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Abstract Wetland ecosystems are critical to global carbon and nitrogen cycles. This study leverages
unmanned aerial system (UAS)‐based hyperspectral imaging to quantify soil organic matter (SOM), total
carbon (C), and total nitrogen (N) in moderately to densely vegetated salt marshes at the Virginia Coast Reserve
Long‐Term Ecological Research (VCR‐LTER) site. We utilized elastic net (ENet) regression and gradient‐
boosted regression trees (GBRT) within a hybrid modeling framework to predict these soil properties using
features from the visible to near‐infrared (VNIR) and shortwave infrared (SWIR) spectral ranges. Validated
through a 1,000‐iteration bootstrap analysis, the hybrid model demonstrated robust predictive capabilities. The
model achieved mean normalized root mean square error of 0.118 for SOM, 0.127 for C, and 0.138 for N, with
corresponding mean R2 values of 0.874, 0.865, and 0.822, respectively. These outcomes highlight the efficacy
of integrating advanced statistical methods with high‐resolution remote sensing data to enhance soil property
estimation in ecologically sensitive areas.

Plain Language Summary Wetlands play a pivotal role in our planet's health by absorbing carbon
dioxide, a greenhouse gas in the atmosphere. However, measuring how much carbon, along with other vital
nutrients like nitrogen, these areas hold is not straightforward due to their complex landscapes. In our research,
we used drones equipped with hyperspectral imaging systems to acquire detailed images of a salt marsh system
in the VCR‐LTER (Virginia Coast Reserve Long‐Term Ecological Research) site on Hog Island. We used this
imagery to develop models to estimate the levels of organic matter, total carbon, and total nitrogen in the soil.
Our work shows that using hyperspectral imagery from drones is a promising method for assessing the health
and nutrient content of wetland soils, offering valuable insights for the conservation of these vital ecosystems.

1. Introduction
Wetlands are complex ecosystems crucial to global carbon dynamics, serving as significant carbon sinks and
habitats for a diverse array of resident and transient species (Aryal et al., 2014; Jobbágy & Jackson, 2000).
However, disturbances or land use changes can rapidly deplete these soil carbon stocks, underscoring the
importance of conserving soil organic matter (SOM) in such ecosystems (Aryal et al., 2018). The organic
component of wetland soils, primarily SOM, underpins nutrient cycling, soil structure, and overall ecosystem
productivity (Aryal et al., 2015; Ashman & Puri, 2013; Karami et al., 2012). Because many salt marshes are
nitrogen‐limited systems (Tyler et al., 2003; Valiela et al., 1978), even moderate increases in nitrogen availability
can significantly stimulate primary production (Tyler et al., 2007), while chronic high nitrogen inputs can alter
vegetation communities and degrade marsh habitats (Deegan et al., 2012; Valiela et al., 2023). With the outsized
role of wetlands in global carbon sequestration, shoreline protection, and climate regulation, understanding these
essential soil parameters is paramount (Goldsmith et al., 2020). Maintaining balanced SOM, total carbon (C), and
total nitrogen (N) levels is critical for wetland ecosystem health and soil fertility in agricultural systems, where
imbalances can directly affect productivity and sustainability (Datta et al., 2022; Leghari et al., 2016).
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Despite significant advances in estimating soil properties, SOM, C, and N are hard to measure accurately in
wetland environments due to the impact of vegetation cover, moisture, and spatial heterogeneity. Soil sampling
and lab procedures can be time‐intensive and costly, rendering large‐scale surveys impractical. As an alternative,
emerging remote sensing technologies—including optical multispectral/hyperspectral imaging, LiDAR, and
microwave sensors—offer the capability to assess soil properties across large areas (Eon & Bachmann, 2021; Nur
& Bachmann, 2023). Because of the reciprocal relationships among plant productivity, nutrient availability,
decomposition, and soil properties, vegetation spectral features can provide indirect information about those
properties. Canopy nitrogen content, for example, is highly correlated with soil nitrogen availability, while
vegetation biomass and senescence affect SOM. These couplings require a coupled soil and vegetation spectral
properties framework for accurate SOM, C, and N retrieval. Laboratory spectroscopy studies have established
strong correlations between soil reflectance and properties like organic carbon, forming the basis for predictive
soil mapping (Gomez et al., 2008; Rossel et al., 2006; Shepherd & Walsh, 2002). Building on this foundation,
digital soil mapping approaches integrate remote sensing data to predict soil variables across landscapes
(McBratney et al., 2003; Minasny & McBratney, 2016). Previous studies have investigated other remote sensing
approaches like multispectral satellite remote sensing imagery (Vaudour et al., 2019; Zhou et al., 2021; Žížala
et al., 2019), aerial hyperspectral imagery (Bangelesa et al., 2020; Gholizadeh et al., 2018), and laboratory
spectrometry (Mahmud et al., 2024; Monsalve et al., 2023) in an effort to quantify soil nitrogen and organic
carbon in varying landscape types. While these methods have demonstrated potential, they often rely on either
bare soil conditions, controlled laboratory settings, or moderate spatial resolution, which can limit their appli-
cability in complex environments like wetlands.

Recent advancements in airborne and unmanned aerial systems (UAS)‐based hyperspectral imaging have
demonstrated improved accuracy in mapping soil properties at high spatial resolution. UAS platforms provide
flexible, high‐resolution data collection and have been applied in a wide range of domains, including precision
agriculture (Ezenne et al., 2019; Hunt et al., 2014; Saif et al., 2023), environmental and vegetation monitoring
(Palace et al., 2018; Shafian et al., 2018), land restoration and mining surveys (Padró et al., 2019), and urban
infrastructure inspection (Rakha & Gorodetsky, 2018; Shukla & Karki, 2016), among others (Chahl, 2015).
Hyperspectral sensors capture continuous, narrow spectral bands, providing more detailed spectral information
than traditional multispectral sensors, making them highly effective for a wide range of scientific and techno-
logical applications (Chaity & van Aardt, 2024; Smith et al., 2023). This rich spectral detail improves the ability to
discriminate near‐surface soil properties with complex reflectance characteristics, enhancing the mapping of
SOM, C, and N (Castaldi et al., 2016; Gholizadeh et al., 2018; Sun et al., 2022). Recent studies using hyper-
spectral data coupled with machine learning algorithms have reported high accuracy in predicting soil organic
carbon and N (Bao et al., 2021; Zhou et al., 2021), affirming the advantage of hyperspectral imaging for soil
assessments.

