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Abstract

We propose a general framework for deriving
generalization bounds for parallel positively
homogeneous neural networks–a class of neu-
ral networks whose input-output map decom-
poses as the sum of positively homogeneous
maps. Examples of such networks include
matrix factorization and sensing, single-layer
multi-head attention mechanisms, tensor fac-
torization, deep linear and ReLU networks,
and more. Our general framework is based
on linking the non-convex empirical risk min-
imization (ERM) problem to a closely related
convex optimization problem over prediction
functions, which provides a global, achievable
lower-bound to the ERM problem. We ex-
ploit this convex lower-bound to perform gen-
eralization analysis in the convex space while
controlling the discrepancy between the con-
vex model and its non-convex counterpart.
We apply our general framework to a wide va-
riety of models ranging from low-rank matrix
sensing, to structured matrix sensing, two-
layer linear networks, two-layer ReLU net-
works, and single-layer multi-head attention
mechanisms, achieving generalization bounds
with a sample complexity that scales almost
linearly with the network width.

1 INTRODUCTION

Despite significant recent advances in the analysis of
deep neural networks (DNNs), key gaps persist in es-
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tablishing guaranteed performance of such models–
particularly regarding theoretical guarantees on un-
seen data. This lack of performance guarantees is es-
pecially concerning for high-stakes applications such
as autonomous vehicles, healthcare, or other high-
consequence decision-making systems. To ensure the
safe and reliable deployment of deep learning models,
it is essential that generalization guarantees be estab-
lished under reasonable data-generating mechanisms.

Related work. There is a broad literature on gen-
eralization theory. Classical approaches can be cat-
egorized along two separate (but related) lines:(i)
data-dependent versus data-independent bounds, and
(ii) uniform versus non-uniform concentration. In-
formally, data-dependent bounds take into account
explicit data-generating assumptions, whereas data-
independent bounds hold regardless of the underlying
data distribution. Similarly, uniform concentration
guarantees focus on obtaining concentration inequali-
ties simultaneously for all functions in some function
class (known as the hypothesis space). In contrast,
non-uniform concentration inequalities focus on par-
ticular functions estimated from the data. Classical
approaches marry these two separate types of analy-
ses by introducing measures such as the VC-dimension
(Vapnik and Chervonenkis, 1968) or the Rademacher
Complexity (Bartlett and Mendelson, 2001). How-
ever, these classical measures are often di!cult to com-
pute and overly pessimistic, especially when applied to
DNNs (Zhang et al., 2021). Consequently, many clas-
sical approaches may fail in the modern, more complex
DNN setting.

Modern generalization frameworks for DNNs acknowl-
edge that data often comes from structured distri-
butions (e.g., with an intrinsic dimensionality signif-
icantly below that of the ambient space) and that op-
timization algorithms like Stochastic Gradient Descent
(SGD) explores only a small portion of the hypothe-



A Convex Relaxation Approach to Generalization Analysis

sis space (Neyshabur et al., 2017). As a result, the
e”ective hypothesis space is much smaller than what
classical bounds account for based on the expressiv-
ity of the model alone. Consequently, modern bounds
focus on data-dependent, non-uniform approaches.
For instance, margin bounds (Neyshabur et al., 2018;
Golowich et al., 2018; Barron and Klusowski, 2019)
provide specific generalization error bounds for DNNs
trained to minimize max-margin type loss functions
for classification tasks. Another line of research (Dziu-
gaite and Roy, 2017; Arora et al., 2018; Banerjee et al.,
2020) exploits the sensitivity of the non-convex land-
scapes around learned weights; however, this approach
requires the estimation of hard quantities like expected
sharpness and KL divergence and questions remain re-
garding the extent to which quantities such as sharp-
ness explain network generalization (Wen et al., 2023;
Andriushchenko et al., 2023).

Recent work has observed that optimization meth-
ods such as SGD, even without explicit regulariza-
tion, tend to yield solutions that generalize well, a no-
tion known as implicit bias (Gunasekar et al., 2017,
2018a,b; Soudry et al., 2018; Li et al., 2020; HaoChen
et al., 2021; Vardi, 2023). This stands in contrast to
classical theory, which suggests that explicit regular-
ization is necessary to avoid overfitting. For example,
DNNs have been shown to converge toward maximum-
margin solutions in classification tasks (Soudry et al.,
2018), while solutions in regression tasks often exhibit
low-rank structures (Li et al., 2020) that generalize
well. Although these analyses provide valuable in-
sights, they are generally limited to specific objectives
and types of neural network architectures.

