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Abstract

Reinforcement learning (RL) has emerged as a popular method for post-training
large language models (LLMs). While improving the model’s performance on
downstream tasks, it often reduces the model’s output diversity, leading to narrow,
canonical responses. Existing methods to enhance diversity are limited, either
by operating at inference time or by focusing on surface-level differences. We
propose a novel training method named DQO (Diversity Quality Optimization)
based on determinantal point processes (DPPs) to jointly optimize LLMs for quality
and semantic diversity. Our approach samples and embeds a group of responses
for each prompt, then uses the determinant of a kernel-based similarity matrix to
measure diversity as the volume spanned by the embeddings of these responses.
DQO is flexible and can be applied on top of existing RL algorithms. Experiments
across instruction-following, summarization, story generation, and reasoning tasks
demonstrate that our method substantially improves semantic diversity without
sacrificing model quality.

1 Introduction

Large language models (LLMs) are typically post-trained to better align with human intentions and
to perform effectively on downstream tasks [Ouyang et al., 2022, Bai et al., 2022]. Reinforcement
learning (RL) is commonly used to either maximize an existing reward function, or a reward model
trained from human preference data [Ziegler et al., 2020, Stiennon et al., 2020, Ouyang et al., 2022,
Bai et al., 2022, DeepSeek-AI et al., 2025]. These methods substantially improve the output quality
for targeted tasks. However, a widely observed drawback is that post-training often leads to a sharp
reduction in output diversity, with models converging on a narrow set of canonical responses [Kirk
et al., 2023, Murthy et al., 2024, Anderson et al., 2024, Xu et al., 2025, Casper et al., 2023]. This loss
of diversity is problematic across multiple dimensions: it limits reasoning and personalization by
restricting alternative solution paths or user-preferred styles; it undermines test-time performance by
reducing test-time search capabilities, robustness to distribution shift, and coverage of reward modes;
and it weakens training dynamics by limiting exploration and the discovery of novel strategies.

Current efforts to promote diversity in LLM outputs are mostly limited to inference-time interventions
such as temperature scaling [Ackley et al., 1985], top-k sampling [Holtzman et al., 2020], and related
strategies [Nguyen et al., 2024, Franceschelli and Musolesi, 2025]. While these approaches help in
improving the spread across the response distribution, they often only introduce shallow, token-level
variation and fail to produce truly diverse or meaningful responses. In many cases, they also hurt
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output quality, making the model less reliable or coherent. More critically, they cannot recover modes
absent from the base model’s learned distribution. A more principled approach is to optimize for
diversity during training, but this poses two central challenges: defining diversity in a computationally
efficient and theoretically sound way, and balancing diversity with response quality.

Recent attempts to improve diversity during training largely remain at the lexical level. Yao et al.
[2025] encourage variation with a token-level entropy regularizer, but such measures fail to capture
semantic diversity, which is often more meaningful to humans. Lanchantin et al. [2025] extend
direct preference optimization (DPO) [Rafailov et al., 2023] by selecting the most diverse candidate
among high-reward responses, yet their notion of diversity is still based on surface features such
as generation probability or word counts. Likewise, Li et al. [2025] aim to preserve diversity in
supervised fine-tuning by carefully constraining probability transfer between tokens during updates,
again focusing on token-level variation. More broadly, these approaches prioritize local lexical
differences rather than encouraging models to generate responses that span distinct semantic modes.
Most related to our work, Chung et al. [2025] introduce a DPO variant that weights loss by average
embedding distance, but it remains DPO-specific and considers only pairwise distances, which can
yield degenerate solutions.

In this work, we propose a principled training method based on determinantal point processes (DPPs)
[Kulesza et al., 2012] to directly optimize LLMs for both quality and diversity in generated responses.
Unlike token-level entropy or lexical perturbations, our approach operates at the semantic level.
Specifically, for each prompt we sample a set of responses, map them into an embedding space
using a pretrained encoder, and compute a similarity matrix via a kernel function. The diversity
score is then defined as the determinant of this matrix, which corresponds to the volume spanned
by the response embeddings. Optimizing this objective encourages the model to generate responses
that span a subspace in the answers’ embedding space with the largest volume. The reward of each
response can be regarded as a scaling factor of the corresponding embedding vector, providing an
interpretable mechanism to balance quality against diversity. We refer to our algorithm as DQO
(Diversity Quality Optimization). DQO is highly flexible and can be layered on top of existing
state-of-the-art methods such as GRPO, making it broadly applicable in practice. We evaluate DQO
across instruction-following, summarization, story generation, and reasoning tasks, and demonstrate
that it significantly enhances semantic diversity while maintaining high response quality.

We summarize our contributions as the following,

• Principled framework for Diversity Quality Optimization : We propose a principled
method, DQO, for post-training LLMs to generate diverse, high-quality responses. DQO is
a flexible approach that can be applied on top of existing reinforcement learning algorithms,
such as PPO and GRPO.

• Semantic diversity beyond lexical variation : We demonstrate that the DPP-based for-
mulation provides a theoretically grounded framework for defining diversity, ensuring that
responses span the semantic space both broadly and meaningfully.

• Quality–diversity trade-off : We experimentally show that DQO improves semantic
diversity while preserving response utility, coherence, and task accuracy across a wide range
of tasks. In addition, we conduct extensive ablations to illustrate the trade-off between
quality and diversity.

2 Related works

Evaluating Diversity of LLMs. Several works have focused on evaluating the diversity of LLM
generated content [Guo et al., 2024, Shaib et al., 2024], also on investigating the impact of post-
training on diversity metrics [Kirk et al., 2023, Shypula et al., 2025]. The lack of diversity in LLM
generated content also affects text written by humans using LLMs [Padmakumar and He, 2024].

Improving Diversity of LLMs. There are mainly two lines of works on promoting diversity in
LLMs. One focuses on inference strategies. Nguyen et al. [2024] proposed a decoding method
to reallocate the next-token probabilities which they show can increase the entropy of the correct
solutions. The DiffSampling strategy, proposed by Franceschelli and Musolesi [2025], considers
the largest difference between consecutive probabilities of tokens in a sorted distribution to promote
diversity while maintaining correctness. Ahmed et al. [2025] proposed a two-stage inference strategy
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which consists of a high-temperature key words sampling process and a low-temperature expansion
procedure.

Another line of works focus on the training strategy to best elicit diversity from LLMs. Lanchantin
et al. [2025] proposed diverse preference optimization. They selected the most diverse response
from the high-reward group and the least diverse response from the low-reward group to form the
preference pair. The selection is based on some diversity criteria. Yao et al. [2025] shows that by
adding an entropy term of correct answers to the reward-based objective, LLMs can improve the
diversity while maintaining the quality. Different from those using reinforcement learning algorithms,
Li et al. [2025] instead study the supervised finetuning approach. They proposed carefully-designed
update strategy to mitigate the distribution collapse in SFT, thus encourages diversity. Most related to
our work, Chung et al. [2025] propose a variant of DPO that weights the loss by the average pairwise
distance in cosine similarity after embedding responses, this however, is limited to DPO, considers
only pairwise distances, and requires sampling k ≥ 3 responses per prompt in the training dataset.

