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Abstract

We introduce a new family of algorithms for detecting and estimating a rank-one
signal from a noisy observation under prior information about that signal’s direction,
focusing on examples where the signal is known to have entries biased to be positive.
Given a matrix observation Y , our algorithms construct a nonlinear Laplacian,
another matrix of the form Y + diag(σ(Y 1)) for a nonlinear σ : R → R, and
examine the top eigenvalue and eigenvector of this matrix. When Y is the (suitably
normalized) adjacency matrix of a graph, our approach gives a class of algorithms
that search for unusually dense subgraphs by computing a spectrum of the graph
“deformed” by the degree profile Y 1. We study the performance of such algorithms
compared to direct spectral algorithms (the case σ = 0) on models of sparse
principal component analysis with biased signals, including the Gaussian planted
submatrix problem. For such models, we rigorously characterize the strength
of rank-one signal, as a function of the nonlinearity σ, required for an outlier
eigenvalue to appear in the spectrum of a nonlinear Laplacian matrix. While
identifying the σ that minimizes the required signal strength in closed form seems
intractable, we explore three approaches to design σ numerically: exhaustively
searching over simple classes of σ, learning σ from datasets of problem instances,
and tuning σ using black-box optimization of the critical signal strength. We find
both theoretically and empirically that, if σ is chosen appropriately, then nonlinear
Laplacian spectral algorithms substantially outperform direct spectral algorithms,
while retaining the conceptual simplicity of spectral methods compared to broader
classes of computations like approximate message passing or general first order
methods.

1 Introduction

Principal component analysis (PCA) is one of the most ubiquitous computational tasks in statistics
and data science, seeking to extract informative low-rank structures from noisy observations organized
into matrices (see, e.g., [AW10, JC16, JP18, GGH+22] for a few of the huge number of available
surveys). We will study a family of mathematical models of such problems involving detecting
or recovering these low-rank structures. These problems are specified by a family of probability
measures Pn,β on n× n symmetric matrices, where β is a signal-to-noise parameter. The observed
matrix is biased in the direction of a low-rank signal: there is a latent unobserved unit vector
x ∈ Sn−1 ⊂ Rn such that, when Y ∼ Pn,β , then

E [Y | x] ≈ β
√
n · xx⊤.

For this class of problems, we consider two computational tasks:
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1. Detection: Determine whether the observed data is uniformly random (β = 0) or contains
a signal (β > 0). In particular, we say that a sequence of functions fn : Rn×n

sym → {0, 1}
(usually encoding a single algorithm allowing for various n) achieves strong detection if

lim
n→∞

Pn,β (fn(Y ) = 1) = lim
n→∞

Pn,0 (fn(Y ) = 0) = 1.

2. Recovery: When β > 0, estimate the hidden signal x.1 We say that a sequence of functions
x̂ = x̂n : Rn×n

sym → Sn−1 achieves weak recovery if, for some δ > 0,

lim inf
n→∞

Pn,β (|⟨x̂n(Y ),x⟩| ≥ δ) > 0,

and achieves strong recovery if |⟨x̂n(Y ),x⟩| → 1 in probability as n → ∞.

A common approach to such problems that we detail in Section 3.1 is to “perform PCA” on Y
directly, meaning in this context to look for an unusually large eigenvalue to test whether β = 0 or
β > 0, and to estimate x by the eigenvector associated to such an eigenvalue. We call this a direct
spectral algorithm. This approach is effective, but is agnostic to any information we might have in
advance about the hidden x. In this paper, we propose a new framework for improving direct spectral
algorithms when we have some knowledge about x. In particular, our approach will be sensible when
we have directional information about x, say that it lies in a given cone, a class of problem proposed
by [DMR14]. Our approach is probably not well-suited to other kinds of structural prior information
that other works have sought to exploit, like sparsity [ZHT06, AW08, JL09, DM14] or the opposite
assumption of a perfectly flat signal from the hypercube, x ∈ {±1/

√
n}n [DAM15, FMM18].

To be concrete, we will consider the following class of models where ⟨x,1⟩ is somewhat large with
high probability.

Definition 1.1 (Sparse Biased PCA). Let p = p(n) ∈ [0, 1] satisfy

ω

(
log n

n

)
≤ p(n) ≤ o(1).

Let η be a probability measure with positive mean (Ez∼η z > 0) and finite third absolute moment

(Ez∼η |z|3 < ∞). Let x = y/∥y∥ with y ∈ Rn having entries yi = εizi, where zi
i.i.d.∼ η and

εi ∈ {0, 1} are drawn in one of the following ways:

• Random Subset: Sample S ⊆ [n] uniformly at random among subsets of size |S| = pn, and
set εi := 1{i ∈ S}.

• Independent Entries: Draw εi
i.i.d.∼ Ber (p).

We call this choice the sparsity model. Finally, we draw Y ∼ Pn,β from this model as

Y = β
√
n · xx⊤ +W

for W a symmetric matrix drawn from the Gaussian orthogonal ensemble (GOE), i.e., having
Wij = Wji ∼ N (0, 1 + 1{i = j}) independently.2 We call (η, p(n)) the model parameters and β
the signal strength of the model.

In these models, clearly we have arranged to have E[Y | x] = β
√
n · xx⊤ exactly. Our models are

in the spirit of Non-Negative PCA [MR15], where the stricter entrywise condition xi ≥ 0 is imposed.
On the other hand, for technical reasons we focus on sparse x, though our algorithms seem sensible
for dense x as well (see Appendix D.3).

For sparsity p(n) = o(1), it is believed that optimal algorithms for such problems have a tradeoff
between runtime and performance, in the sense that one may spend more time computing and in
return identify weaker signals (with a smaller value of β). In contrast, for p(n) a constant, there is
a single critical β∗ such that a polynomial-time algorithm can identify signals of strength β > β∗,
while doing so for β < β∗ is believed to require nearly exponential time. In the sparse case see,

1Since the actual signal is xx⊤ which is unchanged by negating x, it is only sensible to ask to estimate either
this matrix or {x,−x}, which is why we take the absolute value of the inner product of an estimator with x.

2The choice of scaling of the diagonal variances has no effect on our results; see our Proposition B.10.
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e.g., [AKS98] for the case of the planted clique problem discussed below, or [DKWB23] for Gaussian
models as above. Our goal here is to study a particular aspect of the former, more algorithmically
flexible situation. Namely, we will ask: how weak of a signal can one detect without straying too far
from the direct spectral algorithm?

To give a concrete example, the following is one special case of our model that has been widely
studied [MRZ15, MW15, HWX17, CX16, BMV+18, BBH19, LM19, GJS21].

Example 1.2 (Gaussian Planted Submatrix). Let η := δ1 be the probability measure concentrated on
the constant 1, let p(n) := β/

√
n for the same β as the signal strength, and use the Random Subset

sparsity model. The result is that Y is the Gaussian random matrix W , where a random principal
submatrix of dimension β

√
n has had the means of its entries elevated from 0 to 1.

While we focus on the specific case of x correlated with 1, in Appendix F.3 we discuss possible
extensions to other forms of directional prior information.

1.1 Summary of contributions

In this paper, we first propose a new PCA algorithm that seeks to incorporate our prior information
about x by deforming the matrix Y before computing its top eigenpair. Namely, we add to (a
normalized version of) Y a diagonal matrix D with entries given by a bounded nonlinear function
σ of (a normalized version of) the entries of Y 1, for 1 the all-ones vector. The idea behind these
nonlinear Laplacian matrices is that, since xx⊤ is rank-one and x is positively correlated with 1,
both the spectrum of Y and the vector Y 1 carry information about x. Forming a diagonal matrix
from the latter and attenuating its largest entries by applying σ lets these two sources of information
cooperate, leading to a more effective spectral algorithm for detecting and estimating the signal.

We then give a complete description of the appearance of unusually large “outlier” eigenvalues in the
spectrum of such matrices built from Y drawn from models as in Definition 1.1. The appearance of
such outliers corresponds to when, for instance, an algorithm thresholding the largest eigenvalue can
detect the presence of a signal. For a large class of σ and η, we identify the β∗ = β∗(σ) such that there
is an outlier in the σ-Laplacian if and only if β > β∗(σ) (Theorem 3.3 and its subsequent discussion).
This analysis applies sophisticated tools developed in prior work on random matrix theory and free
probability, and gives β∗(σ) via a sequence of integral equations involving σ and η. As a consequence
we learn that, for instance for the concrete example of the Gaussian Planted Submatrix problem,
nonlinear Laplacian algorithms considerably outperform direct spectral algorithms (Theorem 3.4 and
Figure 1).

Because the description of β∗(σ) is rather complex and seems unlikely to admit a closed form, we
also explore several heuristics for identifying an effective σ for a given problem. We find that our
algorithms are quite robust to this choice, and a good σ can equally well be found by hand, learned
from data, or tuned by black-box optimization (Figure 2). Further, nonlinear Laplacian algorithms
appear to be robust across the models described in Definition 1.1; a σ that we optimize for one
such model is quite effective for others (Appendix F.2). Based on these findings, we argue that
nonlinear Laplacian algorithms give a simple, robust, and substantial improvement over direct spectral
algorithms, using a bare minimum of extra information about the input matrix beyond its spectrum.

2 Nonlinear Laplacian spectral algorithms

We will work with the following normalization of Y in the setting of Definition 1.1:

Ŷ := Y /
√
n = βxx⊤ + Ŵ

for Ŵ := W /
√
n. As we will describe, in our models this ensures that the extreme eigenvalues of

Ŷ are of constant order. We will construct algorithms for PCA using the following class of matrix.

Definition 2.1 (σ-Laplacian matrix). Given the observed matrix Y and a scalar function σ : R → R,
we define the σ-Laplacian as:

L = Lσ(Ŷ ) := Ŷ + diag(σ(Ŷ 1))︸ ︷︷ ︸
=:Dσ(Ŷ )=D

where σ applies entrywise to the vector Ŷ 1 ∈ Rn.
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Definition 2.2 (σ-Laplacian spectral algorithms). Given σ : R → R and τ ∈ R, the associated
σ-Laplacian spectral algorithm for detection is f : Rn×n

sym → {0, 1} that outputs

f(Y ) := 1{λ1(Lσ(Ŷ )) ≥ τ},
and the associated σ-Laplacian spectral algorithm for recovery is v̂ : Rn×n

sym → Sn−1 that outputs

v̂(Y ) := v1(Lσ(Ŷ )).

Here (λ1(·),v1(·)) denote the top eigenpair of a matrix.

As we discuss in Section 3.1, the direct spectral algorithms that previous work has focused on are
special cases of the above with σ = 0.

For technical reasons (see Section 3.4) it is easier to work with the following variant of the σ-
Laplacian.

Definition 2.3 (Compressed σ-Laplacian matrix). For each n ≥ 1, fix V ∈ Rn×(n−1) with columns
an orthonormal basis of the orthogonal complement of the span of the all-ones vector 1. Given

Ŷ ∈ Rn×n
sym and σ as before, define the compressed σ-Laplacian as L̃σ(Ŷ ) := V ⊤Lσ(Ŷ )V ∈

R(n−1)×(n−1). And, define the compressed σ-Laplacian spectral algorithm for detection as in

Definition 2.2, only with L replaced by L̃. For recovery, use V v1(L̃σ(Ŷ )).

We expect all results given below for compressed σ-Laplacians to hold as well for the original
σ-Laplacians; this change is almost certainly merely a theoretical convenience. The simple idea
behind these algorithms is that, if x is biased in the 1 direction, then

Ŷ 1 = β⟨x,1⟩x+ Ŵ1

will be somewhat correlated with x. For the models of Definition 1.1, Ŵ1 will further be a standard
Gaussian random vector (up to a negligible adjustment). In particular, if σ is monotone, then D will
become larger entrywise as β increases, and will have larger diagonal entries in the coordinates where
x is larger.

While it is tempting to dispense with σ entirely, we will see below that we have ∥Ŷ ∥ = O(1),
while standard asymptotics about the maximum of independent Gaussian random variables

maxni=1 |(Ŵ1)i| = Ω(
√
log n). So, we must “tame” the largest entries of D by applying σ so

that it can “cooperate” with Ŷ in determining the largest eigenvalue of L rather than dominating Ŷ .

For further intuition about the D term, note that if Ŷ is a normalized adjacency matrix of a graph,

then the vector Ŷ 1 contains normalized and centered degrees of each vertex in the graph. If a random
graph is deformed to have a planted clique (see Appendix D.2) or an unusually dense subgraph, then
this degree vector carries some information about which vertices belong to this planted structure. As
we discuss in Appendix A, both spectral and degree-based algorithms have been studied before for
such problems, and the σ-Laplacians describe a simple and tunable family of “hybrid” algorithms
involving both kinds of information. This example is also why we call L a “Laplacian,” since its
definition resembles that of the graph Laplacian, the difference of the (unnormalized) diagonal degree
and adjacency matrices of a graph.

Our original motivation, which we discuss in greater detail in Appendix F.4 (see also Appendix A
for general discussion of related work), was to study a broad class of spectral algorithms where one
performs PCA on M(Y ) for some function M : Rn×n

sym → Rn×n
sym . It is reasonable to parametrize

such M(Y ) as a neural network, alternating linear maps and entrywise nonlinearities. Subject
to the natural criteria of equivariance and dimension generalization of M that we explain in the
Appendix, such M(Y ) are closely related to the much-studied graph neural networks, and the space
of permissible linear maps to use is actually quite small, including the function Y 7→ diag(Y 1) that
appears in nonlinear Laplacians. To perform random matrix analysis at the level of detail that we do
here, one must be careful to make sure that the spectrum of M(Y ) remains on a fixed scale as one
applies these transformations. This can easily break down if one allows others of the available linear
functions in M(Y ), such as functions with rank-one outputs like Y 7→ 1(Y 1)⊤. We have found this
issue to be quite delicate, so, as a first step, we have focused on nonlinear Laplacians as one special
case of the above general class of flexible spectral algorithms, which do allow for sufficient control
of the spectrum to study limiting empirical spectral distributions and outlier eigenvalues in detail.
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3 Characterization of outlier eigenvalues

Our main results characterize when a σ-Laplacian matrix has an outlier eigenvalue. Let us first
quickly recall the corresponding results for the case σ = 0.

3.1 Prior work: σ = 0 and direct spectral algorithms

In this case, when β = 0, Ŷ = Ŵ is just a normalized Wigner matrix,3 and it is a classical result of
random matrix theory that its eigenvalues follow Wigner’s semicircle law µsc, with high probability

lying in the interval [−2− o(1), 2 + o(1)] (Theorem B.12 in Appendix). When β > 0, Ŷ consists of
a rank-one perturbation of a Wigner matrix. Such random matrix distributions are commonly referred
to as spiked matrix models and have been studied extensively in high-dimensional statistics and
random matrix theory [Joh01, BBAP05, Pau07, FP07, CDMF09, PWBM18, EAKJ20, LM19]. The
bulk eigenvalues remain stable under this rank-one perturbation (Proposition B.17 in Appendix) and
still obey the semicircle law. However, when the signal-to-noise ratio β exceeds a certain threshold,
the rank-one perturbation induces a single outlier eigenvalue outside of the bulk. This sharp phase

transition in the behavior of the largest eigenvalue of Ŷ is known as a Baik–Ben Arous–Péché (BBP)
transition, named after the work of [BBAP05]. In this setting, it takes the following form:

Theorem 3.1 ([FP07]). Consider a symmetric random matrix Y = W + β
√
n · xx⊤ ∈ Rn×n

sym as
above, where β > 0, x is a unit vector and W is a GOE random matrix independent of x. Then the

following hold for the largest eigenvalue λ1(Ŷ ) and the corresponding unit eigenvector

• If β ≤ 1, then λ1(Ŷ )
(p)−−→ 2 and |⟨v1(Ŷ ),x⟩| (p)−−→ 0 (the arrows denoting convergence in

probability).

• If β > 1, then λ1(Ŷ )
(p)−−→ β + 1/β > 2 and |⟨v1(Ŷ ),x⟩|2 (p)−−→ 1− 1/β2 > 0.

For models as in Definition 1.1, this result implies the following analysis of direct spectral algorithms:

Corollary 3.2. In a model of Sparse Biased PCA as in Definition 1.1, a direct spectral algorithm
(the algorithm of Definition 2.2 with σ = 0) achieves strong detection and weak recovery if and only
if β > β∗(0) := 1.

3.2 Our contribution: σ ̸= 0 and nonlinear Laplacian spectral algorithms

We now present our results, generalizing part of Theorem 3.1 to (compressed) nonlinear Laplacian
matrices. We always make the following assumptions on the nonlinearity σ without further mention.

Assumption 1 (Properties of σ). We assume that:

1. σ is monotonically non-decreasing.

2. σ is bounded: |σ(x)| ≤ K for some K > 0 and all x ∈ R.

3. σ is ℓ-Lipschitz for some ℓ > 0.

We write edge+(σ) := supx∈R σ(x), which is finite by the second assumption, and σ(R) for the
image of σ, which is an interval (open or closed on either side) of R of finite length by the first two
assumptions.