A key challenge in understanding the generalization
properties of DNNs is their non-convex landscape. In-
deed, convex landscapes are better understood, and
numerous generalization bounds have already been de-
rived (Shalev-Shwartz et al., 2009; Lugosi and Neu,
2022). We argue that bridging the gap between non-
convex and convex landscapes could provide a pathway
to understanding generalization better. Our key con-
tribution is to propose a new generalization analysis
framework for DNNs based on linking their non-convex
landscape to a convex one. Our framework builds upon
Hae”ele and Vidal (2017) and Vidal et al. (2022), who
connected certain non-convex optimization problems
to closely related convex ones. However, their work
focuses on characterizing the optimization properties
of such problems and does not consider generalization.

Paper contributions. In this work, we use the idea
of analyzing non-convex problems via a closely related
convex problem to derive generalization bounds for a
broad family of learning models, which take the form of
sums of (slightly generalized) positively homogeneous

functions whose parameters are regularized by sums
of positively homogeneous functions of the same de-
gree. This allows for a reinterpretation of the (empir-
ical and expected) non-convex optimization problems
as closely related to carefully constructed convex prob-
lems. We then apply concentration of measure tech-
niques to the convexified version under reasonable data
distributions and show that this also implies the con-
centration of the non-convex problem of interest. More
specifically, we extend the finite-dimensional frame-
work of Hae”ele and Vidal (2017) and Vidal et al.
(2022) to its infinite-dimensional counterpart, which
allows us to derive generalization guarantees from a
novel viewpoint by exploiting the connection between
our problem of interest and a closely related convex
problem. We note that other prior work (Bach, 2017)
has also considered similar relationships between con-
vex and non-convex problems for establishing general-
ization results. However, the generalization guarantees
in Bach (2017) largely rely on Rademacher complexi-
ties, which results in a sample complexity that grows
quadratically with the network width. In contrast, we
exploit the relationship between the convex and non-
convex problems more directly, which allows us to de-
rive bounds with an improved sample complexity.

To be more precise, our main results can be stated
informally as follows. Let N be the number of data
points, R be the number of positively homogeneous
functions (or the width of the network) whose predic-
tions are summed together to form the output, and
dim(W) be the dimension of the parameters in one of
the functions. When N ↭ Õ(R → dim(W)), we show
that the generalization error can be bounded with high
probability by two terms: the first term, dubbed the
optimization error, which vanishes at a globally opti-
mal solution, and the second term, dubbed the statis-
tical error, which depends on the ratio R→dim(W)

N
, and

hence vanishes only asymptotically.

Our results apply to a wide range of signal process-
ing and DNN problems. The derived bounds achieve
near state-of-the-art sample complexity for non-convex
low-rank matrix sensing that match the lower bound
provided by Candès and Plan (2011) for convex low-
rank matrix sensing. By applying these general re-
sults to two-layer linear (and ReLU) neural networks
with weight decay and multi-head attention models, a
key component of transformer architecture (Vaswani
et al., 2017), we obtain novel generalization bounds
with “tight”1 sample complexities for both problems.

1
Our notion of “tight” bounds corresponds to cases

where the sample complexity scales linearly or nearly lin-

early (up to logarithmic factors) with the number of model

parameters.
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Outline. The remainder of this paper is organized as
follows. In §2, we formulate the learning problem and
introduce our approach. In §3, we explore how learning
problems can be bounded via convex surrogates. In §4,
we present the statistical bounds through the master
theorem that provides generalization error bounds. In
§5, we apply the master theorem to various problems in
signal processing and DNNs and compare our derived
sample complexities with those in the existing liter-
ature. The supplementary material contains detailed
proofs of the mathematical statements, validations of
our framework’s assumptions through simulations, and
an additional survey of related works.

Notation. For two random variables (Z,W ), drawn
from a joint distribution q, we define ↑Z,W ↓q =
E[↑Z,W ↓], where the expectation is with respect to
the joint probability distribution q. For a generic
function f : Rd ↔ R, we denote ↗f↗Lip as its Lip-
schitz constant; i.e., the smallest number Lf such
that |f(x) ↘ f(y)| ≃ Lf↗x ↘ y↗. A function f is
said to be integrable with respect to measure q, i.e.,

f ⇐ L
2(q), if

(∫
x↑X ↗f(x)↗2dq(x)

)1/2
< ⇒. The in-

equality f(x) ↭ g(x), means that there exists a con-
stant c > 0 such that f(x) ⇑ cg(x). We define the
ReLU function as [x]+ = max(x, 0). For the matrix U

the variable uj corresponds to jth column of U .

