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Probabilistic Models of Physical Reasoning

In order to reason about and interact with the world around us, we must understand how it
changes over time. Crucially, we consider not just one possible future, but a range of possible
outcomes: we can tell when a ball almost knocks another into a goal (Gerstenberg, Peterson,
Goodman, Lagnado, & Tenenbaum, 2017; Gerstenberg & Tenenbaum, 2016), when a tower of
blocks is precariously stacked and might fall down (Battaglia, Hamrick, & Tenenbaum, 2013), or
that we are unsure where an occluded object will reappear (Smith & Vul, 2015). This suggests
that our internal models of the physical world are probabilistic, translating uncertainty about the
world’s state or dynamics into a distribution of beliefs over possible future outcomes or latent
object properties.

In this chapter we demonstrate how techniques from probabilistic modeling can be used to
explain the predictions and inferences people make when reasoning about physical systems. We
first describe why physical reasoning is an interesting problem, and why a probabilistic framing is
important for tackling it. We then lay out one theory of probabilistic physical reasoning — the
Intuitive Physics Engine (IPE; Battaglia et al., 2013). We discuss how probabilistic modeling with
the IPE can explain a wide range of ways people reason about physics. Next we describe how
the mind might perform this reasoning efficiently, through approximations to both probabilistic
reasoning and the IPE. We end with current and future directions for probabilistic models of
physical reasoning.

The probabilistic nature of physical reasoning

In many other cases in this book, it is possible to exactly calculate the posterior probability
distributions necessary for probabilistic reasoning. Indeed, classic work demonstrating that
human judgments match Bayesian inference often uses analytic probabilistic models. For
example, when modelling how people integrate two sources of uncertain perceptual information,
researchers have used priors, likelihoods, and loss functions that result in a Bayesian solution
that is simply the weighted average of the observable information (Ernst & Banks, 2002; Kérding
& Wolpert, 2004).

However, because of the inherent complexity of many physical processes and aspects of
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physical reasoning, analytic solutions cannot be used to solve many real-world problems. Instead
we must consider what sorts of approximations the mind makes — how knowledge is represented,
accessed and used in behavior — in order to efficiently solve these problems. Consider the
simple, analytically tractable case of determining the relative mass of two rigid objects from their
velocities before and after they collided with each other. While there are simple algebraic
expressions for calculating the relative mass if the velocities are known, accounting for perceptual
uncertainty in these situations greatly complicates the problem and makes pure analytic solutions
intractable (Sanborn, Mansinghka, & Giriffiths, 2013). These equations become more difficult to
solve as the complexity of the system increases. For example, it's impossible to analytically
predict the state of a system with three objects colliding (Diacu, 1996), much less precisely
characterize systems with complex dynamics like fluids. Yet people have no problems stacking
multiple dishes on top of each other, and regularly pour liquids from one container to another.

How then can people do probabilistic physical reasoning? Approximations of some sort seem
mandatory. Following from the work in the chapter on Rational Process Models (Chapter 11), it is
useful to look at the approximations to probabilistic inference from computer science and statistics
which have been used as algorithmic models of human behavior in tasks such as categorization,
decision making, and causal inference. These algorithms provide a tractable way of performing
probabilistic inference, and also make systematic errors that often match the errors people make.

Perhaps the simplest rational process model for probabilistic physical reasoning is the
exemplar model (Shi, Griffiths, Feldman, & Sanborn, 2010). Instead of maintaining an internal
physical model of the world, probabilistic physical reasoning could instead be performed by
remembering previous experiences and weighing them according to their similarity to the current
situation. In simple tasks such as inferring which of a pair of colliding objects is heavier by
observing their movement, a weighted average of only 50 prior experiences captured human-level
performance across various settings of the underlying physical variables (Sanborn et al., 2013).
But in more complex domains (e.g., predicting whether and in what direction a stack of blocks will
fall) the number of possible object configurations is very large. Yet even in such domains we can
still predict what will happen for configurations of objects that we have never seen before,

suggesting that the exemplar model cannot explain much complex physical reasoning. As we



PROBABILISTIC MODELS OF PHYSICAL REASONING 4

outline below, people seem to represent the external physical world with an internal physical
model that supports Bayesian inference. To make this Bayesian inference tractable, the mind
might use a number of approximations, including model-based sampling, learning a recognition

model for rapid inference, or using an approximate form of the physical model itself.

The ecological nature of physical reasoning

Physical reasoning is an attractive domain for studying how cognition uses complex,
probabilistic generative models for three reasons. First, people have extensive experience with
the physical world. Starting from infancy, we grow our understanding of physics from the building
blocks of “core knowledge” (Spelke & Kinzler, 2007) to mature physical intuitions according to
systematic developmental trajectories (Spelke, Breinlinger, Macomber, & Jacobson, 1992), driven
by consistent changes in the way that infants interact with the world (e.g., developing motor skills
to grasp objects; Baillargeon, 2002). Thus, by adulthood we would expect that interactions with
the world should be guided by consistent physical intuitions that are compatible with accurate,
Newtonian principles.’

Second, as researchers, we have access to normative computational models that can
determine what the future state of a scene will be. This is in contrast to other instances of
probabilistic cognition that rely on rich generative models (e.g., social cognition) for which it is
challenging or impossible to determine normative accounts of how the world behaves. Access to
this ground truth allows us to study when human inferences might deviate from the true future
state of the world, and whether these errors might be the result of a rational inference process
(e.g., Sanborn et al., 2013).

Finally, there are a set of computational models that serve as proxies for understanding how
people simulate physics. At the core of any probabilistic model of cognition is the forward causal
model that predicts how causes give rise to effects. This forward model allows us to calculate

likelihoods and posterior distributions (see Chapter 3). If researchers want to model human

"While there are many instances of human physical reasoning that rely on incorrect principles (e.g., Caramazza,
McCloskey, & Green, 1981; Gilden & Proffitt, 1989; McCloskey, Caramazza, & Green, 1980; Vasta & Liben, 1996), these
errors may be based on a separate cognitive system that is used for more abstract problems. For further discussion,

see Smith, Battaglia, and Vul (2018) and the section on “Errors in physical reasoning” later in this chapter.
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physical reasoning in a probabilistic framework, they need a causal model that approximates the
way the world works. Fortunately there exist a suite of models that are designed to approximate
realistic physical interactions: computer physics engines, such as those in games and graphics
software. Using these game engines to approximate the cognitive systems underlying physical
reasoning has led to successful modeling of human physical predictions (Battaglia et al., 2013;
Gerstenberg, Peterson, et al., 2017; Smith, Dechter, Tenenbaum, & Vul, 2013; Smith & Vul,
2013), and the shortcuts that game engine designers have taken to model physics both
realistically and quickly have provided ideas for how the mind performs efficient approximations of

physics (Ullman, Spelke, Battaglia, & Tenenbaum, 2017).

A mental model of physics

A key component of probabilistic cognition is the causal forward model that allows us to make
inferences by understanding how the world works. For instance, when two objects collide we can
reason about unobserved variables (the masses) based on observed variables (the trajectories)
(Sanborn et al., 2013). This can be considered a simple instantiation of Bayes’ rule, where we

reason about the causes (c) based on the observed effects (e):
P(cle) o< P(e|c) P(c) (1)

A crucial part of this equation is the likelihood model P(e|c) which requires understanding how
effects follow from causes — for example, how likely is it that we would observe the objects’
trajectories for a given specification of the objects’ masses? This likelihood can be instantiated by
mental models of the world that provide us with information of how causes translate into effects
(Craik, 1943), potentially using a mechanism of approximate probabilistic simulation. But how are
these mental models for physical reasoning structured?

Extending prior research into spatial reasoning via continuous simulation, recent work has
suggested a method for performing this model-based physical reasoning, namely that people
have an Intuitive Physics Engine (IPE) that can simulate the world in a way similar to the game
physics engines underlying many modern video games. According to this theory, the IPE takes a
mental representation of the world and iteratively steps it forwards in time using approximately

correct physical principles. However, while game physics engines are deterministic, the IPE is
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probabilistic in order to account for uncertainty in both initial world conditions and physical
dynamics: people can never be perfectly certain of exactly how heavy an object is or how
collisions will resolve. The IPE therefore provides us with a belief distribution over possible
futures, such as where a thrown ball will end up, or the range of ways that a stack of blocks might
topple. We define the IPE as ®, which can transform a world state s at a given time into a
distribution of future world states:

8t+1 ~ (I)(St) (2)

This belief distribution can be used as an input to other probabilistic cognitive models, forming a

bridge between perception and other cognitive systems.

