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This study examines the role of human dynamics within Geospatial Artificial Intelligence (GeoAl), highlighting its
potential to reshape the geospatial research field. GeoAl, emerging from the confluence of geospatial technologies
and artificial intelligence, is revolutionizing our comprehension of human-environmental interactions. This revolu-
tion is powered by large-scale models trained on extensive geospatial datasets, employing deep learning to analyze
complex geospatial phenomena. Our findings highlight the synergy between human intelligence and Al. Particularly,
the humans-as-sensors approach enhances the accuracy of geospatial data analysis by leveraging human-centric Al
while the evolving GeoAl landscape underscores the significance of human-robot interaction and the customization
of GeoAl services to meet individual needs. The concept of mixed-experts GeoAl, integrating human expertise with Al
plays a crucial role in conducting sophisticated data analyses, ensuring that human insights remain at the forefront
of this field. This paper also tackles ethical issues such as privacy and bias, which are pivotal for the ethical applica-
tion of GeoAl. By exploring these human-centric considerations, we discuss how the collaborations between humans
and Al transform the future of work at the human-technology frontier and redefine the role of Al in geospatial
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1 Introduction

The convergence of geospatial technologies and artificial
intelligence (AI) has led to the emergence of Geospatial
Artificial Intelligence (GeoAl), a dynamic subfield at the
forefront of transforming human interactions with the
world (Biljecki & Ito, 2021; Janowicz et al., 2020). Cen-
tral to GeoAl are foundation models, large-scale frame-
works trained on diverse geospatial datasets designed to
encapsulate a comprehensive understanding of geospatial
phenomena (Biljecki & Ito, 2021; Van Dao et al., 2020; Li
& Hsu, 2018; Reichstein et al., 2019). These models excel
in analyzing and interpreting complex geospatial data,
including satellite images, street view datasets, GIS data-
sets, and spatial-temporal big data, at both individual
and collective levels. The role of human dynamics, which
refers to all forms of human activities and interactions, is
pivotal in GeoAl. GeoAl gains a nuanced layer of under-
standing by embedding the concepts of human activities
and interactions in space and time. Integrating human
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dynamics with AI and geospatial technologies enables
researchers and practitioners to uncover more profound
insights into environmental changes, urban development,
and natural resource management, among other geo-
spatial phenomena (Shaw et al., 2016; Shaw & Sui, 2018;
Ye et al., 2023). For example, urban planners can utilize
GeoAl to discern patterns of urban growth, forecast infra-
structure needs, and refine city layouts for enhanced effi-
ciency and sustainability, while incorporating the human
dynamics into these geospatial configurations (Alastal &
Shaqfa, 2022; Mortaheb & Jankowski, 2023; Tao, 2013).
As another example, decision-makers in governments
can harness GeoAl technologies to comprehend and pre-
dict trends in disasters like tornadoes, floods, and wild-
fires, thereby bolstering emergency response efforts with
a focus on human-centric strategies and solutions (Al
Qundus et al., 2020; Alizadeh et al., 2022; Fan et al., 2021;
Imran et al., 2020; Sun et al., 2020).

The advent of GeoAl has introduced several innovative
concepts that are transforming urban studies, including
the integration of ’humans-as-sensors’ and the develop-
ment of embedded artificial intelligence systems. Embed-
ded AI refers to Al technologies that are integrated
directly into physical devices and systems, allowing for
real-time processing and decision-making within geospa-
tial contexts (Charalampous et al., 2017; Lee et al., 2023).
This concept is particularly relevant in applications like
autonomous vehicles and smart cities, where the ability
to process spatial data on-the-fly is critical for function-
ality and safety. By embedding AI into these systems,
GeoAl enhances their ability to interact with and adapt
to dynamic environments, making them more respon-
sive and efficient. This approach is pivotal in human-
centric Al, which emphasizes the super alignment of
between Al-generated decisions (e.g., planning, actions,
recommendations) and human values and human fac-
tors. Essentially, GeoAl foundation models are devel-
oped to perceive the environments through a human
lens instead of solely from the perspective of machines
(Chen et al., 2023; Janowicz et al., 2020; Proulx et al,,
2016). For instance, by integrating human safety risk rat-
ings for streets, GeoAl models can conduct more precise
safety assessments for extensive urban areas. For exam-
ple, GeoAl has been combined with citizen science and
computer vision algorithms to map flood depth at the
street level (Alizadeh et al., 2022). Reinforcement learn-
ing has recently been used to perform intelligent routing
in emergency management (Li et al., 2024).

When we combine GeoAl with social media, health,
and census data, GeoAl can assess health risks in specific
urban locales, aiding in reducing the health hazards faced
by local communities (Li et al., 2022). In this way, GeoAl
serves as a critical bridge between humans and machines,
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offering a richer, more human-focused understanding of
our constantly evolving world.

In the dynamic realm of GeoAl, the interplay between
humans and Al is increasingly influential, reshaping how
individuals engage with geospatial technologies. Person-
alized GeoAl elevates such interactions, customizing
insights and recommendations by incorporating more
individual preferences and needs (Li et al., 2024; Li and
Zhang, 2021). This personalized approach improves user
experiences and strengthens the connection between
the public and geospatial analysis. Such personalization
becomes particularly impactful in diverse applications,
like urban mobility and smart city initiatives, where indi-
viduals can receive tailored recommendations for effi-
cient trips that reflect their specific preferences, thereby
enhancing user satisfaction and promoting sustainable
travel behaviors. Furthermore, incorporating human
perceptions and mobility patterns into GeoAl enhances
predictive precisions. This leads to a more intricate and
accurate understanding of the environment, underlining
the importance of human factors in advancing GeoAl
applications.