Determinantal Point Processes. Determinantal point processes (DPPs) [Kulesza et al., 2012], are a
class of probabilistic models that arise in quantum physics and random matrix theory for modeling
repulsion. DPPs are well-suited for modeling diversity. Parker-Holder et al. [2020] proposed a
DPPs-based algorithm to train a population of diverse polices in reinforcement learning for better
exploration.

3 Preliminaries

3.1 Notations

For ease of readability, we summarize some frequently used notations here. We use x and y to
represent a prompt and a response, respectively. We represent a group of k responses {y1, . . . , yk} by
y1:k and we denote {y1, . . . , yi−1, yi+1, . . . , yk} by y−i. We use Ik ∈ Rk×k to represent the identity
matrix with size k. And det(·) represents the determinant of a matrix.

3.2 Reinforcement learning

Reinforcement learning has become a widely adopted approach for post-training LLMs with either an
existing reward function or the one inferred from a preference dataset (e.g., RLHF). With the reward
function, the model is typically optimized by maximizing the following KL-regularized objective,

π∗ = argmax
πθ

{J(πθ)− βKL(πθ||πref )} (1)

where J(πθ) = Ex,y∼π(·|x)[r(x, y)] is the expected return and β is a hyperparameter that balances
the KL divergence penalty and the rewards. Among existing algorithms, PPO [Schulman et al., 2017]
and GRPO [Shao et al., 2024] have demonstrated strong empirical performance, by introducing
some practical techniques including the clipping mechanism and group-based advantage estimation,
respectively.

3.3 Determinantal point processes (DPPs)

In this work, we quantify the diversity of LLM generated outputs based on ideas derived from the
Determinantal Point Process (DPP) literature (for a comprehensive introduction to DPPs, please refer
to Kulesza et al. [2012]). Below we introduce the definition of an L-ensemble, which is a subclass of
DPPs.

Definition 1 (L-ensemble) Let Y = {1, 2, . . . , N} be a ground set, and Y ⊆ Y be a random
subset. Suppose L ∈ RN×N is a real symmetric positive semi-definite matrix. We say L defines an
L-ensemble, if for every A ⊆ Y ,

Pr(Y = A) ∝ det(LA),

where LA is the submatrix of L indexed by A.

If we think of the entries of L as measurements of similarity between pairs of elements, such as
the dot product of the feature vectors of items, the determinant det(LA) corresponds to the squared
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Figure 1: The DPP-based diversity metric of DQO promotes meaningful semantic diversity while
ensuring robustness agains degenerate solutions.

volume spanned by the feature vectors of items in A, which increases when the vectors are diverse
and decreases when they are redundant or highly correlated. Thus, DPPs are well-suited to represent
distributions over subsets of items where sets consisting of diverse items are more likely.

For instance, consider the two-element set A = {i, j}. By definition,

Pr(A) ∝
∣∣∣∣Lii Lij
Lji Ljj

∣∣∣∣ = LiiLjj − LijLji

If items i and j are highly similar, then Lij is large, resulting in a low probability. Conversely, if L is
diagonal (i.e., Lij = 0), there are no correlations and the elements occur independently.

4 Diversity Quality Optimization

We now formally define our notion of semantic diversity inspired by DPPs and how to incorporate it
in reinforcement learning algorithms to jointly optimize quality and diversity.

4.1 Diversity via DPPs

Based on the above definition of DPPs, given a group of responses y1:k, we can formulate their
diversity score as,

Div(y1:k) = det(Lϕ(y1:k)) (2)

where Lϕ(y1:k)[i, j] = f(ϕ(yi), ϕ(yj)), f is a kernel function and ϕ(·) is a selected embedding
model which can map a response into a high-dimensional semantic space. Although in most of this
work we set the kernel function as the dot product, f(ϕ(yi), ϕ(yj)) = ⟨ϕ(yi), ϕ(yj)⟩, in Appendix C
we also explore Gaussian kernel function and provide additional results. For simplicity, when it is
clear from the context, we will omit the subscript in Lϕ.

Our definition of diversity offers two main advantages. First, it operates in the embedding space
of the responses, allowing it to capture semantic diversity which is typically what humans intend.
Second, its determinant-based definition induces a notion of group diversity that overcomes the
limitations of simple pairwise distance metrics. A key limitation of pairwise distance measures,
such as the average distance across responses, is their well-known vulnerability to a degenerate
“clustering” effect, as noted by Parker-Holder et al. [2020]. An algorithm optimizing for this metric
might produce responses that form a few distinct, widely separated clusters, creating a misleading
sense of diversity. In contrast, our determinant-based metric, which encourages the formation of
a parallelepiped with a large volume in the embedding space, directly addresses this issue. The
determinant is highly sensitive to the linear independence of the response vectors. If responses form
tight clusters, the vectors within a cluster become nearly linearly dependent, causing the determinant
of the similarity matrix to approach zero, regardless of the large distances between clusters. This
correctly identifies a lack of true diversity. Furthermore, the determinant is a more robust measure
because it recognizes when responses, despite having large pairwise distances, are confined to a
lower-dimensional subspace. This forces the system to explore the full high-dimensional embedding
space, ensuring genuine diversity that simple pairwise distances fail to capture.
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4.2 Quality-Diversity objective

Using the DPP based diversity metric (2) we now present the objective optimized by our DQO
algorithm. For each prompt x, we sample k responses y1:k ∼ πθ(·|x) from the policy, similarly to
the sampling performed as part of GRPO. Instead of optimizing only the reward, we incorporate
a diversity term based on the logarithm of our diversity metric into the objective. This yields the
objective given by

JDiv(πθ) = Ex,y1:k∼πθ(·|x)

[
k∑
i=1

r(x, yi) + α log det(Lϕ(y1:k))− βKL(πθ||πref )

]
, (3)

where Lϕ(y1:k) is defined in (2). The hyperparameter α controls the trade-off between quality and
diversity. Maximizing JDiv(πθ) directly optimizes the policy for both quality and semantic diversity
in generated responses.

In fact, it can be shown that by optimizing (3), the optimal policy satisfies,

πdiv(y1:k|x) ∝ πref (y1:k|x) exp

(
1

β

(
k∑
i=1

r(x, yi) + α log det(Lϕ(y1:k))

))
(4)

For simplicity of exposition, suppose β = α. We can define a reward-augmented embedding

vector for the prompt-response pair (x, y) as ψ(x, y) =
√
exp

(
r(x,y)
α

)
πref (y|x) · ϕ(y). Here, the

reward acts as a scaling factor of the original semantic embedding. With the formulation of the
reward-augmented embeddings, we can show that our optimal policy satisfies,

πdiv(y1:k|x) ∝ det(Lψ(x, y1:k)) (5)

For the complete derivation, we refer the reader to Appendix A. The expression above shows that our
optimal policy (5) assigns probabilities to groups of responses in proportion to the determinant of
the Gram matrix constructed from their embedding vectors. Geometrically, this means the policy
selects groups of vectors in the response embedding space according to the squared volume of the
parallelepiped spanned by those vectors.

