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Abstract

Foundation models are now a major focus of leading technology organizations due to their

ability to generalize across diverse tasks. Existing approaches for adapting foundation models

to new applications often rely on Federated Learning (FL) and disclose the foundation model

weights to clients when using it to initialize the global model. While these methods ensure client

data privacy, they compromise model and information security. In this paper, we introduce

Federated Learning Aggregation Biased by a Foundation Model (FedBaF), a novel method

for dynamically integrating pre-trained foundation model weights during the FL aggregation

phase. Unlike conventional methods, FedBaF preserves the confidentiality of the foundation

model while still leveraging its power to train more accurate models, especially in non-IID and

adversarial scenarios. Our comprehensive experiments use Pre-ResNet and foundation models

like Vision Transformer to demonstrate that FedBaF not only matches, but often surpasses

the test accuracy of traditional weight initialization methods by up to 11.4% in IID and up

to 15.8% in non-IID settings. Additionally, FedBaF applied to a Transformer-based language

model significantly reduced perplexity by up to 39.2%.

1 Introduction

Developing foundation models [ZCL23] has become a major focus for leading technology companies

like OpenAI, Microsoft, and Amazon AWS. These deep learning models are often trained with

vast amounts of high-quality data [BHA+21] and their ability to generalize across different tasks

and domains has made them essential assets for industry, government, and academia. Foundation

models have been applied to natural language processing (e.g., text generation, translation, sum-

marization), image generation and recognition, healthcare diagnostics, finance predictive analytics,

and customer service and virtual assistant tasks [CTL+23, HZD+21, DLJ+21, JPS22, YCBL14].

∗Authors are partially supported by NSF Grant CNS-2409138, CNS-2106891, CNS-2312761, and CCF-2327905.
Srinivasa Pranav is partially supported by NSF Graduate Research Fellowships (DGE-1745016, DGE-2140739) and
an ARCS Fellowship.
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When a foundation model’s training data distribution overlaps with a new application, it provides

a robust starting point for fine-tuning and customization. Instead of training a model from scratch,

with limited data and computes, we can leverage pre-trained foundation models to enable faster

training.

For many applications, data that could be used to customize or fine-tune foundation models

is often distributed across multiple clients, such as a network of clinics or small companies spread

across different jurisdictions. For example, fine-tuning a recommendation model to fit a small com-

pany’s product offering may require data from clients in various regions; and adapting a healthcare

model for a network of clinics would involve confidential, distributed data sources. Therefore,

effective generalization requires access to diverse data from multiple clients [PM24].

Federated Learning (FL) is a promising solution for fine-tuning these models without sharing

client data: FL clients train models on diverse local data, and a central FL server aggregates

the client updates to build and refine a global model [LWW+21, MMR+17, SVGR19, LYZY20,

NDP+21, WYS+20, LZA23, SZP+24]. Using a foundation model to initialize the global FL model

leads to effective customization that leverages diverse, distributed data without directly accessing

the client data [NMSR22, CTL+23]. However, there are significant risks associated with sending a

foundation model to clients, as required in traditional FL fine-tuning methods.
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Figure 1: A visualization of a Model Inversion Attack. Since FedBaF does not initialize the global
model with a pre-trained foundation model, it becomes difficult for malicious clients to reconstruct
the pre-training data from the distributed global model.

First, disclosing a foundation model’s weights to FL clients poses a significant security risk.

For example, malicious actors could carry out membership inference attacks, identifying whether
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specific data was part of the foundation model’s training dataset. Then, an attacker could disrupt

the global model’s training by introducing updates that degrade performance on identified data

through backdoor attacks, deliberately leading to targeted misclassification [DAATM23, HSS+22,

WWW+23]. Similarly, for model inversion attacks, attackers use known model weights to reverse-

engineer sensitive training data (see Figure 1) [FJR15, LRC+22, ZJP+20]. Protecting foundation

models, often trained on sensitive, proprietary data, is critical for safeguarding the training data

and maintaining model integrity [BVH+20, KLM+23].

Second, in competitive business contexts, disclosing foundation model weights to clients risks

leaking strategic insights and proprietary information to adversaries [HZD+21, YWZ+23]. This

undermines a company’s competitive advantage and substantial investments in data collection and

training.

To address these challenges, we present Federated Learning Aggregation Biased by a Foundation

Model (FedBaF). Rather than using a foundation model to initialize the global model, FedBaF is

a novel method for server-side foundation model integration during the task-specific global model

aggregation phase of each FL round (see Figure 2). Since the server uses the foundation model in the

aggregation phase, FedBaF ensures that the foundation model is not disclosed to clients. FedBaF

also gradually reduces the foundation model’s influence as training progresses, thereby improving

personalization for the client pool’s data and matching or outperforming existing methods.
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Figure 2: Visualization of FedBaF: in each FL round’s aggregation phase (after client updates),
the server integrates a foundation model into the global model.

FedBaF is particularly beneficial for a FL operator who owns the foundation model and needs

to maintain security and integrity while fine-tuning it with a new set of clients. For instance, large

technology companies such as Microsoft and Amazon, develop their own foundation models and

often act as FL operators for domain-specific tasks across various industries.

When client data distributions are biased or non-IID, e.g., different ratios or a lack of certain

labels, clients optimize correspondingly diverse local objective functions [PM23] and may send
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conflicting updates to the server that skew the global model [ZLL+18]. In FedBaF, the foundation

model continuously serves as a form of regularization and stabilizes the global model by reducing the

influence of these conflicting updates during the aggregation phase [CTL+23, LRJ+22, TLM+22,

YCBL14].

Furthermore, FedBaF uses a fixed foundation model as an anchor and continuously incorporates

it throughout the FL training process. This adds a layer of protection from adversarial attacks

beyond those introduced by disclosing foundation model weights – such as misclassification attacks

or backdoor attacks, where compromised clients feed malicious updates to the server [LYZY20,

BVH+20].

Our contributions:

1) To the best of our knowledge, we are the first to propose an algorithm that integrates

foundation models into FL without distributing the foundation model to clients.

2) We provide theoretical analysis of FedBaF’s effectiveness that reveals how foundation

models can promote convergence in non-IID (not independent and identically distributed) and

non-convex settings.

3) We conduct extensive empirical evaluation and show that FedBaF matches or exceeds

the training performance of traditional weight initialization methods – with better test

performance in 10 out of 14 cases. Our experiments use Pre-ResNet and more complex architectures

like Vision Transformer and Transformer-based language models frequently used as foundation

models [XZC23, KKH24]. Compared to standard FedAvg [MMR+17] and FedProx [LSZ+20] with

foundation models used for weight initialization, FedBaF achieves accuracy improvements of up

to 10.8% in IID and up to 37.5% globally and 5.9% locally in non-IID settings. Simultaneously,

FedBaF safeguards the foundation model. Similarly, applying FedBaF to a Transformer-based

language model significantly reduced perplexity by up to 76.0%.

Under adversarial misclassification attacks, FedBaF demonstrates increased robustness by im-

proving FedAvg and FedProx test performance by up to 19.4% in IID environments, up to 64.7%

globally, and 7.2% locally in non-IID environments. Additionally, in 8 out of 12 cases, FedBaF was

more robust than traditional weight initialization methods.

We outline related works in Sec. 2. We then detail our approach, FedBaF, in Sec. 3. In Sec. 4, we

present theoretical analysis and, in Sec. 5, we provide extensive experimental evaluation. Finally,

we conclude our research findings and discussion in Sec. 6.

2 Related Work

Traditionally, pre-trained models are used in FL to initialize the weights of the global FL model.

The server distributes this model to local clients, and the clients update it by using their local data.

We refer to this approach as “weight initialization” throughout this paper. Such fine-tuning of a pre-

trained model can significantly improve performance of the learned FL global model by integrating
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data from new clients [NMSR22]. Several recent studies devised methods that leverage weight ini-

tialization to further improve performance: Federated Nearest Class Means (FedNCM) [LBPC+23]

for last-layer guidance, Federated Recursive Ridge Regression (Fed3R) [FCCC24], Fractal Pair

Similarity (FPS) [CTL+23], and FedPCL [TLM+22].

Several works also explore the use of foundation models in FL. These include cases where a

subset of the weights of a large foundation model are chosen to initialize and fine-tune a smaller

model [XCV+24] and when clients have diverse model architectures [WHC+23, PJW24]. Partic-

ularly in scenarios with limited pre-training data [CTL+23], approaches often rely on synthetic

data [Nik21, CTL+23] for pre-training. Federated Prototype-wise Contrastive Learning (FedPCL)

is a significant development that improves communication efficiency in FL by using class proto-

types [TLM+22] and enhances personalized learning by having clients share class-specific informa-

tion more effectively.

The related works discussed in this section so far achieve good performance, but they do not

consider the significant security vulnerabilities that result from sharing a foundation model with

local clients, which compromise data privacy and the integrity of the global model. Malicious clients

with access to foundation models can exploit them through: Model Inversion Attacks, recovering

original training data or sensitive attributes from the model’s outputs [FJR15, ZJP+20, LRC+22];

Membership Inference Attacks, analyzing model predictions to determine whether specific data

records were used in training [HSS+22, DAATM23, WWW+23]. These attacks compromise the

security of the FL system, necessitating the development of more secure methods for leveraging

pre-trained foundation models in FL settings.

FedBaF addresses these security challenges by not sharing the foundation model with clients

during the weight initialization stage. Instead, it dynamically integrates the foundation model’s

pre-trained weights during the aggregation phase of each training round. We show that FedBaF

improves privacy while matching or exceeding the performance achieved by weight initialization.

3 Methodology

In this section, we introduce FedBaF, whose approach is illustrated in Figure 2. FedBaF involves

the server repeatedly leveraging pre-trained foundation model weights throughout the aggregation

phases of the FL training process. For example, the pre-trained weights corresponding to feature

extraction layers provide valuable representation mappings that guide the new model’s feature

extractor during training.

To mimic the performance gains of weight initialization, the server uses the foundation model as

a strong anchor in the earlier FL rounds. To enable the FL global model to evolve and fit the clients’

data as FL training continues, the server assigns rapidly decaying importance to the foundation

model that is on the order of 1/
√
t and proportional to the change in model parameters caused by

client updates. To further maintain foundation model confidentiality, the server randomly samples
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the aggregation weights (or importance) of the foundation model from a uniform distribution in

each round. These aspects of FedBaF maintain foundation model privacy while enabling further

application-specific tuning to achieve performance on par or exceeding that of weight initialization

methods.

Algorithm 1 Federated Learning Aggregation Biased by a Foundation Model (FedBaF).