However, soil surface factors such as moisture, roughness, vegetation cover, and spectral mixing can introduce
uncertainties in remote sensing‐derived soil properties. These confounding effects are particularly problematic in
wetland environments, where vegetation, hydrology, and soil conditions change dynamically (Van Wesemael
et al., 2021; Vaudour et al., 2019; Xu et al., 2023; Yang et al., 2021). Our study addresses these challenges by
leveraging UAS‐based hyperspectral imaging in salt marshes and developing a hybrid modeling approach that
integrates elastic net (ENet) regression with gradient‐boosted regression trees (GBRT). This combined model
captures linear and nonlinear relationships in spectral data, improving the accuracy of SOM, C, and N predictions.
Unlike previous remote sensing approaches primarily focused on bare soil or agricultural settings, our study
applies hyperspectral imaging in a vegetated wetland environment, demonstrating high‐accuracy retrieval of soil
properties despite vegetation interference. By combining VNIR‐SWIR hyperspectral imagery having high spatial
resolution with a robust hybrid modeling methodology, this study demonstrates a new approach to improve
monitoring of wetland soil from remote sensing. Specifically, this study illustrates a new way to more effectively
map wetland carbon and nutrients, which are critical to wetland conservation and climate change adaptation.

2. Study Framework and Data Collection
2.1. Study Area and Site Description

During our field campaigns on Hog Island, part of the Virginia Coast Reserve Long‐Term Ecological Research
(VCR‐LTER) site on the Delmarva Peninsula's Atlantic coast (Virginia Coast Reserve Long‐Term Ecological
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Research, 2025), in 2019, we collected ground truth data and captured hyperspectral imagery from UAS. Situated
at 37° 25’ 5.91” north and 75° 41’ 36.71” west approximately 14 km from the Peninsula, Hog Island is a barrier
island extending 10 km in length and 2.5 km in maximum width. Managed by The Nature Conservancy, Hog
Island has been mostly uninhabited since the middle of the 20th century. This seclusion has made it an ideal
location for conducting significant research in ecology and geology (C. M. Bachmann et al., 2002; C. M.
Bachmann et al., 2003; C. Bachmann et al., 2021; Goldsmith et al., 2020; Eon et al., 2019; McLoughlin
et al., 2015; Nur & Bachmann, 2023; Nur, Bachmann, & Bauch, 2023; Nur, Miller, et al., 2023; Osgood &
Zieman, 1993; Tyler & Zieman, 1999; Tyler et al., 2003; Young et al., 2007). The island's shallow coastal lagoon,
Hog Island Bay, borders it to the west, with the Atlantic Ocean to the east (Hayden et al., 1991). Spartina
alterniflora, the dominant macrophyte, forms classic zonation patterns along the lagoonal shore of the island, with
tall‐form plants in the low marsh and short‐form plants in the mid and high zones (Bortolus et al., 2019; Valiela
et al., 1978). In 1962, a powerful nor'easter deposited nearly 1 m of sand on the island's southern end, burying the
preexisting marsh and raising the intertidal platform (Stewart, 1962). Following the recolonization of vegetation
at different times across the overwash fan, a chronosequence of marshes with varying ages emerged (Tyler &
Zieman, 1999; Walsh, 1998). The ages of the marshes were identified from the time of the initial appearance of
Spartina alterniflora in aerial images. The oldest marsh can be traced back to at least 1850, while the most recent
one was established in 2011. In our field campaign, we investigated marshes ranging in age from 8 to at least
170 years. These marshes experience erosion and expansion and are marked by areas of marsh die‐off. The
heterogeneity in marsh age and condition renders this site ideal for assessing soil properties within an environ-
ment where spatial heterogeneity occurs across smaller spatial scales. In July 2019, we conducted a major field
campaign to characterize and map the marsh chronosequence on Hog Island, primarily focusing on the low to
midmarsh zones. This study focuses on two chronosequence sites: the mature marsh site from 1850, also known as
Broadwater, and the young marsh site consisting of marshes established between 1989 and 2011 (see Figure 1).

2.2. Instrumentation and Data Calibration

We employed two multisensor payloads on the MX1 platform mounted on a DJI Matrice 600 (Kaputa et al., 2019)
for the 2019 field campaign. The primary payload comprised a visible and near‐infrared (VNIR) hyperspectral
imager, a LiDAR, a thermal imager, and a high‐resolution RGB imager. The second payload consisted of a
shortwave infrared (SWIR) hyperspectral imaging sensor. This study analyzed hyperspectral images captured by
the Headwall Nano (VNIR range) and Headwall Micro SWIR (SWIR range) imaging sensors onboard the UAS
(C. Bachmann et al., 2021; Eon & Bachmann, 2021; Lee et al., 2024; Nur et al., 2022; Nur & Bachmann, 2023;
Nur, Miller, et al., 2023; Nur, Bachmann, & Bauch, 2023; Saif et al., 2023). The flights were conducted at 50‐m
altitude with an average speed of 2.5 m/s. Flight duration for each sortie was approximately 12–15 min due to
battery constraints.

The Headwall Nano images in the VNIR, covering this spectral range with 270 spectral bands from 0.4 to 1 μm.
At the altitude flown by the UAS platforms in this study, the spatial resolution of the Nano VNIR imagery was
0.056 m in the 640 across‐track spatial pixels per scan line. The sensor's 7.4 μm pixel pitch ensures high spatial
resolution. The Headwall Nano has a 12‐bit analog‐to‐digital converter (ADC) resolution for accurate spectral
representation and a maximum frame rate of 300 Hz for efficient aerial survey data collection.