Mental simulation and spatial reasoning

Many theories suggest that spatial reasoning relies on representations that contain the same
spatial information as real-world objects (Kosslyn, Ball, & Reiser, 1978, but c.f. Pylyshyn, 2002 for
alternate theories on the nature of spatial representations). These spatial representations can be
transformed via simulation: transforming the mental representations in a way similar to how their
real-world counterparts would change through time. For instance, if we are asked to determine if
two shapes are the same, the time it takes to make this judgment is related to the time it would
take to rotate the shapes into alignment, suggesting we are mentally performing this rotation
(Shepard & Metzler, 1971). If we are asked whether two edges of an unfolded paper cube will
touch when refolded, our reaction times are related to the time it would take to fold the cube
enough to check those edges (Shepard & Feng, 1972).

This mental transformation has two crucial components. First, the mental representations
and transformations that underlie this simulation must reflect the objects and transformations that
exist in the world (Fisher, 2006). If we wish to use simulation to understand how the world will
unfold, this correspondence is necessary to ensure the results of our simulations approximate
reality. Second, simulation acts in a step-wise fashion: one cannot predict a future state of the
world without predicting intermediate states (Moulton & Kosslyn, 2009).

The same cognitive systems that let us mentally traverse through space or rotate objects

might also include the capability of understanding how objects interact. Indeed, mental simulation
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underlies reasoning about mechanical events: our speed of reasoning about the kinematics of
pulley systems depends on the number of components that must be set in motion (Hegarty,
1992), and the time it takes to judge how turning a gear in a chain will affect gears further in the
chain depends on the number of intervening gears (until people discover rules that can shortcut
this process; Schwartz & Black, 1996b). However, while these tasks do involve reasoning about
physical events, they could be accomplished either by piece-wise simulation, or by sequential
reasoning about the components (e.g., using a causal logic to assess the interaction between
gear A and gear B, then gear B and gear C, etc.). We therefore turn to instances of physics
where the continuous dynamics of the scene are important — understanding how objects collide,
fluids pour, or things fly through the air — and discuss how a simulator that includes physical

principles accounts well for human judgments about these scenarios.

The Intuitive Physics Engine

Motivated by previous theories of mental models underlying spatial and mechanical
reasoning, Battaglia et al. (2013) proposed that human predictions about physical dynamics also
utilize a simulation-based mental model, which they termed the Intuitive Physics Engine (IPE).
While this mental model is theorized to reproduce the dynamics of the world well enough to make
useful predictions (Sanborn et al., 2013; Smith et al., 2018), it is not supposed to perform these
calculations analytically according to idealized physics; instead, the IPE is suggested to “favor
speed and generality over the degree of precision needed in engineering problems” (Battaglia et
al., 2013, pg. 18,328). These constraints are also found in a similar class of problems: modeling
physics for video games, which require dynamics that are good enough to be acceptable to the
game players, but also fast enough to run in real-time. These game physics engines function by
eschewing analytic solutions, and instead simulating physics in a step-wise fashion with state
transition functions that are locally consistent without explicitly modeling fundamental physical
properties (e.g., conservation of energy; Gregory, 2014). The IPE is theorized to function in a
similar fashion, using step-wise, approximate physical principles to model the world (Ullman et
al., 2017).

Similar to game physics engines, the IPE takes as input a description of the state of the
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Figure 1. People perceive a scene through multiple sensory modalities (/eft) to form an internal
representation of the world. This is an object-centric representation, containing probabilistic
information about the locations, extents, and properties of objects (center). The Intuitive Physics
Engine uses this representation to stochastically simulate ways the world might unfold using
approximately accurate dynamics (right). These simulations give rise to a range of possible future

states of the world that feed into other cognitive systems to make predictions, decisions, etc.

world, and yields as output simulations of hypothesized future world states. These state
representations are comprised of a set of object descriptions, as objects are a basic mental
building block (Spelke et al., 1992). Each object representation describes not just the shape,
position, or motion of the object, but also latent properties such as mass or friction. Put together,
the full state representation is similar to those used by computer-aided design programs to
represent scenes, but includes additional information needed to understand the causal
mechanisms that describe how the scene should unfold. However, unlike computer
representations of scenes, mental representations have different memory limitations and will not
include all items in a scene; instead the mind may represent only a limited set of objects that are
in motion and relevant to the judgments we must make (Ullman et al., 2017).

These object representations are multi-modal, drawing on information from vision, audition,
and touch. There is ample evidence that we can integrate information from vision and audition
(Alais & Burr, 2004; Battaglia, Jacobs, & Aslin, 2003) or haptics (Ernst & Banks, 2002; Yildirim &
Jacobs, 2013) to make non-physical judgments, which suggests that information from each of
these modalities is integrated into a single representation in the brain (Erdogan, Chen, Garcea,

Mahon, & Jacobs, 2016; Taylor, Moss, Stamatakis, & Tyler, 2006). Because the IPE relies on
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these integrated representations, it can also make predictions not just about how physics will
transform the visual location of objects over time, but also what will be heard or felt. Conditioning
on auditory information allows us to reason about material properties based on the sound of a
collision (Traer & McDermott, 2016), infer the number and type of objects in an opaque box that is
shaken (Siegel, Magid, Tenenbaum, & Schulz, 2014), or figure out in which hole a ball was
dropped in a plinko box by integrating the sequence of sounds with information about where
obstacles are positioned in the box (Gerstenberg, Siegel, & Tenenbaum, 2021).

One crucial difference between game physics engines and the IPE is that while game
physics engines are deterministic, both the inputs and outputs of the IPE are belief distributions
over states of the world. This distribution of beliefs over world states S comes from two sources.
First, there is perceptual uncertainty in constructing mental models of the world: we are unable to
exactly perceive the properties of objects given our sensory input (such as their location and
velocity). In addition, the state transitions within the IPE are themselves stochastic, especially
around physical events such as collisions (Smith & Vul, 2013).

Thus the IPE can be thought of as a stochastic transition function over hypothetical world
states. Because both the input and the output of this model are of the same form, the same
queries on the current belief state of the world can be applied to hypothetical belief states — for
example, ‘Where is the ball now?’ is the same function applied to current beliefs as ‘Where will
the ball go after it is tossed?’ is to predictions of future world states. Thus we can define world
state queries @ such that the query on the current world state (Q(S)) and the query on the output
of the IPE (Q(®(.5))) produce similar types of output. This provides a key link between perception
and higher level cognition, providing generalized output about hypothetical futures that we can
use for prediction, inference, planning, reasoning, and learning.

The physics engine in the brain. Within the brain, there are specialized neural regions
dedicated to performing ecologically important tasks like recognizing faces (Kanwisher,
McDermott, & Chun, 1997), or judging the mental states of others (Saxe & Kanwisher, 2003).
Understanding and interacting with the physical world is another task important for our survival,
so it might be expected that the brain dedicates cortical area to the IPE. Indeed, Fischer, Mikhael,

Tenenbaum, and Kanwisher (2016) found that there are areas of the brain that respond
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preferentially to making predictions about, or just watching physical events. Furthermore, these
brain regions encode information about physically relevant properties such as weight
(Schwettmann, Tenenbaum, & Kanwisher, 2019) or stability (Pramod, Cohen, Tenenbaum, &
Kanwisher, 2021), and are in fact the only parts of the brain from which this information can be
decoded .

These “physics areas of the brain” are located in pre-motor/supplementary motor cortex and
somatosensory association cortex, which is similar to brain regions that have been previously
implicated in spatiotemporal prediction (Schubotz, 2007), motor action planning (Chouinard,
Leonard, & Paus, 2005), and tool use (Goldenberg & Spatt, 2009). This further suggests that the
IPE acts as an interface between perception and other cognitive modules that can be used to, for
instance, plan our actions.

Errors in physical reasoning. To produce reasonably accurate predictions, the IPE is
believed to transform mental representations of the world using principles that are approximate
but generally capture how the world itself unfolds (Battaglia et al., 2013; Sanborn et al., 2013;
Smith et al., 2018). This claim is distinct from a separate body of literature that finds significant
errors in human reasoning about physical principles: that we display errors when reasoning about
ballistic motion (Caramazza et al., 1981; Hecht & Bertamini, 2000), inappropriately believe that
objects exiting curved tubes retain curvature in their motion (McCloskey et al., 1980), or fail to
understand how water acts in a tipped container (Kalichman, 1988).