A concept closely related to personalized GeoAl is
the idea of mixed-experts GeoAl, which involves the
collaboration of human experts and Al systems in geo-
spatial analysis to support decision-making. The idea of
mixed-experts GeoAl represents a significant advance-
ment in the way geospatial analysis is conducted, by inte-
grating the strengths of both human expertise and Al
systems to support complex decision-making processes.
This approach leverages the strengths of both human
expertise and AI's data processing capabilities, creating
a powerful synergy that is particularly useful in complex
geospatial tasks (von Krogh, 2018; Zhang et al., 2022). For
instance, in disaster response scenarios, human experts
can provide critical insights based on experience and
contextual understanding, while Al systems can rapidly
process vast amounts of data to identify patterns and
predict outcomes (Fan et al., 2021). The integration of
mixed-expert systems in GeoAl has shown promise in
various fields, including urban planning, environmental
monitoring, and resource management, where the com-
bination of human intuition and machine precision can
lead to more effective and informed decisions. Recent
studies have also highlighted the importance of iterative
feedback loops between humans and Al in these sys-
tems, where AI models are continually refined based on
expert input, leading to increasingly accurate and reliable
outcomes (Jarrahi, 2018). For instance, human experts
can provide expert knowledge in disaster response,
while GeoAl processes provide data-driven approach to
enhance decision-making. The integration of mixed of
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experts with GeoAl not only leverages the capabilities of
Al but also ensures that human remains a central compo-
nent in addressing the multifaceted nature of geospatial
phenomena. As these dynamics continue to evolve, the
interplay between humans and GeoAl holds the potential
to unlock new possibilities for understanding and navi-
gating the changing world.

While data privacy, security, and ethical challenges are
common across Al technologies, GeoAl presents unique
issues due to its integration of geospatial data. The reli-
ance on human location trajectories and geographically
tagged social media data introduces specific privacy con-
cerns distinct from other Al applications. (Dilmaghani
et al., 2019; Murdoch, 2021; Saura et al, 2022; Subra-
manian, 2017). Geospatial datasets are inherently tied
to spatial contexts, leading to challenges such as risks
of unauthorized tracking of individual movements and
potentials for misuse of location-based information. Fur-
thermore, the combination of geospatial big data with
human-centric attributes like facial and gait features
amplifies public concerns, as these data sets can be used
to create detailed personal profiles, thus intensifying the
privacy risks associated with GeoAI (Dilmaghani et al.,
2019; Harris et al.,, 2022; Liu et al., 2019; Lorestani et al.,
2024; Murdoch, 2021; Rao et al.,, 2023). Issues related
to privacy, data security, and bias in algorithms must
be addressed to ensure responsible and equitable use
of these technologies (Janowicz et al., 2020; Kang et al.,
2024). Striking a balance between innovation and ethical
considerations is crucial to harness the full potential of
GeoAl while minimizing potential risks.

The following sections will discuss the pros and cons of
GeoAl from human dynamics perspectives, teaming with
GeoAl, the future direction of robotics embedding with
human-centered GeoAl technology, and potential job
opportunities with GeoAl technology.

2 The human perspective: pros and cons

In recent years, some applications and commercial prod-
ucts driven by GeoAl models are starting to affect the life
experiences of people. Meanwhile, the academic com-
munity is actively exploring and discovering the poten-
tial and capability boundaries of GeoAl technologies in
enhancing societal productivity and efficiency of indi-
viduals’ lives (Choi, 2023; Janowicz et al., 2020). How-
ever, as an emerging technology, the impacts of GeoAl on
human society still need additional in-depth observations
and investigations (Del Giudice et al.,, 2023). Currently,
most academic studies consider that GeoAl technolo-
gies improve the efficiency and accuracy of human-
related tasks and enhances intelligence in people’s daily
lives and works (Kamel Boulos et al., 2019; Purbahapsari
& Batoarung, 2022; Yin et al.,, 2017). Meanwhile, some
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scholars and practitioners also express concerns about
the excessive reliance on GeoAl technologies, issues
related to privacy, and potential impacts on job opportu-
nities in geospatial-related fields (Del Giudice et al., 2023;
Kang et al.,, 2023; Shaw & Sui, 2021; Zhao et al., 2021).
Therefore, we discuss the implications of GeoAl technol-
ogy on human lives below.

2.1 Pros

As one highlight of GeoAl technologies, GeoAl-driven
models can process vast amounts of geospatial data, cap-
ture the geospatial features in the data, and offer insights
that facilitate human decision-making in urban man-
agement and planning, environmental assessment, and
emergency response (Choi, 2023; Janowicz et al., 2020;
Song et al,, 2023). The capability of analyzing and inter-
preting geospatial data enables GeoAI models to contrib-
ute significantly to optimizing public resource allocation,
predicting environmental changes, and enhancing the
overall efficiency of emergency response systems. For
example, leveraging GeoAl technologies allows for a
rapid and accurate classification of objects or land use
in remote sensing images. In the application of wildfire
monitoring, classification models powered by GeoAl can
detect open fire points and potential ignition locations
with sufficient combustibles (e.g., dry trees or shrubs)
(Cilli et al., 2022; Jaafari et al., 2019; James et al., 2023;
Radke et al.,, 2019). This facilitates people to take appro-
priate measures within a relatively short period and
reduces the impacts of large-scale wildfires.

Compared to traditional geospatial data analysis
approaches, the methodologies driven by GeoAl mod-
els can improve efficiency and help to reduce the corre-
sponding costs of data processing and decision-making.
This is because GeoAl leverages advanced algorithms
and computing power to automate the processing
and analysis of large datasets, which would otherwise
require extensive manual effort and time. By streamlin-
ing these processes, related stakeholders can allocate
their resources more effectively, focusing on strategic
decision-making rather than labor-intensive data analy-
sis tasks. Meanwhile, the cost spent on repetitive manual
data analysis can be further reduced. Taking land use
monitoring as an example, GeoAl offers a low-cost and
accurate solution to identify the attributes and catego-
ries of urban areas, which assists governments in moni-
toring and assessing differences between planned and
actual land use types (Alem & Kumar, 2020; Chaturvedi
& de Vries, 2021; Chen et al., 2014). Moreover, based on
crowdsourced geospatial data, GeoAI models can pre-
dict crowd volume and transportation flows in the short
or long term, which supports transportation authori-
ties in better allocating public resources and further
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reducing the probability of traffic congestion (Ai et al.,
2019; Akhtar & Moridpour, 2021; Boukerche et al., 2020;
Li et al,, 2021; Li et al,, 2023; Lin et al.,, 2018; Miglani &
Kumar, 2019). Specifically, based on the crowd and trans-
portation prediction outcomes, the authorities can tem-
porarily increase the capacity of public transportation
during the peak hours between high-traffic areas (e.g.,
between residential and CBD areas), introduce reversible
lanes to handle traffic volume on busy roads, and plan
new roadways to divert traffic.