2 PROBLEM FORMULATION

Given a realization of a pair (X,Y ) ⇐ X → Y from
a distribution µ with X ⇓ RnX , Y ⇓ RnY , we con-
sider a (non)parametric regression problem of the form
Y = g(X, ω), where ω is a source of additional noise
(typically independent from X). We are interested in
approximating g by the sum of r prediction functions,
ε : W → RnX ↔ RnY , parameterized by W ⇐ W, i.e.,

Ŷ =
r∑

j=1

ε(Wj)(X) = #r({Wj})(X). (1)

We will additionally refer to ε(W )(X) as the factor
map/sub-network depending on the specific problem.

Our goal is to learn the parameters {Wj}2 that mini-
mize the regularized population risk defined as

NCµ({Wj}) := E(X,Y )

[
ϑ(Y,#r({Wj}rj=1)(X))

]
︸ ︷︷ ︸

=:ω(g,!r({Wj}r
j=1))µ

+ ϖ$r({Wj}rj=1),

(2)

where Y = g(X, ω) is the target random variable, ϑ(·, ·)
is the loss function, typically convex in the second ar-
gument, and $r({Wj}rj=1) is an explicit regularization

2
We occasionally notate {Wj}ri=1 as {Wj} for brevity

of notation, but the dependence on r is always implied.

function which helps find structured parameters, such
as minimum norm or sparse solutions. Specifically, the
regularization term $r({Wj}rj=1) is defined as

$r({Wj}rj=1) :=
r∑

j=1

ϱ(Wj), (3)

where ϱ : W ↔ R+ is a regularization term for each
factor map, and ϖ ⇐ R+ is a regularization hyperpa-
rameter that controls the trade-o” between loss reduc-
tion and inducing structure.

Notice that we will minimize the population risk
NCµ({Wj}) over both r and {Wj}rj=1. More explic-
itly, we will allow for problems where, in addition to
optimizing over the model parameters, one also opti-
mizes over the number of prediction functions r (e.g.,
the network width) during training. However, our re-
sults will also apply to a value of r that is fixed a
priori.

Estimating NCµ({Wj}) directly is challenging due
to (i) the lack of access to the distribution µ, (ii)
the fact that ({Wj}) (and potentially the number r)
are random variables dependent on the training data
{(Xi, Yi)}, and (iii) the non-linearity and potential
non-convexity of NCµ. We address the first point (as is
standard) via empirical minimization of NCµ(·) using
the empirical risk (or training error) defined via:

NCµN ({Wj}) :=
1

N

N∑

i=1

ϑ(Yi,#r({Wj}rj=1)(Xi))

︸ ︷︷ ︸
=:ω(g,!r({Wj}r

j=1))µN

+ ϖ$r({Wj}rj=1),

(4)

where µN denotes the empirical distribution of the
samples {Xi, Yi}Ni=1. We define empirical risk mini-
mization (ERM) via the argmin of NCµN ({Wj}). For
concreteness, recall we also allow for the minimization
over r (provided r is bounded above by some quantity
independent of the data), though our results hold for
any fixed r.

Note that if we minimize the objective NCµN (·), there
is no guarantee that we will also minimize NCµ(·). This
discrepancy is quantified by the Generalization Error:

|NCµ({Wj})↘ NCµN ({Wj})|
=

∣∣ϑ(g,#r({Wj}rj=1))µ ↘ ϑ(g,#r({Wj}rj=1))µN

∣∣ .
(5)

Note that the regularization terms containing $r are
the same between the two objectives, giving the typical
di”erence between the empirical and population losses.

In this work, we compute an upper bound for the gen-
eralization error at any stationary point of the empiri-
cal problem, NCµN ({Wj}), under certain technical as-
sumptions. To build our main results, we relate these
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non-convex objectives NCµ({Wj}) and NCµN ({Wj})
to closely related convex objectives in the prediction
space, respectively Cµ(fµ) and CµN (fµN ), whose def-
initions will be introduced in §3. This allows us to
decompose the generalization error in (5) as:

NCµ({Wj})↘ NCµN ({Wj})=
[
NCµ({Wj})↘ Cµ(fµ)

]

︸ ︷︷ ︸
Population Gap

↘
[
NCµN ({Wj})↘ CµN (fµN )

]

︸ ︷︷ ︸
Empirical Gap

+
[
Cµ(fµ)↘ CµN (fµN )

]

︸ ︷︷ ︸
Convex Generalization Gap

.