The Headwall Micro SWIR sensor analyzes the SWIR spectrum with 267 spectral bands from 0.9 to 2.5 μm. At
the altitude flown by the UAS in this study, the spatial resolution of the SWIR imagery was 0.05 m in the 384
across‐track spatial pixels. The Headwall Micro SWIR captures high‐resolution images with a 24 μm pixel pitch.
This sensor has 16‐bit ADC resolution for SWIR spectral information. The Headwall Micro SWIR also has a
maximum frame rate of 240 Hz, allowing for efficient data acquisition during aerial surveys.

In our systematic approach to data calibration, we recorded the ground truth radiance of three Permaflect®

calibration panels (light gray, dark gray, and black) and a white Spectralon® plaque using an SVC 1024i spec-
trometer just before the UAS flights. The Permaflect® calibration panels provided a range of reflectance values,
ensuring accurate radiometric correction across different surface brightness levels. These steps were foundational
for applying Equation 1 to determine the panels' true reflectance values.

Rpanel =
Lpanel

Lspectralon
⋅ Cspectralon (1)
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where, Rpanel represents the reflectance of the calibration panel, Lpanel denotes the radiance recorded from the
calibration panel, Lspectralon is the radiance from the Spectralon® plaque, and Cspectralon is the Spectralon® plaque's
calibration coefficient.

Figure 1. Delmarva Peninsula and Hog Island site map with marsh ages. Hog Island in the Delmarva Peninsula, Virginia,
includes barrier islands, estuaries, and shallow bays of the Virginia Coast Reserve Long‐Term Ecological Research site.
(a) An overall site map of the region (Virginia Coast Reserve Long‐Term Ecological Research, 2025), with Hog Island
marked in red. (b) Individual marsh ages delineated by vegetation onset years (left) and the mature and young marsh study
areas (right). The red dots represent our sample locations in young marshes, while the blue dots indicate our sample locations
in mature marshes. UAS flight lines are overlaid in black.
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In the field, the independently operated UAS‐mounted Nano and SWIR sensors captured hyperspectral imagery
that we orthorectified and converted into radiance data using Headwall's Hyperspec III SpectralView software
(Hyperspectral and Operational Software, 2024). To achieve georeferencing correctly, the drones were equipped
with high‐accuracy Applanix GPS/IMU units that provided accurate metadata for yaw, pitch, and roll. These
metadata were included in the data processing stream and geometric registration of the hyperspectral data.
Additionally, real‐time kinematic ground control point corrections, using AeroPoints placed inside the scene,
were acquired with a Trimble GPS, which accurately geolocated them. These corrections enhanced geodetic
coordinate alignment, reducing spatial error and improving overall geolocation accuracy. To ensure spatial
alignment between different imaging modalities, we applied postprocessing coregistration techniques, including
feature matching and image alignment, before layer stacking the VNIR and SWIR imagery. These steps helped
minimize spatial discrepancies caused by differences in acquisition platforms and sensor perspectives. We
extracted the spectra of each calibration panel with the ENVI software (NV5 ENVI 6.0, 2024). We used the
empirical line method within the same software (ENVI: Atmospheric Correction via Empirical Line
Method, 2024) to establish a correlation between the Permaflect® panels' ground truth reflectance and the UAS‐
acquired radiance spectra. This approach enabled us to convert the radiance to reflectance for each wavelength.
Our thorough calibration protocol assures that the reflectance data derived from radiance measurements are
consistent and comparable, offering resilience against variations in data acquisition date, sensor type, and
environmental conditions. This process ensures the data integrity for both the Nano and SWIR hyperspectral
imaging systems.

Figure 2 presents the reflectance spectra from the UAS hyperspectral imagery across various wavelengths for
each plot where we collected ground truth data. While the spectra are influenced by SOM, C, and N percentages,
other factors such as vegetation cover, soil moisture, surface roughness, and mineral composition also contribute
to spectral variations. To enhance the quality of the hyperspectral reflectance data obtained from UAS, we applied
a Savitzky‐Golay filter (Savitzky & Golay, 1964; Schafer, 2011). This smoothing technique was employed to
reduce noise while preserving the spectral shape and features essential for accurate soil property estimation. The
Savitzky‐Golay filter, a polynomial smoothing method, was chosen for its effectiveness in maintaining high‐
resolution spectral information, which is critical in distinguishing subtle variations in soil properties. The pa-
rameters selected for the Savitzky‐Golay filter, including the polynomial order and window size, were determined
based on preliminary tests to optimize the balance between noise reduction and spectral fidelity. Noise levels were
generally consistent across flight lines, with some variation due to environmental factors such as illumination
conditions and sensor‐specific artifacts. While no systematic bias was observed, slight signal‐to‐noise ratio (SNR)
variations were noted in certain spectral regions, particularly at the edges of the VNIR and SWIR bands. These
discrepancies were avoided by applying a Savitzky‐Golay filter for spectral smoothing to the spectral data. After
correction, the Spectralon and calibration panel spectra matched anticipated reflectance curves, confirming the
calibration process. This preprocessing step was instrumental in ensuring that subsequent analyses, including the
development of predictive models, were based on high‐quality data, thereby enhancing the reliability of our
findings.

2.3. Ground Truth Data Collection

Ground truth data collection was essential for validating our UAS hyperspectral imagery analysis. In this study,
we used 96 sample plots, 55 in the young marsh and 41 in the mature marsh. For each 0.25 m2 plot, sediment cores
were collected to evaluate SOM, C, and N. The sediment was first dried and then homogenized using a mortar and
pestle. The percentage of soil organic matter (%SOM) was assessed for a subsample using the loss on ignition
method (Heiri et al., 2001). An additional 25 mg of sediment was used for analysis of total carbon (%C) and total
nitrogen (%N) content using a Perkin Elmer 2,400 elemental analyzer. All analyses were conducted in duplicate.