Furthermore, GeoAl facilitates personalized location-
based services, which can provide tailored solutions for
individuals based on their unique geospatial needs and
preferences (Gao et al., 2023; Sojahrood & Taleai, 2021;
Yao et al., 2023). For some location-based recommender
services, GeoAl is able to recommend travel destinations
and travel modes to meet the different requirements of
different users. Taking tourists as an example, a recom-
mendation system driven by GeoAl models can arrange
travel itineraries that include the destinations or scenes
where the tourists are interested with appropriate trans-
portation modes. The recommended itineraries allow
the tourists to achieve their travel desires at acceptable
costs. Another location-based service driven by GeoAl
leverages the knowledge or features captured from street
view data to recommend appropriate routes that meet
the users’ need for personal safety or comfort when
they walk in cities (Gong et al., 2018; Kang et al., 2020;
F. Zhang et al., 2018a, 2018b). A CNN-based deep learn-
ing model can identify streets with different safety levels
in cities, which uses massive street view data and corre-
sponding manually labeled safety level indicators (Zhang
et al., 2021). According to the classification results, users
can arrange their preferred routes to avoid incidents that
threaten their safety. Like the safety level classification,
GeoAl models can predict outdoor comfort in cities.
Liu et al., (2023) developed a graph-based deep learning
model leverages crowdsourced data and computer vision
to predict individuals’ comfort on sidewalks, which can
provide users with a reference on the comfort level of
their outdoor trips.

GeoAl models open new possibilities for innovative
applications, such as autonomous vehicle navigation,
environment-aware autonomous robots, and smart city
development (Janowicz et al, 2020; Van Brummelen
et al., 2018). These applications leverage GeoAl for spa-
tial reasoning, optimization, and prediction to create
more intelligent and responsive systems. For instance,
in autonomous vehicle navigation, GeoAl can process
and interpret complex spatial environments in real-time,
enabling vehicles to make safe and efficient decisions on
the move (Badrloo et al., 2022). Similarly, environment-
aware autonomous robots can utilize GeoAl to navigate
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and perform tasks in dynamic and unpredictable settings,
such as disaster response scenarios or agricultural moni-
toring (Shakeri et al., 2019). In general, the emergence
of GeoAl has provided the opportunity to enhance the
convenience and efficiency of human lives. Applications
driven by GeoAl exhibit significant potential for expan-
sion and innovation, offering extensive opportunities for
advancement in the future.

2.2 Cons

Despite the promising advancements in GeoAl, concerns
arise regarding the potential consequences of over-reli-
ance on these technologies (Lepri et al., 2021; Zhao et al.,
2021). Excessive dependence on GeoAl can diminish the
importance of human expertise in the geospatial domain.
As automated systems take over tasks traditionally per-
formed by human professionals, there is a risk of eroding
the deep understanding and intuition that human experts
bring to the interpretation of complex geospatial data. It
is crucial to strike a balance between the capabilities of
GeoAl and the irreplaceable insights provided by geo-
domain experts, ensuring that human knowledge and
intuition continue to play a vital role in decision-making
processes.

Another significant challenge associated with integrat-
ing GeoAl is the potential for job displacement (Moradi
& Levy, 2020). The automation of manual geospatial tasks
through Al algorithms could lead to a reduced demand
for specific roles in the geospatial industry (Huang &
Rust, 2018; Jaiswal et al., 2023; Ramachandran et al., 2024;
Tschang & Almirall, 2021; TU et al,, 2023; Vrontis et al,,
2023). Jobs involving routine data collection, analysis, and
mapping may be particularly susceptible to automation,
raising concerns about job displacement and the need to
reskill the workforce. Efforts should be directed towards
proactive measures, such as providing training programs
and fostering the development of new skills, to mitigate
the impacts of job displacement and ensure a smooth tran-
sition for professionals in the geospatial field (Ramachan-
dran et al., 2024; TU et al., 2023; Vrontis et al., 2023).

GeoAl applications present distinct privacy and ethical
challenges that are particularly acute due to their reliance
on geospatial data, which is inherently tied to individuals’
physical locations and movements. Unlike general Al sys-
tems, which may process abstract or anonymized data,
GeoAl often involves the collection, storage, and usage
of highly sensitive and personal location-based informa-
tion (Janowicz et al,, 2020; Kang et al., 2024; Shi et al,,
2023; Walker & Winders, 2021). This raises unique risks,
such as potentials for unauthorized surveillance or unin-
tended exposures of individuals’ whereabouts and daily
routines. The integration of geographically tagged social
media data further complicates these issues, as it can lead
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to the creation of detailed personal profiles that combine
both spatial and social information (Jaiswal et al., 2023;
Liu et al., 2019; Lorestani et al., 2024; Rao et al., 2023).
Such profiles can be misused, leading to privacy breaches
that are more invasive than those typically associated
with non-geospatial data. Addressing these concerns
requires a concerted effort to develop ethical frameworks
and technological safeguards specifically tailored to the
complexities of geospatial data. This includes implement-
ing strict access controls, enhancing data anonymization
techniques, and ensuring that data usage complies with
privacy regulations and user consent. For instance, the
tracking and analysis of the location data of individuals
can lead to invasive surveillance and privacy breaches
if not handled with the utmost care and responsibility.
Such practices can expose individuals’ habits, routines,
and even confidential activities, raising significant con-
cerns about data security, and the potential for misuse
by various actors (i.e., corporations and governments). In
addition, bias in GeoAI algorithms, resulting from unrep-
resentative or skewed data sets, can lead to unfair or dis-
criminatory outcomes (Jarrahi, 2018; Ntoutsi et al., 2020;
Roselli et al., 2019). For example, location-based services
might offer biased recommendations or exclude certain
demographics, reinforcing existing inequalities.

To address these challenges, it becomes imperative to
approach the development of GeoAlI with a thoughtful
and ethical framework (Liu et al., 2019; Lorestani et al.,
2024). Striking a balance that preserves human expertise
while embracing the efficiency and capabilities of GeoAl
is essential for sustainable and responsible integration of
these technologies in geospatial data usage and analysis.

