foundati Initializati FedBaF Foundati Initiali FedBaF
=0%, A=1 47.4 80.9 80.5 78.3 89.0 873 41.2 68.7 71.2
=10%, k=1 46.7 80.4 80.3 75.9 85.5 83.1 37.7 61.0 62.2
1,281,167 =20%. =1 45.1 79.4 79.7 73.1 81.1 79.2 35.4 59.0 59.7
=50%, x=1 41.7 76.7 75.9 62.5 64.9 64.9 32.8 48.8 49.2
=50%, A=5 36.8 735 69.8 63.9 66.6 67.4 28.5 373 46.5

We also evaluated the performance of FedBaF using the official pre-trained foundation model
that was not developed by us. Specifically, we used ImageNet pre-trained weights for the Vision
Transformer model, obtained from PyTorch’s official model repository. As shown in Table 6, Fed-
BaF outperforms scenarios without foundation models and delivers similar performance to weight
initialization using pre-trained weights. These results demonstrate that FedBaF can effectively

integrate widely adopted pre-trained models.
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C.3 Generalized Applicability of FedBaF with FedAdam

To further assess the generalized applicability of FedBaF, we conducted additional experiments
using the FedAdam [RCZ*21] algorithm. Specifically, we evaluated its performance on image clas-
sification tasks with CIFAR-10 and Rome Weather Image datasets using Pre-ResNet and Vision
Transformer, as well as on a language modeling task with a Transformer model pre-trained on the
WikiText-2 dataset. We followed the same experimental setup, attack scenarios, and hyperparam-
eters described in Section 5 and Appendix A.

For FedAdam, we set the global aggregation update learning rate to 0.01 for CIFAR-10 and
Rome Weather Image datasets and 0.1 for the WikiText-2 dataset. Additionally, we configured the

momentum parameters as 51 = 0.9 and Fs = 0.99 for all experiments.

Table 7: Image classification test accuracy results for Pre-ResNet using the no foundation, weight

initialization, and FedBaF methods employing FedAdam (best of 3 trials).

FedAdam

Pre-trained | Malicious Clients (O IID - Global T(fsting Accuracy Non-IID - Local Testing Accuracy Non-IID — Global.Testin Accuracy

Samples Attack Intensity (1) No Weight FedBaF No Weight FedBaF No Weight FedBaF
Foundation | Initialization Foundati Initialization Foundati Initiali;

=0%, A=1 78.7 84.6 83.2 95.9 98.1 98.3 57.5 69.1 69.8

=10%, A=1 79.7 83.3 832 95.1 97.9 98.1 47.7 63.8 66.4

50,000 =20%, A=1 78.5 82.6 82.6 94.3 97.3 98.1 42.5 60.0 62.2

=50%, h=1 70.6 80.0 79.8 83.7 90.4 93.5 345 52.6 54.2

=50%, h=5 67.3 78.6 79.4 86.7 94.4 91.9 273 50.5 53.9

=0%, A=1 78.7 86.0 85.0 95.9 98.4 98.6 57.5 70.0 71.4

=10%, A=1 79.7 85.1 84.7 95.1 98.2 98.2 47.7 65.9 70.5

100,000 =20%, h=1 78.5 83.9 84.2 94.3 98.0 97.9 42.5 63.7 65.7

=50%, A=1 70.6 82.0 81.9 83.7 89.7 92.2 345 56.7 57.7

=50%, A=5 67.3 80.8 81.6 86.7 94.1 93.8 27.3 54.3 574

Table 8: Image classification test accuracy results for Vision Transformer using no foundation,

weight initialization, and FedBaF methods employing FedAdam (best of 3 trials).

