
On Transferring Transferability:

Towards a Theory for Size Generalization

Eitan Levin ⋄

Caltech
Yuxin Ma ⋄

Johns Hopkins University

Mateo Díaz
Johns Hopkins University

Soledad Villar
Johns Hopkins University

Abstract

Many modern learning tasks require models that can take inputs of varying sizes.
Consequently, dimension-independent architectures have been proposed for do-
mains where the inputs are graphs, sets, and point clouds. Recent work on graph
neural networks has explored whether a model trained on low-dimensional data
can transfer its performance to higher-dimensional inputs. We extend this body of
work by introducing a general framework for transferability across dimensions. We
show that transferability corresponds precisely to continuity in a limit space formed
by identifying small problem instances with equivalent large ones. This identifi-
cation is driven by the data and the learning task. We instantiate our framework
on existing architectures, and implement the necessary changes to ensure their
transferability. Finally, we provide design principles for designing new transferable
models. Numerical experiments support our findings.

1 Introduction

Modern learning problems often involve inputs of arbitrary size: language has text sequences of
arbitrary length, graphs encode networks with an arbitrary number of nodes, and particle systems
might have an arbitrary number of points. Although traditional models are typically limited to the
specific input dimensions they were trained on, dimension-independent architectures have been
proposed for several domains. For instance, graph neural networks (GNN) for graphs [70], DeepSet
for sets [91], and PointNet for point clouds [66]. These models have a desirable feature: they can be
trained with low-dimensional samples and, then, deployed on higher-dimensional data.

A key question in this context is whether the performance of a model trained with low-dimensional
samples transfers across dimensions. This has been thoroughly studied in the context of GNNs [70, 58,
59], where the term transferability was first coined.1 In turn, the tools used to establish transferability
of GNNs are, at first sight, problem-specific, including the concept of a graphon, and certain
convergence of homomorphism densities. Thus, the analysis does not readily extend beyond GNNs,
and so we ask

What properties of the model, data, and learning task ensure that learning performance
transfers well across dimensions?

⋄These authors contributed equally to this work.
1The term “transferability” is not related to transfer learning or meta-learning. It specifically refers to the

phenomenon that consistency of outputs is preserved under size changes for structurally similar inputs, permitting
direct performance carryover from small to large problems.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

This question is relevant for the current pursuit of graph foundation models [53], GNN for combi-
natorial optimization [12], neural PDE solvers [67, 51], and so on, where pre-trained models aim
to be adapted to a wide range of tasks involving different-sized objects. In this paper, we answer
this question by identifying assumptions on the learning problem that make a model generalize
across dimensions, and give a theoretical framework to understand models with such properties. Our
framework requires technical notions that we develop throughout the paper, so before diving into the
details, we proceed to give the high-level intuition.

Our framework considers a machine learning model parametrized by θ ∈ Rk, where the number of
parameters k is fixed. For any fixed θ, the model can be evaluated on inputs of any size n. That is, the
learned θ defines a sequence of functions, for example, (fn : Vn → R)n with increasingly larger input
sizes.2 We think of Vn ⊆ V∞ as a subspace of an infinite-dimensional limit space. Transferability
then amounts to asking whether for large enough n and m we have fn(xn) ≈ fm(xm) when the
inputs xn and xm are close to each other in the limiting space V∞. For example, we consider graphs
of different sizes to be close if their associated step graphons are close in the cut metric, following
standard practice in the GNN literature. Similarly, we view point clouds of varying sizes as close if
their corresponding empirical measures are close in the Wasserstein metric.

In a nutshell, we identify two properties that guarantee transferability: (i) the functions in the
sequence are compatible with one another in a precise sense, and (ii) all of them are continuous with
respect to a prescribed norm on V∞. Compatibility ensures that the sequence extends to a function
taking infinite-dimensional inputs f∞ : V∞ → R, while continuity ensures that this extension is
continuous. This allows us to relate model outputs on two differently-sized inputs via their extension
fn(xn) = f∞(xn) ≈ f∞(xm) = fm(xm). Moreover, if we evaluate our models on a sequence
of inputs xn converging in a suitable sense to an infinite-dimensional input x, then the evaluations
fn(xn) converge to the value of the limiting model f∞(x). Our framework parallels the ideas from
the GNN literature, where graph convergence to a limiting graphon is measured in cut distance—
which is equivalent to homomorphism density convergence. However, this framework provides a
transparent extension that allows us to analyze other models, e.g., DeepSets and PointNet.

Our contributions. Next, we summarize our three core contributions.

(A framework for transferability) We introduce a class of any-dimensional models and a formal
definition of transferability. We show that transferability holds whenever certain notions of
compatibility and continuity hold. We further leverage transferability to establish a generalization
bound across dimensions. In our theory, the notion of transferability relies on identifying low-
dimensional objects with higher-dimensional ones, and measuring similarity of such objects in an
appropriate metric. We illustrate how these choices have to align with the data and learning tasks.

(Transferability of existing models) We instantiate our framework on several models, including
DeepSet [91], PointNet [66], standard GNNs [70], Invariant Graph Networks (IGN) [56], and
DS-CI [5]. Not all of these models satisfy our assumptions. For those that do, our framework yields
new and existing transferability results in a unified fashion. For those that do not, we either modify
them to ensure transferability or demonstrate numerically that transferability fails and impedes the
performance of these models.

(New transferable models) We provide design principles for constructing transferable models.
Leveraging these ideas, we develop a variant of IGN that is provably transferable, addressing
challenges highlighted in previous work [56, 35]. We also design a new transferable model for
point cloud tasks that is more computationally efficient than existing methods [5].

Notation. The Kronecker product on matrices is denoted by ⊗. We write 1n and In for the all-ones
vector and the identity matrix of size n respectively. Given two sequences (an), (bn) ⊆ R, we say
that an ≲ bn if there is a constant C > 0 so that an ≤ Cbn for all n. See also Appendix A.

Outline. Section 2 introduces the theoretical framework. Section 3 defines transferability, which
is used in Section 4 to derive a generalization guarantee. Section 5 instantiates our framework on
concrete neural network examples, and Section 6 provides supporting experiments.3 Related work
and limitations are discussed in the Appendix.

2The output size can also depend on n, which is often the case in representation learning.
3The code is available at https://github.com/yuxinma98/transferring_transferability.

2

2 How to consistently grow: equivalence of differently sized objects

In this section, we formally introduce the setting for studying transferability. The definitions here
build upon the framework introduced in [49, 50] for defining any-dimensional neural networks
and optimization problems. Central to our developments is the notion of compatibility between
a sequence of functions. Intuitively, a sequence of functions is compatible when they respect the
equivalence between low-dimensional objects and high-dimensional version of them. For example,
sample statistics like the mean and standard deviation remain invariant when each element is repeated
m times. Similarly, various graph parameters such as triangle densities and normalized max-cut
values are preserved when each vertex is replaced by m identical copies of itself.

To formalize these notions of equivalence of objects and compatibility between functions, we will
leverage the concept of a consistent sequence. Intuitively, they are nested sequences of vector spaces
with growing groups acting on them, representing problem instances of different sizes. They are
interconnected by embeddings that establish equivalence between smaller and larger instances.

Definition 2.1. A consistent sequence V = {(Vn)n∈N, (φN,n)n⪯N , (Gn)n∈N} is a sequence of
finite-dimensional vectors spaces Vn, maps φN,n and groups Gn acting linearly on Vn, indexed

by a directed poset4 (N,⪯), such that for all n ⪯ N , the group Gn is embedded into GN , and
φN,n : Vn ↪→ VN is a linear, Gn-equivariant embedding.

Although the definition includes a sequence of groups, it applies to situations without symmetry by
setting Gn = {id} for all n. While all the examples in this work involve symmetries, we believe our
framework might be relevant in symmetry-free settings.5

Example 2.2. Here are two prototypical examples of consistent sequences. In both cases, Vn = Rn,
with the symmetric group Sn acting via coordinate permutation. (i) the sequence indexed by N
with the standard ordering ≤, paired with the zero-padding embedding Rn ↪→ RN , which maps
(x1, . . . , xn) to (x1, . . . , xn, 0, . . . , 0); and (ii) the sequence indexed by N with the divisibility
ordering (n ⪯ N whenever N is divisible by n) paired with the duplication embedding Rn ↪→ RN ,
sending a vector x = (x1, . . . , xn) to x⊗ 1N/n = (x1, . . . , x1︸ ︷︷ ︸

N/n copies

, . . . , xn, . . . , xn︸ ︷︷ ︸
N/n copies

).

Next, we define a common space for objects of all sizes in a consistent sequence, in which we
can compare objects of different sizes and take their limits. For example, if we identify vectors x
with their duplication embeddings x⊗ 1N/n, we can view the resulting equivalence classes as step

functions on [0, 1] taking value xi on consecutive intervals of length 1/n.

Definition 2.3. Let V∞ =
⋃
Vn where we identify v ∈ Vn with its image φN,n(v) for all n ⪯ N to

be equivalent. Analogously, we let G∞ be the union of groups with equivalent identifications.

For simplicity, we will often write v ∈ V∞ for any finite-dimensional object v ∈ Vn to denote the
equivalence class [v]. It is straightforward to check that G∞ acts on V∞ via g · [v] = [g · v]. Having
established how consistent sequences define a desirable equivalence relation in the space of problem
instances of varying sizes, we now introduce compatible functions that respect such equivalence.

Definition 2.4. Let V = {(Vn), (φN,n), (Gn)} and U = {(Un), (ψN,n), (Gn)} be two consistent
sequences indexed by (N,⪯). A sequence of maps (fn : Vn → Un) is compatible with respect to
V,U if fN ◦ φN,n = ψN,n ◦ fn for all n ⪯ N , and each fn is Gn-equivariant.

It is instructive to visualize compatible maps using the following commutative diagram, which
represents a mapping between sequences while ensuring that the diagram commutes:

. . . (Vn1
,Gn1

) (Vn2
,Gn2

) (Vn3
,Gn3

) . . .

. . . (Un1
,Gn1

) (Un2
,Gn2

) (Un3
,Gn3

) . . .

... φn2,n1

fn1

φn3,n2

fn2

...

fn3

... ψn2,n1
ψn3,n2 ...

for n1 ⪯ n2 ⪯ . . .

Equivalently, compatible maps are precisely those sequences (fn) that extend to equivalence classes:

4This is a partial order on N where every two elements have an upper bound, see Appendix C.1.
5The symmetric case is relevant because the theoretical setting relates to representation stability [50, 16].

3

A sequence of maps (fn) is compatible if, and only if, there exists a G∞-equivariant map
f∞ : V∞ → U∞ such that fn = f∞ |Vn

for all n.

See Appendix C.2 for a proof of this equivalence.

2.1 How to define distances across dimensions

Compatible maps are functions that respect the equivalence defined by consistent sequences. We now
consider whether these functions further preserve proximity, mapping “nearby” objects to “nearby”
outputs. This requires a well-defined notion of distance between objects of different sizes that is
consistent with the earlier equivalence.

Definition 2.5. For a consistent sequence V, a sequence of norms (∥ · ∥Vn
) on Vn are compatible

if all the embeddings φN,n and the Gn-actions are isometries. i.e., for all n ⪯ N, x ∈ Vn, g ∈ Gn,
∥φN,nx∥VN

= ∥x∥Vn
and ∥g · x∥Vn

= ∥x∥Vn
.

Equivalently, compatible norms are those that extend to the limit; that is, there exists a norm ∥ · ∥V∞

on V∞ such that for any n and x ∈ Vn, ∥x∥Vn
= ∥x∥V∞

, and the G∞-action on V∞ is an isometry
with respect to ∥ · ∥V∞

; see Appendix C.3 for a proof of this statement.

Example 2.6 (Example 2.2 continued). For our prototypical consistent sequences, the ℓp norms

∥x∥p := (
∑
i |xi|p)

1/p
are compatible with the zero-padding embeddings, while the normalized ℓp

norms ∥x∥p :=
(
1
n

∑
i |xi|p

)1/p
are compatible with the duplication embeddings.

With norms in place, we can define a limit space that includes not only equivalence classes of
finite-dimensional objects, but also their limits. As we will see, this recovers meaningful spaces such
as Lp([0, 1]) and the space of graphons with the cut norm. Moreover, the orbit spaces of these limits
recover probability measures (with the Wasserstein distance) and equivalence classes of graphons
(with the cut distance), respectively.

Definition 2.7. The limit space is the pair (V∞,G∞) where V∞ denotes the completion of V∞ with
respect to ∥ · ∥V∞

, endowed with the symmetrized metric6

d(x, y) := inf
g∈G∞

∥g · x− y∥V∞
for x, y ∈ V∞.

3 Transferability is just continuity

The notion of GNN transferability was established in [70, 48]. It states that the output discrepancy
∥fn(An, Xn)− fm(Am, Xm)∥ between graph signals of sizes n,m sampled from the same graphon
signal (W, f) vanishes as n,m grow. Prior studies explore this property under various sampling
schemes, norms, and GNN architectures [41, 70, 47, 11, 35].

We formalize the idea of functions “mapping close objects to close outputs" as (Lipschitz) continuity
of compatible maps.

Definition 3.1. Let V,U be consistent sequences endowed with norms. A sequence of maps (fn :
Vn → Un) is continuously (respectively, L-Lipschitz, L(r)-locally Lipschitz) transferable if there

exists f∞ : V∞ → U∞ that is continuous (respectively, L-Lipschitz, L(r)-Lipschitz on the ball

B(0, r) = {v ∈ V∞ : ∥v∥V∞
< r} for all r > 0) with respect to ∥ · ∥V∞

, ∥ · ∥U∞
, such that

fn = f∞|Vn
for all n. Notice that if (fn) is transferable, then it must be compatible.

In Appendix D.1 we show that Lipschitz transferability is equivalent to having a compatible sequence
(fn), each Lipschitz with the same constant. For linear maps, it suffices to verify that the operator
norms are uniformly bounded. This simplifies the verification of transferability. Importantly, we also
show that transferability with respect to the norm ∥ · ∥V∞

implies transferability with respect to the

symmetrized metric d.

6It is a pseudometric on V∞, and a metric on the space whose points are closures of orbits under the action
of G∞ in V∞ (see Section 3 of [10]).

4

The following proposition shows that the output discrepancy is controlled whenever a dimension-
independent model is continuously or Lipschitz transferable, justifying our terminology. Thus, our
framework extends transferability beyond GNNs, highlighting that transferability is equivalent to
continuity in the limit space. For a given function R : N → R+, we say that (xn) converges to x in

V∞ at a rate R(n) in d if d(xn, x) ≲ R(n) and R(n) → 0.

Proposition 3.2. Let V,U be consistent sequences and let (fn : Vn → Un) be maps between them.

(Transferability) For any sequence (xn ∈ Vn) converging to a limiting object x ∈ V∞ in d, if (fn)
is continuously transferable, then d(fn(xn), fm(xm)) → 0 as n,m → ∞. Furthermore, if (xn)
converges to x at rate R(n) and (fn) is locally Lipschitz-transferable, then

d(fn(xn), fm(xm)) ≲ R(n) +R(m).

(Stability) If (fn) is L(r)-locally Lipschitz transferable, then for any two inputs xn ∈ Vn and

xm ∈ Vm of any two sizes n,m with ∥xn∥Vn
, ∥xm∥Vm

≤ r, we have d(fn(xn), fm(xm)) ≤
L(r) d(xn, xm).

Several remarks are in order. First, the same results trivially hold when the symmetrized metric
is replaced by the norms on V∞, U∞. However, the finite inputs (xn) are often obtained from the
limiting object via random sampling, and converge only in the symmetrized metric. This is the
case for all the common sampling strategies used for sets, graphs, and point clouds, which we
review in Appendix D.3. In the case of graphs, our framework recovers results from prior work,
achieving the same or stronger rate of convergence. Second, some models are only locally Lipschitz
outside of a measure-zero set. Transferability still holds for such models for almost all limit objects

x ∈ V∞. This and other extensions are deferred to Appendix D.2. Third, Lipschitz continuity of
neural networks has been extensively studied in the context of model stability and robustness to small
input perturbations [25, 85, 43, 27]. Our results generalize the connection between stability and
transferability, first established in [72], by showing that Lipschitz continuity of an any-dimensional
model implies not only stability, but also transferability across input sizes.

4 Transferability implies size generalization

We use transferability to derive a generalization bound for models trained on inputs of fixed-size n,
and evaluate their performance as n → ∞. It can therefore be interpreted as a size generalization
bound, accounting for distributional shifts induced by size variation. We study a supervised learning
task with input and output spaces modeled by consistent sequences V and U satisfying the following.

Assumption 4.1. Let µ be a probability distribution supported on a product of subsets X × Y ⊆
V∞×U∞ whose orbit closures are compact in the symmetrized metrics. Let Sn : V∞×U∞ → Vn×Un
be a random sampling procedure such that Sn(x, y) ∈ X × Y almost surely for (x, y) ∈ supp(µ).
This sampling induces a distribution µn on Vn × Un by drawing (x, y) ∼ µ and then sampling
(xn, yn) ∼ Sn(x, y). A dataset s = {(xi, yi)}Ni=1 is drawn i.i.d. from µn. Suppose the loss function

ℓ : U∞ × U∞ → R is bounded by M and cℓ-Lipschitz. Assume training is performed using a locally

Lipschitz transferable neural network model, and As : V∞ → U∞ is the hypothesis learned (given

dataset s), which is cs-Lipschitz on X × Y in d.

In Appendix E, we further break down these technical assumptions and provide detailed motivation
to make them more accessible. We also discuss two concrete examples of sets and graphs to justify
the practicality of the key assumptions. The following generalization bound follows by applying the
results from [88] to our setting.

Proposition 4.2. Consider a learning task with input and output spaces modeled by consistent
sequences V and U satisfying Assumption 4.1. For any δ > 0, with probability at least 1− δ,

∣∣∣∣∣
1

N

N∑

i=1

ℓ(As(xi), yi)− E(x,y)∼µℓ(As(x), y)

∣∣∣∣∣

≤ cl(cs ∨ 1)
(
ξ−1(N) +W1(µ, µn)

)
+M

√
(2 log 2)ξ−1(N)2 +

2 log(1/δ)

N

(1)

5

where ξ(r) := CX(r/4)CY (r/4)
r2 , CX(ε) and CY (ε) are the ε-covering numbers in d of X and

Y , respectively, and W1 denotes the Wasserstein-1 distance. Moreover, if the sampling Sn has
convergence rate R(n) in expectation, then W1(µ, µn) ≲ R(n) as n → ∞ and the bound (1)
converges to 0 as n,N → ∞.

We defer the proof to Appendix E. This bound shows that generalization improves with greater model
transferability (i.e., smaller Lipschitz constants) and higher-dimensional training data (i.e., large n),
while it deteriorates with increasing complexity of the data space (i.e., larger covering numbers).

5 Transferable neural networks

We now apply our general framework to the settings of sets, graphs, and point clouds. In each case,
we identify suitable consistent sequences, analyze the compatibility and transferability of existing
neural network models with respect to these sequences, and propose a principled recipe for designing
new transferable models. This analysis provides new insights into the tasks for which each model is
best suited, while offering provable size-generalization guarantees.

A transferable neural network learns a fixed set of parameters θ that define transferable
functions (fn) for any n-dimensional normed space Vn. The compatibility conditions on
(fn) and the sequence of norms ∥ · ∥Vn

describes the implicit inductive bias of the model.

Our analysis hinges on the following proposition, which observes that compatibility and transferability
are preserved under composition and reduces the verification of Lipschitz continuity from the
limit space to each finite-dimensional space. This significantly simplifies the task of establishing
transferability in complex neural networks. The following result is proved in Appendix E.1.

Proposition 5.1. Let (V
(i)
n)n, (U

(i)
n)n be consistent sequences for i = 1, . . . , D. For each i, let

(W
(i)
n : V

(i)
n → U

(i)
n) be linear maps and (ρ

(i)
n : U

(i)
n → V

(i+1)
n) be nonlinearities, and assume

that (W
(i)
n), (ρ

(i)
n) are compatible, that supn,i ∥W (i)

n ∥op < ∞, and that ρ
(i)
n is L(r)-Lipschitz

on balls B(0, r) in U
(i)
n for all r > 0 and all n. Then the sequence of neural networks (f̂n =

W
(D)
n ◦ ρ(D−1)

n ◦ . . . ◦ ρ(1)n ◦W (1)
n) is L̂(r)-locally Lipschitz transferable for explicit L̂(r).

5.1 Sets

Consistent sequence of sets. We have described in Examples 2.2 and 2.6 two consistent sequences
that formalize equivalence across sets of varying sizes: the zero-padding consistent sequence Vzero

and the duplication consistent sequence Vdup, along with norms on Rn that are compatible with
each sequence. The resulting limit spaces and symmetrized metrics recover interesting mathematical
structures, as summarized in Table 1. Further details are provided in Appendix F.1. See Figure 1 for
an illustration.

Consistent
Sequence

Limit
space

Orbit closures of V∞ Orbits of V∞

Vzero ℓp Ordered sequences in ℓp Ordered sequences with finitely-many nonzeros

Vdup Lp([0, 1]) Probability measures on R
with Wasserstein p-metric

Empirical measures

Table 1: Limit spaces and their orbit spaces for consistent sequences of sets.

Permutation-invariant neural networks on sets. Prominent invariant neural networks on multi-
sets including DeepSet [91], normalized DeepSet [9], and PointNet [66] take the form fn(X) =
σ (Aggni=1ρ(Xi:)), where ρ : Rd → Rh, σ : Rh → R are fully-connected neural networks, both
independent of n, and Agg denotes a permutation-invariant aggregation. Sum (Aggni=1 :=

∑n
i=1),

mean (Aggni=1 := 1
n

∑n
i=1) and max (Aggni=1 := maxni=1) aggregations yield DeepSet, normalized

DeepSet and PointNet, respectively. Using Proposition 5.1, we examine the transferability of these
models, demonstrating that they parameterize functions on different limit spaces, and hence are
suitable for different tasks, see Corollary 5.2, Table 2, and Figure 2. This is proved in Appendix F.2.

6

V∞

 

∥(3,2,2,0) − (3,0,0, 1)∥1 = 5

V∞ =

ℓ1 ∥x∥1 =

∞

∑
i=1

|x
i
|

V∞ = ℓ1
ℓ1

ℝn ↪ ℝn+k

(x1, …, x
n
) ↦ (x1, …, x

n
,0,…,0)

∥x∥1 =

n

∑
i=1

|x
i
|

𝖦∞ =

= ∥(2,3,3) − (3, 1,0)∥1 = 8

V∞ = [0,1]

Lp ∥f∥p = (∫
1

0

f(x)
p

dx)
1/p

V∞ = [0,1] Lp
p

p

ℝn ↪ ℝkn

(x1, …, xn) ↦ x ⊗ 1k

∥x∥p = n−1/p∥x∥p

V∞

Lp

𝖦∞ =

Figure 1: Two examples of consistent sequences on sets. (top) Zero-padding consistent sequence for sets.
(bottom) Duplication consistent sequence for sets.

Corollary 5.2. The transferability of the three models are summarized in Table 2. Particularly, they

extend to Lipschitz functions DeepSet∞ : l1(R
d) → R, DeepSet∞ : P1(R

d) → R, PointNet∞ :
P∞(Rd) → R given by

DeepSet
∞
((xi)) = σ

(

∞
∑

i=1

ρ(xi)

)

,DeepSet
∞
(µ) = σ

(
∫

ρdµ

)

,PointNet∞(µ) = σ

(

sup
x∈supp(µ)

ρ(x)

)

.

Model Vzero, ∥ · ∥1 Vdup, ∥ · ∥p

DeepSet Lipschitz transferable if ρ(0) = 0 Incompatible

DeepSet Incompatible Lipschitz transferable

PointNet Incompatible Compatible, Lipschitz transferable if p = ∞

Table 2: Transferability of invariant neural networks on sets, assuming the nonlinearities σ, ρ are Lipschitz.

5.2 Graphs

Consistent sequences for graph signals. To model graph signals, we consider the sequence of
vector spaces Vn = Rn×nsym × Rn×d, representing the adjacency matrix of a weighted graph with

n nodes and node features of dimension d. The symmetric group Sn acts on (A,X) ∈ Vn by

g · (A,X) = (gAg⊤, gX), capturing the invariance to node ordering.

While other embeddings are possible, in this work we focus on the duplication-consistent sequence
VGdup for graphs, illustrated in Figure 3. Specifically, for any n|N , the embedding is defined by

φN,n(A,X) =
(
A⊗ 1N/n1

⊤
N/n, X ⊗ 1N/n

)
, which corresponds to replacing each node with

N/n duplicated copies. These embeddings precisely identify graph signals that induce the same step

graphon signal. We consider three compatible norms: the p-norm ∥(A,X)∥p = (1
n2

∑
i,j |Aij |p)1/p+(

1
n

∑
i ∥Xi:∥pRd

)1/p
, the operator p-norm ∥(A,X)∥op,p := 1

n∥A∥op,p +
(
1
n

∑
i ∥Xi:∥pRd

)1/p
, and

the cut norm ∥(A,X)∥□ := ∥A∥□ + ∥X∥□. In all cases, the limit space is the space of graphon
signals and the symmetrized metrics recover extensively studied graphon distances in [54, 47].

7

10
1

10
2

10
3

10
4

Set size n

−60

−40

−20

0

f n
(x

n
)

(a) DeepSet [91] output
(incompatible)

10
1

10
2

10
3

10
4

Set size n

0.0912

0.0914

0.0916

0.0918

0.0920

f n
(x

n
)

(b) Normalized DeepSet [9]
output

(Lipschitz transferable)

10
1

10
2

10
3

10
4

Set size n

0.122

0.124

0.126

0.128

f n
(x

n
)

(c) PointNet [66] output
(compatible, not

transferable)

10
1

10
2

10
3

10
4

Set size n

10
−5

10
−4

|f
n
(x

n
)
−

f ∞
(µ

)|

n−1/2

(d) Normalized DeepSet [9]
error

Figure 2: Transferability of invariant networks on sets under (Vdup, ∥ · ∥1). The plots show outputs of untrained,
randomly initialized models on input sets of increasing size n. Each set consists of n i.i.d. samples from
N (0, 1), a distribution with non-compact support. Error bars indicate one standard deviation above and below
the mean over 100 random samples. (a)(b)(c): Model output fn(Xn) vs. set size n. For normalized DeepSet,
the dashed line represents the limiting value f∞(µ) = σ

(∫

ρ(x) dµ(x)
)

for µ = N (0, 1), computed via
numerical integration. While the outputs of DeepSet and PointNet diverge as n increases, the transferable
model, normalized DeepSet, converges to the theoretical limit, i.e., fn(Xn) → f∞(µ). (d): Convergence error
|fn(Xn)− f∞(µ)| vs. set size n for normalized DeepSet (both axes in log scale), demonstrating the expected

O(n−1/2) convergence rate as predicted by Proposition 3.2. See Appendix F.2 for further discussion.

V∞ =

V∞ =

ℝn×n
sym ↪ ℝkn×kn

sym

A ↦ A ⊗ 1
k
1

⊤
k

V∞

= W
A1

− W
A2

𝖦∞ =

A1 =
A2 =

W
A1

W
A2

= min
σ∈𝖦∞

W
A1

− σ ⋅ W
A2

Figure 3: Duplication consistent sequence for graphs

Message Passing Neural Networks (MPNNs) Message-passing-based GNNs form the most widely
used and general paradigm, encompassing many existing models [31]. Instantiating Proposition 5.1,
we analyze in Appendix G.2 the transferability of MPNNs under constraints on the message function,
update function, and local aggregation, and compare our results with [70, 47].

Making Invariant Graph Networks (IGN) Transferable IGNs [56] are an alternative approach to
designing GNNs by alternating linear Sn-equivariant layers with pointwise nonlinearities. IGN is
incompatible with respect to VGdup because the linear layers used in [56] are incompatible. Neverthe-

less, the hypotheses in Proposition 5.1 provide a systematic approach for modifying IGN to achieve
transferability, leading to two newly proposed models. We highlight this recipe for constructing
transferable neural networks is general.

Generalizable Graph Neural Network (GGNN): We use compatible linear layers and message-

passing-like nonlinearities of the form (A,X) 7→
(
A, σ

(∑S
s=0 n

−sAsXs

))
, where σ acts

entrywise. The GGNNs are compatible and at least as expressive as the GNNs in [70].