3 Teaming with GeoAl

Considering the impact of GeoAl on human life, we
need to further discuss the conveniences and challenges
brought by GeoAl from both individual and collec-
tive perspectives. From the perspectives of individuals,
GeoAl-related applications can provide accurate, per-
sonalized recommendations, navigations, and compre-
hensive views by integrating data from various sources
to help people better plan and organize their daily rou-
tines and activities. GeoAl, performed as a virtual advi-
sor, offers personalized and feasible suggestions to users,
allowing users to make decisions based on their actual
circumstances (Maria et al., 2022). For groups and teams’
cooperation, GeoAl-related applications provide an effi-
cient platform linked to human-based (empirical) and
Al-based (data-driven) insights to achieve more com-
prehensive solutions for real-world issues. Hybrid teams
composed of GeoAl and human experts adopt a work-
flow of training-feedback-retraining, gradually deepen-
ing the model’s understanding of the real-world problem,
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while achieving reasonable, feasible, and robust results.
Additionally, GeoAl can offer consultancy to human
groups, assisting them in understanding the situation of
problems from multiple perspectives and making rea-
sonable solutions. While offering advantages, the poten-
tial issues of personal GPS or other spatial data privacy
breaches, societal inequality, and the development costs
of GeoAl models are also significant challenges that need
to be discussed and further addressed.

3.1 Individual perspective
The RLHF (Real-time, Local, Holistic, Feedback-driven)
approaches ensure that GeoAl systems can provide
timely, localized, comprehensive, and adaptive insights
into individuals’ daily lives. The development of GeoAl-
driven applications in personalized location services
(e.g., trip recommendations, health care, emergency
responses), geoprivacy protection, user-friendly interface
design, and affordability have attracted significant atten-
tions in recent years (Ye et al.,, 2023). Although GeoAl
models open up opportunities to provide better individ-
ual services, these models face some critical challenges
that require more discussions and further study.
GeoAl-driven tools and services have ushered in an
era of unprecedented personalization, where technol-
ogy seamlessly adapts to individual needs. This level of
personalization is particularly evident in location-based
services, which have seen significant advancements
through the integration of GeoAl technologies (Chen
et al., 2023). One of the most notable aspects of GeoAl
for individuals is its capacity to provide tailored recom-
mendations, such as personalized travel itineraries and
navigation routes, which are designed to align with user
preferences and real-time environmental conditions
(Gao et al., 2023; Kang et al., 2024). These services are
increasingly relying on sophisticated GeoAl algorithms
that can process vast amounts of geospatial data to offer
insights that are both timely and contextually relevant.
Whether suggesting the best local dining options, nearby
entertainment events, or customized travel itineraries,
GeoAl applications enhance daily lives by aligning with
personal preferences and routines. Navigation is another
facet where individual perspectives shine through. GeoAl
systems assist in optimizing travel routes based on real-
time data, taking into account user-defined preferences.
Furthermore, these applications offer a comprehensive
worldview, delivering information about local phenom-
ena, events, and services, allowing individuals to plan
better and organize their daily routines and activities. In
essence, GeoAl caters to the unique needs of each indi-
vidual, offering not only efficiency and convenience but



Ye et al. Urban Informatics (2025) 4:2

also a sense of empowerment over their surroundings
(Bingley et al., 2023).

Compared to traditional recommendation services,
GeoAl-driven recommendation systems can learn and
remember historical user selections for specific services
and then offer helpful recommendations when users visit
new places. GeoAl systems consider locations as a critical
factor, recognizing that user preferences may vary signifi-
cantly depending on where they are. The GeoAl-driven
recommendation systems can leverage the historical con-
texts of users’ interactions across different geographical
areas and learn users’ preferences for traveling and vis-
iting destinations. Based on the learned knowledge, the
recommendation systems can provide thoughtful sug-
gestions that best meet the users’ needs when they travel
to new places. Moreover, the GeoAl-driven recommen-
dation systems can provide adaptive and personalized
explorations for users. The recommendation systems can
record the destinations chosen by users and adaptively
learn the preferences and patterns for individuals’ desti-
nation selections. Based on the adaptive recommenda-
tions, the systems focus on personalization and aim to
make each user’s experience unique by offering recom-
mendations that resonate with their specific tastes and
interests. For example, based on historical and real-time
traffic data, GeoAl-based navigation systems can forecast
future road traffic conditions and suggest the best route,
which facilitates people’s daily lives in arranging their
trips and activities (Li et al., 2024).

GeoAl introduces unique privacy challenges that go
beyond the scope of traditional Al applications, particu-
larly in the context of user-friendly interfaces and privacy
data applications (Dilmaghani et al, 2019; Murdoch,
2021). While general Al systems often deal with non-spa-
tial data, GeoAT's reliance on human location trajectories
and geographically tagged social media data necessitates
a more nuanced approach to privacy (Rao et al., 2023).
For instance, user interfaces that display real-time loca-
tion data or offer personalized location-based recom-
mendations must balance providing valuable insights
with protecting sensitive information (Jaiswal et al,
2023). The integration of such data within GeoAl systems
increases the risk of unauthorized tracking and profiling,
which can lead to significant ethical and privacy concerns
(Liu et al., 2019; Lorestani et al., 2024). Additionally, the
use of geospatial data in health and emergency response
applications, while beneficial, must be carefully managed
to prevent inadvertent disclosure of personal informa-
tion, especially when these datasets are combined with
other sensitive attributes like health records or biomet-
ric data (Alizadeh et al., 2022). As a result, GeoAl-driven
user interfaces must incorporate advanced anonymi-
zation techniques, geospatial data encryption, and
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user-consent mechanisms to safeguard individual privacy
while still enabling meaningful spatial analysis (Murdoch,
2021; Saura et al., 2022). Moreover, GeoAl can assist in
compliance with geoprivacy regulations by automatically
identifying and masking sensitive information in geospa-
tial datasets. However, it is important to note that a fine
line exists between leveraging geospatial data for benefi-
cial insights and infringing on individuals’ privacy. Ensur-
ing that GeoAl applications do not unintentionally reveal
sensitive geoprivacy information or contribute to surveil-
lance without consent is a critical challenge.

GeoAl also improves healthcare and disease surveil-
lance for individuals’ lives. Taking the Covid-19 pan-
demic as an example, GeoAI models can analyze various
data sources, including travel patterns, social media
posts, and satellite imagery, to predict Covid-19 outbreak
locations and spread. This information not only helps
public health officials and governments prepare and
respond more effectively but also prompts and warns the
public to avoid or reduce travel to high-risk areas. GeoAl
is instrumental in developing dashboards and maps that
track the spread of COVID-19 in real time. During the
pandemic, the Johns Hopkins University COVID-19
dashboard provided the public with up-to-date informa-
tion on case numbers, hospitalizations, and deaths, which
became a vital resource worldwide (Dong et al., 2022).
This information helps the governments and researchers
control the pandemic spread and facilitates the public to
understand the big picture of this pandemic status and
trends. Beyond COVID-19, GeoAl enables more efficient
delivery of telehealth services by optimizing scheduling
and routing for home healthcare providers. This ensures
that patients receive timely care, especially in remote or
underserved areas.