However, these studies that find errors in physical reasoning typically use abstract diagrams
or ask for explanations of physical principles, both of which are thought to require more abstract,
rule-based reasoning than more realistic, predictive tasks (Schwartz & Black, 1996a).
Furthermore, tasks that rely on explicit reasoning about physical concepts activate a wider range
of brain areas (Jack et al., 2013) than tasks that use more perceptual or action-oriented
information (Fischer et al., 2016). Thus cases where people behave according to incorrect
physical principles may be instances of reasoning with a different cognitive system than the IPE
discussed here (for further discussion, see Hegarty, 2004; Smith et al., 2018; Zago & Lacquaniti,
2005).

This is not to say that the IPE always produces accurate predictions. As described later in
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this chapter, certain physical approximations produce biases and errors in predictions.
Furthermore, it is possible that there are physical principles that are encountered rarely or have
little impact on our predictions, and so are not accurately modeled by the IPE. However, for many
scenarios with relatively simple shapes and dynamics that are presented in a realistic fashion,
models that assume unbiased, accurate physical principles do a good job of explaining human

physical reasoning.

Human physical reasoning

As a probabilistic generative model, the IPE supports many different ways of reasoning about
the world. The simplest way is through prediction: running the model forwards on the current
state of the world, to form a belief about how the world will turn out. But principles of probabilistic
cognition suggest how the IPE can support various ways of reasoning about physics: inverting a
generative model to form inferences about the world; reasoning about counterfactual models of
the world to determine causality; conditioning on outcomes to plan our actions; updating models
of the world in light of new evidence, and so on. In the following sections, we provide evidence for

and explain how the IPE supports these various facets of cognition.

Prediction

Prediction is the simplest use of generative models of physics: running the IPE forwards and
querying the simulated outcomes to make judgments about possible future states of the world.
Here, probabilistic reasoning allows us to make graded predictions across a wide variety of
scenarios. For example, we may predict how towers fall (Battaglia et al., 2013), balls bounce
around (Deeb, Cesanek, & Domini, 2021; Gerstenberg, Peterson, et al., 2017; Smith et al., 2013;
Smith & Vul, 2013, 2015) or roll down slopes (Ahuja & Sheinberg, 2019; Ceccarelli et al., 2018),
objects fly under ballistic motion (Smith et al., 2018), and fluids pour (Bates, Yildirim, Tenenbaum,
& Battaglia, 2019; Kubricht et al., 2016, 2017).

This is equivalent to developing a posterior belief over future world states (S*) given the

current belief over the world state (5°) and the physics engine (®):
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Figure 2. The IPE as a generative model can support a variety of ways of reasoning about
physics via probabilistic cognition. Prediction is running the IPE forwards and querrying the
results. Inference requires conditioning belief based on how well a world with the relevant
parameters would match observations. Causal reasoning requires comparing the expected result
of hypothetical worlds without the causal agent to actual observations. Planning involves

selecting actions that are expected to produce the desired outcome.

p(S*) = p(S*|S°, @)p(S°) (3)

Because these equations are often analytically intractable, in most cases the prior and
posterior beliefs are approximated using Monte Carlo methods: treating a belief distribution as a
collection of samples from a probability distribution (S = [so, s1, ...s,]; cf. Kahneman & Tversky,
1982). In this way each sampled state can be iteratively updated with the physics engine until a

final state is reached (where ®* indicates iteratively applying the physics engine):

st = (s9) @)

Battaglia et al. (2013) applied this approach to understand physical prediction. In this work,
participants viewed images of block towers like those in Figure 3A, and were asked to predict

whether the tower will fall or remain stable under the effects of gravity. They found that
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Figure 3. Instances of probabilistic physical prediction. A. The IPE captures predictions about
general events such as stability. For instance, even though the tower with a red outline is stable,
both people and an IPE model treat it as unstable (right) because small changes in the location
or pose of almost any block will cause it to come crashing down (Battaglia et al., 2013). B.
Uncertainty in the IPE is driven both by noise in perception and accumulating stochasticity
throughout prediction (fop), which gives rise to a distribution over possible paths that objects
might take (botfom; Smith & Vul, 2013). C. Probabilistic prediction can also explain judgments of
how fluids pour, by approximating the fluid with a set of interacting particles. This can differentiate
between water (top) and honey (bottom) by modeling more viscous liquids as having stronger

inter-particle forces (Bates et al., 2019).

participants’ stability judgments could be better captured by a probabilistic simulation model than
alternative, feature-based heuristics (such as the height of the tower). This model assumes that
an observer has perceptual uncertainty about the exact location of the different blocks in the
tower, and uses a deterministic IPE to simulate how the world will unfold under these different
initial conditions. Since each initial scene will have a slightly different block configuration, the
output of the IPE is a distribution over possible future scenes. Participants’ judgments are then
explained by aggregating the IPE’s predictions across these scenes, such as the average
proportion of blocks that fall. The same model also explained participants’ physical intuitions
across a variety of other tasks that included judging in which direction the tower will fall, or where
objects would be more likely to fall off a table if it was bumped; conversely, no single
feature-based heuristic could capture performance across all of these tasks.

Smith and Vul (2013) explored the extent to which noise in physical dynamics themselves
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affected participants’ physical predictions, using a task in which participants were asked to view a
ball bouncing around a computerized table and predict where that ball would travel while
occluded. Like Battaglia et al. (2013), Smith and Vul assumed that participants may have
perceptual uncertainty about the exact position and velocity of the ball when it disappeared
behind the occluder, but they also investigated dynamic sources of uncertainty: that the ball’s
trajectory would be perturbed in each time step, and additionally perturbed whenever the ball
collided with a wall (Fig 3B). They found that assuming uncertainty in how the physical dynamics
will unfold over time was critical for explaining participants’ predictions in this task, which implies
that the physical transition function @ is itself stochastic. In other experiments, this uncertainty in
dynamics was also required to explain participants’ judgments about their overall uncertainty
about their own predictions (Smith & Vul, 2015), and how people update their predictions as a
scene unfolds (Smith et al., 2013).

The proposal of the Intuitive Physics Engine has been extended beyond rigid bodies, to soft
bodies, cloths, and fluids. As early as five months of age, infants demonstrate rich expectations
about the dynamics of fluids and other non-solid substances, distinct from their expectations
about solids (e.g. Hespos, Ferry, Anderson, Hollenbeck, & Rips, 2016). Van Assen, Barla, and
Fleming (2018) found that the human visual system supports accurate inferences about fluid
viscosity, which can be modeled as hierarchical estimation over mid-level visual features, such as

[ ]

“‘compactness”,

L]

elongation”, “pulsing”, and “clumping.”

Recent work has suggested that people understand these fluid dynamics using simulation
(Bates et al., 2019; Kubricht et al., 2016, 2017). Bates et al. (2019) asked participants to predict
how liquids with different viscosities (water and honey) would flow down a set of obstacles, and
judge what proportion of that liquid would fall into a bucket on the ground. They found that
participants’ predictions were well-approximated by a model that captures the complex dynamics
underlying fluid motion through representing the liquid by a number of interacting particles. The
results showed that participants’ predictions were sensitive to the liquid’s viscosity, making
different predictions for how honey will flow, or how water will spill (Fig. 3C). Relatedly, a model of
fluid dynamics with uncertain viscosity was used to explain people’s intuitions about the angle at

which a filled container would start to pour out a liquid (Kubricht et al., 2016) or sand (Kubricht et
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al., 2017, but see also Schwartz & Black, 1999).

Inference

It is clear how to use a forward model like the IPE to make predictions about the world: start
with a set of initial conditions and run the IPE forwards. However, people can make inferences
about the hidden states of a physical system just by observing how it unfolds, which requires
using the IPE to make judgments in the opposite direction.