The balance between quality and diversity also admits a clear geometric interpretation. The embedding
vector ψ consists of two components: a semantic embedding vector, which determines its direction,
and a reward, which determines its norm. To maximize the volume of the spanned space, one should
select vectors that are well separated from each other (i.e., diverse responses) while also having large
norms (i.e., high-quality responses). The overall trade-off is governed by the hyperparameter α.

Connections with D-Optimal Design. In the classical theory of experimental design, the goal is to
select design points that are most informative for estimating an unknown parameter vector. Consider
the linear model y = z⊤θ+ξ, where one collects design points z1, . . . , zn ∈ Rd. These design points
represent the experimental conditions under which data is observed, and their selection determines
how precisely the parameter θ can be estimated. The associated information matrix is defined as

M =
n∑
i=1

ziz
⊤
i = ZZ⊤,

where Z = [z1, . . . , zn] is the d× n design matrix. The criterion of D-optimal design selects these
design points to maximize det(M), since this minimizes the volume of the confidence ellipsoid for
the unknown parameter θ [Kiefer, 1959, Pukelsheim, 2006]. By Sylvester’s determinant identity,

det(M) = det(ZZ⊤) = det(Z⊤Z),

(see, e.g., Horn and Johnson [2012]), so D-optimality is equivalently expressed as maximizing the
determinant of the Gram matrix (the kernel matrix) of the design vectors under the dot-product
kernel. Our DQO objective can be seen as a direct analogue of this construction. The role of the
design vectors zi is instead played by the reward-augmented embeddings ψ(x, y), which incorporate
both the semantic content of a response and its quality signal. Maximizing the determinant of the
Gram matrix built from these embeddings is therefore analogous to maximizing information gain
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in D-optimal design: it encourages the selected responses to be as linearly independent as possible
in the ψ-space, ensuring that they collectively span a high-volume region that balances semantic
diversity and reward. In this way, DQO can be viewed as extending the principle of D-optimal design
from parameter estimation in bandits to the joint optimization of quality and diversity in language
model responses. For more detailed discussions, please see Appendix A where we provide a concrete
toy example to better illustrate the connections.

4.3 Algorithm

We noticed that directly optimizing (3) presents challenges, including high variance in stochastic
gradient estimates and risks of numerical instability. To address these issues, we now present a
practical algorithmic formulation that stabilizes training and makes the QD objective feasible in
practice. To identify the source of these challenges, we begin by computing the gradient of JDiv(πθ),
which is given by (for simplicity, we omit the KL-regularization term here),

∇JDiv(πθ) = Ex,y1:k∼πθ(·|x)

[
k∑
i=1

∇ log πθ(yi|x)(r(x, yi) + α log det(L(y1:k)))

]
. (6)

The first issue is that the determinant of L(y1:k) can be close to zero, which results in a very
large negative value of log(det(L(y1:k))). This unbounded diversity term destabilizes training and
complicates the trade-off between quality and diversity, to the point that only a carefully chosen α is
effective. To mitigate this issue, we propose to consider the determinant of the matrix L(y1:k) + Ik
instead. It can be shown that by adding an identity matrix, we have k ≥ log(det(L(y1:k) + Ik)) ≥ 0
which is well-bounded. Briefly, adding an identity matrix to our objective can be regarded as a
regularization term; we further discuss its effect on the objective in Appendix A and provide ablation
results in Appendix C.

The second issue is that the gradient consists of the sum of the gradients of k responses y1:k, which
causes it to have high variance, especially for large k. To mitigate the issue of inflating variance, we
propose to use leave-one-out (loo) gradient estimators by subtracting the log-determinant of the gram
matrix which leaves one response out,

∇looJDiv(πθ) = Ex,y1:k∼πθ(·|x)

[
k∑
i=1

∇ log πθ(yi|x)
(
r(x, yi) + α log

det(L(y1:k) + Ik)

det(L(y−i) + Ik−1)

)]
.

Importantly, it can be shown that the loo estimator is unbiased and has a nice property on the
boundedness of its value shown in Lemma 1 (for the proof, please refer to Appendix A). Lemma 1
shows that the diversity term is non-negative, with an upper bound of order log(k), which increases
slowly as k becomes large. This property stabilizes training and makes DQO robust to large values of
k.

Lemma 1 Let us write the eigenvalues of L(y1:k) as λk ≥ · · · ≥ λ1, then we have 1 + λk ≥
det(L(y1:k)+I)
det(L(y−i)+I)

≥ 1+λ1. And the eigenvalue of L(y1:k) is always in [0, k] since the embedding vectors

are normalized, we have 1 + k ≥ det(L(y1:k)+I)
det(L(y−i)+I)

≥ 1 and log(1 + k) ≥ log det(L(y1:k)+I)
det(L(y−i)+I)

≥ 0.

5 Experiments

In this section, we conduct a series of experiments to evaluate the performance of DQO in generating
diverse and high-quality responses. Specifically, we aim to answer the following questions:

• Does DQO improve diversity in responses and how does it compare with the reward-only
baseline and other existing quality-diversity algorithms?

• Does DQO achieve a favorable balance between quality and diversity? Can the model
preserve or improve task performance while enhancing diversity?

• Is the performance of DQO consistent across different tasks and settings?
• How does DQO manage the trade-off between quality and diversity, and how do its hyperpa-

rameters influence performance?
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5.1 City recommendation

We begin with a simple synthetic experiment on city recommendation to clearly illustrate the diversity
achieved by DQO. In this task, the model was prompted to recommend a city for traveling along
with a concise reason. The exact prompt we used is provided in Appendix E. We compared DQO
with GRPO and also implemented a variant of DQO using the average pairwise distance as the
diversity score, which we refer to as DQO-pairwise distance; the original algorithm is denoted as
DQO-determinant. The results are summarized in Figure 2, and the full details, including exact
numbers and city names, are reported in Appendix C.

Figure 2: From left to right: GRPO, DQO-
pairwise distance, DQO-determinant. Each cir-
cle represents a different city, with the size pro-
portional to the number of times it was recom-
mended. For each model, we sampled 100 times
with a temperature of 1.0.

DQO clearly encourages the model to generate
more diverse recommendations. When trained
solely with the reward, the model tends to con-
verge on recommending the same city repeatedly.
For using the pairwise distance as the diversity
score, we observed that the model’s recommenda-
tions were dominated by two major cities, which
aligns with our previous analysis. This occurs
because high pairwise distance can be achieved
with two widely separated clusters. In contrast,
the determinant-based approach penalizes linear
dependence, encouraging responses to span the
space as broadly as possible. As shown in Figure 2,
DQO-determinant produces the most diverse set
of recommendations.