For now we give just the final result of our analysis, and describe the idea of the derivation below.
Our main result is as follows:

Theorem 3.3. For a model of Sparse Biased PCA as in Definition 1.1, define

m1 := E
x∼η

x > 0, m2 := E
x∼η

x2.

Given σ, define θ = θσ(β) to solve the equation

E
y∼η

g∼N (0,1)

[
y2

θ − σ(m1

m2
βy + g)

]
=

m2

β

3That is, a symmetric random matrix with i.i.d. entries above the diagonal; conventions vary for the diagonal
entries, but, as we have mentioned, this choice does not affect the results we will discuss.
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if such θ > edge+(σ) exists, and θ = edge+(σ) otherwise. The following hold almost surely for the

sequence of compressed σ-Laplacians L̃ = L̃(n):

• If Eg∼N (0,1)

[
1

(θσ(β)−σ(g))2

]
≥ 1, then

λ1(L̃
(n)) → edge+(µsc ⊞ σ(N (0, 1))),

the right boundary point of the support of the probability measure µsc ⊞ σ(N (0, 1)). Here
µsc is Wigner’s semicircle law, ⊞ is the additive free convolution operation presented in
Appendix B.4, and σ(N (0, 1)) is the pushforward of the standard Gaussian by σ. Moreover,

|⟨x,V v1(L̃
(n))⟩| → 0.

• If Eg∼N (0,1)

[
1

(θσ(β)−σ(g))2

]
< 1, then

λ1(L̃
(n)) → θσ(β) + E

g∼N (0,1)

[
1

θσ(β)− σ(g)

]
> edge+(µsc ⊞ σ(N (0, 1))),

|⟨x,V v1(L̃
(n))⟩|2 → m2

β2


 E

y∼η
g∼N (0,1)

[
y2

(
θσ(β)− σ

(
m1

m2
βy + g

))2

]


−1

(
1− E

g∼N (0,1)

[
1

(
θσ(β)− σ(g)

)2

])
> 0.

In the special case where the entrywise condition xi ≥ 0 holds almost surely (i.e., η in Definition 1.1
is a probability measure on R≥0), there is a unique β∗ = β∗(σ) > 0 that solves

E
g∼N (0,1)

[
1

(θσ(β∗)− σ(g))2

]
= 1,

and the conditions of the two cases above are equivalent to β ≤ β∗ and β > β∗, respectively. In that
case, this result precisely identifies the critical signal strength β∗(σ) mentioned earlier, the threshold
beyond which the σ-Laplacian has an outlier eigenvalue.4 One may also check that, setting σ = 0 and

using that in this case edge+(µsc ⊞ σ(N (0, 1))) = edge+(µsc) = 2, this result is indeed compatible
with Theorem 3.1, giving β∗(0) = 1.

3.3 Example: Gaussian Planted Submatrix and Planted Clique models

We demonstrate the concrete consequence of Theorem 3.3 for the model proposed in Example 1.2
above. This is conditional on the accuracy of the numerical evaluation of the Gaussian expectations
appearing in the Theorem. These involve only low-dimensional function and integral evaluations and
we are confident that our numerical solutions are accurate, but we mark the following result with (n)

to indicate its mild conditional nature.

Theorem 3.4 (Gaussian Planted Submatrix (n)). There exist σ : R → R and τ ∈ R such that
the following holds for the choices of Example 1.2 substituted into the setting of Definition 1.1. If

β > 0.76 and Y ∼ Pn,β , then the compressed σ-Laplacian L̃σ(Ŷ ) with high probability has a single
outlier eigenvalue (see Figure 1 for an illustration and Appendix B.3 for precise definitions), and

|⟨x,V v1(L̃σ(Ŷ ))⟩| converges in probability to a strictly positive deterministic number. In particular,
if β > 0.76, then the compressed σ-Laplacian spectral algorithm with threshold τ succeeds in strong
detection and weak recovery in the Gaussian Planted Submatrix model.

Underlying this result is a choice of σ for which β∗(σ) < 0.76; we discuss below in Section 4 various
ways one can find σ achieving the above, and illustrate one such σ in Figure 1.

4For general η, our results do allow for the possibility that, as β increases, an outlier eigenvalue first appears,
then disappears, then appears again, and so forth. We expect this not to happen for most choices of η and
σ, but we leave it to future work to understand when (if ever) this more complicated situation arises. See
Appendix C.4.2 for some more discussion of similar issues in prior work.
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Algorithm Eigenvalues: β = 0 Eigenvalues: β = 0.9 Eigenvalues: β = 1.2

Direct (σ = 0)

-10 0 10

0

σ-Laplacian

-10 0 10

-1.7

0

1.7

Figure 1: A comparison of the eigenvalues of the matrices used by a direct spectral algorithm and a
σ-Laplacian spectral algorithm for the Gaussian Planted Submatrix problem. The left column shows
the σ used (which is zero for the direct algorithm). The other columns show the empirical eigenvalue
distributions for various signal strengths β. The maximum eigenvalue is indicated with an arrow to
highlight outliers, and the analytic prediction of the limiting eigenvalue density is plotted in red.

There are two reasonable benchmarks with which to compare this performance. On the one hand,
β∗(0) = 1 is the corresponding threshold for the direct spectral algorithm, per Theorem 3.1. In
words, our result says that only 76% as strong of a signal is required by a suitable nonlinear
Laplacian to achieve strong detection. On the other hand, the work of [HWX17] shows that a belief
propagation (BP) algorithm achieves weak recovery provided β > 1/

√
e ≈ 0.61. In this setting of

dense input data, BP is likely also to behave similarly to approximate message passing (AMP), an
approximation that is more efficient to compute. Thus the performance of our nonlinear Laplacian
algorithm lies between that of the direct spectral algorithm and BP/AMP, while our algorithm enjoys
the advantages of being conceptually simpler than BP/AMP and only making a small modification to
the direct spectral algorithm. (See Appendix A for a more detailed comparison with BP/AMP.)

In the same vein, we may also better understand the individual power of the two components of
any σ-Laplacian, and show that they must be combined in order to achieve the above performance:

neither the eigenvalues of Ŷ nor the values of Ŷ 1 alone can achieve strong detection for any β < 1.

Theorem 3.5. The following hold in the Gaussian Planted Submatrix model:

1. If β < 1, then there is no function of the vector (λ1(Ŷ ), . . . , λn(Ŷ )) that achieves strong
detection. (This result is due to prior work of [MRZ15].)

2. For any β ≥ 0 (not depending on n), there is no function of the vector Ŷ 1 that achieves
strong detection. (This result is our contribution, which we prove in greater generality than
just the Gaussian Planted Submatrix model; see Theorem C.10.)

It is maybe surprising that the information contained in Ŷ 1, which by itself is useless for detection in
this regime, is enough to “boost” the performance of a spectral algorithm substantially. The question
of how effective “purely spectral” algorithms can be for (weak) recovery is raised by [HWX17] (their
Section 1.3), asking whether the direct spectral algorithm’s β∗ = 1 threshold is optimal in this regard.

Our results suggest that only a small step beyond algorithms using only the eigenvalues of Ŷ is
enough to improve on this.

Finally, we offer a more speculative extension. As we discuss in Appendix D.2, from the point
of view of the random matrix theory of σ-Laplacians, the much-studied Planted Clique problem
looks nearly identical to the Gaussian Planted Submatrix problem. We define this problem formally
in Definition D.1, but, in words, it is given by taking Y to be a centered adjacency matrix of an
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Erdős-Rényi random graph with each edge present independently with probability 1/2, with a clique
(complete subgraph) inserted on a random subset of β

√
n vertices. Replacing the Gaussian structure

with discrete structure creates technical challenges that we have not been able to surmount. We are
quite confident, but leave as an open problem to show, that the above results apply directly to the
Planted Clique problem.

Conjecture 3.6. The results of Theorem 3.4 hold verbatim if the Gaussian Planted Submatrix problem
is replaced by the Planted Clique problem.

See Appendix D.3 for discussion of further examples and extensions.

3.4 Proof techniques

We now sketch the analysis leading to Theorem 3.3. Full proofs are given in Appendix C. Recall that

we are interested Ŷ = Ŵ + βxx⊤, where Ŵ is a Wigner random matrix with entrywise variance
1/n and x is a unit vector. Consequently, the matrix L can be expressed as

L = Ŵ + βxx⊤ + diag(σ(Ŵ1+ β⟨x,1⟩x))︸ ︷︷ ︸
=:X

, (1)

which we interpret as a perturbation of the Wigner noise Ŵ by a matrix X .

If σ = 0, the perturbation term is simply X = βxx⊤, and in particular is low-rank. In that case,

the bulk eigenvalue distribution of L is always the same as that of Ŵ , obeying the semicircle law.
The effect of X in such models is limited to creating potential outlier eigenvalues, leaving the
bulk spectrum unchanged. Our setting of σ ̸= 0 presents a key difference, stemming from the fact
that our X is (usually) full-rank, even when β = 0. Therefore, even when β = 0, the spectrum

of L undergoes a non-trivial deformation from that of Ŵ , which is described by free probability
theory (specifically, by the operation of additive free convolution appearing in Theorem 3.3). When
β > 0, the bulk eigenvalues will resemble this same deformation, and may have a further outlier
eigenvalue generated by a corresponding outlier eigenvalue of X . Such results have been obtained
by [CDMFF11, Cap17, BG24], which our analysis applies.

Those results, roughly speaking, give a recipe for deducing the behavior of the eigenvalues of L from
those of X; in particular, outlier eigenvalues in L arise from sufficiently extreme eigenvalues in X .
So, we proceed by characterizing the eigenvalues of X . Notably, X itself resembles a spiked matrix
model, although one where the “noise term” is a diagonal matrix, making the analysis different than
that for conventional spiked matrix models. The eigenvalues of X are as follows:

Lemma 3.7. In the setting of Theorem 3.3, the following hold almost surely for the sequence of
X = X(n):

1. The empirical spectral distribution satisfies 1
n

∑
i δλi(X(n))

(w)−−→ σ(N (0, 1)), where the
arrow denotes weak convergence (Definition B.1 in Appendix).

2. The largest eigenvalue of X(n) satisfies λ1(X
(n)) → θσ(β) for the function θσ described

in Theorem 3.3.

3. All other eigenvalues λ2(X
(n)), . . . , λn(X

(n)) lie in σ(R), where the bar denotes the
closure.

With this understanding, the eigenvalues of L can be effectively described using the above tools,

provided that we make the adjustment from Definition 2.3. The reason for this is that Ŵ is weakly

dependent on X , as X depends on Ŵ1, while standard analysis from random matrix theory
assumes these signal and noise matrices to be independent. When W is drawn from the GOE,
we can circumvent this issue by instead analyzing the spectrum of the compressed σ-Laplacian

L̃ = L̃(n) = V ⊤LV . By the rotational symmetry of the GOE, the noise term of L̃ remains a
(n − 1) × (n − 1) GOE matrix, up to a negligible rescaling. And, this noise term has had the 1

direction “projected away,” whereby, it is now independent of the projected signal term, making the
model compatible with existing results.

To analyze the top eigenvector of L̃(n), we use a simple trick: if we replace the term βxx⊤ in the

underlying L with (β + t)xx⊤ for another parameter t, then one may show that ⟨x,V v1(L̃
(n))⟩2 is
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precisely the derivative of λ1(L̃
(n)) with respect to t at t = 0. We argue that one may exchange this

derivative with the limit n → ∞, and thus ⟨x,v1(L)⟩2 is obtained as a derivative of a closely related

formula to that for limn→∞ λ1(L̃
(n)).

As an aside, in addition to the analysis in Theorem 3.3 of the largest eigenvalue, we obtain the
following result on the empirical spectral distribution of the σ-Laplacian, which is sensible given the
meaning of the additive free convolution operation (see Definition B.20 in Appendix) and explains its
appearance in Theorem 3.3:

Lemma 3.8. For a model of Sparse Biased PCA as in Definition 1.1, for any σ and β ≥ 0, almost

surely the empirical spectral distribution satisfies 1
n

∑
i δλi(L̃(n))

(w)−−→ µsc ⊞ σ(N (0, 1)).

This statement should be read as describing the bulk eigenvalues of L̃; recall that weak convergence
does not give any guarantees about the behavior of extreme or outlier eigenvalues, so Theorem 3.3
indeed gives additional further information.

4 Numerical optimization of nonlinearities

Let us comment briefly on how we actually find the σ and the number 0.76 in Theorem 3.4. First, note
that, given σ, in principle the above results determine β∗(σ), albeit via an integral equation involving
an expectation over g ∼ N (0, 1). Further, that equation is only given in terms of the function θσ(β),
which itself is only given in terms of the solution of another integral equation involving an expectation
over g ∼ N (0, 1) and y ∼ η. This is why we point out above that our results only determine β∗
assuming the fidelity of the numerical calculations of these integrals (which are, however, only at
most two-dimensional and thus not computationally challenging).

The question remains of how to find σ that minimizes β∗(σ). We have not been able to identify even a
contrived construction of σ ̸= 0 satisfying Assumption 1 for which we can find β∗(σ) in closed form.
So, we resort to heuristically identifying good σ and then estimating β∗(σ) for such σ numerically.
We have studied three approaches to this task, which all seem more or less equally effective:

1. Pick a simple class of σ given by a small number of parameters, such as σ(x) = a tanh(bx)
for a, b ∈ R or σ(x) = min{c,max{d, ax+ b}} for a, b, c, d ∈ R and optimize β∗(σ) over
these few parameters by manual inspection of numerical results or exhaustive grid search.

2. Fix a multi-layer perceptron (MLP) structure for σ and optimize it by training λ1(Lσ(Y ))
to classify a training dataset of synthetic Y drawn from the null model (β = 0) and the
structured alternative model (β > 0).

3. Fix a simple structure for σ such as a step function5 over a fixed grid and directly optimize
the (complicated) objective function β∗(σ) via gradient-free black-box optimization methods
such as the Nelder-Mead or differential evolution algorithms.

We discuss the implementation details of these choices further in Appendix D.1.2. We conclude from
these explorations that σ-Laplacian algorithms are rather robust to the choice of σ—just a few degrees
of freedom in σ appear to suffice to achieve optimal performance. We illustrate this in Figure 2, which
gives the σ obtained by each of the above methods. On the other hand, mathematically understanding
the behavior of the equations determining β∗(σ) seems quite challenging, and we leave this as an
interesting problem for future work.

5 Conclusion

Above, we have introduced the new class of nonlinear Laplacian spectral algorithms, given a complete
analysis of their performance for the task of strong detection in Sparse Biased PCA models, demon-
strated as a consequence that such algorithms substantially outperform direct spectral algorithms for
the Gaussian Planted Submatrix problem, and verified those findings empirically (see also Figures 3
and 4 in the Appendix for further experimental results).

5Strictly speaking a step function does not satisfy the Lipschitz condition of Assumption 1, but it is
straightforward to show that an arbitrarily small smoothing σϵ (say by convolution with a Gaussian of small
width ϵ) of such σ does, and limϵ→0 β∗(σϵ) recovers the value of β∗(σ) computed for the step function.

9



-10 0 10

0

(a) σ(x) = 0

(β∗ = 1)

-10 -5.2 2.2 10

0

4.4

(b) “Z-shaped”

(β∗ = 0.765)

-10 0 10

-1.7

0

1.7

(c) “S-shaped”

(β∗ = 0.755)

-10 0 10

-3.2

-1.0

(d) MLP

(β∗ = 0.759)

-1.4 4.3

0

5.0

(e) Step function

(β∗ = 0.755)

Figure 2: Comparison of σ obtained by various approaches for the Gaussian Planted Submatrix model:
we illustrate σ optimized over small function classes (b–c), learned from data using a multi-layer
perceptron (MLP) structure (d), and obtained from black-box optimization using a step function
structure (e). The corresponding value of β∗(σ) is given below each.

Limitations We mention three limitations of our work. First, as mentioned, algorithms like BP and
AMP can perform better than nonlinear Laplacian algorithms for specific problems, for example as
shown for the Gaussian Planted Submatrix problem by [HWX17]. We claim that nonlinear Laplacian
algorithms, however, are conceptually simpler than BP/AMP and also easier to tune: our results
indicate that one can either tune them mechanically from data or merely “eyeball” a reasonable
nonlinearity to use. This is far from the case for AMP, where the iteration rules (including the subtle
“Onsager correction”) must be chosen carefully to yield a sensible limiting behavior. Second, we
have made the assumption that our models involve only additive Gaussian noise (Definition 1.1),
but we believe that the same analysis should apply to more general models (see Conjecture 3.6 and
Appendix D.2). Finally, we leave open several challenging technical questions, including those
of analyzing the algorithm’s performance on the Planted Clique problem (Conjecture 3.6) and of
understanding analytically the behavior of the threshold value β∗(σ) and the structure of the optimal
nonlinearity σ for a given problem.