1: Initialize global model weights w0

2: for each round t = 0, 1, 2, . . . , T do
3: m← max(C ·K, 1)
4: St ← (random set of m clients)
5: for each client k ∈ St in parallel do
6: wk

t+1 ← ClientUpdate(wt, Dk)
7: end for
8: w′

t+1 ←
∑

k∈St

nk∑
ℓ∈St

nℓ
wk
t+1

9: τt ←

∥∥∥∥ w′
t+1

∥w′
t+1∥

− wt
∥wt∥

∥∥∥∥
√
t+1

10: αt ← ψ
τ0
U(1, 2)

11: wt+1 ← 1
1+αtτt

(w′
t+1 + αtτt (wpre \wt))

12: end for
13: ClientUpdate(w, D)
14: Initialize local model weights with w
15: Update local model weights using local data D
16: return updated model weights

Algorithm 1 describes how FedBaF fits into the traditional FL framework by incorporating

foundation model weights during aggregation, as illustrated in Lines 9-11 [MMR+17]. FedBaF is

versatile and can be embedded into many existing FL algorithms, e.g., SCAFFOLD [KKM+20],

FedProx [LSZ+20], FedAdam [RCZ+21], or other FL strategies, by modifying their aggregation

methods (Lines 8-11 ) and using their existing ClientUpdate(w, D) logic for clients’ local training

in Line 13.

Modifying FL aggregation. FedBaF’s aggregation process in each training round begins

with the aggregation step of an existing FL algorithm, which, as mentioned above, includes FedAvg,

SCAFFOLD, FedProx, and FedAdam. To illustrate an example with FedAvg, Line 8 of Alg. 1 uses

FedAvg’s aggregation step and computes a weighted sum of the updated model parameters from

each client. After this aggregation, Line 11 incorporates the pre-trained model weights (wpre) into

the global FL model, controlled by the factor τt defined in Line 9.

Here, (wpre \ wt) refers to the subset of layers from the foundation model (wpre) that have

the same architecture as the corresponding layers in the global FL model (wt), ensuring that only

compatible layers are used during aggregation. When the foundation and FL models have the

same architecture except that the input and output layers (i.e., first and last layers) differ due to

variations in input features or the number of classes, FedBaF excludes these input and output layers

from the aggregation and integrates only the shared intermediate (hidden) layers. The differing
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layers are randomly initialized and then trained using data from the client pool, as in standard FL.

Foundation and Global Model Architecture Mismatch. In practice, the foundation

model and the global model architectures may differ beyond the input and output layers. These

differences can arise in terms of the number of layers or the number of parameters per layer. Since

foundation models are typically larger than global FL models – consistent with their role as highly

expressive networks pre-trained on extensive data [MSJ+23, ANK+25] – we consider the following

two cases:

• Foundation model with more layers: When the foundation model is deeper than the

global FL model, only a subset of its layers is used during aggregation. We take advantage of the

fact that most large models have layers grouped into sections. Here, a section is a contiguous

subset of layers within a model that shares similar structural properties, such as the number

of parameters, functional roles, or connectivity patterns. FedBaF selects and matches sections

between the foundation and global models, prioritizing feature extraction sections near the input

layer. Within each matched section, only layers that align with the global model’s architecture

are integrated into FL training. Methods for selecting compatible layers during aggregation are

explored in [PJW24, XCV+24].

• Foundation model with more parameters per layer: If the foundation model has layers

with more parameters than the global model, only a subset of parameters within each section and

layer is selected to match the global FL model. Since different sections may have varying parameter

distributions, the aggregation is performed iteratively per section and per layer. To consider these

mismatches, Line 11 of Alg. 1 is expanded:

1: for each section s in shared sections between wpre and w′
t do

2: for each layer l in section s do

3: for each parameter subset p in layer l up to P
(s,l)
t parameters do

4: w
(s,l,p)
t+1 ← 1

1+αtτt

(
w′(s,l,p)

t+1 + αtτtw
(s,l,p)
pre

)
5: end for

6: end for

7: end for

Here, P
(s,l)
t denotes the number of parameters selected per layer l within section s. Only the first

P
(s,l)
t parameters in each layer are incorporated into the global model.

FedBaF can be analogously modified to handle the case where the foundation model is smaller

than the global FL model. By applying these modifications, FedBaF can seamlessly adapt to

different network architectures, ensuring that foundation model knowledge is effectively transferred

while maintaining structural compatibility with the FL model.

Designing τt. Our careful design of τt uses the L2 norm of the difference between consecutive

normalized weights of w′
t+1 and wt, divided by

√
t+ 1. This change in the model’s weights between

rounds reflects how much the global model adapts to new client updates. The normalization

prevents τt from becoming too large. The factor
√
t+ 1 ensures that, as training progresses, the
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influence of wpre gradually diminishes, but not too quickly, and wt+1 approaches the improving

averaged weights w′
t+1. This strategy is critical to keeping the global model flexible and effective,

especially when client data differs from the data used to train the foundation model [KKM+20].

Depending on the network architectures (e.g., the number of weights or scale of the initialized

weights), the scale of τt can vary. In non-IID situations and during adversarial attacks, the factor

τt becomes significant. In particular, a large τt can indicate the presence of non-IID data or an

attack, as such scenarios often result in large differences in consecutive weight updates. To keep τt

within a suitable range, we introduce the parameter αt in Line 10, which depends on τ0 and the

hyper-parameter ψ. We empirically find that setting αt such that αtτ0 is less than 2 in the initial

round (t = 0) prevents excessively large values that could overly bias the global model towards

the foundation model. A lower bound of 1 for αtτ0 also ensures that the minimum impact of the

foundation model is significant for small t. We thus ensure the influence of the foundation model

in the critical initial training stages, while still allowing the global model to adapt as training

progresses.

Designing αt. Sampling αt from the uniform distribution ψ
τ0
U(1, 2) for every round makes it

difficult for clients to reverse-engineer the foundation model, thus meeting FedBaF’s model security

guarantees. To see this, Line 11 can be rearranged for wpre as

wpre =
(1 + αtτt)wt+1 −w′

t+1

αtτt
.

In the worst-case scenario, where all local clients are malicious and collaborating to extract the

foundation model’s weights, they can access τt, wt+1, and w′
t+1. However, because αt is randomly

chosen in each round t and known only to the server, the foundation model’s weights cannot be

extracted. If αt were static, even if the server did not disclose it, malicious clients could determine

this constant value by solving the residual equations from two successive rounds,

(1 + αtτt)wt+1 −w′
t+1

αtτt
=

(1 + αt+1τt+1)wt+2 −w′
t+2

αt+1τt+1
.

This would eventually reveal the foundation model’s weights. More details, along with empirical

analysis on the role of αt and the security advantages of FedBaF are provided in Appendix G.

We formally examine this idea in the next section.

4 THEORETICAL ANALYSIS

In this section, we focus on deriving performance guarantees for FedBaF, focusing on its convergence

properties. Sec. 4.1 examines the general convergence behavior of FedBaF, while Sec. 4.2 shows

specifically on how FedBaF manages convergence in the presence of diverse, non-IID local client

data distributions.

The following notation, problem setup, and assumptions are used throughout our analysis.
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Given m clients, let the kth device’s training data be drawn from Dk. The FL problem can be

formulated as the following global objective,

min
w

1∑m
k=1 nk

m∑
k=1

nkfDk
(w), (1)

where w are model (usually, deep neural network) weights and the fDk
are L-smooth local objective

functions. The convergence analysis presented in this section also makes the following standard

assumptions made by [KKM+20] and detailed in Appendix E. Each client locally optimizes w

using stochastic gradient descent, where the stochastic gradients are (i) unbiased and (ii) have

bounded variance. We also assume (iii) bounded gradient dissimilarity: the norm of the difference

between the gradient of the global objective and the gradients computed using different local

objective functions is bounded. Lastly, we assume that (iv) the foundation model has the same

architecture as the global model, ensuring compatibility during aggregation. See Appendix E.1.1

for mathematical details regarding the assumptions.

4.1 General Convergence Analysis

Proposition 1. Let w∗ be a (bounded) local minimum of the global objective function in (1).

Consider an FL algorithm that converges to w∗ and let w′
t be its global model in each training

round t. Suppose we run the same algorithm but using FedBaF for the aggregation, and let wt be

the FedBaF global model at round t. Let αt satisfy

αt <
2∥w′

t+1 −w∗∥2

(∥wpre −w∗∥2 − ∥w′
t+1 −w∗∥2)τt

(2)

for all t where ∥w′
t+1 −w∗∥2 < ∥wpre −w∗∥2. Then ∀t ∥wt −w∗∥ < ∥w′

t −w∗∥.
This means that, at any given round t, FedBaF’s model weights are closer to w∗.

Using the same restrictions on local and global learning rates placed by the FedAvg convergence

analysis in [KKM+20], the aforementioned bounded gradient variance, bounded gradient dissimi-

larity, and L-smoothness assumptions ensure that our method converges to w∗ faster than FedAvg.

Similar convergence rate arguments for other FL methods with appropriately modified aggregation

can be shown, as discussed in Sec. 3.

4.2 Effectiveness of FedBaF with Diverse Client Data

This section shows the impact of integrating a foundation model close to the optimal weights on

the learning process and convergence behavior in non-IID settings.

In round t, client k uses multiple SGD steps to update the global model wt and obtains the

local model wk
t . Letting St represent the randomly selected set of active clients at time t, we define
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δt as the maximum deviation of the client models from w∗:

δt := max
k∈St

∥wk
t −w∗∥.

Aggregating the updated models from clients according to Alg. 1 Lines 8-10 forms the global model

w′
t. By the triangle inequality, we get

∥w′
t −w∗∥ ≤ δt.

Assumption: Foundation Model Proximity. The foundation model’s pre-trained weights,

wpre, are close to the optimal weights w∗, i.e., ∥wpre −w∗∥ ≤ γ for a small γ > 0. Furthermore,

we assume that γ ≤ δt for earlier rounds (small t which makes τt ≫ 0), i.e., the foundation model

is closer to the optimal model than clients’ local weights.

These are reasonable assumptions in practice since selecting a foundation model with a large γ

would correspond to selecting an unsuitable foundation model that hampers the training process.

Proposition 2. Let w∗ be a (bounded) local minimum of the global objective function in (1).

Consider an FL algorithm that converges to w∗ and let w′
t be its global model. Consider FedBaF

based on the same FL algorithm (with appropriately modified client updates and Lines 8-10 in

Alg. 1) and let wt be the FedBaF global model. FedBaF’s global model error has an upper bound of

∥wt −w∗∥ ≤ δt+αtτtγ
1+αtτt

< δt.

Similar to (29) in Sec. 4.1, we bounded the distance between the FedBaF global model wt and

w∗ in terms of δt. Prop. 2 shows that the integration of the foundation model not only helps in

stabilizing the learning process but also accelerates the convergence rate. The foundation model

acts as a stabilizing factor and reduces the impact of this variance on the global model’s convergence.