FedAdam
Pre-trained | Malicious Clients () N;ID - Gl‘)ba;\’/l:isgt;:g Accuracy :gn-IID - Lo:;le;l:::mg Accuracy 1;0:-"0 - Glo‘l)):eli'gl'::tmg Accuracy
Samples Attack Intensity () Foundation | Initialization FedBaF Foundati Initializati FedBaF Foundati Initializati FedBaF

=0%, A=1 58.0 64.0 62.0 92.2 93.6 96.9 52.0 62.0 62.0

=10%, A=1 58.0 66.0 66.0 90.2 93.3 93.1 54.0 62.0 60.0

2,500 =20%, A=1 56.0 64.0 66.0 87.3 93.3 92.3 48.0 56.0 56.0
=50%, A=1 56.0 64.0 58.0 84.7 85.9 86.9 54.0 56.0 60.0

=50%, A=5 48.0 58.0 64.0 86.7 85.5 84.4 44.0 48.0 56.0

=0%, A=1 58.0 68.0 70.0 92.2 95.0 95.0 52.0 64.0 62.0

=10%, A=1 58.0 66.0 62.0 90.2 92.2 95.7 54.0 60.0 60.0

5,000 =20%, h=1 56.0 64.0 64.0 873 90.5 90.6 48.0 56.0 58.0
=50%, *=1 56.0 60.0 56.0 84.7 90.2 859 54.0 52.0 58.0

=50%, A=5 48.0 64.0 54.0 86.7 86.5 88.5 44.0 52.0 50.0
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Table 9: Next-word prediction perplexity results for Transformer models using no foundation,
weight initialization, and FedBaF methods employing FedAdam (best of 3 trials). Lower per-
plexity is better.

FedAdam
Pre-trained | Malicious Clients (¢) ~ Gl"b""fv:f;:::'fn':i;:’ile“ty
Samples Attack Intensity () Foundati Zzation FedBaF
oundation zal
(=0%, A=1 157.9 45.9 434
(=10%, A=1 167.8 45.6 45.7
640,000 (=20%, A=1 199.0 50.9 48.7
(=50%, A=1 2189 912 85.4
(=50%, 2=5 262.7 94.7 91.0
(=0%, A=1 157.9 384 34.0
(=10%, A=1 167.8 384 373
1,280,000 (=20%, A=1 199.0 44.8 428
(=50%, A=1 2189 93.0 95.8
(=50%, 2=5 262.7 82.0 833

Tables 7, 8, and 9 present the experimental results obtained using FedAdam across different
datasets, model architectures, and attack scenarios. The results demonstrate that FedBaF remains
effective across various federated optimization frameworks, reinforcing its adaptability in federated
learning.

Among the 70 tested cases, FedBaF achieved similar or superior performance in 68 cases when
compared to weight initialization approaches, outperforming cases without foundation models. This
trend aligns with the findings in Section 5, further highlighting FedBaF’s robustness across different
optimization strategies and experimental settings.

These findings confirm the reliability of FedBaF in federated learning, ensuring its applicability

to both vision and language tasks under diverse conditions.
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C.4 Computational Complexity

Table 10: Pre-ResNet and Vision Transformer computational complexities using no foundation

model, weight initialization, and FedBaF methods. Note: T represents trillion.
a) Pre-ResNet

Pre-trained 11D Non-IID
- No Weight No Weight
Samples Foundation Initialization FedBaF Foundation Initialization FedBaF
FedAv 50,000 151T 020T 0.18T 2.63T 0.26T 0.27T
g 100,000 151 T 0.11T 0.13T 2.63T 021T 020T
FedProx 50,000 1.52T 021T 0.18T 2.64T 0.26T 027T
100,000 1.52T 0.11T 0.13T 2.64T 021 T 020T
b) Vision Tranformer
1D Non-IID
Pre-trained
No Weight No Weight
Samples Foundation Initialization FedBaF Foundation Initialization FedBaF
FedAv: 2,500 7.34T 020T 023T 8.08T 0.20 T 0.49T
& 5,000 7.34T 026T 020T 8.08T 0.14T 0.26 T
2,500 6.66 T 020T 023T 891 T 020T 049T
FedProx
5,000 6.66 T 026 T 020T 891 T 0.14T 0.26 T

FedBaF demonstrates remarkable efficiency in terms of computational complexity, requiring
significantly fewer computations than scenarios without foundation models and performing similarly
to weight initialization methods.