Future directions It is tempting to consider designing more complex diagonal matrices D = D(Ŷ )
with which to augment spectral algorithms. One may, for instance, use a graph neural network to

map the matrix Ŷ to a vector (to set as the diagonal of D) in an equivariant way and optimize this
over a dataset (as in our treatment of building σ with a multi-layer perceptron). See Section F.4 for
more discussion of such an approach; here we only mention a few salient considerations. Firstly, if

D can depend on Ŷ more strongly than merely through Ŷ 1, then the device of compression that we

have used to decouple D from Ŵ may break down and the analysis could become more challenging;
for sufficiently complex D, the entire apparatus of free probability (which plays a crucial role in
the results of [CDMFF11] that we use) might no longer apply, which would leave us with random
matrices requiring a fundamentally different toolkit to analyze. Also, allowing very complex D
might allow one to build a complex algorithm solving the underlying statistical problem into this

diagonal matrix alone, making the first term of the nonlinear Laplacian L = Ŷ +D superfluous.
As we have argued, the merit of nonlinear Laplacians is in their balance of simplicity and strong
performance, and we believe it would be valuable to understand more precisely the tradeoff between
these properties as one blends more and more complex side information into spectral algorithms.
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A Related work

Spiked matrix models Spiked matrix models have a long history in random matrix theory and
statistics since their introduction in the work of Johnstone [Joh01]. The BBP transition was first
predicted there and proved by [BBAP05], though in a different setting than Theorem 3.1 concerning
sample covariance matrices rather than additive noise models. A useful general mathematical
reference is the Habilitation à Diriger des Recherches of Capitaine [Cap17], while a statistical survey
is given in [JP18]. In addition to the citations in the main text, let us emphasize that the problem of
how high-rank signals (rather than finite or low-rank, as the above references considered) interact
with additive noise has been studied at length recently and leads to many intriguing interactions with
free probability theory with many remaining open problems. See, for example, [DS07, CDMFF11,
Cap14, Cap17, McK21, BG24].

Modified Laplacians The idea of modifying the graph Laplacian to solve various inference
problems on graphs is not new, but seems mostly to have been explored in the context of community
detection problems where the structure planted in a graph does not change its overall density, but
rather only the relative density of connections within and between groups, as in the much-studied
stochastic block model [Abb17, Moo17]. In this literature, modifications of the Laplacian motivated
by the non-backtracking adjacency matrix and the Ihara-Bass formula concerning its eigenvalues have
proved useful [KMM+13, BMNZ14, BLM15]. Another approach, more similar to our construction,

14



considers the signless Laplacian or the sum rather than difference of the degree and adjacency matrices,
used for instance for community detection by [SD11]. However, unlike nonlinear Laplacians, these
are all still only linear combinations of the adjacency and diagonal degree matrices of a graph. Finally,
this general approach has some similarities to the idea of [MTV22] to combine linear and spectral
estimators for estimation of generalized linear models; however, that work considers computing two
estimators separately and then combining them, while we use the idea of the degree-based algorithm
to modify the input to the spectral algorithm.

Nonlinear PCA The idea of applying nonlinearities as a preprocessing step to improve the per-
formance of direct spectral algorithms has also appeared before. The work of [LKZ15, PWBM18]
considered spiked matrix models with non-Gaussian noise (or, in the former case, more general
non-additive noisy observation channels), and showed that in these cases the performance of a direct
spectral algorithm can be improved by first applying an entrywise nonlinearity to Y . However, our
method is again different because we consider applying such a nonlinearity only to the diagonal
matrix D (which is not included at all in the above algorithms). It would be natural to combine the
two methods by applying some other entrywise nonlinearity to Y in addition to applying σ to the
diagonal part of a nonlinear Laplacian, but this would complicate the analysis, and, based on the
observations of the above works that this entrywise nonlinearity is not helpful under Gaussian noise, it
seems unlikely that this would be useful for the Gaussian problems we describe in Definition 1.1. The
line of work [LAL19, LL20, MKLZ22] explored using spectral algorithms with a general nonlinearity
σ for the phase retrieval problem; the settings are somewhat similar, but in the case of phase retrieval
the description of how well a given σ performs is simpler and in fact the optimal σ can be identified
in closed form.

Degree-based algorithms In the Planted Clique model, it has been observed before that computing
the degree of each node (and in particular the maximum degree over all nodes) is sufficient to detect
a clique of size O(

√
n log n) [Kuč95]. It is straightforward to show a similar phenomenon for the

Gaussian Planted Submatrix model, which in that case takes the form of thresholding the largest entry
of Y 1 succeeding at strong detection once β = β(n) ≥ C

√
log n for sufficiently large n.

Power of restricted algorithms As we have mentioned, [MRZ15] showed that, in the Gaussian
Planted Submatrix model, a direct spectral algorithm is optimal for strong detection (achieving the
signal strength threshold β∗ = 1) among algorithms that only examine the eigenvalues of Y . This
kind of claim was pursued in greater generality and detail by [BMV+18, PWBM18]. We show in our
Theorem 3.5 that, not surprisingly, algorithms based only on the (analog of the) degree vector Y 1

fare even worse, failing at strong detection for any constant β. Our Theorem 3.4 viewed in this light
then is rather surprising: it shows that one may improve considerably on the direct spectral algorithm
using only the information of the degree vector Y 1, which on its own is useless for detection in this
regime.

Equivariant algorithms and graph neural networks (GNN) GNNs are a family of neural network
architectures that are sensible to apply to graph data, which may be viewed as an adjacency matrix
Y (possibly centered and/or normalized). Mathematically, they have the properties of invariance or
equivariance: if f : Rn×n

sym → R as for a classification or detection problem then f(PY P⊤) = f(Y ),

while if f : Rn×n
sym → Rn as for an estimation or recovery problem then f(PY P⊤) = P f(Y ),

for all permutation matrices P . The algorithms we consider, which output the top eigenvalue or
eigenvector of a σ-Laplacian, have these properties, respectively. Following the standard principles
of neural network design, it seems reasonable to construct more general learnable spectral algorithms
by combining linear equivariant layers with entrywise nonlinearities. The possibilities of such
architectures were characterized and studied by [MBHSL18] (see also results in a similar spirit of
[MFSL19, KP19, PLK+23]). In Section F.4, we show how the much simpler family of σ-Laplacian
spectral algorithms arises from trying to construct specifically spectral algorithms based on such an
architecture, if one seeks to constrain these layers so as not to “blow up” the spectrum of the matrix
being repeatedly transformed.

Approximate message passing (AMP) AMP algorithms take the general form of a “nonlinear
power method”, similar to the power method one can use to estimate the leading eigenpair of a matrix
(see, e.g., [BPW18, FVRS21] for this general perspective, as well as [CMW20] for the broader
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family of “general first order methods”). In particular, if one expands the power method applied to
the σ-Laplacian, the result somewhat resembles such an algorithm. AMP for Non-Negative PCA
with dense signals was studied by [MR15], for the Gaussian Planted Submatrix problem a “dense
BP” similar to (but less efficient than) AMP was studied by [HWX17], and the same for the Planted
Clique problem by [DM15].

While they are statistically powerful and conjectured in many situations to perform optimally, AMP
algorithms are more complex to specify, calibrate, and study than the simple kind of spectral algorithm
we consider, and are known to be fragile to mismatches between the assumptions (on the distribution
of Y and x, in our setting) used to design the specific AMP algorithm and the actual distributions
from which inputs are drawn. See, e.g., the discussion in [RSF19] as well as [CZK14] for further
practical subtleties, and the results of [IS24, IS25], who demonstrate that AMP must be modified in
order to obtain certain robustness guarantees. In contrast, spectral algorithms enjoy straightforward
such guarantees by applying standard eigenvalue and eigenvector perturbation inequalities. We also
remark that much research has focused on faster computation and approximation of the spectral
decomposition and top eigenpair, and any such improvements immediately translate to speedups for
spectral algorithms (modulo matching any special structural assumptions on the matrices involved).
For example, the recent work [BBC+25] uses sketching to approximate top eigenvector computations
for matrices that are too large to fit in memory. To the best of our knowledge, such large-scale
execution of AMP or BP has not yet been explored.

Lastly, we note that nonlinear Laplacian spectral algorithms could also be used together with AMP:
often for PCA problems the output of a direct spectral algorithm is used to initialize AMP, and the
“warm start” this gives to AMP is important to its iterations converging to an informative fixed point.
(This is not necessary for the theoretical analysis of the algorithms of [DM15, HWX17] that apply to
our specific setting, but could still be used with them to improve the quantitative performance and
rate of convergence.) This could be substituted with the output of a nonlinear Laplacian spectral
algorithm, which, by having higher correlation with the signal and giving a “warmer start,” should
reduce the number of AMP iterations required to achieve a given quality of estimate.

General-purpose non-negative PCA As we have discussed, our approach begins from a spectral
algorithm for PCA, which may be viewed as solving

maximize x̂⊤Y x̂
subject to ∥x̂∥ = 1.

(2)

When x ≥ 0, i.e., xi ≥ 0 for all i, which is one way in which x can be biased toward the 1 direction
(more restrictive than the general models we propose in Definition 1.1, which are only biased in this
direction on average rather than entrywise), a natural choice is to instead solve

maximize x̂⊤Y x̂
subject to ∥x̂∥ = 1

x̂ ≥ 0

(3)

Unfortunately, while (2) can be solved efficiently, (3) is NP-hard to solve in general [DKP02].
Various algorithmic approaches to approximating the above problem (not necessarily attached to a
statistical setting or assumption) have been proposed, for instance including semidefinite programming
relaxations [MR15, BKW22]. Generally, the above problem is an instance of optimization over the
convex cone of completely positive matrices, and various convex optimization approaches have
been studied in the optimization literature and are discussed by [DKP02] and further citations given
there. We have not explored the performance of nonlinear Laplacian spectral algorithms outside of a
statistical setting, but it seems plausible that they could also give a faster alternative to such convex
optimization methods for optimization problems like (3).

B Technical preliminaries

B.1 Notation

Linear algebra For matrices, we use ∥ · ∥ to denote the spectral norm. For vectors, we use ∥ · ∥,
∥ · ∥1, and ∥ · ∥∞ to denote the Euclidean (ℓ2) norm, ℓ1 norm, and ℓ∞ norm, respectively. For a
symmetric matrix X ∈ Rn×n

sym , we write λ1(X) ≥ · · · ≥ λn(X) for its ordered eigenvalues.
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We use 1 to denote the all-ones vector. For an index set S ⊂ [n], we write 1S for the indicator vector
of S, i.e., (1S)i = 1{i ∈ S}. For a vector x, we use diag(x) to denote the diagonal matrix with
diagonal entries given by x.

Throughout the paper, we use X̂ and x̂ to denote the suitably normalized matrix and vector, respec-
tively, where

x̂ :=
x

∥x∥ , X̂ :=
X√
n
.

Analysis The asymptotic notations O(·), o(·),Ω(·), ω(·),Θ(·) will have their usual meaning, al-
ways referring to the limit n → ∞. We write δx for the Dirac delta measure at x ∈ R, and use the
linear combination of measures notation

∑
aiµi to denote a mixture of measures µi with weights

ai. For a vector x ∈ Rn, we use ed (x) to denote its empirical distribution: ed (x) := 1
n

∑n
i=1 δxi

.
For a symmetric matrix X ∈ Rn×n

sym , we use esd (X) to denote its empirical spectral distribu-

tion: esd (X) := 1
n

∑n
i=1 δλi(X). We use µn

(w)−−→ µ to denote weak convergence of (probability)
measures.

Probability Xn
(p)−−→ X and Xn

(a.s.)−−−→ X to denote convergence in probability and almost sure
convergence of random variables, respectively. For an event A, we use Ac to denote its complement.
For a sequence of events A(n), we define the following:

{A(n) happens eventually always} := lim inf
n→∞

A(n) =
∞⋃

N=1

⋂

n≥N

A(n),

{A(n) happens infinitely often} := lim sup
n→∞

A(n) =

∞⋂

N=1

⋃

n≥N

A(n).

Note that {A(n) happens eventually always}c = {A(n)c happens infinitely often}.

Random matrices We use GOE(n, σ2) to denote the Gaussian Orthogonal Ensemble (GOE)

on Rn×n
sym with entrywise variance σ2, the law of X having Xij = Xji ∼ N

(
0, σ2

1{i = j}
)

independently for all i ≤ j. We use Wig(n, ν) to denote the Wigner matrix distribution on Rn×n
sym ,

with entries (up to symmetry) i.i.d. from the distribution ν on R. We denote the Wigner semicircle

law by µsc, which is the probability measure on R supported on [−2, 2] with density 1
2π

√
4− x2. We

use G(n, p) to denote the Erdős–Rényi random graph with n vertices and edge probability p. We

write edge+(σ) for the right endpoint of the (closed) image σ(R). For a probability measure µ on R,

we write supp(µ) for the support of µ, and edge+(µ) for the rightmost point in supp(µ). We denote
by Gν the Stieltjes transform of ν, and by Rν the R-transform of ν. We use ωµsc,ν to denote the
subordination function, and Hµ for its functional inverse. (See Section B.4 for these notions from
free probability.)

B.2 Probability tools

Weak convergence Many of our results are phrased in terms of the weak convergence of probability
measures, whose definition and basic properties we recall below.

Definition B.1 (Weak convergence). A sequence of probability measures (µn)n≥1 on R converges
weakly to another probability measure µ on R if, for every bounded continuous function f : R → R,

lim
n→∞

∫

R

f dµn =

∫

R

f dµ.

In this case, we write µn
(w)−−→ µ.

Proposition B.2 (Weak convergence of empirical distribution). Let µ be a probability measure on

R and define a sequence of random vectors x = x(n) with x
(n)
i

i.i.d.∼ µ for each 1 ≤ i ≤ n. Then,

almost surely, ed(x(n))
(w)−−→ µ.
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Proof. Let µn := ed(x(n)). By the Portmanteau theorem, weak convergence is equivalent to

P

(
µn

(w)−−→ µ

)
= P

(∣∣∣∣µn((−∞, x])− µ((−∞, x])

∣∣∣∣→ 0 for all x ∈ R

)

≥ P

(
sup
x∈R

∣∣∣∣µn((−∞, x])− µ((−∞, x])

∣∣∣∣→ 0

)
,

and the latter probability is 1 by the Glivenko-Cantelli theorem.

Definition B.3 (Wasserstein distance). Define

P1(R) := {µ a probability measure on R with EX∼µ [|X|] < ∞} .
Let Γ(µ, ν) be the set of probability measures on R2 whose marginal on the first coordinate is µ and
whose marginal on the second coordinate is ν. The Wasserstein distance on the space P1(R) is

W1(µ, ν) := inf
γ∈Γ(µ,ν)

E
(x,y)∼γ

|x− y|.

Lemma B.4 (Weak convergence and Wasserstein distance, Theorem 6.9 of [Vil09]). Let µn, µ ∈
P1(R). Then, µn

(w)−−→ µ if and only if W1(µn, µ) → 0.

Proposition B.5 (Stability of weak convergence under perturbation). Consider sequences of vectors

x(n),y(n) ∈ Rn such that ∥x(n) − y(n)∥∞ → 0 as n → ∞. For µ ∈ P1(R), ed(x
(n))

(w)−−→ µ if

and only if ed(y(n))
(w)−−→ µ.

Proof. We will apply Lemma B.4. Since they are discrete probability measures,

ed
(
x(n)

)
, ed

(
y(n)

)
∈ P1(R) for all n. The Wasserstein distance between ed

(
x(n)

)
and ed

(
y(n)

)
is given by

W1

(
ed(x(n)), ed(y(n))

)
= inf

π∈Sn

1

n

n∑

i=1

∣∣∣x(n)
i − y

(n)
π(i)

∣∣∣

≤ 1

n

n∑

i=1

|x(n)
i − y

(n)
i |

≤ ∥x(n) − y(n)∥∞
→ 0.

Suppose ed
(
x(n)

) (w)−−→ µ. Since the Wasserstein distance is a metric satisfying the triangle inequal-
ity,

W1

(
ed(y(n)), µ

)
≤ W1

(
ed(x(n)), µ

)
+W1

(
ed(x(n)), ed(y(n))

)
→ 0,

so ed
(
y(n)

) (w)−−→ µ. The converse follows in the same way.

Almost sure convergence We also will use the following familiar results about almost sure
convergence.

Lemma B.6. For s ∼ Bin (n, p), where p = p(n) = ω
(

logn
n

)
, we have

s

np

(a.s.)−−−→ 1.

Proof. Let 0 < ϵ < 1. Using the Chernoff inequality [Ver09, Corollary 2.3.4],

P

(∣∣∣∣
s

np
− 1

∣∣∣∣ > ϵ

)
= P (|s− np| > npϵ) ≤ 2 exp

(
−ϵ2np

3

)
.