(6)

Our Theorem 1 bounds the Empirical Gap and the
Population Gap. With these bounds, we then apply
concentration techniques to bound the Convex Gener-
alization Gap and obtain our main Theorem 2 which
gives bounds for the generalization error in (5).

3 CONVEX BOUNDS FOR
LEARNING

In this section, we present bounds for the Empirical
Gap and Population Gap through Theorem 1, linking
our learning problem of interest to functions that are
convex in the space of prediction functions. To begin,
we state several requirements for our framework.

Assumption 1 (Regularization). The regularization
function ϱ is positive semidefinite; i.e, ϱ(0) = 0 and
ϱ(W ) ⇑ 0, ⇔W ⇐ W.

This is a mild assumption; it only ensures we do
not impose negative regularization on the parameters
{Wj}. Our next assumption is our main functional
assumption on ε and ϱ.

Assumption 2 (Balanced Homogeneity of ε and ϱ).
The factor map ε and the regularization map ϱ can be
scaled equally by non-negative scaling of (a subset of)
the parameters. Formally, we assume that there ex-
ists sub-parameter spaces (K,H) from the parameter
space W such that K → H = W, ⇔(k,h) ⇐ (K,H),
and ς ⇑ 0 we have ε((ςk,h)) = ς

p
ε((k,h)) and

ϱ((ςk,h)) = ς
p
ϱ((k,h)) for some p > 0. Further, we

assume that for bounded input X the set {ε(W )(X) :
⇔W ⇐ W s.t. ϱ(W ) ≃ 1} is bounded.

This is a slight generalization of positive homogeneity,
which only requires positive homogeneity in a subset
of parameters, provided the image of the factor map
for parameters with ϱ(W ) ≃ 1 is bounded 3.

3
For example, ω(v)(X) can take the form vag(X) for

a → 0, and ε(v) = |v|a, where g : Rnx ↑ R is some

fixed function. More generally, we can choose ω(v1, v2) =
va1gv2(X) and ε(v1, v2) = |v1|a + ϑV2(v2), where gv2 :

Rnx ↑ R is a function parameterized by v2 ↓ V2 and has

a bounded range for bounded inputs.

Our next assumption concerns the loss function ϑ.

Assumption 3 (Convex Loss). The loss ϑ(Y, Ŷ ) is
second-order di!erentiable (written ϑ ⇐ C2), and L-
smooth w.r.t. Ŷ , i.e, for any Y, Ŷ ⇐ RnY

0 ↖ ↙2
Ŷ
ϑ(Y, Ŷ ) ↖ LInY . (7)

Additionally, the gradient of the loss is bi-Lipschitz
smooth; that is, for all Y1, Y2, Ŷ1, Ŷ2 ⇐ RnY

↗↙
Ŷ
ϑ(Y2, Ŷ2)↘↙

Ŷ
ϑ(Y1, Ŷ1)↗ ≃ L

[
↗Y2 ↘ Y1↗2

+ ↗Ŷ2 ↘ Ŷ1↗2
]
,

(8)

and the loss is constant if both the arguments are the
same, i.e., for all Y1, Y2 ⇐ RnY , ϑ(Y1, Y1) = ϑ(Y2, Y2).

This ensures that the loss function is convex and
smooth. Furthermore, if the loss is φ-strongly convex,
i.e, 0 ∝ φInY ↖ ↙2

Ŷ
ϑ(Y, Ŷ ) ↖ LInY we have derived

tighter results (see the Appendix).

We define the induced regularization function as

%(f) := inf
r,{Wj}

$r({Wj})

s.t. f(X) = #r({Wj})(X); ⇔X ⇐ X ,

(9)

with the function taking value infinity if f(X) can-
not be realized for some choice of the parameters
(r, {Wj}rj=1). Using similar arguments as in Hae”ele
and Vidal (2015) it can be shown that under assump-
tions 1–2, the function %(f) is convex in the space
of prediction functions; see Proposition 1 in the Ap-
pendix. Moreover, by Assumption 3, the loss function
is convex with respect to the model predictions, which
allows us to define the following two convex optimiza-
tion problems over the space of prediction functions:

Cµ(f) := E(X,Y )[ϑ(Y, f(X))] + ϖ%(f), (10)

where f ⇐ L
2(µ), and

CµN (f) :=
1

N

N∑

i=1

ϑ(Yi, f(Xi)) + ϖ%(f), (11)

where f ⇐ L
2(µN ).