3. Model Development and Implementation
This section provides an overview of the comprehensive workflow adopted in this study, as shown in Figure 4.
The flowchart illustrates each step of our methodology, from data acquisition and preprocessing to model
development and performance evaluation, highlighting the systematic and interconnected phases of our research.
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Figure 2. Reflectance spectra of (a) young marsh and (b) mature marsh, with colors indicating soil organic matter (SOM)
percentage variation. Data were smoothed using a Savitzky‐Golay filter (Savitzky & Golay, 1964). The color bar represents
SOM variation, while SOM, total carbon, and total nitrogen percentages for each sample are labeled below the plots.
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3.1. Characterization and Correlation of Input Features

We stacked the VNIR and shortwave infrared (SWIR) images using ENVI software to create a comprehensive
spectral data set, following geometric correction to account for different acquisition platforms (NV5 ENVI
6.0, 2024). The VNIR range (400–1,000 nm) provided critical information on vegetation health, chlorophyll
content, and surface characteristics, while the SWIR range (1,000–2,500 nm) offered insights into water content,
soil properties, and vegetation stress, together allowing us to analyze the biophysical and biochemical charac-
teristics of surface materials comprehensively. We utilized a linear spectral unmixing algorithm to derive the soil
and vegetation fractions within each pixel (Figures 3 and 4). End‐members were selected based on field obser-
vations and spectral analysis for spectral unmixing. A highly vegetated region was chosen as the vegetation end‐
member, while a bare soil region was used as the soil end‐member. Linear spectral unmixing was applied using
these two spectra to estimate the fractional cover of vegetation and soil in each pixel.

To further enhance our analysis, we calculated various spectral indices (SIs) that provide targeted information on
vegetation health, stress, and productivity (Figure 4). The selected SIs, detailed in Table 1, were chosen for their
relevance in capturing specific aspects of vegetation and soil properties, including vegetation health, canopy
structure, pigment concentration, and water content. They played a significant role in estimating SOM, C, and N
content by providing insights into vegetation greenness and biomass, and thereby carbon sequestration and plant
nitrogen content. Similarly, specific indices among the set that we employed in our model are related to water
stress and photosynthetic efficiency and proved crucial for understanding soil moisture dynamics and nutrient
availability. Figure 3 displays the distribution of vegetation cover and NDVI, a measure of health, across the study
area, underscoring the importance of robust feature selection, including SIs and vegetation‐soil fractions, in our
modeling approach.

There were both linear and nonlinear features in the relationships among SIs and SOM, C and N, as shown in the
3‐D plots in Figure 5, highlighting the importance of a comprehensive modeling approach. We utilized elastic net
(ENet) (De Mol et al., 2009; Zou & Hastie, 2005) to capture linear relationships, benefiting from its ability to
manage multicollinearity and perform feature selection effectively. We employed gradient‐boosted regression
trees (GBRT) (Friedman, 2001; Natekin & Knoll, 2013) to model nonlinear interactions in order to address the
complexities that linear models cannot capture. The subsequent subsection provides detailed descriptions and
justifications for these specific modeling techniques.

3.2. Detailed Model Architectures

3.2.1. Elastic Net Regression

This study initially applied elastic net (ENet) regression (De Mol et al., 2009; Zou & Hastie, 2005), selected for its
robustness in managing our data set, which comprises a limited number of samples but a high dimensionality of
features. ENet combines the principles of lasso (L1 norm) and ridge (L2 norm) regression, effectively managing
situations where predictors are highly correlated or outnumber observations. The L1 norm induces sparsity by
reducing some coefficients to zero, thereby pinpointing the most relevant predictors, while the L2 norm curtails
the coefficients' magnitudes, mitigating overfitting risks. This dual mechanism makes ENet particularly suitable
for our high‐dimensional data, ensuring both model interpretability and robustness.

3.2.2. Gradient‐Boosted Regression Trees

Following elastic net, we used gradient‐boosted regression trees (GBRT) (Friedman, 2001; Natekin &
Knoll, 2013) to capture complex, nonlinear relationships not addressed by the linear model. GBRT constructs a
predictive model iteratively, focusing on the residual errors of previous models, a process which enhances overall
prediction accuracy by refining the model progressively. By iteratively learning from the errors of previous
models, GBRT can capture intricate patterns and adapt more flexibly to the complexities of the data. This method
is advantageous for our data set as it allows the model to adapt more dynamically to the complex in-
terdependencies within the SIs and their relationship with reflectance data. We tuned key hyperparameters, such
as the number of trees, learning rate, and tree depth, to optimize the model's performance. This is crucial in
environments where the relationship dynamics are not purely random but structured in sequential layers of
complexity.
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Table 1
Spectral Indices Used as Input Features of the Models and Their Descriptions (ENVI: Vegetation Indices, 2024)

Index Equation Description

Normalized difference vegetation index (NDVI) (NIR − Red)
(NIR + Red)

Measures green vegetation health and density (Rouse et al., 1974).

Simple ratio index (SRI) NIR
Red

Indicates vegetation health and density (Birth & McVey, 1968).

Enhanced vegetation index (EVI) 2.5 × (NIR − Red)
(NIR + 6 × Red − 7.5 × Blue + 1)

Designed for areas with a high leaf area index (LAI). Minimizes soil and
atmospheric effects (Huete et al., 2002).

Atmospherically resistant vegetation index (ARVI) R800 − [R680 − (R450 − R680)]
R800 + [R680 − (R450 − R680)]

Reduces atmospheric influence. Useful in areas with high aerosol content
(Kaufman & Tanre, 1992).

Red‐edge normalized difference vegetation index (RENDVI) R750 − R705
R750 + R705

Sensitive to changes in canopy foliage and senescence (A. Gitelson &
Merzlyak et al., 1994; Sims & Gamon, 2002).

Modified Red‐Edge Normalized Difference Vegetation Index
(MRENDVI)

R750 − R705
R750 + R705 − 2 × R445

Corrects for leaf reflection. Used in precision agriculture (Datt, 1999; Sims
& Gamon, 2002).

Sum green index (SGI) ∑
600nm

i =500nm
Ri

N

Detects changes in greenness. Sensitive to small canopy changes (Lobell
& Asner, 2004).

Vogelmann red‐edge index 1 (VREI1) R740
R720

Sensitive to chlorophyll, canopy leaf area, and water content (Vogelmann
et al., 1993).

Vogelmann red‐edge index 2 (VREI2) R734 − R747
R715 + R726

Vogelmann red‐edge index 3 (VREI3) R734 − R747
R715 + R720

Red‐edge position index (REPI) max(dR
dλ)690nm ≤ λ ≤ 740nm

Sensitive to chlorophyll changes (Curran et al., 1995).