Since p = ω
(

logn
n

)
, we have exp

(
− ϵ2np

3

)
< n−2 for all sufficiently large n. Hence,

∑∞
n=1 exp

(
− ϵ2np

3

)
< ∞. By the Borel-Cantelli lemma, this shows that

P

({∣∣∣∣
s

np
− 1

∣∣∣∣ > ϵ

}
occurs infinitely often

)
= 0.
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Lemma B.7. Let εi
i.i.d.∼ Ber (p), where p = p(n) = ω

(
logn
n

)
. Let xi be i.i.d. random variables

with mean m = E[xi], and suppose E[|xi|] < ∞. Then

1

np

n∑

i=1

εixi
(a.s.)−−−→ m.

Proof. Using the triangle inequality, we have
∣∣∣∣∣
1

np

n∑

i=1

εixi −m

∣∣∣∣∣ ≤
∣∣∣∣
∑n

i=1 εixi∑n
i=1 εi

−m

∣∣∣∣+
∣∣∣∣
∑n

i=1 εixi∑n
i=1 εi

∣∣∣∣ ·
∣∣∣∣
∑n

i=1 εi
pn

− 1

∣∣∣∣ .

By Lemma B.6, we have 1
np

∑n
i=1 εi

(a.s.)−−−→ 1. Since p = ω(n−1), it follows that
∑n

i=1 εi
(a.s.)−−−→ ∞.

Conditional on the εi,
∑n

i=1 εixi is a sum of
∑n

i=1 εi many i.i.d. random variables. By our above
observation, the number of terms in this sum almost surely diverges as n → ∞. So, by the Strong
Law of Large Numbers applied after conditioning on the εi, we get

∑n
i=1 εixi∑n
i=1 εi

(a.s.)−−−→ m.

Combining the results above, we conclude that

∣∣∣ 1
np

∑n
i=1 εixi −m

∣∣∣ (a.s.)−−−→ 0.

B.3 Random matrix theory

We review the models of random matrices that will be relevant to us and some of their main properties.

Definition B.8 (Gaussian orthogonal ensemble). For n ∈ N, we define the Gaussian orthogonal
ensemble (GOE) distribution with variance σ2, denoted as GOE(n, σ2) to be the law of a n × n
symmetric matrix W with entries Wij = Wji ∼ N

(
0, σ2

)
for i < j and Wii ∼ N

(
0, 2σ2

)
for all

i, with all entries with i ≤ j distributed independently.

Definition B.9 (Wigner matrix). For n ∈ N, we define the Wigner matrix distribution Wig(n, ν) to

be the law of a n× n symmetric matrix W with entries Wij = Wji
i.i.d.∼ ν for i < j and Wii := 0

for all i. We say W is Wigner matrix with variance σ2 if W ∼ Wig(n, ν) for some ν with zero
expectation and variance σ2.

The following shows that the specific choice of distribution of the diagonal entries is not important.

Proposition B.10. Consider random symmetric matrices Ŵ0 = Ŵ
(n)
0 where (Ŵ0)ij = (Ŵ0)ji

i.i.d.∼
N (0, 1/n) for all i ≤ j, and Ŵ1 = Ŵ

(n)
1 ∼ GOE(n, 1/n). Then, Law(Ŵ1) = Law(Ŵ0 +∆)

for a sequence of random matrices ∆ = ∆
(n) satisfying ∥∆(n)∥ (a.s.)−−−→ 0.

Proof. Take ∆ = diag(g) where g ∼ N (0, In/n) is independent of Ŵ0. Then, checking means
and covariances shows that these ∆ satisfy the stated distributional equality, and ∥∆∥ = ∥g∥∞ =

O(
√
(log n)/n) almost surely by standard concentration results.

In the introduction we have repeatedly mentioned the notion of “bulk” eigenvalues; let us be more

specific about the meaning of this. For a deterministic sequence of symmetric matrices X(n) ∈ Rn×n
sym

with eigenvalues {λi(X
(n))}ni=1, we say its bulk eigenvalues have distribution µ if its empirical

spectral distribution

esd
(
X(n)

)
:=

1

n

n∑

i=1

δλi(X(n))
(w)−−→ µ.

Thus the bulk indicates where the vast majority of eigenvalues are located asymptotically, but does
not describe the behavior of any o(n) eigenvalues, and in particular of small numbers of outliers
outside the support of µ (which in all cases we consider is compactly supported).
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We will be interested in such notions for random matrices, in which case the empirical spectral

distribution esd
(
X(n)

)
is itself a random measure. Therefore, it is necessary to specify a precise

mode of weak convergence. In this work, we focus on the almost sure weak convergence, which is
commonly studied in random matrix theory.

Definition B.11 (Almost sure weak convergence). Let X(n) ∈ Rn×n
sym be a sequence of random

symmetric matrices. We say that the empirical spectral distributions esd(X(n)) converge weakly

almost surely to a deterministic probability measure µ, denoted by esd(X(n))
(w)−−→
a.s.

µ if for all

continuous functions f : R → R, 1
n

∑n
i=1 f(λi(X

(n)))
(a.s.)−−−→

∫
f(x) dµ(x).

The celebrated Wigner semicircle law establishes such almost sure weak convergence for the Wigner
matrix model:

Theorem B.12 (Wigner’s semicircle limit theorem). Let W ∼ Wig(n, ν), where ν is a probability

measure with zero mean and unit variance. Then esd(W /
√
n)

(w)−−→
a.s.

µsc where µsc is the semicircle

measure on R, supported on [−2, 2] with density 1
2π

√
4− x2 on that interval.

In our work, for technical convenience, we will mostly consider a different notion: we say

esd
(
X(n)

) (w)−−→ µ almost surely if P(esd
(
X(n)

) (w)−−→ µ) = 1. But in the situation of our
concern, it is usually equivalent to the aforementioned notion.

Proposition B.13. When µ is a continuous probability measure on R, esd(X(n))
(w)−−→ µ almost

surely if and only if esd(X(n))
(w)−−→
a.s.

µ.

Proof. Let µ(n) := esd(X(n)). By [Tao12, Exercise 2.4.1], it is equivalent to prove the equivalence:

P

(
µ(n)(−∞, x] → µ(−∞, x] for all x ∈ R

)
= 1

⇔ for all x ∈ R, P
(
µ(n)(−∞, x] → µ(−∞, x]

)
= 1.

The “⇒” direction is immediate. We will prove “⇐”.

By the union bound and countable subadditivity,

P

(
∃x ∈ Q, µ(n)(−∞, x] ̸→ µ(−∞, x]

)
≤
∑

x∈Q

P

(
µ(n)(−∞, x]) ̸→ µ(−∞, x]

)
= 0.

Hence, with probability 1, we have µ(n)((−∞, x]) → µ((−∞, x]) for all x ∈ Q. It remains to show
that this implies convergence for all x ∈ R.

Fix ϵ > 0 and let x ∈ R. Choose rationals q1, q2 ∈ Q such that q1 < x < q2 and µ((q1, q2)) < ϵ.
For sufficiently large n, we have:

∣∣∣µ(n)(−∞, q1]− µ(−∞, q1]
∣∣∣ < ϵ, and

∣∣∣µ(n)(−∞, q2]− µ(−∞, q2]
∣∣∣ < ϵ.

Then by the monotonicity of µ(n), we have:

µ(n)(−∞, x]− µ(−∞, x] ≤ µ(n)(−∞, q2]− µ(−∞, q2] + µ(x, q2) < 2ϵ,

µ(n)(−∞, x]− µ(−∞, x] ≥ µ(n)(−∞, q1]− µ(−∞, q1]− µ(q1, x) > −2ϵ.

Since ϵ > 0 is arbitrary, it follows that

µ(n)(−∞, x] → µ(−∞, x] for all x ∈ R.

This concludes the proof.

The complementary notion to bulk eigenvalues is that of outlier eigenvalues, which we also mentioned

earlier. While a statement like esd
(
X(n)

) (w)−−→
a.s.

µ captures the asympototic distribution of the
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eigenvalue bulk, it does not give any information on the extreme eigenvalues. We call the top

eigenvalue λ1(X
(n)) an outlier eigenvalue if it asymptotically resides outside the bulk, i.e., if almost

surely there exists ϵ > 0 such that for sufficiently large n,

λ1(X
(n)) > edge+(µ) + ϵ,

where edge+(µ) denotes the right boundary point of the support of µ.

The proposition below states that there is no outlier eigenvalue for Wigner random matrices (and thus
for GOE matrices).

Proposition B.14 (Largest eigenvalue of Wigner matrix [FK81, BY88]). Let W ∼ Wig(n, ν),
where ν is a probability measure with zero mean, unit variance, and finite fourth moment. Then,

λ1(W /
√
n)

(a.s.)−−−→ 2.

Finally, the following results about the stability of eigenvalues and empirical spectral distributions
will be useful to handle small perturbations to the matrices we work with.

Proposition B.15 (Weyl’s inequality). For X,Y ∈ Rn×n
sym , for any i, j ∈ [n] where i+ j − 1 ≤ n,

λi+j−1(X + Y ) ≤ λi(X) + λj(Y ).

Corollary B.16 (Weyl’s interlacing inequality). For X,∆ ∈ Rn×n
sym ,

λi+σ−(X) ≤ λi(X +∆) ≤ λi−σ+(X)

where σ+, σ− are the number of positive and negative eigenvalues of perturbation ∆.

Proof. Applying Proposition B.15, get

λi(X +∆) ≤ λi−σ+(X) + λσ++1(∆)︸ ︷︷ ︸
≤0

λi+σ−(X) ≤ λi(X +∆) + λσ−+1(−∆)︸ ︷︷ ︸
≤0

,

which gives the result.

Corollary B.17 (Stability of esd under low-rank perturbation). Consider sequences of matrices

X = X(n),∆ = ∆
(n) ∈ Rn×n

sym where
rank(∆(n))

n → 0. For µ ∈ P1(R), i.e. µ is a probability

measure with finite first moment, esd (X)
(w)−−→ µ if and only if esd (X +∆)

(w)−−→ µ.

Proof. Let k = k(n) := rank(∆(n)). By Corollary B.16, λi+k(X) ≤ λi(X +∆) ≤ λi−k(X).

We would like to apply Lemma B.4. It is easy to check that esd (X) , esd (X +∆) ∈ P1.

The Wasserstein-1 distance between esd (X) and esd (X +∆) is

W1 (esd (X) , esd (X +∆)) = inf
π∈Sn

1

n

n∑

i=1

∣∣λi(X +∆)− λπ(i)(X)
∣∣

≤ 1

n

n−k∑

i=k+1

(λi(X +∆)− λi+k(X)) +O(kn−1)

≤ 1

n

n−k∑

i=k+1

(λi−k(X)− λi+k(X)) +O(kn−1)

=
1

n

2k∑

i=1

λi(X)− 1

n

n∑

i=n−2k+1

λi(X) +O(kn−1)

= O(kn−1)

Suppose esd (X)
(w)−−→ µ. By the triangle inequality,

W1(µ, esd (X +∆)) ≤ W1(µ, esd (X)) +W1(esd (X) , esd (X +∆)) → 0

Hence esd (X +∆)
(w)−−→ µ. The converse follows in the same way.
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B.4 Free probability

We now introduce some of the main notions of free probability theory. One of the main concerns
of this field is the behavior of the eigenvalues of sums X + Y of matrices whose eigenvectors
are “generically positioned” in a suitable sense with respect to one another. More precisely, if

X(n) and Y (n) are growing sequences of matrices with esd’s converging to probability measures µ
and ν respectively, then free probability explores situations where esd

(
X(n) + Y (n)

)
has a limit

expressible in terms of µ and ν.

One of the main definitions of free probability, albeit one which we will not need to use explicitly and
thus do not introduce here, is that of asymptotic freeness, a condition under which the above can be
achieved and the corresponding limit is the additive free convolution µ⊞ ν. Asymptotic freeness is a

particular notion of the generic position condition mentioned above, and for instance holds if Y (n) is

conjugated by a Haar-distributed orthogonal matrix independent of X(n). Below we describe the
generating function tools that can be used to compute the additive free convolution, but we mention
the above motivation to explain its appearance in our results. Namely, in our setting the summands of

L = Ŵ +X are asymptotically free, the former having eigenvalues with limiting distribution µsc

and the latter with distribution σ(N (0, 1)). This explains the repeated appearance of the probability
measure µsc ⊞ σ(N (0, 1)) in our results. For further details on these notions, the interested reader
may consult [VDN92, NS06, MS17].

In all definitions and statements below, we assume µ and ν are compactly supported probability
measures on R.

Definition B.18 (Stieltjes transform). The Stieltjes transform of µ is the function

Gµ(z) := E
X∼µ

[
1

z −X

]
for z ∈ C \ supp(µ).

Definition B.19 (R-transform). The R-transform of µ is the function

Rµ(z) := G−1
µ (z)− 1

z

where G−1
µ is the functional inverse of Gµ, on a domain where this is well-defined.

Definition B.20 (Additive free convolution). Given two compactly supported probability measures µ
and ν, their additive free convolution µ⊞ ν is the unique probability measure such that Rµ⊞ν(z) =
Rµ(z) +Rν(z).

The following further special function plays an important role in the description of the additive free
convolution of µsc with some other compactly supported probability measure ν (see [Bia97]).

Definition B.21 (Inverse subordination function). For ν a compactly supported probability measure,
define

Hν(z) := z +Gν(z).

The importance of this function is that it is the inverse (on a suitable domain) of the subordination
function associated to µsc and ρ, which is the function ωµsc,ν satisfying

Gµsc⊞ν(z) = Gµsc(ωµsc,ν(z)) for all z ∈ C+.

More details may be found in the older references [Voi93, Bia97, Bia98] or the more recent work of
[CDMFF11, BG24] that we will use in our proofs.

C General random matrix analysis

C.1 Largest eigenvalue of a rank-one perturbation of a diagonal matrix

We first present the main tool used to prove the second (and most complicated) part of Lemma 3.7 on
the largest eigenvalue of the signal part X of a σ-Laplacian. Recall the form of this matrix: given a
choice of σ, the matrix X from (1) takes the form

X = X(x, Ŵ ;β) = βxx⊤ + diag(σ(Ŵ1+ β⟨x,1⟩x)). (4)
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This resembles a spiked matrix model, except where the noise component is a diagonal matrix instead
of a “more random” matrix like a Wigner matrix.

We will understand such matrices through a more general result characterizing the largest eigenvalue
of a sequence of matrices of the form

M = M (n) = yy⊤ + diag(d),

where y = y(n), d = d(n) ∈ Rn are deterministic sequences of vectors satisfying

d
(n)
i ∈ [A,B] for all i ∈ [n], and lim

n→∞
max
1≤i≤n

d
(n)
i = B.

Our proof strategy follows that for the classical spiked matrix model using resolvents: we first express
the outlier eigenvalues λ of M as solutions to an equation of the form Gn(λ) = 1 (Lemma C.1). We
then consider limn→∞ Gn(z) and show that, with high probability, this limit exists pointwise and is
given by some G(z). Then the solutions of G(z) = 1 characterize the limiting behavior of the outlier
eigenvalues of M , if such outliers exist.

Lemma C.1. M has an eigenvalue λ ̸∈ [A,B] if and only if
∑n

i=1
y2
i

λ−di
= 1.

Proof. λ /∈ [A,B] is an eigenvalue of M if and only if

0 = det(λI − diag(d)− yy⊤) = det(λI − diag(d)) det(I − (λI − diag(d))−1yy⊤).

Using the identity det(I −AB) = det(I −BA), we see that this in turn holds if and only if

0 = det(I − (λI − diag(d))−1yy⊤) = 1− y⊤(λI − diag(d))−1y = 1−
n∑

i=1

y2i
λ− di

,

completing the proof.

Proposition C.2. Define functions Gn : R \ [A,B] → R by

Gn(z) :=

n∑

i=1

y
(n)2

i

z − d
(n)
i

.

Suppose there exists a function G : R \ [A,B] → R satisfying:

1. The function G is continuous and strictly decreasing on (B,∞). Also, there exists C > B
for which G(C) < 1.

2. We have Gn(z) → G(z) for each z ∈ (B,C].

If G(z) = 1 has a unique solution θ ∈ (B,∞), then λ1(M
(n)) → θ as n → ∞. Otherwise,

λ1(M
(n)) → B as n → ∞.

Proof. By Condition 1, the equation G(z) = 1 has at most one solution z in (B,C), and no solutions
in [C,∞). We will analyze these two cases separately.

Case 1: G(z) = 1 has a unique solution θ ∈ (B,C). Fix a constant 0 < ϵ < max(θ − B,C − θ).
Since the function G is continuous and strictly decreasing, we have G(θ − ϵ) > 1 and G(θ + ϵ) < 1.
By Condition 2, for sufficiently large n, we have Gn(θ − ϵ) > 1 and Gn(θ + ϵ) < 1. Since Gn is
continuous and strictly decreasing on (B,∞), we conclude that Gn(z) = 1 has a unique solution in
(B,∞), and this solution lies in the interval (θ − ϵ, θ + ϵ). Applying Lemma C.1, this result implies

that |λ1(M
(n))− θ| < ϵ. Hence, we have λ1(M

(n)) → θ as n → ∞.