From the definition of %(f) we have that Cµ and
CµN are always lower bounds of NCµ and NCµN ,
respectively, for any (f, {Wj}) such that f(X) =
#r({Wj})(X), which becomes a tight bound for any
parametrization ({Wj}) of f which achieves the infi-
mum. As a result, we can relate solutions of the non-
convex problems to the corresponding convex problem
via tools from convex analysis, as we establish in the
following result.
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Theorem 1 (Convex Bounds for Learning). Under
assumptions 1–3, let f

↓
µN

(or f
↓
µ
) be the global mini-

mizer for CµN (·) (or Cµ(·)). For any stationary points
(r, {Wj}) of the function NCµN (·) and any f ⇐ L

2(µ)′
L
2(µN ) the following are true:

1. Empirical optimality gap:

CµN (f↓
µN

) ≃ NCµN ({Wj}) ≃ CµN (f)

+ ϖ%(f)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


,

(12)

2. Population optimality gap:

Cµ(f
↓
µ
) ≃ NCµ({Wj}) ≃ Cµ(f)

+ ϖ%(f)

[
%↔

µ

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1



+
[
↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ

↘ ↑↙
Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µN

]
,

(13)

where %↔
q
(·) is referred to as polar in the measure q

defined as

%↔
q
(g) := sup

ε(W )↗1
↑g,ε(W )↓q. (14)

Readers are referred to Appendix A for the proof with
extensions to strongly convex functions.

The population optimality gap is obtained by an
infinite-dimensional extension of Proposition 3 in Ha-
e”ele and Vidal (2020). The additional term in the
population optimality gap (13) arises from the fact
that the stationary points of ERM, NCµN (·), are not
necessarily the same as those of NCµ(·).

From equation (5) the goal is to bound the di”erence
between the original non-convex formulations NCµN

and NCµ. By Theorem 1, we established the optimal-
ity gaps for both empirical and population non-convex
optimization problems, and by computing the di”er-
ence between equation (12) and (13), with algebraic
manipulation we arrive at the following quantities:

• Convex Generalization Gap: The convex generaliza-
tion gap is defined as |Cµ(f)↘ CµN (f)|.

• Polar Gap: By virtue of the fact that the loss func-
tions each contain the respective polars, we define
the Polar Gap as the quantity |%↔

µ
(↙

Ŷ
ϑ(g, f)) ↘

%↔
µN

(↙
Ŷ
ϑ(g, f))|.

• Equilibria Gap: We define the Equilibria Gap via∣∣∣∣↑↙Ŷ
ϑ(g, f), f↓µN ↘ ↑↙

Ŷ
ϑ(g, f), f↓µ

∣∣∣∣.

• Norm Gap: The final remaining quantity is defined

via

∣∣∣∣↗f
↓
µ
↘ f↗2

µN
↘ ↗f↓

µ
↘ f↗2

µ

∣∣∣∣. This quantity ap-

plies only to strongly convex functions (see the Ap-
pendix).

A major technical contribution of this paper is to
demonstrate that each of these quantities uniformly
concentrates at a rate equal to or smaller than the
“statistical error” under certain realistic assumptions
that are discussed in §4. The only remaining term from
Theorem 1 is the quantity %(fµ)[%↔

µN
(·) ↘ 1], which

bounds the sub-optimality (in objective value) of the
current stationary point for the empirical optimization
problem. This term approaches zero at the global op-
timum of NCµN (see §A in the Appendix).

4 STATISTICAL BOUNDS

In Theorem 1, we established bounds for the Empirical
Gap and Population Gap. Building on these results,
we identified key quantities such as the Convex Gener-
alization Gap, Polar Gap, Equilibrium Gap, and Norm
Gap, all of which can be controlled under certain gen-
eral conditions (Assumptions 1–6, along with Assump-
tion 7’ from the Appendix) that we state momentarily.
In this section, we present Theorem 2, which consoli-
dates these bounds to derive our main generalization
error bound. For clarity and to minimize technical
complexity, we present Theorem 2 with Assumption
7, which a stronger version of Assumption 7’.

To begin, we state our additional assumptions. We
assume that ε is Lipschitz.

Assumption 4 (Lipschitz Continuity of ε). Let B be
some compact subset of W, and denote

Fε := {W : ϱ(W ) ≃ 1} ′ B ∞ B(rε), (15)

where B(rε) is the L2 ball with radius rε.4 The factor
map ε is Lipschitz continuous with respective to inputs
for any choice of parameters W ⇐ Fε, i.e,

Lϑ := sup
W↑Fω

↗ε(W )↗Lip < ⇒. (16)

Our next assumption imposes tail conditions on the
random variables (X,Y ).