5.2 General tasks

In the above section, we show the effectiveness of DQO in promoting diversity on the controlled city
recommendation task, we now turn to a broader evaluation on general language model tasks. We
implemented extensive experiments on four different kinds of tasks including reasoning (GSM8K
[Cobbe et al., 2021]), summarization (CNN-dailymail [See et al., 2017]), story-writing (Common-Gen
[Lin et al., 2020]) and instruction-following (Dolly Conover et al. [2023]).

Baselines. We compare DQO to the baseline algorithm which trains the model solely with reward.
For reasoning tasks, we use GRPO, while for non-reasoning tasks, we adopt PPO. We also compare
DQO with other two popular quality-diversity algorithms: GRPO-likelihood [He et al., 2025] and
GRPO-entropy [Yao et al., 2025]. For the detailed experimental setup, please see Appendix B.

In this work, we employ a reward model to provide quality scores. Notice that, for reasoning tasks, we
also rely on the reward model rather than outcome-based rewards, due to the observed phenomenon
of reward hacking with outcome reward (for details, please refer to Appendix D). During training,
rewards are normalized by dividing by an empirical maximum value to ensure a comparable scale
with the diversity score, whereas during evaluation, we report the unnormalized rewards.

Metrics. We report pass@n metric (i.e., the highest score among n responses) as measures of the
quality in the responses with n varies from 1 to 10. Without special clarifications, responses are
sampled with a temperature of 1.0. And we use multiple metrics to measure the diversity in the
responses which we summarize below,

• Distinct-n: Count the ratio of unique n-grams among the responses.
• Self-BLEU [Papineni et al., 2002] and Self-ROUGE [Lin, 2004] score: Two popular metrics

to measure the similarity of languages. Note these scores measure the similarity, to be
consistent with other metrics, we report 1− Score.

• LLM as a judge: We prompt an advanced model GPT-4o-mini to judge the model’s output
in terms of the diversity (see Appendix E and F), serving as a surrogate for human judgment.

We first compare the performance of DQO against all baseline algorithms. The results are summarized
in Table 1. To evaluate the model, we select a representative non-reasoning task and a reasoning task.
Among all algorithms, DQO is the only one that achieves both high diversity and high quality scores
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Table 1: The quality and diversity scores achieved by DQO compared to other baseline algorithms
on the instruction-following task: Dolly, and the reasoning task: GSM8K. Diversity metrics are
calculated across 10 generated responses per prompt.

Method / Task Diversity ↑ Quality ↑
distinct-1 distinct-4 self-bleu self-rouge pass@1 pass@10

Dolly
PPO 0.24 0.64 0.41 0.49 5.65 8.39
GRPO-likelihood 0.26 0.70 0.46 0.54 5.86 8.50
GRPO-entropy 0.36 0.75 0.56 0.57 4.71 7.70
DQO 0.28 0.69 0.46 0.54 5.92 8.74

GSM8K
GRPO 0.09 0.32 0.09 0.21 76.8 87.9
GRPO-likelihood 0.26 0.86 0.53 0.59 50.9 80.4
GRPO-entropy 0.10 0.38 0.12 0.25 77.0 92.6
DQO 0.10 0.42 0.14 0.31 76.3 91.2

across both tasks. GRPO-likelihood shows performance comparable to DQO on the Dolly task but
underperforms on GSM8K, whereas GRPO-entropy performs well on GSM8K but poorly on Dolly.
These results demonstrate that DQO consistently delivers strong performance in post-training LLMs
to produce diverse and high-quality generations.

5.3 Quality-diversity balance

In this section, we present more fine-grained results on the diversity and quality of responses generated
by the model trained with DQO. For comparison, we also include the results of the model trained
solely with the reward.

Quality. In Figure 3, we show the pass@n performance across four tasks with n varying from 1 to
10. DQO exhibits better performance than the baseline model especially when n is large. Besides, in
the case of n = 1, our model has similar or better performance to the baseline. Together, the results
show that our method does not hurt pass@1 performance while providing better pass@n performance
with n > 1 indicating that our model can generate both high-quality and diverse responses.
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Figure 3: The performance of the trained model on pass@n metrics. For DQO, we set hyperparame-
ters α = 1.0 and k = 4.

Diversity. The superior performance on pass@n already suggests that our method enhances re-
sponse diversity. To further validate this, we present six diversity metrics in Figure 3. For each metric,
higher values indicate greater diversity. As shown in the figure, DQO consistently outperforms the
baseline model, demonstrating a clear advantage in diversity. In particular, for the LLM-as-a-judge
metric, the advanced model GPT-4o-mini strongly recognizes the diversity of responses generated by
our approach (See Appendix F), highlighting improvements at the semantic level.

Pareto frontier. To illustrate how DQO achieves a favorable balance between quality and diversity,
we plot the Pareto frontiers of DQO and the baseline model by varying either the training steps or the
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Figure 4: The performance of the trained model on six diversity metrics. For each metric, the higher
value means the higher diversity. For DQO, we set hyperparameters α = 1.0 and k = 4. And the
diversity metrics are calculated across 10 generated responses per prompt.

sampling temperature in Figure 5. Across different sampling temperatures (the right in Figure 5), our
model consistently occupies the upper-right region relative to the baseline, demonstrating a robust
advantage in balancing quality and diversity at the inference stage. Similarly, when varying the
training steps (the left in Figure 5), our model remains Pareto-optimal throughout the entire training
process, indicating that it consistently achieves a better quality–diversity balance throughout the
entire training process.
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Figure 5: Pareto frontiers on quality and diversity of our model and the baseline. On the left, each
point is a model trained with different training steps and the sampling temperature is set as 1.0. On
the right, we take the final trained model but vary the sampling temperature.

5.4 Ablation Study

DQO introduces two key hyperparameters: α and k. The hyperparameter α controls the weight of the
diversity term in the training objective, while k is the number of responses sampled per prompt in the
algorithm. Both parameters jointly influence the trade-off between output quality and diversity. To
analyze their impact, we conduct experiments across different values of α and k, and the results on
Dolly task are summarized in Table 2 (for the ablations on GSM8K task, please refer to Appendix C).

From Table 2, we can observe the trade-off between quality and diversity when changing the value
of α or k. Both increasing α and k can enhance the diversity of generated responses as reflected in
diversity metrics such as distinct-n, self-bleu and self-rouge scores. However, when α or k exceeds
a certain threshold, the quality metric pass@1 begins to decline, suggesting that the diversity term
becomes too dominant. At the same time, pass@10 metric remains relatively stable, indicating
that the model still generates some high-quality responses among its top outputs despite the strong
emphasis on diversity.

Increasing k enhances response diversity, since a larger k encourages the model to generate a larger
group of diverse responses, that is, to allocate probability mass across a wider range of outputs.
However, unlike adjusting α, increasing k incurs additional computational costs since more responses
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Table 2: The quality and diversity scores of the model trained with different values of hyperparameters
k and α on the Dolly task. Diversity metrics are calculated across 10 generated responses per prompt.