This is particularly significant in the early stages of learning with non-IID data, when local models’

weights are more prone to diverge from each other.

5 Experimental Evaluations

In this section, we conduct a detailed evaluation of FedBaF’s performance on both local and global

test datasets, comparing its performance to the no foundation model and weight initialization

baseline algorithms for training FL models.

• No foundation model: The global FL model is trained from scratch without weight initial-

ization or FedBaF (i.e., no use of foundation models).

• Weight initialization: The global model’s initial weights are set to equal the foundation

model’s weights, and the FL training then proceeds as usual.

We aim to 1) illustrate that FedBaF offers security advantages over weight initialization while

attaining equivalent performance. Furthermore, by verifying how τt in line 9 of Algorithm 1 con-
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a) From Tiny ImageNet-200 to CIFAR-10 (Pre-ResNet)

b) From Weather Image to Rome Weather Image (Vision Transformer)

IID (Global)

IID (Global)

Non-IID (Local)

Non-IID (Local)

Non-IID (Global)

Non-IID (Global)

Figure 3: FedBaF maintains higher test accuracy when used with FedAvg with different propor-
tions of malicious clients, ζ (0%, 10%, 20%, 50%), and attack intensity, λ (1, 5), executing mis-
classification attacks, under IID and non-IID settings. Three different foundation models, trained
with different datasets, are used for three tasks. Red, blue, and gray bars respectively represent
FedBaF, weight initialization, and no foundation model cases.

verges to 0, we also 2) establish FedBaF’s ability to effectively adapt the influence of the foundation

model.

More detailed testing results are provided in Appendix C, including the 1) computational

efficiency of FedBaF and 2) additional evaluations using foundation models of varying quality

trained on different amounts of data and real-world foundation model weights that are publicly

available online.

5.1 Experimental Setup

Our experiments with popular image classification tasks encompass experiments using the CIFAR-

10 and RomeWeather Image [Vaz21] datasets. We use Pre-ResNet and Vision Transformer [DBK+21]

architectures as Vision Transformers are popular foundation model architectures known for achiev-

ing remarkable performance [ZLL+24] for ImageNet challenges [DBK+21]. We train the foundation

models on the Tiny ImageNet-200 and Weather Image [Xia21] datasets. Our evaluations consider

both IID and non-IID settings (see Appendix A). To demonstrate FedBaF’s generalizability to

other tasks, we also evaluate it on a next-word prediction task using a Transformer language model

pre-trained on the WikiText-2 dataset and tested on the Penn Treebank dataset.

Attack setup. To assess security robustness of FedBaF, we randomly shuffle local data labels

for a subset of clients, treating them as backdoor attackers aiming to induce misclassification. We
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a) From Tiny ImageNet-200 to CIFAR-10 (Pre-ResNet)

b) From Weather Image to Rome Weather Image (Vision Transformer)

IID (Global)

IID (Global)

Non-IID (Local)

Non-IID (Local)

Non-IID (Global)

Non-IID (Global)

Figure 4: FedBaF maintains higher test accuracy than both baselines when used with FedProx
with different proportions of malicious clients, attack intensity, and IID as well as non-IID settings.
All other settings are identical to those in Figure 3.

also increase the attack intensity by varying the number of local epochs for malicious clients. For

image classification tasks (Pre-ResNet and Vision Transformer), we increase the local epochs by a

factor λ > 1, which introduces more bias from the initial global model and strengthens the attack’s

impact. For the language task (Transformer), we decrease the local epochs by a factor 1/λ < 1 to

prevent convergence to a small loss, ensuring the calculated perplexity remains high regardless of

misclassification, thereby intensifying the attack. We vary the proportion of attacking clients, ζ,

and evaluate algorithm resiliency when 0%, 10%, 20%, and 50% of the client base are attackers.

Evaluation metrics. To evaluate testing performance, we calculate the global testing accuracy

using a global test dataset after the aggregation phase of an FL round. In non-IID settings, we

also use local test datasets that are extracted from the global test dataset and reflect the class

distribution of the local clients. After local training and prior to aggregation, we test the local

models to determine an average local testing accuracy. For the Transformer model, we use global

perplexity to assess the performance of the global language model. Perplexity is inversely related

to how well a probability model predicts a sample.

Details of other deep neural network architectures employed in our experiments and additional

training specifics are provided in Tables 1 and 2 in Appendix A.
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a) FedAvg

b) FedProx

From WikiText-2 to Penn Treebank (Transformer)

Figure 5: FedBaF maintains lower test perplexity when used with FedAvg and FedProx with
different proportions of malicious clients and attack intensities. Note: lower perplexity is
better

5.2 Experimental Results

Figures 3, 4, and 5 display the extensive test accuracy/perplexity evaluation results for FedBaF and

our two baselines (no foundation model and weight initialization). We evaluate the three methods

using both FedAvg and FedProx [LSZ+20] as the base FL training algorithms. We incorporate

FedBaF into FedProx by modifying Line 8 and the ClientUpdate routine in Algorithm 1, including

both IID and non-IID settings, with one non-adversarial scenario and four adversarial scenarios. We

use FedProx’s aggregation step: w′
t+1 ←

∑
k∈St

nk∑
k∈St

nk
wk
t+1 − µ(wk

t+1 −wt). Here, µ represents

the regularization term that controls the trade-off between the local and global objectives. FedBaF

then incorporates the foundation model weights as in Lines 9-11 of Algorithm 1.

5.2.1 Testing FedBaF Performance

In non-adversarial scenarios, FedBaF showcased superior testing performance compared to the no

foundation model and weight initialization methods across both IID and non-IID configurations.

Figures 3 and 4 respectively show test accuracies of all three methods using FedAvg and Fed-

Prox for both Pre-ResNet and the Vision Transformer. In comparison to Pre-ResNet trained with

no foundation model, FedBaF improved global model accuracy by 1.3% for FedAvg and 1.6% for

FedProx in IID scenarios, and by 21.8% for FedAvg and 22.6% for FedProx in non-IID scenar-

ios. For the Vision Transformer, FedBaF improved global performance relative to no foundation

model by 10.8% for FedAvg and 0.0% for FedProx in IID settings and by 37.5% for FedAvg and

15.8% for FedProx in non-IID settings. We observe that both FedAvg and FedProx benefit

13



from FedBaF’s inclusion of the foundation model, with particular benefits in more challeng-

ing scenarios with non-IID client data. Incorporating the foundation model mitigates slower FL

convergence caused by non-IID data.

The weight initialization method, which also incorporates a foundation model but does not keep

it private, exhibits similar performance gains as FedBaF compared to training without a foundation

model. For example, on Pre-ResNet weight initialization exhibited global performance gains of

19.7% for FedAvg and 20.4% for FedProx in non-IID scenarios, while on Vision Transformers it

achieves gains of 18.8% for both FedAvg and FedProx in non-IID scenarios.

In the next-word prediction task using a Transformer, FedBaF significantly outperformed train-

ing with no foundation model, reducing perplexity by 76.0% with FedAvg, whereas weight initial-

ization yielded a 67.8% decrease relative to training without a foundation model with FedAvg.

Collectively, these findings indicate negligible differences between the test accuracies at-

tained by FedBaF and those achieved with weight initialization. Simultaneously, FedBaF

achieves privacy advantages as, unlike weight initialization, it does not reveal the foundation

model weights to FL clients. Moreover, FedBaF showed better testing performance than the weight

initialization or no foundation model methods in 10 out of the 14 experiment settings.

In Appendix C.3, we provide additional examples of FedBaF achieving privacy and test perfor-

mance improvements. They include comparisons with FedAdam [RCZ+21], a state-of-the-art FL

method leveraging pre-trained models.

5.2.2 FedBaF’s Robustness to Attacks

FedBaF remains effective in maintaining robustness when faced with misclassification attacks and

shows a more modest performance degradation in comparison to both baseline methods.

We evaluate the robustness of FedBaF and our two baselines in the presence of adversarial

clients. As the proportion of attacking clients (ζ in Figures 3, 4, and 5) increases, test accuracy

declines in all cases. This matches our intuition since neither FedBaF nor the two baselines are

designed to perfectly defend against these attacks, which become more effective as more clients act

as attackers.

The test accuracy for the no foundation model baseline method drops significantly when 50%

of the clients are attackers and the attack intensity λ = 5. For Pre-ResNet under such attacks,

the global performance drop, when compared to the case with no attackers, is 11.8% for FedAvg

and 11.2% for FedProx in IID scenarios and 38.2% for FedAvg and 37.4% for FedProx in non-IID

scenarios. With the Vision Transformer, these accuracy drops are 32.4% for FedAvg and 34.2% for

FedProx in IID and 21.9% for FedAvg and 25.0% for FedProx in non-IID scenarios. Thus, training

with no foundation model results in vulnerability to attacks in both IID and non-IID

settings. This matches our expectations since it has no built-in defenses.

In contrast, FedBaF experiences a much more modest performance decline under

attack, demonstrating its robustness. For Pre-ResNet, FedBaF’s global performance decreases
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by 6.0% for FedAvg and 6.4% for FedProx in IID settings and by 16.5% for FedAvg and 16.3%

for FedProx in non-IID settings, where the decrease is again measured for the most intense attack

(ζ = 50%, λ = 5) relative to no attack. These accuracy drops are less than half of those experienced

by the no foundation model method. With the Vision Transformer, FedBaF’s global performance

decreases by only 4.9% for FedAvg and FedProx in IID settings and by 25% for both FedAvg and

FedProx in non-IID settings.

Finally, we comment that the results also show that the weight initialization method, which

näıvely incorporates the foundation model and reveals the foundation model weights to clients, does

confer some robustness to attacks. Weight initialization shows a performance decrease of 6.4% for

FedAvg and 6.9% for FedProx in IID settings and 17.5% for FedAvg and 17.2% for FedProx in

non-IID settings globally for Pre-ResNet. With the Vision Transformer, the decreases are 14.6%

for both FedAvg and FedProx in IID settings and 18.4% for both FedAvg and FedProx in non-IID

settings globally.

These findings demonstrate that, similar to weight initialization, FedBaF offers considerable

attack robustness compared to training with no foundation model. In 8 out of 12 cases, FedBaF

suffers the minimal loss in performance when compared with the other two baselines, indicating its

superior effectiveness in maintaining robustness under adversarial conditions.

6 Conclusion

This paper introduced Federated Learning Aggregation Biased by a Foundation Model (FedBaF).

FedBaF enhances adaptability and security in dynamic FL scenarios without sharing the foundation

model with clients. This is crucial in environments with ever-changing data and non-IID scenarios,

where foundation models are used across several domains as seed models. Our findings show that

FedBaF increases resilience against adversarial attacks while matching or outperforming traditional

weight initialization performance in both IID and non-IID settings.
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Appendix Overview

This appendix provides additional details and results to complement the main text, offering further

insight into the experimental setup, theoretical analysis, and security considerations for FedBaF.