Continuous GGNN: We restrict the linear layers in GGNN to the subspace that has bounded operator
norm on the limit space. This model is transferable in both operator 2-norm and the cut norm.

The complete description of these models and proof of their transferability are in Appendix G.3.
The transferability of various GNN models with respect to (VGdup, ∥ · ∥op,p), p = 2 is illustrated in

Figure 4 through a numerical experiment.

5.3 Point clouds

Consistent sequences for point clouds. For k-dimensional point clouds, we consider a sequence
of vector spaces Vn = Rn×k, representing sets of n points in Rk, where k is fixed (typically k = 2

8

101 102

Graph size n

0.099

0.100

0.101

0.102

0.103

‖
f n
(x

n
)‖

2

Erdos-Renyi p = 1/2

Fully connected w = 1/2

(a) GNN [70]
(locally Lipschitz

transferable)

101 102

Graph size n

0.01

0.02

0.03

0.04

0.05

‖
f n
(x

n
)‖

2

Erdos-Renyi p = 1/2

Fully connected w = 1/2

(b) Normalized 2-IGN [11]
(incompatible)

101 102

Graph size n

8

10

12

‖
f n
(x

n
)‖

2

Erdos-Renyi p = 1/2

Fully connected w = 1/2

(c) GGNN
(compatible, not

transferable)

101 102

Graph size n

2.2

2.3

2.4

2.5

2.6

2.7

‖
f n
(x

n
)‖

2

Erdos-Renyi p = 1/2

Fully connected w = 1/2

(d) Continuous GGNN
(locally Lipschitz

transferable)

Figure 4: Transferability of equivariant GNNs with respect to (VG
dup, ∥ · ∥op,2). The plots show outputs of

untrained, randomly initialized models for two sequences of input graph signals (An, Xn): (dashed lines)

Fully-connected weighted graphs An =
1n1

⊤
n

2
, Xn = 1n. (solid lines) An is drawn i.i.d. from the Erdős–Rényi

model G(n, 1/2), with Xn = 1n. These two sequences represent different samplings of the same underlying
constant graphon signal, where W ≡ 1/2 and f ≡ 1. Error bars indicate one standard deviation above and
below the mean over 100 random samples. (dashed lines): For the fully connected model each finite graph
signal exactly induces the underlying graphon signal. The outputs of all compatible models ((a), (c), (d)) remain
constant over n, whereas the incompatible model (b) does not. (solid lines): The outputs of all transferable
models ((a), (d)) converge to the same limit as Sequence (1), while the discontinuous model (c) does not.

or 3). Unlike the sets models in Section 5.1, here we consider not only the permutation symmetry
Sn, which acts on the rows and ensures invariance to the ordering of points, but also the additional
symmetry given by the orthogonal group O(k), which acts on the columns to capture rotational and

reflectional symmetries in the Euclidean space Rk. i.e. (g, h) ·X = gXh⊤.

We consider the duplication consistent sequences of point clouds VPdup. Specifically, for any n | N ,

the embedding is defined as φN,n(X) = X⊗1N/n. The group embedding Sn×O(k) ↪→ SN ×O(k)
is given by (g, h) 7→ (g ⊗ IN/n, h). We further endow each Vn with the normalized ℓp norm

∥X∥p =
(
1
n

∑n
i=1 ∥Xi:∥p2

)1/p
. The orbit closures of V∞ can be identified with the orbit space under

O(k) of probability measures on Rk with finite pth moment.

Invariant neural networks on point clouds. First, we analyze the DeepSet for Conjugation
Invariance (DS-CI) proposed in [5]. In Appendix H.2, we show that the normalized variants of DS-CI
is “approximately” locally Lipschitz transferable with respect to (VPdup, ∥ · ∥p).
We also introduce a more time and space-efficient model, normalized SVD-DeepSet, defined as:

SVD-DSn(X) = DeepSetn(XV), where for an input point cloud X ∈ Rn×k, we compute its singu-

lar value decomposition X = UΣV ⊤ with ordered singular values. This model effectively applies a
canonicalization step with respect to the O(k) action. We prove that it is locally Lipschitz-transferable
outside of a zero-measure set (which exists for any canonicalization [23]) in Appendix H.3. In Ap-
pendix H.3, we illustrate the transferability of these models when input point clouds are i.i.d. samples
from an O(k)-invariant measure on Rk through a numerical experiment.

6 Size generalization experiments

Our theoretical framework emphasizes understanding how solutions to small problem instances
inform solutions to larger ones, i.e., whether the target function is compatible with respect to a
given consistent sequence, and continuous with respect to an associated norm. Under this view, size
generalization can be provably achieved using a neural network model that is aligned with the target
function: Compatibility alignment ensures that the model is compatible with respect to the same
consistent sequence as the target function, and yields a function on the correct limit space. Continuity
alignment further requires the model to be continuously transferable with respect to the same norm
as the target function, providing stronger inductive bias and asymptotic guarantees.

We evaluate the effect of these alignments through experiments where models are trained on small
inputs of fixed size ntrain and tested on larger inputs ntest ≥ ntrain. In each experiment, all models
have approximately the same number of parameters to ensure fair comparisons. In this Section we
show a selected set of results. See Appendix I for a full discussion.

9

500 1500 2500 3500 4500

Test set size (n)

10−4

10−3

10−2

10−1

100

T
es

t
M

S
E

DeepSet (incompatible)

Normalized DeepSet (transferable)

PointNet (compatible, not transferable)

(a) Set: Population
statistics

20 60 100 140 180

Test set size (n)

10−5

10−3

10−1

101

T
es

t
M

S
E

DeepSet (incompatible)

Normalized DeepSet
(compatible, not transferable)

PointNet (transferable)

(b) Set: Maximal distance
from the origin

50 200 500 1000 2000

Test graph size (n)

10−6

10−5

T
es

t
M

S
E

Normalized 2-IGN (incompatible)

GNN (transferable)

GGNN (compatible, not transferable)

Continuous GGNN (transferable)

(c) Graph: Weighted
triangle densities

20 100 200 300 500

Test pointcloud sizes (n)

10−2

10−1

100

101

102

T
es

t
M

S
E

Unnormalized SVD-DS (incompatible)

Normalized SVD-DS (transferable)

Normalized DS-CI
(approximately transferable)

(d) Point cloud:
Gromov-Wasserstein lower

bound

Figure 5: Size generalization experiments: Mean test MSE (over 10 random runs) against test input dimensional-
ity n. Error bars indicate the min/max range in (a)(b)(d), and 20th/80th percentiles in (c) for legibility.

Size generalization on sets. We consider two learning tasks on sets of arbitrary size, where the
target functions exhibit distinct properties, leading to different models being more suitable.

Experiment 1: Population Statistics. We tackle Task 3 from Section 4.1.1 of [91] (other tasks yield
similar results). The dataset consists of N sample sets. We first randomly choose a unit vector
v ∈ R32. For each set, we sample a parameter λ ∈ [0, 1] and then generate a set of n points

from µ(λ) = N (0, I + λvv⊤). The target function involves learning the mutual information, which
depends on the underlying probability measure µ(λ) and is continuous with respect to the Wasserstein
p-distance. Based on the transferability analysis in Table 2, normalized DeepSet is well-suited for
this task, as it aligns with the target function at the continuity level, whereas PointNet aligns only at
the compatibility level, and DeepSet lacks alignment at either level. Indeed, normalized DeepSet has
the best in-distribution test performance and size generalization behavior as shown in Figure 5a.

Experiment 2: Maximal Distance from the Origin. In this task, each dataset consists of N sets where
each set contains n two-dimensional points sampled as follows. First, a center is sampled from
N (0, I2) and a radius is sampled from Unif([0, 1]), which together define a circle. The set then
consists of n points sampled uniformly along the circumference. The goal is to learn the maximum
Euclidean norm among the points in each set. The target function in this case only depends on a point
cloud via its support, and is continuous with respect to the Hausdorff distance. Consequently, for
this task, PointNet is well-suited, as it aligns with the task at the level of continuity. (It was proved
in [9] that PointNet extends to a function that is continuous with respect to the Hausdorff distance.
We discuss the relationship between this result and ours in the PointNet part of Appendix F.2.) In
contrast, normalized DeepSet aligns only at the compatibility level, while DeepSet remains unaligned.
The comparison of various model’s performance, shown in Figure 5b is as expected.

Size Generalization on Graphs. The dataset consists of N attributed graphs (A, x), where Aij =

Aji
i.i.d∼ Unif([0, 1]) for i ≤ j, and xi

i.i.d∼ Unif([0, 1]). (We also experimented with simple
graphs; see Appendix I.2 for details.) The task is to learn the signal-weighted triangle density
yi =

1
n2

∑
j,k∈[n]AijAjkAkixixjxk, which depends on the underlying graphon and is continuous

with respect to the cut norm. Figure 5c shows that our proposed continuous GGNN, which aligns
with the target function at the continuity level, achieves the best test performance on large graphs.
Although the message-passing GNN is also provably transferable, it lacks sufficient expressiveness
for this task [14], leading to poor performance.

Size Generalization on Point Clouds. We follow the setup in Section 7.2 of [5], using the Model-
Net10 dataset [87]. From Class 2 (chair) and Class 7 (sofa), we randomly selected 80 point clouds
each, splitting them into 40 for training and 40 for testing. This results in 40 × 40 cross-class
pairs. The objective is to learn the third lower bound of the Gromov-Wasserstein distance [60],
which is invariant and continuous with respect to the Wasserstein p-metric (proven in Appendix I.4).
Figure 5d shows that normalized DS-CI and normalized SVD-DS, both aligned with the target at the
continuity level, achieve good test performance and size generalization. While normalized SVD-DS
underperforms compared to normalized DS-CI, it offers superior time and memory efficiency.

10

Acknowledgments and Disclosure of Funding

We thank Ben Blum-Smith, Ningyuan (Teresa) Huang, and Derek Lim for helpful discussions. EL is
partially supported by AFOSR FA9550-23-1-0070 and FA9550-23-1-0204. YM is funded by NSF
BSF 2430292. MD is partially supported by NSF CCF 2442615 and DMS 2502377. SV is partially
supported by NSF CCF 2212457, the NSF–Simons Research Collaboration on the Mathematical and
Scientific Foundations of Deep Learning (MoDL) (NSF DMS 2031985), NSF CAREER 2339682,
NSF BSF 2430292, and ONR N00014-22-1-2126.

Bibliography

[1] Francis Bach. Learning theory from first principles. MIT press, 2024.

[2] Pablo Barceló, Egor V Kostylev, Mikaël Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo
Silva. The logical expressiveness of graph neural networks. In 8th International Conference on
Learning Representations (ICLR 2020), Virtual conference, Ethiopia, April 2020.

[3] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of machine learning research, 3(Nov):463–482, 2002.

[4] Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations for
graph classification extrapolations. In International Conference on Machine Learning, pages
837–851. PMLR, 2021.

[5] Ben Blum-Smith, Marco Cuturi, Soledad Villar, et al. Learning functions on symmetric matrices
and point clouds via lightweight invariant features. arXiv preprint arXiv:2405.08097, 2024.

[6] Ben Blum-Smith and Soledad Villar. Machine learning and invariant theory. Notices of the
American Mathematical Society, 70(8):1205–1213, 2023.

[7] Jan Böker, Ron Levie, Ningyuan Huang, Soledad Villar, and Christopher Morris. Fine-grained
expressivity of graph neural networks. Advances in Neural Information Processing Systems, 36,
2024.

[8] Christian Borgs, Jennifer T Chayes, László Lovász, Vera T Sós, and Katalin Vesztergombi.
Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing.
Advances in Mathematics, 219(6):1801–1851, 2008.

[9] Christian Bueno and Alan Hylton. On the representation power of set pooling networks.
Advances in Neural Information Processing Systems, 34:17170–17182, 2021.

[10] Jameson Cahill, Joseph W Iverson, and Dustin G Mixon. Towards a bilipschitz invariant theory.
Applied and Computational Harmonic Analysis, 72:101669, 2024.

[11] Chen Cai and Yusu Wang. Convergence of invariant graph networks. In International Conference
on Machine Learning, pages 2457–2484. PMLR, 2022.

[12] Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1–61, 2023.

[13] capybaralet (https://math.stackexchange.com/users/114766/capybaralet). How unique are U
and V in the singular value decomposition A = UΣV †? Mathematics Stack Exchange.
URL:https://math.stackexchange.com/q/644327 (version: 2024-08-13).

[14] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020.

[15] Thomas Church, Jordan S Ellenberg, and Benson Farb. Representation stability in cohomology
and asymptotics for families of varieties over finite fields. arXiv preprint arXiv:1309.6038,
2013.

11

[16] Thomas Church and Benson Farb. Representation theory and homological stability. Advances
in Mathematics, 245:250–314, 2013.

[17] Taco Cohen and Max Welling. Group equivariant convolutional networks. In International
conference on machine learning, pages 2990–2999. PMLR, 2016.

[18] Matthieu Cordonnier, Nicolas Keriven, Nicolas Tremblay, and Samuel Vaiter. Convergence of
message passing graph neural networks with generic aggregation on random graphs. In Graph
Signal Processing workshop 2023, 2023.

[19] Gwendoline De Bie, Gabriel Peyré, and Marco Cuturi. Stochastic deep networks. In Interna-
tional Conference on Machine Learning, pages 1556–1565. PMLR, 2019.

[20] Mateo Díaz, Dmitriy Drusvyatskiy, Jack Kendrick, and Rekha R Thomas. Invariant kernels:
Rank stabilization and generalization across dimensions. arXiv preprint arXiv:2502.01886,
2025.

[21] Jean Dieudonné. Foundations of Modern Analysis. Academic Press, New York, 1969.

[22] Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and
Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels.
Advances in neural information processing systems, 32, 2019.

[23] Nadav Dym, Hannah Lawrence, and Jonathan W. Siegel. Equivariant frames and the impossi-
bility of continuous canonicalization. In Proceedings of the 41st International Conference on
Machine Learning, volume 235, pages 12228–12267. PMLR, 21–27 Jul 2024.

[24] Giuseppe Alessio D’Inverno, Monica Bianchini, and Franco Scarselli. Vc dimension of graph
neural networks with pfaffian activation functions. Neural Networks, 182:106924, 2025.

[25] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas.
Efficient and accurate estimation of lipschitz constants for deep neural networks. Advances in
neural information processing systems, 32, 2019.

[26] Nicolas Fournier. Convergence of the empirical measure in expected wasserstein distance:
non-asymptotic explicit bounds in Rd. ESAIM: Probability and Statistics, 27:749–775, 2023.

[27] Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural
networks. IEEE Transactions on Signal Processing, 68:5680–5695, 2020.

[28] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits
of graph neural networks. In International Conference on Machine Learning, pages 3419–3430.
PMLR, 2020.

[29] Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks. arXiv preprint
arXiv:2207.09453, 2022.

[30] Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. A mathematical
perspective on transformers. Bulletin of the American Mathematical Society, 62(3):427–479,
2025.

[31] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[32] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

[33] Wilson G Gregory, David W Hogg, Ben Blum-Smith, Maria Teresa Arias, Kaze WK Wong, and
Soledad Villar. Equivariant geometric convolutions for emulation of dynamical systems. arXiv
preprint arXiv:2305.12585, 2023.

[34] Martin Grohe. The logic of graph neural networks. In 2021 36th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 1–17. IEEE, 2021.

12

[35] Daniel Herbst and Stefanie Jegelka. Higher-order graphon neural networks: Approximation
and cut distance. arXiv preprint arXiv:2503.14338, 2025.

[36] Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the Weisfeiler–Lehman test and
its variants. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 8533–8537. IEEE, 2021.

[37] Svante Janson. Graphons, cut norm and distance, couplings and rearrangements. New York
journal of mathematics, 2013.

[38] Fabian Jogl, Maximilian Thiessen, and Thomas Gärtner. Expressivity-preserving GNN simula-
tion. Advances in Neural Information Processing Systems, 36, 2024.

[39] Haotian Ju, Dongyue Li, Aneesh Sharma, and Hongyang R Zhang. Generalization in graph
neural networks: Improved pac-bayesian bounds on graph diffusion. In International conference
on artificial intelligence and statistics, pages 6314–6341. PMLR, 2023.

[40] Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravan-
bakhsh. Equivariance with learned canonicalization functions. In International Conference on
Machine Learning, pages 15546–15566. PMLR, 2023.

[41] Nicolas Keriven, Alberto Bietti, and Samuel Vaiter. Convergence and stability of graph convo-
lutional networks on large random graphs. Advances in Neural Information Processing Systems,
33:21512–21523, 2020.

[42] Sammy Khalife and Josué Tonelli-Cueto. Is uniform expressivity too restrictive? towards
efficient expressivity of GNNs. In The Thirteenth International Conference on Learning
Representations, 2024.

[43] Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of self-attention.
In International Conference on Machine Learning, pages 5562–5571. PMLR, 2021.

[44] Risi Kondor. N-body networks: a covariant hierarchical neural network architecture for learning
atomic potentials. arXiv preprint arXiv:1803.01588, 2018.

[45] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution
in neural networks to the action of compact groups. In International conference on machine
learning, pages 2747–2755. PMLR, 2018.

[46] Thien Le and Stefanie Jegelka. Limits, approximation and size transferability for GNNs on
sparse graphs via graphops. Advances in Neural Information Processing Systems, 36, 2024.

[47] Ron Levie. A graphon-signal analysis of graph neural networks. Advances in Neural Information
Processing Systems, 36, 2024.

[48] Ron Levie, Wei Huang, Lorenzo Bucci, Michael Bronstein, and Gitta Kutyniok. Transferability
of spectral graph convolutional neural networks. Journal of Machine Learning Research,
22(272):1–59, 2021.

[49] Eitan Levin and Venkat Chandrasekaran. Free descriptions of convex sets. arXiv preprint
arXiv:2307.04230, 2023.

[50] Eitan Levin and Mateo Díaz. Any-dimensional equivariant neural networks. In International
Conference on Artificial Intelligence and Statistics, pages 2773–2781. PMLR, 2024.

[51] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
tial equations. arXiv preprint arXiv:2010.08895, 2020.

[52] Renjie Liao, Raquel Urtasun, and Richard Zemel. A PAC-bayesian approach to generalization
bounds for graph neural networks. In International Conference on Learning Representations,
2020.

13

[53] Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan
Fang, Lichao Sun, Philip S Yu, et al. Towards graph foundation models: A survey and beyond.
arXiv preprint arXiv:2310.11829, 2023.

[54] László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc.,
2012.

[55] Shaogao Lv. Generalization bounds for graph convolutional neural networks via rademacher
complexity. arXiv preprint arXiv:2102.10234, 2021.

[56] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks. arXiv preprint arXiv:1812.09902, 2018.

[57] Sohir Maskey, Gitta Kutyniok, and Ron Levie. Generalization bounds for message passing
networks on mixture of graphons. arXiv preprint arXiv:2404.03473, 2024.

[58] Sohir Maskey, Ron Levie, and Gitta Kutyniok. Transferability of graph neural networks: an
extended graphon approach. Applied and Computational Harmonic Analysis, 63:48–83, 2023.

[59] Sohir Maskey, Ron Levie, Yunseok Lee, and Gitta Kutyniok. Generalization analysis of message
passing neural networks on large random graphs. Advances in neural information processing
systems, 35:4805–4817, 2022.

[60] Facundo Mémoli. Gromov–Wasserstein distances and the metric approach to object matching.
Foundations of computational mathematics, 11:417–487, 2011.

[61] L. Mirsky. Symmetric gauge functions and unitarily invariant norms. The Quarterly Journal of
Mathematics, 11(1):50–59, 01 1960.

[62] Christopher Morris, Floris Geerts, Jan Tönshoff, and Martin Grohe. Wl meet vc. In International
conference on machine learning, pages 25275–25302. PMLR, 2023.

[63] Victor M Panaretos and Yoav Zemel. An invitation to statistics in Wasserstein space. Springer
Nature, 2020.

[64] Tomas Pevny and Vojtech Kovarík. Approximation capability of neural networks on spaces of
probability measures and tree-structured domains. arXiv preprint arXiv:1906.00764, 2019.

[65] Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

[66] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 652–660, 2017.

[67] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

[68] Levi Rauchwerger, Stefanie Jegelka, and Ron Levie. Generalization, expressivity, and universal-
ity of graph neural networks on attributed graphs. In The Thirteenth International Conference
on Learning Representations, 2025.

[69] Eran Rosenbluth, Jan Toenshoff, and Martin Grohe. Some might say all you need is sum. arXiv
preprint arXiv:2302.11603, 2023.

[70] Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the trans-
ferability of graph neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
1702–1712. Curran Associates, Inc., 2020.

[71] Luana Ruiz, Luiz FO Chamon, and Alejandro Ribeiro. Transferability properties of graph
neural networks. IEEE Transactions on Signal Processing, 2023.

14

[72] Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. Graph neural networks: Architectures,
stability, and transferability. Proceedings of the IEEE, 109(5):660–682, 2021.

[73] Luana Ruiz, Ningyuan Teresa Huang, and Soledad Villar. A spectral analysis of graph neural
networks on dense and sparse graphs. In ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 9936–9940. IEEE, 2024.

[74] Michael E Sander, Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. Sinkformers: Transform-
ers with doubly stochastic attention. In International Conference on Artificial Intelligence and
Statistics, pages 3515–3530. PMLR, 2022.

[75] Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The Vapnik–Chervonenkis
dimension of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

[76] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[77] Sashi Mohan Srivastava. A course on Borel sets. Springer, 1998.

[78] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

[79] Antonis Vasileiou, Ben Finkelshtein, Floris Geerts, Ron Levie, and Christopher Morris. Cov-
ered forest: Fine-grained generalization analysis of graph neural networks. arXiv preprint
arXiv:2412.07106, 2024.

[80] Antonis Vasileiou, Stefanie Jegelka, Ron Levie, and Christopher Morris. Survey on generaliza-
tion theory for graph neural networks. arXiv preprint arXiv:2503.15650, 2025.

[81] Mauricio Velasco, Kaiying O’Hare, Bernardo Rychtenberg, and Soledad Villar. Graph neural
networks and non-commuting operators. Advances in neural information processing systems,
37:95662–95691, 2024.

[82] Cédric Villani. Topics in optimal transportation, volume 58. American Mathematical Soc.,
2003.

[83] Soledad Villar, David W Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars
are universal: Equivariant machine learning, structured like classical physics. Advances in
Neural Information Processing Systems, 34:28848–28863, 2021.

[84] Soledad Villar, Weichi Yao, David W Hogg, Ben Blum-Smith, and Bianca Dumitrascu. Dimen-
sionless machine learning: Imposing exact units equivariance. Journal of Machine Learning
Research, 24(109):1–32, 2023.

[85] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

[86] James Vuckovic, Aristide Baratin, and Remi Tachet des Combes. A mathematical theory of
attention. arXiv preprint arXiv:2007.02876, 2020.

[87] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3D ShapeNets: A deep representation for volumetric shapes. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1912–1920, 2015.

[88] Huan Xu and Shie Mannor. Robustness and generalization. Machine learning, 86:391–423,
2012.

[89] Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local
structures to size generalization in graph neural networks. In International Conference on
Machine Learning, pages 11975–11986. PMLR, 2021.

[90] Y. Yu, T. Wang, and R. J. Samworth. A useful variant of the Davis–Kahan theorem for
statisticians. Biometrika, 102(2):315–323, 04 2014.

15

[91] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,
2017.

[92] Aaron Zweig and Joan Bruna. A functional perspective on learning symmetric functions with
neural networks. In International Conference on Machine Learning, pages 13023–13032.
PMLR, 2021.

A Notation

We use R and N to denote the sets of real numbers and natural numbers. We use the pair (N,⪯)
to denote a directed poset on natural numbers, used for indexing. We write [n] to denote the
set {1, 2, . . . , n}. The symbols V and U are used for consistent sequences, and Vn, Un for the
corresponding vector spaces at finite levels. General groups are denoted by Gn; we use Sn for the
symmetric group and O(k) for the orthogonal group. We denote embeddings of vector spaces from
dimension n to N by φN,n and ψN,n. Embeddings of groups are denoted by θN,n. We use “◦” to
denote the composition of functions, and id for the identity element in a group or the identity map,
depending on the context. Binary operations in groups are denoted by “∗”, with subscripts such as
“∗n” used when clarity is needed, e.g., to indicate the operation in the group Gn. Group actions are
denoted by “·”, with subscripts such as “·n” when needed.

We write ∼ to denote equivalence relations, and use [x] to denote the equivalence class of x, i.e.,
[x] = {y : y ∼ x}. We write ∨ and ∧ for maximum and minimum respectively. In a metric space,
we use B(x0, r) to denote the ball centered at x0 with radius r, i.e. B(x0, r) := {x : d(x0, x) < r}.

Given a set S, the symbol S denotes either completion or closure, depending on the context. Given

a function f, the symbol f denotes a normalized variant of that function. Given two sequences
(an), (bn) ⊆ R, we write an ≲ bn if there exists a constant C > 0 such that an ≤ Cbn for all n ∈ N.
For a given function R : N → R+, we say a sequence (xn) converges to x at rate R(n) with respect
to distance metric d if d(xn, x) ≲ R(n) and R(n) → 0. For a matrix X , we use Xi: to denote the
vector formed by its i-th row. This work employs several norms: ∥ · ∥p refers to the standard ℓp-norm
(for vectors and infinite sequences) or Lp-norm (for functions), while ∥ · ∥p denotes their normalized
counterparts which will be defined later. The operator norm of a linear map T : V → W between
two normed spaces is denoted ∥T∥op := sup∥v∥=1 ∥Tv∥; its definition inherently depends on the

specific norms chosen for V and W . Particularly, ∥ · ∥op,p,q denotes the operator norm when the
domain is equipped with the ℓp-norm (or Lp-norm) and the codomain with the ℓq-norm (or Lq-norm),
we use ∥ · ∥op,p as an abbreviation for ∥ · ∥op,p,p.

B Related work

GNN transferability. The work on GNN transferability under the graphon framework was pioneered
by [70], focusing on a variant of graph convolutional network (GCN) for deterministic graphs obtained
from the same graphon. In parallel, [48] explores transferability with respect to an alternative limit
space to graphon in the form of a topological space, and [41] examines an arguably equivalent
notion—convergence and stability—by analyzing random graphs sampled from a graphon. This line
of research has since been further developed [71, 58], extending to more general message-passing
networks (MPNNs) [18], more general notion of graph limits [46], and other models [73, 81, 11, 35].
Our framework unifies and recovers several of the above-mentioned results, which we briefly discuss
in Appendix G.2. Furthermore, we develop new insights into the transferability of Invariant Graph
Networks (IGNs) [56], a topic previously examined in [11, 35]. We leverage our framework to
advance this line of inquiry and elaborate on the connections between our approach and prior work in
Appendix G.3.

GNN generalization. A related line of research concerns the generalization theory of GNNs. Gener-
alization bounds have been derived based on various frameworks, including Rademacher complex-
ity [28, 55], VC dimension [75, 62, 24], the PAC-Bayesian approach [52, 39], the neural tangent
kernel [22], and covering numbers [59, 57, 47, 79, 68]. Notions of size generalization without an
explicit notion of convergence have been studied in [89, 4]. For a comprehensive overview, we refer
the reader to the recent survey [80]. While most research on GNN generalization bounds consider

16

graphs of fixed or bounded size, [47, 68] explore the “uniform regime,” addressing unbounded
graph sizes. This perspective is closely aligned with the transferability theory, as they both consider
continuous extensions over suitable limit spaces. Our work formalizes this connection, showing that
transferability implies generalization (Section 4, Appendix E). We derive a generalization bound via
covering numbers using the same proof strategy as prior works, but it applies well beyond GNNs and
offers a setting that directly connects to the notion of size generalization.

Equivariant machine learning. Our theory naturally applies to equivariant machine learning models,
i.e., neural networks with symmetries imposed. We particularly focus on models from [91, 56, 66,
72, 5]. There are many other equivariant machine learning models we haven’t discussed here, such as
the ones expressed in terms of group convolutions [17, 45, 33], representation theory [44, 78, 29],
canonicalization [40], and invariant theory [83, 6, 84], among others.

Representation stability and any-dimensional learning. As noted by [49, 50], the presence of
symmetry allows functions operating on inputs of arbitrary dimension to be parameterized with
a finite number of parameters, which may be partially explained by the theory of representation
stability [15]. Leveraging techniques from this theory, [50] provides the first general theoretical
framework for any-dimensional equivariant models. Recent work applies similar techniques to study
the generalization properties across dimensions of any-dimensional regression models [20]. Our
work builds on the theoretical foundation established by this line of research.