Case 2: G(z) = 1 has no solutions in (B,C]. Fix a constant 0 < ϵ < C −B. In this case, we must
have G(B + ϵ) < 1. By Condition 2, for sufficiently large n, it follows that Gn(B + ϵ) < 1. Since
Gn is continuous and strictly decreasing on (B,∞), we have Gn(z) < 1 for all z ≥ B + ϵ. Thus, by

Lemma C.1, we deduce that λ1(M
(n)) < B + ϵ. On the other hand, by Weyl’s interlacing inequality

(Corollary B.16), we know λ1(M
(n)) ≥ λ1(diag(d

(n))) = maxni=1 d
(n)
i → B. Combining these

results, we conclude that λ1(M
(n)) → B.
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C.2 Analysis of signal eigenvalues: Proof of Lemma 3.7

Before we proceed, note that, in the Sparse Biased PCA model, X from (1) takes the form

X = βxx⊤ + diag

(
σ

(
Ŵ1+ β

∥y∥1
∥y∥2y

)

︸ ︷︷ ︸
=:d

)
.

Since Ŵ1 ∼ N
(
0, I + 11

⊤

n

)
, we may instead model X as

X = βxx⊤ + diag

(
σ

(
β
∥y∥1
∥y∥2y + g +

t1√
n

)

︸ ︷︷ ︸
=:d

)
, (5)

where g = g(n) ∼ N (0, In) and t = t(n) ∼ N (0, 1) are independent.

C.2.1 Claim 1: Weak convergence

Recall that the first claim of the Lemma states that, almost surely,

esd
(
X(n)

)
(w)−−→ ν = νσ := Law(σ(g)) where g ∼ N (0, 1).

Proof of Lemma 3.7 (1). By Corollary B.17, it is sufficient to prove that almost surely

ed (d) = ed

(
σ

(
β
∥y∥1
∥y∥2y + g +

t1√
n

))
(w)−−→ ν.

Note that the matrix

diag

(
σ

(
β
∥y∥1
∥y∥2y + g +

t1√
n

))
− diag

(
σ

(
g +

t1√
n

))

is of rank at most
∑n

i=1 εi. Under the random subset sparsity model, we have
∑n

i=1 εi = np = o(n)

by assumption. Under the independent entries sparsity model, consider the event
{

1
np

∑n
i=1 εi → 1

}
,

which happens almost surely by Lemma B.6. Under this event,
∑n

i=1 εi = o(n), so again the rank is
o(n).

Therefore, by Corollary B.17, in both sampling models, it is sufficient to show that almost surely

ed

(
σ

(
g +

t1√
n

))
(w)−−→ ν.

Conditional on t, the Lipschitz continuity of σ (Assumption 1) implies
∥∥∥∥σ
(
g +

t1√
n

)
− σ(g)

∥∥∥∥
∞

≤ ℓt√
n
→ 0,

where ℓ is the Lipschitz constant of σ. On the event E := {ed (σ(g)) (w)−−→ ν}, which holds almost

surely by Proposition B.2, ed
(
σ
(
g + t1√

n

))
(w)−−→ ν by Proposition B.5. Therefore,

P

(
ed

(
σ

(
g +

t1√
n

))
(w)−−→ ν

)
= Et

[
Pg(n)

({
ed

(
σ

(
g +

t1√
n

))
(w)−−→ ν

}
∩ E

∣∣∣∣ t
)]

= Et[1]

= 1,

completing the proof.
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C.2.2 Claim 2: Convergence of largest eigenvalue

Recall that the second claim of the Lemma states that, almost surely, λ1(X
(n)) → θ where θ solves

the equation

Ey∼η, g∼N (0,1)


 y2

θ − σ
(

βm1

m2
y + g

)


 =

m2

β

if such θ > edge+(σ) exists, and θ = edge+(σ) otherwise. Here we set

m1 := E
x∼η

x,

m2 := E
x∼η

x2.

Proof of Lemma 3.7 (2). We prove this by specializing Proposition C.2 to the particular form of X
given in (5).

Take A = edge−(σ), B = edge+(σ), then di = σ
(
β

∑
j yj

∥y∥2 yi + gi +
t√
n

)
∈ [A,B] for all i, and

maxni=1 di → B almost surely. The function Gn : R \ [A,B] → R is defined by

Gn(z) :=
β

∥y∥2
n∑

i=1

y2i

z − σ
(
β

∑
j yj

∥y∥2 yi + gi +
t√
n

) .

We further define G : R \ [A,B] → R by

G(z) :=
β

m2
E

y∼η
g∼N (0,1)


 y2

z − σ
(

βm1

m2
y + g

)


 . (6)

Take C = B+ β, then G(C) < 1. It is easy to check that Conditions 1 of Proposition C.2 is satisfied.

To prove Condition 2, which concerns the closeness of Gn and G, we first introduce an intermediate
function Hn. In Lemma C.3, we establish pointwise closeness between Gn and Hn, as well as
between Hn and G. Building on this, we then prove the desired closeness in Lemma C.4. The
statements and proofs of both Lemmas will be given below.

Finally, since all the conditions in Proposition C.2 are satisfied almost surely by the defined functions
Gn and G, the proof of the claim is completed by using the Proposition.

Lemma C.3. Define Hn : R \ [A,B] → R by

Hn(z) :=
β

m2np

n∑

i=1

y2i

z − σ
(

βm1

m2
yi + gi

) .

Then, the following hold.

1. Almost surely, for all z ∈ (B,∞), we have |Gn(z)−Hn(z)| → 0.

2. For each z ∈ (B,∞), we have Hn(z)
(a.s.)−−−→ G(z).

We note that the orders of quantifiers are different in the two results: the first says that almost surely a
convergence happens for all z ∈ (B,∞), while the second says that it happens almost surely for any
particular z.

Proof. Let ℓ be the Lipschitz constant of σ (which is finite by our Assumption 1).

For the first claim, define event

E :=

{∑n
i=1 yi
np

→ m1,
∥y∥2
np

→ m2,

∑n
i=1 |yi|3
np

→ E
x∼η

|x|3, t√
n
→ 0

}
.
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Under the random subset sparsity model, E happens almost surely by the Strong Law of Large
Numbers; under the independent entries sparsity model, E also happens almost surely by Lemma B.7.
For each z ∈ (B,∞), fix a constant 0 < ϵ < z −B, then on the event E ,

|Gn(z)−Hn(z)| ≤
∣∣∣∣∥y∥−2 − 1

m2np

∣∣∣∣
n∑

i=1

∣∣∣∣∣∣
βy2i

z − σ
(
β

∑
j yj

∥y∥2 yi + gi +
t√
n

)

∣∣∣∣∣∣

+
β

m2np

n∑

i=1

y2i

∣∣∣∣∣∣
1

z − σ
(
β

∑
j yj

∥y∥2 yi + gi +
t√
n

) − 1

z − σ
(

βm1

m2
yi + gi

)

∣∣∣∣∣∣

≤ βϵ−1

∣∣∣∣1−
∥y∥2
m2np

∣∣∣∣+m−1
2 ϵ−2β2ℓ

∑
i |yi|3
np

∣∣∣∣
∑

i yi
∥y∥2 − m1

m2

∣∣∣∣

+m−1
2 ϵ−2βℓ

∥y∥2
np

∣∣∣∣
t√
n

∣∣∣∣
→ 0

giving the result.

For the second claim, recall that yi = εizi, where εi ∈ {0, 1}. Hence,

Hn(z) =
β

m2np

n∑

i=1

εiz
2
i

z − σ
(

βm1

m2
zi + gi

) .

For each z ∈ (B,∞), we have E

∣∣∣∣
z2
i

z−σ
(

βm1
m2

zi+gi
)
∣∣∣∣ ≤ m2 (z −B)

−1
< ∞, hence Hn(z)

(a.s.)−−−→
G(z) by the Strong Law of Large Numbers under the random subset sparsity model, and by
Lemma B.7 under the independent entries sparsity model.

Lemma C.4. Almost surely, for all z ∈ (B,C], we have Gn(z) → G(z).

Proof. Let E be the event that both Hn(z) → G(z) for all rational numbers z ∈ Q ∩ (B,C] and
∥y∥2

np → m2. By Lemma C.3(2), Lemma B.7, and the countability of Q, the event E occurs almost

surely. We first show that, on the event E , we have Hn(z) → G(z) for all z ∈ (B,C].

Consider an arbitrary z ∈ (B,C], and let ϵ > 0. Choose a constant 0 < δ < z −B. We note that Hn

and G are both Lipschitz on (B + δ, C], and observe that

|H ′
n(z)| ≤

β

δ2m2

∥y∥2
np

, |G′(z)| ≤ β

δ2
.

Choose a rational number w ∈ Q ∩ (B,C] such that |z − w| < min
(

δ2ϵ
2β , z −B − δ

)
. Then we

have

|Hn(z)−G(z)| ≤ |Hn(w)−G(w)|+ |Hn(z)−Hn(w)|+ |G(w)−G(z)|

≤ |Hn(w)−G(w)|+
(

β

δ2m2

∥y∥2
np

+
β

δ2

)
δ2ϵ

2β
.

Taking the limit n → ∞, we get limn→∞ |Hn(z)−G(z)| ≤ ϵ. Since ϵ is arbitrary, we conclude that
Hn(z) → G(z). Therefore, almost surely, for all z ∈ (B,C], we have Hn(z) → G(z).

Finally, combining this result with Lemma C.3(1), we complete the proof.

C.2.3 Claim 3: Control of other eigenvalues

Proof of Lemma 3.7 (3). Since X = βxx⊤ + diag(d), by Weyl’s interlacing inequality (Corol-
lary B.16),

edge(σ)+ ≥ λ1(diag(d)) ≥ λ2(X) ≥ λ2(diag(d)) ≥ · · ·
· · · ≥ λn−1(X) ≥ λn−1(diag(d)) ≥ edge(σ)−.

Thus, λ2(X), . . . , λn(X) lie in σ(R), as claimed.
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C.3 Compression to obtain independent spiked matrix model

Recall that the σ-Laplacian L = Lσ from (1) takes the form

L = Ŵ +X,

X = X(x, Ŵ ;β) = βxx⊤ + diag(σ(Ŵ1+ β⟨x,1⟩x)︸ ︷︷ ︸
=:d

).

where Ŵ is a Wigner matrix with entrywise variance 1/n. This resembles the spiked matrix model

studied in [CDMFF11], with the key complication that Ŵ and X are weakly dependent, since X

depends on Ŵ1. We do not expect this dependence to make a difference in the behavior of these

random matrices in general: it should be possible to merely pretend that Ŵ1 is a Gaussian random

vector with suitable distribution sampled independently of Ŵ . However, to rigorously treat the actual
σ-Laplacian matrices under consideration, we now introduce a trick to circumvent this complication
and construct from this weakly dependent spiked matrix model an exactly independent one.

The idea is to “project away” the 1 direction from L, which will make Ŵ independent of the
(now slightly deformed) signal matrix. Specifically, we now present the conditions under which
“compressing” L in this way via

L 7→ L̃ := V ⊤LV ,

where V ∈ Rn×(n−1) has columns forming an orthonormal basis for the orthogonal complement of
the all-ones vector 1, produces the desired independence of signal and noise components.

The main technical point is that Ŵ drawn from the GOE is an orthogonally invariant random matrix;

that is, Q⊤ŴQ has the same law as Ŵ for any orthogonal Q. So, the compressed noise term

W̃ = V ⊤ŴV remains a GOE matrix, now of dimension (n − 1) × (n − 1). Moreover, in our

formulation, X depends on Ŵ only through the vector Ŵ 1̂. By projecting Ŵ onto the orthogonal

complement of 1̂, we remove the component that correlates with X , and thus the resulting noise term
becomes independent of X after compression. This is formalized in the Proposition below.

Proposition C.5. Suppose L = L(n) of the form in (1) satisfies the following:

1. Ŵ = Ŵ (n) ∼ GOE(n, 1/n).

2. Almost surely,
∑n

i=1 1{xi = 0} → ∞, ∥x(n)∥1 = o(
√
n), esd

(
X(n)

) (w)−−→ ν where ν has

finite first moment, and λ1(X
(n)) → θ ∈ R.

Then, for any sequence of matrices V = V (n) ∈ Rn×(n−1) satisfying V V ⊤ = In − 1̂1̂
⊤ and

V ⊤V = In−1, the compression L̃ = L̃(n) := V ⊤LV can be decomposed as

L̃ = W̃ + X̃ +∆ ∈ R(n−1)×(n−1)
sym ,

where:

1. W̃ = W̃ (n) ∼ GOE(n− 1, 1
n−1 ),

2. Almost surely, esd(X̃(n))
(w)−−→ ν, ∥∆(n)∥ → 0, λ1(X̃

(n)) → θ, and all other eigenvalues

λ2(X̃
(n)), . . . , λn−1(X̃

(n)) lie in [edge(σ)
−
, edge(σ)

+
].

3. W̃ (n) and X̃(n) are independent.

Remark C.6. The matrix L from the Sparse Biased PCA model satisfies the assumptions, since
almost surely

n∑

i=1

1{xi = 0} ≥
n∑

i=1

1{εi = 0} → ∞,

∥x(n)∥1 =
∥y(n)∥1
∥y(n)∥2 ∥y

(n)∥ = O(
√
np) = o(

√
n),

and ν = σ(N (0, 1)) has finite first moment due to the boundedness of σ.
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Proof. Define

W̃ = W̃ (n) =

√
n

n− 1
V (n)⊤Ŵ (n)V (n),

X̃ = X̃(n) = V (n)⊤X(n)V (n),

∆ = ∆
(n) =

(
1−

√
n

n− 1

)
V (n)⊤Ŵ (n)V (n).

Consider the matrix Q := [ 1̂ V ], which is orthogonal. Since the GOE ensemble is invariant under

orthogonal conjugation, we have Q⊤ŴQ ∼ GOE(n, n−1). Its right bottom (n − 1) × (n − 1)

submatrix is V ⊤ŴV , and hence W̃ ∼
√

n
n−1 ·GOE(n− 1, n−1) = GOE(n− 1, (n− 1)−1).

By Proposition B.14, ∥W̃ ∥ (a.s.)−−−→ 2, hence

∥∆∥ =

(
1−

√
n− 1

n

)
∥W̃ ∥ (a.s.)−−−→ 0.

Moreover, the first column (and row) of Q⊤ŴQ is independent of W̃ , and corresponds to Ŵ 1̂

expressed in the basis formed by the columns of Q. Since X̃ is a function of Ŵ 1̂, we conclude that

W̃ and X̃ are independent.

Let Q0 := [0 V ], so that

Q⊤
0 XQ0 =

[
0 0

⊤

0 V ⊤XV

]
.

Then, Q⊤XQ−Q⊤
0 XQ0 has rank at most 2. By the stability of the esd under low rank perturbation

(Corollary B.17), this does not affect the weak convergence of the esd:

P

(
esd
(
X̃
)

(w)−−→ ν

)
= P

(
esd
(
Q⊤

0 XQ0

) (w)−−→ ν

)
≥ P

(
esd
(
Q⊤XQ

) (w)−−→ ν

)
= 1

To control the eigenvalues aside from the top one, note that, for any unit vector y ∈ Rn−1 ,
y⊤V ⊤diag(d)V y =

∑
i di(V y)2i ∈ [edge(σ)−, edge(σ+)]. So, all eigenvalues of V ⊤diag(d)V

are in [edge(σ)−, edge(σ)+]. Since X̃ = β(V ⊤x)(V ⊤x)⊤+V ⊤diag(d)V , by Weyl’s interlacing
inequality (Corollary B.16),

edge(σ)+ ≥ λ1(V
⊤diag(d)V ) ≥ λ2(X̃) ≥ λ2(V

⊤diag(d)V ) ≥ · · ·
· · · ≥ λn−1(X̃) ≥ λn−1(V

⊤diag(d)V ) ≥ edge(σ)−,

as claimed.

It is left to prove λ1(X̃) → θ almost surely. First, by Weyl’s interlacing inequality (Corollary B.16),
and on the event {∑n

i=1 1{xi = 0} → ∞} which happens almost surely by assumption, we have

λ1(X) ≥ λ1(diag(d)) = max
i

di ≥ max
i:xi=0

σ((Ŵ1)i) → edge(σ)
+
.

Hence, θ ≥ edge(σ+). We now consider two cases, depending on whether equality holds here.

Case 1: θ > edge(σ)+. On the one hand, since ∥V x∥2 = x⊤V ⊤V x = ∥x∥2 for all x ∈ Rn−1,

λ1(X̃) = max
∥x∥=1

x⊤V ⊤XV x ≤ max
∥y∥=1

y⊤Xy = λ1(X)

On the other hand, let v = v1(X). We have

λ1(X̃) ≥ (V ⊤v)⊤(V ⊤XV )(V ⊤v)
∥V ⊤v∥2

=
v⊤PXPv

∥Pv∥2
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where P := In − 1̂1̂
⊤ is the projection matrix to the orthogonal complement of the 1̂ direction.