The appendix is organized as follows:

Experimental Setup in Section A

This section details the experimental configurations, including data distributions, network archi-

tectures for vision and language tasks, and hyper-parameters under IID and non-IID settings.

Formulas for Evaluating Computational Complexity in Section B

We present the mathematical formulas used to compute the computational complexity of the Fed-

BaF algorithm, specifically focusing on multiply-accumulate (MAC) operations across clients and

training rounds.

Additional Experimental Evaluations in Section C

This section includes supplementary experimental results, analyzing the effect of varying foundation

model quality on FedBaF’s performance and comparisons using the official pre-trained foundation

model. Computational complexity is also compared to scenarios without foundation models and

weight initialization. Additionally, we include further experiments employing FedAdam [RCZ+21].

Training Curves in Section D

We provide training curves that display the progression of model accuracy over training epochs for

the Pre-ResNet and Vision Transformer models, illustrating comparisons between FedBaF, weight

initialization, and without foundation model cases under IID and non-IID conditions.

Convergence Analysis in Section E

This section provides a theoretical analysis of FedBaF’s convergence properties, detailing how

the algorithm performs under different client data distributions and demonstrating the theoretical

guarantees for its performance.

Proofs of Propositions in Section F

In this section, we include the formal proofs of Propositions 1 and 2, outlined in the theoretical anal-

ysis in Section 4, which support the claims made regarding FedBaF’s performance and convergence

behavior.
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Security Analysis in the Presence of Adversarial Attacks in Section G

This section provides an in-depth security analysis of FedBaF, focusing on its robustness against

adversarial attacks such as misclassification and backdoor attacks. We compare FedBaF’s resilience

to malicious clients with traditional methods, showing how FedBaF mitigates the negative impact

of attacks and preserves global model integrity.
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A Experimental Setup

Table 1: The specific conditions under which our experiments were conducted, including data
distribution and model training settings.

Evaluation Pretrained Model Training

Performance Comparison
From Tiny

ImageNet-200
From

Weather Image
From

WikiText-2
From ImageNet 

(PyTorch)
IID Non-IID IID Non-IID - IID Non-IID

Number of clients 1 100 10 100 100
Fraction of active clients C 1 0.1

Number of classes
for each client 100 11 - 10 2 5 2 - 10 2

Number of samples
for each client

50,000
~ 100,000

2,500
~ 5,000

640,000
~ 1,280,000 125 ~ 250 10 ~ 20 7,680 ~ 8960 125 ~ 250

Data Tiny
ImageNet-200 Weather Image WikiText-2 CIFAR-10 Rome

Weather Image
Penn

Treebank CIFAR-10

Model Pre-ResNet Vision
Transformer Transformer Pre-ResNet Vision

Transformer Transformer Vision
Transformer

Local epochs E 300 300 300 5
Local mini-batch size B 128 50 50 128 125
Communication rounds 1 200 250 200 250 200 200 250

Optimizer SGD
Momentum 0.9

Weight decay 1e-4
Learning rate 𝜂 0.1 0.01 0.01 0.1 0.01

Learning rate 0.1x
decay schedule [150, 225] [150, 225] Not applied Not applied

Batch normalization layer Non-static
𝝁 for proximal term

in FedProx Not applied 0.01 Not applied 0.01

In this section, we provide details about our experimental setup and network architectures. For

vision tasks using Pre-ResNets and Vision Transformers, we conduct evaluations in both IID and

non-IID environments. In IID settings, each client’s data distribution is uniform across all classes,

with an equal number of samples from each class. In non-IID settings, clients receive samples

from only 20% of the dataset’s classes for CIFAR-10 and 50% of the dataset’s classes for Rome

Weather Image, but maintain an equal number of samples for each class they have. During local

training in these settings, clients zero out logits for classes not present in their data. For language

tasks using Transformers, each client has specific numbers of tokenized words grouped sequentially.

Details of the experimental settings can be found in Table 1.

For the network architecture configuration, details for Pre-ResNets and Transformers can be

found in Table 2. For Vision Transformer, we used the standard ViT B 16 model with no modifi-

cations except changing the last output layers according to the new data. This model was obtained

from the PyTorch library. Additionally, we also tested FedBaF with official pre-trained foundation

model weights that are available online (not developed by us). We specifically used the ImageNet

pre-trained weights for a standard Vision Transformer from PyTorch’s official model repository:

(ViT B 16 Weights.IMAGENET1K SWAG E2E V1).
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Table 2: This table presents the detailed structures of the neural networks (Pre-ResNet and Trans-
former) utilized in our Federated Learning experiments and making foundation models.
Model Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8

Pr
e-

R
es

N
et

3 × 3, 64 × 1
3 × 3, 64

3 × 3, 64
× 2

3 × 3,128

3 × 3,128
× 2

3 × 3, 256

3 × 3, 256
× 2

3 × 3, 512

3 × 3, 512
× 2 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠-d fc

Model Encoder Decoder ClassifierAttention FeedForward Attention FeedForward Attention FeedForward Attention FeedForward

Tr
an

sf
or

m
er

192-d fc
64-d fc

3 × 3, 64

3 × 3,64
× 2

192-d fc
64-d fc

3 × 3, 64

3 × 3,64
× 2 𝑁𝑡𝑜𝑘𝑒𝑛-d fc 𝑁𝑡𝑜𝑘𝑒𝑛-d fc 192-d fc

64-d fc
3 × 3, 64

3 × 3,64
× 1

192-d fc
64-d fc

3 × 3, 64

3 × 3,64
× 1 𝑁𝑡𝑜𝑘𝑒𝑛-d fc
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B Formulas for Evaluating Computational Complexity

In this section, we provide metrics for evaluating the computational complexity, as discussed in

Section C.4.

To evaluate computational complexity, we track the number of multiply-accumulate (MAC)

operations, denoted as MACS. MACSk represents the number of MAC operations required to

process all the local data samples held by client k. The average MAC per client, denoted as MACS,

is calculated by averaging the MACS values for all clients participating in a single round of FL:

MACS =
1

m

m∑
k=1

MACSk

Here, m is the number of participating clients in the given round. For each local training epoch,

the computational complexity, referred to as MACE (Multiply-Accumulate Complexity per Epoch),

is calculated as:

MACE = m× ñ×MACS.

Here, ñ is the median number of data samples per client. This metric reflects the computational

load incurred by m clients during local training in each epoch.

To compute the total computational load for the entire FL system, denoted as TMAC (To-

tal Multiply-Accumulate Complexity), we multiply the number of local epochs E, the number of

aggregation rounds T , and the previously calculated MACE:

TMAC = T × E ×MACE.

This provides the total number of MAC operations required for the entire training process across

all clients and rounds, accounting for both the number of local epochs and the aggregation rounds

in the FL system.
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C Additional Experimental Evaluations

In this section, we present additional experimental results that provide further insight into the

performance of FedBaF across various tasks and scenarios. These evaluations focus on the impact

of different qualities of foundation models, the application of the real pre-trained foundation model,

and computational complexities. We compare the use of foundation models in both IID and non-IID

settings with weight initialization and cases where no foundation model is used.
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C.1 Differentiating the Quality of Pre-Trained Foundation Models

We conducted experiments to evaluate the generalized performance of FedBaF by varying the

quality of foundation models. Tables 3, 4, and 5 present the results for image classification tasks

using Pre-ResNet and Vision Transformer models, as well as a next-word prediction task using a

Transformer model.

Table 3: Image classification test accuracy results for Pre-ResNet using the no foundation, weight

initialization, and FedBaF methods (best of 3 trials).

FedAvg
Pre-trained

Samples
Malicious Clients (ζ)
Attack Intensity (λ)

IID - Global Testing Accuracy Non-IID - Local Testing Accuracy Non-IID – Global Testing Accuracy
No

Foundation
Weight

Initialization FedBaF No
Foundation

Weight
Initialization FedBaF No

Foundation
Weight

Initialization FedBaF

50,000

ζ=0%, λ=1 82.9 84.1 84.0 95.6 98.0 98.2 57.3 68.6 69.8
ζ=10%, λ=1 81.7 82.4 82.8 95.1 97.5 98.1 49.0 62.1 63.8
ζ=20%, λ=1 80.1 81.0 82.0 94.0 97.3 97.6 43.6 57.3 58.2
ζ=50%, λ=1 73.0 78.2 78.6 85.9 90.3 91.3 39.4 56.6 57.7
ζ=50%, λ=5 73.1 78.7 79.0 87.7 93.4 94.0 35.4 56.6 58.3

100,000

ζ=0%, λ=1 82.9 85.9 85.9 95.6 98.4 98.6 57.3 71.9 73.4
ζ=10%, λ=1 81.7 84.3 84.8 95.1 98.0 98.3 49.0 64.2 67.0
ζ=20%, λ=1 80.1 83.5 83.7 94.0 97.5 97.9 43.6 59.8 61.9
ζ=50%, λ=1 73.0 80.6 80.8 85.9 91.1 92.0 39.4 60.1 60.8
ζ=50%, λ=5 73.1 80.6 80.8 87.7 94.0 94.8 35.4 56.4 61.0

FedProx
Pre-trained

Samples
Malicious Clients (ζ)
Attack Intensity (λ)

IID - Global Testing Accuracy Non-IID - Local Testing Accuracy Non-IID – Global Testing Accuracy
No

Foundation
Weight

Initialization FedBaF No
Foundation

Weight
Initialization FedBaF No

Foundation
Weight

Initialization FedBaF

50,000

ζ=0%, λ=1 82.8 84.2 84.1 95.4 98.0 98.2 57.0 68.6 69.9
ζ=10%, λ=1 81.5 82.4 82.9 95.4 97.5 98.2 49.8 62.1 63.7
ζ=20%, λ=1 80.1 81.1 82.0 94.0 97.4 97.6 45.0 57.3 58.1
ζ=50%, λ=1 73.5 78.0 78.7 87.6 90.3 91.5 40.8 56.7 57.7
ζ=50%, λ=5 73.5 78.4 78.7 88.0 93.2 94.0 35.7 56.8 58.5

100,000

ζ=0%, λ=1 82.8 85.9 85.8 95.4 98.4 98.6 57.0 71.9 73.4
ζ=10%, λ=1 81.5 84.4 84.8 95.4 98.0 98.3 49.8 64.4 67.3
ζ=20%, λ=1 80.1 83.8 84.0 94.0 97.6 97.9 45.0 59.8 61.9
ζ=50%, λ=1 73.5 80.5 80.6 87.6 90.9 92.3 40.8 59.9 60.7
ζ=50%, λ=5 73.5 80.5 80.9 88.0 94.6 94.8 35.7 55.1 60.5
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Table 4: Image classification test accuracy results for Vision Transformer using no foundation,

weight initialization, and FedBaF methods (best of 3 trials).