Any-dimensional expressivity and universality. Our framework naturally prompts the question of
expressivity for any-dimensional neural networks on their limit spaces. While we do not pursue this
direction here, related questions have been independently studied. [9] shows that normalized DeepSets
and PointNet are universal for uniformly continuous functions on suitable limit spaces, closely tied
to our results (see Appendix F.2.1). In GNNs, the notion of “uniform expressivity”—expressing
logical queries without parameter dependence on input size—has been explored in [34, 2, 42, 69].
Our framework offers complementary insights despite differing foundations.

C Consistent sequences and compatible, transferable maps: details and

missing proofs from Section 2

C.1 Consistent sequences and limit space

The concept of consistent sequences originated in the theory of representation stability [16]. We
generalize this notion, originally considering a sequence of vector spaces, by allowing indexing over
any directed poset on the natural numbers. Although we focus on natural numbers in this work, our
theory generalizes to any directed poset.

Directed poset indexing. We require the indexing set (N,⪯) to be a directed poset on natural
numbers, meaning that N is the set of natural numbers equipped with a binary operation ⪯ satisfying:

(Partial order) The binary operation ⪯ is a partial order; that is, it satisfies: reflexivity (a ⪯ a for all
a ∈ N), transitivity (if a ⪯ b and b ⪯ c, then a ⪯ c), and antisymmetry (if a ⪯ b and b ⪯ a, then
a = b).

(Upper bound condition) For every pair a, b ∈ N, there exists c ∈ N such that a ⪯ c and b ⪯ c.

The directed poset indexing generalizes the notion of sequences to allow a more complex and flexible
way of defining how smaller problem instances are embedded into larger ones, permitting “branching”
directions of growth. We will see that the upper bound condition is crucial, as it ensures that any two
problem instances are comparable—meaning they can both be embedded into a third, larger problem
dimension and compared there. In this work, we only consider two cases: the natural numbers with
the standard ordering ≤, and with the divisibility ordering, where a ⪯ b if and only if a | b.
Definition C.1 (Consistent sequence: detailed version of Definition 2.1). A consistent sequence of
group representations over directed poset (N,⪯) is V = {(Vn)n∈N, (φN,n)n⪯N , (Gn)n∈N}, where

1. (Groups) (Gn) is a sequence of groups indexed by N such that whenever n ⪯ N , Gn is
embedded into GN via an injective group homomorphism θN,n : Gn → GN , where

θi,i = idGi
for all i ∈ N,

θk,j ◦ θj,i = θk,i whenever i ⪯ j ⪯ k in N.

17

2. (Vector spaces) (Vn) is a sequence of (finite-dimensional, real) vector spaces indexed by N,
such that each Vn is a Gn-representation, and whenever n ⪯ N , Vn is embedded into VN
through a linear embedding φN,n : Vn ↪→ VN , where

φi,i = idVi
for all i ∈ N,

φk,j ◦ φj,i = φk,i whenever i ⪯ j ⪯ k in N.

3. (Equivariance) Every φN,n is Gn-equivariant, i.e.,

φN,n(g · v) = θN,n(g) · φN,n(v) for all g ∈ Gn, v ∈ Vn.

Given a consistent sequence, we can first “summarize” the sequence of groups (Gn) into a single
limit group G∞, and likewise “summarize” the sequence of vector spaces (Vn) into a single limit
vector space V∞. We can then consider the action of G∞ on V∞.

Definition C.2 (Limit group: detailed version of Definition 2.3). The limit group G∞ is defined as
the disjoint union

⊔
n Gn modulo the equivalence relation that identifies each element g ∈ Gn with

its images under the transition maps θN,n(g) for all N ≥ n, i.e.,

G∞ :=
⊔

n

Gn/ ∼,

where g ∼ θN,n(g) whenever n ⪯ N and g ∈ Gn. This construction is also known as the direct limit
of groups, and is denoted by G∞ = lim−→Gn. For each g ∈ Gn, its equivalence class in G∞ is denoted

by [g], representing the corresponding limiting object.

The group structure on G∞ is inherited from the groups (Gn) as follows. For gn ∈ Gn and gm ∈ Gm,
define the binary operation on equivalence classes by

[gn] ∗ [gm] := [θN,n(gn) ∗N θN,m(gm)] ,

where N ∈ N is a common upper bound of n and m in (N,⪯), and ∗N denotes the group operation
in GN . It is straightforward to check that this operation is well-defined.

Definition C.3 (Limit space of consistent sequence: detailed version of Definition 2.3). Define V∞
as the disjoint union

⊔
Vn modulo an equivalence relation identifying each element v ∈ Vn with its

images under the transition map φN,n(v) for all n ⪯ N , i.e.,

V∞ :=
⊔

n

Vn/ ∼,

where v ∼ φN,n(v) whenever n ⪯ N . This construction is also known as the direct limit of vector
spaces, and is denoted as V∞ = lim−→Vn.

The vector space structure on V∞ is inherited from the vector spaces (Vn) as follows. For vn ∈
Vn, vm ∈ Vm, the addition and scalar multiplication on the equivalent classes are defined by

[vn] + [vm] := [φN,n(vn) + φN,m(vm)] where N is an upper bound for n,m in (N,⪯),

λ[vn] := [λvn].

It is straightforward to check that these operations are well-defined. The limit group G∞ acts on V∞
by

[g] · [v] := [θN,n(g) ·N φN,m(v)] for g ∈ Gn, v ∈ Vm,

where N is an upper bound of n,m in (N,⪯), and ·N is the group action of GN on VN . It is also
easy to check that this group action is well-defined, and V∞ is a G∞-representation. The orbit space
of V∞ under the action of G∞ is

{G∞ · x : x ∈ V∞} ,
where G∞ · x := {g · x : g ∈ G∞} is the orbit of point x ∈ V∞ under the G∞-action. The orbits
form a partition of V∞ into disjoint subsets.

Consistent sequences without symmetries. A special case of consistent sequences arises when
Gn = {id}, the trivial group, for all n ∈ N. In this case, the structure reduces to a directed system of
vector spaces

V = {(Vn)n∈N, (φN,n)n⪯N} .
Hence, our theory of size generalization applies in scenarios where no intrinsic symmetries are
present.

18

Trivial consistent sequence. Another special case arises when Vn = V , a fixed vector space, for
all n ∈ N, with embeddings given by φN,n = idV for all n ⪯ N . This yields the trivial consistent
sequence associated with V , which we denote by VV . This construction is useful for modelling
non-size-dependent spaces, such as the output space in graph-level classification or regression tasks.

Direct sum and tensor product. Given a consistent sequence V = {(Vn), (φN,n), (Gn)}, we can
define its direct sum and tensor product. Both of them are also consistent sequences.

Definition C.4. The d-th direct sum of V is defined as

V⊕d := {(V ⊕d
n), (φ⊕d

N,n), (Gn)},

where V ⊕d
n denotes the direct sum of d copies of Vn and φ⊕d

N,n : V
⊕d
n → V ⊕d

N is defined by applying

φN,n to each component. The group Gn acts on V ⊕d
n by simultaneously acting on every copy of Vn,

i.e. g · (v1, . . . , vd) := (g · v1, . . . , g · vd).
Definition C.5. The d-th tensor product of V is defined as

V⊗d := {(V ⊗d
n), (φ⊗d

N,n), (Gn)},

where V ⊗d
n denotes the d-fold tensor product of Vn. φ⊗d

N,n : V
⊗d
n → V ⊗d

N is uniquely defined by

φ⊗d
N,n(v1 ⊗ · · · ⊗ vd) := φN,n(v1)⊗ . . . φN,n(vd), and the group action of Gn on V ⊗d

n is uniquely

defined by g · (v1 ⊗ · · · ⊗ vd) := (g · v1)⊗ · · · ⊗ (g · vd). The universal property of tensor product

guarantees that φ⊗d
N,n and the group action mentioned are well-defined. Similarly, we also consider

the d-th symmetric tensors of V as

Symd(V) := {(Symd(Vn)), (φ
⊗d
N,n), (Gn)},

where Symd(Vn) denotes the space of symmetric tensors of order d defined on Vn, i.e. the subspace

of V ⊗d
n invariant under the action of the symmetric group Sd.

The direct sum, V⊕d, is particularly useful for incorporating hidden channels into our analysis, as
it effectively adds the extra channel dimensions to our data. In contrast, the tensor product,V⊗d, is
helpful to extend a consistent sequence on vectors or sets to higher-order objects such as matrices
or graphs. For example, the duplication consistent sequences for graphs exactly arise as the 2nd
symmetric tensors of the duplication consistent sequences for sets.

C.2 Compatible maps

Recall from Definition 2.4 that a sequence of maps (fn : Vn → Un) is compatible with respect to the
consistent sequences V,U if, for all n ⪯ N ,

fN ◦ φN,n = ψN,n ◦ fn,
and each fn is Gn-equivariant. This condition is equivalent to the existence of an extension to the
limit map f∞.

Proposition C.6 (Compatible maps and extension to limit). Let V = {(Vn), (φN,n), (Gn)} and
U = {(Un), (ψN,n), (Gn)} be two consistent sequences. A sequence of maps (fn : Vn → Un) is
compatible if and only if it extends to the limit; that is, there exists a G∞-equivariant map

f∞ : V∞ → U∞

such that fn = f∞ |Vn
for all n.

Proof. (⇐) Suppose there exists a G∞-equivariant map f∞ such that fn = f∞|Vn
for all n. Then

for all n ⪯ N and x ∈ Vn,

[fn(x)] = f∞([x]) = f∞([φN,n(x)]) = [fN (φN,n(x))],

which implies fN ◦ φN,n = ψN,n ◦ fn. Moreover, for all n ∈ N, x ∈ Vn, and g ∈ Gn,

[fn(g · x)] = f∞([g · x]) = f∞([g] · [x]) = [g] · f∞([x]) = [g] · [fn(x)] = [g · fn(x)],
so each fn is Gn-equivariant.

19

(⇒) Conversely, suppose (fn) are compatible. Define

f∞ : V∞ →W∞, f∞([x]) := [fn(x)] if x ∈ Vn.

Compatibility ensures this is well-defined. To verify equivariance, let g ∈ Gm and x ∈ Vn, and let N
be a common upper bound of n and m in (N,⪯). Then,

f∞([g] · [x]) = f∞([θN,m(g) · φN,n(x)])
= [fN (θN,m(g) · φN,n(x))]
= [θN,m(g) · fN (φN,n(x))]

= [θN,m(g) · ψN,n(fn(x))]
= [g] · f∞([x]).

Therefore, f∞ is G∞-equivariant.

This proposition implies that learning a function on the infinite-dimensional space V∞, a task that
may appear difficult, reduces to learning a compatible sequence of functions on the finite-dimensional
vector spaces along the sequence, which is a more tractable problem.

C.3 Metrics on consistent sequences

In Section 2.1, we introduced a norm on V∞ so as to define distance between objects of different
dimensions. In this appendix, we take a more general perspective and examine metric structures on
consistent sequences, and present detailed proofs. The same proofs carry over to the norm setting
with minimal modification.

Definition C.7 (Compatible metrics: generalized version of Definition 2.5). Let V =
{(Vn), (φN,n), (Gn)} be a consistent sequence. A sequence of metrics (dn) on the vector spaces Vn
is said to be compatible if all the embeddings φN,n and the Gn-actions are isometries. That is, for
all n ⪯ N , x, y ∈ Vn, and g ∈ Gn, we have:

dN (φN,n(x), φN,n(y)) = dn(x, y), and dn(g · x, g · y) = dn(x, y).

Similar to compatible maps, this is equivalent to the existence of an extension to a metric d∞ on V∞.

Proposition C.8 (Compatible metrics and extension to the limit). A sequence of metrics (dn) on the
spaces Vn is compatible if and only if it extends to a metric on the limit space. That is, there exists a
metric d∞ on V∞ such that

dn(x, y) = d∞([x], [y]) for all n ∈ N, x, y ∈ Vn,

and the G∞-action on V∞ is an isometry with respect to d∞, i.e.,

d∞(g · x, g · y) = d∞(x, y) for all x, y ∈ V∞, g ∈ G∞.

Proof. The proof is primarily a matter of bookkeeping, similar in spirit to Proposition C.6. For
completeness, we present the full argument below.

(⇐) Suppose (dn) extends to a metric d∞ on V∞. Then for all n ⪯ N and x, y ∈ Vn, we have

dn(x, y) = d∞([x], [y]) = d∞([φN,n(x)], [φN,n(y)]) = dN (φN,n(x), φN,n(y)).

Thus, the embeddings φN,n are isometries. Moreover, for any g ∈ Gn and x, y ∈ Vn,

dn(g · x, g · y) = d∞([g · x], [g · y]) = d∞([g] · [x], [g] · [y]) = d∞([x], [y]) = dn(x, y),

so the group actions are isometries as well.

(⇒) Conversely, suppose the collection (dn) is compatible. Define a metric d∞ : V∞ × V∞ → R as
follows: for x ∈ Vn and y ∈ Vm, let N be any common upper bound of n and m in (N,⪯), and set

d∞([x], [y]) := dN (φN,n(x), φN,m(y)).

Compatibility of the metrics ensures that d∞ is well-defined. It is also easy to check that d∞ is a
metric. Moreover, by construction, dn = d∞|Vn

for all n.

20

To verify that the G∞-action is isometric, take x ∈ Vn1 , y ∈ Vn2 , and g ∈ Gn for some n ∈ N. Let
N be a common upper bound of n, n1, n2 in (N,⪯). Then,

d∞([g] · [x], [g] · [y]) = dN (θN,n(g) · φN,n1(x), θN,n(g) · φN,n2(y))

= dN (φN,n1(x), φN,n2(y))

= d∞([x], [y]).

This completes the proof.

With the metric structure in place, we define the limit space via the completion of the metric space.

The completion of a metric space M is a complete metric space M—that is, a space in which every
Cauchy sequence converges—that contains M as a dense subset (i.e., the smallest closed subset of

M containing M is M itself).

Definition C.9 (Limit space: detailed version of Definition 2.7). Let V be a consistent sequence,

and let V∞ be equipped with the metric d∞. Denote by V∞ the completion of V∞ with respect to
d∞. The G∞-action on V∞ extends to a well-defined action on V∞ as follows: for any x ∈ V∞ and
g ∈ G∞, choose a sequence (xn) in V∞ such that xn → x in V∞, and define

g · x := lim
n→∞

g · xn.

This limit exists because (g · xn) is a Cauchy sequence, as the G∞-action on V∞ is isometric. The

resulting action on V∞ is linear and isometric. We define the limit space of the consistent sequence
V to be the G∞-representation V∞.

The set of orbit closures in V∞ under the action of G∞ is{
G∞ · x : x ∈ V∞

}
.

where G∞ · x is the closure of the orbit G∞ · x. Intuitively, V∞ includes not only elements from
finite-dimensional objects (elements in V∞), but also additional points that are “reachable” as limits
of finite-dimensional objects. We can further define a symmetrized metric on the limit space.

Proposition C.10 (Symmetrized metric). Let x, y ∈ V∞. Define

d(x, y) := inf
g∈G∞

d∞(g · x, y).

Then d is a pseudometric on V∞ and induces a metric on the space of orbit closures in V∞ under the

G∞-action. We refer to d as the symmetrized metric.

Proof. The non-negativity of d follows directly from the non-negativity of d∞.

(Symmetry) Since d∞(g · x, y) = d∞(x, g−1 · y) for any g ∈ G∞ by isometry of the G∞-action,
taking the infimum over all g ∈ G∞ (equivalently over g−1) yields

d(x, y) = d(y, x).

(Triangle inequality) Let ε > 0. Then there exist g, h ∈ G∞ such that

d(x, y) > d∞(g · x, y)− ε, d(y, z) > d∞(h · y, z)− ε.

Using the isometry of the group action:

d(x, y) + d(y, z) > d∞(g · x, y) + d∞(h · y, z)− 2ε

= d∞(hg · x, h · y) + d∞(h · y, z)− 2ε

≥ d∞(hg · x, z)− 2ε

≥ d(x, z)− 2ε.

Since this holds for arbitrary ε > 0, the triangle inequality follows.

(Definiteness) We have d(x, y) = 0 if and only if there exists a sequence (gn) ⊆ G∞ such that

d∞(gn · x, y) → 0. This is precisely the condition that y ∈ G∞ · x, i.e., x and y lie in the same orbit
closure.

Therefore, d is a pseudometric on V∞, and descends to a true metric on the space of orbit closures
which completes the proof.

21

D Transferability: details and missing proofs from Section 3

D.1 Transferable maps

Following Definition 3.1 of continuously, L-Lipschitz, and L(r)-locally Lipschitz transferable, we
further define the following notion: If (fn) is a sequence of mappings extending to f∞ which is
locally Lipschitz at x0

7, we say (fn) is locally Lipschitz transferable at x0. Being locally Lipschitz
transferable at x0 is a weaker condition than being L(r)-locally Lipschitz transferable, which is
itself weaker than L-Lipschitz transferable. This definition is useful when studying models which
are discontinuous on negligible sets of inputs, and which are therefore not L(r)-locally Lipschitz
transferable. These often come up when constructing architectures based on canonicalizations [23],
as commonly done for point clouds for instance (see Section 5.3).

We first show a useful property that continuity/Lipschitz with respect to ∥ · ∥V∞
, ∥ · ∥U∞

implies the
same property with respect to the symmetrized metrics, even though the converse does not hold. We
will again state and prove the results for metrics instead.

Proposition D.1 (Continuity in d∞ implies continuity in d). Let V,U be consistent sequences. If

f∞ : V∞ → U∞ is continuous (respectively, L(r)-Lipschitz on B(0, r) for all r > 0, L-Lipschitz,

locally Lipschitz at x0 ∈ V∞) with respect to dV∞ and dU∞, then f∞ satisfies the same property with

respect to the symmetrized metrics dV and dU .

Proof. (Continuity) Let xn → x in V∞ with respect to the symmetrized metric dV , and ε > 0.
By continuity of f∞ with respect to d∞, there exists δ > 0 such that whenever d∞(x, y) < δ,

d∞(f∞(x), f∞(y)) < ε. Take N such that for all n ≥ N , dV (xn, x) <
δ
2 . Moreover, for each n,

choose gn ∈ G∞ such that d∞(gn ·xn, x) ≤ dV (xn, x)+
δ
2 . Then for all n ≥ N , d∞(gn ·xn, x) < δ

and hence

dU (f∞(xn), f∞(x)) ≤ d∞(gn · f∞(xn), f∞(x)) = d∞(f∞(gn · xn), f∞(x)) < ε.

Therefore f∞(xn) → f∞(x) with respect to dU .

(L(r)-Lipschitz on B(0, r)) Suppose f∞ is L(r)-Lipschitz on B(0, r) for all r > 0 with respect to

d∞. Consider x, y such that dV (0, x) = dV∞(0, x) < r, and dV (0, y) = dV∞(0, y) < r. Then for any
g ∈ G∞, we have dV∞(0, g · x) = dV∞(0, x) < r. Hence,

dU (f∞(x), f∞(y)) ≤ d∞(g · f∞(x), f∞(y)) = d∞(f∞(g · x), f∞(y)) ≤ L(r)d∞(g · x, y).
Take infimum over g ∈ G∞, get dU (f∞(x), f∞(y)) ≤ L(r) dV (x, y).

(Lipschitz) For any x, y ∈ V∞, g ∈ G∞,

dU (f∞(x), f∞(y)) ≤ d∞(g · f∞(x), f∞(y)) = d∞(f∞(g · x), f∞(y)) ≤ Ld∞(g · x, y).
Take infimum over g ∈ G∞, get dU (f∞(x), f∞(y)) ≤ L dV (x, y).

(Locally Lipschitz at x0) Suppose d∞(f(x), f(x0)) ≤ Ld∞(x, x0) whenever d∞(x, x0) < r. Then

for any such x we have dV (x, x0) = inf
g∈G

(r)
∞
d∞(x, x0) where G

(r)
∞ = {g ∈ G∞ : d∞(x, x0) ≤ r}.

Moreover, for any g ∈ G
(r)
∞ we have dU (f(x), f(x0)) ≤ d∞(f(g · x), f(x0)) ≤ Ld∞(g · x, x),

so after taking infimum over such g we conclude that dU (f(x), f(x0)) ≤ L dV (x, x0) whenever

dV (x, x0) < r, as desired. This completes the proof of the proposition.

Finally, we state and prove a set of more concrete characterizations of Lipschitz transferable sequence
of functions defined in Definition 3.1, which are straightforward to check.

Proposition D.2. Let V,U be consistent sequences endowed with metrics.

7We say f∞ is locally Lipschitz at x0 if there exists r > 0 and L > 0 such that for all x ∈ B(x0, r),
d∞(f∞(x), f∞(x0)) ≤ Ld∞(x, x0). Notice that this is slightly different from saying f∞ is locally Lipschitz
around x0, which means that there exists r > 0 and L > 0 such that f∞ is L-Lipschitz on B(x0, r).

22

1. (General case) A compatible sequence of functions (fn : Vn → Un) is L-Lipschitz (respectively,
L(r)-locally Lipschitz) transferable if and only if for all n, fn is L-Lipschitz (respectively,
L(r)-Lipschitz on Bn(0, r) := {v ∈ Vn : dVn (0, v) < r}).

2. (Linear maps) When the metrics are induced by norms, a compatible sequence of linear
maps (Wn : Vn → Un) is continuously (respectively, L-Lipschitz) transferable if and only if
supn ∥Wn∥op <∞ (respectively, supn ∥Wn∥op ≤ L).

Proof. We begin by deriving the result for the general case.

General case. The “⇒” direction again follows immediately from dn = d∞|Vn
, fn = f∞|Vn

for all
n. We focus on proving “⇐”. First, by Proposition C.6, compatibility implies that the sequence (fn)
extends to a function f∞ : V∞ → U∞.

(Lipschitz) Suppose fn is L-Lipschitz for all n. For any x ∈ Vn and y ∈ Vm, let N be a common
upper bound of n and m in (N,⪯). Then:

dU∞(f∞([x]), f∞([y])) = dUN (fN (φN,n(x)), fN (φN,m(y)))

≤ LdVN (φN,n(x), φN,m(y))

= LdV∞([x], [y]).

Hence, f∞ is L-Lipschitz on V∞.

Since Lipschitz continuity implies Cauchy continuity, f∞ extends uniquely to f∞ : V∞ → U∞.

For any Cauchy sequences (xn) and (yn) in V∞ with limits x, y ∈ V∞, we have:

dU∞(f∞(x), f∞(y)) = lim
n→∞

dU∞(f∞(xn), f∞(yn))

≤ lim
n→∞

LdV∞(xn, yn) = LdV∞(x, y),

which shows that f∞ remains L-Lipschitz after extending to V∞.

(L(r)-locally Lipschitz) Suppose each fn is L(r)-Lipschitz on Bn(0, r) for all r > 0. As above,
for any x ∈ Vn and y ∈ Vm with dn(0, x), dm(0, y) < r, let N be a common upper bound of
n,m in (N,⪯). Then φN,n(x), φN,m(y) ∈ BN (0, r), and by the L(r)-Lipschitz property of fN
on BN (0, r), we get

dU∞(f∞([x]), f∞([y])) ≤ L(r) · dV∞([x], [y]).

Thus, f∞ : V∞ → U∞ is L(r)-Lipschitz on {v ∈ V∞ : dV∞(0, v) < r}.

This implies f∞ is Cauchy continuous: any Cauchy sequence (xn) lies within some ball of radius
R, and since f∞ is Lipschitz continuous there, (f∞(xn)) is also Cauchy. Hence, f∞ extends

uniquely to V∞, and it is easy to check that it is L(r)-Lipschitz on B(0, r) for all r.

Linear maps. We leverage the argument for the general case to derive the two stated claims.

(Lipschitz) By our argument for normed spaces, (Wn) is L-Lipschitz transferable if and only if
for all n, Wn is L-Lipschitz. By linearity of each Wn, this is equivalent to ∥Wn∥op ≤ L for all n.

(Continuity) It is sufficient to prove that (Wn) is continuously transferable if and only if it is
L-Lipschitz transferable for some L > 0. The “⇐” direction is immediate. To prove “⇒”,

suppose (Wn) extends to a continuous function W∞ : V∞ → U∞. Then W∞ is linear on V∞
because for any x ∈ Vn, y ∈ Vm, and any common upper bound N of n,m in (N,⪯), we have

W∞(a[x] + b[y]) = [WN (aφN,n(x) + bφN,m(y))] = aW∞([x]) + bW∞([y]).

By continuity of W∞, it remains linear on V∞. The result follows since for linear operators,
Lipschitz continuity and continuity are equivalent.

Thus, the proof is finished.

23

D.2 Convergence, transferability and stability

Stability. The following stability result states that small perturbations of the input (e.g., adding a
small number of nodes to a graph) lead to small changes in the output. It resembles the stability
considered in [70].

Proposition D.3 (Stability: detailed version of Proposition 3.2). If the sequence of maps (fn : Vn →
Un) is L(r)-locally Lipschitz transferable, then for any two inputs xn ∈ Vn and xm ∈ Vm of any
two sizes n,m with dVn (0, xn), d

V
m(0, xm) ≤ r, we have

dU∞([fn(xn)], [fm(xm)]) ≤ LdV∞([xn], [xm]).

Moreover, the same holds when replacing every d∞ with the symmetrized metric d.

Convergence and transferability: deterministic sampling. For a sequence of inputs (xn) sampled
(deterministically) from the same underlying limiting object x, the outputs of a transferable function
satisfy fn(xn) ≈ fm(xm) for big n,m, and converge as fn(xn) → f∞(x). We provide examples of
sampling procedures later in Appendix D.3.

Proposition D.4 (Convergence and transferability: detailed version of Proposition 3.2). Let (xn ∈
Vn)n∈N be a sequence of inputs sampled from a limiting object x ∈ V∞, such that [xn] → x at a rate
R(n) with respect to dV∞.

1. (Asymptotic) If (fn : Vn → Un)n∈N is continuously transferable, then the following holds.

(Convergence) The sequence [fn(xn)] → f∞(x) with respect to dU∞.

(Transferability) The distance dU∞([fn(xn)], [fm(xm)]) → 0 as n,m→ ∞.

2. (Nonasymptotic) If (fn : Vn → Un)n∈N is locally Lipschitz transferable at x, then the following
holds.

(Convergence) The sequence [fn(xn)] → f∞(x) at a rate R(n) with respect to dU∞.

(Transferability) The distance is bounded by dU∞([fn(xn)], [fm(xm)]) ≲ R(n) +R(m).

That is, Lipschitzness provides quantitative guarantees for the convergence rate. We remark that by

By Proposition D.1, the same holds when replacing every d∞ with the symmetrized metric d.

Proof. We start by noticing that both transferability results directly follows from convergence, thanks
to the triangle inequality

d∞([fn(xn)], [fm(xm)]) ≤ d∞([fn(xn)], f∞(x)) + d∞([fm(xm)], f∞(x)).

To show convergence in under continuous transferability, observe that if f∞ is continuous, then
[fn(xn)] = f∞([xn]) → f∞(x) immediately follows.

Next, we establish the guarantee under local Lipschitz transferability at x. Suppose f∞ is locally
Lipschitz at x. Then there exists r > 0 such that for all y ∈ B(x, r), we have d∞(f∞(x), f∞(y)) ≤
Ld∞(x, y). Let N be large enough so that xn ∈ B(x, r) for all n ≥ N . Then for all n ≥ N , we
have

d∞(f∞(x), [fn(xn)]) = d∞(f∞(x), f∞([xn])) ≤ L · d∞(x, [xn]) ≲ R(n),

as claimed; finishing the proof of the proposition.

Convergence and transferability: random sampling. Under random sampling of inputs, we need
to specify the mode of convergence. In the case where xn → x almost surely at rate R(n), the
results are identical to the deterministic case: both convergence and transferability hold almost surely.
We now consider a different mode of convergence—convergence in expectation. As we will see in
Appendix D.3, many common sampling procedures satisfy this condition.