Continuing,

≥ v⊤PXPv

= v⊤Xv − ⟨v, 1̂⟩(1̂⊤Xv + v⊤X1̂) + ⟨v, 1̂⟩2

≥ λ1(X)− 2∥X∥ · |⟨v, 1̂⟩|.
It suffices to show that the last term is o(1) as n → ∞.

Suppose |σ(x)| < K for all x ∈ R. Then, ∥X∥ ≤ β+K, so ∥X∥ = ∥X(n)∥ = O(1). So, it further

suffices to show that |⟨v, 1̂⟩| = o(1).

Moreover, note that v satisfies

λ1(X)v = Xv = (βxx⊤ + diag(di))v

Rearranging,
v = β⟨x,v⟩(λ1(X)I − diag(d))−1x

Hence,

|⟨v, 1̂⟩| ≤ β
1√
n

n∑

i=1

|xi|
|λ1(X)− di|

Let ϵ = (θ − edge(σ)
+
)/2 > 0. Then, on the event {∥x∥1 = o(

√
n), λ1(X

(n)) → θ} which

happens almost surely, λ1(X
(n)) > θ − ϵ for all sufficiently large n, so

|⟨v, 1̂⟩| ≤ βϵ−1n−1/2∥x∥1 = o(1)

and therefore
λ1(X̃)− λ1(X) → 0

We conclude that λ1(X̃) → θ almost surely.

Case 2: θ = edge(σ)
+

. Just like in Case 1, λ1(X̃) ≤ λ1(X). On the other hand, as X̃ =
V ⊤diag(d)V + β(V ⊤x)(V ⊤x)⊤, by Weyl’s interlacing inequality (Corollary B.16)

λ1(X̃) ≥ λ1(V
⊤diag(d)V ).

Let i := argmaxj dj , and set y := V ⊤ei = V ⊤ei. Then ∥y∥2 = ∥Pei∥2 = 1− 1
n , and we have

≥ y⊤V ⊤diag(d)V y

∥y∥2

=
e⊤i Pdiag(d)Pei

1− 1
n

=
di − 2

ndi +
1
n2

1− 1
n

≥ n− 2

n− 1
di

→ edge(σ)
+

We conclude that λ1(X̃) → θ = edge(σ)
+

almost surely, completing the proof.

C.4 Analysis of compressed σ-Laplacian eigenvalues

C.4.1 Weak convergence: Proof of Lemma 3.8

Recall from Proposition C.5 that we may decompose

L̃(n) = V (n)⊤L(n)V (n) = W̃ (n) + X̃(n) +∆
(n),
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where W̃ (n) ∼ GOE(n − 1, 1
n−1 ), W̃

(n) and ∆
(n) are independent of X̃(n) (in fact ∆(n) is a

multiple of W̃ (n)) and ∥∆(n)∥ → 0 almost surely as n → ∞. For the weak convergence result,

we then first note that, by our Lemma 3.7, the esd of X̃(n) almost surely converges weakly to

σ(N (0, 1)), while that of W̃ (n) almost surely converges weakly to µsc by Theorem B.12. Thus,

by Proposition 4.3.9 of [HP00], the esd of W̃ (n) + X̃(n) almost surely converges weakly to µsc ⊞

σ(N (0, 1)), since the law of W̃ (n) is orthogonally invariant (the Proposition in the reference is stated
for unitary invariance, but the same result holds by the same proof under orthogonal invariance, as
also mentioned in the discussion following this result in the reference).

C.4.2 Largest eigenvalue: Proof of Theorem 3.3, eigenvalue part

Before proceeding to the proof, let us note the relationship between the thresholds we state and the
ones stated in related results [CDMFF11, BG24] in terms of the inverse subordination function Hν

(Definition B.21). These are actually equivalent. Recall that, for a given ν, this is defined as

Hν(z) = z +Gν(z)

= z + E
X∼ν

[
1

z −X

]

In our case, the ν that will arise is ν = σ(N (0, 1)), which gives

= z + E
g∼N (0,1)

[
1

z − σ(g)

]
,

defined for all z ∈ C \ σ(R).
In particular, we also have

H ′
ν(z) = 1− E

g∼N (0,1)

[
1

(z − σ(g))2

]
.

Note that this function converges to 1 as z → ∞ along the real axis, and is continuous and strictly

increasing on (edge+(σ),+∞). Moreover, by [CDMFF11, Lemma 2.1], edge+(σ) ∈ supp(ν) ⊆
{u ∈ R \ supp(ν) : H ′

ν(u) < 0}. Particularly, this implies that there exists some u > edge+(σ)
where H ′

ν(u) < 0. Recall also that θσ,β ≥ edge+(σ) by definition.

Theorem 8.1 of [CDMFF11] implies that there is an outlier eigenvalue if and only if

θσ,β ∈ R \ {u ∈ R \ supp(ν) : H ′
ν(u) < 0}.

This is equivalent to our condition in Theorem 3.3,

H ′
ν(θσ(β)) > 0,

since, by our assumption that σ is Lipschitz-continuous and bounded, we know that supp(ν) consists
of a single closed interval of real numbers.6

Similarly, when H ′
ν(θσ(β)) > 0, we state in Theorem 3.3 that

λ1(L̃
(n))

(a.s.)−−−→ θσ(β) + E
g∼N (0,1)

[
1

θσ(β)− σ(g)

]

which may be rewritten

= Hν(θσ(β)),

giving the form stated in the other references.

In the special case where the entrywise condition xi ≥ 0 holds almost surely (i.e., η in Definition 1.1
is a probability measure on R≥0), θσ is an increasing function of β. Thus, H ′

ν(θσ(β)) > 0 if and
only if β > β∗, where β∗ = β∗(σ) solves

H ′
ν(θσ(β∗)) = 0.

6Note that the matter of outlier eigenvalues is more complicated when considering deformations of matrices
whose limiting esd’s support has several connected components, since outliers can appear between these
components (thus rather being “inliers” between parts of the undeformed limiting spectrum).
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Proof of Theorem 3.3, eigenvalue part. Let us define a function fσ : R≥0 → R by

fσ(β) =

{
Hνσ,β

(θσ(β)) if H ′
νσ,β

(β) > 0

edge+(µsc ⊞ σ(N (0, 1))) otherwise.

We then want to show that λ1(L̃
(n)) → fσ(β) almost surely.

Let X be the set of sequences (X̃(n))n≥1 ∈ R1×1
sym × R2×2

sym × · · · that satisfy the conclusions of
Lemma 3.7. The Lemma states that

P

(
(X̃(n))n≥1 ∈ X

)
= 1.

Conditioning the probability we are interested in on the value of X̃(n) for all n and using the above
independence property,

P

(
λ1(L̃

(n)) → fσ(β)
)

= P

(
λ1(W̃

(n) + X̃(n) +∆
(n)) → fσ(β)

)

= E
(X̃(n))n≥1

[
P

(W̃ (n))n≥1

(
λ1(W̃

(n) + X̃(n) +∆
(n)) → fσ(β)

)]

and using that ∆(n) is a function of W̃ (n) and ∥∆(n)∥ → 0 almost surely, we may rewrite

= E
(X̃(n))n≥1

[
P

(W̃ (n))n≥1

(
λ1(W̃

(n) + X̃(n) +∆
(n)) → fσ(β), ∥∆(n)∥ → 0

)]

and now, by Weyl’s inequality (Proposition B.15), the convergence of the largest eigenvalue is not

affected by ∆
(n), so

= E
(X̃(n))n≥1

[
P

(W̃ (n))n≥1

(
λ1(W̃

(n) + X̃(n)) → fσ(β), ∥∆(n)∥ → 0
)]

= E
(X̃(n))n≥1

[
P

(W̃ (n))n≥1

(
λ1(W̃

(n) + X̃(n)) → fσ(β)
)]

and similarly, since (X̃(n))n≥1 ∈ X almost surely, we may introduce the indicator of this event in
the expectation

= E
(X̃(n))n≥1

[
P

(W̃ (n))n≥1

(
λ1(W̃

(n) + X̃(n)) → fσ(β)
)
1{(X̃(n))n≥1 ∈ X}

]

Finally, the condition (X̃(n))n≥1 ∈ X precisely verifies the conditions of Theorem 1.1 of [BG24],
whose conclusion is that the inner probability equals 1, whereby

= E
(X̃(n))n≥1

[
1{(X̃(n))n≥1 ∈ X}

]

= P

(
(X̃(n))n≥1 ∈ X

)

= 1,

completing the proof.

As an aside, Theorem 1.1 presented in [BG24] is attributed there to [CDMFF11] by the authors,
though the latter work only considers complex-valued Wigner matrices where the real and complex
parts of the entries are i.i.d., while [BG24] and our application concern real-valued Wigner matrices.
In any case, the real-valued version follows from the much more detailed large deviations principle
proved by [BG24] (their Theorem 1.2).
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C.5 Eigenvector analysis: Proof of Theorem 3.3, eigenvector part

Proof of Theorem 3.3, eigenvector part. To analyze the eigenvector, we introduce an ancillary matrix
function

L(t) = L(n)(t) := Ŵ + (β + t)xx⊤ + diag(σ(Ŵ1+ β⟨x,1⟩x))︸ ︷︷ ︸
=:X(t)

. (7)

This choice ensures that evaluating at t = 0 recovers the σ-Laplacian matrix L defined in (1). We
likewise define the compressed matrix

L̃(t) = L̃(n)(t) := V ⊤L(t)V .

We use Lemma C.7, which shows that almost surely, for any β, t such that β > 0, and β + t > 0,

we have λ
(n)
1 (t) = λ1(L̃

(n)(t)) → fσ(t), where fσ is a differentiable function. The statement and

proof will follow below. Moreover, almost surely L̃(n)(0) has no repeated eigenvalues for all n and
β > 0, since matrices with repeated eigenvalues form an algebraic set of codimension 2 in the space

of symmetric matrices (see, e.g., [BKL18]). On this event, the maps t 7→ λ
(n)
1 (t) and t 7→ v

(n)
1 (t)

are differentiable at t = 0, by [Mag85, Theorem 1]. Define E be the almost sure event where these
two conditions hold.

We write
˙̃
L, v̇1, and λ̇1 for derivatives with respect to t whenever they are well-defined. Differentiating

the eigenpair relation L̃ v1 = λ1 v1 with respect to t and left-multiplying by v⊤
1 yields

v⊤
1
˙̃
Lv1 + v⊤

1 L̃ v̇1 = λ̇1 v
⊤
1 v1 + λ1 v

⊤
1 v̇1,

which simplifies to

λ̇1 = v⊤
1
˙̃
Lv1.

In our setup,
˙̃
L = V ⊤xx⊤V , so

λ̇1 =
〈
x,V v1

〉2
.

We observe that the map t 7→ λ
(n)
1 (t) is convex for any n and β. Indeed,

λ
(n)
1 (t) = max

∥x∥=1
x⊤L̃(n)(t)x,

and, for each fixed unit vector x, the objective x⊤L̃(n)(t)x is affine in t, so taking the maximum
over x yields a convex function of t. Hence, on the event E , we can apply Lemma C.8 to obtain

⟨x,V v
(n)
1 (0)⟩2 = λ̇

(n)
1 (0) −→ f ′

σ(0).

The result follows.

Lemma C.7. For each σ, β and t, define θ = θσ(β, t) to solve the equation

E
y∼η

g∼N (0,1)

[
y2

θ − σ(m1

m2
βy + g)

]
=

m2

β + t

if such θ > edge+(σ) exists, and let θσ = edge+(σ) otherwise. Furthermore, recall the inverse
subordination function

Hν(z) = z + E
g∼N (0,1)

[
1

z − σ(g)

]
.

Almost surely, for every β and t so that β > 0, β + t > 0, the sequence L̃(t) = L̃(n)(t) satisfies

λ
(n)
1 (t) → fσ(t), where

fσ(t) :=

{
Hν(θσ(β, t)) if H ′

ν(θσ(β, t)) > 0

edge+(µsc ⊞ σ(N (0, 1))) otherwise.

Moreover, fσ is differentiable with

f ′
σ(0) =





m2

β2

(
Ey∼η, g∼N (0,1)

[
y2(

θσ(β,0)−σ
(
m1

m2
βy+g

))2
])−1

H ′
ν(θσ(β, 0)) if H ′

ν(θσ(β, 0)) > 0

0 otherwise.
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Proof. The proof for the first part, which characterizes the limit of the largest eigenvalue, follows

exactly the same argument as that for L̃. Below, we show that fσ is differentiable and compute its
limit.

Notice that H ′
ν is strictly increasing, and θσ(β, t) also strictly increases with t. Consequently, there

exists a unique t∗ = t∗(β) that solves H ′
ν

(
θσ(β, t∗(β))

)
= 0, and H ′

ν(θσ(β, t)) > 0 if and only if
t > t∗.

We first consider the case where H ′
ν(θσ(β, t)) > 0. By [CDMFF11, Lemma 2.1], we have

edge+(σ) ∈ supp(ν) ⊆ {u ∈ R \ supp(ν) : H ′
ν(u) < 0}. Hence, θσ(β, t) ̸= edge+(σ). This

implies that θ = θσ(β, t) solves G(θ, t) = 1, where

G(θ, t) :=
β + t

m2
E

y∼η
g∼N (0,1)


 y2

θ − σ
(

m1

m2
βy + g

)


 .

By the implicit function theorem, θσ(β, t) is differentiable with respect to t for all t > t∗. Using the
chain rule, we can compute

dθσ(β, t)

dt
=

m2

(β + t)2


 E

y∼η
g∼N (0,1)


 y2
(
θσ(β, t)− σ

(
m1

m2
βy + g

))2







−1

.

Consequently, Hν

(
θσ(β, t)

)
is differentiable, with

dHν(θσ(β, t))

dt
=

m2

(β + t)2


 E

y∼η
g∼N (0,1)


 y2
(
θσ(β, t)− σ

(
m1

m2
βy + g

))2







−1

H ′
ν(θσ(β, t)).

Finally, since

lim
t↓t∗(β)

dHν(θσ(β, t))

dt
= 0,

fσ is also differentiable at t = 0.

Lemma C.8. Let (fn) be a sequence of convex functions defined on an open interval I containing 0.
Assume that fn(x) → f(x) for every x ∈ I . Suppose further that each fn and f is differentiable at 0.
Then,

lim
n→∞

f ′
n(0) = f ′(0).

Proof. By convexity of fn, for any 0 < h < ϵ, we have

fn(0)− fn(−h)

h
≤ f ′

n(0) ≤
fn(h)− fn(0)

h
.

Taking the limit as n → ∞ yields

f(0)− f(−h)

h
≤ lim inf

n→∞
f ′
n(0) ≤ lim sup

n→∞
f ′
n(0) ≤

f(h)− f(0)

h
.

Since this holds for any 0 < h < ϵ, letting h → 0+ gives

f ′(0) ≤ lim inf
n→∞

f ′
n(0) ≤ lim sup

n→∞
f ′
n(0) ≤ f ′(0).

Hence, limn→∞ f ′
n(0) = f ′(0). This completes the proof.
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C.6 Limitation of degree methods: Proof of Theorem 3.5

We follow the approach developed in [MRZ15, BMV+18, PWBM18, PWB20] for proving statistical
indistinguishability.

Lemma C.9 (Second moment method for contiguity, Lemma 1.13 of [KWB19]). Consider two
probability distributions P = (Pn),Q = (Qn) over a common sequence of measurable spaces Sn.

Write Ln(t) for the likelihood ratio dPn

dQn
(t).

If lim supn→∞ Et∼Qn

[
Ln(t)

2
]
< ∞, then P is contiguous to Q, meaning that whenever Qn(An) →

0 for a sequence of events (An), then Pn(An) → 0 as well.

Theorem C.10. Define the sequence of probability distributions Qn,β := Law(Y 1/
√
n), where

Y ∼ Pn,β is drawn from the Sparse Biased PCA model defined in Definition 1.1, with the additional

assumption that p = p(n) = O(n−1/2) and that η has bounded support. Then, for any β > 0, the
sequence of distributions Qn,β is contiguous to the sequence Qn,0. In particular, no function of Y 1

can achieve strong detection in such a model.

Remark C.11. Since the Gaussian Planted Submatrix model of Example 1.2 satisfies the additional
assumptions above, this proposition establishes a result that is more general than Theorem 3.5 from
the main text.

Proof. Let ρ denote the distribution of y from Definition 1.1. Recall that Y 1√
n
= Ŵ1+ β

∑
i yi

∥y∥2 y, so

Qn,β = Law

(
t+ β

∑
i yi

∥y∥2 y

)
, t ∼ N

(
0, I +

11
⊤

n

)
, y ∼ ρ.

Let δ > 0, and define another sequence of distributions

Q̃n,β = Law

(
t+ β1{En}

∑
i yi

∥y∥2 y

)
,

where the event sequence

En :=

{∣∣∣∣
∑n

i=1 yi
∥y∥2 − m1

m2

∣∣∣∣ < δ

}
.