Assumption 5 (Data Model). The input data X ⇐
RnX is drawn from the 1-Lipschitz concentrated sub-
Gaussian distribution with a proxy variance ↼

2
X
/nX ;

4
The radius rω can depend on the dimension of W .

For instance, suppose W ↓ Rn
and ε(W ) = ↔W↔1, as

↔W↔1 ↗
↘
n↔W↔2, then rω must be at least

↘
n. On

another instance, suppose W = (u ↓ Rm,v ↓ Rn
), and

ε(W ) = ↔u↔2↔v↔2; this requires rω to be at least 1/2.
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i.e., for any 1-Lipschitz continuous function, h :
RnX ↔ R there exists c > 0 such that

P (|h(X)↘ EX [h(X)]| ⇑ ω) ≃ c exp

(
↘nXω

2

2↼2
X


. (17)

The target function Y takes the form Y = g(X, ω),
where g ⇐ L

2(µ) is bi-Lipschitz in X and ω; that is,

↗g(X2, ω2)↘ g(X1, ω1)↗2 ≃ ↗g↗Lip
[
↗X2 ↘X1↗2

+↗ω2 ↘ ω1↗2
]
,

(18)

and ω ∈ N (0, (↼2
Y |X/nE)I) in RnE .

We note that the above assumption is mild. While
extending our framework to heavy-tailed distributions
are likely possible; it would require a more intricate
analysis and may result in worse error rates and larger
sample complexities.

Our next assumption concerns the possible functions
learned via empirical risk minimization.

Assumption 6 (Hypothesis class). Stationary points
of NCµN (·) have bounded regularization and bounded
width, r ≃ R, almost surely. The input-output map,
#r({Wj}) has Lipschitz constant at most ↽, and the
parameters are bounded. Let BR ∞ WR be some com-
pact set; then the hypothesis class is defined as

FW :=

{Wj}rj=1 : ↗#r({Wj})↗Lip ≃ ↽


′ BR. (19)

In words, the set of maps learned through ERM are
essentially Lipschitz in the parameters {Wj}, and,
furthermore, the {Wj} are bounded (almost surely).
Moreover, the assumption that r ≃ R ensures that at
most R individual functions {Wj} are needed, which
implicitly imposes a “low-complexity” constraint on
the learned function. Finally, note that we assume
that ↽ does not depend on the width of the network.
In practice, our empirical observations show that the
Lipschitz constant does not increase with width, mak-
ing it a realistic assumption. For further details, refer
to the numerical simulations in §E of Appendix.

Our general master theorem, Theorem 4 in the Ap-
pendix, requires only Assumptions 1–6 and 7’ (in the
Appendix). For the sake of notational brevity, we state
our main results with the slightly stronger Assumption
7 instead of Assumption 7’.

Assumption 7 (Boundedness). For all (X,Y ) ⇐ X →
Y, and {Wj} ⇐ FW , the predictions, and gradients are
bounded; i.e,

↗#r({Wj})(X)↗≃B!, ↗↙Ŷ
ϑ(Y,#r({Wj})(X))↗≃Bω.

(20)

Further, for any (X,Y ) ⇐ X → Y, for any
{Wj}, {W̃ ↘

j
} ⇐ FW , W, W̃ ⇐ Fε, the network, ε and

#r, are Lipschitz in the parameters; i.e,

↗#r({Wj})(X)↘ #r({W̃j})(X)↗2
≃ L̃! max

j

↗Wj ↘ W̃j↗2, and
(21)

↗ε(W )(X)↘ ε(W̃ )(X)↗2 ≃ L̃ϑ↗W ↘ W̃↗2. (22)

Assumption 7 ensures that predictions and its gra-
dients are bounded while the network being Lips-
chitz continuous on the parameter space for any in-
puts. Assumption 7 implicitly indicates that either
the data points are uniformly bounded or the search
space for the parameters is of small dimension, which
can restrict the potential applications. However, as we
demonstrate in the more general version (Theorem 4)
in the Appendix, it su!ces that the conditions above
hold only for some convex set C, though this extension
requires significantly more notation and discussion, so
we do not include it here.

Theorem 2 (Master Theorem). Suppose Assumptions
1–7 hold. Let ⇀ ⇐ (0, 1] be fixed, and let f↓

µ
be the global

optimum of Cµ. Suppose that ↽ ⇑ %(f↓
µ
)Lϑ, and define

ω1 = 16↽2
↼
2
X
max


1,

L

4


1 +

↗g↗2
Lip

↽2


1 +

↼
2
Y |X

↼
2
X


;

(23)

ω2 = 4L̃!B! max

1, 2L+ 2Bω/B!,

8%(f↓
µ
)(BωL̃ϑ)/(L̃!B!), 8L%(f

↓
µ
)

.