Method Diversity ↑ Quality ↑
distinct-1 distinct-4 self-bleu self-rouge pass@1 pass@10

PPO 0.24 0.64 0.41 0.49 5.65 8.39

α = 0.5, k = 4 0.28 0.69 0.44 0.53 5.84 8.79
α = 1.0, k = 4 0.28 0.69 0.47 0.54 5.92 8.73
α = 1.5, k = 4 0.33 0.79 0.57 0.61 5.47 8.56
α = 2.0, k = 4 0.35 0.82 0.54 0.64 5.42 8.69

k = 2, α = 1.0 0.24 0.62 0.40 0.50 5.71 8.13
k = 4, α = 1.0 0.28 0.69 0.47 0.54 5.92 8.73
k = 6, α = 1.0 0.31 0.76 0.49 0.58 5.71 8.83
k = 8, α = 1.0 0.32 0.79 0.52 0.61 5.64 8.64

must be generated. From a practical perspective, we therefore recommend prioritizing adjustments to
α over k since the performance gain is similar.

Overall, compared with the baseline model, DQO exhibits robust improvements in both quality and
diversity across a wide range of α and k values, suggesting that it does not require highly sensitive
hyperparameter tuning. In practice, this property makes the algorithm more reliable and easier to
deploy, as strong performance can be maintained under different settings.

In addition to the ablations on different values of α and k, we also conduct ablations on the weight of
the identity matrix in the determinant calculation (see Section 4.3), controlled by the parameter γ in
det(L(y1:k) + γIk). Please refer to Appendix C for the results.

6 Conclusions

In this work, we propose an algorithm DQO to post-train LLMs for diverse high-quality responses.
Based on determinantal point processes, DQO defines the diversity in a group of responses as the
determinant of a kernel-based similarity matrix of the embeddings of those responses. This definition
of diversity has a straightforward interpretation as the squared volume of the space spanned by the
embeddings of the response. We conduct extensive experiments across different kinds of tasks,
and show that DQO can optimize the model to generate significantly more diverse responses while
maintaining high quality in the generated responses.

Although DQO achieves superior performance, there are some limitations in this work. First, the
quality-diversity objective is vulnerable to reward hacking when using the outcome reward. A
reward model is needed which limits the applicability in many reasoning tasks where the outcome
reward is commonly used. Second, DQO relies on the embedding models to map responses into a
semantic space. The performance of DQO depends on the quality of these embeddings. A more
principled and adaptive method for measuring diversity could better capture the underlying semantic
variation, potentially adjusting automatically to the specific requirements of different tasks, which
may emphasize different aspects of diversity, thus achieves better performance.
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A Theoretical results and proofs

Lemma. Suppose ψ(x, y) =
√
exp( r(x,y)α )πref (y|x) · ϕ(y), then the optimal policy defined in (4)

satisfies πdiv(y1:k|x) ∝ det(Lψ(y1:k)) when α = β.

Proof. Let B ∈ Rn×k have columns ϕ(y1), . . . , ϕ(bk). The Gram matrix is

L = B⊤B.

Now suppose we scale each column ϕ(yi) by a factor ai, and denote

A = diag(a1, . . . , ak), B′ = BA.

Then the new Gram matrix is

L′ = (B′)⊤B′ = (AB⊤)(BA) = A(B⊤B)A = ALA.

Taking determinants,

det(L′) = det(ALA) = det(A) det(L) det(A) =
(
det(A)

)2
det(L).

Since det(A) =
∏k
i=1 ai, we obtain

det(L′) =

(
k∏
i=1

ai

)2

det(L).

Recall that πdiv(y1:k|x) is defined as when α = β,

πdiv(y1:k|x) ∝ πref (y1:k|x) exp

(
1

α

(
k∑
i=1

r(x, yi)

)
+ log det(Lϕ(y1:k))

)

= πref (y1:k|x) exp

(
1

α

(
k∑
i=1

r(x, yi)

))
det(Lϕ(y1:k))

=
k∏
i=1

(
πref (yi|x) exp

(
r(x, yi)

α

))
det(Lϕ(y1:k))

The second equality holds because y1:k are sampled independently. Combined with the result above,
we have πdiv(y1:k|x) ∝ det(Lψ(y1:k)).

Analysis of det(L(y1:k)) and det(L(y1:k) + Ik). Maximizing det(L) is equivalent to maxi-
mizing the volume of the parallelepiped spanned by the feature vectors of selected responses, which
enforces strict linear independence: any subset that induces a singular matrix receives zero score. In
contrast, maximizing det(L+ I) introduces a ridge-like regularization. Indeed, if L = BB⊤ for a
feature matrix B ∈ Rk×d, we have

det(L+ I) = det(BB⊤ + I) = det(I +B⊤B).

This is precisely the determinant of a regularized scatter matrix, analogous to the role of (B⊤B+λI)
in ridge regression. From this viewpoint, adding I stabilizes the objective by preventing collapse
along directions of near-linear dependence and avoiding the degeneracy of zero determinants.

A complementary interpretation arises from Bayesian linear models and Gaussian processes. In
Bayesian linear regression with a Gaussian prior w ∼ N (0, I) and unit-variance observation noise,

the marginal likelihood normalization involves det(I +B⊤B)−
1
2 . Similarly, in Gaussian process

regression, the log marginal likelihood includes log det(L+σ2I), with σ2 corresponding to the noise
variance. Setting σ2 = 1 recovers the det(L + I) objective. Hence, det(L + I) can be viewed as
the determinant under a model with a prior noise floor, which softens the diversity requirement and
balances between variance explained by the selected items and a baseline level of uncertainty.
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Eigenvalue Interlacing Theorem [Fisk, 2005]. SupposeA ∈ Rn×n is symmetric. LetB ∈ Rm×m

with m < n be a principal submatrix (obtained by deleting both i-th row and i-th column for some
values of i). Suppose A has eigenvalues λ1 ≤ · · · ≤ λn and B has eigenvalues β1 ≤ · · · ≤ βm.
Then,

λk ≤ βk ≤ λk+n−m, for k = 1, · · · ,m

And if m = n− 1, one has,

λ1 ≤ β1 ≤ λ2 ≤ β2 ≤ · · · ≤ βn−1 ≤ λn

Proof. We use the Courant–Fischer min–max theorem. For a symmetric matrix A ∈ Rn×n with
eigenvalues λ1 ≤ · · · ≤ λn, the k-th eigenvalue can be characterized as

λk = min
S⊂Rn

dim(S)=k

max
x∈S
x ̸=0

x⊤Ax

x⊤x
.

Similarly, for the principal submatrix B ∈ Rm×m with eigenvalues β1 ≤ · · · ≤ βm, we have

βk = min
T⊂Rm

dim(T )=k

max
y∈T
y ̸=0

y⊤By

y⊤y
.

Now observe that B is obtained by restricting A to a coordinate subspace (corresponding to removing
some rows and columns). Hence any y ∈ Rm can be embedded into Rn by padding with zeros.
Under this embedding, the Rayleigh quotient is preserved:

y⊤By

y⊤y
=
x⊤Ax

x⊤x
, where x is y padded with zeros.