To demonstrate that FedBaF’s computational demands are minimal, even when integrating the
foundation model in every training round, we assess its computational complexity. Table 10 presents
the computational complexities, measured in TMAC (Total Multiply-Accumulate Operations) from
Section B, for six non-adversarial scenarios in both IID and non-IID settings. To calculate these
complexities, we consider the number of training rounds required to achieve specific global testing
accuracies: 75% for IID and 50% for non-IID scenarios in Pre-ResNet cases. For Vision Transformer
cases, we set the thresholds to 60% IID accuracy and 60% non-IID accuracy.

Compared to the no foundation model cases, FedBaF requires significantly fewer com-
putations across both IID and non-IID scenarios. Specifically, for Pre-ResNet IID and non-I1D
cases, computations are reduced by 88.1-91.4% and 89.7-92.4% for FedAvg, and by 88.2-91.4% and
89.8-92.4% for FedProx, respectively. Similarly, for Vision Transformer, IID and non-IID scenarios
see a reduction of 96.9-97.3% and 93.9-96.8% for FedAvg, and 96.5-97.0% and 94.5-97.1% for Fed-
Prox in computations. Therefore, these findings indicate that FedBaF’s computational demands
are relatively minimal despite the foundation model being integrated into every training round.

These findings clearly indicate that FedBaF’s computational demands are minimal, even
when integrating the foundation model into every training round, making it a highly efficient

solution in both IID and non-IID environments.
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D Training curves

In this section, we present the evolution of model accuracy over epochs for the experiments de-
scribed in Section C, as shown in Figure 6. The experiments involve both Pre-ResNet and Vision
Transformer models, focusing on two setups: 1) Pre-ResNet, with foundation models pre-trained
using TinyImageNet-200 (50,000 pre-trained samples), and 2) Vision Transformer, with founda-
tion models pre-trained using the Weather Image dataset (2,500 pre-trained samples). We present
results for both IID and non-IID settings, using FedAvg and FedProx as the aggregation methods.

These training curves illustrate the progression of model accuracy throughout the training pro-
cess, comparing the behaviors of models using weight initialization and FedBaF. The curves demon-
strate that FedBaF performs similarly to traditional weight initialization methods and achieves

higher accuracies than when no foundation model is used.
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a) Pre-ResNet (From TinylmageNet-200; 50,000 pre-trained samples)
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b) Vision Transformer (From Weather Image; 2,500 pre-trained samples)
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Figure 6: This figure shows the evolution of model accuracy over training epochs for Pre-ResNets
and Vision Transformers under IID and Non-IID scenarios. It compares the performance using no
foundation model, weight initialization, and FedBaF with FedAvg and FedProx.
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E Convergence Analysis

This section provides a convergence analysis for the FedBaF algorithm under non-convex settings
using Stochastic Gradient Descent (SGD). The study demonstrates how integrating a foundation

model during aggregation can improve convergence rates, even in non-IID scenarios.

E.1 Problem Setup

Consider the global objective function in federated learning, which is defined as:

F(w) = Zkl anka 3)

where m is the number of clients, fp, (w) represents the local objective function on client &, ny, is
the number of data samples at client k, w € R? are the model weights, F'(w) is the global objective
function. To simplify our analysis, we assume all clients participate in every global round.

We define w,(f’ﬁ) as the model weights of client k at global round ¢ and local update step £.
Therefore, before the first local update step in each global round, each client’s model weights w

are equal to the global model weights w; and
w,(:’o) =wi = w;. (4)

E.1.1 Assumptions

We make the following standard assumptions to facilitate the convergence analysis:
L-Smoothness: FEach local objective function fp, (w) is L-smooth with respect to w, meaning:

o, () < Ip (W) + Vi (W) (v = w) + Ly~ wlP, w,v e RY (5)

and
IV fp,(v) = Vi, (W)[| < Lllv — w||, Vw,veR" (6)