(24)

Let {Wj} denote any stationary point of NCµN (·).
Then with probability at least 1↘ ⇀, it holds that

1

nY

|NCµ({Wj})↘ NCµN ({Wj})| ↫ (25)

ϖ

nY

%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))µN


↘ 1



︸ ︷︷ ︸
Optimization Error

+ ω1

R · dim(W) log


ϖϱ2rω

Lε


log(N)+log

(
1
ς

)

N
︸ ︷︷ ︸

Statistical Error





.

Remarks: The generalization error is upper bounded
by two terms:

• the Optimization Error, which quantifies the dis-
tance to the globally optimal solution, and

• the Statistical Error, or the intrinsic error that de-
pends on the sample complexity and the noise.

The optimization error diminishes as we approach a
global optimum of the ERM problem NCµN and van-
ishes at a global optimum, whereas the statistical er-
ror diminishes as the sample size increases relative to



Tadipatri, Hae!ele, Agterberg, Vidal

the intrinsic dimension, i.e., when N ↭ R → dim(W)
(ignoring logarithmic factors). By a naive counting ar-
gument, there are R→dim(W) many parameters in the
underlying network. As we will see in subsequent sec-
tions, this sample complexity turns out to be optimal
or nearly optimal for a number of reasonable statisti-
cal settings. The implicit constants appearing in the
result are universal and are not problem dependent.

5 APPLICATIONS

In this section, we present applications of the The-
orem 2 for low-rank matrix sensing, two-layer ReLU
neural networks, and single-layer multi-head attention.
To apply Theorem 2, we must compute the problem-
specific quantities %(f↓

µ
), %↔

µN
(·), L, ↗g↗Lip, ↼X , ↼Y |X ,

ω1, ω2, rε, ↽, Lϑ. For each application, we have esti-
mated these quantities, with further details provided
in the proofs located in Appendix C.1, C.4, and C.5,
respectively. We summarize and compare the obtained
sample complexities for the various applications with
their state-of-the-art bounds in Table 1. The addi-
tional applications to structured matrix sensing and
two-layer linear neural networks can be found in Ap-
pendix C.2 and Appendix C.3, respectively.

Low-rank matrix sensing: We first consider low-
rank matrix sensing (Candès and Plan, 2011), which
is a well-studied problem in the signal processing and
statistics literature. Given a few linear measurements
of an unknown low-rank matrix, the goal is to esti-
mate the low-rank matrix in the presence of noise.
One potential strategy is to define a convex program
via nuclear-norm regularization (Candès and Recht,
2009). While recovery guarantees for this convex pro-
gram are well-studied, solving it is a computationally
intensive procedure involving computing a full singular
value decomposition at each iteration. To address this
issue, several authors have considered a non-convex
variant that reparameterizes the low-rank matrix into
its underlying left and right factors, which is known
as the Burer-Monteiro factorization (Burer and Mon-
teiro, 2003). While the new optimization problem runs
faster in practice, it is also non-convex, and its proper-
ties can be di!cult to analyze theoretically. Corollary
(1) provides the bounds on the generalization error for
this non-convex program.

Corollary 1 (Low-Rank Matrix Sensing). Consider
the true model for (X, y), where X ⇐ Rm→n is a ran-
dom matrix with i.i.d. entries Xlk ∈ N (0, 1

mn
) and

y = ↑M↓
, X↓+ ω, where M

↓ ⇐ Rm→n and ω ∈ N (0,↼2)
is independent from X. For all i ⇐ [N ], let (Xi, yi)
be i.i.d. samples from this true model. Consider
the estimator ŷ = ↑UV

T
, X↓, where U ⇐ Rm→R and

V ⇐ Rn→R. Let ⇀ ⇐ (0, 1] be fixed. Define the non-

convex problem

NCMS
µN

((U, V )) :=
1

2N

N∑

i=1

(
yi ↘ ↑UV

T
, Xi↓

)2

+ ϖ

R∑

j=1

↗uj↗2↗vj↗2,
(26)

and define NCMS

µ
((U, V )) similarly with the sum over

i replaced by expectation taken over (X, y).