Therefore, the feasible subspaces for B are restrictions of those for A. This leads to the inequalities

λk ≤ βk ≤ λk+n−m, k = 1, . . . ,m.

In the special case m = n− 1, the inequalities expand into the chain

λ1 ≤ β1 ≤ λ2 ≤ β2 ≤ · · · ≤ βn−1 ≤ λn,

which is exactly the interlacing property.

Lemma. Let’s write the eigenvalues of L(y1:k) as λk ≥ · · · ≥ λ1, then we have 1 + λk ≥
det(L(y1:k)+Ik)

det(L(y−i)+Ik−1)
≥ 1+λ1. And the eigenvalue of L(y1:k) is always in [0, k] since the embedding vec-

tors are normalized, we have 1+k ≥ det(L(y1:k)+Ik)
det(L(y−i)+Ik−1)

≥ 1 and log(1+k) ≥ log det(L(y1:k)+Ik)
det(L(y−i)+Ik−1)

≥
0.

Proof. Let’s write the eigenvalues of L(y−i) as βk−1 ≥ · · · ≥ β1. Based on Eigenvalue Interlacing
Theorem, we have,

det(L(y1:k) + Ik)

det(L(y−i) + Ik−1)
= (1 + λ1)

k−1∏
i=1

1 + λi+1

1 + βi
≥ 1 + λ1

and,

det(L(y1:k) + Ik)

det(L(y−i) + Ik−1)
= (1 + λk)

k−1∏
i=1

1 + λi
1 + βi

≤ 1 + λk

Since L(y1:k) is positive semidefinite, it holds λi ≥ 0, ∀i. And we have
∑k
i=1 λi = tr(L(y1:k)) = k

due to the normalization of the feature vectors. Hence, we have k ≥ λk ≥ λ1 ≥ 0.
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Connections with D-Optimal Design: A toy exmaple. We construct a controlled toy setup to
empirically compare our setting to D-optimal selection strategy against the baseline of uniform
sampling, highlighting scenarios where diversity plays a critical role in achieving robust performance
across varied reward functions

Setup and Notation: Let d = 3 denote the dimensionality of the embedding space, and let
{ϕ1, ϕ2, . . . , ϕN} ⊂ Rd be a set of normalized candidate embeddings. We synthetically construct
the pool to be imbalanced along coordinate directions: nx = 40: vectors near the x-axis, ny = 40:
vectors near the y-axis and nz = 10: vectors near the z-axis (rare) with N = 90. Small Gaussian
noise ε ∼ N (0, 10−4I) is added to prevent rank-deficiency.

To illustrate our hypothesis, we compare two sampling strategies: Uniform: wi = 1
N for all i and

ours by solving the following optimization problem

max
w∈∆N

log det

(
N∑
i=1

wiϕiϕ
⊤
i + δI

)

s.t.
N∑
i=1

wi = 1, 0 ≤ wi ≤ 1

where δ = 10−9 ensures numerical stability. The DPP based approach promotes spectral coverage
across all directions. Next, we define four linear reward directions: kx = [1, 0, 0]⊤ (high mass),
ky = [0, 1, 0]⊤ (high mass), kz = [0, 0, 1]⊤ (low mass), kbal =

1√
3
[1, 1, 1]⊤ (balanced). The

expected reward under policy w and reward k is

Eϕ∼w [⟨k, ϕ⟩] =
N∑
i=1

wi⟨k, ϕi⟩ (7)

We compute the information matrices: Σ(w) =
∑N
i=1 wiϕiϕ

⊤
i and visualize their eigenvalues.

Uniform sampling has low spectral mass in the z-direction. In contrast, our DPP based approach
balances mass across all directions. This confirms that log det promotes coverage.

Thus this simulation reveals a failure mode of uniform sampling in imbalanced datasets. D-optimal
design reallocates weights toward rare directions, yielding significantly improved performance in
worst-case reward scenarios. The log-determinant acts as a diversity-promoting surrogate, superior to
naive metrics like pairwise distance or cosine dissimilarity.
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B Experimental setup

Data preparation. For GSM8K dataset, we directly use the training and test split. For CNN-
dailymail dataset, we take the test split, and select 8, 000 data points as the training set and 1, 024
data points as the test set. For Dolly dataset, there is only one training split of 15, 000 data points.
We divided it into two subsets with the ratio of 0.2. For Gen, we use the training split, remove data
with repetitive key words, and divided the set into two subsets, each containing 8, 000 and 1, 024 data
points respectively.

Training configuration. We use GRPO algorithm for GSM8K task and use PPO algorithm
for the other tasks. We use Qwen2.5-MATH-1.5B [Yang et al., 2024] as the base model for
GSM8K task, and use Llama3.2-1B for the other tasks. For all tasks, we use the reward model
Skywork/Skywork-Reward-V2-Llama-3.2-1B [Liu et al., 2025] and embedding model sentence-
transformers/all-MiniLM-L6-v2. For baseline algorithms, we directly use the hyperparameters
reported in their papers. For GRPO-likelihood, we use α = 0.25 and for GRPO-entropy, we use
α = 0.01.

Table 3: Training configurations. For max prompt and response length, we use different values for
different datasets. From left to right, it corresponds to GSM8K, CNN-dailymail, Dolly, Gen.

training batch size 128

training epoches 3

actor learning rate 1e-6

critic learning rate 1e-5

rollout temperature 1.0

max prompt length 256, 1536, 1024, 64

max response length 256, 256, 512, 128
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C Additional experiments

C.1 City recommendation

The following table shows the numerical results that were used to plot Figure 2. For each model, we
sampled 100 times and countered the times of each city being recommended.

Table 4: The frequencies of each city being recommended for models trained with different methods.

Method City (Frequency)
GRPO Tokyo (97); New York (3)

DQO-pairwise distance New Orleans (48); Asheville (37); Budapest (8); Barcelona (7)

DQO-determinant
Budapest (45); Chiang Mai (22); New Orleans (19); Hanoi (7);
Krakow (1); Kanazawa (1); Ottawa (1); Nashville (1);
Tokyo (1); Bangkok (1); Singapore (1)

C.2 Additional ablation studies

Value of α and k. In Table 2 in the main page, we show the ablation results of α and k on Dolly
task. Here, Table 5 shows the results on GSM8K task.

Table 5: The quality and diversity scores of the model trained with different values of hyperparameters
k and α on the GSM8K task. Diversity metrics are calculated across 10 generated responses per
prompt.