Photochemical reflectance index (PRI) R531 − R570
R531 + R570

Indicates photosynthetic efficiency (Gamon et al., 1997; Peñuelas
et al., 1995).

Structure Insensitive Pigment Index (SIPI) R800 − R445
R800 − R680

Measures the carotenoid to chlorophyll ratio (Penuelas et al., 1995).

Red‐green ratio index (RGRI) ∑
699

i =600
Ri

∑
599

j =500
Rj

Indicates leaf redness relative to chlorophyll (Gamon & Surfus, 1999).

Normalized Difference Nitrogen Index (NDNI) log( 1
R1510

) − log( 1
R1680

)

log( 1
R1510

) + log( 1
R1680

)

Estimates nitrogen content in canopies (Fourty et al., 1996; Serrano
et al., 2002).

Normalized difference lignin index (NDLI) log( 1
R1754

) − log( 1
R1680

)

log( 1
R1754

) + log( 1
R1680

)

Estimates lignin content in canopies (Fourty et al., 1996; Melillo
et al., 1982; Serrano et al., 2002).

Cellulose absorption index (CAI) 0.5(R2000 + R2200) − R2100 Indicates dried plant material. Sensitive to cellulose (C. S. Daughtry, 2001;
C. Daughtry et al., 2004).

Plant senescence reflectance index (PSRI) R680 − R500
R750

Indicates canopy stress and senescence (Merzlyak et al., 1999).

Carotenoid Reflectance Index 1 (CRI1) 1
R510

− 1
R550

Measures the carotenoid to chlorophyll ratio (A. A. Gitelson et al., 2002).

Carotenoid Reflectance Index 2 (CRI2) 1
R510

− 1
R700

Similar to CRI1, but more effective for high carotenoid concentrations (A.
A. Gitelson et al., 2002).

Anthocyanin Reflectance Index 1 (ARI1) 1
R550

− 1
R700

Measures anthocyanin content. Indicates stressed vegetation (A. A.
Gitelson et al., 2002).

Anthocyanin Reflectance Index 2 (ARI2) R800 ( 1
R550

− 1
R700

)
Detects higher concentrations of anthocyanins in vegetation (A. A.

Gitelson et al., 2001).

Water band index (WBI) R970
R900

Sensitive to canopy water status (Champagne et al., 2001; Peñuelas
et al., 1993).

Normalized Difference Water Index (NDWI) R857 − R1241
R857 + R1241

Sensitive to canopy water content (Gao, 1995; Jackson et al., 2004).

Moisture Stress Index (MSI) R1599
R819

Sensitive to leaf water content. Higher values indicate greater water stress
(Ceccato et al., 2001; Hunt Jr & Rock, 1989).

Normalized Difference Infrared Index (NDII) R819 − R1649
R819 + R1649

Sensitive to water content in canopies (Klemas & Smart, 1983).
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Figure 3. Histograms illustrating (a) the distribution of vegetation fraction (%) and (b) NDVI values derived from
hyperspectral imaging data at ground truth locations. The histograms depict the frequency distribution of vegetation
coverage and NDVI values across our study area, indicating a moderately to highly dense vegetated area.

Figure 4. Flowchart illustrating the workflow of this study, outlining the sequential steps and processes involved in our
research methodology.
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Figure 5. 3D scatter plots between selected input features and soil properties: (left column) soil organic matter (SOM), (middle column) total carbon (C), and (right
column) total nitrogen (N). The plots depict these soil properties versus (a–c) soil and vegetation fractions. (d–f) NDVI and SRI. (g–i) NDLI and NDNI. (j–l) PSRI and
CAI. (m–o) NDII and NDWI, with each series showing relationships with SOM, C, and N, respectively. The size of the points increases with the magnitude of the target
soil component (SOM, C, or N), providing a visual representation of higher values.

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008421

NUR ET AL. 10 of 23

 21698961, 2025, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JG

008421 by Test, W
iley O

nline Library on [30/12/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



3.2.3. Hybrid Model: Stacked ENet and GBRT

Finally, we employed a stacked generalization approach (Wolpert, 1992) to integrate the predictions from ENet
and GBRT to enhance prediction accuracy. Stacking is an ensemble learning technique that involves training
multiple base models and combining their outputs using a meta‐model. The base models—ENet and GBRT—
were first trained on the training data set in our implementation. ENet was chosen for its ability to handle
multicollinearity and perform feature selection using L1 norm (lasso) and L2 norm (ridge) regularization, while
GBRT was selected for its capacity to model complex, nonlinear relationships through iterative learning. The
outputs (predictions) from these base models were then used as new features for the meta‐model, which, in our
case, is a linear regression model. This meta‐model learns to optimally combine the base model predictions by
minimizing prediction error on a validation data set. This approach leverages the strengths of both base models—
ENet's feature selection capabilities and GBRT's nonlinear modeling power—leading to improved predictive
performance and robustness. Combining the predictions from ENet and GBRT, the stacked model can capture a
broader range of relationships within the data, resulting in a more accurate and generalizable model. This stacked
ensemble is particularly effective in dealing with high‐dimensional data sets with complex interactions between
variables.

3.3. Evaluation of Model Performance

We evaluate the accuracy of our models using the normalized root mean square errors (NRMSE) and the co-
efficient of determination (R2) metrics. These metrics are crucial for assessing model performance and ensuring
precise SOM, C, and N predictions. NRMSE, also known as the “Scatter Index”, is defined as (Bonakdar
et al., 2016; Kisi et al., 2013) follows:

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
M∑

M
k=1(Yk,predicted − Yk,measured)

2
√

Ymeasured
, (2)

and R2 is given by

R2 = 1 −
∑

M
k=1(Yk,predicted − Yk,measured)

2

∑
M
k=1(Yk,measured − Ymeasured)

2 . (3)

In these equations, Yk,predicted and Yk,measured denote the predicted and observed values for SOM, C, and N of the kth
instance, respectively, with M representing the total number of observations and Ymeasured the mean observed
value across the data set. The scatter index normalizes prediction errors, allowing for fair comparisons across
different data sets or units, while R2 highlights the proportion of variance in SOM, C, and N explained by the
model, illustrating its explanatory power and predictive accuracy.