These inferences are naturally captured by Bayesian models of cognition. Here we define a
set of latent properties (I) that may not be directly observable (e.g., object weight or elasticity),
and observable properties (o) that may or may not change over time, such as object shape,
position, or velocity. Thus a scene is a collection of latent and observed properties (s* = [0, 1]).
After watching a scene unfold, posterior beliefs over the latent properties can be calculated by a
simple application of Bayes’ rule, conditioned on how the observed scene properties have
unfolded:

p(l]o") o p(o'[L, 0%, @)p(o°|D)p(1) ()

Sanborn et al. (2013) demonstrates how this approach can explain biases in judgment
arising from human physical inferences. When observing two rigid objects colliding on a
computer screen, people can infer the relative masses of the objects from observing their
velocities, which requires reasoning backwards from these observed velocities to the masses that
would have caused that collision. These mass judgments have been found to depend on the
elasticity of the collision: when the collision is especially bouncy, people are more likely to
correctly judge the heavier object to be heavier than when they observe a less elastic collision
between two objects of the same masses. But according to the laws of mechanics, the relative
masses of two objects can be calculated just from observations of the starting and ending
velocities and should not depend on the elasticity of the collision. This dependence on an
“irrelevant” variable has in the past been taken as evidence that we do not use accurate physical
principles in these situations (Gilden & Proffitt, 1989; Todd & Warren Jr, 1982). However, viewing
this mass judgment through the lens of probabilistic reasoning shows that the sensitivity to

elasticity is not necessarily due to a simple heuristic or errors in understanding Newton’s laws of
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Figure 4. Probabilistic models support our ability to make judgments about latent physical
properties such as mass. A. A graphical model used to infer the masses (m) and elasticity (e) of
two blocks colliding based on the initial and final velocities (u & v) which are perturbed by
perceptual noise (¢; left). This noisy inference model explains why people’s mass judgments are
biased by the elasticity of the collision (right; Sanborn et al., 2013). B. Since the tower is stable,
we judge that the purple blocks must be heavier than the green blocks, because if they were not
we would expect some of the blocks to fall (Hamrick, Battaglia, Griffiths, & Tenenbaum, 2016). C.
We might expect wooden blocks to be lighter than iron ones; however, if we see a block with a
wood texture launching a block with an iron texture, we quickly update our beliefs about their

relative weights (Yildirim, Smith, Belledonne, Wu, & Tenenbaum, 2018).

motion. Instead, collisions with slower speeds (which result from inelastic collisions) are simply
harder to distinguish than collisions with faster speeds as a result of perceptual uncertainty.
Similarly, people seem to be biased towards assuming that objects in motion are heavier than
stationary objects (Stocker & Simoncelli, 2006); adding a prior expectation that objects move
slowly results in an interaction with Newtonian mechanics that captures this bias. In this way,
human judgments are consistent with Bayesian inference using an accurate model of collision
dynamics (Fig. 4A; Sanborn, 2014; Sanborn et al., 2013).

People are also able to infer relative masses from scenes with more complex arrangements
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of objects — for example, towers of blocks (Fig. 4B) — and even update their beliefs about these
relative masses across trials (Hamrick et al., 2016). These impressive feats of physical inference
are not limited to vision, or to adults. Before they are one year old, infants understand that objects
that compress a pillow are heavier than those that don’t (Hauf, Paulus, & Baillargeon, 2012). And
by shaking a box, children can infer what objects there are inside, and how many of them there
are. Children can even use information about what they would expect to hear to determine how
difficult a discrimination task would be, without having to physically shake the box. For instance,
children know that two different pencils will make similar noises when shaken in a box, and so
this is a difficult discrimination task, but a pencil and a cotton ball will make distinct noises and so
presents an easier choice (Siegel et al., 2014).

Inferences about physical properties can in turn recalibrate the simple perceptual judgments
on which they seem to be based. For example, if people see a slope with a shallow slant, but
observe a ball bouncing off of the slope as if it were steep, they will adjust their perception of the
orientation of the slope to be steeper, consistent with the behavior of the ball (Scarfe &
Glennerster, 2014). This inference suggests that people use physical inference to build internal
world representations that are consistent between their direct perception and their observations

of dynamics.

Causal reasoning

Two billiard balls, ball A and ball B, collide with one another, and ball B goes into the pocket
of the billiard table. Did ball A cause ball B to go into the pocket? Is it sufficient to notice that the
two balls collided to answer this question about causation, or is more required? In philosophy
there are two large families of theories that try to analyze what causation is. According to process
theories of causation, causes bring about effects via a spatio-temporal contiguous process, for
example, via the transmission of physical force (Dowe, 2000). According to dependence theories
of causation, causes and effects are related via probabilistic or counterfactual dependence, such
that for ¢ to qualify as a cause of event ¢, e would not have happened if ¢ hadn’t happened (see
Gerstenberg & Tenenbaum, 2017; Waldmann, 2017).

Both of these families of theories have had a large influence on psychological theorizing
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about causation. The force dynamics model developed by Wolff (2007) is a process theory that
suggests that people judge an event to be causal based on the force transferred between the
agent and patient. For example, to decide whether ball A was the cause of ball B going into the
pocket, this theory suggests that we look at the configuration of forces associated with the patient
and agent at the time of collision. This theory has been used to map various force configurations
onto descriptions like ‘caused’ or ‘helped’ (Wolff, 2007; Wolff, Barbey, & Hausknecht, 2010).
Crucially, the force dynamics model suggests that people consider only what actually happened
in order to judge whether an event was causal.

Dependence theories, on the other hand, predict that people’s judgments about causality are
based on what might have happened in a counterfactual situation in which the causal event had
been absent or different. The belief in what would have happened is often represented as a
distribution over possible alternative outcomes, and many variants of probabilistic theories of
causation exist that aim to capture people’s inferences about the strength of a relationship
between putative cause and effect (Cheng, 1997; Griffiths & Tenenbaum, 2005; Jenkins & Ward,
1965). Counterfactual theories of causation naturally capture causal relationships between
particular sets of events, such as whether the bump of the table caused the tower to fall, or
whether the gust of wind that happened at the same time would have been sufficient to bring
about the same result. These theories posit that ¢ is a cause of event e to the extent that a

counterfactual outcome e’ would be different if ¢ were removed from the scene s:

CAUSE(c — ¢) « P(¢ # ¢|s, remove(c)) (6)

Gerstenberg, Goodman, Lagnado, and Tenenbaum (2021) developed the counterfactual
simulation model of causal judgment to quantitatively capture dependence theories. According to
this model, people make causal judgments by comparing what actually happened with what
would have happened in a relevant counterfactual situation. For example, when asked to say
whether ball A caused ball B to go into the pocket, the model not only considers that the two balls
collided and that ball B went into the pocket, it also considers what would have happened if ball A
hadn’t been present in the scene. The model predicts that an observer’s causal judgments will

increase the more certain she is that the outcome would have been different if the cause hadn’t
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Figure 5. Probabilistic models allow us to determine what might have happened in the absence
of a possible cause. A. Instances where ball A certainly (1), maybe (2), or did not (3) cause ball B
to go through the gate. B. The counterfactual simulation model suggests that we make
judgments about ball A’s causal relevance by simulating what would have happened to ball B if
ball A had not been there and comparing the outcome in this counterfactual situation to what
actually happened. This model predicts human causal judgments well. C. Supporting this theory,
when making causal judgments people spontaneously look towards where ball B would have

gone without ball A (Gerstenberg, Peterson, et al., 2017).

been present in the scene (see Fig. 5A&B).

It's worth making explicit what's assumed to be involved in this process. In order to make
causal judgments under a counterfactual theory, people first observe what actually happened.
They then go back in time (mentally) and make a change to the scene in order to undo the causal
event of interest (e.g. by mentally “removing” the candidate cause ball from the scene). Finally,
they predict what the outcome in this counterfactual situation would have been through simulating
the counterfactual course of events (see Fig. 2). This distribution over different counterfactuals
arises naturally from the Intuitive Physics Engine. In some of the counterfactual scenarios, the
outcome might be the same as what actually happened (i.e. ball B would still have gone into the
pocket even if ball A hadn’t been there; example 3 in Figure 5A), whereas in others, the outcome
might have been different. People’s causal judgments were well-explained by the counterfactual
simulation model’'s uncertainty about whether the cause made a difference to whether or not the
outcome happened. The more certain participants were that the outcome would have been
different, the more they said that the candidate caused the outcome to happen (Gerstenberg,
Goodman, et al., 2021).

Gerstenberg, Peterson, et al. (2017) tested a key prediction of the counterfactual simulation

model: that people reach their causal judgment by spontaneously simulating what would have
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happened if the cause hadn’t been present in the scene. They asked people to watch video clips
of two balls colliding (A and B) and judge whether ball A caused or prevented ball B from going
into a goal while using eye-tracking to determine where people looked as they made these
judgments. As predicted by the model, participants looked not only at the balls, but also where
ball B would have gone if ball A had not been in the scene. Importantly, these same
eye-movements were not observed in a condition in which participants were asked only to make
a judgment about what actually happened. So, the counterfactual simulations were specifically
recruited in the service of making causal judgments, but without any explicit instruction in the
experiment to consider counterfactual contrasts. Extensions of the counterfactual simulation
model have shown how it captures people’s judgments about whether something almost
happened as a function of how much a causally relevant variable would have needed to be
changed (e.g., the force with which a ball is kicked; Gerstenberg & Tenenbaum, 2016), and to
what extent a single block in a tower is responsible for the tower’s stability (by simulating what
would happen if the block was removed from the tower; Gerstenberg, Zhou, Smith, &

Tenenbaum, 2017).