Notice that
∑n

i=1 yi

np

(a.s.)−−−→ m1 and
∥y∥2

np

(a.s.)−−−→ m2 by Lemma B.7 under the independent entries

sparsity model, or by the Strong Law of Large Numbers under the random subset sparsity model.
Therefore,

δTV(Qn,β , Q̃n,β) ≤ P (Ec
n) → 0.

Let L̃n(t) denote the likelihood ratio
dQ̃n,β

dQn,0
(t). It suffices to show

lim sup
n→∞

Et∼Qn,0

[
L̃n(t)

2
]
< ∞. (8)

Indeed, if (8) holds, then by Lemma C.9, whenever Qn,0(An) → 0 for a sequence of events (An), it

follows that Q̃n,β(An) → 0. Hence,

Qn,β(An) ≤ Q̃n,β(An) + δTV

(
Qn,β , Q̃n,β

)
→ 0,

establishing contiguity of Qn,β to Qn,0, and thus statistical indistinguishability by [KWB19, Proposi-
tion 1.12].

To prove (8), write Σ :=
(
I + 11

⊤

n

)−1

= I − 11
⊤

2n . Let ⟨·, ·⟩Σ denote the inner product defined by

⟨x,y⟩Σ = x⊤Σy, and ∥ · ∥Σ the corresponding norm. Define ỹ := 1{E}
∑

i yi

∥y∥2 y. Then,

L̃n(t) =
Eỹ

[
exp

(
− 1

2∥t− βỹ∥2Σ
)]

exp
(
− 1

2∥t∥2Σ
)

= E
ỹ

[
exp

(
−β2

2
∥ỹ∥2Σ + β⟨t, ỹ⟩Σ

)]
.
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Therefore,

E
t∼N (0,Σ−1)

[
L̃n(t)

2
]
= E

ỹ,ỹ′

[
exp

(
−β2

2

(
∥ỹ∥2Σ + ∥ỹ′∥2Σ

))
E
t
[exp (β⟨t, ỹ + ỹ′⟩Σ)]

]

where ỹ, ỹ′ are two independent copies of y (sometimes called “replicas” in this context)

= E
ỹ,ỹ′

[
exp

(
−β2

2

(
∥ỹ∥2Σ + ∥ỹ′∥2Σ − ∥ỹ + ỹ′∥2Σ

))]

= E
ỹ,ỹ′

[
exp

(
β2⟨ỹ, ỹ′⟩Σ

)]

= E
y,y′

[
exp

(
β2
1{En ∩ E ′

n}
∑

i yi
∥y∥2

∑
i y

′
i

∥y′∥2
(
y⊤y′ − (

∑
i yi)(

∑
i y

′
i)

2n

))]

where y,y′ are two independent replicas of y, and En, E ′
n are the events corresponding to independent

sequences y(n),y′(n) respectively.

≤ E
y,y′

[
exp

(
β2

(
m1

m2
+ δ

)2

y⊤y′
)]

=

(
1 +

p2n

n

(
E

z1,z′
1∼η

[
exp

(
β2

(
m1

m2
+ δ

)2

z1z
′
1

)]
− 1

))n

Suppose 0 ≤ z ≤ M almost surely if z ∼ η. Then for n sufficiently large such that p2n ≤ C for
some constant C > 0,

≤
(
1 +

C

n

(
exp

(
4β2

(
m1

m2
+ δ

)2

M2

)
− 1

))n

→ exp

(
C exp

(
4β2

(
m1

m2
+ δ

)2

M2

)
− 1

)

which completes the proof for (8).

D Specific models

D.1 Gaussian Planted Submatrix model

We give some additional discussion of the special case discussed in Example 1.2. As a reminder, this
special case is obtained by taking η = δ1 and sparsity level p(n) = β/

√
n under the Random Subset

sparsity model.

D.1.1 Specialization of main results

In this special case, our main general results take the following form, obtained by substituting
η = δ1,m1 = m2 = 1 into Theorem 3.3.

First, for the eigenvalues of the signal part X(n), we have that almost surely

esd
(
X(n)

)
(w)−−→ σ(N (0, 1)).

For the largest eigenvalue, we have almost surely λ1(X
(n)) → θ where θ solves the equation

E
g∼N (0,1)

[
1

θ − σ(β + g)

]
=

1

β
(9)

if such θ > edge+(σ) exists, and θ = edge+(σ) otherwise. Finally, we find that the associated
σ-Laplacian has an outlier eigenvalue if and only if β > β∗ = β∗(σ), where this β∗ solves

E
g∼N (0,1)

[
1

(θσ(β∗)− σ(g))2

]
= 1. (10)
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Figure 3: β∗(σ) for the family of “Z”-shaped piecewise linear σ given in (11), with each parameter
fixed at its optimal value and the other two varying.

D.1.2 Discussion of numerically optimized nonlinearities

We now describe how we derive the numerical result of Theorem 3.4 from this theoretical characteri-
zation. This amounts to finding a sufficiently “good” σ, i.e., one that has a small value of β∗(σ). We
take it for granted here that β∗(σ) can be estimated numerically; further details about this are given
in Appendix E. We focus instead on the search methods that we use to look for a good σ.

As we have briefly described in Section 4, we consider three different approaches to this problem.

Explore simple class of σ We first consider a parametric family of piecewise linear functions
characterized by a “Z” shape:

σ(x; a, b, c) :=





0 if x < c,

b · x−c
a if c ≤ x ≤ a+ c,

b if x > a+ c.

(11)

Given that a vertical shift of σ results in an essentially equivalent algorithm (since it merely shifts
the σ-Laplacian by a multiple of the identity, we fix the minimum value of σ to 0. We start with
optimizing the objective function β∗(σ) with respect to the parameters (a, b, c) using the Nelder-Mead
black-box optimization method. The optimized result is presented in Figure 2(b). Subsequently,
we investigate the individual effects of varying each parameter (a, b, c) on β∗(σ). In Figure 3, we
illustrate the result of fixing any one parameter at its optimal value and plotting, as a heatmap, the
value of β∗ with respect to the other two parameters.

The resulting heatmaps demonstrate that β∗ is relatively robust with respect to all parameters. As the
middle plot shows, perhaps the most clearly important quantity is a + c, the right endpoint of the
sloped part of the “Z”. On the other hand, the first and third plots show that the value of b, the height
of the “Z”, is relatively unimportant provided a and c are chosen well.7

Next, we examine another simple but smoother parametric family of functions,

σ(x; a, b) := a tanh(bx).

Similar to the previous case, we optimize β∗(σ) with respect to the parameters (a, b) using the
Nelder-Mead method. The resulting optimized parameters and the corresponding objective function
value are presented in Figure 2(c). We note that optimizing within this family yields a slightly
improved β∗ compared to the “Z”-shaped choice of σ. For this σ, we plot the phase transitions of the
top eigenvalue and eigenvectors on random samples from the planted submatrix model in Figure 4.
The results show that our theoretical predictions for the critical signal strength β∗ and the outlier
eigenvalue are accurate, and that the eigenvector overlap exhibits a phase transition at the same β∗.

Nelder-Mead optimization over step functions Next, we explore parameterizing σ using more
complex function classes and optimizing using black-box optimization. We first consider running
Nelder-Mead optimization over 2n parameters controlling a step function. Let a = [a1, . . . , an] and
b = [b1, . . . , bn], where we impose the constraint that all parameters, except a1, are non-negative.

7We do not illustrate it for the sake of the legibility of the plot, but the performance of the algorithm is not
entirely indifferent to b: for very large values, β∗(σ) does increase, with the optimal β∗ occurring around 4.4.
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Figure 4: An illustration of the phase transition of top eigenvalue and eigenvector. Each point of the
plot shows the average over 500 random inputs of the largest eigenvalue and the squared correlation
of the top eigenvector with the signal x for a nonlinear Laplacian Lσ(Y ) with Y drawn from the
Gaussian Planted Submatrix model, for σ = 0 (dark line) and σ the best “S-shaped” nonlinearity
found by black-box optimization (light line). Error bars have width of plus/minus one standard
deviation over these trials. We also include the theoretical prediction from Theorem 3.3.

We define discontinuity points xk =
∑k

j=1 aj for 1 ≤ k ≤ n. The step function σ(x;a, b) is then

defined as:

σ(x;a, b) :=





0 if x < x1∑k
j=1 bj if xk ≤ x < xk+1, 1 ≤ k ≤ n− 1∑n
j=1 bj if x ≥ xn

The primary motivation for considering step functions is that numerical integration simplifies to
summation in this case, which significantly accelerates computation. For example, in computing
θσ(β), if σ is as above, we may rewrite

E
g∼N (0,1)

[
1

θ − σ(β + g)

]
=

n∑

k=0

P
g∼N (0,1)

[g ∈ (xk, xk+1)] ·
1

θ − σ(β +
∑k

j=1 bj)

where we set x0 = −∞ and xn+1 = +∞. The probabilities on the right-hand side can be computed
in terms of the Gaussian error function, for which highly optimized implementations are provided in
many numerical computing libraries, making one calculation of this integral far faster than numerically
integrating the left-hand side. Recall also that to compute θσ(β) we must perform a root-finding
calculation on this function of θ, requiring many evaluations; further, to compute β∗(σ) we must
perform that root-finding operation many times as the “inner loop” of another root-finding calculation,
making the total number of times that we need to compute the above kind of integral quite large.
The computational efficiency of σ a step function makes the application of the Nelder-Mead method
feasible for optimizing over a large number of parameters. The optimized result for this step function
parameterization with n = 16 is presented in the Figure 2(e).

Multi-Layer Perceptron learned from data We also consider parameterizing σ using a Multi-

Layer Perceptron (MLP) with L layers and h hidden channels. Specifically, the output σ(x) = z(L)

(viewed as a 1× 1 matrix) is defined by the following recursive relations:

z(0) = x

z(ℓ) = ρ
(
W (ℓ)z(ℓ−1) + b(ℓ)

)
for ℓ = 1, . . . , L
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where W (1) ∈ Rh×1, b(1) ∈ Rh,W (ℓ) ∈ Rh×h, b(ℓ) ∈ Rh for ℓ = 2, . . . , L − 1, and W (L) ∈
R1×h, b(L) ∈ R are learnable weight matrices and bias vectors, respectively. The function ρ denotes
a fixed, element-wise nonlinearity, for which we use either the tanh or ReLU activation function. In
our experiment, we use L = 8, h = 20, and the tanh activation function.

To find the optimized σ, we generate a dataset of i.i.d. pairs (Yi, yi) according to the following
procedure: We fix parameters n0 and β0. For each data point i, we first draw a binary label

yi
i.i.d.∼ Bernoulli(1/2), where yi = 1 indicates the presence of a planted signal and yi = 0 indicates

its absence. Subsequently, we generate the observed symmetric matrix Yi ∈ Rn×n
sym from the Planted

Submatrix model, Yi ∼ Pn0,β in our previous notation. If yi = 1, the matrix is generated with a
planted signal strength of β = β0; if yi = 0, the matrix is generated with β = 0. In our experiments,
we use n0 = 100, β0 = 1.3.

Our neural network model processes the input Yi by first passing each element through the MLP
parameterized by σ. Then, it computes the σ-Laplacian matrix, Lσ(Yi) = Yi + diag(σ(Yi1)). We
then utilize the built-in eigenvalue computation functionality in PyTorch, which supports gradient
flow, to obtain the top eigenvalue of the σ-Laplacian. Finally, this top eigenvalue is passed through a
learnable linear map f(x) = αx+ γ to produce a scalar output. Thus in summary we compute

αλ1(Yi + diag(σ(Yi1))) + γ ∈ R.

We train this to solve the task of classifying Yi according to the (binary) value of yi by minimizing
the standard binary cross-entropy loss function using stochastic gradient descent.

The key distinction between this approach and the previous ones lies in the fact that we do not
directly optimize the theoretical β∗(σ) derived earlier. Instead, our optimization focuses on
the classification performance on datasets with a fixed, small matrix size n. We then validate the
asymptotic performance of the learned σ by computing the corresponding theoretical β∗ using our
numerical procedure outlined above.

We train the above neural network with 10 different random initializations, post-process the σ learned
it to make it monotone, and compute the corresponding β∗. We report the σ achieving the smallest
β∗ in Figure 2(d). Encouragingly, despite being trained only on finite n, the learned σ performs
comparably to the other methods. We take this as an indication that σ can effectively be learned from
relatively small datasets without depending on the theoretical analysis of β∗(σ), making nonlinear
Laplacians a promising method for more realistic applications than these models of synthetic data.

D.2 Planted Clique model

The Planted Clique problem is similar in spirit to the Gaussian Planted Submatrix problem, but is
defined over random graphs rather than matrices. We view graphs on vertext set [n] as being encoded
in matrix form by a graph G giving rise to the so-called Seidel adjacency matrix Y ∈ Rn×n

sym ,

Yij =

{
+1 if nodes i, j are connected,
−1 if nodes i, j are not connected,
0 if i = j.

Thus, when we describe a random graph below, we may equivalently view it as a random such matrix.

Definition D.1 (Planted Clique). Let n ≥ 1 and β ≥ 0. We observe a random simple graph
G = (V = [n], E) constructed as follows: first, draw G from the Erdős-Rényi random graph
distribution, i.e., each pair of distinct u, v ∈ V , take (u, v) ∈ E independently with probability
1/2. Then, choose a subset S ⊆ [n] of size |S| = β

√
n uniformly at random, and add an edge to G

between each u, v ∈ S distinct if that edge is not in G already. Thus in the resulting G, the vertices
of S form a clique or complete subgraph.

Taking x = 1̂S as for Planted Submatrix, a simple calculation shows that we still have

E [Y | x] ≈ 1S1
⊤
S = β

√
n · xx⊤.

While the entries of Y − E [Y | x] are not exactly i.i.d. anymore, it turns out that this matrix is
sufficiently “Wigner-like” that many of the phenomena discussed for direct spectral algorithms in
Section 3.1 still hold for the Planted Clique model.
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In particular, it is well-known as folklore that a version of Theorem 3.1 on the BBP transition holds in
this case. The idea of showing this is to note that the matrix W := Y −E [Y | x] is a Wigner matrix
with i.i.d. Rademacher entries drawn uniformly from {±1} (above the diagonal), except that the

entries indexed by S are identically zero. We may write this as W = W (0) −W
(0)
S,S for W (0) truly

a Wigner matrix. But, we have with high probability W (0) = Θ(n1/2), while ∥W (0)
S,S∥ = Θ(n1/4),

since the latter is just a Wigner matrix of dimension β
√
n padded by zeroes (see Proposition B.14).

Thus this modification is of relatively negligible spectral norm, and routine perturbation inequalities
(in particular Weyl’s inequality, our Proposition B.15, for the eigenvalues) thus show that the result of
Theorem 3.1 holds for Y drawn from the Planted Clique model.

As an aside, the Planted Clique problem does have some non-trivial distinctions from the Gaussian
Planted Submatrix problem. For example, because of the special discrete structure of the Planted
Clique problem, for β sufficiently large it is also possible to introduce a post-processing step that
improves weak recovery to exact recovery (i.e., recovering the exact value of the set S), as detailed
in [AKS98].

Unfortunately, in this non-Gaussian setting the device of compression used to make the signal and
noise parts of Y exactly independent (Section C.3) does not apply to the Planted Clique model,
and we have not been able to find a substitute for that part of our argument. On the other hand, we

do still expect (Ŷ − 1S1
⊤
S )1 to be approximately a Gaussian random vector in the Planted Clique

model by the central limit theorem, since each entry is approximately a normalized sum of i.i.d.
random variables drawn uniformly at random from {±1}. Thus, while we are confident that the
analogy between Planted Clique and Gaussian Planted Submatrix holds sufficiently precisely for
Conjecture 3.6 to hold (as also supported by numerical experiments analogous to those we present for
the Gaussian Planted Submatrix model), we have not been able to prove this and leave the Conjecture
for future work.

Meanwhile, we numerically validate Conjecture 3.6 using the same setup as in Figure 4, as shown in
Figure 5 below. The Conjecture is merely the statement that these two Figures should look identical
as n → ∞, which we observe even for these experiments with finite n.

D.3 Heuristic discussion of dense signals

Our choice of a model of Biased PCA in Definition 1.1 prescribes that the signal vector x must be
sparse; in particular, we forbid the situation where ∥x∥0 = Θ(n). This regime is different from
that treated by, for instance, the previous work [MR15], which instead allows only such signals of
constant sparsity, though many of their results concern the limit of this sparsity decreasing to zero
(and thus in a sense approaching our regime of ∥x∥0 = o(n)).

In fact, it remains unclear to us to what extent our results should transfer to the case of denser signals.

Recall that our intuition is that the matrix D = diag(σ(Ŷ 1)) may be treated as approximately

independent of Ŷ for the purposes of studying the spectrum of their sum. This is in some sense
encoded in our use of the compression operation (Section C.3)—when we project away the 1 direction

from Ŷ , we intuitively believe that the important structure of Ŷ remains unchanged.