Proposition D.5 (Convergence and transferability: Random sampling). Let (xn ∈ Vn) be a sequence

of inputs randomly sampled from a limiting object x ∈ V∞, such that [xn] → x in expectation at
rate R(n) with respect to dV∞, i.e. E[dV∞([xn], x)] ≲ R(n) and R(n) → 0. Suppose (fn : Vn → Un)
is locally Lipschitz transferable at x, i.e., f∞ is L-Lipschitz on B(x, r). Further, assume that there
exists M > 0 such that

E [d∞(f∞([xn]), f∞(x))1([xn] /∈ B(x, r))] ≤ME [d∞([xn], x)] . (2)

24

(Convergence) The function values converge in expectation

E[d∞([fn(xn)], f∞(x))] ≲ R(n).

(Transferability) The distance converges in expectation

E[d∞([fn(xn)], [fm(xm)])] ≲ R(n) +R(m).

The assumptions in this proposition are rather mild. Indeed, (2) amounts to a localized version of
uniform integrability. Simple arguments show that these assumptions are satisfied under any of
the following scenarios: (i) the sequence (fn) is globally Lipschitz transferable, (ii) the map f∞
is bounded or (iii) the sequence (xn) is supported on B(x, r). Furthermore, the same conclusion

remains valid when replacing d∞ with the symmetrized metric d.

Proof. Suppose for all y ∈ B(x, r), we have d∞(f∞(x), f∞(y)) ≤ Ld∞(x, y). Then,

E[d∞(f∞(x), [fn(xn)])] ≤ E
[
d∞(f∞(x), f∞([xn])) · 1{[xn] ∈ B(x, r)}

]
+ME [d∞(x, [xn])]

≤ L · E
[
d∞(x, [xn]) · 1{[xn] ∈ B(x, r)}

]
+ME [d∞(x, [xn])]

≲ R(n).

Transferability then follows by the triangle inequality.

D.3 Convergence rates under sampling

Propositions D.4 and D.5 show that for Lipschitz transferable models (fn), the convergence of fn(xn)
to f∞(x) is at least as fast as the convergence of xn to x, characterized by the rate R(n). This rate
depends on the specific application and sampling scheme. Below, we review common sampling
schemes and their associated convergence rates from the literature.

D.3.1 Random sampling

Empirical distributions and signals. Suppose p ∈ [1,∞] and µ ∈ Pq(Rd) for some q > 2p.

Suppose X ∈ Rn×d has rows sampled i.i.d. from µ, and let µX = 1
n

∑n
i=1 δXi: be the corresponding

(empirical) distribution on Rd. Then, we have [26]

E[Wp(µ, µX)] ≲





n−1/2p if p > d/2,

n−1/2p log1/p(1 + n) if p = d/2,

n−1/d if p < d/2.

(3)

Similarly, suppose f ∈ L∞([0, 1]) is a bounded signal sampled by xi = f(ti) where t1, . . . , tn are
i.i.d. uniform [0, 1], and if fn be the step function corresponding to x. Noting that µf has moments
of all orders and that µfn is the empirical measure obtained by sampling n iid points from µf , we

conclude that E dp(f, fn) = EWp(µf , µfn) converges at the rates (3) with d = 1, where dp is the
symmetrized metric with respect to the Lp norm on functions.

Point clouds. Again let p ∈ [1,∞] and µ ∈ Pq(Rk) with q > 2p, and suppose X ∈ Rn×k has rows
sampled i.i.d. from µ. Let G ∈ O(k) be a random (or deterministic) rotation, sampled independently
of X , and consider the rotated point cloud XG. Then the expected symmetrized metric between
µXG and µ can be bounded by (3) since

E

[
inf

g∈O(k)
Wp(µ, µXGg−1)

]
= E

{
E

[
inf

g∈O(k)
Wp(µ, µXGg−1)

∣∣∣∣G
]}

≤ E[Wp(µ, µX)].

(4)

Graphons. Let W : [0, 1]2 → [0, 1] and An ∈ Rn×nsym be sampled as (An)i,j ∼ Ber(W (xi, xj))
where x1, . . . , xn are i.i.d. Unif([0, 1]). Let WAn

be the step graphon associated to An. Then, [54,
§10.4] implies

E[δ□(W,WAn
)] ≲

1√
log(n)

.8

8In fact, this bound holds with probability at least 1− exp(− n
2 logn

).

25

where δ□ is the cut distance of graphons; see [54, §8.2.2] for a formal definition. Moreover, we have
WAn

→W in cut metric almost surely [54, Cor. 11.15]. Similarly, if TW : L2([0, 1]) → L2([0, 1])
is the integral operator associated with W , then by [37, Equation 4.4 and Lemma E.6],

E[d2(TW , TWn
)] = E

[
inf
σ∈G∞

∥TW − Tσ·Wn
∥op,2

]
≤ 23/2E[δ□(W,WXn

)]1/2 ≲ (log n)−1/4.

See Appendix G.1 for the definitions of the symmetrized metric and norm on graphons as integral
operators.

D.3.2 Deterministic sampling

Uniform grid. Suppose f : [0, 1]k → R is L-Lipschitz with respect to ∥ · ∥p, and consider its values

on a uniform grid Xi1,...,ik = f((i1 − 1)/n, . . . , (ik − 1)/n) ∈ (Rn)⊗k. If we extend X to a step
function as usual by fX(x1, . . . , xk) = X⌈x1n⌉,...,⌈xkn⌉, then

∥f − fX∥q ≤ ∥f − fX∥∞
≤ L sup

x1,...,xk∈[0,1]

∥(x1, . . . , xk)− ((⌈x1n⌉ − 1)/n, . . . (⌈xkn⌉ − 1)/n)∥p

= L∥(1/n, . . . , 1/n)∥p =
Lk1/p

n
,

for all q ∈ [1,∞]. Also note that if we evaluate an L-Lipschitz graphon W : [0, 1]2 → [0, 1] on such
a uniform grid, we have

∥TW − TWn
∥op ≤ ∥W −Wn∥2 ≤ L

√
2

n
.

Local averaging. For any f ∈ Lp([0, 1]k), we can locally average it over hypercubes of side length
1/n to produce values

Xi1,...,ik = nk
∫ i1/n

(i1−1)/n

· · ·
∫ ik/n

(ik−1)/n

f(x1, . . . , xk) dx1 · · · dxk,

and again extend these values to a step function fX . In this case,

∥f − fX∥p ≤ 2dist(f, Vn),

so, we get the optimal rate of convergence.

E Generalization bounds: details and missing proofs from Section 4

We apply the framework connecting robustness and generalization established by [88], which is
built on the idea that algorithmic robustness—that is, a model’s stability to input perturbations—is
fundamentally linked to its ability to generalize. We refer readers to [88] for the necessary background.
This framework has also been recently employed to derive generalization bounds for GNNs in [79],
though their analysis is restricted to graphs with bounded size. Similar techniques are used in [47, 68].

Any-dimensional generalization bound from algorithmic robustness. We consider an any-
dimensional supervised learning task where consistent sequences model the input and output space

V = {(Vn), (φN,n), (Gn)} and U = {(Un), (ψN,n), (Gn)},

with associated symmetrized metrics dV and dU . The dataset s consists of N input-output pairs
(xi, yi) ∈ X × Y ⊆ V∞ × U∞, where X × Y are subsets whose sequence of orbit closures are
compact in the symmetrized metrics. More precisely, (xi, yi) are finite-dimensional representatives

of equivalence classes in V∞ × U∞. The hypothesis class H consists of functions V∞ → U∞
parametrized by neural networks. A learning algorithm A is a mapping

A : (V∞ × U∞)N → H.
We write As for the hypothesis learned from the dataset s.

26

Assume training is performed using a neural network model that is L(r)-locally Lipschitz transferable.
(Recall from Proposition D.1 that this implies As is L(r)-locally Lipschitz on B(0, r) for all r > 0
with respect to the symmetrized metrics dV and dU .) Since X × Y is compact, and hence bounded,

there exists a constant cs > 0 such that As : V∞ → U∞ is cs-Lipschitz on X × Y with respect

to the symmetrized metrics. Further, let the loss function ℓ : U∞ × U∞ → R be bounded by M ,

and cℓ-Lipschitz with respect to the product metric d
(
(x, y), (x′, y′)

)
:= dU (x, x

′) + dU (y, y
′). By

applying the framework of [88] to the limit space, we immediately obtain a generalization bound for
learning tasks where the data consists of inputs of varying dimensions. We note that this is not the
result stated in Proposition 4.2 of the main paper; the version claimed there will be established later
in Proposition E.3.

Proposition E.1 (Any-dimensional generalization bound). Assume that the training data consists of
N i.i.d. samples s = (xi, yi) ∼ µ̂ from a measure µ̂ supported on X × Y ⊆ V∞ × U∞, where X
and Y have finite ε-covering numbers CX(ε), CY (ε) with respect to the symmetrized metrics for all
ε > 0. Then, for any δ > 0, with probability at least 1− δ, the generalization error satisfies

∣∣∣∣∣
1

N

N∑

i=1

ℓ(As(xi), yi)− E(x,y)∼µ̂ℓ(As(x), y)

∣∣∣∣∣

≤ inf
γ>0

(
cℓ(cs ∨ 1)γ +M

√
2CX(γ/4)CY (γ/4) log 2 + 2 log(1/δ)

N

)
(5)

≤ cℓ(cs ∨ 1)ξ−1(N) +M

√
(2 log 2)ξ−1(N)2 +

2 log(1/δ)

N
, (6)

where ξ(r) := CX(r/4)CY (r/4)
r2 and we set γ = ξ−1(N) in the second line to obtain the third.

Remark E.2. We make the following observations.

1. The bound (6) converges to 0 as N → ∞. Indeed, ξ is strictly decreasing, and hence its inverse
is well-defined and also strictly decreasing. Since ξ(x) → ∞ as x→ 0+, we get ξ−1(x) → 0
as x→ ∞.

2. The generalization bound reveals that the ability to generalize improves with greater model
transferability/stability (i.e., smaller Lipschitz constants), and deteriorates with increasing
geometric complexity of the data space (i.e., larger covering numbers).

3. We emphasize that µ̂ is a distribution on V∞ × U∞, ensuring that every sample drawn from µ̂
admits a finite-dimensional representative, i.e., (xi, yi) ∈ Vn × Un for some n. This reflects
the realistic setting in which data consists of finite-dimensional inputs. This stands in contrast
to prior work on GNN generalization bounds [47, 68], which considers data distributions on
V∞—the space of graphon signals in [48], and the space of iterated degree measures in [68].
Such an assumption is somewhat unrealistic, as many elements in these spaces cannot be
realized as finite-dimensional data.

4. Note that µ̂ induces a distribution (µ̂(Vn × Un))n∈N over sample dimensions in N, which
inherently places less weight on larger sizes. Consequently, the generalization bound does not
offer guarantees on the asymptotic performance of the model as the input dimension n→ ∞.
Next, we will derive the second generalization bound that addresses this problem.

Proof. For all (x1, y1), (x2, y2) ∈ X × Y ,

|ℓ (As(x1), y1)− ℓ (As(x2), y2)| ≤ cℓ(cs dV (x1, x2) + dU (y1, y2))

≤ cℓ(cs ∨ 1)(dV (x1, x2) + dU (y1, y2)).

Applying [88, Theorem 14] yields that the algorithm A is (CX(γ/4)CY (γ/4), γcℓ(cs∨1))-robust [88,
Definition 2] for all γ > 0. Further, applying [88, Theorem 3] gives the generalization bound (5).
Finally, (6) follows by taking the γ as defined.

Size-generalization bound: train on finite sizes and test on the limit space. The previous general-
ization bound follows the classical statistical learning setup, where both training and test data are

27

assumed to be sampled i.i.d. from the same distribution. However, in any-dimensional learning, we
are typically concerned with a different scenario: training on data of smaller sizes and testing on data
of larger sizes. This motivates the need for a new form of generalization bound that accounts for such
settings.

We propose the following set-up (described in the main paper). Let µ be a probability distribution

supported on X × Y ⊆ V∞ ×U∞, which are subsets whose sequence of orbit closures is compact in
the symmetrized metrics. Consider a random sampling procedure

Sn : V∞ × U∞ → Vn × Un,

such that for all n and for all (x, y) ∈ supp(µ), we have supp(Sn(x, y)) ⊆ X × Y . This sampling
induces a distribution µn on Vn × Un via the sampling procedure; that is,

µn := Law(xn, yn), where (xn, yn) ∼ Sn(x, y) and (x, y) ∼ µ.

Proposition E.3 (Size-generalization bound). Suppose the training data consists of N i.i.d. samples
s = (xi, yi) ∼ µn. Then, for any δ > 0, with probability at least 1 − δ, the generalization error
satisfies

∣∣∣∣∣
1

N

N∑

i=1

ℓ(As(xi), yi)− E(x,y)∼µℓ(As(x), y)

∣∣∣∣∣

≤ cℓ(cs ∨ 1)
(
ξ−1(N) +W1(µ, µn)

)
+M

√
(2 log 2) ξ−1(N)2 +

2 log(1/δ)

N
, (7)

where W1 denotes the Wasserstein-1 distance, and ξ(r) := CX(r/4)CY (r/4)
r2 , with CX(ε) and CY (ε)

denoting the ε-covering numbers of X and Y , respectively, with respect to the symmetrized metrics.
Moreover, assuming that the sampling procedure converges in expectation at a rate R(n), i.e.,

E(xn,yn)∼Sn(x,y)

[
dV (x, [xn]) + dU (y, [yn])

]
≲ R(n),

we have that∣∣∣∣∣
1

N

N∑

i=1

ℓ(As(xi), yi)− E(x,y)∼µℓ(As(x), y)

∣∣∣∣∣

≲ cℓ(cs ∨ 1)
(
ξ−1(N) +R(n)

)
+M

√
(2 log 2) ξ−1(N)2 +

2 log(1/δ)

N
. (8)

Remark E.4. We make the following observations.

1. The bound (8) converges to 0 if both the training input dimension n and the amount of data N
goes to ∞. Indeed, we have justified in Remark E.2 that (6) converges to 0 as N → ∞. The
only additional term in (8) is R(n) which converges to 0 as n→ ∞.

2. This new generalization bound aligns with the setup where training is performed on inputs of
fixed size n (also naturally extends to inputs of varying finite sizes), and testing evaluates the
asymptotic performance as n → ∞. It can therefore be interpreted as a size generalization
bound, accounts for distributional shifts induced by size variation. As a consequence, an
additional term appears in the bound, reflecting the convergence rate of the sampling procedure.

Proof. By triangle inequality,
∣∣∣∣∣
1

N

N∑

i=1

ℓ(As(xi), yi)− E(x,y)∼µℓ(As(x), y)

∣∣∣∣∣ ≤
∣∣∣∣∣
1

N

N∑

i=1

ℓ(As(xi), yi)− E(x,y)∼µn
ℓ(As(x), y)

∣∣∣∣∣
︸ ︷︷ ︸

=:T1

+
∣∣E(x,y)∼µℓ(As(x), y)− E(x,y)∼µn

ℓ(As(x), y)
∣∣

︸ ︷︷ ︸
=:T2

.

We bound the two terms separately. By the Kantorovich-Rubinstein duality, we have almost surely
that

T2 ≤ cℓ(cs ∨ 1) ·W1(µ, µn).

28

To bound T1, recall that supp(Sn(x, y)) ⊆ X × Y for all (x, y) ∈ supp(µ). It follows that
supp(µn) ⊆ X × Y , which is therefore totally bounded. Its covering number is upper bounded by
that of X × Y . Applying Proposition E.1 with µ̂ = µn yields (7).

Finally, to boundW1(µ, µn), we note that the sampling procedure induces a natural coupling between
µ and µn. Using this coupling,

W1(µ, µn) ≤ E(x,y)∼µ, (xn,yn)∼Sn(x,y)

[
dV (x, [xn]) + dU (y, [yn])

]
≲ R(n),

which yields (8); completing the proof.

Practicality of the assumptions. Finally, we reflect on the key assumptions required for the bound
(8) to hold and assess their practicality in more specific settings. First, we assumed that the loss
function is bounded (and, consequently, Lipschitz continuous). We note that these assumptions are
relatively standard [1, 76, 3]. When the predictions and target outputs are bounded, several widely-
used loss functions, such as cross-entropy, L1-loss, L2-loss, and Huber loss, are all bounded and
Lipschitz continuous. Moreover, many clipped loss functions also satisfy this assumption. Second,
regarding the assumption of a sampling procedure that converges in expectation at a rate R(n), we
refer readers to Appendix D.3 for examples involving sets, graphs, and point clouds. Most importantly,
the bound critically depends on the compactness of X and Y in the symmetrized metrics, and on
the sampling procedure generating finite-size samples that remain within this compact space, i.e.,
supp(Sn(x, y)) ⊂ X × Y for all (x, y) ∈ supp(µ). Below, we provide two concrete examples
involving sets and graphs where these assumptions hold, and where bounds for the covering numbers
are explicitly known. In these specific settings, our generalization bound applies directly.

Example E.5 (Probability measures supported on compact set). Consider V⊕d
dup, the duplication

consistent sequence for sets endowed with the normalized ℓp metric. See Appendix F.1 for the precise

definitions. The limit space is V∞ = Lp([0, 1],Rd), and the space of orbit closures of V is Pp(Rd),
the space of probability measures on Rd with finite p-th moment, endowed with the Wasserstein-p
distance. Fix a compact set Ω ⊆ Rd, and let

X :=
{
f ∈ Lp([0, 1],Rd) : µf is supported on Ω

}
.

Note that the sequence of orbit closures in X , namely {µf : f ∈ X}, is compact with respect
to Wp. A bound on the covering number CX is given by [63, Theorem 2.2.11]. Consider the

sampling procedure Sn : Lp([0, 1],Rd) → Rn×d defined by drawing zi
i.i.d.∼ Unif([0, 1]), and setting

Sn(f)i: = f(zi) for i = 1, . . . , n. Then, for all f ∈ X , each entry of Sn(f) lie in Ω. Hence, we have
Sn(f) ∈ X . Our generalization bound therefore applies to this setting.

Example E.6 (Graphon signals with cut distance). Consider VGdup, the duplication-consistent se-

quence for graph signals endowed with the cut metrics. See Appendix G.1 for the precise definitions.
Define the space

X =
{
W : [0, 1]2 → [0, 1] measurable :W (x, y) =W (y, x)

}
×{f ∈ L∞([0, 1],R) : ∥f∥∞ ≤ r} .

By [47, Theorem 3], the sequence of orbit closures in X is compact with respect to the cut metric
on graphon signals. Moreover, a bound on the covering number is also provided in the same result.

Consider the sampling procedure Sn : X → Rn×nsym ×Rn defined as follows: draw zi
i.i.d.∼ Unif([0, 1]),

and set Sn(W, f) = (A,X), where Aij ∼ Ber(W (zi, zj)) and Xi = f(zi) for i = 1, . . . , n.
Then, for all (W, f) ∈ X , the sampled pair Sn(W, f) belongs to X . This is the standard sampling
procedure for graphon signals, and once again our generalization bound applies.

E.1 Transferable neural networks

To prove the transferability of a neural network, we first observe that compatibility and transferability
are preserved under composition. Therefore, it suffices to verify these properties for each individual
layer. Moreover, by Propositions C.6 and D.2, it is enough to prove the compatibility and Lipschitz
continuity of each fn on the finite space, rather than analyzing the limiting function f∞ directly.
This idea is formalized in the following proposition, which serves as a key tool in our transferability
analysis of neural networks in the later sections. Importantly, this provides a general and easy-to-apply
proof strategy. In contrast, previous works often begin by characterizing a natural limiting function
f∞ (e.g., a graphon neural network), and then directly prove its Lipschitz continuity in the limit
space—a process that typically requires case-specific proof techniques.

29

Proposition E.7 (Transferable networks: detailed version of Proposition 5.1). Let (V
(i)
n)n, (U

(i)
n)n

be consistent sequences for i = 1, . . . , D. For each i, let (W
(i)
n : V

(i)
n → U

(i)
n) be linear maps and

(ρ
(i)
n : U

(i)
n → V

(i+1)
n) be nonlinearities. Assume the following three properties hold.

1. The maps
(
W

(i)
n

)
,
(
ρ
(i)
n

)
are compatible.

2. The linear maps are uniformly bounded supn,i ∥W (i)
n ∥op = LW <∞.

3. The map ρ
(i)
n is Li(r)-Lipschitz on

{
u ∈ U

(i)
n : ∥u∥ < r

}
for all n.

Then the composition
(
W

(D)
n ◦ ρ(D−1)

n ◦ . . . ◦ ρ(1)n ◦W (1)
n

)
is locally Lipschitz transferable, ex-

tending to a function on V∞ → U∞ that is LNN(r)-Lipschitz on
{
v ∈ V

(1)
∞ : ∥v∥ < r

}
, where we

inductively define

ℓ1 = L1(LW r), ℓi+1 = Li+1(L
i+1
W ℓi), LNN(r) = LDW

D−1∏

i=1

ℓi. (9)

In particular, if ρ
(i)
n isLρ-Lipschitz for all i, n then the composition is Lipschitz transferable, extending

to a function on V∞ → U∞ that is LNN-Lipschitz where LNN = LDWL
D−1
ρ .

Remark E.8. By Proposition D.1, the composition is also LNN(r)-Lipschitz with respect to the
symmetrized metrics on the same r-ball.

Proof. Note that if f1 : V
(1)
∞ → V

(2)
∞ and f2 : V

(2)
∞ → V

(3)
∞ are L1(r)- and L2(r)-locally Lipschitz,

respectively, then f2 ◦ f2 is L2(L1(r))L1(r)-locally Lipschitz. Our claim follows by an inductive
application of this fact and Proposition D.2.

F Example 1 (sets): details and missing proofs from Section 5.1

In this section, we study the transferability of architectures taking sets as inputs. Section F.1
introduces the consistent sequences we consider and Section F.2 presents results for three architectures:
DeepSets[91], normalized DeepSets [9], and PointNet [66].

F.1 Consistent sequences on sets

We present two examples of consistent sequences on sets. See Figure 1 in the main text for a graphical
illustration.

Zero-padding consistent sequence Vzero with ℓp norm

The zero-padding consistent sequence Vzero = {(Vn), (φN,n), (Gn)} is defined as follows: The
index set N = (N,≤) is the poset of natural numbers with the standard ordering. Let Vn = Rn for
every n ∈ N, and the zero-padding embedding is given by, for n ≤ N ,

φN,n : Rn ↪→ RN

(x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0︸ ︷︷ ︸
(N − n) 0’s

).

The group of permutations Sn on n letters acts on Rn by permuting coordinates: (g · x)i := xg−1(i)

for g ∈ Sn. The embedding of groups is given by, for n ≤ N ,

θN,n : Sn ↪→ SN

g 7→
[
g 0
0 IN−n

]
.

30

That is, view Sn as the subgroup of SN which acts trivially on n+ 1, . . . , N . In this case, V∞ can be
identified with ℓ0, i.e., the space of infinite scalar sequences with finitely many nonzero entries. The
limit group G∞ is the group of permutations of N fixing all but finitely many indices.

We associate every infinite sequence (xi)
∞
i=1 ∈ V∞ with the tuple of sequences

(
(x+i)

∞
i=1, (x

−
i)

∞
i=1

)
.

The sequence (x+i)
∞
i=1 comprises the positive entries of (xi), ordered in descending order and

extended with trailing zeros. The sequence (x−i)
∞
i=1 comprises the negative entries of (xi), ordered

in ascending order and similarly extended with trailing zeros. Notice that different sequences in V∞
are associated with the same tuple of sequences if and only if they belong to the same orbit under the
action of G∞. Hence, the orbit space of V∞ under the action of G∞ can be identified with tuples of
ordered infinite sequences. Specifically, one sequence consists of non-negative entries arranged in
descending order, and the other sequence consists of non-positive entries arranged in ascending order,
with both sequences having finitely many non-zero entries.

The ℓp norm on Vzero. We can endow each Vn with the ℓp-norms

∥x∥p =
{
(
∑n
i=1 |xi|p)

1/p
if p ∈ [1,∞),

maxni=1 |xi| if p = ∞.

It is easy to check by Proposition C.8 that this induces a norm on V∞ = R∞, which coincides with
the ℓp-norms on infinite sequences, which is also denoted as ∥ · ∥p. The limit space is then

V∞ =

{
ℓp = {(xi)∞i=1 :

∑∞
i=1 |xi|p <∞} if p ∈ [1,∞),

c0 = {(xi)∞i=1 : limi→∞ |xi| = 0} if p = ∞.

Similarly, the space of orbit closures of V∞ under the action of G∞ can be identified with tuples
of ordered infinite sequences. Specifically, one sequence consists of non-negative entries arranged
in descending order, and the other sequence consists of non-positive entries arranged in ascending
order, with both sequences in ℓp (for p ∈ [1,∞)) or c0 (for p = ∞). This space is endowed with the

symmetrized metric dp(x, y) = minσ∈G∞
∥x− σ · y∥p.

The ℓp norm on the direct sum V⊕d
zero. The direct sum V⊕d

zero = {(Rn×d), (φ⊕d
N,n), (Sn)} defined

in Definition C.4 extends the above to the case of a set of vectors in Rd. To endow it with a norm,
we first fix an arbitrary norm ∥ · ∥Rd on Rd. Then the ℓp-norm on Rn×d is defined analogously with

respect to ∥ · ∥Rd , i.e., for X ∈ Rn×d,

∥X∥p =
{(∑n

i=1 ∥Xi:∥pRd

)1/p
if p ∈ [1,∞),

maxni=1 ∥Xi:∥Rd if p = ∞.

Analogously, in this case, V∞ can be seen as the space of infinite sequences in Rd with finitely many

nonzero entries, and the limit space V∞ is the corresponding ℓp space (if p ∈ [1,∞)) or c0 space (if

p = ∞). The space of orbit closures can be seen as tuples of infinite sequences in Rd, ordered in
lexicographic order.

Duplication consistent sequence Vdup with normalized ℓp-norms

The duplication consistent sequence Vdup = {(Vn), (φN,n), (Gn)} is defined as follows. The index
set (N, · | ·) is the set of natural numbers with divisibility partial order, where n ⪯ N if and only if
n | N . Let Vn = Rn for all n ∈ N, and the duplication embeddings is given by

φN,n : Rn ↪→ RN

(x1, . . . , xn) 7→ x⊗ 1N/n = (x1, . . . , x1︸ ︷︷ ︸
N/n times

, . . . , xn, . . . , xn),

for n ⪯ N . The group embeddings are given by

θN,n : Sn ↪→ SN

g 7→ g ⊗ IN/n,

for n ⪯ N . That is, g ∈ Sn acts on [N] by sending (i − 1)N/n + j to (g(i) − 1)N/n + j for
i = 1, . . . , n and j = 1, . . . , N/n.

31

In this case, V∞ can be identified with step functions on [0, 1] whose discontinuity points are in
Q: each x ∈ Rn corresponds to fx : [0, 1] → R where fx(t) = x⌈tn⌉ for t > 0 and f(0) = x1.

In other words, fx is the step function which takes value xi on Ii,n =
(
i−1
n , in

]
for i = 1, . . . , n.

Indeed, all equivalent objects x and φN,nx correspond to the same function in this way. Therefore,
V∞ can be seen as the union of step functions of this form for n ∈ N. Under this identification,
permutations Sn permute the n intervals Ii,n and act on functions by g · f = f ◦ g−1. The limit
group G∞ is the union of such interval permutations. The orbit space of the G∞-action on V∞ can be
identified with monotonically increasing step functions on [0, 1] whose discontinuity points are in
Q. Alternatively, the orbit space can be identified with the space of empirical measures on R: each
x ∈ Rn corresponds to the empirical measure µx = 1

n

∑n
i=1 δxi

. Indeed, any equivalent objects x
and φN,nx are identified with the same measure; furthermore, this resulting measure is constant on
orbits under the G∞-action.

Under the identification of V∞ with step functions, a step function f ∈ V∞ is identified with the
probability measure µf , defined as the distribution of f(T) for T uniformly sampled from [0, 1].
Indeed, all elements in the orbit of f under the G∞-action correspond to this same measure µf . Note
that the generalized inverse CDF of f(T) is precisely the ‘sorted’ version of f (called its increasing
rearrangement), relating the above two perspectives on the orbit space. The latter view of the orbit
space as a sequence of measures generalizes readily to other consistent sequences obtained from

Vdup, such as V⊕d
dup which we consider below, so we shall take this view from now.