Unbiased Mini-Batch Gradients: The stochastic gradients computed over mini-batches during

local updates are unbiased estimates of the true gradients.
E[gp, (w;0)] = Vfp,(w) Vw € RY. (7)

Bounded Gradient Norm: The gradients of the local objective functions are bounded by a
constant 3. Specifically,
IVfp (W)l <8 vweR™ (8)
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Bounded Gradient Noise:
£
Ellgn, (Wi s b lI?] < G2+ B2V F(wy)|? (9)

where G? and B? are constants that bound the dissimilarity, br¢ denotes the j-th mini-batch on

client k, and ¢ indexes the local update steps during global round ¢.

Foundation Model Alignment: The foundation model shares the same architecture as the

global model, guaranteeing seamless integration during aggregation.

E.2 FedBaF Aggregation Step with Multiple Local Updates

The FedBakF algorithm operates in global rounds, where each global round ¢ includes multiple local
iterations denoted by £. Each client performs multiple local updates in each global round.
The global model is updated at round t using the rule:

Wi+l = (W:t + O5157—15‘7‘7pre) ) (10)

14+ Tt

where wj is the aggregated model from the client updates, Wy is the foundation model’s weights,
oy is a scaling factor, and 7y represents the correction factor based on the foundation model.

Each client k£ performs multiple local SGD updates over local iterations £ = 0,1,..., A — 1,
where Ay is the number of local updates for each client k. For each local update, the local model
is updated as:

W](Ct,é-i-l) _ W’(Ct,ﬁ) — ngp, (W](:’g)§ bk,é)a (11)
where gp, (w,(:7£); bi,¢) is the stochastic gradient computed on the mini-batch by, at local iteration
L.

At the end of the local updates, each client sends the model W](:’Ak) to the server, where the

global model wj is computed as the weighted average of the client updates:

m Ap—1
y4
W;t =Wy—1 § Pk E 9Dy, (Wl(ct’ ); bk,4)7 (12)
k=1 (=0

where pp = % is the weight of client k.
=1
Substituting this into the FedBaF update rule:

Ap—1
1 X (t.0)
Wil = m (Wt + T Wpre — 77;]914: % 9Dy, (Wk §bk,€) (13)
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For small values of oy < 1, we use the fact that:

o
OétTt
]. + Ot Ty ZO

; 14
=1- [0 THE + Z(—OétTt)z ( )
i=2
~1-— Ty
which simplifies the update rule to:
m Ak 1
Wil AW =1 Y Di Z a0, (Wi 5 br )
BEL =0 (15)

m Ap—1
— Ty ([ Ny Pk Y 9 (W Wy );bk,e)] -(1- atTt)Wpre> :

k=1 =0

The update rule can now be interpreted as multiple local gradient descent steps combined with

a bias correction. Here, we define the correction term y; as follows:

m Ap—1
Xt = Ty <[wt ank Z 9D, (W B0 by g)] — (1 — aymy) Wpre> . (16)
k=1 =

Xt acts as a correction that adjusts the direction of the gradient descent to leverage the foundation

model’s knowledge. The update rule becomes:

m Ak 1
Wip1 A Wi =1 Y Dk Z g0 (Wi bre) = i (17)
k=1 £=0

E.3 Decrease in Objective Function
Using the smoothness property of F(w):
T L 2
F(wei) < F(wy) + VE(We) | (Wer = we) + S [[wepn — well” (18)

We substitute the update rule:

m Ap—1

Wil — WA -0 Y i Z 9, (W bie) = xe. (19)
k=1

38



Thus:
m Ak 1
F(wi1) SF(Wi) — 0V F(wy) Zkang Yibre) — VF(wi) xe
k=1 =0

m Ap—1 (20)

*Hank Z a0, (Wi b)) = xal.
k=1

Given the update rule, the change in the objective function can be bounded using the triangle

inequality:
m Ak 1
F(wi1) — F(wi) S —nVF(wy) Zpk Z 9p, (W 9 by o) = VEw)  x
k=1 =0
m Ap—1 (21)
+ I > pw Z a0 (Wi b )12 + Lxel?
k=1 £=0

E.3.1 Taking Expectations

We now take expectations of both sides of (21), based on the unbiasedness of mini-batch gradients
and the assumptions about bounded gradient norms and smoothness.