FedAvg
Pre-trained

Samples
Malicious Clients (ζ)
Attack Intensity (λ)

IID - Global Testing Accuracy Non-IID - Local Testing Accuracy Non-IID – Global Testing Accuracy
No

Foundation
Weight

Initialization FedBaF No
Foundation

Weight
Initialization FedBaF No

Foundation
Weight

Initialization FedBaF

2,500

ζ=0%, λ=1 74.0 82.0 82.0 93.4 99.1 98.9 64.0 76.0 88.0
ζ=10%, λ=1 72.0 78.0 80.0 94.9 96.7 96.8 62.0 72.0 82.0
ζ=20%, λ=1 72.0 74.0 78.0 91.4 96.7 94.0 58.0 74.0 74.0
ζ=50%, λ=1 72.0 70.0 74.0 90.3 91.4 92.0 60.0 64.0 66.0
ζ=50%, λ=5 50.0 70.0 78.0 91.4 91.3 89.7 50.0 62.0 66.0

5,000

ζ=0%, λ=1 74.0 72.0 72.0 93.4 98.0 98.0 64.0 78.0 76.0
ζ=10%, λ=1 72.0 72.0 74.0 94.9 94.3 93.9 62.0 74.0 76.0
ζ=20%, λ=1 72.0 78.0 72.0 91.4 90.6 92.0 58.0 72.0 68.0
ζ=50%, λ=1 72.0 68.0 68.0 90.3 92.3 90.0 60.0 64.0 68.0
ζ=50%, λ=5 50.0 72.0 70.0 91.4 92.3 90.5 50.0 66.0 66.0

FedProx
Pre-trained

Samples
Malicious Clients (ζ)
Attack Intensity (λ)

IID - Global Testing Accuracy Non-IID - Local Testing Accuracy Non-IID – Global Testing Accuracy
No

Foundation
Weight

Initialization FedBaF No
Foundation

Weight
Initialization FedBaF No

Foundation
Weight

Initialization FedBaF

2,500

ζ=0%, λ=1 76.0 82.0 82.0 93.5 99.1 98.9 64.0 76.0 88.0
ζ=10%, λ=1 76.0 78.0 80.0 95.0 96.7 96.8 64.0 72.0 82.0
ζ=20%, λ=1 74.0 74.0 78.0 91.3 96.7 94.0 58.0 74.0 74.0
ζ=50%, λ=1 62.0 70.0 74.0 89.2 91.4 92.0 56.0 64.0 66.0
ζ=50%, λ=5 50.0 70.0 78.0 90.3 91.3 89.7 48.0 62.0 66.0

5,000

ζ=0%, λ=1 76.0 72.0 72.0 93.5 98.0 98.0 64.0 78.0 76.0
ζ=10%, λ=1 76.0 72.0 74.0 95.0 94.3 93.9 64.0 74.0 76.0
ζ=20%, λ=1 74.0 78.0 72.0 91.3 90.6 92.0 58.0 72.0 68.0
ζ=50%, λ=1 62.0 68.0 68.0 89.2 92.3 90.0 56.0 64.0 68.0
ζ=50%, λ=5 50.0 72.0 70.0 90.3 92.3 90.5 48.0 66.0 66.0

To assess the impact of foundation model quality, we varied the number of pre-trained samples

used for each model and assessed each method’s performance under a varying number of malicious

clients and attack intensity. Interestingly, larger sample sizes do not always lead to better results,

as seen in Table 3, where excessive pre-training can negatively impact performance. This trend is

further evidenced in Tables 4, 5. The reason behind this is likely due to overfitting or reduced adapt-

ability to new tasks. Despite these variations, FedBaF consistently outperforms models without

foundation models and delivers similar testing performance to weight initialization.

Training curves for selected cases can be found in Section D.

Table 5: Next-word prediction perplexity results for Transformer models using no foundation,

weight initialization, and FedBaF methods (best of 3 trials). Lower perplexity is better.
FedAvg

Pre-trained
Samples

Malicious Clients (ζ)
Attack Intensity (λ)

Global Testing Perplexity
No

Foundation
Weight Initiali

zation FedBaF

640,000

ζ=0%, λ=1 536.5 172.8 128.6
ζ=10%, λ=1 549.4 191.8 137.8
ζ=20%, λ=1 531.3 213.7 159.4
ζ=50%, λ=1 501.6 330.6 298.4
ζ=50%, λ=5 680.4 311.7 275.1

1,280,000

ζ=0%, λ=1 536.5 202.6 183.3
ζ=10%, λ=1 549.4 227.3 201.4
ζ=20%, λ=1 531.3 258.3 224.2
ζ=50%, λ=1 501.6 371.9 337.3
ζ=50%, λ=5 680.4 343.9 322.8
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C.2 Using the Official Pre-Trained Foundation Model

Table 6: Image classification test accuracy results for Vision Transformer using official pre-trained
foundation model weights from PyTorch. Comparisons are made between no foundation model,
weight initialization, and FedBaF methods (best of 3 trials).

FedAvg
Pre-trained

Samples
Malicious Clients (ζ)
Attack Intensity (λ)

IID - Global Testing Accuracy Non-IID - Local Testing Accuracy Non-IID – Global Testing Accuracy
No

Foundation
Weight

Initialization FedBaF No
Foundation

Weight
Initialization FedBaF No

Foundation
Weight

Initialization FedBaF

1,281,167

ζ=0%, λ=1 47.9 81.5 81.3 84.2 96.9 96.0 41.3 70.8 71.5

ζ=10%, λ=1 47.6 81.2 80.5 85.5 96.3 96.6 38.6 67.0 68.7

ζ=20%, λ=1 45.6 80.3 80.1 85.0 94.9 94.1 36.3 63.7 65.4

ζ=50%, λ=1 42.3 77.2 76.4 73.7 83.3 80.4 33.7 49.8 51.4

ζ=50%, λ=5 37.8 74.3 72.7 74.7 85.6 82.4 28.7 40.4 50.4

FedProx
Pre-trained

Samples
Malicious Clients (ζ)
Attack Intensity (λ)

IID - Global Testing Accuracy Non-IID - Local Testing Accuracy Non-IID – Global Testing Accuracy
No

Foundation
Weight

Initialization FedBaF No
Foundation

Weight
Initialization FedBaF No

Foundation
Weight

Initialization FedBaF

1,281,167

ζ=0%, λ=1 47.4 80.9 80.5 78.3 89.0 87.3 41.2 68.7 71.2

ζ=10%, λ=1 46.7 80.4 80.3 75.9 85.5 83.1 37.7 61.0 62.2

ζ=20%, λ=1 45.1 79.4 79.7 73.1 81.1 79.2 35.4 59.0 59.7

ζ=50%, λ=1 41.7 76.7 75.9 62.5 64.9 64.9 32.8 48.8 49.2

ζ=50%, λ=5 36.8 73.5 69.8 63.9 66.6 67.4 28.5 37.3 46.5

We also evaluated the performance of FedBaF using the official pre-trained foundation model

that was not developed by us. Specifically, we used ImageNet pre-trained weights for the Vision

Transformer model, obtained from PyTorch’s official model repository. As shown in Table 6, Fed-

BaF outperforms scenarios without foundation models and delivers similar performance to weight

initialization using pre-trained weights. These results demonstrate that FedBaF can effectively

integrate widely adopted pre-trained models.

30



C.3 Generalized Applicability of FedBaF with FedAdam

To further assess the generalized applicability of FedBaF, we conducted additional experiments

using the FedAdam [RCZ+21] algorithm. Specifically, we evaluated its performance on image clas-

sification tasks with CIFAR-10 and Rome Weather Image datasets using Pre-ResNet and Vision

Transformer, as well as on a language modeling task with a Transformer model pre-trained on the

WikiText-2 dataset. We followed the same experimental setup, attack scenarios, and hyperparam-

eters described in Section 5 and Appendix A.

For FedAdam, we set the global aggregation update learning rate to 0.01 for CIFAR-10 and

Rome Weather Image datasets and 0.1 for the WikiText-2 dataset. Additionally, we configured the

momentum parameters as β1 = 0.9 and β2 = 0.99 for all experiments.

Table 7: Image classification test accuracy results for Pre-ResNet using the no foundation, weight

initialization, and FedBaF methods employing FedAdam (best of 3 trials).

FedAdam
Pre-trained

Samples
Malicious Clients (ζ)
Attack Intensity (λ)

IID - Global Testing Accuracy Non-IID - Local Testing Accuracy Non-IID – Global Testing Accuracy
No

Foundation
Weight

Initialization FedBaF No
Foundation

Weight
Initialization FedBaF No

Foundation
Weight

Initialization FedBaF

50,000

ζ=0%, λ=1 78.7 84.6 83.2 95.9 98.1 98.3 57.5 69.1 69.8
ζ=10%, λ=1 79.7 83.3 83.2 95.1 97.9 98.1 47.7 63.8 66.4
ζ=20%, λ=1 78.5 82.6 82.6 94.3 97.3 98.1 42.5 60.0 62.2
ζ=50%, λ=1 70.6 80.0 79.8 83.7 90.4 93.5 34.5 52.6 54.2
ζ=50%, λ=5 67.3 78.6 79.4 86.7 94.4 91.9 27.3 50.5 53.9

100,000

ζ=0%, λ=1 78.7 86.0 85.0 95.9 98.4 98.6 57.5 70.0 71.4
ζ=10%, λ=1 79.7 85.1 84.7 95.1 98.2 98.2 47.7 65.9 70.5
ζ=20%, λ=1 78.5 83.9 84.2 94.3 98.0 97.9 42.5 63.7 65.7
ζ=50%, λ=1 70.6 82.0 81.9 83.7 89.7 92.2 34.5 56.7 57.7
ζ=50%, λ=5 67.3 80.8 81.6 86.7 94.1 93.8 27.3 54.3 57.4

Table 8: Image classification test accuracy results for Vision Transformer using no foundation,

weight initialization, and FedBaF methods employing FedAdam (best of 3 trials).
FedAdam

Pre-trained
Samples

Malicious Clients (ζ)
Attack Intensity (λ)

IID - Global Testing Accuracy Non-IID - Local Testing Accuracy Non-IID – Global Testing Accuracy
No

Foundation
Weight

Initialization FedBaF No
Foundation

Weight
Initialization FedBaF No

Foundation
Weight

Initialization FedBaF

2,500

ζ=0%, λ=1 58.0 64.0 62.0 92.2 93.6 96.9 52.0 62.0 62.0
ζ=10%, λ=1 58.0 66.0 66.0 90.2 93.3 93.1 54.0 62.0 60.0
ζ=20%, λ=1 56.0 64.0 66.0 87.3 93.3 92.3 48.0 56.0 56.0
ζ=50%, λ=1 56.0 64.0 58.0 84.7 85.9 86.9 54.0 56.0 60.0
ζ=50%, λ=5 48.0 58.0 64.0 86.7 85.5 84.4 44.0 48.0 56.0