Normalized ℓp norm on Vdup. We can endow each space Vn with the normalized ℓp-norms

∥x∥p =
{(

1
n

∑n
i=1 |xi|p

)1/p
if p ∈ [1,∞),

maxni=1 |xi| if p = ∞.

Using Proposition C.8, it is straightforward to verify that this defines a norm on V∞. Under the
identification of V∞ with step functions, the induced norm on V∞ coincides with the conventional
Lp norm on measurable functions, given by

∥f∥p =





(∫ 1

0
|f(t)|p dt

)1/p
if p ∈ [1,∞),

supt∈[0,1] |f(t)| if p = ∞.

That is, for any x ∈ Rn, we have ∥x∥p = ∥fx∥p, where fx is the corresponding step function. The
limit space is then

V∞ =





Lp([0, 1]) =
{
f : [0, 1] → R measurable :

∫ 1

0
|f(t)|p dt <∞

}
if p ∈ [1,∞),

{
f : [0, 1] → R :

f is bounded and continuous on [0, 1] \Q,
with left and right limits at every x ∈ [0, 1] ∩Q

}
if p = ∞,

where the result for p = ∞ follows from [21, Chap. VII.6]. These are a subspace of so-called
regulated functions, which have left and right limits at each x ∈ [0, 1].

When p ∈ [1,∞), the space of orbit closures, equipped with the symmetric metric, can be identified
with Pp(R), the space of probability measures on R with finite p-th moment, endowed with the
Wasserstein p-distance. In the case p = ∞, the space of orbit closures corresponds to a subset of
P∞(R), the space of probability measures on R with bounded support, equipped with the Wasserstein
∞-distance. This is formalized and proved by the following propositions:

Proposition F.1. For any p ∈ [1,∞] and all f, g ∈ V∞, the symmetrized metric dp(f, g) :=
infσ∈G∞

∥σ · f − g∥p equals the Wasserstein p-distance between the associated measures:

dp(f, g) =Wp(µf , µg).

Proof. We first prove they match on V∞. Consider vectors x ∈ Rn, y ∈ Rm under the action of Sn,
Sm respectively, and let N = lcm(n,m). Then, by standard results on the Wasserstein distance of
empirical measures [65, §2.2],

dp(x, y) =




minσ∈SN

(
1
N

∑N
i=1

∣∣φN,n(x)σ(i) − φN,m(y)i
∣∣p
)1/p

=Wp(µx, µy) if p ∈ [1,∞),

minσ∈SN
maxNi=1

∣∣φN,n(x)σ(i) − φN,m(y)i
∣∣ =W∞(µx, µy) if p = ∞.

32

where µx was defined above, and Wp is the Wasserstein p-distance. Hence under the identification

with step functions, for any f, g ∈ V∞ we have dp(f, g) =Wp(µf , µg).

Now consider the limit points. Let (fn), (gn) be two Cauchy sequences in V∞ with fn → f, gn → g
in V∞ with respect to the Lp norm. Then

∣∣dp(fn, gn)− dp(f, g)
∣∣ ≤ dp(f, fn) + dp(gn, g) ≤ ∥f − fn∥p + ∥gn − g∥p → 0.

Similarly, since for any f̃ , g̃ ∈ V∞,

Wp(µf̃ , µg̃) ≤
(
ET∼Unif[0,1]|f̃(T)− g̃(T)|p

)1/p
= ∥f̃ − g̃∥p,

we also get
|Wp(µfn , µgn)−Wp(µf , µg)| → 0.

But for all n, dp(fn, gn) =Wp(µfn , µgn), so by the uniqueness of the limit, dp(f, g) =Wp(µf , µg).

Proposition F.2. For p ∈ [1,∞), the space of orbit closures {µf : f ∈ V∞} coincides with Pp(R).
For p = ∞, this set is a subset of P∞(R).

Proof. For p ∈ [1,∞), by definition, the space of orbit closures is the set of probability measures

{µf : f ∈ Lp([0, 1])}. We claim that this set is equal to Pp(R). Observe that ((EX∼µf
|X|p)1/p =

∥f∥p. On the one hand, this implies that if f ∈ Lp([0, 1]), then µf ∈ Pp(R). Conversely, given any
µ ∈ Pp(R), let f be the generalized inverse of the CDF of µ, then µf = µ and f ∈ Lp([0, 1]). Hence
µ ∈ Pp(R) implies that µ = µf for f ∈ Lp([0, 1]).

For p = ∞, note that any f ∈ V∞ is bounded, so the support of µf is compact, implying that
µf ∈ P∞(R).

Norms on V ⊕d
dup. Similarly, we fix an arbitrary norm ∥ · ∥Rd on Rd and define the norms on Rn×d

with respect to ∥ · ∥Rd :

∥X∥p :=
{(

1
n

∑n
i=1 ∥Xi:∥pRd

)1/p
if p ∈ [1,∞),

maxni=1 ∥Xi:∥Rd if p = ∞.
(10)

For p ∈ [1,∞), the space of orbit closures can be identified with Pp(Rd) endowed with the Wasser-
stein p-distance with respect to ∥ · ∥Rd . For p = ∞, the space of orbit closures can be seen as a subset

of P∞(Rd) with the Wasserstein-∞ distance with respect to ∥ · ∥Rd . This is because Rd is a standard
Borel space [77, Thm. 3.3.13], so the same arguments as in Propositions F.1-F.2 apply.

F.2 Invariant networks on sets

We consider three prominent permutation-invariant neural network architectures for set-structured
data: DeepSets [91], normalized DeepSets [9], and PointNet [66]. These models are defined as
follows:

DeepSetn(X) = σ

(
n∑

i=1

ρ(Xi:)

)
, DeepSetn(X) = σ

(
1

n

n∑

i=1

ρ(Xi:)

)
, and

PointNetn(X) = σ
(

n
max
i=1

ρ(Xi:)
)
,

where ρ : Rd → Rh and σ : Rh → R are multilayer perceptrons (MLPs). In the case of PointNet, the
maximum is taken entrywise over vectors in Rh.

They follow the same paradigm fn(X) = σ (Aggni=1ρ(Xi:)) where the three models use different
permutation-invariant aggregations Agg. We refer the reader to [9] for a comprehensive study of
the expressive power of these models in the any-dimensional setting. In particular, they show that
normalized DeepSets (respectively, PointNet) can uniformly approximate all set functions that are
uniformly continuous with respect to the Wasserstein-1 distance (respectively, the Hausdorff distance).
In contrast, our work focuses on transferability and size generalization, rather than expressive power.

33

F.2.1 Transferability analysis: proof of Corollary 5.2

We prove the Corollary by instantiating Proposition E.7. The invariant network is given by the
following composition

Rn×d
ρ⊕n

−−−−−→
row-wise

Rn×h
Agg

n
i=1−−−−→ Rh

σ−→ R,

where we use ρ⊕n to denote the row-wise application of the same ρ : Rd → Rh. Thus, it suffices to
analyze each term in this composition individually.

DeepSet. Notice that the sum aggregation is not compatible with the duplication embedding. Indeed,
for any x ∈ Rn such that

∑
i xi ̸= 0, and for n | N,n ̸= N ,

N∑

i=1

(x⊗ 1N/n)i = (N/n)

n∑

i=1

xi ̸=
n∑

i=1

xi.

Therefore, DeepSet is not compatible with respect to the duplication consistent sequence in general.
We now prove its compatibility and transferability with respect to zero-padding.

Corollary F.3. Fix arbitrary norms ∥·∥Rd on Rd and ∥·∥Rh on Rh. Let ρ : Rd → Rh be Lρ-Lipschitz

with ρ(0) = 0, and σ : Rh → R be Lσ-Lipschitz, with respect to the norms ∥ · ∥Rd , ∥ · ∥Rh , and
| · |. Then, the sequence of maps (DeepSetn) is (LρLσ)-Lipschitz transferable with respect to the

zero-padding consistent sequence V⊕d
zero (equipped with the ℓ1-norm induced by ∥ · ∥Rd) and the

trivial consistent sequence VR (with absolute value norm). Therefore, (DeepSetn) extends to

DeepSet∞ : ℓ1(R
d) → R, DeepSet∞((xi)

∞
i=1) = σ

(∞∑

i=1

ρ(xi)

)
,

which is (LρLσ)-Lipschitz with respect to the ℓ1-norm on the infinite sequences.

Proof. We model each intermediate space with consistent sequences:

V⊕d
zero = (Rn×d)

ρ⊕n

−−−−−→
(row-wise)

V ⊕h
zero = (Rn×h)

∑n
i=1−−−→ VRh = (Rh)

σ−→ VR = (R).

We first check the compatibility of each map.

• As long as ρ(0) = 0, the ρ-map is compatible because

ρ⊕N
([
X
0

])
=

[
ρ⊕n(X)

0

]
for all X ∈ Rn×d, 0 ∈ R(N−n)×d, n ≤ N ,

and the row-wise application makes sure ρ is Sn-equivariant.

• The sum aggregation Aggni=1 =
∑n
i=1 is compatible because adding zeros does not change the

sum, and the summation operation is Sn-invariant.

• The map σ is between two trivial consistent sequences. Hence it is automatically compatible.

Endow V⊕d
zero with the ℓ1 norm induced by ∥ · ∥Rd , and V⊕h

zero with the ℓ1 norm with induced by ∥ · ∥Rh .
VRh ,VR are endowed with ∥ · ∥Rh and | · | respectively. Next, we check the Lipschitz transferability
of each map.

• The ρ-map is Lρ-Lispchitz transferable map because for all n, we can prove ρ⊕n : Rn×d →
Rn×h (applying the same ρ row-wise) is Lρ Lipschitz with respect to the ℓ1 norms:

∥ρ⊕n(X)− ρ⊕n(Y)∥1 =

n∑

i=1

∥ρ(Xi:)− ρ(Yi:)∥Rh ≤
n∑

i=1

Lρ∥Xi: − Yi:∥Rd = Lρ∥X − Y ∥1.

• The sum aggregation Aggni=1 =
∑n
i=1 is 1-Lipschitz transferable because for all n,

∥∥∥∥∥
n∑

i=1

Xi: −
n∑

i=1

Yi:

∥∥∥∥∥
Rh

≤
n∑

i=1

∥Xi: − Yi:∥Rh = ∥X − Y ∥1.

We highlight that this does not necessarily hold for other ℓp norms for p ̸= 1.

34

• The map σ is Lσ-Lipschitz transferable.

Thus, the result follows from Proposition 5.1; completing the proof.

Normalized DeepSet. The mean aggregation is not compatible with the zero-padding embedding.
Consider a vector x = (x1, . . . , xn) ∈ Rn such that

∑
i xi ̸= 0, and suppose n < N . When

zero-padded to length N , we obtain

x̃ = (x1, . . . , xn, 0, . . . , 0) ∈ RN .

Then

1

N

N∑

i=1

x̃i =
1

N

n∑

i=1

xi ̸=
1

n

n∑

i=1

xi.

Therefore, normalized DeepSet is not compatible with respect to the zero-padding consistent sequence
in general.

We now prove its compatibility and transferability with respect to the duplication consistent sequence
with normalized ℓp norm.

Corollary F.4. Fix arbitrary norms ∥·∥Rd on Rd and ∥·∥Rh on Rh. Let ρ : Rd → Rh be Lρ-Lipschitz,

and σ : Rh → R be Lσ-Lipschitz, with respect to the norms ∥ · ∥Rd , ∥ · ∥Rh , and | · |. Then, for all

p ∈ [1,∞], the sequence of maps (DeepSetn) is (LρLσ)-Lipschitz transferable with respect to the

duplication consistent sequence V⊕d
dup (equipped with the normalized ℓp norm induced by ∥ · ∥Rd) and

the trivial consistent sequence VR (with absolute value norm). Therefore, (DeepSetn) extends to

DeepSet∞ : Pp(Rd) → R, DeepSet∞(µ) = σ

(∫
ρdµ

)
,

which is (LρLσ)-Lipschitz with respect to the Wasserstein-p distance on ∥ · ∥Rd .

Proof. We model each intermediate space with consistent sequences:

V⊕d
dup = (Rn×d)

ρ⊕n

−−−−−→
(row-wise)

V ⊕h
dup = (Rn×h)

1
n

∑n
i=1−−−−−→ VRh = (Rh)

σ−→ VR = (R).

We first consider the compatibility of each map.

• The ρ-map is compatible because ρ⊕N (X ⊗ 1N/n) = ρ⊕n(X)⊗ 1N/n for all n | N , and the
row-wise application makes sure ρ is Sn-equivariant.

• The mean aggregation Aggni=1 = 1
n

∑n
i=1 is compatible because for all n | N,X ∈ Rn×d,

1

N

N∑

i=1

(X ⊗ 1N/n)i: =
1

N

n∑

i=1

(N/n)Xi: =
1

n

n∑

i=1

Xi:,

and the mean operation is Sn-invariant.

• The map σ is again automatically compatible.

Endow V⊕d
dup with the normalized ℓp norm with respect to ∥ · ∥Rd , and V⊕h

dup with the normalized ℓp
norm with respect to ∥ · ∥Rh . The trivial consistent sequences VRh ,VR are endowed with ∥ · ∥Rh and
| · | respectively. Next, we check the Lipschitz transferability of each map in the composition.

• The ρ-map is Lρ-Lipschitz because for all n, we can prove ρ⊕n : Rn×d → Rn×h is Lρ
Lipschitz with respect to the normalized ℓp norm:

∥ρ⊕n(X)− ρ⊕n(Y)∥p =
(
1

n

n∑

i=1

∥ρ(Xi:)− ρ(Yi:)∥pRh

)1/p

≤
(
1

n

n∑

i=1

Lpρ∥Xi: − Yi:∥pRd

)1/p

= Lρ∥X − Y ∥p.

35

• The mean aggregation Aggni=1 = 1
n

∑n
i=1 is 1-Lipschitz transferable because

∥∥∥∥∥
1

n

n∑

i=1

Xi: −
1

n

n∑

i=1

Yi:

∥∥∥∥∥
Rh

≤ 1

n

n∑

i=1

∥Xi: − Yi:∥Rh = ∥X − Y ∥1̄ ≤ ∥X − Y ∥p̄,

where the last inequality follows from Hölder’s inequality.

• The map σ is Lσ-Lipschitz transferable.

The result follows from an application of Proposition 5.1; completing the proof.

Remark F.5. The same result was also proved in [9, Theorem 3.7] by directly verifying the Lipschitz
property of DeepSet∞: for all p ≥ 1,

|DeepSet∞(µX)−DeepSet∞(µY)| ≤ Lσ

∣∣∣∣
∫
ρ d(µX − µY)

∣∣∣∣
≤ LσLρW1(µX , µY) ≤ LσLρWp(µX , µY),

where the second inequality follows from the Kantorovich-Rubinstein duality. Our methods provide
an alternative proof, using a proof technique that applies more generally (Proposition 5.1).

Following this result, we can directly apply Propositions D.4 and D.5, along with the convergence
rates described in Appendix D.3, which immediately yields the following transferability result.

Corollary F.6 (Transferability of normalized DeepSet). We have the following transferability results
for normalized DeepSet:

1. (Uniform grid sampling) Let (Xn) ∈ Rn×d be a sequence of matrices sampled from the

same signal f via the “uniform grid” sampling scheme, i.e., taking (Xn)i: = f
(
i−1
n

)
for

all i ∈ [n]. Then,

∣∣DeepSetn(Xn)−DeepSetm(Xm)
∣∣ ≲ n−1 +m−1.

2. (Random signal sampling) Let (Xn) ∈ Rn×d be a sequence of matrices sampled from the
same signal f via the random signal sampling scheme, i.e. taking (Xn)i: = f (xi) for all
i ∈ [n], where x1, . . . , xn are sampled i.i.d. from Unif([0, 1]). Then,

E
∣∣DeepSetn(Xn)−DeepSetm(Xm)

∣∣ ≲ (log n)−1/2 + (logm)−1/2.

3. (Empirical distributions) Let (Xn) ∈ Rn×d be a sequence of matrices sampled from the

same underlying distribution µ ∈ Pp(Rd), i.e., each Xn has rows sampled i.i.d. from µ.
Then,

E
∣∣DeepSetn(Xn)−DeepSetm(Xm)

∣∣

≲





n−1/2p +m−1/2p if p > d/2,

n−1/2p log1/p(1 + n) +m−1/2p log1/p(1 +m) if p = d/2,

n−1/d +m−1/d if p < d/2.

PointNet. The max aggregation is not compatible with zero-padding. Consider a vector x =
(x1, . . . , xn) ∈ Rn where all entries xi < 0, and suppose n < N . When zero-padded to length N ,
we obtain

x̃ = (x1, . . . , xn, 0, . . . , 0) ∈ RN .

Then, we have

max
1≤i≤N

x̃i = 0 ̸= max
1≤i≤n

xi.

Hence, unless we restrict the model to avoid all-negative entries, PointNet is not compatible with the
zero-padding consistent sequence. We now prove its compatibility and transferability with respect to
the duplication sequence with the ℓ∞ norm.

36

Corollary F.7. Fix arbitrary norms ∥·∥Rd on Rd and ∥·∥∞ on Rh. Let ρ : Rd → Rh be Lρ-Lipschitz,

and σ : Rh → R be Lσ-Lipschitz, with respect to the norms ∥ · ∥Rd , ∥ · ∥∞ on Rh, and | · |. Then,
the sequence of maps (PointNetn) is (LρLσ)-Lipschitz transferable with respect to the duplication

consistent sequence V⊕d
dup (equipped with the ℓ∞-norm induced by ∥ · ∥Rd) and the trivial consistent

sequence VR (with absolute value norm). Therefore, (PointNetn) extends to

PointNet∞ : P∞(Rd) → R, PointNet∞(µ) = σ

(
sup

x∈supp(µ)

ρ(x)

)
,

which is (LρLσ)-Lipschitz with respect to the Wasserstein-∞ distance on ∥ · ∥Rd .

Proof. We again consider consistent sequences

V⊕d
dup = (Rn×d)

ρ⊕n

−−−−−→
(row-wise)

V ⊕h
dup = (Rn×h)

maxn
i=1−−−−−→ VRh = (Rh)

σ−→ VR = (R).

For compatibility, it is left to check that Aggni=1 = maxni=1 is compatible. Indeed, for any X ∈
Rn×d, n | N , we have maxNi=1(X ⊗ 1N/n)i: = maxni=1Xi:, and the max operation is Sn-invariant.

Endow V⊕d
dup with the ℓ∞ norm with respect to ∥ · ∥Rd , and V⊕h

dup with the ℓ∞ norm with respect to

∥ · ∥∞ on Rh. The trivial consistent sequences VRh ,VR are endowed with ∥ · ∥∞ and | · | respectively.
Next, we check Lipschitz transferability of each map.

• We have proved in the proof for normalized DeepSet that ρ, σ are Lρ, Lσ Lipschitz transferable
respectively.

• For any j ∈ [d], |maxni=1Xij −maxni=1 Yij | ≤ maxni=1 |Xij − Yij |. Take max over j ∈ [d],
we conclude∥∥∥ n

max
i=1

Xi: −
n

max
i=1

Yi:

∥∥∥
∞

=
d

max
j=1

∣∣∣ n
max
i=1

Xij −
n

max
i=1

Yij

∣∣∣ ≤ n
max
i=1

∥Xi: − Yi:∥∞ .

Hence, Aggni=1 = maxni=1 is 1-Lipschitz transferable.

The result follows from Proposition 5.1; which completes the proof.

Remark F.8. PointNet∞ produces identical outputs for probability measures with the same support.
Thus, it can be viewed as a function

PointNet∞ : K(Rd) → R, PointNet∞(X) = σ

(
sup
x∈X

ρ(x)

)
,

where K(Rd) denotes the set of non-empty compact subsets of Rd. The W∞ distance on P∞(Rd)
induces the quotient metric dK on K(Rd) via the equivalence relation µ ∼ ν if supp(µ) = supp(ν).
Our results imply that PointNet∞ is (LρLσ)-Lipschitz with respect to dK.

A more commonly used metric on K(Rd) is the Hausdorff distance, defined by

dH(X,Y) := max

{
sup
x∈X

inf
y∈Y

∥x− y∥, sup
y∈Y

inf
x∈X

∥x− y∥
}
. (11)

[9, Theorem 3.7] shows that PointNet∞ is (2LρLσ)-Lipschitz with respect to dH . It is easy to see
that dH ≤ dK, but we leave exploring further relations between these two metrics to future work.

Finally, we show that the sequence of maps (PointNetn) is, in general, not transferable with respect

to the duplication-based consistent sequence V⊕d
dup when equipped with the normalized ℓp norm for

any p ∈ [1,∞). Consider the sequence of matrices (X(n) ∈ Rn×h)n where the first row is the

all-one vector 1⊤h , and the remaining n− 1 rows are zero vectors. Then,

∥X(n) − 0∥p̄ → 0 as n→ ∞,

which implies that [X(n)] → [0] in V∞. However,
n

max
i=1

X
(n)
i: = 1h for all n.

This demonstrates that the max aggregation Aggni=1 = maxni=1 is not continuously transferable under
the normalized ℓp norm, and so neither is the sequence (PointNetn).

37

Related work. Several previous works [92, 64, 9] studied (variants of) normalized DeepSets in the
infinite-dimensional limit as operating in the space of probability measures, and investigated their
approximation power and generalization behavior.

Moreover, while our analysis primarily focused on invariant neural networks on sets, it is also
natural to design and analyze equivariant neural networks on sets with our theoretical framework. In
particular, we may consider such neural networks that are transferable with respect to duplication-
consistent sequences, which parametrize measure-to-measure functions. For example, [19] proposed
a general framework for designing measure-to-measure neural network architectures. Additionally,
[86, 30, 74] analyzed transformers (without causal masking or positional encoding) as measure-to-
measure functions in the limit space. We leave the analysis of the transferability of these models
within our framework as a future direction.

F.2.2 Explanation of transferability plots (Figure 2)

Our numerical experiment in Figure 2 illustrates the second column of Table 2 for p = 1: the
Lipschitz transferability of normalized DeepSet, and non-transferability of DeepSet and PointNet,
with respect to (Vdup, ∥ · ∥1). First, applying Proposition D.5 to normalized DeepSet, and recalling
the convergence rate of empirical distributions given in (3) for d = 1, p = 1, we get the following
corollary.

Corollary F.9 (Convergence and transferability of normalized DeepSet). Let (xn ∈ Rn)n∈N be

a sequence of inputs with entries (xn)i
i.i.d.∼ µ for i = 1, . . . , n, where µ is a probability measure

on R with finite expectation. Define the empirical measure µx := 1
n

∑n
i=1 δxi

for x ∈ Rn. Then

E[W1(µ, µxn
)] ≲ n−1/2, and hence

E
[∣∣DeepSetn(xn)−DeepSet∞(µ)

∣∣] ≲ n−1/2,

E
[∣∣DeepSetn(xn)−DeepSetm(xm)

∣∣] ≲ n−1/2 +m−1/2.

Indeed, Figure 2(b) shows convergence of the model outputs, and Figure 2(d) confirms that the

convergence rate is O(n−1/2), as predicted. Figure 2(a) illustrates the divergence of outputs from
DeepSet. This occurs because the sum

∑n
i=1 ρ(xi) = O(n). If the function σ in DeepSet is

unbounded, this leads to unbounded (blow-up) outputs as n increases. Figure 2(c) shows divergent
outputs from PointNet. When the input distribution µ has compact support, the output of PointNet will
converge, although without guarantees on the rate. However, in our experiment where µ = N (0, 1)
has non-compact support. If ρ in the PointNet is unbounded, the maximum value maxni=1 ρ(xi)
diverges almost surely as n→ ∞. This again results in blow-up outputs.

G Example 2 (graphs): details and missing proofs from Section 5.2

In this section, we study transferability for GNN architectures. Section G.1 introduces the consistent
sequences we consider. Section G.2 studies existing architectures and Section G.3 introduces a new
class of GNNs with better transferability properties.

G.1 Duplication consistent sequence for graphs

We present an examples of consistent sequences on graphs, illustrated graphically in Figure 3. Start
with the duplication consistent sequence for sets Vdup defined in F.1, we define

VGdup := Sym2(Vdup)⊕ V⊕d
dup,

following the definition of direct sum and tensor product in Definition C.4, C.5. This gives the
duplication consistent sequence for graphs. Specifically, VGdup = {(Vn), (φN,n), (Gn)} where

Vn = Rn×nsym × Rn×d for each n and the embedding for n | N is given by,

φN,n : R
n×n
sym × Rn×d ↪→ RN×N

sym × RN×d

(A,X) 7→ (A⊗ (1N/n1
⊤
N/n), X ⊗ 1N/n),

which can be interpreted as replacing each node in the graph with N/n duplicated copies. The

symmetric group Sn acts on Vn by g · (A,X) = (gAg⊤, gX).

38

The space V∞ can be identified with the space with all step graphons (and signals) in a similar
way: Given (A,X) ∈ Rn×nsym × Rn×d, define WA : [0, 1]2 → R, fX : [0, 1] → Rd such that

WA takes value Ai,j on the interval Ii,n × Ij,n ⊂ [0, 1]2 for i, j = 1, . . . , n ∈ [n], and fX takes
value Xi on the interval Ii,n ⊂ [0, 1] for i = 1, . . . , n . We call (WA, fX) the induced step
graphon from (A,X). Under this identification, permutations Sn permute the n intervals Ii,n and

act on (W, f) by σ · (W, f) = (σ · W,σ · f) = (W σ−1

, f ◦ σ−1), where W σ−1

is defined by

W σ−1

(x, y) :=W (σ−1(x), σ−1(y)). The limit group G∞ is the union of such interval permutations.

The p-norm on VGdup. Fix ∥ · ∥Rd a norm on Rd. We equip Vn with a p-norm given by

∥(A,X)∥p := max(∥A∥p, ∥X∥p)

=




max

((
1
n2

∑
i,j∈[n] |Aij |p

)1/p
,
(
1
n

∑n
i=1 ∥Xi:∥pRd

)1/p
)

p ∈ [1,∞),

max
(
maxi,j∈[n] |Aij |,maxni=1 ∥Xi:∥Rd

)
p = ∞.

(12)

It is easy to check by Proposition C.8 that this extends to a norm on V∞. Under the identification
with step graphons, this norm on V∞ coincides with the standard Lp-norm given by

∥(W, f)∥p :=max (∥W∥p, ∥f∥p)

=




max

((∫∫
|W (x, y)|p dx dy

)1/p
,
(∫

|f(x)|p dx
)1/p)

p ∈ [1,∞),

max
(
supx,y |W (x, y)|, supx |f(x)|

)
p = ∞.

That is, for any (A,X) ∈ Rn×nsym × Rn×d, ∥(A,X)∥p = ∥(WA, fX)∥p. The symmetrized metric is

dp((W, f), (W
′, f ′)) = inf

σ∈G∞

{max (∥W − σ ·W ′∥p, ∥f − σ · f ′∥p)}. (13)

Operator p-norm on VGdup. Fix ∥ · ∥Rd a norm on Rd and p ∈ [1,∞]. We equip Vn with a norm

given by

∥(A,X)∥op,p := max

(
1

n
∥A∥op,p, ∥X∥p

)
, (14)

where ∥A∥op,p is the operator norm of A with respect to the ℓp norm, i.e.

∥A∥op,p = max
∥x∥p=1

∥Ax∥p,

and ∥X∥p is the normalized ℓp-norms with respect to ∥ · ∥Rd defined in (10). It is easy to check by
Proposition C.8 that this extends to a norm on V∞.

Let TW be the shift operator of graphon W defined by TW (f)(u) :=
∫ 1

0
W (u, v)f(v)dv. Under the

identification with step graphons, the norm on V∞ coincides with

∥(W, f)∥op,p := max (∥TW ∥op,p, ∥f∥p) ,
where ∥TW ∥op,p := sup∥f∥p=1 ∥TW (f)∥p, and the norm on ∥f∥p is the Lp norm as before. That is,

for any (A,X) ∈ Rn×nsym × Rn×d, ∥(A,X)∥op,p = ∥(WA, fX)∥op,p. For p ∈ [1,∞), the completion
with respect to this metric is

V∞ = {W ∈ Lp([0, 1]2) :W (x, y) =W (y, x)} × {f ∈ Lp([0, 1],Rd)},
the space of Lp-graphon signals. We do not characterize V∞ for p = ∞ since it requires additional
technicalities. However, it contains all bounded and continuous graphon signals. The symmetrized
metric is

dp((W, f), (W
′, f ′)) = inf

σ∈G∞

{max (∥TW − Tσ·W ′∥op,p, ∥f − σ · f ′∥p)}. (15)

Cut norm on VGdup. We can also equip Vn with the cut norm (on matrices and vectors),

∥(A,X)∥□ := max (∥A∥□, ∥X∥□) = max


 1

n2
max
S,T⊆[n]

∣∣∣∣∣∣
∑

i∈S,j∈T
Aij

∣∣∣∣∣∣
,
1

n
max
S⊆[n]

∥∥∥∥∥
∑

i∈S
Xi:

∥∥∥∥∥
Rd


 .