Planning and action selection

Being able to make predictions and inferences about the physical world is about more than
reasoning: it also supports rich interaction with physical systems. Specifically, a model of the
physical world like the IPE can also be used to choose the best sequence of actions to take in a
given scenario. This process of action selection on the basis of a model is referred to as planning
(Sutton & Barto, 2018), and has been found to occur in the context of physical reasoning at
multiple levels of abstraction, ranging from low-level motor control to high-level problem solving.

A large body of work has shown that the motor system represents forward models of how
motor commands affect the motion of our bodies, the dynamics of external objects, and how our
bodies might interact with those objects (Davidson & Wolpert, 2005; Flanagan & Wing, 1997;
Kawato, 1999; Miall & Wolpert, 1996; Wolpert & Kawato, 1998; Wolpert, Miall, & Kawato, 1998).
These forward models are used by the motor system to compute optimal actions or trajectories

as follows. First, the forward models estimate possible current states in the world, either through
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Bayesian inference (Wolpert, 2007) or through a filtering procedure like a Kalman filter (Grush,
2004). After an action is taken, these forward models compute expectations about what the next
state of the world will be, and combine these expectations with actual sensory data to compute a
posterior distribution over states. This distribution over states can be used to compute the
expected cost or reward of possible actions, marginalizing over all possible states. Action
selection consists of computing this expected cost (L) for all possible actions (a € A), and then
choosing the action (a*) with the lowest cost (including action costs and costs of not
accomplishing our goals) based on the IPE (®*(.S)) across all plausible states (s € S; Wolpert,

2007):

a* = argerilin Z L(a,®*(s))p(s) (7)
a ses

In addition to cases where the current state of the world is uncertain, forward models also aid
in computing the costs of actions when future states are uncertain. For example, Dasgupta,
Smith, Schulz, Tenenbaum, and Gershman (2018) showed that when trying to launch a ball into a
goal, people make predictions about where the ball will end up given a particular action. Where
the ball ends up determines the utility of the action: if the ball makes it into the goal, there is net
positive utility for accomplishing the objective, while if the ball misses the goal, a cost is incurred.
To actually choose which actions to evaluate, Dasgupta et al. (2018) used a model of
decision-making known as Bayesian optimization (Hernandez-Lobato, Hoffman, & Ghahramani,
2014) and showed that this model not only predicted people’s action evaluations, but also
captured how they combined information from both mental simulations and real physical
experiments. S. Li et al. (2019) also showed how physical simulations can be used to aid in
computing an intrinsic reward that encourages exploratory behaviors necessary to uncovering
causal properties of a physical system, similar to those produced by human participants.

However, even with a model that provides an estimate of the utility of an action, it is not
always clear which actions should be considered in the first place: there are always many things
we could do, but the vast majority of those actions will not be useful. While in theory action
selection can be accomplished by exploring the space of possible actions and conditioning on

those that are successful (see Fig. 2, lower-right), in reality it is impossible to consider the
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outcome of every possible action that could be taken. Allen, Smith, and Tenenbaum (2020)
studied how people choose and use tools to accomplish goals in physical problem solving with a
large space of possible actions. They find characteristics of rapid trial-and-error problem solving:
people search stochastically but in a structured way at first, then exploit promising solutions to
quickly solve these problems. Allen et al. (2020) propose that this rapid search requires not just a
model to assess actions, but also prior expectations about what general sorts of actions are likely
to be successful to avoid considering useless actions, and generalization mechanisms that take
in both simulated expectations and real-world observations to update posterior beliefs about what
might be useful actions to take.

In physical problem-solving tasks that require multiple steps—such as stacking blocks into a
tower—a model of physical dynamics can be used to score plans depending on physical
constraints. For example, Yildirim, Gerstenberg, Saeed, Toussaint, and Tenenbaum (2017)
examine a block-stacking task in which a set of blocks must be assembled into a given target
configuration. To model this task, they first search for a symbolic plan specifying which blocks
should be stacked with which hands and in what order, and then score plans according to the
physical stability of the tower in each step (along with other geometric and spatial constraints).
Yildirim et al. (2017) showed that this model captures how likely human participants are to use
one or two hands to solve the task, suggesting that this choice in humans may also be informed
by estimates of physical stability. Yildirim et al. (2019) demonstrated how an extension of the
model which takes into account physical effort and physical risk accurately captures people’s
intuitions about how difficult it would be to build certain block towers .

Finally, it is worth noting that planning is not necessarily limited to scenarios involving
physical reasoning, and an exciting direction for future work is to combine insights from the
literature on non-physical planning and learning with forward physical models like the IPE. For
example, hippocampal replay and preplay during spatial navigation tasks in rats strongly
resemble rollouts of a forward model (Olafsdéttir, Barry, Saleem, Hassabis, & Spiers, 2015;
Pfeiffer & Foster, 2013), and various theories have suggested that this replay occurs during a
consolidation process of model-based experience into model-free action policies (Mattar & Daw,

2018; Momennejad, Otto, Daw, & Norman, 2017). Related work has explored how people trade
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off between model-based and model-free accounts of learning in environments with
non-stationary rewards (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Dolan & Dayan, 2013;
Glascher, Daw, Dayan, & O’Doherty, 2010; Keramati, Smittenaar, Dolan, & Dayan, 2016; Kool,
Cushman, & Gershman, 2016). While such work examines the use of models during learning
processes, other work has explored the use of planning at decision-time, looking at how people
construct and traverse trees of possible future states (Huys et al., 2012; Solway & Botvinick,
2015; van Opheusden, Galbiati, Bnaya, Li, & Ma, 2017). A number of recent advances in Al
suggest other possible mechanisms for model-based planning (Hamrick, 2019), which could be
integrated with models like the IPE to build process-level models of physical planning and action
selection. Indeed, recent work combining model-based planning with physical models has
demonstrated how to build Al systems that can reason about complex physical scenes, such as
deciding how to stack blocks into a tower (e.g. Bapst et al., 2019; Fazeli et al., 2019; Janner et al.,
2019). Such methods, when combined specifically with an IPE model, may also prove useful in

explaining how people interact with everyday physical scenes.

Learning models of physics

We discussed earlier how an IPE can be used for inference about the dynamic variables that
led to a particular observation. The logic is relatively simple to see in the case of simple
hypotheses over single variables. For example, if an object is knocked with a certain force in a
frictionless environment, according to an approximate simulation, the mass m of that object
determines its trajectory ¢ (giving us the likelihood p(¢|m)). We can then use a prior (m) and
standard Bayesian inference to reason about the mass given a trajectory, p(m|t) o p(t|m)p(m).
However, the trajectory is determined not just by the mass, but also by a whole physics engine
(@) that includes background assumptions about the way that dynamic variables such as mass
are affected by forces, how objects interact, how collision dynamics work, how joints constrain
entities, and so on. It would be more correct to state p(m|t, @) o p(t|m, ®)p(m).

The physics engine encapsulates our knowledge about the world in a way that goes beyond
a specific situation involving, say, a particular tower of blocks. As such, other parts of the world

may be targets of inference as well, using a logic that is similar to that used for inferring the mass
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of a single block. If we label a particular instantiation of a physics engine as ¢ = ¢ (assuming
now that ® includes both m and any other possible variables), the broader inference is

p(@|t) o p(t|p)p(¢). Of course, it is highly unlikely that we are reasoning about all aspects of the
physics engine in a given situation, and a hierarchical scheme can be useful here, in which the
top-most level of the hierarchy assumes only the existence of objects, properties, and dynamics
laws, but without assuming the specifics (Ullman, Stuhlmdiller, Goodman, & Tenenbaum, 2018).
As one moves down the hierarchy, specific types of properties may be hypothesized and learned
(e.g., the property of elasticity), as well as specific dynamic laws (e.g. a force of attraction or
repulsion). Finally, at the lowest level of the hierarchy, particular parameters can be hypothesized
and learned (e.g., the specific strength of the attraction).