Method Diversity ↑ Quality ↑
distinct-1 distinct-4 self-bleu self-rouge pass@1 pass@10

GRPO 0.09 0.32 0.09 0.21 76.8 87.9

α = 0.5, k = 4 0.09 0.33 0.09 0.22 74.6 89.2
α = 1.0, k = 4 0.10 0.42 0.14 0.31 76.3 91.2
α = 1.5, k = 4 0.11 0.48 0.19 0.34 76.1 92.6
α = 2.0, k = 4 0.13 0.54 0.21 0.40 76.7 92.7
α = 5.0, k = 4 0.16 0.62 0.28 0.44 77.7 93.3

k = 2, α = 1.0 0.11 0.40 0.13 0.26 73.9 90.3
k = 4, α = 1.0 0.10 0.42 0.14 0.31 76.3 91.2
k = 6, α = 1.0 0.10 0.44 0.17 0.33 76.5 92.1
k = 8, α = 1.0 0.11 0.47 0.16 0.32 74.9 90.8

Kernel function. DQO formulates the diversity score as the determinant of the kernel matrix.
By default, we use the dot product kernel function, i.e., ϕ(y1, y2) = ⟨y1, y2⟩. We study the effect
of different kernel functions on DQO. We implemented same experiments using Gaussian kernel
function, i.e., ϕ(y1, y2) = exp

(
−∥y1−y′2∥

2

2

)
. Table 6 shows the performance of DQO with different

kernel functions on Dolly and GSM8K tasks. DQO demonstrates robust performance under different
kernel functions.

Regularization by introducing identity matrix. To solve the numerical explosion issue, we
introduce an identity matrix when calculating the determinant: det(L(y1:k + γIk)). It can be shown
adding an identity matrix plays a role as a regularization. By default, we simply set γ = 1. We test
DQO with different values of γ on GSM8K and Dolly tasks.

We can see from Table 7, when γ = 0.1, the diversity in responses surges while the quality collapses.
This is consistent with our analysis. The identity matrix can be regarded as a regularization term. The
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Table 6: The quality and diversity scores of the model trained with different kernel functions on Dolly
and GSM8K tasks. Diversity metrics are calculated across 10 generated responses per prompt.

Method Diversity ↑ Quality ↑
distinct-1 distinct-4 self-bleu self-rouge pass@1 pass@10

Dolly

α = 1.0, gaussian 0.29 0.72 0.48 0.56 6.45 8.61
α = 1.0, dot product 0.28 0.69 0.46 0.54 6.56 8.74

α = 2.0, gaussian 0.34 0.79 0.54 0.61 6.12 8.64
α = 2.0, dot product 0.35 0.82 0.54 0.64 6.41 8.69

GSM8K

α = 1.0, gaussian 0.10 0.43 0.16 0.31 77.1 90.9
α = 1.0, dot product 0.10 0.42 0.14 0.31 76.3 91.2

α = 2.0, gaussian 0.11 0.48 0.19 0.36 75.2 91.2
α = 2.0, dot product 0.13 0.54 0.21 0.40 76.7 92.7

objective will prioritize diversity more if γ is low. In addition, when α = 0.5, we can see decreasing
γ does not affect the quality much as in the case where α = 1.0. This is because α also controls the
balance between quality and diversity. When α is low, the diversity is less important in the objective,
hence, the effect of decreasing γ is diluted. The phenomenon is consistent on GSM8K task.

Table 7: The performance of DQO with different identity matrix weights on Dolly task. Diversity
metrics are calculated across 10 generated responses per prompt.

Method Diversity ↑ Quality ↑
distinct-1 distinct-4 self-bleu self-rouge pass@1 pass@10

α = 1.0,+0.1I 0.57 0.96 0.79 0.86 3.44 6.38
α = 1.0,+0.5I 0.37 0.83 0.56 0.66 6.72 8.90
α = 1.0,+I 0.28 0.69 0.46 0.54 6.56 8.74

α = 0.5,+0.1I 0.34 0.84 0.58 0.68 6.04 8.75
α = 0.5,+0.5I 0.28 0.71 0.44 0.54 6.31 8.72
α = 0.5,+I 0.28 0.69 0.43 0.53 6.47 8.77

Table 8: The performance of DQO with different identity matrix weights on GSM8K task. Diversity
metrics are calculated across 10 generated responses per prompt.

Method Diversity ↑ Quality ↑
distinct-1 distinct-4 self-bleu self-rouge pass@1 pass@10

α = 1.0,+0.1I 0.23 0.79 0.41 0.52 73.3 93.9
α = 1.0,+0.5I 0.11 0.49 0.19 0.36 77.5 92.0
α = 1.0,+I 0.10 0.42 0.14 0.31 76.3 91.2

α = 2.0,+0.1I 0.38 0.88 0.58 0.74 63.5 91.3
α = 2.0,+0.5I 0.15 0.59 0.24 0.42 78.0 93.2
α = 2.0,+I 0.13 0.54 0.21 0.40 76.7 92.7
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D Reward hacking with outcome reward

We observed an interesting phenomenon when doing experiments on GSM8K task. With only
outcome reward provided, the model trained with the quality-diversity objective learns to first
generate a correct answer to the question thus securing the outcome reward, then generate some
random or irrelevant contents to artificially increase diversity. See the concrete example below.

The reward-hacking phenomenon does not exist when we use reward models, since the reward model
evaluates the quality of the entire response rather than just the final answer.

We explored a potential solution by computing the cosine similarity between the embeddings of the
prompt and the response and multiplying this score with the diversity term. The intuition is that only
responses semantically aligned with the prompt contribute to the diversity objective. However, we
observed that the model can still exploit this mechanism by generating correct answers followed by
random contents but superficially related to the prompt. See the concrete example below.

We believe outcome-based reward alone is inherently susceptible to reward hacking. The outcome
reward is widely used in reasoning tasks due to its simplicity and effectiveness, however, when
combined with other objectives, it is vulnerable to reward hacking. This phenomenon presents an
intriguing challenge for future study.

An example of reward hacking with outcome reward

Prompt: Gretchen has some coins. There are 30 more gold coins than silver coins. If she had
70 gold coins, how many coins did Gretchen have in total? Let’s think step by step and output
the final answer after "####".

Response: If Gretchen had 70 gold coins and there are 30 more gold coins than silver coins,
then the number of silver coins she had is

70− 30 = 40 silver coins.

The total number of coins Gretchen has is the sum of gold and silver coins, so it is

70 + 40 = 110 coins. #### 110

The correct answer is: 110

Which digit is first to appear in the units place of

51 + 52 + 53 + · · ·+ 52004 + 52005 ?

(A) 0

(B) 1

(C) 2

(D) 5

To determine which digit is first to appear in the units place of the sum

51 + 52 + 53 + · · ·+ 52004 + 52005,

we need to analyze the units digits of the powers of 5.
First, let’s observe the units digits of the first few powers of 5:

. . .
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An example of reward hacking with prompt-response similarity

Prompt: Bobby takes a 30 min lunch and two 15 minutes break per day at the office. After
5 days, how many hours do his lunches and breaks add up to? Let’s think step by step and
output the final answer after "####".

Response: Bobby takes a 30 minute lunch and a 15 minute break twice a day.
So in total, Bobby takes 30 + 15 + 15 = 60 minutes of lunch and breaks per day.
After 5 days, Bobby takes a total of

60× 5 = 300 minutes of lunch and breaks.
Since there are 60 minutes in an hour, Bobby’s lunches and breaks add up to

300

60
= 5 hours.