The integration of GeoAl with user-friendly interface
designs can significantly improve the accessibility of geo-
spatial data analysis. By simplifying the interaction with
complex GeoAl tools, non-expert users can benefit from
advanced spatial insights without needing specialized
training. This democratization of GeoAl applications has
the potential to empower a broader range of users to lev-
erage geospatial data or geospatial analysis results in their
works and lives. Meanwhile, developing a user-friendly
interface that is both powerful enough to handle the
complexities of GeoAl analytics and intuitive enough for
general users is a significant design and technical chal-
lenge. The risk is creating interfaces that are either too
simplistic to be useful for advanced analysis or too com-
plicated for non-specialist users to navigate effectively.
A possible solution is to integrate users’ feedback into
the interface design process, which requires the GeoAl
models to understand the feedback and make responsive
updates in the interface.
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GeoAl can make geospatial analysis more affordable by
automating processes that previously required significant
human labor and expertise. This automation can reduce
costs for businesses and governments, making spatial
insights more accessible to smaller entities or resource-
constrained organizations. Additionally, as GeoAl tech-
nologies become more widespread, the costs associated
with them are likely to decrease, further enhancing
their affordability. However, the initial development and
implementation costs of GeoAl systems can be high,
especially for cutting-edge applications. This includes the
costs of acquiring high-quality geospatial data, investing
in computing infrastructure, and developing or purchas-
ing GeoAl algorithms and software.

3.2 Team perspective

GeoAl-based systems extend their transformative influ-
ence beyond individual experiences and seamlessly inte-
grate into the realm of team collaboration (Mortaheb &
Jankowski, 2023; Scheider & Richter, 2023). These appli-
cations serve as a unifying platform where the synergy
of human-based empirical knowledge and Al-driven
insights converges, fostering more comprehensive solu-
tions for real-world challenges. Teams and groups ben-
efit from GeoAl approaches by leveraging their ability
to analyze and process vast amounts of geospatial data,
providing valuable insights and recommendations that
aid in decision-making. GeoAl facilitates the exchange
of real-time, data-driven information among team mem-
bers, allowing for quicker and more informed responses
to complex issues. This fusion of human expertise and
Al capabilities in GeoAl applications transcends tradi-
tional boundaries, creating an efficient and cooperative
platform that elevates the collective problem-solving
potential of groups and teams, leading to more effective,
sustainable, and innovative outcomes.

GeoAl-based approaches can uncover some hidden
patterns that might be neglected or missed by humans
in real-world phenomena or issues. As a virtual mem-
ber in team collaboration, GeoAl-driven approaches can
support urban design/planning and management using
their powerful learning capabilities. Moreover, the urban
digital twin driven by GeoAl approaches is an impor-
tant platform that can accurately generate urban simula-
tion and prediction results based on processing different
types of spatial-temporal data (Li and Zhang, 2021; Ye
et al,, 2023).

In summary, GeoAl applications offer both individual
and collaborative advantages, enhancing efficiency and
convenience in daily life while fostering teamwork and a
symbiotic relationship between humans and Al For indi-
viduals, GeoAl provides personalized recommendations,
navigational support, and comprehensive information by
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amalgamating data from diverse sources, enabling better
daily planning in low-cost and efficient ways. In the con-
text of group and team cooperation, GeoAl is an efficient
platform combining human expertise with Al-driven
insights, facilitating more comprehensive problem-solv-
ing for real-world challenges.

3.3 GeoAl in spatial decision support systems

Spatial Decision Support Systems (SDSSs) are computing
systems that combine Geographic Information System
(GIS) capabilities with decision support tools to facili-
tate informed and effective decision making in spatial
contexts (Zhang et al.,, 2021b). Traditional spatial deci-
sion support tools heavily rely on Multi-Criteria Decision
Making (MCDM) techniques, which enable decision-
makers to consider multiple objectives and criteria
when evaluating alternative spatial scenarios (Song et al.,
2024; Zhang et al., 2014; Z. Zhang et al., 2018a, 2018b).
With the rapid development of GeoAl, Al models have
been used to process real-time data to provide predic-
tion in various application areas. While AI can contrib-
ute to decision-making process by providing data-driven
insights, MCDM provides an expert-based approach to
decision making by incorporating diverse criteria, values,
and preferences. Pham et al. (2021) combines deep learn-
ing algorithm with MCDM to assess flood risks using
hazard, exposure, and vulnerability measures.

The increasing quality and quantity of geoscience data
can pose challenges in terms of memory and processing
requirements when performing GeoAl analysis, where
advanced Cyberinfrastructure and high-performance
computing play an important role in designing a GeoAl-
based spatial decision support system to support timely
decisions. CyberGIS fulfills an essential role in enabling
computation- and data-intensive research and education
across a broad swath of academic disciplines leading to
widespread scientific advances and broad societal impact
(Wang et al., 2013; Z. Zhang et al., 2018a, 2018b).

4 Shaping the future of robotics with GeoAl

The intersection of Artificial Intelligence (AI) and geo-
spatial technology has paved the way for a new age of
innovation and exploration, catalyzing the development
of embodied AI in geospatial scenarios. Embodied Al a
paradigm where Al systems are integrated into physical
entities or robots that can interact with, navigate, and
sense the real-world environment, offers a transformative
approach to addressing complex challenges in geospa-
tial contexts. This fusion of Al and physical embodiment
not only enhances robot self-control and autonomous
navigation but also improves human-robot interactions
by enabling robots to better understand and respond to
human cues and commands. Moreover, the importance
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of evaluating the trustworthiness of GeoAl technologies
in these interactions has been underscored, ensuring that
robots operate reliably and align with human expecta-
tions for safety and efficiency. As GeoAl-powered robots
become more prevalent, ethical and privacy concerns
surrounding data collection and processing must be
addressed to maintain public trust. Additionally, increas-
ing the interpretability of AI models is crucial for enhanc-
ing the efficiency of interactions and enabling robots to
understand human needs more effectively.