We conducted a comprehensive bootstrap analysis with 1,000 iterations to evaluate the proposed models,
ensuring the robustness and reliability of the predictive models. At each iteration of the bootstrap analysis, we
randomly split the samples into a training set (80%) and a test set (20%), allowing us to train the model on one
subset of the data and evaluate its performance on an independent subset. This extensive resampling approach
allows us to assess the stability of our predictions and understand the variability of the NRMSE and R2 metrics
under different sample conditions. The choice of 1,000 iterations strikes a balance between computational effi-
ciency and the statistical robustness of the results, providing a comprehensive view of the model's performance
across a wide range of potential scenarios. This iterative training and testing process helps minimize bias in the
model's predictions, ensuring that the evaluation metrics reflect the model's true predictive capability.

4. Results
Table 2 presents the performance evaluation of the three predictive models— ENet, GBRT, and the hybrid model
combining both techniques—in predicting SOM, C, and N through a 1,000‐iteration bootstrap analysis. The
hybrid model consistently outperformed the other models in estimating SOM, achieving a lower mean NRMSE of
0.118 than 0.133 for ENet and 0.134 for GBRT. It also recorded a reduced median NRMSE of 0.112. All three
models had a notably tight standard deviation of the NRMSE in the range 0.040–0.042, indicating low variability
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and high consistency of predictions across bootstrap iterations for comparison. In predicting C, the hybrid model
reported the lowest mean NRMSE at 0.127 and the lowest median NRMSE at 0.118, underscoring its superior
accuracy. The standard deviation for the hybrid model was the smallest at 0.045, illustrating consistent perfor-
mance across different bootstrap samples. Compared with ENet and GBRT, which showed higher NRMSE
values, the hybrid model's robustness was evident, particularly in handling data set complexities and variabilities.
For N, ENet recorded the highest mean NRMSE of 0.168, while the GBRT model had a mean NRMSE of 0.141,
and the hybrid model achieved slightly better performance with a mean NRMSE of 0.138. Similarly, the hybrid
model performed marginally better with a slightly lower median NRMSE of 0.135 than GBRT's 0.141 and ob-
tained a lower standard deviation of 0.038, the same obtained with GBRT, than the result obtained by ENet, 0.047.
Overall, the hybrid model produced the best results.

The R2 values reinforce these results, with the hybrid model achieving consistently higher mean and median R2

values across all parameters. It reached a mean R2 of 0.874 for SOM, surpassing both ENet (0.842) and GBRT
(0.841). For carbon, the hybrid model recorded a mean R2 of 0.865, higher than ENet (0.827) and GBRT (0.829).
The hybrid model for N also outperformed the other models with a mean R2 of 0.822, ahead of ENet (0.737) and
GBRT (0.815). The lower standard deviation of R2 values for the hybrid model across all predictions emphasizes
its accuracy and consistency in diverse data splits. Histograms detailing the bootstrap outcomes for NRMSE and
R2 (shown in Figures 6–8) visually illustrate these metrics across predictions for SOM, C, and N and showcase the

Table 2
Model Evaluation on Test Sets From 1,000‐Iteration Bootstrap Analysis

SOM/C/N Evaluation metrics

Models

Elastic net (ENet) regression
Gradient‐boosted regression

trees (GBRT)
Hybrid model: stacked

ENet and GBRT

Soil organic matter (SOM) Mean NRMSE 0.133 0.134 0.118

Median NRMSE 0.127 0.130 0.112

Minimum NRMSE 0.052 0.036 0.029

Standard deviation of NRMSE 0.041 0.040 0.042

Mean R2 value 0.842 0.841 0.874

Median R2 value 0.874 0.868 0.901

Maximum R2 value 0.978 0.988 0.993

Standard deviation of R2 value 0.112 0.102 0.097

Total carbon (C) Mean NRMSE 0.141 0.143 0.127

Median NRMSE 0.131 0.138 0.118

Minimum NRMSE 0.042 0.008 0.029

Standard deviation of NRMSE 0.053 0.048 0.045

Mean R2 value 0.827 0.829 0.865

Median R2 value 0.871 0.860 0.896

Maximum R2 value 0.988 0.999 0.995

Standard deviation of R2 value 0.172 0.119 0.101

Total nitrogen (N) Mean NRMSE 0.168 0.141 0.138

Median NRMSE 0.160 0.141 0.135

Minimum NRMSE 0.084 0.042 0.041

Standard deviation of NRMSE 0.047 0.038 0.038

Mean R2 value 0.737 0.815 0.822

Median R2 value 0.780 0.831 0.845

Maximum R2 value 0.947 0.986 0.986

Standard deviation of R2 value 0.188 0.102 0.100
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hybrid model's narrower spread and higher peaks, indicating its robustness and effectiveness in handling complex
and varied ecological data sets.

Figure 9 presents the feature importance plots, emphasizing how the hybrid model synthesizes various indicators
to enhance prediction accuracy. This capability allows it to capture both linear and nonlinear relationships
effectively, optimizing its performance. The top‐performing instances depicted in Figure 10 highlight that optimal
performance can consistently be achieved with sufficient training data. Figure 11 shows the predicted spatial
distribution of SOM, C, and N across a selected transect of the study site, derived from the hybrid model. On each
map, areas with higher vegetation fractions show higher SOM, C, and N values. This pattern is consistent with