5,000

ζ=0%, λ=1 58.0 68.0 70.0 92.2 95.0 95.0 52.0 64.0 62.0
ζ=10%, λ=1 58.0 66.0 62.0 90.2 92.2 95.7 54.0 60.0 60.0
ζ=20%, λ=1 56.0 64.0 64.0 87.3 90.5 90.6 48.0 56.0 58.0
ζ=50%, λ=1 56.0 60.0 56.0 84.7 90.2 85.9 54.0 52.0 58.0
ζ=50%, λ=5 48.0 64.0 54.0 86.7 86.5 88.5 44.0 52.0 50.0
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Table 9: Next-word prediction perplexity results for Transformer models using no foundation,

weight initialization, and FedBaF methods employing FedAdam (best of 3 trials). Lower per-

plexity is better.
FedAdam

Pre-trained
Samples

Malicious Clients (ζ)
Attack Intensity (λ)

Global Testing Perplexity
No

Foundation
Weight Initiali

zation FedBaF

640,000

ζ=0%, λ=1 157.9 45.9 43.4
ζ=10%, λ=1 167.8 45.6 45.7
ζ=20%, λ=1 199.0 50.9 48.7
ζ=50%, λ=1 218.9 91.2 85.4
ζ=50%, λ=5 262.7 94.7 91.0

1,280,000

ζ=0%, λ=1 157.9 38.4 34.0
ζ=10%, λ=1 167.8 38.4 37.3
ζ=20%, λ=1 199.0 44.8 42.8
ζ=50%, λ=1 218.9 93.0 95.8
ζ=50%, λ=5 262.7 82.0 83.3

Tables 7, 8, and 9 present the experimental results obtained using FedAdam across different

datasets, model architectures, and attack scenarios. The results demonstrate that FedBaF remains

effective across various federated optimization frameworks, reinforcing its adaptability in federated

learning.

Among the 70 tested cases, FedBaF achieved similar or superior performance in 68 cases when

compared to weight initialization approaches, outperforming cases without foundation models. This

trend aligns with the findings in Section 5, further highlighting FedBaF’s robustness across different

optimization strategies and experimental settings.

These findings confirm the reliability of FedBaF in federated learning, ensuring its applicability

to both vision and language tasks under diverse conditions.
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C.4 Computational Complexity

Table 10: Pre-ResNet and Vision Transformer computational complexities using no foundation
model, weight initialization, and FedBaF methods. Note: T represents trillion.

Pre-trained 
Samples

IID Non-IID
No

Foundation
Weight 

Initialization FedBaF No
Foundation

Weight 
Initialization FedBaF

FedAvg 50,000 1.51 T 0.20 T 0.18 T 2.63 T 0.26 T 0.27 T
100,000 1.51 T 0.11 T 0.13 T 2.63 T 0.21 T 0.20 T

FedProx 50,000 1.52 T 0.21 T 0.18 T 2.64 T 0.26 T 0.27 T
100,000 1.52 T 0.11 T 0.13 T 2.64 T 0.21 T 0.20 T

a) Pre-ResNet 

b) Vision Tranformer

Pre-trained 
Samples

IID Non-IID
No

Foundation
Weight 

Initialization FedBaF No
Foundation

Weight 
Initialization FedBaF

FedAvg 2,500 7.34 T 0.20 T 0.23 T 8.08 T 0.20 T 0.49 T
5,000 7.34 T 0.26 T 0.20 T 8.08 T 0.14 T 0.26 T

FedProx 2,500 6.66 T 0.20 T 0.23 T 8.91 T 0.20 T 0.49 T
5,000 6.66 T 0.26 T 0.20 T 8.91 T 0.14 T 0.26 T

FedBaF demonstrates remarkable efficiency in terms of computational complexity, requiring

significantly fewer computations than scenarios without foundation models and performing similarly

to weight initialization methods.

To demonstrate that FedBaF’s computational demands are minimal, even when integrating the

foundation model in every training round, we assess its computational complexity. Table 10 presents

the computational complexities, measured in TMAC (Total Multiply-Accumulate Operations) from

Section B, for six non-adversarial scenarios in both IID and non-IID settings. To calculate these

complexities, we consider the number of training rounds required to achieve specific global testing

accuracies: 75% for IID and 50% for non-IID scenarios in Pre-ResNet cases. For Vision Transformer

cases, we set the thresholds to 60% IID accuracy and 60% non-IID accuracy.

Compared to the no foundation model cases, FedBaF requires significantly fewer com-

putations across both IID and non-IID scenarios. Specifically, for Pre-ResNet IID and non-IID

cases, computations are reduced by 88.1-91.4% and 89.7-92.4% for FedAvg, and by 88.2-91.4% and

89.8-92.4% for FedProx, respectively. Similarly, for Vision Transformer, IID and non-IID scenarios

see a reduction of 96.9-97.3% and 93.9-96.8% for FedAvg, and 96.5-97.0% and 94.5-97.1% for Fed-

Prox in computations. Therefore, these findings indicate that FedBaF’s computational demands

are relatively minimal despite the foundation model being integrated into every training round.

These findings clearly indicate that FedBaF’s computational demands are minimal, even

when integrating the foundation model into every training round, making it a highly efficient

solution in both IID and non-IID environments.
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D Training curves

In this section, we present the evolution of model accuracy over epochs for the experiments de-

scribed in Section C, as shown in Figure 6. The experiments involve both Pre-ResNet and Vision

Transformer models, focusing on two setups: 1) Pre-ResNet, with foundation models pre-trained

using TinyImageNet-200 (50,000 pre-trained samples), and 2) Vision Transformer, with founda-

tion models pre-trained using the Weather Image dataset (2,500 pre-trained samples). We present

results for both IID and non-IID settings, using FedAvg and FedProx as the aggregation methods.

These training curves illustrate the progression of model accuracy throughout the training pro-

cess, comparing the behaviors of models using weight initialization and FedBaF. The curves demon-

strate that FedBaF performs similarly to traditional weight initialization methods and achieves

higher accuracies than when no foundation model is used.
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FedAvg (IID)

FedAvg (Non-IID)

FedProx (IID)

FedProx (Non-IID)

a) Pre-ResNet (From TinyImageNet-200; 50,000 pre-trained samples) 

b) Vision Transformer (From Weather Image; 2,500 pre-trained samples)
FedAvg (IID)

FedAvg (Non-IID)

FedProx (IID)

FedProx (Non-IID)

Figure 6: This figure shows the evolution of model accuracy over training epochs for Pre-ResNets
and Vision Transformers under IID and Non-IID scenarios. It compares the performance using no
foundation model, weight initialization, and FedBaF with FedAvg and FedProx.
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E Convergence Analysis

This section provides a convergence analysis for the FedBaF algorithm under non-convex settings

using Stochastic Gradient Descent (SGD). The study demonstrates how integrating a foundation

model during aggregation can improve convergence rates, even in non-IID scenarios.

E.1 Problem Setup

Consider the global objective function in federated learning, which is defined as:

F (w) =
1∑m

k=1 nk

m∑
k=1

nkfDk
(w), (3)

where m is the number of clients, fDk
(w) represents the local objective function on client k, nk is

the number of data samples at client k, w ∈ Rd are the model weights, F (w) is the global objective

function. To simplify our analysis, we assume all clients participate in every global round.

We define w
(t,ℓ)
k as the model weights of client k at global round t and local update step ℓ.

Therefore, before the first local update step in each global round, each client’s model weights wt
k

are equal to the global model weights wt and

w
(t,0)
k = wt

k = wt. (4)

E.1.1 Assumptions

We make the following standard assumptions to facilitate the convergence analysis:

L-Smoothness: Each local objective function fDk
(w) is L-smooth with respect to w, meaning:

fDk
(v) ≤ fDk

(w) +∇fDk
(w)⊤(v −w) +

L

2
∥v −w∥2, ∀w,v ∈ Rd. (5)

and

∥∇fDk
(v)−∇fDk

(w)∥ ≤ L∥v −w∥, ∀w,v ∈ Rd. (6)

Unbiased Mini-Batch Gradients: The stochastic gradients computed over mini-batches during

local updates are unbiased estimates of the true gradients.

E [gDk
(w; b)] = ∇fDk

(w) ∀w ∈ Rd. (7)

Bounded Gradient Norm: The gradients of the local objective functions are bounded by a

constant β. Specifically,

∥∇fDk
(w)∥ ≤ β ∀w ∈ Rd. (8)

36



Bounded Gradient Noise:

E
[
∥gDk

(w
(t,ℓ)
k ; bk,ℓ)∥2

]
≤ G2 +B2∥∇F (wt)∥2 (9)

where G2 and B2 are constants that bound the dissimilarity, bk,ℓ denotes the j-th mini-batch on

client k, and ℓ indexes the local update steps during global round t.

Foundation Model Alignment: The foundation model shares the same architecture as the

global model, guaranteeing seamless integration during aggregation.

E.2 FedBaF Aggregation Step with Multiple Local Updates

The FedBaF algorithm operates in global rounds, where each global round t includes multiple local

iterations denoted by ℓ. Each client performs multiple local updates in each global round.

The global model is updated at round t using the rule:

wt+1 =
1

1 + αtτt

(
w′
t + αtτtwpre

)
, (10)

where w′
t is the aggregated model from the client updates, wpre is the foundation model’s weights,

αt is a scaling factor, and τt represents the correction factor based on the foundation model.

Each client k performs multiple local SGD updates over local iterations ℓ = 0, 1, . . . ,Λk − 1,

where Λk is the number of local updates for each client k. For each local update, the local model

is updated as:

w
(t,ℓ+1)
k = w

(t,ℓ)
k − ηgDk

(w
(t,ℓ)
k ; bk,ℓ), (11)

where gDk
(w

(t,ℓ)
k ; bk,ℓ) is the stochastic gradient computed on the mini-batch bk,ℓ at local iteration

ℓ.

At the end of the local updates, each client sends the model w
(t,Λk)
k to the server, where the

global model w′
t is computed as the weighted average of the client updates:

w′
t = wt − η

m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ), (12)

where pk =
nk∑m

k=1 nk
is the weight of client k.

Substituting this into the FedBaF update rule:

wt+1 =
1

1 + αtτt

(
wt + αtτtwpre − η

m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)

)
(13)
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For small values of αtτt ≪ 1, we use the fact that:

1

1 + αtτt
=

∞∑
i=0

(−αtτt)i

= 1− αtτt +
∞∑
i=2

(−αtτt)i

≈ 1− αtτt

(14)

which simplifies the update rule to:

wt+1 ≈ wt − η
m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)

− αtτt

([
wt − η

m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)

]
− (1− αtτt)wpre

)
.