We now compute the expectation of the change in the objective function:

m Ak 1
VE(wy) ( nY vk Z 9p, (W bu))]
k=1 =

m Ap—1
= VF(wi)' ( ZpkAk )VE(wy) +n( ZpkAk J)VF (wy) UZPk Z E {QD;C by z)})

k=1 k=1 k=1

m Ap—1
ZpkAk IVE(w)|? + VE(w) ( ZpkAk: Zkaka W) =1 ) Dk Z Vo, (w )
k=1

k=1
(22)
Next, we simplify the remaining term:
o > b1 PEA
2 k—1 Pk (t,6)
ZpkAk IV Ewe)] +n;kaVF (Akv,fD( ) — Y fy (] ))
(Y PADIVE )| + +5 2Pk [vawt)u? =T i (w) - vm@%u?] .
k=1 k=1 =0
(23)

39



Finally, using the fact that the gradient is bounded, we get:

- ~ p ‘
< - ( ZpkAk) IVEw)I?+3 > Z 2= i Lt PG () = f, () 2
= k=1 (=0
<_ [N - A fal 2 Q - D e 1pl<:Ak: 2 (t)\12
<-13 Zpk k| IVEWI" + 5 > 2 Z ==V /D, (W) [ + VS, (w;; )]
= k=1 /=0
- Ay)
< - (Zz:lpkAk> IVF(w¢) ”24‘77522]? < = 1pk ) +Ak>-
(24)
This provides a bound on the expected decrease in the global objective function.
Similarly,
m Ap—1
[Ln 1D o Z 9D, (W bk£)||2]
k=1
m Ak 1
< Lmi® Y B [upk > an, (wi: bmw]
k=1 =0
m Ap—1 <25)
< Lmn® Y piAe Y E [lgn (wi b))
k=1 =0
< Lmi® Y ppAR(G? + B2V F(w))|?)
k=1
Plugging these bounds into (21) gives
m Ap—1
E[F(wit1) — F(wi)] S —nVF(wy) Zpk Z g0, (Wi bg) = VF(wi) 'E[xi]
k=1 (=0
m Ap—1
Z
+ L’ | Y p Z 90, (w1 b )| + LE [[Ixe?]
k=1
m_ A 2
- (22pmk) vr I+ 057> pe (P 0} - v TR
k k=1 K (26)

+Lmn2zp AL (G? + B?(|VE(wy)|*) + LE [||x:1?]
k=1

. m m m (E:n; pkAk)z
< <—2Zpk1\k +BQLm772 szA%> ”VF(Wt)”Q —i—nﬁ? Zpk <k/1\k + A

k=1 k=1 k=1

— VE(w:) "E [xi] + Lmn® Y ppARG? + LE [ | l|”]
k=1
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E.4 Summing Over Iterations

To establish a convergence result, we sum this inequality over T iterations:

T T m
> i) <3 FOn) + (<334 5 Lmﬁzpw) S [
t=1 t=1

k=1 k=1 t=1

+np°T Zpk <W > Z VF(w) E [xi] (27)

+Lm772TZp2A2G2+LZE lIxel|]
k=1

232%72 iik?zzAQ , the term 3 > | ppAy, — B2Lmn > " | piA? is positive. There-

fore, rearranging and dividing by T gives:

Aslong as n <

1 & F(wy) — F(w
T L EIVFovI) <o zz;pi - Ba(mf&;pz )
ULEED DYy (W + Ak) + Lmn® 3L ppARG?
% Dk Pl — B2Lmn 3730 pRA;,
LY B [hxell?] = Y0, VF(we) TE [xi]
T(5 Yony prle — B2Lmn 3330 ppA7)

+ (28)

If the sign of
LE[|[x|”] = VF(w¢) "E[xi]

is negative, we obtain a tighter bound, which implies that the correction terms positively influence
convergence.