This general notion of hierarchical learning can provide a ‘blessing of abstraction’ for learning
over many domains. For instance, a programmer designing a new video game will often adapt an
off-the-shelf physics engine for their specific purpose rather than redesigning the full machinery
from scratch. In similar fashion, when learning how to play a new game or encountering a new
physical situation, humans likely assume much of their already learned (or pre-packaged)
routines and variables, and learn the specific parameters and functions necessary to generate
the stimuli in the new situation. Encountering two-dimensional video-games for the first time likely
requires modifying the higher levels of an IPE hierarchy, but once modified many new
two-dimensional video-games represent ‘more of the same, at least at an abstract level. Coming
up with the notion of a global force pulling things downwards may be onerous the first time, for
example, but it can then be widely applied across many situations.

Even for small and simple domains, the space of possible laws and properties can be quite
large (see Ullman et al., 2018, for a simple two-dimensional world with few laws and objects and
many possible ‘physical theories’). And even with a useful physical prior — say in the form of a
reasonable posterior over the upper levels of a hierarchical IPE representation — a new physical
situation will still present a learner with a hypothesis space that is too large for exact inference
over all possible physical parameter settings, dynamic laws, and relevant properties. One method
for exploring this space is to posit hypotheses driven by low level features of the scene (Ullman et

al., 2018), then interact with the world to explicitly test those hypotheses. Bramley, Gerstenberg,
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Tenenbaum, and Gureckis (2018) found that when people are asked to judge, for instance,
whether and which objects repelled or attracted each other, those who were able to interact with
the scene performed “experiments” that provided good evidence to discriminate between the
different forces, and were more likely to learn the correct hypothesis than others who passively
watched a scene — even if it was the same scene generated by one of the people who interacted
with the world. This active exploration also seems to be crucial for developing an understanding
of the world: infants who have not yet developed the motor skill to grasp objects but are given
“sticky mittens” that allow them to pick up objects will later interact with objects in a manner as
sophisticated as older infants with grasping skills (Needham, Barrett, & Peterman, 2002).
Together, this suggests that active learning is a method that we use to efficiently learn about and

explore the world.

Efficient physical reasoning

While the previous section demonstrates the various ways in which the IPE can be used
within the framework of probabilistic cognition to explain different facets of human physical
reasoning, features of physics and the IPE make it such that applying generalized probabilistic
algorithms to these problems is computationally intractable. First, because there are no analytic
equations to describe how physics unfolds except in the most trivial scenarios (Diacu, 1996),
general probabilistic prediction requires running the IPE forward a limited number of times to
approximate the posterior belief about the future state of the world. Second, generalized
probabilistic inference algorithms require applying the likelihood function — here, the IPE —
hundreds or thousands of times to produce a well-formed posterior distribution, or even more if
the algorithm is initialized poorly. Yet we use the IPE to make predictions and inferences about
physics in real time. In this section, we describe possible shortcuts the mind might take to more

efficiently approximate probabilistic physical reasoning.

Sampling simulations

A sample is a random value drawn from a probability distribution. Because the IPE is a

probabilistic system (Battaglia et al., 2013; Smith & Vul, 2013), every simulation from the IPE is a
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sample from the probability distribution over future states of the world, conditioned on current
observations. The most straightforward way to use samples from the IPE is through a brute-force
Monte Carlo approximation, in which a large number samples are drawn from the IPE to give a
reasonable expectation of the future (see Chapter 6 for further details). For example, Battaglia et
al. (2013) and Smith and Vul (2013) used large numbers of simulations (48 and 500, respectively)
to form predictions and explain how many people behave in aggregate. However, using such a
large number of samples from the IPE seems rather at odds with limits on an individual’s working
memory and attention. Do people really sample tens or hundreds of mental simulations before
making a decision?

There is a priori reason to think that people may not require a large number of simulations to
make a decision. Vul, Goodman, Griffiths, and Tenenbaum (2014) performed a theoretical
analysis asking what an optimal decision-making agent ought to do under time constraints.
Specifically, if an agent has a limited amount of time to make as many decisions as possible, how
many samples should be taken per decision? The answer is a trade-off between the utility of
each correct decision, the amount of time it takes to draw a sample, and the reliability of each
sample. Intuitively, if it takes a lot of time to take a sample, then fewer decisions can be made,
thus resulting in lower utility. However, if each sample is very noisy, then decisions are more likely
to be wrong and therefore it might be advantageous to take more samples. Through a formal
analyses of this trade-off, Vul et al. (2014) found that in plausible scenarios it can actually be
optimal for an agent to only take a single sample to support a decision. Making a decision based
on a single sample also naturally explains the classic cognitive bias of probability matching: in
experiments in which people are asked to predict whether a high-probability or low-probability
outcome will occur, they tend to predict the outcomes according to their probabilities, rather than
always predicting the high-probability outcome as they should (Vulkan, 2000).

To determine the number of samples that people require from the IPE to support physical
judgments, Hamrick, Smith, Griffiths, and Vul (2015) ran an experiment in which participants had
to predict whether a ball would go through a hole. Crucially, they varied the difficulty of each trial
by changing the size of the hole (i.e., either small or large) or the margin by which the ball would

go through or miss the hole. On some trials the ball would go through or miss the hole with high
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probability according to the IPE (e.g., 90% or 10% chance of going through the hole) while on
others it was very unclear whether it would go through (e.g., closer to 50% chance). Participants
in this experiment took longer to make judgments when the IPE predictions were very uncertain,
suggesting perhaps that they were taking more samples in these cases.

Through a model of response time based on an optimal model of decision making known as
the sequential probability ratio test, Hamrick et al. (2015) showed that differences in their
participants’ response times could be due to a process in which samples are accumulated until a
particular level of confidence is reached. Through this model, they showed that while the number
of samples varied across stimuli depending on their difficulty, on average the number of samples
ranged from two to four per decision. These results corroborate other more informal analyses by
Battaglia et al. (2013) and Hamrick et al. (2016) suggesting that their participants relied on one to
six simulations from the IPE to make decisions about towers of blocks. Thus, although each
individual simulation from the IPE might be expensive, these results suggest that people
can—and do—rely on only a few simulations to still achieve reasonable levels of accuracy in their
judgments.

A number of questions remain regarding the computational efficiency of sampling from the
IPE as well. If each sample taken from the IPE is actually a noisy physical simulation, then there
are additional parameters that can be set which affect the amount of time it takes to run that
simulation. For example, there is a choice of how long each simulation should be run for (e.g.,
how many time steps). Another simulation parameter that can be adjusted is the level of detalil
the simulation should be run at (e.g., the length of each time step). Similar analyses of the
speed-accuracy trade-off can be performed to answer these questions, and are exciting

directions for future research.

Rapid inferences

A long standing tradition in psychology has been to treat perception as inference: if we have
a generative model of optics, we can condition on our retinal inputs to understand how objects
are segmented in the world and where they are located (Von Helmholtz, 1867). This tradition has

been carried forwards to suggest that people perceive latent physical properties (e.g., mass) from
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dynamic scenes by conditioning those variables based on how well their observations match
what they should expect to see based on their IPE with different settings of those parameters
(Hamrick et al., 2016; Sanborn et al., 2013). In practice, this inference is often carried out by
‘analysis-by-synthesis’ (Yuille & Kersten, 2006): setting the initial conditions of the scene (e.qg.,
the masses and densities of objects), running the IPE forwards, then perturbing those initial
conditions via a process like MCMC until the predictions of the IPE match the observations.
However, this approach has been criticized for being computationally infeasible for cognition, as
in the general case it requires running the generative model hundreds or thousands of times to
form a good posterior estimate over those latent physical variables. This approach would clearly
be at odds with the findings that people use only a handful of physical simulations in most
scenarios (as described in the prior section).

If the mind is to produce these inferences as rapidly as it does, it must therefore have ways of
speeding up this inference process. One method for doing so is to initialize the inference process
with an intelligent guess from bottom-up features (Yuille & Kersten, 2006). Poor initializations
require running the generative model to assess model parameterizations that are unlikely to
explain the world; conversely, a good initialization can speed up inference by ensuring each
sample from the generative model is informative. Models that implement this rapid initialization
via pattern recognition (using deep networks; Wu, Yildirim, Lim, Freeman, & Tenenbaum, 2015)
or trained features (Ullman et al., 2018) have been found to describe human inferences better
than either pattern recognition or full reasoning over the space of hypotheses.