4.1 GeoAlin robot self-control

With the miniaturization of high-performance comput-
ing hardware and the development of Internet of Things
(IoT) technologies, more and more robots or physical
entities are being used in people’s daily lives and work.
In particular, the capabilities of robots equipped with
GeoAl applications in geospatial awareness and adapting
learning under different environments have dramatically
increased (Charalampous et al., 2017; Lee et al., 2023;
Sanneman & Shah, 2020; Zender et al., 2007). GeoAl
facilitates robots in accurately determining their posi-
tion and creating maps of their surroundings, making
them more capable of autonomous navigation in complex
and dynamic environments. The robots can adjust their
control algorithms to adapt to obstacles and changes in
surface conditions autonomously by assessing the ter-
rains they navigate using GeoAl-driven programs. These
GeoAl-enabled robots can adapt to different scenarios,
such as land surveying, environment monitoring, and
industrial automation,

For land surveying tasks, robots equipped with GeoAl
applications can adopt the most appropriate autonomous
control strategy based on their perception of the sur-
rounding environment (Roh et al., 2019; Su et al., 2023;
Tung & Yaseen, 2020). Taking the example of quadruped
robots, according to their perception of surroundings
using a series of sensors (e.g., GPS, IMU, cameras, and
lidar), they can control eight drive motors on their four
legs with appropriate angular velocities to move across
different terrains. The central processing unit in quad-
ruped robots can understand the characteristics of the
surrounding environment and the types of obstacles in
the path using the data collected by the sensors and Al-
based algorithms. The central processing unit then sends
appropriate messages to motion control modules to guar-
antee that the robots can move smoothly and safely.

In addition, GeoAl-enabled equipment for land survey-
ing and environmental monitoring can perform smartly
with less human intervention. Taking a drone as an exam-
ple, the flight control system can manipulate the attitude
of a drone to avoid collisions with tall buildings or other
types of obstacles (Lahsen-Cherif et al., 2022). In wildfire
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monitoring, drones can leverage the data collected by
onboard infrared temperature sensors and GeoAl-driven
models to detect burning areas and smoking spots (where
there is no open flame, but the temperature has reached
the ignition point) in forests. Based on the detected wild-
fire spots, drones can plan the optimal flight path and
report the positions and plant species near the wildfire
to facilitate fire suppression strategies and emergency
responses (Boroujeni et al., 2024; Ramadan et al., 2024).
During a wildfire monitoring process, drones are able to
detect the targets and plan the flight path autonomously
with less human intervention, which vastly reduces the
impact of human factors (e.g., errors in operations and
judgment) on environment monitoring tasks.

Evaluating trustworthy human-centered GeoAl tech-
nology in robot self-control is crucial because trust serves
as a foundational element for successful human-robot
interaction, particularly in dynamic and service-oriented
environments. Trustworthiness in GeoAl-enabled robots
is shaped by users’ propensity to trust the system, the
reliability of the robot’s geospatial functions and design,
and the contextual appropriateness of its tasks (Weitz
et al,, 2019). As highlighted in the development of the
Social Service Robot Interaction Trust (SSRIT) frame-
work, factors such as familiarity, self-efficacy, anthropo-
morphism, and perceived service risk play pivotal roles in
fostering or undermining trust (Chi et al., 2021). In robot
self-control, trustworthy GeoAl ensures that robots
make accurate, context-aware decisions while aligning
with human expectations for safety, efficiency, and social
norms. Further studies should also aim to develop stand-
ardized methods for assessing trustworthiness in various
real-world scenarios, including land surveying, envi-
ronmental monitoring, and industrial automation. By
advancing our understanding of trust in GeoAl-driven
robot self-control, researchers can help mitigate user
uncertainty, increase adoption rates, and promote seam-
less human-robot collaboration, ultimately enhancing
the effectiveness and safety of autonomous systems in
geospatial tasks.

4.2 GeoAl in human-robot interaction

Besides the contributions to robot self-control, GeoAl
technology also facilitates human-robot interaction. As
machines work alongside humans, one of the most signif-
icant tasks for robots is understanding people’s cues and
commands under various scenarios. Accurately under-
standing the cues and commands helps decrease the pos-
sibility of causing damage or even loss of lives during a
robot’s work. One of the prerequisites for an accurate
understanding of human commands is that robots are
aware of their surroundings at all times, as well as the
potential dangers in their surroundings. GeoAl-related
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technology improves the geospatial awareness of robots
and helps robots understand the implications of human
cues and commands precisely.

The best example to illustrate the contributions of
GeoAl in human-robot interaction is the autonomous
driving technology that has rapidly developed in recent
years (Gonzalez et al., 2016; Khayyam et al., 2020; Li
et al., 2018; Xing et al.,, 2019). Based on the environmen-
tal sensors (i.e., Lidar, Cameras, GPS, IMU) deployed at
various positions in a vehicle, the autonomous driving
systems can evaluate the risk level of collisions and acci-
dents with other objects on the road. When the driver
gives an incorrect instruction that could lead to a traf-
fic accident, the autonomous driving system refuses to
execute the instruction to avoid a collision. Moreover,
the independent driving system can execute the driver’s
commands with a safety strategy based on the road con-
ditions. For instance, autonomous driving systems will
control the vehicle to perform overtaking or acceleration
commands given by the driver only when it is safe. In
general, autonomous driving systems with GeoAl tech-
nology can better safeguard the driver and other road
users and provide better user experiences.

Another example of GeoAl technology in human-
robot interaction is the personalized service robots in
hospitals and large shopping malls (Ludwig et al., 2023;
Scheider & Richter, 2023). Robots with GeoAl technol-
ogy can assist patients and visitors in finding their way
around. These robots can provide real-time navigation
instructions, locate specific hospital departments, and
provide information on appointments and wait times.
They can provide assistance to disabled people by find-
ing wheelchair-friendly routes, providing auditory
instructions, allowing users to control elevators, access
automatic doors, and providing turn-by-turn guid-
ance through complex buildings and outdoor spaces.
In addition, robots in shopping malls or large build-
ings can offer personalized services to individuals in
various settings. Notably, a robot in shopping malls can
incorporate indoor geospatial and business informa-
tion to guide shoppers to the nearest store with the best
prices, discounts, or promotions. These robots leverage
detailed indoor 3D models, indoor navigation technol-
ogy, sensors, and GeoAl technology to understand their
surroundings precisely. Based on the collected spatial
information, these robots can offer helpful recommenda-
tions to users.