We know that:

m Ak 1
Xt = 4Ty ([Wt Uzpk Z 9o, (W “; bke)] - (1= OétTt)Wpre> .
k=1 £=0

This means:
2

E [||Xt|| ] = atTt

m Ak 1
[w:s Uzpkz Z Vfp,(w M) ] — (1 — ouTt) Wpre
k=1

Given that a;7y is small enough at a sufficiently large global round ¢, the higher-order terms with
a7 become negligible. Therefore, for large t, [||x¢|%] ~ 0. Next, the direction of the correction
xt and the direction of the gradient of the global objective VF(w;) agreeing implies that the inner
product VF(w;) "E[x] is positive.
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‘We conclude that:
LE [|Ix|I*] < VF(w:) "E[xq].

This shows that the variance of the correction term x; is significantly smaller than its impact
on the inner product, leading to a tighter convergence bound, especially when «;7; is small but

positive.

E.5 Influence of the Correction Term

The correction term Yy, derived from the foundation model, plays a significant role in the conver-
gence behavior. The influence of y; ensures that the gradient descent step is adjusted based on
the foundation model’s knowledge. By controlling the size of a;7:, the foundation model can guide
the global model towards better solutions, especially in non-IID scenarios. The correction term
provides additional stability and enhances convergence, particularly when the local models exhibit

significant heterogeneity.
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F Proofs of Propositions

F.1 Proof of Proposition 1

Proposition 1. Let w* be a (bounded) local minimum of the global objective function in (1).
Consider an FL algorithm that converges to w* and let wj be its global model in each training
round t. Suppose we run the same algorithm but using FedBaF for the aggregation, and let w; be
the FedBaF global model at round t. Let oy satisfy

2[[wiyy —w*?

ap < (2)
(Iwpre = W[ = Wiy, — w*[*)7
for all t where Wiy — w*||? < ||[wpre — W*||2. Then Vit [[w; — w*|| < ||w} — w*||.

This means that, at any given round t, FedBaF’s model weights are closer to w*.

Proof. We present a convergence analysis of our FL framework that incorporates foundation models
in the aggregation phase according to Alg. 1 Lines §-10. By comparing the square distance between
wi1 and w* to the square distance between w;_ ; and w*, we derive conditions under which our

method converges to w* faster than FedAvg. Noting that V¢ ay, 73 > 0,

[wer — [ = || (Wit1 + W) — w2

1+ QT
1
= m”(wiﬂ — W) + T (Wpre — W)
_ Wiy = WP + 07| wpre — w2 (20)
- 1+ 20q7 + a?1?
For notational convenience, we define 3; := ||wj; — w*|| and v := [|[wpe — W*||. FedBaF is

better than FedAvg when the right side is less than 32. So, we upper bound the right side by 37
and find values of «; that satisfy the bound.

5752 + 0‘%7372
1+ 2047t + @277
B + afriy? < B+ 204mf} + o B

G TH (Y — B7) — 204m B} < 0

2
< f3f

Note that oy is sampled from the uniform distribution T%U(l, 2). For the above inequality to be

satisfied for a given t, there are three cases:

1. B¢ > ~: This case occurs when ¢ is small and w* is closer to Wy, than w* is to the FedBaF

global model. In this case, we require

237

A > ————5—
(Vz —5152)7'1:
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oy always satisfies this inequality since the RHS is negative and «; > 0 by definition.
2. B = ~: This means that we require oy > 0, which is always true by definition.