The analysis-by-synthesis approach to inference traditionally is applied to problems with a
fixed amount of information — for example, judging relative masses after observing a full video of
two objects colliding (Sanborn et al., 2013; Wu et al., 2015). But physical events by their nature
are dynamic, unfolding over time. Yildirim et al. (2018) demonstrate that human inferences about
weight change along with the unfolding observations from the world. Furthermore, they suggest
that additional approximations to the inference process are required to explain how these
judgments change over time. Following the theory of Rational Process Models (Griffiths, Vul, &
Sanborn, 2012, Chapter 11), they suggest that these inference dynamics can be explained by a

model based on patrticle filters, in which belief about masses is formed as a limited set of
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hypotheses that are tracked and updated over time. But they also propose another possible
explanation: that people might have an approximate inverse IPE that can go directly from
observations to latent scene causes. This is similar to other proposals for amortized inference
over generative models (Le, Baydin, & Wood, 2016; Stuhimdiller, Taylor, & Goodman, 2013),
which suggest that we can use our IPE to imagine scenes that can be used to train an
approximate inverse model. This inverse model will be less flexible than analysis-by-synthesis,
but will also be much more efficient, and therefore might be useful to have for inference tasks we
must do often or quickly (e.g., judging mass in common scenarios). Determining what
approximations the mind uses for online physical inferences therefore remains an open area of

research.

Physics hacks and game engine approximations

Many of the approximations that are relevant for IPEs are also relevant for general efficient
inference schemes, including sampling and the heuristic use of bottom-up features. However, an
IPE may also contain domain-specific conceptual approximations, useful for physical reasoning.
Engineers that develop physics-engines for video games work under the constraint of generating
‘good enough’ simulations in real time, at everyday scales. Such engineers are not working to
create a high-fidelity model of fluid dynamics, or cloud mechanics, or molecular interactions, but
rather to make a splash of water look reasonable enough. In order to achieve this, engineers use
principled workarounds and shortcuts to overcome limitations of time, memory, and computation.
Such workarounds are useful regardless of the specific implementation language or environment
of the physics engine (for general game engine concepts, see Gregory, 2014). As the human
mind is under similar constraints of simulating physically-plausible objects at everyday scales with
a limited computational budget, we may find a convergent conceptual evolution between the
workarounds and notions used in physics engines, and those used by the IPE. Below, we focus
on two examples of major short-cuts and approximations, but see Ullman et al. (2017) for more
detail.

Consider first the notion of shape as opposed to body in physics-engine software. The shape

of an object is what is eventually rendered on the screen, while the body of an object is what is
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used for actual dynamic calculations and collision-detection-and-resolution. The body is often an
approximation of the shape, making use of bounding boxes and convex hulls (see Fig. 6). As a
simplifying example, consider a character in a video game hurling an ornate vase at a wall. While
the player may see rendered on the screen an embellished object flying towards the wall (the
shape), from the point of view from a physics engine, it would be a waste of resources to exactly
and accurately simulate every ridge and dip in the vase as it flies and makes contact with the
wall. The complex shape of the vase is represented instead by a simple convex hull (the body), or
even a box. Such a hull is much easier to store in memory, and it is easier to check when this hull
overlaps with another hull or surface to trigger a collision event. Physical reality does not make
such a distinction, of course, but the shape/body split is a useful conceptual scheme in a
game-engine that runs on hardware with finite memory and computational power, and it may be
advantageous for the mind to have such a split as well. Such an approximation may also help to
explain why young infants do not use detailed shape representations to track object identity as it
moves in space, even though they can distinguish them perceptually (Smith et al., 2019; Ullman
et al., 2017; Xu, 2005; Xu & Carey, 1996). While game engines do not often set object bodies in
a dynamic way, one can imagine the mind making different body approximations depending on
the computational budget and task at hand. Figuring out when a vase will strike a surface with
limited time to spare, a person may approximate the vase using only a coarse bounding box. By
contrast, attempting to grasp a vase by the handle would require a more fine-grain body
approximation that takes into account the ‘hole’ the handle makes in the convex hull.

Another major way that game physics engines save on memory and computation is by
assigning entities to the categories static or dynamic. Static items are those that are immobile —
objects like the ground or walls — whereas dynamic objects can move and be affected by forces.
Crucially, static objects are not treated as large dynamic masses, but instead have undefined
mass and so are unaffected by collisions and other forces. As with body and shape, this
distinction between static and dynamic entities obviously does not exist in real physics. But it is
an extremely useful approximation from an engineering perspective (e.g., it would be wasteful to
calculate the infinitesimal effect that dropping an object on the ground has on the motion of the

Earth), and so one that the IPE might make use of. Such a distinction can help explain why
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(a) (b)

Figure 6. Difference between (a) visual shape and (b) physical body representations of an entity
in a game engine. The body is an approximation of the meshes used to represent the shape, for
example with a convex hull or bounding box. Images are based on an object file created by user

kc8gzo on BlendSwap (https://www.blendswap.com/blend/4906).

extended surfaces are used earlier in development for navigation compared to everyday objects
(Hermer & Spelke, 1994; S. A. Lee & Spelke, 2008), why shifting a wall causes changing posture
and loss of balance in children and adults (D. N. Lee & Aronson, 1974), and why even very young
infants expect an object made of disparate parts to move together when it is lifted, but not to take
the floor with it (Spelke, Breinlinger, Jacobson, & Phillips, 1993).

There are other such concepts and shortcuts that help to organize a simulation and simplify
computation, and some of them seem to explain otherwise puzzling psychological phenomena
(see Ullman et al., 2017). And the inspiration can flow in the other direction — by studying the
principled concepts and workarounds the IPE uses, cognitive scientists can help to develop
useful tools for engineers that develop game engine simulations. Of course, it is possible that
many of the concepts and workarounds in game physics engines are only the result of explicit
development by engineers, with no correlate in the IPE. But given the similar need to create

approximate physical representations, it is a connection worth exploring.
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Future directions
Learning physical principles

There is a large body of work that has studied how infants develop an understanding of the
physical world (for an overview, see Baillargeon, 1994, 2004; Kinzler & Spelke, 2007; Spelke et
al., 1992, and Chapter 19). These studies find that as early as they can be tested, infants have a
concept of “objects” that includes guiding principles such as the fact that solid objects do not
disappear and cannot move through one another Baillargeon (1987). At the same time, many
studies find that the intuitive understanding of physics develops throughout childhood. How then
is the Intuitive Physics Engine learned?

The machine learning community has helped shed light on this question by introducing
several approaches for training models from observed experience to predict the physical
dynamics of objects and materials over time.

The “NeuroAnimator” (Grzeszczuk, Terzopoulos, & Hinton, 2000) introduced the idea of
training neural networks to mimic the observed local dynamics of articulated physical systems
(e.g., how a simulated robot arm’s limbs move). Two similar recent approaches—*interaction
networks” (Battaglia, Pascanu, Lai, Jimenez Rezende, & Kavukcuoglu, 2016) and the “neural
physics engine” (Chang, Ullman, Torralba, & Tenenbaum, 2016)—used neural networks to
approximate object dynamics and force relations in physical systems which could be expressed
as graphs, such as n-body gravitational systems, mass-spring systems, and rigid body dynamics
with collisions. These models explicitly represented objects by the nodes of a graph, and the
relations (i.e. the possibility that two objects could interact) by the edges. The models are trained
by regressing from an input physical state at time ¢ to a target physical state attime ¢t + 1. The
output of the model could then be fed back in as input, iteratively, to produce a long simulated
trajectory.

More recent extensions of these learned physical forward models take images as input and
use recurrent neural networks (Watters et al., 2017) and hierarchical representations of a
physical system (Mrowca et al., 2018), and can learn to simulate or make inferences about

non-rigid materials and fluids (Bouman, Xiao, Battaglia, & Freeman, 2013; Guevara et al., 2018;



PROBABILISTIC MODELS OF PHYSICAL REASONING 33

Y. Li, Wu, Tedrake, Tenenbaum, & Torralba, 2018).

These models can also be used for making inferences and planning in physical systems. For
example, Sanchez-Gonzalez et al. (2018) used a more powerful version of interaction networks,
termed “graph networks”, to learn forward models of real and simulated robotic systems, which
were then used to control the robot based on model predictions in an efficient manner. They also
showed that a recurrent graph network architecture could be used to infer unobservable
properties of a system from their effects on observable properties. Zheng, Luo, Wu, and
Tenenbaum (2018) used a similar approach to infer properties such as mass and restitution. And
Kipf, Fetaya, Wang, Welling, and Zemel (2018) introduced a probabilistic approach to inferring
the structure of complex physical systems, where binary latent random variables represent the
presence or absence of relations among entities.