(15)

The update rule can now be interpreted as multiple local gradient descent steps combined with

a bias correction. Here, we define the correction term χt as follows:

χt = αtτt

([
wt − η

m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)

]
− (1− αtτt)wpre

)
. (16)

χt acts as a correction that adjusts the direction of the gradient descent to leverage the foundation

model’s knowledge. The update rule becomes:

wt+1 ≈ wt − η
m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)− χt. (17)

E.3 Decrease in Objective Function

Using the smoothness property of F (w):

F (wt+1) ≤ F (wt) +∇F (wt)
⊤(wt+1 −wt) +

L

2
∥wt+1 −wt∥2. (18)

We substitute the update rule:

wt+1 −wt ≈ −η
m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)− χt. (19)
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Thus:

F (wt+1) ⪅F (wt)− η∇F (wt)
⊤

m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)−∇F (wt)

⊤χt

+
L

2
∥η

m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)− χt∥2.

(20)

Given the update rule, the change in the objective function can be bounded using the triangle

inequality:

F (wt+1)− F (wt) ⪅− η∇F (wt)
⊤

m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)−∇F (wt)

⊤χt

+ Lη2∥
m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)∥2 + L∥χt∥2

(21)

E.3.1 Taking Expectations

We now take expectations of both sides of (21), based on the unbiasedness of mini-batch gradients

and the assumptions about bounded gradient norms and smoothness.

We now compute the expectation of the change in the objective function:

E

[
∇F (wt)

⊤

(
−η

m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)

)]

= ∇F (wt)
⊤

(
−η(

m∑
k=1

pkΛk)∇F (wt) + η(
m∑
k=1

pkΛk)∇F (wt)− η
m∑
k=1

pk

Λk−1∑
ℓ=0

E
[
gDk

(w
(t,ℓ)
k ; bk,ℓ)

])

= −η(
m∑
k=1

pkΛk)∥∇F (wt)∥2 +∇F (wt)
⊤

(
η(

m∑
k=1

pkΛk)
m∑
k=1

pk∇fDk
(wt)− η

m∑
k=1

pk

Λk−1∑
ℓ=0

∇fDk
(w

(t,ℓ)
k )

)
.

(22)

Next, we simplify the remaining term:

= −η(
m∑
k=1

pkΛk)∥∇F (wt)∥2 + η
m∑
k=1

pk

Λk−1∑
ℓ=0

∇F (wt)
⊤
(∑m

k=1 pkΛk
Λk

∇fDk
(wt)−∇fDk

(w
(t,ℓ)
k )

)

≤ −η(
m∑
k=1

pkΛk)∥∇F (wt)∥2 +
η

2

m∑
k=1

pk

Λk−1∑
ℓ=0

[
∥∇F (wt)∥2 + ∥

∑m
k=1 pkΛk
Λk

∇fDk
(wt)−∇fDk

(w
(t,ℓ)
k )∥2

]
.

(23)
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Finally, using the fact that the gradient is bounded, we get:

≤ −

(
η

2

m∑
k=1

pkΛk

)
∥∇F (wt)∥2 +

η

2

m∑
k=1

pk

Λk−1∑
ℓ=0

∥
∑m

k=1 pkΛk
Λk

∇fDk
(wt)−∇fDk

(w
(t,ℓ)
k )∥2

≤ −

(
η

2

m∑
k=1

pkΛk

)
∥∇F (wt)∥2 +

η

2

m∑
k=1

2pk

Λk−1∑
ℓ=0

[
∥
∑m

k=1 pkΛk
Λk

∇fDk
(wt)∥2 + ∥∇fDk

(w
(t,ℓ)
k )∥2

]

≤ −

(
η

2

m∑
k=1

pkΛk

)
∥∇F (wt)∥2 + ηβ2

m∑
k=1

pk

(
(
∑m

k=1 pkΛk)
2

Λk
+ Λk

)
.

(24)

This provides a bound on the expected decrease in the global objective function.

Similarly,

E

[
Lη2∥

m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)∥2

]

≤ Lmη2
m∑
k=1

E

[
∥pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)∥2

]

≤ Lmη2
m∑
k=1

p2kΛk

Λk−1∑
ℓ=0

E
[
∥gDk

(w
(t,ℓ)
k ; bk,ℓ)∥2

]
≤ Lmη2

m∑
k=1

p2kΛ
2
k(G

2 +B2∥∇F (wt)∥2)

(25)

Plugging these bounds into (21) gives

E [F (wt+1)− F (wt)] ⪅ −η∇F (wt)
⊤

m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)−∇F (wt)

⊤E [χt]

+ Lη2∥
m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)∥2 + LE

[
∥χt∥2

]
≤ −

(
η

2

m∑
k=1

pkΛk

)
∥∇F (wt)∥2 + ηβ2

m∑
k=1

pk

(
(
∑m

k=1 pkΛk)
2

Λk
+ Λk

)
−∇F (wt)

⊤E [χt]

+ Lmη2
m∑
k=1

p2kΛ
2
k(G

2 +B2∥∇F (wt)∥2) + LE
[
∥χt∥2

]
≤

(
−η
2

m∑
k=1

pkΛk +B2Lmη2
m∑
k=1

p2kΛ
2
k

)
∥∇F (wt)∥2 + ηβ2

m∑
k=1

pk

(
(
∑m

k=1 pkΛk)
2

Λk
+ Λk

)

−∇F (wt)
⊤E [χt] + Lmη2

m∑
k=1

p2kΛ
2
kG

2 + LE
[
∥χt∥2

]

(26)
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E.4 Summing Over Iterations

To establish a convergence result, we sum this inequality over T iterations:

T∑
t=1

F (wt+1) ≤
T∑
t=1

F (wt) +

(
−η
2

m∑
k=1

pkΛk +B2Lmη2
m∑
k=1

p2kΛ
2
k

)
T∑
t=1

∥∇F (wt)∥2

+ ηβ2T
m∑
k=1

pk

(
(
∑m

k=1 pkΛk)
2

Λk
+ Λk

)
−

T∑
t=1

∇F (wt)
⊤E [χt]

+ Lmη2T

m∑
k=1

p2kΛ
2
kG

2 + L

T∑
t=1

E
[
∥χt∥2

]
(27)

As long as η <
∑m

k=1 pkΛk

2B2Lm
∑m

k=1 p
2
kΛ

2
k
, the term 1

2

∑m
k=1 pkΛk−B2Lmη

∑m
k=1 p

2
kΛ

2
k is positive. There-

fore, rearranging and dividing by T gives:

1

T

T∑
t=1

E[∥∇F (wt)∥2] ≤
F (w1)− F (wT+1)

T (12
∑m

k=1 pkΛk −B2Lmη
∑m

k=1 p
2
kΛ

2
k)

+
ηβ2

∑m
k=1 pk

(
(
∑m

k=1 pkΛk)
2

Λk
+ Λk

)
+ Lmη2

∑m
k=1 p

2
kΛ

2
kG

2

1
2

∑m
k=1 pkΛk −B2Lmη

∑m
k=1 p

2
kΛ

2
k

+
L
∑T

t=1 E
[
∥χt∥2

]
−
∑T

t=1∇F (wt)
⊤E [χt]

T (12
∑m

k=1 pkΛk −B2Lmη
∑m

k=1 p
2
kΛ

2
k)

(28)

If the sign of

LE[∥χt∥2]−∇F (wt)
⊤E[χt]

is negative, we obtain a tighter bound, which implies that the correction terms positively influence

convergence.

We know that:

χt = αtτt

([
wt − η

m∑
k=1

pk

Λk−1∑
ℓ=0

gDk
(w

(t,ℓ)
k ; bk,ℓ)

]
− (1− αtτt)wpre

)
.

This means:

E
[
∥χt∥2

]
= α2

t τ
2
t

∥∥∥∥∥
[
wt − η

m∑
k=1

pk

Λk−1∑
ℓ=0

∇fDk
(w

(t,ℓ)
k )

]
− (1− αtτt)wpre

∥∥∥∥∥
2

.

Given that αtτt is small enough at a sufficiently large global round t, the higher-order terms with

α2
t τ

2
t become negligible. Therefore, for large t, [∥χt∥2] ≈ 0. Next, the direction of the correction

χt and the direction of the gradient of the global objective ∇F (wt) agreeing implies that the inner

product ∇F (wt)
⊤E [χt] is positive.
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We conclude that:

LE
[
∥χt∥2

]
< ∇F (wt)

⊤E[χt].

This shows that the variance of the correction term χt is significantly smaller than its impact

on the inner product, leading to a tighter convergence bound, especially when αtτt is small but

positive.

E.5 Influence of the Correction Term

The correction term χt, derived from the foundation model, plays a significant role in the conver-

gence behavior. The influence of χt ensures that the gradient descent step is adjusted based on

the foundation model’s knowledge. By controlling the size of αtτt, the foundation model can guide

the global model towards better solutions, especially in non-IID scenarios. The correction term

provides additional stability and enhances convergence, particularly when the local models exhibit

significant heterogeneity.
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F Proofs of Propositions

F.1 Proof of Proposition 1

Proposition 1. Let w∗ be a (bounded) local minimum of the global objective function in (1).

Consider an FL algorithm that converges to w∗ and let w′
t be its global model in each training

round t. Suppose we run the same algorithm but using FedBaF for the aggregation, and let wt be

the FedBaF global model at round t. Let αt satisfy

αt <
2∥w′

t+1 −w∗∥2

(∥wpre −w∗∥2 − ∥w′
t+1 −w∗∥2)τt

(2)

for all t where ∥w′
t+1 −w∗∥2 < ∥wpre −w∗∥2. Then ∀t ∥wt −w∗∥ < ∥w′

t −w∗∥.
This means that, at any given round t, FedBaF’s model weights are closer to w∗.

Proof. We present a convergence analysis of our FL framework that incorporates foundation models

in the aggregation phase according to Alg. 1 Lines 8-10. By comparing the square distance between

wt+1 and w∗ to the square distance between w′
t+1 and w∗, we derive conditions under which our

method converges to w∗ faster than FedAvg. Noting that ∀t αt, τt ≥ 0,

∥wt+1 −w∗∥2 = ∥ 1

1 + αtτt
(w′

t+1 + αtτtwpre)−w∗∥2

=
1

(1 + αtτt)2
∥(w′

t+1 −w∗) + αtτt(wpre −w∗)∥2

≤
∥w′

t+1 −w∗∥2 + α2
t τ

2
t ∥wpre −w∗∥2

1 + 2αtτt + α2
t τ

2
t

(29)

For notational convenience, we define βt := ∥w′
t+1 − w∗∥ and γ := ∥wpre − w∗∥. FedBaF is

better than FedAvg when the right side is less than β2t . So, we upper bound the right side by β2t

and find values of αt that satisfy the bound.