However, as GeoAl-powered robots become more
integrated into human environments, ethical and privacy
concerns are becoming increasingly significant. Robots
equipped with GeoAl can process large amounts of geo-
spatial and personal data, such as location, movement
patterns, and human biological information (fingerprints
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or facial features). This raises concerns about the poten-
tial misuse of sensitive data, unauthorized surveil-
lance, and breaches of personal privacy. As mentioned
in Sect. 2.2, ensuring that data collection and process-
ing comply with ethical standards and privacy regula-
tions is essential for maintaining public trust. Future
research should focus on developing privacy-preserving
techniques, such as data anonymization and secure data
storage, to protect individuals’ information. Additionally,
establishing transparent policies and ethical guidelines
for human-robot interaction will help mitigate these
concerns and promote responsible deployment of GeoAl
technologies.

Another interesting direction for improving human-—
robot interaction is increasing the interpretability of Al
models used in GeoAl systems. Many AI models function
as “black boxes,” making it difficult for users to under-
stand how decisions are made. By enhancing interpret-
ability, robots can provide more details for their actions,
making interactions with humans more efficient and fos-
tering greater trust from users. For example, if a robot
can clarify why it chose a particular path or action based
on geospatial data, users can better understand its rea-
soning and adapt their commands accordingly. Interpret-
ability also allows robots to better grasp human needs by
incorporating feedback more effectively. Future research
should develop explainable Al frameworks that can break
down complex geospatial decisions into human-under-
standable explanations, ultimately leading to smoother
and more intuitive human—-robot collaborations.

5 Future jobs with GeoAl foundation models

Incorporating GeoAlI foundational models into social
production and life could generate job opportunities
related to the development and deployment of GeoAl, as
well as work in areas such as ethical and privacy protec-
tion. These emerging job roles will form a GeoAlI indus-
trial ecosystem, adding more employment opportunities
to society and promoting diversification of the social
division of labor (Tschang & Almirall, 2021; Vrontis et al.,
2023). Geographic Information Systems (GIS) special-
ists, GeoAl model developers, and GeoAl analysts are
the most important components in the GeoAl indus-
trial system. GIS specialists have extensive experience
in spatial-temporal data processing and data mining.
They can provide specialized knowledge of geospatial
information to GeoAl model developers to ensure the
effectiveness of GeoAl foundation models. For example,
as GeoAl becomes more embedded in fields like urban
planning and environmental monitoring, the demand for
professionals skilled in geospatial data analysis, Al model
development, and data ethics is expected to rise signifi-
cantly (Kaplan & Haenlein, 2020; Ramachandran et al.,
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2024). Additionally, the interdisciplinary nature of GeoAl
will likely create demands that require expertise in both
geospatial sciences and Al, offering a new dimension to
the job market (Vrontis et al., 2023). On the other hand,
AI model developers who have computer science (CS)
backgrounds can leverage the knowledge provided by
GIS specialists to design effective architectures of GeoAl
models for addressing specific geospatial tasks. GeoAl
analysts who interpret the results generated by GeoAl
models can provide actionable feedback to the model
developers to improve the model performance further. In
addition, GeoAl analysts can provide operational recom-
mendations to policymakers or urban planners based on
the simulation or prediction results generated by GeoAl
models. GeoAl analysts can help prevent policymakers
without AI experience from misunderstanding the model
results, preventing inappropriate policies or plans from
being enacted (Del Giudice et al., 2023).

Moreover, the rise of GeoAl will necessitate the crea-
tion of new educational programs and reskilling ini-
tiatives aimed at preparing the workforce for these
emerging roles (Bughin et al,, 2018). Universities and
vocational institutions may need to develop specialized
curricula that integrate geospatial technology with Al
and data science, ensuring that graduates are equipped
with the necessary skills to thrive in this evolving field
(Bughin et al., 2018). This shift in educational focus could
lead to the establishment of new academic disciplines
and professional certifications that align with the specific
needs of the GeoAl industry ecosystem. The quality of
GeoAl-related data can affect the performance of GeoAl
foundation models, and the quantity of the data is mas-
sive, which facilitates the generalization and accuracy of
the models. Thus, GeoAl data specialists need to have
strong experience in geospatial-related data preprocess-
ing to minimize the outliers or errors in the data. GeoAl
data specialists also require the ability to process and
manage big geospatial data in the TB (Terabyte), even
at the PB (Petabyte) level. Experienced data specialists
who can provide data assurance for training or validating
GeoAl foundation models have significant roles in the
GeoAl industrial ecosystem.

Furthermore, the automation of certain geospatial tasks
through GeoAl may displace some traditional roles, but it
will also create opportunities for higher-skilled positions
that involve overseeing Al systems, interpreting complex
data, and ensuring ethical compliance (Brynjolfsson &
McAfee, 2014; Kaplan & Haenlein, 2020). For instance,
GeoAl analysts and data specialists will play a crucial role
in interpreting Al-generated insights, making informed
decisions, and providing feedback to improve the perfor-
mance of Al models (Li et al., 2024). The integration of Al
into geospatial workflows will likely transform job roles,
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emphasizing the need for continuous learning and adap-
tation in the workforce (Vrontis et al., 2023).

In terms of user experience, the GeoAl industry needs
interface designers and art designers to develop intuitive
interfaces for human-Al interaction in geospatial applica-
tions. The interface designers are essential for the market
of GeoAl-related applications. GeoAl interface designers
are instrumental in creating user-friendly interfaces that
make geospatial applications accessible to many users.
They design intuitive interfaces that reduce the learning
curve and make it easy for people to interact with com-
plex Al-powered systems. Intuitive interfaces enable
users to extract insights and make informed decisions
rapidly, saving time and resources, such as emergency
responses in GeoAl applications. GeoAl often deals with
intricate and large datasets. Interface designers create
visualizations and data presentations that simplify com-
plex information, making it more digestible and action-
able for users. The interface designers facilitate seamless
interactions between users and AI models. They create
interfaces that allow users to input their data and pref-
erences, enabling Al systems to provide personalized
insights and recommendations. In addition, with the help
of art designers, GeoAl applications can give simple, aes-
thetic, and harmonized interfaces that facilitate the inter-
actions between human and complex GeoAlI systems.