3. By < : This case may occur when ¢ is large and w* is closer to the FedBaF global model

than w* is to wpre. In this case, we get a meaningful bound for oy:

237

o < ————5—
(72 —5152)%

When Vt a; satisfies the above conditions, the proposition holds. O
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F.2 Proof of Proposition 2

Proposition 2. Let w* be a (bounded) local minimum of the global objective function in (1).
Consider an FL algorithm that converges to w* and let w} be its global model. Consider FedBaF
based on the same FL algorithm (with appropriately modified client updates and Lines 8-10 in
Alg. 1) and let wy be the FedBaF global model. FedBaF’s global model error has an upper bound of

lwe —w*|| < %E2TT < 5.
Proof.
—wHll = || —— / —
[we — w|| H o (W) + QT Wpre) — W
— H(Wé B W*) + atTt(Wpre - W*)H
].+ QT
Wi — W[ + || Wpre — W7 |
a 1+ Qg Tt
_ 1> res, e (wy = w*) || + auil|Wpre — W]
1 + ATy
< ZkGSt %wa - W*H + atTtHWpre - W*H
- 1+ QT
< Ot Ty
1+ QT

where we set ¥ = ||[Wpre — W¥||. Since non-IID data can cause significant variance in local updates,
we compare the derived bound to FedAvg, where the bound on the distance between w; and w* is

d¢. By assumption, v < §; for earlier rounds (small ¢). We get 5’5110‘71? < &y, which is equivalent to

Ot + aumy < 0 + aumidy = 64 (1 + )

Therefore,
o Ot +aumy
e —w) < 2
Qi Ty
Since % < 0y, FedBaF has a tighter upper bound on ||w; — w*|| than FedAvg. This demon-

strates the advantage of using a foundation model in non-IID settings.

O]
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G Security Analysis in the Presence of Adversarial Attacks

In this section, we discuss the potential for extracting a foundation model in FedBaF and demon-
strate FedBaF’s robustness against backdoor attacks. These attacks pose unique security challenges
to FL systems, involving malicious alterations within model updates to degrade system performance
or embed hidden vulnerabilities. We will analyze how FedBaF mitigates these threats and ensures

integrity and security.

G.1 Possibility of Extracting a Foundation Model

As discussed in Section 3, using a randomized «; prevents the extraction of the foundation model’s
weights. However, the aggregated global models might still exhibit components of the foundation
model by following a similar weight distribution. To investigate this, we analyze the distance
between the global model and the foundation model over the first 200 aggregation rounds.

Let w;y1 and wp,. represent the weights of the global model and the foundation model, respec-
tively. For each weight tensor w! 41 and anre with matching shapes, we calculate the normalized
distance for each element and then average these distances. For each element j in the weight tensor
wi,; and W;Te:

Wi, = Whre,j]

disté» = ;
’wt—i-l,j’

where wiHJ- is the j-th element of the i-th weight tensor of the global model; w;T,eJ is the j-th
element of the i-th weight tensor of the foundation model; and dist} is the normalized distance for
the j-th element of the i-th weight tensor.

We concatenate all element-wise distances dist} across all weight tensors and then compute the

Dist = + ! DO dist

param ;] j=1

mean of these distances:

where Npgram is the total number of elements across all matching weight tensors and Dist is the
overall average normalized distance.

In Figure 7, the curves show the distances, Dist, for each aggregation round. The minimum
Dist across all cases was 1.27, indicating that the distance has a 127% scale of the magnitude of
the weights of the aggregated global model. This means the foundation model’s weights differ in
scale from the aggregated weights. To analyze the effect of distance intensity, we added Gaussian
random noise based on the magnitude of each foundation model’s weights to the foundation model’s
weights.

Figure 8 shows the testing accuracy as a function of the added noise. The x-axis represents the
error rate, calculated by dividing the magnitude of the added Gaussian noise by the magnitude of
the foundation model’s weights. We used the best-performing foundation models from those with

varying pre-trained sample sizes, as described in Section C. When a 127% error rate is applied, the
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Figure 7: Distances (Dist) between the global model and the foundation model across aggregation
rounds. The minimum Dist observed was 1.27, indicating significant differences in scale between
the foundation model’s weights and the aggregated global model’s weights.