(16)

39

It is easy to check by Proposition C.8 that this extends to a norm on V∞. Under the identification
with step graphons, this norm on V∞ coincides with the cut norm on graphons and graphon signals

∥(W, f)∥□ :=max (∥W∥□, ∥f∥□)

=max

(
sup

S,T⊆[0,1]

∣∣∣∣
∫

S×T
W (x, y)dxdy

∣∣∣∣ , sup
S⊆[0,1]

∥∥∥∥
∫

S

f(x)dx

∥∥∥∥
Rd

)
,

where the supremum is taken over all measurable sets S, T . The cut norm on graphon is studied
in-depth in [54]. Though hard to compute, it has strong combinatorial interpretations. Hence, it has
played an important role in the work of GNN transferability, and has been extended to the graphon
signals in [47], which we have adopted here.

The symmetrized metric is

d((W, f), (W ′, f ′)) := inf
σ∈G∞

{max (∥W − σ ·W ′∥□, ∥f − σ · f ′∥□)}.

It can be proved that this exactly coincides with the cut distance below, defined on graphon signals
(extending the original definition of graphon cut distance from [54], similarly to the version in [47]):

d((W, f), (W ′, f ′)) = inf
σ∈S[0,1]

{max (∥W − σ ·W ′∥□, ∥f − σ · f ′∥□)} , (17)

where S[0,1] is the group of measure-preserving bijections σ : [0, 1] → [0, 1] with measurable inverse.
The proof follows analogously to [8, Lemma 3.5]. Specifically, we first verify that the definitions
agree on step graphons. Then, since both definitions are continuous with respect to the cut norm
∥ · ∥□, they must also agree on the limit points.

While the cut norm is hard to work with directly, it is topologically equivalent to the operator 2-norms
considered previously on a bounded domain. This means that any function continuous with respect to
one of these norms is also continuous with respect to the other.

Proposition G.1. If ∥W∥∞ < r and ∥f∥∞ < r, then

∥(W, f)∥□ ≤ ∥(W, f)∥op,2 ≲ ∥(W, f)∥1/2
□
.

Consequently, for p ∈ (1,∞), ∥ · ∥□ and ∥ · ∥p are topologically equivalent on the space

{
W : [0, 1]2 → [−r, r] measurable, W (x, y) =W (y, x)

}
× {f : [0, 1] → [−r, r] measurable} .

Proof. Without loss of generality, let r = 1. Consider the norm

∥TW ∥op,∞,1 := sup
∥f∥∞,∥g∥∞≤1

∣∣∣∣
∫ 1

0

∫ 1

0

W (u, v)f(u)g(v)dudv

∣∣∣∣ .

By [37, Equation 4.4], ∥W∥□ ≤ ∥TW ∥op,∞,1 ≤ 4∥W∥□. By [37, Lemma E.6], if ∥W∥∞ ≤ 1,

∥TW ∥op,∞,1 ≤ ∥TW ∥op,2 ≤
√
2∥TW ∥1/2op,∞,1.

Combining the inequalities,

∥W∥□ ≤ ∥TW ∥op,2 ≤ 23/2∥W∥1/2
□
.

Moreover, by [47, Appendix A.2], ∥f∥□ ≤ ∥f∥1 ≤ 2∥f∥□. If ∥f∥∞ ≤ 1, then ∥f∥22 ≤ ∥f∥1 ≤
∥f∥2. Combining the inequalities,

∥f∥□ ≤ ∥f∥2 ≤ 21/2∥f∥1/2
□
.

Therefore, we conclude that

∥(W, f)∥□ ≤ ∥(W, f)∥op,p ≤ 23/2∥(W, f)∥1/2
□
,

as claimed.

40

G.2 Message Passing Neural Networks (MPNNs)

Background. MPNN parametrizes a sequence of functions (MPNNn : R
n×n
sym × Rn×d1 → Rn×dL)

by composition of message passing layers. The l-th message passing layer

MP(l)
n : Rn×nsym × Rn×dl → Rn×nsym × Rn×dl+1 , (A,X(l)) 7→ (A,X(l+1))

is given by

X
(l+1)
i: = ϕ(l)

(
X

(l)
i: , Aggj∈Ni

ψ(l)
(
X

(l)
i: , X

(l)
j: , Aij

))
, i = 1, . . . , n, (18)

where Agg is a permutation-invariant aggregation function such as sum, mean, or max; Ni :=
{j : Aij ̸= 0} denotes the neighborhood of node i in the input graph; the message function

ψ(l) : Rdl ×Rdl ×R → Rhl and the update function ϕ(l) : Rdl ×Rhl → Rdl+1 are independent of the

graph size n. Composing L message-passing layers defines an MPNN, mapping (A,X(1)) 7→ X(L).

Observe that MPNN is permutation-equivariant: MPNNn(gAg
⊤, gX) = gMPNNn(A,X) for all

g ∈ Sn. If we want a permutation-invariant function, this is followed by a read-out operation taking
the form of DeepSet. In this work, we focus on the equivariant case.

MPNN is a general framework for GNNs based on local message passing: [31] formulates multiple
GNNs as MPNNs with specific choices of ϕ, ψ, Agg; other state-of-the-art GNNs can be simulated
by MPNN on a transformed graph [38]. Moreover, ϕ and ψ can also be parameterized with MLPs to
provide good flexibility.

Transferability analysis of MPNNs. The following corollary gives sufficient conditions on the
layers of MPNNs to obtain Lipschitz transferability.

Corollary G.2. Consider one message passing layer, (MP(l)
n), as defined in (18), with the following

properties.

1. The message function ψ(l) takes the form ψ(l)(x1, x2, w) := wξ(x2), where ξ : Rdl → Rhl is
Lξ Lipschitz with respect to ∥ · ∥

R
dl , ∥ · ∥Rhl .

2. The aggregation used is the normalized sum aggregation Aggj∈Ni
:= 1

n

∑
j∈Ni

.

3. The update function ϕ(l) is Lϕ Lipschitz, i.e. for all (x, y), (x′, y′) ∈ Rdl × Rhl ,

∥ϕ(l)(x, y)− ϕ(l)(x′, y′)∥
R

dl+1 ≤ Lϕmax (∥x− x′∥
R

dl , ∥y − y′∥
R

hl)

Endow the space of duplication-consistent sequences with the operator p-norm as defined in (14),

where p ∈ [1,∞). Then, the sequence of maps (MP(l)
n) is locally Lipschitz transferable.

Remark G.3. That is, (MPNNn), which is a composition of message-passing layers, is locally
Lipschitz transferable. Consequently it extends to a function MPNN∞ on the space of graphon
signals, which is L(r)-Lipschitz on B(0, r) for all r > 0 with respect to the symmetrized operator
p-metric defined in (15)). By Proposition G.1, the sequence of maps (MPNNn) is continuously
transferable with respect to the cut norm (16) on B(0, r). The GNN studied in [70] is a special case
of our MPNN considered here; meanwhile, ours is a special case of [47], which directly establishes
Lipschitzness with respect to the cut distance by analysis on the graphon space. While our results are
not new, our proof technique—following Proposition 5.1—is new and generally applicable to various
models.

Proof. We decompose MP(l)
n as a composition of the following maps, modelling each of the interme-

diate spaces using the duplication consistent sequences endowed with compatible norms. For the
metric on the product spaces, we always use the L∞ product metric, i.e., taking the maximum over

41

the individual components. Consider the following three functions

f (1)n : Rn×nsym × Rn×dl → Rn×nsym × Rn×dl × Rn×hl

given by (A,X) 7→


A,X,



ξ(X1:)

...
ξ(Xn:)





 ,

f (2)n : Rn×nsym × Rn×dl × Rn×hl → Rn×nsym × Rn×dl × Rn×hl

given by (A,X, Y0) 7→ (A,X,
1

n
AY0),

f (3)n : Rn×nsym × Rn×dl × Rn×hl → Rn×nsym × Rn×dl+1

given by (A,X, Y) 7→ (A, X̃),

where X̃i: = ϕ(l)(Xi:, Yi:). It is straightforward to check that each of them is compatible with respect
to the duplication embedding. We now check the Lipschitz transferability.

• The sequence (f
(1)
n) is Lipschitz transferable because

∥∥∥f (1)n (A,X)− f (1)n (A′, X ′)
∥∥∥
op,p

≤ (1 ∨ Lξ) ∥(A,X)− (A′, X ′)∥op,p .

• The sequence (f
(2)
n) is locally Lipschitz transferable because we can bound its Jacobian. In

particular, the Jacobian acts on (HA, HX , HY) via

Df (2)n (A,X, Y0)[HA, HX , HY] =

(
HA, HX ,

1

n
(AHY +HAY)

)
.

Hence, on {(A,X, Y0) : ∥(A,X, Y0)∥op,p < r},
∥∥∥Df (2)n (A,X, Y0)[HA, HX , HY]

∥∥∥
op,p

≤ max

(
1

n
∥HA∥op,p, ∥HX∥p,

1

n
∥A∥op,p∥HY ∥p +

1

n
∥HA∥op,p∥Y ∥p

)

≤ (1 ∨ 2r)∥(HA, HX , HY)∥op,p,

i.e., f
(2)
n is (1 ∨ 2r) Lipschitz on this space.

• The sequence (f
(3)
n) is Lipschitz transferable because

∥f (3)n (A,X, Y)− f (3)n (A′, X ′, Y ′)∥p = max

(
1

n
∥A−A′∥op,p, ∥X̃ − X̃ ′∥p

)

where

∥X̃ − X̃ ′∥pp ≤
1

n

n∑

i=1

∥ϕ(l)(Xi:, Yi:)− ϕ(l)(X ′
i:, Y

′
i:)∥p

R
dl+1

≤ Lpϕ
1

n

n∑

i=1

(∥Xi: −X ′
i:∥Rdl + ∥Yi: − Y ′

i:∥Rhl)
p

≤ Lpϕ2
p−1 1

n

n∑

i=1

(
∥Xi: −X ′

i:∥pRdl
+ ∥Yi: − Y ′

i:∥pRhl

)

(by Jensen’s inequality
(
a+b
2

)p ≤ ap+bp

2 for all a, b)

≤ Lpϕ2
p ∥(X,Y)− (X ′, Y ′)∥pp .

So f
(3)
n is (1 ∨ 2Lϕ)-Lipschitz.

Finally, apply Proposition 5.1, (MP(l)
n) is locally Lipschitz transferable; completing the proof.

42

Following this result, we can directly apply Propositions D.4 and D.5, along with the convergence
rates described in Appendix D.3, which immediately yields the following transferability result.

Corollary G.4 (Transferability of MPNN). For MPNNs satisfying the assumptions in Corollary G.2,
we have the following transferability results.

1. (Uniform grid sampling) Let (An, Xn) ∈ Rn×nsym × Rn×d be a sequence of graph signals

sampled from the same graphon signal (W, f) via the “uniform grid” sampling scheme, i.e.,

taking (An)ij =W
(
i−1
n , j−1

n

)
, (Xn)i: = f

(
i−1
n

)
for all i, j ∈ [n]. Then,

∥[MPNNn(An, Xn)]− [MPNNm(Am, Xm)]∥2 ≲ n−1 +m−1.

2. (Graphon sampling) Let (An, Xn) ∈ Rn×nsym × Rn×d be a sequence of graph signals

sampled from the same graphon signal (W, f) via the “graphon” sampling scheme, i.e.
taking (An)ij ∼ Ber(W (xi, xj)), (Xn)i: = f (xi) for all i, j ∈ [n], where x1, . . . , xn are
sampled i.i.d. from Unif([0, 1]). Then,

E

[
d2 ([MPNNn(An, Xn)], [MPNNm(Am, Xm)])

]
≲ (log n)−1/4 + (logm)−1/4.

The first part of the previous corollary recovers the transferability results in [70], yielding an improved

convergence rate of O(n−1) and thus strengthening the previously established bounds of O(n−1/2).
The second part of the corollary resembles the setting considered in [41], although the random
sampling scheme used there operates at a different sparsity level, with Aij ∼ Ber(αnW (xi, xj)) and

αn ∼ logn
n . As a result, our result is not directly comparable.

G.3 Constructing new transferable GNNs: GGNN and continuous GGNN

Background: Invariant Graph Networks (IGN). Invariant Graph Networks (IGN) [56] are a class
of GNN architectures that alternate between linear Sn-equivariant layers and nonlinearities. They
follow a design paradigm that differs fundamentally from MPNNs. Specifically, a D-layer 2-IGN
parameterizes an Sn-equivariant function (Rn)⊗2 → (Rn)⊗2 as a composition

W (D)
n ◦ ρ(D−1)

n ◦ · · · ◦ ρ(1)n ◦W (1)
n ,

where for each i we have the following.

• The linear maps W
(i)
n : ((Rn)⊗2)⊕di ∼= Rn

2×di → ((Rn)⊗2)⊕di+1 ∼= Rn
2×di+1 arer Sn-

equivariant. Here, di denotes the number of feature channels. [56] provides a parameterization

of W
(i)
n as a linear combination of basis maps: In the special case where di = di+1 = 1, the

linear layer W
(i)
n can be written as a linear combination of 17 basis functions (two of them are

biases), where the coefficients α, β are the learnable parameters:

W (i)
n (A) = α1A+ α2A

⊤ + α3diag(diag
∗(A)) + α4A11

⊤ + α511
⊤A+ α6diag(A1)

+ α7A
⊤
11

⊤ + α811
⊤A⊤ + α9diag(A

⊤
1) + α10(1

⊤A1)11⊤

+ α11(1
⊤A1)diag(1) + α12(1

⊤diag∗(A))11⊤ + α13(1
⊤diag∗(A))diag(1)

+ α14diag
∗(A)1⊤ + α151diag

∗(A)⊤ + β111
⊤ + β2diag(1).

(19)
For general di, di+1, the number of basis terms becomes 17didi+1.

• The activations ρ
(i)
n : ((Rn)⊗2)⊕di+1 ∼= Rn

2×di+1 → ((Rn)⊗2)⊕di+1 ∼= Rn
2×di+1 apply a

nonlinearity (e.g., ReLU) entry-wise.

To improve expressivity, [56] proposed extending the architecture to use higher-order tensors in the
intermediate layers. When the maximum tensor order is k, the architecture is referred to as a k-IGN.
While this is theoretically tractable, due to the high memory cost and implementation challenges
associated with higher-order tensors, in practice, only k-IGNs for k ≤ 2 have been implemented to
the best of our knowledge. In this work, we focus exclusively on 2-IGNs.

The basis in (19) is inherently dimension-agnostic, allowing IGN to serve as an any-dimensional
neural network that parameterizes functions on inputs of arbitrary size n using a fixed set of parameters.
This feature fundamentally relies on representation stability, which is discussed in greater detail
in [50].

43

Incompatibility of IGN. 2-IGN is incompatible with the subspace VGdup. First, its basis functions

are not properly normalized, and therefore cannot be extended to functions on graphons. For instance,
the fourth basis function ℓ4(A) = A11⊤ yields output entries of order O(n), and should thus be
normalized by a factor of n−1. To address this issue, [11] introduces a normalized version of 2-IGN,
defined by

W (i)
n (A) = α1A+ α2A

⊤ + α3diag(diag
∗(A)) + α4

1

n
A11⊤ + α5

1

n
11

⊤A+ α6
1

n
diag(A1)

+ α7
1

n
A⊤

11
⊤ + α8

1

n
11

⊤A⊤ + α9
1

n
diag(A⊤

1) + α10
1

n2
(1⊤A1)11⊤

+ α11
1

n2
(1⊤A1)diag(1) + α12(1

⊤diag∗(A))11⊤ + α13(1
⊤diag∗(A))diag(1)

+ α14diag
∗(A)1⊤ + α151diag

∗(A)⊤ + β111
⊤ + β2diag(1).

(20)

However, the normalized 2-IGN is still not compatible. Consider the third basis function ℓ3(A) :=
diag(diag∗(A)). It fails to satisfy the compatibility condition:

ℓ3(A⊗ 1m) ̸= ℓ3(A)⊗ 1m,m ≥ 2,

as the left-hand side yields a diagonal matrix, while the right-hand side generally does not. In fact, all
basis maps that output diagonal matrices share this incompatibility.

Nonetheless, our Proposition 5.1 immediately provides a constructive recipe for making 2-IGN

transferable: we start from a basis for linear equivariant layers W
(i)
n —which is compatible under

duplication—and then select only the basis elements which have a finite operator norm as n grows.

Furthermore, we use nonlinearities ρ
(i)
n which are compatible and Lipschitz continuous. Following

this recipe, we introduce two modified versions of 2-IGN:

Generalizable Graph Neural Network (GGNN): Compatible with respect to VGdup, locally

Lipschitz transferable under the ∞-norm.

Continuous GGNN: Compatible with respect to VGdup, locally Lipschitz transferable under the

operator 2-norm, and continuously transferable under the cut-norm.

We highlight that this is a general methodology for constructing transferable equivariant networks:
the framework established in [50] yields bases for compatible equivariant linear layers. We can then
select only those basis elements whose operator norms do not grow with dimension, which we have
shown yields a transferable neural network.

GGNN architecture. AD-layer GGNN parameterizes an Sn-equivariant function Rn×nsym ×Rn×d
′
1 →

Rn×nsym × Rn×d
′
D defined via the composition

W (D)
n ◦ ρ(D−1)

n ◦ · · · ◦ ρ(1)n ◦W (1)
n ,

where for the following conditions hold for all i.

• The linear map W
(i)
n : (Rn×nsym)⊕di ⊕ (Rn)⊕d

′
i → (Rn×nsym)⊕di ⊕ ((Rn)⊕d

′
i)⊕S is a is Sn-

equivariant and compatible with the duplication embedding.

• The functions ρ
(i)
n : (Rn×nsym)⊕di ⊕ ((Rn)⊕d

′
i)⊕S → (Rn×nsym)⊕di ⊕ (Rn)⊕d

′
i that are compatible

with respect with the duplication embedding.

Here, d and d′ are feature channels of A and X, respectively— we fix d1 = dD = 1.

44

For the ease of notation, we assume di = di+1 = 1 (The general case follows analogously). The

maps W
(i)
n , ρ

(i)
n are given by

W (i)
n (A,X) = (A′, (X ′

s)
S
s=0)

=

(
α1A+ α2

1
⊤A1
n2

11
⊤ + α3

Tr(A)

n
11

⊤ + α4
1

n
(A11⊤ + 11

⊤A)

+ α5(diag(A)1
⊤ + 1diag(A)⊤) +

d′i∑

j=1

[
α6,j(X:,j1

⊤ + 1X⊤
:,j) + α7,j

1

n
(1⊤X:,j)11

⊤
]

+ β111
⊤,

XΘ1,s +
1

n
11

⊤XΘ2,s +
1

n
A1θ⊤1,s + diag(A)θ⊤2,s +

Tr(A)

n
1θ⊤3,s +

1
⊤A1
n2

1θ⊤4,s + 1β⊤
2,s

)
,

ρ(i)n (A, (Xs)
S
s=0) =

(
A, σ

(
S∑

s=0

n−sAsXs

))

(21)
where α, θ, β are learnable parameters, and σ : R → R is an arbitrary L-Lipschitz entrywise nonlin-
earity.

Consider the input and output spaces as (variants of) VGdup, the duplication consistent sequences for

graph signals. The linear layer Wn in (21) parameterizes all linear Sn-equivariant maps between
these two spaces that are also compatible with the duplication embedding.

The GGNN model is a modification of the 2-IGN (19) with three key differences. Firstly, we treat the
adjacency matrix and node features separately so that each layer has a graph and a signal component.
Moreover, we explicitly require the matrix component to be symmetric. Secondly, we impose the
compatibility with respect to the duplication embedding on the linear layers. This leads to both
proper normalization of each basis function and a reduction in the total number of basis functions. In
particular, all basis functions that output a diagonal matrix are removed. Thirdly, for the nonlinearity
ρn, instead of the entrywise nonlinearity used in IGN, we adopt a message-passing-like nonlinearity.
The form of the nonlinearity mirrors the GNN model studied in [70]. Particularly, in (21), if we set all
the α’s to 0 except α1 = 1, and all the θ’s to 0 except Θ1,s, then we exactly recover the transferable
GNN in [70].Therefore, our model is at least as expressive as the GNN in [70].

Transferability analysis of GGNN. Even though we only impose compatibility by design, we
can still prove that GGNN is Lipschitz transferable with respect to some norm. Albeit this norm is
arguably too weak.

Corollary G.5. Consider one layer of GGNN, (GGNNn(A,X) = ρ
(i)
n ◦W (i)

n), as defined in (21),
where the entrywise nonlinearity σ is Lσ-Lipschitz. Endow the space of duplication-consistent

sequences with the ∞-norm as defined in (12) (with respect to ∥ · ∥∞ on Rd
′
i). Then, the sequence of

maps (GGNNn) is locally Lipschitz transferable. Consequently, (GGNNn) extends to a function
GGNN∞ on the space of graphon signals, which is L(r)-Lipschitz on B(0, r) with respect to the
symmetrized metric defined in (13) with p = ∞.

Proof. The sequence of linear maps (W
(i)
n) in (21) is Lipschitz transferable because

∥W (i)
n ∥op ≤ max

{
|α1|+ |α2|+ |α3|+ 2|α4|+ 2|α5|+

d′i∑

j=1

(|α6,j |+ |α7,j |),

∥Θ1,s∥op,1,1 + ∥Θ2,s∥op,1,1 + ∥θ1,s∥∞ + ∥θ2,s∥∞ + ∥θ3,s∥∞ + ∥θ4,s∥∞
}
,

where ∥Θ∥op,1,1 = maxj
∑
k |θk,j | is the max ℓ1 norm of a column.

45

For the nonlinearity (ρ
(i)
n), we consider its Fréchet derivative (since all norms are equivalent in

finite-dimensional vector spaces, this is independent of the norm chosen):

Dρ(i)n (A,X0, . . . , XS)[H,H0, . . . , HS] =

(
H,

S∑

s=0

n−s
(
s−1∑

k=0

AkHAs−1−k ·Xs +AsHs

))
.

Hence,

∥Dρ(i)n (A,X0, . . . , XS)[H,H0, . . . , HS]∥∞

≤ max

(
∥H∥∞,

S∑

s=0

(
s−1∑

k=0

∥A∥s−1
∞ ∥H∥∞∥Xs∥∞ + ∥A∥s∞∥Hs∥∞

))

≤ max

(
∥H∥∞,

S∑

s=0

srs∥H∥∞ + rs∥Hs∥∞
)

≤
(
1 ∨

S∑

s=0

(srs + rs)

)

︸ ︷︷ ︸
=:L(r)

·∥(H,H0, . . . , HS)∥∞.

Therefore, for all n, ρ
(i)
n is LσL(r)-Lipschitz on the set

Bn(0, r) = {(A,X0, . . . , XS) : ∥A,X0, . . . , XS∥∞ < r} .
Applying Proposition 5.1, the sequence of maps (GGNNn) is locally Lipschitz transferable, where
the extension GGNN∞ is (LσL(∥Wn∥opr)∥Wn∥op)-Lipschitz on the set

B(0, r) = {(W, f) : ∥(W, f)∥∞ < r} .

Continuous GGNN architecture. We aim to further restrict GGNN to construct a model that is
transferable with respect to the cut norm. By Proposition G.1, we consider endowing the consistent
sequence with the operator 2-norm, which is easier to analyze. The Continuous GGNN is a variant

of GGNN with an additional constraint on the linear layers W
(i)
n , requiring them to have bounded

operator norm: ∥Wn∥op <∞ (with respect to the operator 2-norm). This constraint effectively leads
to a further reduction in the set of basis functions:

W (i)
n (A,X) = (A′, (X ′

s)
S
s=0) =

(
α1A+ α2

1
⊤A1
n2

11
⊤ + α4

1

n
(A11⊤ + 11

⊤A)

+

k∑

j=1

[
α6,j(X:,j1

⊤ + 1X⊤
:,j) + α7,j

1

n
(1⊤X:,j)11

⊤
]
,

XΘ1,s +
1

n
11

⊤XΘ2,s +
1

n
A1θ⊤1,s +

1
⊤A1
n2

1θ⊤4,s

)
,

(22)

Therefore, the hypothesis class of continuous GGNN forms a strict subset of that of GGNN, with the
additional constraint enabling improved transferability. Meanwhile, for the same reasons outlined for
GGNN, the continuous GGNN is also at least as expressive as the GNN proposed in [70]. We use
(cGGNNn) to denote the sequence of functions of continuous GGNN.

Transferability analysis of Continuous GGNN.

Corollary G.6. Consider one layer of the continuous GGNN, (cGGNNn(A,X) = ρ
(i)
n ◦W (i)

n), as
defined in (22), where the entrywise nonlinearity σ is Lσ-Lipschitz. Endow the space of duplication-

consistent sequences with the operator 2-norm as defined in (14) (with respect to ∥ · ∥∞ on Rd
′
i).

Then, the sequence of maps (cGGNNn) is locally Lipschitz transferable. Therefore, (cGGNNn)
extends to a function cGGNN∞ on the space of graphon signals, which is L(r)-Lipschitz on B(0, r)
with respect to the symmetrized operator 2-metric defined in (15) with p = 2.

46

Remark G.7. By Proposition G.1, the sequence of maps (cGGNNn) is continuously transferable
with respect to the cut distance (17) on the space

{(W, f) : ∥(W, f)∥op,2 < r, ∥W∥∞, ∥f∥∞ < r}.
Moreover, for the convergence and transferability results stated in Proposition D.4,D.5, one can
additionally obtain quantitative rates of convergence with respect to the cut distance.

Proof. First, by construction, the sequence of maps (W
(i)
n) is Lipschitz transferable because

∥W (i)
n ∥op ≤ max

{
|α1|+ |α2|+ 2|α4|+

d′i∑

j=1

(|α6,j |+ |α7,j |) ,

∥Θ1,s∥op,1 + ∥Θ2,s∥op,1 + ∥θ1,s∥∞ + ∥θ4,s∥∞
}
<∞.

For the nonlinearity (ρ
(i)
n), the action of its Jacobian yields

Dρ(i)n (A,X0, . . . , XS)[H,H0, . . . , HS] =

(
H,

S∑

s=0

n−s
(
s−1∑

k=0

AkHAs−1−k ·Xs +AsHs

))
.

Hence,

∥Dρ(i)n (A,X0, . . . , XS)[H,H0, . . . , HS]∥op,2

≤ max

(
n−1∥H∥op,2,

S∑

s=0

(
s−1∑

k=0

∥A∥s−1
op,2

ns−1
· ∥H∥op,2

n
· ∥Xs∥2 +

∥A∥sop,2
ns

· ∥Hs∥2

))

≤ max

(
n−1∥H∥op,2,

S∑

s=0

srs · ∥H∥op,2
n

+ rs∥Hs∥2

)

≤
(
1 ∨

S∑

s=0

(srs + rs)

)

︸ ︷︷ ︸
=:L(r)

·∥(H,H0, . . . , HS)∥op,2.

Therefore, for all n, ρ
(i)
n is LσL(r)-Lipschitz on the set

{(A,X0, . . . , XS) : ∥A,X0, . . . , XS∥op,2 < r} .
Applying Proposition 5.1, the sequence of maps (fn) is locally Lipschitz transferable, where the
extension cGGNN∞ is (LσL(∥Wn∥opr)∥Wn∥op)-Lipschitz on the set

B(0, r) = {(W, f) : ∥(W, f)∥op,2 < r} .

We can directly apply Propositions D.4 and D.5, together with the convergence rates established in
Appendix D.3. This leads to transferability results for continuous GGNNs that are exactly the same
as those for MPNNs, as stated in Corollary G.4.