Last but not least, establishing an ethics review mecha-
nism (e.g., an independent council) will have far-reaching
implications for the development of GeoAl. GeoAl appli-
cations often involve sensitive and location-based data,
raising ethical concerns. The council helps identify and
address these dilemmas, ensuring that technology is used
in ways that respect privacy, security, and human rights.
The council safeguards the rights of individuals, particu-
larly in contexts where location data can be misused. This
council ensures that the design and implementation of
GeoAl technologies prioritize user consent, data protec-
tion, and transparency. Moreover, this council can assess
the potential risks associated with GeoAl applications,
including security breaches, data breaches, and unin-
tended consequences. Meanwhile, based on the above-
mentioned tasks, they can ensure that the adoption of
GeoAl technologies aligns with long-term sustainability
goals. They can advocate for continuous education and
awareness regarding ethical issues related to Al and pro-
vide guidance and resources for Al developers, users, and
policymakers to make informed decisions.

6 Mixed experts GeoAl

A robust and powerful GeoAl system needs expertise
from various domains, such as climatology, urban plan-
ning, and ecology, into the GeoAl model. It ensures that
the AI system has a holistic understanding of geospatial
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phenomena, benefiting from the collective knowledge of
multiple experts. By incorporating expertise from diverse
domains, the GeoAl model becomes enriched with a
comprehensive understanding of spatial phenomena.
Climatologists contribute insights into the intricate pat-
terns of weather and climate, and urban planners provide
nuanced perspectives on city development and infra-
structure needs. In contrast, ecologists contribute valu-
able information about ecosystems and biodiversity.

One of the most significant advantages of hybrid expert
GeoAl systems is their ability to combine the strengths
of human intuition and contextual understanding with
the computational power and data-driven insights of
Al For instance, in urban planning, human experts can
provide nuanced perspectives on city development and
infrastructure needs, while Al systems can analyze large
datasets to identify trends and predict future scenarios
(Moradi & Levy, 2020). This collaboration leads to more
sustainable and resilient urban designs that are both
data-driven and context-sensitive (Jarrahi, 2018).

Moreover, the application of hybrid expert systems is
not limited to urban planning. In disaster management,
these systems play a critical role in enhancing the accu-
racy and effectiveness of emergency responses. Human
experts can interpret Al-generated predictions of disaster
impacts, adjusting strategies based on real-time data and
situational awareness. For example, during flood man-
agement, human experts might rely on Al to simulate
various flooding scenarios, but their expertise is essential
in deciding which scenarios are most relevant and how to
implement appropriate responses (Alizadeh et al., 2022).

However, the integration of human and Al expertise
also presents challenges. One of the primary challenges
is ensuring that the AI models are transparent and inter-
pretable, allowing human experts to understand and trust
the AI's recommendations (Kaplan & Haenlein, 2020).
This is particularly important in fields like environmental
monitoring, where the consequences of decisions can be
significant and far-reaching. Additionally, there is a chal-
lenge of maintaining a continuous feedback loop between
human experts and Al systems. This iterative process
is crucial for refining the Al models and ensuring they
remain relevant and accurate over time (Gonzalez et al.,
2016; von Krogh, 2018).

Furthermore, there is a growing interest in explor-
ing how hybrid expert GeoAl systems can be scaled to
handle increasingly complex and large-scale geospa-
tial problems. Recent research suggests that as these
systems evolve, they will need to incorporate more
sophisticated models of human decision-making and
collaboration, ensuring that the insights generated by Al
are both actionable and ethically sound (Bughin et al.,
2018; Tschang & Almirall, 2021). This underscores the

Page 11 of 15

importance of ongoing research and development in this
area, as well as the need for cross-disciplinary collabora-
tion to address the challenges and maximize the potential
of hybrid expert GeoAl systems.

7 Conclusion

This study highlights the transformative potential of
human-centered GeoAl foundation models, where
GeoAl intersects with human dynamics to revolution-
ize geospatial analysis and applications. By integrating
human intelligence, needs, preferences, and interactions,
GeoAl foundation models offer more nuanced and con-
text-aware insights, enhancing domains such as urban
planning, environmental monitoring, and disaster
response. The humans-as-sensors approach exemplifies
the power of leveraging human inputs to refine geospatial
data analysis, while mixed-experts GeoAl underscores
the value of combining human expertise with Al-driven
insights for sophisticated decision-making. These models
not only improve the accuracy and applicability of geo-
spatial technologies but also ensure that Al-driven deci-
sions are aligned with human needs and values.

However, the deployment of human-centered GeoAl
brings forth critical challenges related to trust, ethics, and
privacy. Trustworthiness in GeoAl systems, particularly
in applications like robot self-control and human-robot
interactions, have to be rigorously evaluated to ensure
reliability, safety, and user confidence. Privacy concerns
stemming from the use of sensitive location-based data
necessitate the development of robust data anonymiza-
tion techniques, ethical guidelines, and privacy-preserv-
ing frameworks. Furthermore, the interpretability of Al
models remains a key area for future research, as enhanc-
ing model transparency will foster better human-AlI col-
laboration and enable more effective human-centered
interactions.

Looking forward, future research directions in human-
centered GeoAl should focus on the following priorities:

1. Developing standardized frameworks for evaluat-
ing trust in GeoAl-enabled systems to improve user
adoption and safety in real-world applications.

2. Enhancing ethical safeguards to address privacy risks,
data security, and algorithmic bias, ensuring respon-
sible and equitable GeoAl deployment.

3. Advancing interpretability in GeoAI models to allow
clearer insights into Al-driven decisions, improving
human-robot collaboration and user trust.

4. Exploring mixed-experts GeoAl to refine the synergy
between human expertise and Al processing capa-
bilities, particularly in dynamic and high-stakes envi-
ronments.
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5. Personalizing GeoAl services to align with individual
and community needs, enhancing user experience
and the applicability of geospatial technologies.

By addressing these challenges and future directions,
human-centered GeoAl has the potential to unlock new
avenues for innovation, create safer and more reliable
technologies, and redefine the role of Al in geospatial
contexts. This interdisciplinary approach, balancing tech-
nological advancement with human values, will be piv-
otal in shaping the next generation of GeoAl applications
and ensuring their positive impact on society.
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