Figure 6. Bootstrap analysis of the soil organic matter retrieval model over 1,000 iterations, evaluated using test data. The figure displays histograms for normalized root
mean square error (row 1) and R2 (row 2) values, along with near‐mean estimated versus measured plots (row 3). Columns represent different models: (a), (d), and
(g) elastic net regression; (b), (e), and (h) gradient‐boosted regression trees; and (c), (f), and (i) a hybrid model combining elastic net and gradient‐boosted regression trees.
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commonly observed relationships in salt marshes, where vegetated areas, especially those dominated by Spartina
alterniflora tend to receive higher organic inputs from both above‐ground and below‐ground biomass, leading to
higher SOM and nutrient concentrations. Sparsely vegetated sites show lower SOM, C, and N values due to a
smaller input of organic matter. The model's reliance on vegetation and surface features helps explain this spatial
pattern. Figure 9 shows that ENet tended to emphasize individual reflectance bands in the shortwave infrared and
surface features such as vegetation‐soil fractions while identifying a range of vegetation‐sensitive indices as
moderately important. In contrast, GBRT prioritized nonlinear combinations of vegetation and moisture‐sensitive
indices such as NDNI, NDLI, CAI, PSRI, NDWI, and WBI, along with vegetation‐soil fractions. Among these,

Figure 7. Bootstrap analysis of the soil total carbon retrieval model over 1,000 iterations, evaluated using test data. The figure displays histograms for normalized root
mean square error (row 1) and R2 (row 2) values, along with near‐mean estimated versus measured plots (row 3). Columns represent different models: (a), (d), and
(g) elastic net regression; (b), (e), and (h) gradient‐boosted regression trees; and (c), (f), and (i) a hybrid model combining elastic net and gradient‐boosted regression trees.

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008421

NUR ET AL. 14 of 23

 21698961, 2025, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JG

008421 by Test, W
iley O

nline Library on [30/12/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



NDNI was the most influential in the GBRT model and represented more than 20% of importance in features. The
hybrid model leveraged both strategies to effectively capture spatial variability in soil properties.

5. Discussion
The results of this study demonstrate the benefit of combining SIs, reflectance values, and soil‐vegetation fraction
estimates for the improved prediction of SOM, C, and N in salt marsh environments. The model incorporates
vegetation structure and soil properties by including a range of spectral features, leading to enhanced predictions.
SOM, C, and N spatial distribution patterns reflect the value of incorporating more than one spectral predictor

Figure 8. Bootstrap analysis of the soil total nitrogen retrieval model over 1,000 iterations, evaluated using test data. The figure displays histograms for normalized root
mean square error (row 1) and R2 (row 2) values, along with near‐mean estimated versus measured plots (row 3). Columns represent different models: (a), (d), and
(g) elastic net regression; (b), (e), and (h) gradient‐boosted regression trees; and (c), (f), (i) a hybrid model combining elastic net and gradient‐boosted regression trees.
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Figure 9. Importance of the top 15 features for each model, expressed as percentages. Rows 1–3 represent the retrieval of soil organic matter, total carbon, and total
nitrogen, respectively. Columns 1–2 distinguish between the elastic net regression and gradient‐boosted regression trees models, respectively.
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because both biotic and abiotic processes control salt marsh soil character-
istics. Feature importance analysis from Figure 9 indicates that NDVI, PSRI,
NDWI, NDLI, NDNI, CAI, and WBI are among the most significant SIs for
retrieving SOM, C, and N. These indices consistently contribute to model
performance across all three parameters, demonstrating their relevance in
characterizing vegetation and soil properties. NDVI and PSRI are vegetation
indices that provide information about plant senescence and health, which
directly relate to decomposition and organic matter buildup. NDNI, a vege-
tation index, measures canopy nitrogen concentration and is used to estimate
soil nitrogen availability. NDLI, which measures lignin content in vegetation,
is also important in understanding organic matter input to soils, as lignin‐rich
plant material decomposes at different rates and influences soil composition.
On the other hand, CAI, NDWI, and WBI provide insights into both vege-
tation and soil properties. CAI provides information on organic matter
composition because cellulose is a dominant organic matter component of
decomposing plant residues that contribute to SOM. NDWI is primarily used
to estimate vegetation water content but can also serve as an indirect indicator
of soil moisture in sparsely vegetated or bare soil areas, a critical factor for the
decomposition and stabilization of organic matter. WBI is related to both
vegetation and soil water content (Curcio & Petty, 1951), providing the
overall model with an input that can help explain and assess hydrological
variability impacting SOM, C, and N. In addition to SIs, several individual
reflectance bands were identified as top predictors in feature importance
analysis for both ENet and GBRT. Many of these bands correspond to known
water absorption features, particularly near 1,400 nm and 1,900–2,000 nm,
which are sensitive to soil moisture variations and influenced by soil porosity.
As soil moisture affects decomposition of organic matter and nutrient holding
capacity, these bands can offer indirect information about carbon and nitrogen
storage. By incorporating both reflectance values and SIs, the model can
effectively capture vegetation and soil's structural and biochemical properties.
Model performance with different input feature sets is shown in Table 3. The
output indicates that a combination of SIs, reflectance, and soil‐vegetation
fraction gives the best SOM, C, and N predictions, leading to more robust
and reliable predictions across varying salt marsh conditions.

Including soil‐vegetation fraction improves model precision by enabling the
discrimination between soil and vegetation contributions in every pixel. The
fraction gives the model useful contextual information because spectral re-
sponses differ significantly from dense vegetation to bare soil. As vegetation
and soil cover differ, vegetation‐related spectral index values and soil
reflectance features change correspondingly to reflect the changing contri-
butions of each factor. This variation allows the model to cope better with
these changing conditions and improve the estimation of SOM, C, and N
across diverse mixtures of soil and vegetation in the salt marsh landscape.
Ground truth data used in this study were acquired from a range of sites, from
bare soil patches to densely vegetated patches, so the model was trained on a
diversity of salt marsh conditions. The SOM, C, and N patterns resemble
well‐documented ecological processes in salt marshes. High SOM and C

Figure 10.