Related work on IGN transferability. We discuss two closely related works, [11] and [35], that
address the transferability of IGNs. Interpreting their results within our theoretical framework offers
a better understanding of IGN transferability. As shown in our work, the normalized 2-IGN is not
compatible with the duplication-consistent subspace VGdup, and thus fails to satisfy the convergence

and transferability in Proposition 3.2. At first glance, this observation may seem to contradict [11,
Theorem 2]. However, this is not the case. While [11] introduces cIGN, a “graphon analogue of IGN,”
and proves its continuity in the graphon space, it is crucial to note that the discrete IGN does not
extend to cIGN in general:

IGNn(An, Xn) ̸= cIGN([An], [Xn]).

47

Therefore, the convergence of cIGN established in Theorem 2 of [11] does not imply the convergence
or transferability of the finite-dimensional IGN model. Moreover, [11, Definition 6] introduces a
constraint that resembles our compatibility condition, formulated through a restricted variant termed
“IGN-small.” Our definition of compatibility clarifies this notion and enables explicit constructions
and practical implementations of compatible, transferable versions of IGNs.

In a more recent work, [35] adopts an approach similar to ours by imposing additional constraints on
the linear layers of IGN, specifically requiring them to have bounded operator norm. This leads to
the Invariant Graphon Network (IWN) model. Unlike our construction, IWN retains standard point-
wise nonlinearities. As shown in [35, Proposition 5.5], it is precisely these point-wise nonlinearity
layers that cause IWN to be discontinuous with respect to the cut norm, rendering it generally
non-transferable in our setting. Interestingly, [35, Appendix G.4] observes that under suitable
assumptions, IWN restricted to the space of simple-graph inputs (i.e., adjacency matrices with 0/1
entries) is Lipschitz continuous with respect to the cut norm and hence admit Lipschitz extensions.
This implies convergence and transferability of IWN specifically under the “graphon sampling”
scheme, where edges are Bernoulli-randomized. However, the limit of this convergence result does
not align with the behavior on weighted graphs (i.e., adjacency matrices with non-binary entries). This
discrepancy highlights the cost of lacking cut-norm continuity over the full space. This phenomenon
may also explain Figure 4(c) in our GGNN experiments, where outputs on graphs sampled from the
Erdős–Rényi model appear to converge (with diminishing error bars), yet to a different limit than
those on the corresponding fully connected weighted graphs derived from the same graphon.

In the case of 2-IGN, our continuous cGGNN model provides a remedy for the lack of cut-norm
continuity by replacing point-wise nonlinearities with message-passing-style operators, thereby
ensuring Lipschitz continuity with respect to the cut norm and circumventing the issue. However,
our construction is currently limited to 2-IGN and does not generalize to higher-order k-IGNs. As
noted in [35, Section 5.1], cut-norm discontinuity is inherent to the k-WL hierarchy and is likely
unavoidable for all higher-order GNNs with better expressivity.

Remarks on expressive power. The expressive power of GNNs has been widely studied in terms
of their ability to distinguish non-isomorphic graphs, where a GNN is said to be k-WL expressive
if it is as powerful as k-WL testing [36]. While this work does not explore expressivity, we note
that the standard k-WL expressivity is not appropriate for studying the expressive power of graphon-
compatible GNNs (i.e., GNNs that are compatible with the duplication-consistent sequence and thus
extend to graphon space). This is because different-sized graphs corresponding to the same step
graphon are always distinguishable by WL, but are considered equivalent by any graphon-compatible
GNN. Instead, it is necessary to consider a variant of k-WL specifically designed for graphons [7, 35].

H Example 3 (point clouds): details and missing proofs from Section 5.3

In this appendix, we study the transferability of two any-dimensional architectures for point clouds.
We start by presenting the consistent sequences we consider. Then, in Section H.2 we study the DS-CI
model proposed in [5], which is known to be very expressive but computationally expensive. Finally,
in Section H.3, we introduce a novel architecture that turns out to be much cheaper to compute.

H.1 Duplication consistent sequence for point clouds

The duplication consistent sequence for point clouds VPdup = {(Vn), (φN,n), (Gn)} is defined as

follows. The index set is again N = (N, · | ·). For each n, the vector spaces are Vn = Rn×k, with the
group Gn = Sn × O(k) acting on Vn by

(g, h) ·X = gXh⊤.

For any n | N , the embedding is given by,

φN,n : R
n×k ↪→ RN×k

X 7→ X ⊗ 1N/n,

and the group embedding is

θN,n : Sn × O(k) ↪→ SN × O(k)

(g, h) 7→ (g ⊗ IN/n, h).

48

Analogous to the case of sets, we can identify each matrix X ∈ Rn×k with a step function fX :
[0, 1] → Rk, thereby interpreting V∞ as the space of step functions with discontinuities at rational
points Q. We also view the orbit ofX as an empirical probability measure 1

n

∑n
i=1 δXi: . Equivalently,

this identifies the orbit of a step function f ∈ V∞ with µf = Law(f(T)) where T ∼ Unif[0, 1].

The orthogonal group O(k) acts on probability measures via push-forward: for g ∈ O(k) and a

measure µ, the action is given by g · µ = g#µ, where g#µ(B) = µ(g−1(B)) for all measurable

sets B ⊆ Rk. The orbit space of V∞ can be identified with the orbit space of empirical probability
measures on Rk under the action of O(k).

Norm on VPdup. Consider Euclidean norm ∥ · ∥2 on Rk which corresponds to the inner product

preserved by elements of O(k). We equip each Vn with the normalized ℓp norm:

∥X∥p =
{(

1
n

∑n
i=1 ∥Xi:∥p2

)1/p
p ∈ [1,∞)

maxni=1 ∥Xi:∥2 p = ∞
By Proposition C.8, it is straightforward to verify that this norm extends naturally to V∞, and that the

limit space in this case can be identified with V∞ = Lp([0, 1];Rk) of functions f : [0, 1] → Rk with

norm ∥f∥ =
(∫ 1

0
∥f(t)∥p2 dt

)1/p
<∞.

Analogous to the case of sets, the corresponding space of orbit closures can be identified with
the space of orbit closures of probability measures on Rk (with finite p-th moments) under the
O(k)-actions. The symmetrized metric is given by:

dp(f, g) = inf
g∈O(k)

Wp(g · µf , µg) for f, g ∈ V∞, (23)

where Wp is the Wasserstein p-distance with respect to the ℓ2-norm on Rk.

H.2 DeepSet for Conjugation Invariance (DS-CI)

The DS-CI model [5] is given by

DS-CIn : Rn×k → R

V 7→ MLPc

(
DeepSet(1)

({
fdj (V V

⊤)
}
j=1,...,n

)
,

DeepSet(2)

({
foℓ (V V

⊤)
}
ℓ=1,...,n(n−1)/2

)
,

MLP(3)

(
f∗(V V ⊤)

))
,

where for symmetric matrix X ∈ Rn×nsym , the invariant features are given by fdj (X) = the j-th largest

of the numbers X11, . . . , Xnn, by foℓ (X) = the ℓ-th largest of the numbers Xij , 1 ≤ i < j ≤ n, and
by f∗(X) =

∑
i ̸=j XiiXij .

We define normalized DS-CI with appropriate normalization: replacing DeepSet(1),DeepSet(2)
with their normalized version (i.e. replacing the sum aggregation with the mean aggregation), and

replacing f∗(X) with f∗(X) = 1
n(n−1)

∑
i ̸=j XiiXij . We denote the sequence of functions of

normalized DS-CI by (DS-CIn).

Transferability analysis of normalized DS-CI. Normalized DS-CI is not compatible with respect
to VPdup. To see this, observe that under duplication, we have

(V ⊗ 1N/n)(V ⊗ 1N/n)
⊤ = (V V ⊤)⊗ (1N/n1

⊤
N/n),

Therefore, diagonal elements of V V ⊤ become off-diagonal elements in (V V ⊤)⊗ (1N/n1
⊤
N/n), so

DeepSet(2)

({
foℓ
(
(V ⊗ 1N/n)(V ⊗ 1N/n)

⊤)}N(N−1)/2

ℓ=1

)
̸= DeepSet(2)

({
foℓ (V V

⊤)
}n(n−1)/2

ℓ=1

)
,

f∗
(
(V ⊗ 1N/n)(V ⊗ 1N/n)

⊤) ̸= f∗(V V ⊤).

49

However, we can make some additional adjustments to ensure compatibility: we define the compatible

DS-CI by modifying the inputs of DeepSet(2) to be {fal (V V ⊤)}l=1,...,n2 , where fal (X) denotes the

l-th largest value among the entries Xij for 1 ≤ i, j ≤ n. Additionally, we replace f∗(X) with

f̃∗(X) :=
1

n2

∑

i,j

XiiXij .

We denote the sequence of functions of compatible DS-CI by (C-DS-CIn). We prove that this model
is locally Lipschitz transferable.

Corollary H.1. Endow VPdup with the normalized ℓp norm with p ∈ [1,∞]. Assume that all activation

functions in the MLPs used for DS-CI are Lipschitz. Then the sequence of maps (C-DS-CIn) is
Lipschitz transferable on the space {f : ∥f∥∞ < r} for all r > 0.

Proof. By Proposition 5.1, it is sufficient to verify the compatibility and Lipschitz continuity of each
individual layer.

• The sequence of maps

(Rn×k, ∥ · ∥p) → (Rn, ∥ · ∥p), V 7→ diag∗(V V ⊤)

is (2r)-Lipschitz transferable. Indeed, it is Sn-equivariant, O(k)-invariant, and

diag∗
(
(V ⊗ 1m)(V ⊗ 1m)⊤

)
= diag∗

(
(V V ⊤)⊗ (1m1

⊤
m)
)

= diag∗(V V ⊤)⊗ 1m,

∥∥diag∗(V V ⊤)− diag∗(WW⊤)
∥∥
p
=

(
1

n

n∑

i=1

∣∣∥Vi:∥22 − ∥Wi:∥22
∣∣p
)1/p

=

(
1

n

n∑

i=1

|⟨Vi: −Wi:, Vi: +Wi:⟩|p
)1/p

≤
(
1

n

n∑

i=1

∥Vi: −Wi:∥p2 · (2r)p
)1/p

(by Cauchy-Schwarz)

= 2r∥V −W∥p,
for V,W satisfying ∥V ∥∞ = maxi ∥Vi:∥2 < r, ∥W∥∞ = maxi ∥Wi:∥2 < r.

• The sequence of maps

(Rn×k, ∥ · ∥p) → (Rn
2

, ∥ · ∥p), V 7→ vec(V V ⊤)

is (2r)-Lipschitz transferable, where the codomain is equipped with a consistent sequence

structure as follows: for g ∈ Sn, define π(g) = g⊤ ⊗ g ∈ Sn2 , and let g act on Rn
2

by
g · x = π(g)x. The symmetric groups (Sn) are embedded into each other as usual, and the

vector spaces are embedded by φnm,n : R
n2 → R(nm)2 where

φnm,n(x) = vec(reshapen(x)⊗ 1m1
⊤
m),

and reshapen : R
n2 → Rn×n is the inverse of vec on n× n matrices. Since these are all linear

maps, so is φnm,n. We then have for all V ∈ Rn×k, g ∈ Sn, h ∈ O(k) that

vec
(
(V ⊗ 1m)(V ⊗ 1m)⊤

)
= vec

(
(V V ⊤)⊗ (1m1

⊤
m)
)
= φnm,n(vec(V V

⊤)),

vec
(
(gV h⊤)(gV h⊤)⊤

)
= vec(gV V ⊤g⊤) = π(g)vec(V V ⊤).

50

Furthermore,

∥vec(V V ⊤)− vec(WW⊤)∥p =


 1

n2

∑

i,j

|⟨Vi:, Vj:⟩ − ⟨Wi:,Wj:⟩|p



1/p

≤


 1

n2

∑

i,j

(|⟨Vi:, Vj: −Wj:⟩|+ |⟨Vi: −Wi:,Wj:⟩|)p



1/p

≤


 1

n2

∑

i,j

2p−1rp (∥Vj: −Wj:∥p2 + ∥Vi: −Wi:∥p2)




1/p

(Using (a+ b)p ≤ 2p−1(ap + bp) and Cauchy-Schwarz)

= 2r∥V −W∥p,
for V,W satisfying ∥V ∥∞ = maxi ∥Vi:∥2 < r, ∥W∥∞ = maxi ∥Wi:∥2 < r.

• The scalar maps

(Rn×k, ∥ · ∥p) → (R, | · |), V 7→ f̃∗(V V ⊤)

is (4r3)-Lipschitz transferable. Indeed, it is Sn × O(k) invariant and

f̃∗((V ⊗ 1m)(V ⊗ 1m)⊤) = f̃∗(V V ⊤),

∣∣∣f̃∗(V V ⊤)− f̃∗(WW⊤)
∣∣∣

≤ 1

n2

∑

i,j

∣∣⟨Vi:, Vj:⟩∥Vi:∥22 − ⟨Wi:,Wj:⟩∥Wi:∥22
∣∣

≤ 1

n2

∑

i,j

|⟨Vi:, Vj:⟩ − ⟨Wi:,Wj:⟩| ∥Vi:∥22 + |⟨Wi:,Wj:⟩|
∣∣∥Vi:∥22 − ∥Wi:∥22

∣∣

≤ 4r3∥V −W∥1 (by the previous two computations)

≤ 4r3∥V −W∥p,
for V,W satisfying ∥V ∥∞ = maxi ∥Vi:∥2 < r, ∥W∥∞ = maxi ∥Wi:∥2 < r.

• If the activation functions used are Lipschitz, then MLPs are Lipschitz. By Corollary F.4, the
normalized DeepSet is Lipschitz transferable, assuming the constituent MLPs are Lipschitz.

Thus, our compatible DS-CI architecture is a composition of Lipschitz layers.

Finally, we conclude that the normalized DS-CI is “approximately transferable” since it is asymptoti-
cally equivalent to the compatible DS-CI up to an error of O(n−1).

Lemma H.2. If the activations in all the MLPs used are Lipschitz, then for any sequence of inputs
V (n) ∈ Rn×k, |C-DS-CIn(V

(n))−DS-CIn(V
(n))| = O(n−1)

Proof. Assume for x ∈ Rn, DeepSet(2)(x) = σ(1n
∑
i ρ(xi)), and σ, ρ are Lσ, Lρ Lipschitz respec-

tively. Then, we have

∣∣∣f∗(V V ⊤)− f̃∗(V V ⊤)
∣∣∣

≤
(

1

n(n− 1)
− 1

n2

)∑

i ̸=j

∣∣(V V ⊤)ii(V V
⊤)ij

∣∣+ 1

n2

∑

i

(V V ⊤)2ii = O(n−1)

51

and, moreover,
∣∣∣DeepSet(2)

({
foℓ (V V

⊤)
}
ℓ=1,...,n(n−1)/2

)
−DeepSet(2)

({
faℓ (V V

⊤)
}
ℓ=1,...,n2

)∣∣∣

≤ Lσ



(

1

n(n− 1)
− 1

n2

)∑

i ̸=j

∣∣ρ((V V ⊤)ij)
∣∣+ 1

n2

∑

i

∣∣ρ((V V ⊤)ii)
∣∣

 = O(n−1).

Since every layer is Lipschitz, this leads to an overall error of O(n−1).

Following the analysis above, we can directly apply Propositions D.4 and D.5, together with the
convergence rates established in Appendix D.3. Moreover, observe that the O(n−1) discrepancy
between normalized DS-CI and compatible DS-CI is dominated by the convergence rate of interest.
This immediately yields the following transferability result.

Corollary H.3 (Transferability of normalized DS-CI). Let (Xn) ∈ Rn×k be a sequence of matrices

sampled from the same underlying distribution µ ∈ Pp(Rk) with bounded support in the following

way: first, sample Yn ∈ Rn×k with rows drawn i.i.d. from µ. Then, let G ∈ O(k) be a (random or
deterministic) rotation matrix, sampled independently of Yn, and define Xn = YnG. Then,

E
[∣∣DS-CIn(Xn)−DS-CIm(Xm)

∣∣]

≲





n−1/(2p) +m−1/(2p) if p > d/2,

n−1/(2p) log1/p(1 + n) +m−1/(2p) log1/p(1 +m) if p = d/2,

n−1/d +m−1/d if p < d/2.

H.3 Constructing new transferable models: SVD-DS

We propose the SVD-DS model defined as follows:

SVD-DSn : Rn×k → R, X 7→ DeepSetn(XV),

where X = UDV ⊤ is the singular value decomposition (SVD) for X with ordered singular values.
We proceed to show that it is locally transferable almost everywhere on its domain, and that its
performance is competitive with DS-CI while being more computationally efficient.

Transferability analysis of SVD-DS. We extend the SVD to elements in the limit space V∞ =
L2([0, 1],Rk) and analyze its continuity, yielding the following transferability result. Recall our
definition of locally Lipschitz transferable at a point in Appendix D.1.

Corollary H.4. Endow the duplication consistent sequences with the normalized ℓ2 norm induced by
∥ · ∥2 on Rk. Observe that

∥X∥2 :=

(
1

n

n∑

i=1

∥Xi:∥22

)1/2

=
1√
n
∥X∥F ,

where ∥ · ∥F denotes the Frobenius norm of a matrix. Then, the sequence of maps (SVD-DSn)
is compatible and locally Lipschitz transferable at every point except for a set of measure zero,
corresponding to points with non-distinct singular values.

Remark H.5. This transferability result is weaker than the “L(r)-locally Lipschitz transferability”
defined in Definition 3.1, since our model may be discontinuous at points with non-distinct singular
values. Therefore, in this case our transferability results in Propositions D.4 and D.5 only apply to
sequences (xn) converging to a limit x ∈ V∞ with distinct singular values.

Proof. Decompose SVD-DSn as the composition

VPdup = {Rn×k} X 7→XV−−−−−→ U = {Rn×k} DeepSet−−−−−→ VR,

where VR is the trivial consistent sequence over R, and the consistent sequence U consists of vector
spaces Un = Rn×k under the duplication embedding ⊗1. The group Sn × O(k) acts on Un by
(g, h) ·X = gX , i.e., the action of O(k) is trivial. By Corollary F.4, the normalized DeepSet map

52

is Lipschitz transferable, assuming the constituent MLPs are Lipschitz. It remains to show that the
SVD-based map X 7→ XV extends to a function that is locally Lipschitz at every point with distinct

singular values. We show this in Proposition H.7 below after extending the SVD to all of V∞ and
considering its ambiguities.

Following the analysis above, we can directly apply Propositions D.4 and D.5, together with the
convergence rates established in Appendix D.3. These results immediately yield a transferability
result for SVD-DS.

Corollary H.6 (Transferability of SVD-DS). Let (Xn) ∈ Rn×k be a sequence of matrices sampled

from the same underlying distribution µ ∈ Pp(Rk) in the following way: First, sample Yn ∈ Rn×k

with rows drawn i.i.d. from µ. Then, let G ∈ O(k) be a (random or deterministic) rotation matrix,

sampled independently of Yn, and defineXn = YnG. Suppose the second moment Ex∼µxx⊤ ∈ Rk×k

of µ has k distinct eigenvalues, then

E
[∣∣SVD-DSn(Xn)− SVD-DSm(Xm)

∣∣]

≲





n−1/(2p) +m−1/(2p) if p > d/2,

n−1/(2p) log1/p(1 + n) +m−1/(2p) log1/p(1 +m) if p = d/2,

n−1/d +m−1/d if p < d/2.

Note that the functional SVD is locally Lipschitz only at points where the singular values are distinct.
This motivates our assumption on the distribution µ in the Corollary. To see this, observe that
when n ≥ k, the singular values of Xn are the same as those of Yn, and are the square roots of
the eigenvalues of Y ⊤

n Yn =
∑n
i=1 xix

⊤
i , where xi are the rows of Yn, sampled i.i.d. from µ. The

functional singular values of Xn (i.e. 1√
n

of the usual matrix singular values) is then 1
n

∑n
i=1 xix

⊤
i .

By the law of large numbers, each entry of this matrix converges almost surely:
(
1

n

n∑

i=1

xix
⊤
i

)

mn

a.s.−−→ Σmn for all m,n ∈ [k],

where Σ := Ex∼µ[xx⊤] is the second-moment of µ. It follows from Weyl’s theorem that each
eigenvalue converges almost surely to those of Σ:

∣∣∣∣∣λj
(
1

n

n∑

i=1

xix
⊤
i

)
− λj (Σ)

∣∣∣∣∣ ≤
∥∥∥∥∥
1

n

n∑

i=1

xix
⊤
i − Σ

∥∥∥∥∥
2

a.s.→ 0 for all j ∈ [k].

Therefore, if Σ has distinct eigenvalues, then with probability one, the empirical matrix has distinct
eigenvalues for all sufficiently large n, ensuring that the functional SVD is locally Lipschitz at this
point.

Functional SVD and its local Lipschitz continuity. We can identify the space V∞ = L2([0, 1],Rk)
with L(L2([0, 1]),Rk), the space of bounded linear maps L2([0, 1]) → Rk endowed with the Hilbert-

Schmidt norm ∥ · ∥HS . In more detail, each X ∈ L2([0, 1],Rk) can be written as a sequence

of rows X = (f1, . . . , fk)
⊤ where fi ∈ L2([0, 1]), and such X defines the bounded linear map

Xf = (⟨f1, f⟩, . . . , ⟨fk, f⟩)⊤. Conversely, any bounded linear map X : L2([0, 1]) → Rk is of

the form Xf = (⟨f1, f⟩, . . . , ⟨fk, f⟩)⊤ for some f1, . . . , fk ∈ L2([0, 1]) which we view as the

columns of X , and ∥X∥2HS =
∑k
i=1 ∥fi∥22. Here Vn = Rn×k is viewed as the subspace of V∞ with

piecewise-constant columns fi on consecutive intervals of length 1/n.

Note that X vanishes identically on Vk = span{f1, . . . , fk}⊥, while X : Vk → Rk is a linear map
between finite-dimensional vector spaces and therefore admits a singular value decomposition. Thus,
there exists positive numbers σ ∈ Rk≥0, orthonormal v1, . . . , vk ∈ Rk, and orthonormal functions

u1, . . . , uk ∈ L2([0, 1]) satisfying

X =

k∑

i=1

σi⟨ui, ·⟩vi. (24)

If X ∈ Rn×k and X =
∑k
i=1 σ̃iũiṽ

⊤
i , is the usual SVD of X , then σi = σ̃i/

√
n, vi = ṽi, and

ui(t) =
√
n[ũi]⌈nt⌉ is the functional SVD of X as in (24). Conversely, if (24) is the functional SVD

53

of such an X then X =
∑k
i=1(σi

√
n)([ui(j/n)]

k
j=1/

√
n)v⊤i is the usual SVD of X . Note that the

right singular vectors V are the same in both SVDs.

If for any X ∈ Vn we let σ(X) be its (functional) singular values from (24) and σ̃(X) be its usual
singular values, then

∥X∥2
2
=

1

n
∥X∥2F =

1

n

k∑

i=1

σ̃i(X)2 =

k∑

i=1

σi(X)2, (25)

and by Mirsky’s inequality [61],

∥σ(X)− σ(Y)∥2 =
1√
n
∥σ̃(X)− σ̃(Y)∥2 ≤ 1√

n
∥X − Y ∥F = ∥X − Y ∥2. (26)

Furthermore, whenever V ∈ Rk×k and X ∈ Vn we have

∥XV ∥2 =
1√
n
∥XV ∥F ≤ 1√

n
∥V ∥F σ̃1(X) = ∥V ∥Fσ1(X). (27)

Note that the final bounds in all of the above inequalities are independent of n, continuous in ∥ · ∥,

and hold for all X ∈ V∞. We therefore conclude that they also hold for all X ∈ V∞, with ∥ · ∥2
replaced with ∥ · ∥HS .

There is an ambiguity in the above decomposition, since if (ui), (vi) satisfy (24) then so do
(siui), (sivi) for any choice of signs si ∈ {±1}. Furthermore, if the singular values (σi) are
distinct then this is the only ambiguity in (24), see [13]. To disambiguate the SVD, we therefore
choose signs so that vi > −vi in lexicographic order. When the entries of the vi are all nonzero, this
amounts to requiring the first row of V = [v1, . . . , vk] to be positive. We proceed to prove that the
map X 7→ V (X) = [v1, . . . , vk] with this choice of signs is locally Lipschitz continuous on a dense

subset of V∞.

Proposition H.7. Fix X0 ∈ V∞ with distinct singular values and all-nonzero entries in its right
singular vectors (vi). Let gapp(X0) = min2≤i≤k{σi−1(X0)

p − σi(X0)
p} be the minimum gap

between p-th powers of (functional) singular values of X0, and set

B(X0) =

√
8(2σ1(X0) + 1)

gap2(X0)
. (28)

For any X̂ ∈ V∞ satisfying

∥X0 − X̂∥HS ≤ 1 ∧ gap1(X0)

2
√
k

∧ 1

2B(X0)
min

1≤i,j≤k
|[vi(X0)]j |,

the following two hold true.

1. The matrix X̂ has distinct singular values, and all nonzero entries of vi(X̂) have the same sign
as those of vi(X0).

2. We have
∥V (X0)− V (X̂)∥F ≤ kB(X0)∥X0 − X̂∥HS , (29)

and
∥X0V (X0)− X̂V (X̂)∥HS ≤ (kσ1(X0)B(X0) + 1)∥X0 − X̂∥HS . (30)

Proof. We start by establishing the first claim. If ∥X0 − X̂∥HS ≤ gap1(X0)

2
√
k

, then for any 2 ≤ i ≤ k

we have by

σi−1(X̂)− σi(X̂) = σi−1(X̂)− σi−1(X0) + σi−1(X0)− σi(X0) + σi(X0)− σi(X̂)

≥ (σi−1(X0)− σi(X0))−
k∑

i=1

|σi(X̂)− σi(X0)|

≥ gap1(X0)−
√
k∥σ(X0)− σ(X̂)∥2 (Cauchy-Schwarz)

≥ gap1(X0)

2
> 0. (Mirsky’s inequality (26))

54

Thus, X̂ has distinct singular values.

Let g̃app(X0) = min2≤i≤k{σ̃i−1(X0)
p − σ̃i(X0)

p} be the minimum gap between p-th powers of

(usual) singular values of X0. For X0, X̂ ∈ Vn, the result [90, Thm. 4] shows that for each i ∈ [k]

min
s∈{±1}

∥vi(X0)− s · vi(X̂)∥2

≤
√
8(2σ̃1(X0) + σ̃1(X0 − X̂))∥X0 − X̂∥F

g̃ap2(X0)

=

√
8n(2σ1(X0) + σ1(X0 − X̂))∥X0 − X̂∥F

ngap2(X0)
(since σ̃i(X) = σi(X)

√
n)

=

√
8(2σ1(X0) + σ1(X0 − X̂))∥X0 − X̂∥2

gap2(X0)
(since ∥X∥2 = ∥X∥F /

√
n)

≤
√
8(2σ1(X0) + ∥X0 − X̂∥2)∥X0 − X̂∥2

gap2(X0)
(by (25), σ1(X)2 ≤ ∥X∥2

2
=
∑k
i=1 σi(X)2)

≤
√
8(2σ1(X0) + 1)∥X0 − X̂∥2

gap2(X0)
(since ∥X̂ −X0∥2 ≤ 1)

= B(X0)∥X0 − X̂∥2.

The final bound is independent of n and hence applies on all of V∞. It is also continuous in ∥ · ∥2 on
the dense subset of V∞ consisting of operators with distinct singular values, so taking closures we

conclude that this bound applies for any X0, X̂ ∈ V∞ such that gap2(X0) > 0. Combining the last

line above with our bound on ∥X̂ −X0∥2, we get

min
s∈{±1}

max
1≤j≤k

∣∣∣[vi(X0)]j − s · [vi(X̂)]j

∣∣∣ ≤ min
s∈{±1}

∥∥∥vi(X0)− s · vi(X̂)
∥∥∥
2
≤ 1

2
min

1≤i,j≤k
|[vi(X0)]j | .

(31)

Thus, the sign s achieving the above minimum is the one making all entries of vi(X̂) have the same

sign as those of vi(X0). Since the first entries of vi(X0) and of vi(X̂) are positive, we conclude that
s = 1 achieves the above minimum.