Pre-ResNet model shows almost 0% testing accuracy, the Vision Transformer shows 30% testing
accuracy, and the Transformer model exhibits excessively high testing perplexity. This empirical
evidence indicates that extracting the foundation model’s knowledge is impossible after training
begins from the global model. The diverse updates during training in FedBaF significantly dis-
rupt the alignment between the foundation model’s weights and the global model, preventing any
meaningful extraction of the foundation model’s information.

To this end, we examine the proximity of the global model, w;, to the foundation model and to
the averaged local models, w}, throughout the training process. We first determine the distances

between w; and w; and between wy and wp,.:

[wi — wi| = m(wi + T Wpre) — Wy
= T = Wy
1+ oym
HWt — WpreH = Tamw,’g + Ty Wpre — Wpre
1 /
= m”wt — Wprel|

At the onset of training, both distances are equivalent since we make a strategic choice for the
weight a9 to be approximately 2. This simplifies the initial update rule for the global model

such that the initial global model weights, wg, are an unweighted average of the client’s updated

47
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Figure 8: Testing accuracy according to the added noise. The x-axis error rate is calculated by
the magnitude of the added Gaussian noise divided by the magnitude of the foundation model’s
weights.

model weights w(, and the foundation model weights wy,.. As the training progresses, a;7; typically

decays to less than 1. We deduce for ¢t > 0:

Tt 1
1+amn 14+oum

= [lwi = will < l[wi = wpre|

As t — oo, w; will drift away from wp,. and towards w;j. Due to the intricate dissemination of
learned insights across all model weights, and the complexities of high-dimensional weight spaces,
it is difficult to reverse-engineer wy,. from w;. Even a subset of weights does not provide enough
information to predict the rest deterministically. The inherent complexity of the model weight

(parameter) space is a natural defense mechanism in FedBaF.

G.2 Mitigating Backdoor Attacks

Backdoor attacks in FL involve embedding a dormant malicious function in a local model. In-
tegrating foundation models mitigates such attacks by diluting the impact of individual client
updates. Specifically, we have the updates

Aw' . = ClientUpdate(w;)

clien
1

= —— (AWl + W
1 + atTt( client pre)

Wit1
Here, Awéhent is the update from client c at iteration ¢, and wp,. is the foundation model weight.
The factor 7 controls the influence of the foundation model. This mathematical formulation show-

cases the security benefits of our method. By incorporating the foundation model, the aggregation

t

counterbalances the (malicious) client update Aw}_ ..

This approach thus enhances the system’s
resilience to adversarial attacks by maintaining a consistent learning direction and reducing the

impact of compromised updates.
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a) Pre-ResNet (FedAvg) b) Vision Transformer (FedProx) ¢) Transformer (FedAvg)
0.4 0.6 0.3

50,000 Pre-trained Data Samples IID 2,500 Pre-trained Data Samples IID 0.25
= ——50,000 Pre-trained Data Samples Non-1ID J= ——2,500 Pre-trained Data Samples Non-IID o= ——640,000 Pre-trained Data Samples
2= 2 0.4 2|2 02
I_ ——100,000 Pre-trained Data Samples IID ‘_ ——5,000 Pre-trained Data Samples IID I_ ——1,280,000 Pre-trained Data Samples
0.2 0.15
-l ™= ——100,000 Pre-trained Data Samples Non-IID -l = ——5,000 Pre-trained Data Samples Non-IID -l =
e B JsE o2 SEE o1
2= 2 2|2
—_— — 0.05
0 0 0
1234567 891011121314151617181920 1234567 891011121314151617181920 12345678 91011121314151617181920
Round Round Round
W/
. . . . 41 W _ o .
Figure 9: Variations of ”IIW’7+H - m” (= 7/t + 1) across training rounds.
t+1 t

G.3 Experiments on Variations of 7

Figure 9 illustrates the non-adversarial IID and non-IID scenarios from Tables 3, 4, and 5. We
observed that the numerator of 7 (as referenced in Alg. 1 Line 9) consistently decreases towards 0,
independent of the denominator (y/¢ + 1), after several rounds. This indicates that FedBaF benefits
from the foundation model’s guidance but retains the ability to effectively and quickly adapt to

new data.
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