Figure 10. Estimated versus measured values for test samples in the top five cases out
of 1,000 iterations using the hybrid model (stacked elastic net regression
and gradient‐boosted regression trees). (a–c) represent soil organic matter, total
carbon, and total nitrogen retrieval models, respectively. The error bars represent
absolute residuals, indicating the deviation of predictions from measured values.
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levels coincide with older marsh areas where there has been time for organic matter to accumulate and low levels
in younger marshes where sedimentation has been more recent. The spatial distribution of SOM, C, and N in
Figure 11 primarily represents mature marsh regions and their surrounding areas, where prolonged biomass
deposition and microbial decomposition have contributed to higher SOM and nutrient accumulation. Given the
proximity to mature marsh environments, high SOM, C, and N values were expected, and the model's predictions
align with these ecological patterns. An interaction among vegetation cover, organic inputs, and local hydrology
likely controls spatial distributions in Figure 11. More densely vegetated areas with Spartina alterniflora have
higher SOM, C, and N concentrations, likely due to greater organic inputs from litter and root turnover.
Furthermore, plant‐soil interactions in these zones may alter soil oxygen dynamics, influencing decomposition
and nutrient cycling near the root zone. While not modeled explicitly, subtle changes in microtopography can

Figure 11. Mapping of (a) RGB bands from one of the hyperspectral scenes (right) superimposed on a Google Earth image (left and middle) to show the location and
predicted (b) percent soil organic matter, (c) percent total carbon, and (d) percent total nitrogen derived from unmanned aerial systems hyperspectral images taken on 27
July 2019 over a region of salt marshes on Hog Island at the Virginia Coast Reserve LTER.
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affect inundation frequency, sediment deposition, and the distribution of plants, all of which impact soil carbon
and nitrogen processes. The model could capture parallel spatial patterns in all three because of the strong
ecosystem feedback processes that ultimately control SOM, C, and N. Figure S1 further confirms that SOM, C,
and N exhibit a strong linear relationship, indicating that similar biochemical and environmental factors influence
these variables. The close correlation among these variables attests that one modeling strategy is sufficient for
predicting all three parameters. Because SOM is a significant carbon and nitrogen source in marsh soils, the SIs
associated with SOM—especially those related to vegetation structure, biomass, and organic content—also offer
good predictive capacity for C and N. The fact that the same model structure works for all three variables is a
measure of its robustness, and it argues for the use of the identical set of spectral features for SOM, C, and N
estimation.

Although the model worked satisfactorily, additional improvements would render it more transferable to other
wetland environments. Extension of the data set to cover samples from various sites with varying environmental
conditions would render the model more general. Furthermore, including physically based modeling methods that
account for soil and vegetation optical properties would render it more transferable. Future research should also
cover the impact of changing vegetation and soil properties throughout the seasons on model performance
because multiseason data sets better optimize the prediction and stabilize the model. Expansion of these ap-
proaches to larger spatial scales represents another important research direction. Though UAS‐based hyper-
spectral imaging provides high‐resolution measurements, modifying this approach to satellite‐borne
hyperspectral sensors would facilitate monitoring at the regional or the global scale. Synthesis of hyperspectral
data from current and future satellite missions would allow long‐term wetland monitoring, enhance carbon and
nitrogen budgeting, and facilitate conservation activities. Combining airborne and satellite hyperspectral data
with robust statistical modeling would bridge the gap between intensive field‐based sampling and the extensive
use of remote sensing for soil property prediction. The findings of this research illustrate how the utilization of
multiple sources of spectrally dependent inputs—integrating SIs, reflectance values, and soil‐vegetation fraction
estimates—enhances the precision of soil property prediction in salt marshes. The model can successfully
represent the complex interactions that control SOM, C, and N distributions by integrating vegetation and soil
spectral characteristics. Future efforts are needed to advance model transferability with physically based
modeling, expand training data sets for greater robustness, and scale up these approaches to large‐scale satellite
applications. These actions will improve coastal wetland monitoring and management, especially under changing
climate and related wetland land‐cover change that impacts carbon sequestration.

6. Conclusion
We harnessed the capabilities of UAS‐based hyperspectral imagery to develop and validate models for estimating
fundamental soil properties—SOM, C, and N—in the complex and variably vegetated salt marshes of Hog Island,
VA. Utilizing UAS technology enabled the acquisition of high‐resolution spectral data across the VNIR and
SWIR spectral ranges at high spatial resolution, crucial for capturing the detailed spatial variability of soil
properties. This approach allowed us to utilize a range of SIs and reflectance data as features in our models. These
features were specifically chosen for their proven sensitivity to variations in soil properties and vegetation health,
making them highly relevant to our study's objectives. By combining ENet and GBRT into a hybrid model, we

Table 3
Comparison of Hybrid Model Performance on Test Sets From a 1,000‐Iteration Bootstrap Analysis for Predicting SOM, C, and N Using Different Input Features

Prediction target Evaluation metric

Model inputs

Reflectance
Spectral indices + soil/veg

fraction
Reflectance + spectral indices +

soil/veg fraction

Soil organic matter (SOM) Mean NRMSE 0.127 0.148 0.118

Mean R2 0.863 0.807 0.874

Total carbon (C) Mean NRMSE 0.132 0.143 0.127

Mean R2 0.860 0.825 0.865

Total nitrogen (N) Mean NRMSE 0.159 0.152 0.138

Mean R2 0.775 0.787 0.822
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substantially enhanced the accuracy of our predictions for these key soil metrics. By integrating the strengths of
ENet and GBRT together, we were able to consistently outperform the individual models, reducing NRMSE and
improving R2 values, affirming the hybrid model's effectiveness in capturing both linear and nonlinear re-
lationships inherent in ecological data. This performance highlights the value of blending different modeling
techniques to tackle the complex interdependencies observed in environmental data sets.

This study illustrates the potential of combining advanced statistical modeling methods and high‐resolution
remote sensing data to improve soil property estimation in ecologically sensitive areas. Our results offer a
robust framework for ecological monitoring and management. The approach used here, when applied across a
range of salt marsh environments, has excellent potential to contribute to our knowledge of soil properties,
enabling remote assessment of carbon sequestration, nutrient status, and potential for climate mitigation. Future
research will focus on refining these models and extending their application to other environmental contexts,
broadening their impact on sustainable ecosystem management.

Data Availability Statement
The relevant data set and code are publicly available on Zenodo: DOI: https://doi.org/10.5281/zenodo.14994443
(Nur, 2025). For the most recent updates, please visit the GitHub repository: https://github.com/grit‐lab/grit‐lab‐
soil‐carbon‐nitrogen‐organic‐matter‐public‐facing‐repo.
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