β2t + α2
t τ

2
t γ

2

1 + 2αtτt + α2
t τ

2
t

< β2t

β2t + α2
t τ

2
t γ

2 < β2t + 2αtτtβ
2
t + α2

t τ
2
t β

2
t

α2
t τ

2
t (γ

2 − β2t )− 2αtτtβ
2
t < 0

Note that αt is sampled from the uniform distribution ψ
τ0
U(1, 2). For the above inequality to be

satisfied for a given t, there are three cases:

1. βt > γ: This case occurs when t is small and w∗ is closer to wpre than w∗ is to the FedBaF

global model. In this case, we require

αt >
2β2t

(γ2 − β2t )τt
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αt always satisfies this inequality since the RHS is negative and αt > 0 by definition.

2. βt = γ: This means that we require αt > 0, which is always true by definition.

3. βt < γ: This case may occur when t is large and w∗ is closer to the FedBaF global model

than w∗ is to wpre. In this case, we get a meaningful bound for αt:

αt <
2β2t

(γ2 − β2t )τt

When ∀t αt satisfies the above conditions, the proposition holds.
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F.2 Proof of Proposition 2

Proposition 2. Let w∗ be a (bounded) local minimum of the global objective function in (1).

Consider an FL algorithm that converges to w∗ and let w′
t be its global model. Consider FedBaF

based on the same FL algorithm (with appropriately modified client updates and Lines 8-10 in

Alg. 1) and let wt be the FedBaF global model. FedBaF’s global model error has an upper bound of

∥wt −w∗∥ ≤ δt+αtτtγ
1+αtτt

< δt.

Proof.

∥wt −w∗∥ =
∥∥∥∥ 1

1 + αtτt
(w′

t + αtτtwpre)−w∗
∥∥∥∥

=
∥(w′

t −w∗) + αtτt(wpre −w∗)∥
1 + αtτt

≤ ∥w
′
t −w∗∥+ αtτt∥wpre −w∗∥

1 + αtτt

=

∥∥∑
k∈St

nk
n (wk

t −w∗)
∥∥+ αtτt∥wpre −w∗∥

1 + αtτt

≤
∑

k∈St

nk
n ∥w

k
t −w∗∥+ αtτt∥wpre −w∗∥

1 + αtτt

≤ δt + αtτtγ

1 + αtτt

where we set γ = ∥wpre −w∗∥. Since non-IID data can cause significant variance in local updates,

we compare the derived bound to FedAvg, where the bound on the distance between wt and w∗ is

δt. By assumption, γ ≤ δt for earlier rounds (small t). We get δt+αtτtγ
1+αtτt

≤ δt, which is equivalent to

δt + αtτtγ ≤ δt + αtτtδt = δt(1 + αtτt)

Therefore,

∥wt −w∗∥ ≤ δt + αtτtγ

1 + αtτt

Since δt+αtτtγ
1+αtτt

≤ δt, FedBaF has a tighter upper bound on ∥wt −w∗∥ than FedAvg. This demon-

strates the advantage of using a foundation model in non-IID settings.
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G Security Analysis in the Presence of Adversarial Attacks

In this section, we discuss the potential for extracting a foundation model in FedBaF and demon-

strate FedBaF’s robustness against backdoor attacks. These attacks pose unique security challenges

to FL systems, involving malicious alterations within model updates to degrade system performance

or embed hidden vulnerabilities. We will analyze how FedBaF mitigates these threats and ensures

integrity and security.

G.1 Possibility of Extracting a Foundation Model

As discussed in Section 3, using a randomized αt prevents the extraction of the foundation model’s

weights. However, the aggregated global models might still exhibit components of the foundation

model by following a similar weight distribution. To investigate this, we analyze the distance

between the global model and the foundation model over the first 200 aggregation rounds.

Let wt+1 and wpre represent the weights of the global model and the foundation model, respec-

tively. For each weight tensor wi
t+1 and wi

pre with matching shapes, we calculate the normalized

distance for each element and then average these distances. For each element j in the weight tensor

wi
t+1 and wi

pre:

distij =
|wit+1,j − wipre,j |
|wit+1,j |

where wit+1,j is the j-th element of the i-th weight tensor of the global model; wipre,j is the j-th

element of the i-th weight tensor of the foundation model; and distij is the normalized distance for

the j-th element of the i-th weight tensor.

We concatenate all element-wise distances distij across all weight tensors and then compute the

mean of these distances:

Dist =
1

Nparam

∑
i=1

∑
j=1

distij

where Nparam is the total number of elements across all matching weight tensors and Dist is the

overall average normalized distance.

In Figure 7, the curves show the distances, Dist, for each aggregation round. The minimum

Dist across all cases was 1.27, indicating that the distance has a 127% scale of the magnitude of

the weights of the aggregated global model. This means the foundation model’s weights differ in

scale from the aggregated weights. To analyze the effect of distance intensity, we added Gaussian

random noise based on the magnitude of each foundation model’s weights to the foundation model’s

weights.

Figure 8 shows the testing accuracy as a function of the added noise. The x-axis represents the

error rate, calculated by dividing the magnitude of the added Gaussian noise by the magnitude of

the foundation model’s weights. We used the best-performing foundation models from those with

varying pre-trained sample sizes, as described in Section C. When a 127% error rate is applied, the
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a) Pre-ResNet
     (100,000 Pre-trained Data Samples)

b) Vision Transformer
     (2,500 Pre-trained Data Samples)

c) Transformer
     (640,000 Pre-trained Data Samples)

FedAvg

FedProx

FedAvg

FedProx

Figure 7: Distances (Dist) between the global model and the foundation model across aggregation
rounds. The minimum Dist observed was 1.27, indicating significant differences in scale between
the foundation model’s weights and the aggregated global model’s weights.

Pre-ResNet model shows almost 0% testing accuracy, the Vision Transformer shows 30% testing

accuracy, and the Transformer model exhibits excessively high testing perplexity. This empirical

evidence indicates that extracting the foundation model’s knowledge is impossible after training

begins from the global model. The diverse updates during training in FedBaF significantly dis-

rupt the alignment between the foundation model’s weights and the global model, preventing any

meaningful extraction of the foundation model’s information.

To this end, we examine the proximity of the global model, wt, to the foundation model and to

the averaged local models, w′
t, throughout the training process. We first determine the distances

between w′
t and wt and between wt and wpre:

∥wt −w′
t∥ =

∥∥∥∥ 1

1 + αtτt
(w′

t + αtτtwpre)−w′
t

∥∥∥∥
=

αtτt
1 + αtτt

∥w′
t −wpre∥

∥wt −wpre∥ =
∥∥∥∥ 1

1 + αtτt
w′
t + αtτtwpre −wpre

∥∥∥∥
=

1

1 + αtτt
∥w′

t −wpre∥

At the onset of training, both distances are equivalent since we make a strategic choice for the

weight αtτ0 to be approximately 2. This simplifies the initial update rule for the global model

such that the initial global model weights, w0, are an unweighted average of the client’s updated
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a) Pre-ResNet
     (100,000 Pre-trained Data Samples)

b) Vision Transformer
     (2,500 Pre-trained Data Samples)

c) Transformer
     (640,000 Pre-trained Data Samples)

Figure 8: Testing accuracy according to the added noise. The x-axis error rate is calculated by
the magnitude of the added Gaussian noise divided by the magnitude of the foundation model’s
weights.

model weights w′
0 and the foundation model weights wpre. As the training progresses, αtτt typically

decays to less than 1. We deduce for t > 0:

αtτt
1 + αtτt

<
1

1 + αtτt
=⇒ ∥wt −w′

t∥ < ∥wt −wpre∥

As t→∞, wt will drift away from wpre and towards w′
t. Due to the intricate dissemination of

learned insights across all model weights, and the complexities of high-dimensional weight spaces,

it is difficult to reverse-engineer wpre from wt. Even a subset of weights does not provide enough

information to predict the rest deterministically. The inherent complexity of the model weight

(parameter) space is a natural defense mechanism in FedBaF.

G.2 Mitigating Backdoor Attacks

Backdoor attacks in FL involve embedding a dormant malicious function in a local model. In-

tegrating foundation models mitigates such attacks by diluting the impact of individual client

updates. Specifically, we have the updates

∆wt
client = ClientUpdate(wt)

wt+1 =
1

1 + αtτt
(∆wt

client + αtτtwpre)

Here, ∆wt
client is the update from client c at iteration t, and wpre is the foundation model weight.

The factor τt controls the influence of the foundation model. This mathematical formulation show-

cases the security benefits of our method. By incorporating the foundation model, the aggregation

counterbalances the (malicious) client update ∆wt
client. This approach thus enhances the system’s

resilience to adversarial attacks by maintaining a consistent learning direction and reducing the

impact of compromised updates.
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a) Pre-ResNet (FedAvg) b) Vision Transformer (FedProx) c) Transformer (FedAvg)

Figure 9: Variations of ∥ w′
t+1

∥w′
t+1∥
− wt

∥wt∥∥ (= τt
√
t+ 1) across training rounds.

G.3 Experiments on Variations of τt

Figure 9 illustrates the non-adversarial IID and non-IID scenarios from Tables 3, 4, and 5. We

observed that the numerator of τt (as referenced in Alg. 1 Line 9 ) consistently decreases towards 0,

independent of the denominator (
√
t+ 1), after several rounds. This indicates that FedBaF benefits

from the foundation model’s guidance but retains the ability to effectively and quickly adapt to

new data.

49


	Introduction
	Related Work
	Methodology
	THEORETICAL ANALYSIS
	General Convergence Analysis
	Effectiveness of FedBaF with Diverse Client Data

	Experimental Evaluations
	Experimental Setup
	Experimental Results
	Testing FedBaF Performance
	FedBaF's Robustness to Attacks


	Conclusion
	Experimental Setup
	Formulas for Evaluating Computational Complexity
	Additional Experimental Evaluations
	Differentiating the Quality of Pre-Trained Foundation Models
	Using the Official Pre-Trained Foundation Model
	Generalized Applicability of FedBaF with FedAdam
	Computational Complexity

	Training curves
	Convergence Analysis
	Problem Setup
	Assumptions

	FedBaF Aggregation Step with Multiple Local Updates
	Decrease in Objective Function
	Taking Expectations

	Summing Over Iterations
	Influence of the Correction Term

	Proofs of Propositions
	Proof of Proposition 1
	Proof of Proposition 2

	Security Analysis in the Presence of Adversarial Attacks
	Possibility of Extracting a Foundation Model
	Mitigating Backdoor Attacks
	Experiments on Variations of .