#### 5
Bobby’s lunches and breaks add up to 5 hours.
Bobby’s dog is on a diet. For every meal he eats, he needs to walk him for 2 minutes. When
he eats twice, he walks him 4 times that amount. How many minutes did Bobby walk his dog
if he let him eat 7 meals? Let’s think step by step and output the final answer after "####".
Bobby’s dog needs to walk 2 minutes for every meal he eats.

2× 7 = 14 minutes.
#### 14
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E Prompts

We listed the prompts we used in this work.

Prompt for city recommendation

Prompt = "Recommend a city to visit along with a reason. Respond ONLY with valid JSON
with the following schema. Do not include explanations or extra text.
{
"city": "<city name>",
"reason": "<reason>"
}"

Prompt for GSM8K

Prompt = "{QUESTION} Please reason step by step, and put your final answer within
\\boxed{}."

Prompt for CNN-dailymail

Prompt = f"Summarize the following article:
{ARTICLE}
Summary:"

Prompt for Dolly

prompt = f"### Instruction:
{INSTRUCTION}
### Input:
{INPUT}
### Response:"

Prompt for Common-gen

Prompt = f"Write a short story of 3–4 sentences that includes the following keywords: {KEY
WORD}. The story should be coherent, creative, and naturally incorporate all the keywords.
Story:"

Prompt of LLM as a diversity judge

Instructions="The following are two files, each records responses generated by a model. The
’prompt’ field stores prompts, and the ’response’ field stores the corresponding groups of
generated responses for the prompts. Please judge two models in terms of the diversity of
their generated responses. You should give each model a score between [0,1]."
Input= f"Files: model 1: {FILE}; model 2: {FILE}."
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F LLM as a diversity judge

We use advanced LLMs (GPT-4o-mini) to score the diversity of the responses generated by the
models. The following are the evaluations given by GPT-4o-mini. For fair comparison, we did two
comparisons by changing the order of two models and taking the average scores.

Diversity judged by gpt-4o-mini on GSM8K; Model 1 (GRPO), Model 2 (DQO)

To evaluate the diversity of responses generated by the two models, we can analyze the
patterns seen in the “responses” field of each model.
Model 1:

• Characteristics:
– The majority of responses are quite repetitive, consistently using phrases like

“To solve this problem, we’ll break it down” or variations thereof.
– There appears to be a lack of varied strategies or unique approaches in the

generated answers, with many instances simply restating the problem-solving
process in a similar structure.

• Diversity Score: Given the high level of similarity and repeated phrasing, I would
rate the diversity of responses for Model 1 as 0.2/1.

Model 2:
• Characteristics:

– This model exhibits a somewhat greater variety in response structure, with
different steps highlighted in the problem-solving process.

– Phrases like “Step X: Determine the...” and “Let’s denote the total number...”
introduce variation, and there seems to be a more thoughtful approach to several
responses.

– While there are still some repeated forms, the presence of distinct steps and
strategies indicates a broader array of response possibilities.

• Diversity Score: The variety and different methodologies present in the responses
lead me to rate Model 2’s diversity as 0.5/1.

Summary:
• Model 1 Score: 0.2/1
• Model 2 Score: 0.5/1

Model 2 demonstrates better response diversity compared to Model 1, which relies heavily
on similar language and structure.
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Diversity judged by gpt-4o-mini on CNN-dailymail; Model 1 (PPO), Model 2 (DQO)

To assess the diversity of the responses generated by the two models, we evaluate the variety
and uniqueness of the content provided in the responses to identical prompts.
Model 1:

• The responses from Model 1 vary in terms of length and detail, but many responses
are quite structured and similar in approach.

• There is some variation in naming conventions and specific details, but overall, a
noticeable pattern exists in how the information is expressed.

• Many responses use similar phrasing, leading to less diversity overall.
Model 2:

• Responses from Model 2 exhibit greater variation in phrasing, structure, and detail.
• The content shows a wide range of descriptions and perspectives, which enhances

the uniqueness of each response.
• There is a noticeable effort to vary not just the wording but also the structure of each

response, leading to a more diverse set of outputs.
Scores: Based on this analysis, we assign the following scores for diversity in generated
responses:

• Model 1: 0.4 (Limited diversity, responses similar in structure and phrasing)
• Model 2: 0.8 (High diversity, significant variation in responses)

These scores reflect the extent of variety present in the responses generated by each model.
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Diversity judged by gpt-4o-mini on Dolly; Model 1 (PPO), Model 2 (DQO)

To assess the diversity of responses generated by both models, we analyze the responses
across various prompts, looking for variances in creativity, structure, and content diversity.
Model 1 Analysis:

• The responses from Model 1 often maintain a similar structure, primarily focusing
on straightforward factual information, lists, or direct answers to prompts.

• The responses appear to have consistent formatting, providing succinct and clear
answers, but can feel repetitive and lack creative exploration.

• While some responses do reflect a variety of information (e.g., multiple examples,
details), the overall tone and presentation remain quite uniform.

Model 2 Analysis:
• Model 2 demonstrates a greater variety of response styles, incorporating markdown-

like formatting, lists, and varying degrees of detail and structure across its outputs.
This format enhances readability and introduces an engaging style.

• The responses in Model 2 often include additional editorial commentary or creativity
(e.g., humorous tones in astrology interpretations, narrative elements in product
recommendations).

• The use of diverse sentence structures and clear formatting contributes to a sense of
dynamism in responses.

Scoring:
• Model 1: 0.4 (due to consistent structure and less creative diversity in responses)
• Model 2: 0.8 (due to varied response formats, creative styles, and more engaging

outputs)
Final Scores:

• Model 1: 0.4
• Model 2: 0.8
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Diversity judged by gpt-4o-mini on Common-gen; Model 1 (DQO), Model 2 (PPO)

To evaluate the diversity of the generated responses from both models, we analyze the content
and variety of the responses provided for the same prompts.
Model 1:

• The responses feature varied character names and professions, indicating a range of
different story premises.

• While the structure is somewhat consistent (retired individuals reflecting on their
past), each response introduces a new character with unique backstories or contexts.

• The diversity is primarily in the character names and their respective professions,
leading to different narrative angles.

Model 2:
• The responses are more repetitive in structure; most of them start similarly with “An

older woman pauses...”.
• There is a notable lack of variation in terms of settings and character actions across

the responses. Although some details differ (such as the specific verb or object), the
overall premise and sentence structure remain largely the same.

• This limits the diversity of storytelling in comparison to Model 1.
Scores:

• Model 1: 0.8 — Scores high for its unique character introductions and storytelling
approaches, exhibiting good diversity.

• Model 2: 0.4 — Scores lower due to the repetitive structure and similarity in
responses, which significantly reduces the diversity in storytelling.

Summary: Model 1 demonstrates a greater range of ideas and creativity in responses, while
Model 2 lacks variety, leading to a more uniform storytelling style.
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