What is perhaps most interesting is that these types of graph-based dynamics models are
not specific to modeling physical systems, and can also learn non-physical dynamics, such the
movements and interactions among intentional agents (Hoshen, 2017; Sukhbaatar, Szlam, &
Fergus, 2016; Sun, Karlsson, Wu, Tenenbaum, & Murphy, 2019; Tacchetti et al., 2018),
suggesting a method for joint physical and social prediction.

However, despite the flexibility of these learned models, they are not easily interpretable,
which makes it difficult to understand how they might represent and use physical constants that
are required by the IPE (e.g., gravity or mass). While there are preliminary studies of what
physical knowledge might be captured by these models (e.g., Piloto et al., 2018; Riochet et al.,
2018), further work is required to understand how learned models of physics capture human

physical concepts.

Combining simulation with rule-based reasoning

This chapter has focused on the IPE as the forward model of physics that people use, as its
stochastic nature makes it easily interpretable within the framework of probabilistic cognition. But
there are also theories of physical reasoning that suggest people do not use simulation for
physical reasoning, and that this reasoning is instead based on a set of axioms and logical rules

(DiSessa, 1993; Hayes, 1979). These logic based theories have been used to explain how
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people reason about containment relationships (Davis, Marcus, & Frazier-Logue, 2017), use
(biased) rules to judge whether objects will balance on a beam (Siegler, 1976), or use heuristics
to predict how water will settle in a tipped container (Vasta & Liben, 1996).

Although simulation theory and rule-based reasoning make very different assumptions about
the underlying representations and mental processes that support physical reasoning, they
describe separate capabilities that we are able to bring to bear depending on the situation to
understand the world. For instance, Smith et al. (2018) found that when people are asked to
catch an object in ballistic motion, their predictions are consistent with simulations from an IPE,
but when those same people are asked to draw the motion of objects in identical situations, their
drawings demonstrate idiosyncratic biases. This result supports theories that suggest that we
typically use simulation in scenarios that are more dynamic and realistic, but use rules and
heuristics when encountering more abstract diagrams or explicit problems (see also Hegarty,
2004; Schwartz & Black, 1996a; Zago & Lacquaniti, 2005).

The cognitive systems that underlie logical reasoning are often posed as mostly
deterministic, which makes them difficult to reconcile with probabilistic cognition. It is therefore
important to understand how simulation and rules can be combined into a probabilistic
framework. Prior work has focused on how people can learn these rules from simulation and
feedback, where it is easy if the rule is physically relevant (Schwartz & Black, 1996b), but more
difficult with unrelated cues (Callaway, Hamrick, & Griffiths, 2017). These findings often assume
that once a good rule is learned, it will supplant the use of simulation (Schwartz & Black, 1996b).

But there are many scenarios where we do not use just simulation or just rules. For instance,
there are also cases for which logical analysis of a scene provides a clear answer but people still
rely in part on simulation. When predicting the motion of a ball that is contained within a box it
should be easy to judge that the ball will never reach an area outside the box based on the
containment relationships alone (Davis et al., 2017), but people will at least sometimes use
simulation to make those judgments (Smith et al., 2013; Smith, de Peres, Vul, & Tenenbaum,
2017). Similarly, there are situations where people use rules that are biased and less accurate
than physical simulation: the rules that people use for balance judgements produce biases that

privilege weight over leverage for comparing torques around a center point (Siegler, 1976), but
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these biases cannot be derived from an IPE (Marcus & Davis, 2013). In these cases, people must
choose between inaccurate but cheaper heuristics versus more accurate but more cognitively
expensive simulation. While there have been initial proposals for how this trade-off is performed
(e.g., based on an implicit cost / benefit comparison; Smith et al., 2018), it is an open question
how people choose between and combine these different systems for physical reasoning, and

how this combination of systems fits within the general framework of probabilistic cognition.

Joint physical and social reasoning

Intuitive physics and intuitive psychology deal with seemingly different domains — objects and
agents, things and people. Even infants have diverging expectations when an entity is seen as a
physical body compared to a perceiving agent, and some cognitive development researchers
propose that different reasoning systems form two separate modules for handling these separate
domains (Kinzler & Spelke, 2007), with a classification scheme that triggers different expectations
depending on the type of entity that is being considered. Ongoing work in cognitive neuroscience
has also identified dissociation in brain region activity when processing physical and social
scenes (Fischer et al., 2016; Isik, Koldewyn, Beeler, & Kanwisher, 2017). However, even if these
two domains are handled by two different computational modules, they must work in concert to
produce reasonable interpretations of common scenes. Agents are physical beings that are
subject to physical constraints, and these constraints help make sense of the goals, beliefs, and
intentions of agents. Consider for example a simple scene in which 10-month olds see an agent
jump over a barrier to get to a goal (Gergely, Nadasdy, Csibra, & Bird, 1995). When the goal is
removed, both adults and infants expect the agent to make a bee-line for the goal, rather than
repeat the spatio-temporal trajectory it took previously (jumping over a now non-existent barrier).
Such an expectation is obvious and intuitive, but only if we take agents to have goals, to act
efficiently to achieve their goals, and — crucially for the current point — to not be able to pass
through solid barriers.

Working with the framework of Bayesian Theory of Mind to intuitive psychology (Baker,
Jara-Ettinger, Saxe, & Tenenbaum, 2017; Baker, Saxe, & Tenenbaum, 2009, Chapter 14), the link

between psychological and physical reasoning happens in several ways. First, physics provides
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the baseline transition function for the world, needed for planning actions. That is, in order to plan
an agent needs to know P(s'|s, a), the probability of moving to a new state s’ conditioned on
being in a specific state s and taking a specific action a (which may be not to act at all). In general
such a transition function is arbitrary, and can apply to any planning context (e.g. it can describe
the possible legal moves in an abstract game of tic-tac-toe), but in a real-world dynamic context
this transition function is provided in part by the IPE (If | throw this apple, what will happen?’). By
inverting such a planning procedure, people can work backwards to reason about the goal that
generated that plan (and see Holtzen, Zhao, Gao, Tenenbaum, & Zhu, 2016, for an
implementation that infers people’s hierarchical goals from videos of them moving in an everyday
environment).

Second, physics provides a natural notion of cost, that can be used to estimate the reward of
the agent. A great deal of psychological reasoning can be reduced to the Naive Utility Calculus

(Jara-Ettinger, Gweon, Schulz, & Tenenbaum, 2016):

U(a,s) = R(s) — C(a) (8)

Here the utility U of an agent is determined by the reward of a state s and the cost of an
action a. If we have a good estimate for C, we can reason about the likely rewards that drove an
agent to pay that cost (see Chapter 14, Section 1.1 for further details). There can be different
types of cost, coming from mental effort, opportunity cost, temporal discounting, and so on. But a
basic, natural type of cost is physical effort. The more an agent is willing to physically exert itself
to get to a particular state s, the more that s must be worth. Even young infants can infer value
from cost in this way, reasoning that if an agent was willing to climb a steep hill to get to Goal A,
but only a shallow hill to get to Goal B, then A must be worth more to the agent than B (Liu,
Ullman, Tenenbaum, & Spelke, 2017, although more work is needed to establish whether the
physical effort here is related to force or distance). In a social situation, young children can use a
similar calculus to reason that if a person A is unwilling to spend some small amount of physical
effort to help B, then person A must not really like B (Jara-Ettinger et al., 2016). In this way, the
IPE and Naive Utility Calculus can jointly provide a unified computational framework for

explaining the everyday inferences we make about the plans of others given their physical
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constraints (see also, Sosa, Ullman, Tenenbaum, Gershman, & Gerstenberg, 2021).

Conclusion

We regularly reason about our physical world by making predictions about what will happen
next, updating our beliefs about the properties of objects, and planning how we will act. While
these tasks often intuitively seem effortless, performing them requires both rich generative
models of the world and the capability to deal with the underlying uncertainty in perception and
dynamics. Probabilistic models of cognition can help us explain how we can simulate physics
under uncertainty, and how those simulations support a range of ways of reasoning about the
world. Conversely, studying physical reasoning can help develop an understanding of how the
mind approximates Bayesian principles in complex domains, as many of the problems we solve
easily are in principle computationally intractable. Thus physical reasoning is a quintessential

domain to use and extend probabilistic models of cognition.
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