At a technical level, this is simply false once x is a dense (Θ(n) non-zero entries) non-negative vector:

x then has positive correlation with 1, so applying compression will reduce the signal strength in Ŷ .
Thus we should not expect a spectral algorithm using the compressed σ-Laplacian to be as powerful
as one using the uncompressed σ-Laplacian in this dense regime. Between these two algorithms, it
seems that using the uncompressed σ-Laplacian will be superior, but we have not found a way to
carry out analogous analysis without using compression.

Let us sketch how our results would look for an example of such a model, supposing that our
technique based on the random matrix analysis of [CDMFF11] applied. Consider the case where
η = |N (0, 1) |, the law of the absolute value of a standard Gaussian random variable, and p(n) = 1,

so that the signal is not sparsified at all. Thus we have that yi
i.i.d.∼ η and x = y/∥y∥. We expect to

have

Ŷ 1 = β⟨x,1⟩x+ Ŵ1.
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Figure 5: An illustration of the phase transition of top eigenvalue and eigenvector for the Planted
Clique model. Each point of the plot shows the average over 500 random inputs of the largest
eigenvalue and the squared correlation of the top eigenvector with the signal x for a nonlinear
Laplacian Lσ(Y ) with Y drawn from the Gaussian Planted Submatrix model, for σ = 0 (dark line)
and σ the best “S-shaped” nonlinearity found by black-box optimization (light line). Error bars have
width of plus/minus one standard deviation over these trials. We also incorporate the theoretical
prediction for the Gaussian Planted Submatrix model from Theorem 3.3. The numerical outputs align
with the theoretical predictions, supporting Conjecture 3.6.

As in the sparse case, the second term has independent entries approximately distributed as N (0, 1)

and in the first term ⟨x,1⟩ ≈
√

2/π.

Already here the first difference with the sparse case appears: in that case the first term above

does not affect the weak limit of ed(Ŷ 1) and thus of esd(X(n)), since only o(n) entries of x are

non-zero. Here, however, this term does play a role, and instead of esd(X(n))
(w)−−→ σ(N (0, 1)) as

in Lemma 3.7, we should expect the different limit

esd(X(n))
(w)−−→ ν = νβ,σ := Law(σ(β

√
2/π|g|+ h)) for g, h

i.i.d.∼ N (0, 1) ,

which notably depends on β.

Adjusting the rest of Lemma 3.7 accordingly, we expect λ1(X
(n)) → θ = θσ(β) where this θ solves

the equation

E
g,h∼N (0,1)

[
g2

θ − σ(β
√

2/π|g|+ h)

]
=

1

β

if such θ > edge+(σ) exists, and θ = edge+(σ) otherwise. Similarly, β∗ = β∗(σ) would then solve

E
g,h∼N (0,1)

[
1

(θσ(β∗)− σ(β∗
√
2/π|g|+ h))2

]
= 1,

and when β > β∗, then we would predict

λ1(L
(n)) → θσ(β) + E

g,h∼N (0,1)

[
1

θσ(β)− σ(β
√

2/π|g|+ h)

]
> edge+(µsc ⊞ ν).

Remark D.2. In fact, since the limiting esd of L(n) will be µsc ⊞ νβ,σ in this case, which depends
non-trivially on β (we do not give a proof but this much is not difficult to show using basic free
probability tools), it is easy to distinguish the case β = 0 from that of β > 0, achieving strong
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detection, by merely considering, e.g., a suitable moment of the esd, which is an expression of the

form 1
n Tr(Ŷ k). It is also easy to achieve weak recovery, since the vector 1/

√
n is macroscopically

correlated with any dense non-negative vector x. So, the questions of thresholds for strong detection
and weak recovery we have been concerned with in this work trivialize for models with dense signals.
A more interesting question in this setting would be for what signal strength β it becomes possible
to estimate x with a correlation superior to 1/

√
n. However, per the discussion in Appendix C.5,

it seems challenging even in the sparse case to understand what such correlation is achieved by a
σ-Laplacian spectral algorithm for recovery.

E Details of numerical methods

Below we give some details of the more involved numerical computations we have referred to
throughout. The code used to generate the results presented in this paper is also available online
anonymously at https://github.com/yuxinma98/NonlinearLaplacian.

E.1 Estimation of additive free convolution

We describe how we compute the analytic prediction of the empirical spectral distribution of a
σ-Laplacian, as illustrated in Figure 1. Recall that, by Lemma 3.8, the limiting density of this
distribution is of the form ν ⊞ µsc, where ν is a compactly supported measure with a known density,
in our case ν = σ(N (0, 1)), and µsc is the semicircle distribution.

The distribution of ν ⊞ µsc is characterized by the equation satisfied by its Stieltjes transform: we
have

G−1
ν⊞µsc

(z)− 1

z
= Rν⊞µsc

(z) = Rν(z) + z = G−1
ν (z)− 1

z
+ z.

Rearranging this gives the implicit equation

Gν⊞µsc
(z) = Gν(z −Gν⊞µsc

(z)). (12)

Numerically, the density of ν ⊞ µsc can be computed by the following procedure. Fix a grid of
complex numbers zj = xj + iϵ close to the real axis. Call Gj = Gν⊞µsc

(zj). These numbers satisfy

the fixed-point equation Gj =
∫∞
−∞

1
zj−Gj−σ(g)

1√
2π

e−g2/2dg, hence it can be computed numerically

by iterating

G
(t+1)
j =

∫ ∞

−∞

1

zj −G
(t)
j − ϕ(g)

1√
2π

e−g2/2dg

until convergence. To recover the density of ν ⊞ µsc, we can then use the Stieltjes inversion formula:
if this density is ρ, then

ρ(x) = lim
ϵ→0

− 1

π
Im(Gν⊞µsc

(x+ iϵ))

In particular, for ϵ small enough, we should have

ρ(xj) ≈ − 1

π
Im(Gj),

giving us a sequence of estimates of the density at the points xj . We compute the integrals above
using the standard numerical integration methods built into the NumPy library.

E.2 Computation of θσ(β) and β∗(σ)

Recall that, per Theorem 3.3, each of the quantities θσ(β) and β∗(σ) is determined by finding the
root of a suitable function. For example, θσ(β) is the θ that solves Fβ,σ(θ) = 0, where

Fβ,σ(θ) = E
y∼η

g∼N (0,1)

[
y2

θ − σ(m1

m2
βy + g)

]
− m2

β
.
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Figure 6: We present the optimal “S-shaped” nonlinearities σ(x) found for two signal entry distribu-
tions η, and give the threshold signal strength β∗(σ) achieved by each nonlinearity for each entry
distribution. At the top we also include the zero nonlinearity, leading to a direct spectral algorithm,
for reference.

In principle one could differentiate this function (differentiating under the integral in the first term) and
use more sophisticated methods like Newton’s method for root-finding, but for the sake of simplicity
we use the implementation of Brent’s method in the SciPy library. In any case, the computational
bottleneck of this procedure is the repeated evaluation of the integral implicit in expectations of
the above kind (which would remain with different integrands upon taking derivatives). We have
not attempted to optimize this numerical integration for the specific integrals we encounter, but this
would likely be a useful step for a more detailed numerical study of the thresholds β∗(σ).

E.3 Neural network training procedure

For the method of optimizing σ using an MLP to learn from data, the neural network was implemented
with the PyTorch framework and trained on a randomly generated dataset of size n = 5000, split into
training, validation, and test sets in a ratio of 0.6 : 0.1 : 0.3. Training was performed by minimizing
the binary cross-entropy loss using the AdamW optimizer with an initial learning rate of 0.01 and
weight decay of 0.01. The learning rate was automatically halved if the validation loss did not
improve for 10 consecutive epochs. Training was conducted for 350 epochs on a single NVIDIA
A5000 GPU. Each such run takes around 10 minutes.
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F Additional discussion

F.1 Applicability to real-world data

We remark that nonlinear Laplacians appear to be a reasonable method for searching for dense
subgraphs of a given graph, even when the statistical models we have studied do not hold or are not
reasonable. Indeed, when applied to graph data, nonlinear Laplacians may be viewed as merely a
deformed version of standard spectral approaches to finding dense subgraphs.

We have tested nonlinear Laplacians on the widely studied dataset of the neural network of C. Elegans,
a network on 297 vertices proposed as an example of a “small-world” network by [WS98]. To obtain
a binary and symmetric adjacency matrix, we have ignored all ancillary data including directedness
of interactions in this dataset, and on the resulting dataset we consider the task of finding unusually
densely connected subgraphs. We reliably find that a suitable nonlinear Laplacian algorithm finds
slightly denser and substantially different subgraphs compared to a naive algorithm (here, to view an
algorithm as outputting a subgraph, we compute the top eigenvector of the associated matrix and then
take the subset of vertices associated to some number of the eigenvector’s largest coordinates). For
instance, searching for a dense subgraph of 15 vertices, a naive spectral algorithm finds a subgraph
having 65% of all possible edges present, while a nonlinear Laplacian algorithm (for instance, that
obtained by optimizing in the “S-shaped” class of nonlinearities based on the tanh function) finds
one having 73% of all possible edges.

F.2 Transferability of nonlinearities

One advantage of nonlinear Laplacian algorithms is that it is sensible to use the same algorithm—
the same choice of σ—for different values of the signal entry distribution η. (Indeed, while we
have not explored this rigorously here, it also seems like a given σ should be a reasonable choice
for either sparse or dense signals, the latter as discussed in Appendix D.3.) We give a simple
illustration in Figure 6. For the two choices η = δ1 (corresponding to a planted submatrix model)
and η = |N (0, 1) |. For each, we use black-box optimization to optimize σ within the simple class
of functions σ(x) = a tanh(bx), which we call “S-shaped” choices of σ. We find that using either σ
for either choice of η is effective, in both cases much more effective than a direct spectral algorithm,
and that “fine-tuning” σ to the model gives only a modest further improvement. Further, as is also
visible in the plots of these σ, the optimized values of b are quite close (roughly b ≈ 0.584 for η = δ1
and b ≈ 0.575 for η = |N (0, 1) |), so the resulting nonlinearities are close to but not quite rescalings
of one another.

F.3 Generalized directional prior information

Both in the models we have singled out in Definition 1.1 and in our formulation of nonlinear Laplacian
spectral algorithms, the direction of the 1 vector has played a distinguished role. This is important to

the reasoning behind our algorithms, because in order for adding D to Ŷ to improve the performance
of a spectral algorithm, we must have that x⊤Dx is large. For monotone σ the diagonal entries of D
will be positively correlated with the entries of x, so x must be biased entrywise to be positive, as we
have assumed.

On the other hand, if one is instead given prior information that x is correlated with some other

vector v ̸= 1, of course one may just preprocess Ŷ into Q⊤Ŷ Q for some orthogonal transformation
Q that maps 1 to v (for instance the reflection that swaps the 1 and v directions) and then apply a
nonlinear Laplacian algorithm to this matrix. Similarly, if one is given the information that x lies
in a cone C ⊂ Rn, one may try to either find a vector v that lies near the “center” of that cone so
that x is correlated with v and then apply the above strategy, or to directly look for Q as above that
maps the positive orthant {x ∈ Rn : x ≥ 0} to a cone covering C. If C is not convex (say being the
union of a small number of convex cones), one may also attempt to find or learn from data several
different directions to play the role of 1, as we discuss further below. We have not explored these
ideas systematically, but they seem to be promising directions for future investigation.
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F.4 Generalized architectures and relation to graph neural networks

The original motivation that led us to study σ-Laplacians was a considerably more general question
of how to learn effective spectral algorithms. That is, can one learn a function M : Rn×n

sym → Rn×n
sym

such that λmax(M(Ŷ )) is a good test statistic for estimation or v1(M(Ŷ )) is a good estimator for
recovery in PCA problems? Two structural criteria seem reasonable for such M :

1. M should be an equivariant matrix-valued function with respect to the two-sided action of
symmetric group on symmetric matrices, so that for any permutation matrix P we have

M(P Ŷ P⊤) = PM(Ŷ )P⊤.

2. M should allow for “dimension generalization,” so that we may learn M from datasets of
small n0 × n0 matrices but apply it to n× n matrices with n ≫ n0.

The work of [MBHSL18] provides building blocks for constructing such M as a neural network.
Namely, they classify the equivariant linear functions Rn×n

sym → Rn×n
sym , which also are given in

a basis that is consistent across dimensions, so that a function on one dimensionality of matrices
naturally extends to higher dimensions. (See also the work of [LD24] for a general framework
for dimension generalization in such settings.) They frame their constructions as giving natural
graph neural networks acting on Y an adjacency matrix, but really the key structure involved is
equivariance (which in graphs becomes the particularly natural invariance under relabelling of
vertices of a graph). Using this, the following is a natural class of functions for our purposes:
given L1, . . . , Lk : Rn×n

sym → Rn×n
sym such equivariant linear functions and σ1, . . . , σk : R → R

nonlinearities that extend to apply entrywise to matrices, we may compute

M(Ŷ ) := σk(Lk(· · ·σ1(L1(Ŷ )))).

When can such a construction be analyzed by tools of random matrix theory of the kind we have

used? Unfortunately, it seems that if we want to have that ∥Ŷ ∥ = O(1) (say having a compactly
supported continuous bulk of eigenvalues with a finite number of eigenvalues of constant order)

implies ∥M(Ŷ )∥ = O(1) (with a similar structure), we must restrict this natural general structure
considerably. One issue is that some basis elements of equivariant linear matrix functions roughly
preserve the rank of a matrix, for instance the functions Z 7→ Z or Z 7→ diag(Z1). But, other

functions map high-rank matrices to low-rank ones, such as Z 7→ 1(Z1)⊤ + (Z1)1⊤. Thus if we
are not very careful to center and rescale the inputs into each Li, we can easily end up with outlier
eigenvalues of order ω(1). This is not obviously an issue algorithmically or computationally (though
it seems plausible it might lead to instability in training), but it does lead to random matrices different
from the “signal plus noise” structure where both summands are of comparable order.

Similarly, if the σi are not carefully centered, then the output of a given σi can have, say, a positive
entrywise bias. This corresponds, roughly speaking, to an eigenvector correlated with the 1 direction
with very large eigenvalue relative to the remaining eigenvalues (similar to the Perron-Frobenius
eigenvalue of a matrix with positive entries). If we further take such a matrix and apply the above
function Z 7→ 1(Z1)⊤+(Z1)1⊤, we will further inflate this eigenvalue, and iterating this procedure

can allow the largest eigenvalue of M(Ŷ ) to quickly diverge with the dimension n and the number
of layers k.

Our choice of nonlinear Laplacians is in part made to avoid all of these issues by restricting the
nonlinear part of our (very simple relative to the above) architecture to yield a diagonal matrix. Thus,
so long as our σ is bounded, the above situation of “blowing up” eigenvalues cannot occur.

It is perhaps natural to try to extend this construction to more complex diagonal matrix functions

of Ŷ . For instance, one may parametrize an equivariant function d : Rn×n
sym → Rn (that is, one

having d(P Ŷ P⊤) = Pd(Ŷ )) in a way similar to the approach of [MBHSL18] to equivariant linear

functions together with entrywise nonlinearities and use M(Ŷ ) = Ŷ + diag(d(Ŷ )). Provided
that the specification of d ends by applying a bounded nonlinearity, we again obtain a reasonable
random matrix model for theoretical analysis. Many similar variants are natural; for instance,
closer to our choice here, one could also fix or learn several vectors v1, . . . ,vk and compute d an

equivariant function of the tuple of vectors (Ŷ v1, . . . , Ŷ vk), allowing the “distinguished direction”
1 in nonlinear Laplacians to instead be learned from data (see the discussion in the previous section
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for a setting where this could be useful). We believe this class of examples is an intriguing direction
for future work on data-driven design of spectral algorithms.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code with reproduction instructions is also provided via an anonymized
GitHub repository. The link is available in Appendix E.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: For the one of our numerical experiments that includes an involved procedure
of neural network training, all training and testing details are provided in Appendix E.3.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Figure 4, error bars are shown for an example comparing our main theoretical
prediction to numerical experiments, with a clear explanation provided in the caption.
This empirical data is presented to support and validate the correctness of our theoretical
prediction, not as a statistical test, so statistical notions like confidence intervals or p-values
are not relevant to the results presented there.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For the numerical experiment involving neural network training, we have
recorded the GPU type used and the training time; see Section E.3. The running time and
computational cost of other numerical experiments is very modest and was not recorded or
presented.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that the research
conducted in this paper conforms with its principles in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: As a purely theoretical and foundational research paper, our work does not
have direct, immediate applications or deployments that would lead to foreseeable specific
positive or negative societal consequences at this stage.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper presents purely theoretical research. It does not involve the creation
or release of any datasets or models that would be considered high-risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in this paper, including open-source software libraries
such as NumPy, SciPy, and PyTorch, have been properly credited.

Guidelines:
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• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper involves neither crowdsourcing nor research with human subjects.
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Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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