To prove the second claim, we combine the bounds above, which yields

∥V (X0)− V (X̂)∥F ≤
k∑

i=1

∥vi(X0)− vi(X̂)∥2

=

k∑

i=1

min
s∈{±1}

∥vi(X0)− s · vi(X̂)∥2

≤ kB(X0)∥X0 − X̂∥HS ,
as claimed. Finally, applying the triangle inequality gives

∥X0V (X0)− X̂V (X̂)∥HS ≤ ∥X0(V (X0)− V (X̂))⊤∥HS + ∥(X0 − X̂)V (X̂)∥HS
≤ kB(X0)σ1(X0)∥X0 − X̂∥HS + ∥X0 − X̂∥HS , (by (27))

yielding the last claim.

SVD-DS is computationally more efficient than DS-CI. When k ≪ n (for example, for us k = 2
or 3), to evaluate SVD-DS on a given input of size n× k, we need to compute its SVD—which takes

O(nk2) flops [32, Section 8.6]—and then evaluate DeepSet on the output, which takes O(nC(k))
where C(k) is the cost of evaluating the involved fixed-size MLPs taking inputs of size k. Moreover,
during training, we can compute the SVD of the dataset once in advance. In contrast, for DS-CI we
need to form V V ⊤ at a cost of O(n2k), and this needs to be differentiated through during training.

After forming V V ⊤, we evaluate normalized DeepSets on its entries at a cost of O(n2). Thus,
SVD-DS is much faster to train and deploy than DS-CI.

55

Transferability plots. The numerical experiments illustrating the transferability of SVD-DS and
normalized and compatible DS-CI is shown in Figure 6.

10
1

10
2

10
3

Pointcloud size n

−0.096

−0.094

−0.092

−0.090

f n
(x

n
)

(a) Normalized SVD-DS
(transferable)

101 102 103

Pointcloud size n

0.25

0.26

0.27

0.28

0.29

f n
(x

n
)

Normalized DS-CI
(approximately transferable)

Compatible DS-CI
(transferable)

(b) Normalized DS-CI
(approximately transferable) and

Compatible DS-CI
(transferable) [5]

Figure 6: Transferability of invariant models on point clouds with respect to (VP
dup, ∥ · ∥p). The plot shows

outputs of untrained, randomly initialized models for a sequence of point clouds Xn ∈ Rn×k, where each point
is sampled i.i.d. from N (0, Ik). The error bars extend from the mean to ± one standard deviation over 100
random samples. The figure shows that transferable models generate convergent outputs. Figure (b) shows the
asymptotic equivalence between the normalized DS-CI and compatible DS-CI as proved in Lemma H.2.

I Size generalization experiments: details from Section 6

In this section, we provide details of our size generalization experiments. All experiments were
implemented using the PyTorch framework and trained on a single NVIDIA A5000 GPU. Specific
training and model configurations are provided in the descriptions of the individual experiments.
For all experiments, the training dataset consists of inputs with a fixed, small dimension ntrain. For
evaluation, we use a series of test datasets where the input dimension ntest is progressively larger
than ntrain.

I.1 Size generalization on sets

We consider two any-dimensional learning tasks on sets, where the target functions have different
properties, so that different models are expected to perform better. In both experiments, we compare
the size generalization of three models: DeepSet, normalized DeepSet, and PointNet as analyzed in
Appendix F.2. The maps σ and ρ in the model are parametrized by three fully connected layers with
a hidden dimension of 50 and ReLU activation functions. Training was performed by minimizing
the MSE loss using AdamW with an initial learning rate of 0.001 and a weight decay of 0.1. The
learning rate was halved if the validation loss did not improve for 50 consecutive epochs. Each model
was trained for 1000 epochs, with each run taking less than three minutes to complete.

I.1.1 Experiment 1: Population statistics

We adopt the experimental setup from [91, Section 4.1.1], which comprises four distinct tasks on
population statistics. In all four tasks, the datasets consist of sets where each set contains i.i.d.
samples from a distribution µ, where µ itself is sampled from a parameterized distribution family.
The objective is to learn either the entropy or the mutual information of the distribution µ.

While the original experiment in [91] focused on training and testing with set sizes ntrain = ntest =
[300, 500], we instead evaluate size generalization. During the training stage, the dataset consists of
N = 2048 sets, each of size ntrain = 500. This dataset is randomly split into training, validation,
and test data with proportions 50%, 25%, and 25%, respectively. During the evaluation stage, the
trained model is tested on a sequence of datasets with set sizes ntest ∈ {500, 1000, 1500, . . . , 4500},
each consisting of N = 512 sets. The descriptions of the four tasks, as originally presented in [91],
are provided below:

56

Rotation: GenerateN datasets of sizeM from N (0, R(α)ΣR(α)T) for random Σ and α ∈ [0, π].
The goal is to learn the marginal entropy of the first dimension.

Correlation: Generate sets from N (0, [Σ, αΣ;αΣ,Σ]) for random Σ and α ∈ (−1, 1). The goal
is to learn the mutual information between the first 16 and last 16 dimensions.

Rank 1: Generate sets from N (0, I + λvvT) for random v ∈ R32 and λ ∈ (0, 1). The goal is to
learn the mutual information.

Random: Generate sets from N (0,Σ) for random 32× 32 covariance matrices Σ. The goal is to
learn the mutual information.

For all tasks, the target functions are scalar functions on the underlying probability measure µ, and
are continuous with respect to the Wasserstein p-distance. Based on Appendix F.2.1, normalized
DeepSet is well-aligned with the task from a continuity perspective and PointNet aligns from a
compatibility perspective, while unnormalized DeepSet lacks alignment altogether. The results are
summarized in Figure 7, showing that stronger task-model alignment improves both in-distribution
and size-generalization performance.

500 1000 1500 2000 2500 3000 3500 4000 4500

Test set size (n)

10−4

10−3

10−2

10−1

100

101

102

T
es

t
M

S
E

Task1: Rotation

DeepSet (incompatible)

Normalized DeepSet (transferable)

PointNet (compatible, not transferable)

500 1000 1500 2000 2500 3000 3500 4000 4500

Test set size (n)

10−4

10−3

10−2

10−1

100

101

102

T
es

t
M

S
E

Task2: Correlation

DeepSet (incompatible)

Normalized DeepSet (transferable)

PointNet (compatible, not transferable)

500 1000 1500 2000 2500 3000 3500 4000 4500

Test set size (n)

10−4

10−3

10−2

10−1

100

T
es

t
M

S
E

Task3: Rank 1

DeepSet (incompatible)

Normalized DeepSet (transferable)

PointNet (compatible, not transferable)

500 1000 1500 2000 2500 3000 3500 4000 4500

Test set size (n)

10−1

100

101

102

103

T
es

t
M

S
E

Task4: Random

DeepSet (incompatible)

Normalized DeepSet (transferable)

PointNet (compatible, not transferable)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Rotation Angle

−4

−3

−2

−1

0

1

E
n
tr

o
p
y

DeepSet (incompatible)

Normalized DeepSet (transferable)

PointNet (compatible, not transferable)

Truth

−1.0 −0.5 0.0 0.5 1.0

Correlation

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
u
tu

al
In

fo
rm

at
io

n

DeepSet (incompatible)

Normalized DeepSet (transferable)

PointNet (compatible, not transferable)

Truth

0.0 0.2 0.4 0.6 0.8 1.0

Rank-1 Length

−0.025

0.000

0.025

0.050

0.075

0.100

0.125

M
u
tu

al
In

fo
rm

at
io

n

DeepSet (incompatible)

Normalized DeepSet (transferable)

PointNet (compatible, not transferable)

Truth

0.0 0.2 0.4 0.6 0.8 1.0

Sorted Index

6.0

6.5

7.0

7.5

8.0

8.5

9.0

M
u
tu

al
in

fo
rm

at
io

n

DeepSet (incompatible)

Normalized DeepSet (transferable)

PointNet (compatible, not transferable)

Truth

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Rotation Angle

−30

−20

−10

0

10

E
n
tr

o
p
y

DeepSet (incompatible)

Normalized DeepSet (transferable)

PointNet (compatible, not transferable)

Truth

−1.0 −0.5 0.0 0.5 1.0

Correlation

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
u
tu

al
In

fo
rm

at
io

n

DeepSet (incompatible)

Normalized DeepSet (transferable)

PointNet (compatible, not transferable)

Truth

0.0 0.2 0.4 0.6 0.8 1.0

Rank-1 Length

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

M
u
tu

al
In

fo
rm

at
io

n

DeepSet (incompatible)

Normalized DeepSet (transferable)

PointNet (compatible, not transferable)

Truth

0.0 0.2 0.4 0.6 0.8 1.0

Sorted Index

10

20

30

40

50

60

70

M
u
tu

al
in

fo
rm

at
io

n

DeepSet (incompatible)

Normalized DeepSet (transferable)

PointNet (compatible, not transferable)

Truth

Figure 7: Size generalization for population statistics experiment. All models are trained on set size ntrain = 500
and tested on set sizes ntest ∈ {500, 1000, . . . , 4500}. Top: MSE (log scale) vs. test set size. The solid line
denotes the mean, and the error bars extend from the minimum to the maximum test MSE over 10 randomly
initialized trainings. Normalized DeepSet performs better than PointNet, which in turn outperforms DeepSet.
Middle: Test-set predictions of the three models vs. ground truth for ntest = ntrain = 500. All models perform
similarly. Bottom: Test-set predictions vs. ground truth for ntest = 4500 ≫ ntrain = 500. DeepSet has
blown-up outputs due to scaling. Normalized DeepSet outperforms PointNet in Task 3.

I.1.2 Experiment 2: Maximal distance from the origin

We consider the following data and task: each dataset consists of sets where each set contains n
two-dimensional points sampled as follows. First, a center is sampled from N (0, I2) and a radius
is sampled from Unif([0, 1]), which together define a circle. The set then consists of n points
sampled uniformly along the circumference. The goal is to learn the maximum Euclidean norm
among the points in each set. Equivalently, our goal is to learn the so-called Hausdorff distance
dH({0}, X) = supx∈X ∥x∥; see (11). Hence, the target function depends only on the support of the
point cloud and is continuous with respect to the Hausdorff distance.

57

Once more, we evaluate size generalization. During the training stage, the dataset consists of
N = 5000 sets, each of size ntrain = 20. The dataset is randomly split into training, validation, and
test data with proportions 80%, 10%, and 10%, respectively. During the evaluation stage, the trained
model is tested on a sequence of datasets with set sizes ntest ∈ {20, 40, . . . , 200}, each consisting of
N = 1000 sets. For this task, PointNet aligns from a continuity perspective, normalized DeepSet
from a compatibility perspective, and DeepSet does not align with the learning task. The results are
summarized in Figure 8, showing that the model performance improves with task-model alignment.

20 60 100 140 180

Test set size (n)

10−5

10−3

10−1

101

T
es

t
M

S
E

DeepSet (incompatible)

Normalized DeepSet
(compatible, not transferable)

PointNet (transferable)

(a)

0 1 2 3 4

True distance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
re

d
ic

te
d

d
is

ta
n
ce

Model outputs on set-size ntest = 20)

DeepSet (incompatible)

Normalized DeepSet
(compatible, not transferable)

PointNet (transferable)

0 1 2 3 4

True distance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
re

d
ic

te
d

d
is

ta
n
ce

Model outputs on set-size ntest = 200)

DeepSet (incompatible)

Normalized DeepSet
(compatible, not transferable)

PointNet (transferable)

(b)

Figure 8: Size generalization on max-distance-from-origin task. All models are trained on set size ntrain = 20
and tested on set sizes ntest ∈ {20, 40, . . . , 200}. Figure (a): Test MSE (log scale) vs. test set size. The solid
line denotes the mean, and the error bars extend from the minimum to the maximum test MSE over 10 randomly
initialized trainings. PointNet performs better than normalized DeepSet, which in turn outperforms DeepSet.
Figure (b): Test-set predictions vs. ground truth for set size ntest = ntrain = 20. The middle figure shows
predictions for ntrain = 20, while the right-most figure shows predictions for ntest = 200. PointNet is very
accurate in both cases. DeepSet exhibits incorrect blown-up outputs in the latter case.

I.2 Size generalization on graphs

For graphs, the task is to learn a homomorphism density of degree three. To formally describe the
task, we first describe its inputs. We consider a dataset consisting of N attributed graphs (A, x)
generated according to the following two procedures (the first is described and reported in the main
paper):

1. Each graph is a fully connected weighted graph whose adjacency matrix has entries Aij =

Aji
i.i.d.∼ Unif([0, 1]) for i ≤ j, and node features xi

i.i.d.∼ Unif([0, 1]).

2. First, sample the number of clusters K uniformly from {10, . . . , 20}, and construct a K ×K
symmetric probability matrix P with entries sampled uniformly from [0, 1]. The resulting
stochastic block model (SBM) is used to generate an undirected, simple graph with edges

sampled as Aij = Aji
i.i.d.∼ Ber(Pzi,zj) for i ≤ j, where zi

i.i.d.∼ Unif({1, . . . ,K}) are clus-

ter assignments. Node features are given by xi = γzi , where γ ∈ RK with i.i.d. entries
Unif([0, 1]).

The task is to learn the rooted, signal-weighted homomorphism density of degree three sending

Rn×nsym × Rn → Rn, (A, x) 7→ y, via yi =
1

n2

∑

j,k∈[n]

AijAjkAkixixjxk.

Note that when x = 1, yi corresponds to a normalized count of triangles centered at node i. Thus,
this can be interpreted as a signal-weighted triangle density. This formulation is related to the signal-
weighted homomorphism density studied in [35], which generalizes the notion of homomorphism
density extensively studied in graphon theory [54].

We conduct experiments to evaluate the size generalization performance of the following models:
the GNN from [70], the normalized 2-IGN [56], and our proposed GGNN and continuous GGNN.
ReLU is used as the entry-wise activation function in all models. We choose the number of layers

58

and hidden dimensions such that each model has approximately 2k parameters to ensure an arguably
fair comparison. During training, we use a dataset of N = 5000 graphs, each with ntrain = 50
nodes. This dataset is randomly split into training, validation, and test with proportions 60%, 20%,
and 20%, respectively. For evaluation, we test the trained models on datasets of graph sizes ntest ∈
{50, 200, 500, 1000, 2000}, each containing N = 1000 graphs. Training is performed by minimizing
the MSE loss using AdamW with an initial learning rate of 0.001 and weight decay of 0.1. Each
model is trained for 500 epochs. Training a single run takes less than 3 minutes for the GNN model,
and approximately 6–9 minutes for the IGN, GGNN, and continuous GGNN models, which are
more computationally intensive. We note that evaluation on large graphs is particularly time- and
memory-intensive for these models, taking up to several hours. Memory limitations restrict the
maximum graph size we can evaluate to n = 2000.

The results of the size generalization experiments are summarized in Figure 9. Let us elaborate on
these results. Since the target function naturally extends to the graphon-level signal-weighted triangle
density (W, f) 7→ g, given by

g(x) =

∫

[0,1]2
W (x, y)W (y, z)W (z, x)f(x)f(y)f(z) dy dz,

which is continuous with respect to the cut norm, models that are continuous under this topol-
ogy—such as the GNN and continuous GGNN—are aligned with the task at the level of continuity.
Our proposed continuous GGNN, which is provably transferable and possibly more expressive than
the GNN, achieves the best performance. Although GGNN is not transferable under the cut norm, it
is transferable under a weaker topology (see Appendix G.3), enabling it to perform reasonably well.
In contrast, the 2-IGN model, even after proper normalization, exhibits divergent outputs for larger
graph sizes, indicating a lack of compatibility with the task.

Finally, we remark that the expressive power of various GNN architectures with respect to homomor-
phism densities has been extensively studied. Prior work has shown that common GNNs—including
those considered in this study—are generally unable to express high-degree homomorphism densi-
ties [14, 35]. However, our results demonstrate that GNNs can still achieve strong performance on
this task when evaluated over certain large parametric families of random graph models. This does
not contradict prior theoretical findings, as our results pertain to an average-case evaluation, while
the negative results in the literature are established in the worst-case setting.

I.3 Size generalization on 3D point clouds

For our final set of experiments, we follow the setup of Section 7.2 in [5], which uses ModelNet10.
We select 80 point clouds from Class 2 (chair) and 80 from Class 7 (sofa), and split them into 40
training and 40 testing samples per class. Each dataset has 40× 40 cross-class pairs. The objective
is to learn the third lower bound of the Gromov-Wasserstein distance in [60] (Definition 6.3). We
prove in Appendix I.4 that it is continuous with respect to the Wasserstein p-distance.

Unlike [5], which downsampled all point clouds to 100 points, we focus on size generalization:
training is done on ntrain = 20, and testing is done on ntest ∈ {20, 100, 200, 300, 500}. We compare
the size generalization of 3 models: unnormalized SVD-DS, (normalized) SVD-DS and normalized
DS-CI. For each pair of inputs V, V ′, we predict the GW lower bound via:

ĜW(V, V ′) = a∥W (f(V)− f(V ′))∥2 + b,

where f : Rn×k → Rt is the Sn,O(k)-invariant model, t = 10, and W ∈ Rt×t, a, b ∈ R are
learnable. All DeepSet components (σ, ϕ) are fully connected ReLU networks. We choose the
number of layers and hidden dimensions such that each model has approximately 2k parameters to
ensure a fair comparison. Training is performed by minimizing the MSE loss using AdamW with an
initial learning rate of 0.01 and weight decay of 0.1. Each model is trained for 3000 epochs. Training
a single run takes less than 3 minutes.

The experiment results are summarized in Figure 10. Normalized DS-CI and normalized SVD-DS,
both aligned with the target at the continuity level, achieve good performance. While normalized SVD-
DS underperforms compared to normalized DS-CI, it offers superior time and memory efficiency.

59

50 200 500 1000 2000

Test graph size (n)

10−6

10−5

T
es

t
M

S
E

Normalized 2-IGN (incompatible)

GNN (transferable)

GGNN (compatible, not transferable)

Continuous GGNN (transferable)

(a)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Target

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
re

d
ic

ti
o

n

Model output on graph size ntest = 50

Normalized 2-IGN (incompatible)

GNN (transferable)

GGNN (compatible, not transferable)

Continuous GGNN (transferable)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Target

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
re

d
ic

ti
o

n

Model output on graph size ntest = 2000

Normalized 2-IGN (incompatible)

GNN (transferable)

GGNN (compatible, not transferable)

Continuous GGNN (transferable)

(b)

50 200 500 1000 2000

Test graph size (n)

10−5

T
es

t
M

S
E Normalized 2-IGN (incompatible)

GNN (transferable)

GGNN (compatible, not transferable)

Continuous GGNN (transferable)

(c)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Target

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
re

d
ic

ti
o

n

Model output on graph size ntest = 50

Normalized 2-IGN (incompatible)

GNN (transferable)

GGNN (compatible, not transferable)

Continuous GGNN (transferable)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Target

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
re

d
ic

ti
o

n

Model output on graph size ntest = 2000

Normalized 2-IGN (incompatible)

GNN (transferable)

GGNN (compatible, not transferable)

Continuous GGNN (transferable)

(d)

Figure 9: GNN size generalization results on weighted triangle density. Figures (a)-(b) show the results on fully
connected weighted graphs (the first data generation procedure), and Figures (c)-(d) show the results on simple
graphs sampled from SBM (the second data generation procedure). Figures (a) and (c) display Test MSE vs. test
graph size. The solid line denotes the mean, and the error bar extend from the 20% to 80% percentile test MSE
over 10 randomly initialized trainings. Continuous GGNN performs the best for both random graph models.
Figures (b) and (d) display Test-set predictions vs. ground truth. The middle columns displays results for graph
size ntest = ntrain = 50, while the right-most column displays results for ntest = 2000 and ntrain = 50.

20 100 200 300 500

Test pointcloud sizes (n)

10−2

10−1

100

101

102

T
es

t
M

S
E

Unnormalized SVD-DS (incompatible)

Normalized SVD-DS (transferable)

Normalized DS-CI
(approximately transferable)

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Target

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
re

d
ic

ti
o
n

Model output on
pointcloud size ntest = 20

Unnormalized SVD-DS (incompatible)

Normalized SVD-DS (transferable)

Normalized DS-CI
(approximately transferable)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Target

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
re

d
ic

ti
o
n

Model output on
pointcloud size ntest = 500

Unnormalized SVD-DS (incompatible)

Normalized SVD-DS (transferable)

Normalized DS-CI
(approximately transferable)

(b)

Figure 10: Size generalization results for point clouds. (a): Test-set MSE (log scale) vs. point cloud size n. The
solid line denotes the mean and the error bars extend from the min to max test MSE over 10 trials, each taking
the best of 5 random initializations. (b): Test-set predictions vs. ground truth for graph size ntest = ntrain = 20,
and ntest = 500 ≫ ntrain = 20.

I.4 Continuity of Gromov-Wasserstein distance and its third lower bound

The following is based on [60], though these continuity results are not stated there. Let µ ∈
Pp(Rk) be a probability measure, and associate with it the “metric measure space” (X , dX , µ)
where X = supp(µ) and dX (x, y) = ∥x − y∥p. Given two such measures µ, ν ∈ Pp(Rk), the

60

Gromov-Wasserstein distance between their associated metric spaces is defined by

Dp(µ, ν) = inf
π∈M(µ,ν)

∥ΓX,Y ∥Lp(π⊗π) (32)

= inf
π∈M(µ,ν)

(∫ ∣∣∣∥x− x′∥p − ∥y − y′∥p
∣∣∣
p

dπ(x, y) dπ(x′, y′)

)1/p

, (33)

where ΓX,Y (x, y, x
′, y′) =

∣∣∣∥x− x′∥p − ∥y − y′∥p
∣∣∣ and M(µ, ν) is the set of couplings between µ

and ν. The G-W distance admits the following lower bound [60, Def. 6.3].

Dp ≥ TLBp(µ, ν) = inf
π∈M(µ,ν)

∥Ωµ,ν∥Lp(π),

where Ωµ,ν(x, y) = inf
π′∈M(µ,ν)

∥Γ(x, y, ·, ·)∥Lp(π′).
(34)

We aim to show that both Dp and TLBp are continuous with respect to the Wasserstein-p metric on
Pp. More precisely, the following Lipschitz bounds hold.

Proposition I.1. Let µ, ν, µ′, ν′ ∈ Pp(Rk). Then

|Dp(µ, ν)−Dp(µ
′, ν′)| ≤Wp(µ, µ

′) +Wp(ν, ν
′). (35)

Proof. By the triangle inequality for Dp, which holds by [60, Thm. 5.1(a)], we have

Dp(µ, ν) ≤ Dp(µ, µ
′) +Dp(µ

′, ν′) +Dp(ν, ν
′).

By [60, Thm. 5.1(d)], we further have Dp(µ, µ
′) ≤Wp(µ, µ

′) and similarly for Dp(ν, ν
′). Combin-

ing these inequalities and interchanging the roles of (µ, ν) and (µ′, ν′), we get the claim.

The above proof only used the triangle inequality and the bound Dp ≤ Wp for the G-W distance.
Since TLBp ≤ Dp ≤ Wp, the latter property also holds for TLB. Thus, it suffices to prove TLBp
satisfies the triangle inequality, hence is similarly Lipschitz in Wp.

Lemma I.2 (Triangle inequality for Ωµ,ν). Let µ, ν, ξ ∈ Pp(Rk). We have Ωµ,ν(x, y) ≤ Ωµ,ξ(x, z)+
Ωξ,ν(z, y) for all x, y, z in the relevant supports. Furthermore, we have TLBp(µ, ν) ≤ TLBp(µ, ξ)+
TLBp(ξ, ν).

Proof. Note that the usual triangle inequality for ∥ · ∥p gives Γ(x, y, x′, y′) ≤ Γ(x, z, x′, z′) +
Γ(z, y, z′, y′) for any x, y, z, x′, y′, z′ ∈ Rk. For any couplings π1 ∈ M(µ, ξ) and π2 ∈ M(ξ, ν),
the Gluing Lemma [82, Lemma 7.6] guarantees the existence of a coupling π ∈ M(µ, ξ, ν) whose
corresponding marginals are π1, π2. Let π3 ∈ M(µ, ν) be the marginal of π on its first and third
coordinates. Then

Ωµ,ν(x, y)
p ≤ ∥Γ(x, y, ·, ·)∥pLp(π3)

= ∥Γ(x, y, ·, ·)∥pLp(π)

≤ ∥Γ(x, z, ·, ·) + Γ(z, y, ·, ·)∥Lp(π) ≤ ∥Γ(x, z, ·, ·)∥Lp(π1) + ∥Γ(z, y, ·, ·)∥Lp(π2).

Since this holds for all couplings π1, π2 as above, we obtain the first claim.

The second claim is proved analogously. For couplings π1, π2, π3, π as above, we have

TLBp(µ, ν) ≤ ∥Ωµ,ν∥Lp(π3) = ∥Ωµ,ν∥Lp(π) ≤ ∥Ωµ,ξ+Ωξ,ν∥Lp(π) ≤ ∥Ωµ,ξ∥Lp(π1)+∥Ωξ,ν∥Lp(π2),

and taking infimums over π1, π2 completes the proof.

Proposition I.3. Let µ, ν, µ′, ν′ ∈ Pp(Rk). Then

|TLBp(µ, ν)− TLBp(µ
′, ν′)| ≤Wp(µ, µ

′) +Wp(ν, ν
′). (36)

Proof. The proof is now identical to that of Proposition I.1.

The above argument generalizes to measures on different abstract metric spaces, we did not use the
fact that all measures involved were over Rk.

61

J Limitations of this work

This work provides a theoretical framework for transferability based on consistent sequences. It
applies to several machine learning models that use a fixed number of parameters to define functions
on any-dimensional inputs. However, this theory does not capture all possible ways for inputs to grow
in dimension. In particular, it does not capture settings where there is no limiting space containing all
finite-sized inputs, and where such inputs can be compared. For example, how do we compare natural
language inputs of different lengths to each other? Furthermore, while we believe our framework may
extend to settings such as images (with varying resolutions and sizes), partial differential equations
(across different scales), and sequences (of varying lengths), we did not explore these directions. We
leave these investigations for future work. Finally, as discussed briefly in the related work, we do not
consider the expressive power of neural networks on the limiting space. If the target function is not
expressible, mere alignment in terms of compatibility and continuity—as discussed in Section 4—is
insufficient to ensure good performance. Studying universal approximation theory on the limiting
space is an important and promising direction for future research.

62

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the work are discussed in Appendix J.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

63

Justification: All proofs are in the supplementary material due to space constraints. All the
assumptions are explicitly stated.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main contribution is theoretical. Experiments are provided to illustrate
the results. In the Appendix I, we provide all relevant details for reproduction, including
the data, training and evaluation procedures. Also, the code is available via an anonymized
GitHub repository.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

64

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code with reproduction instructions is provided via an anonymized GitHub
repository.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All these experiment details are provided in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The transferability experiments report the mean among 100 random inputs
with error bars indicating one standard deviation. The size generalization experiments report
min/max results over 10 initialized runs, and evaluations are conducted on datasets with
1000 samples.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

65

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This information is reported in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theory paper. We cannot think of any direct societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

66

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All resources are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

67

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the code for reproducing our experiments through an anonymized
GitHub repository.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:[NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

68

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

69

	Introduction
	How to consistently grow: equivalence of differently sized objects
	How to define distances across dimensions

	Transferability is just continuity
	Transferability implies size generalization
	Transferable neural networks
	Sets
	Graphs
	Point clouds

	Size generalization experiments
	Bibliography
	Notation
	Related work
	Consistent sequences and compatible, transferable maps: details and missing proofs from Section 2
	Consistent sequences and limit space
	Compatible maps
	Metrics on consistent sequences

	Transferability: details and missing proofs from Section 3
	Transferable maps
	Convergence, transferability and stability
	Convergence rates under sampling

	Generalization bounds: details and missing proofs from Section 4
	Transferable neural networks

	Example 1 (sets): details and missing proofs from Section 5.1
	Consistent sequences on sets
	Invariant networks on sets

	Example 2 (graphs): details and missing proofs from Section 5.2
	Duplication consistent sequence for graphs
	Message Passing Neural Networks (MPNNs)
	Constructing new transferable GNNs: GGNN and continuous GGNN

	Example 3 (point clouds): details and missing proofs from Section 5.3
	Duplication consistent sequence for point clouds
	DeepSet for Conjugation Invariance (DS-CI)
	Constructing new transferable models: SVD-DS

	Size generalization experiments: details from Section 6
	Size generalization on sets
	Size generalization on graphs
	Size generalization on 3D point clouds
	Continuity of Gromov-Wasserstein distance and its third lower bound

	Limitations of this work