Let (Û, V̂ ) be a stationary point of NCMS
µN

(·). Suppose

there exists CUV , Bu, Bv > 0 such that ↗Û V̂
T ↗2 ≃

CUV ↗M↓↗↓, and for all j ⇐ [R], ↗ûj↗2 ≃ Bu, ↗v̂j↗2 ≃
Bv. Then with probability at least 1↘ ⇀, it holds that
∣∣∣∣NC

MS
µ

((Û, V̂ ))↘ NCMS
µN

((Û, V̂ ))

∣∣∣∣ ↫ (27)

↗M↓↗↓


↗ 1

N

N∑

i=1

(yi ↘ ↑Û V̂
T
, Xi↓)Xi↗2 ↘ ϖ



+ C
2
UV

↗M↓↗2↓→
R log (R(CUV +BuBv)) (m+ n) log(N)+log(1/⇀)

N
.

Remarks: Observe that at a global minimum, the
right side tends to zero when R(m + n)/N ↔ 0, ig-
noring logarithmic terms. Existing literature on non-
convex noisy low-rank matrix sensing typically re-
quires knowledge of true rank(M↓) = R

↓, and the
state-of-the-art sample complexity for this setting is of
order R↓(m+ n) in the un-regularized setting (Stöger
and Zhu, 2024). In contrast, Corollary 1 does not re-
quire knowledge of the true rank. However, if the es-
timated rank R is too small (R < R

↓), then the opti-
mization error still persists. In contrast, if (R ⇑ R

↓)
then optimization error can vanish subject to the abil-
ity of the algorithm utilized to reach stationary points,
Hae”ele and Vidal (2015) provides such guarantees.

Two-layer ReLU Networks: Next, we move on to
two-layer ReLU networks, which introduce an addi-
tional nonlinearity with respect to the inputs. ReLU
networks are widely used and proven to be universal
approximators (Huang, 2020). Prior work on general-
ization analysis for ReLU networks is based on classical
measures, such as Rademacher complexity (Bartlett
et al., 2019). The following result circumvents the dif-
ficulty in the estimate of such classical measures.

Corollary 2 (Two-Layer ReLU Neural Network).
Consider the true model for (x,y), where x ∈
N (0, (1/n)In) ⇐ Rn, y = U

↓[V ↓Tx]+ + ω, where U
↓ ⇐

Rm→R
→
, V ↓ ⇐ Rn→R

→
, and ω ∈ N (0, (↼2

/m)Im) ⇐ Rm

independent from x. For all i ⇐ [N ], let (xi,yi) be
i.i.d. samples from this true model. Consider the es-
timator ŷ = U [V Tx]+, where U ⇐ Rm→R

, V ⇐ Rn→R.
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Table 1: Comparisons with the state-of-the-art sample complexities. N represents the number of data points.

Application Our work, N ↭ State-of-the-art, N ↭
Low rank matrix sensing

Õ(R(m+ n))

R
↓(m+ n), (Stöger and Zhu, 2024) (no regularization)

Structured matrix sensing –
2-Layer linear NN R(m+ n) (Kakade et al., 2008) (bounded data-points)
2-Layer ReLU NN R(m+ n) log(R(m+ n)), (Bartlett et al., 2019)

Multi-head attention R(m+ n), (Trauger and Tewari, 2024) (bounded data-points)

Let ⇀ ⇐ (0, 1] be fixed. Define the non-convex problem

NCReLU
µN

((U, V )) :=
1

2N

N∑

i=1

↗yi ↘ U [V Txi]+↗22

+
ϖ

2

(
↗U↗2

F
+ ↗V ↗2

F

)
,

(28)

and define NCReLU
µ

((U, V )) similarly with the sum over
i replaced by expectation taken over (x,y).

Let (Û, V̂ ) be a stationary point of NCReLU
µN

(·). Suppose

there exists CUV , Bu, Bv > 0 such that ↗Û V̂
T ↗2 ≃

CUV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]
, and for all j ⇐ [R], ↗ûj↗2 ≃

Bu, ↗v̂j↗2 ≃ Bv. Then with probability at least 1↘ ⇀,
it holds that

1

m

∣∣∣NCReLU
µ

((Û, V̂ ))↘ NCReLU
µN

((Û, V̂ ))
∣∣∣ ↫ (29)

1

2m

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]

1

N

N∑

i=1

↗yi ↘ ŷi↗2↗xi↗2↘ϖ



+ C
2
UV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]
→


R(m+ n) log

(
R(m+n)(CUV +B

2
u
+B

2
v
)
)
log(N)

N

+
log(1/⇀)

N

1/2
.

Remarks: Analogous to matrix sensing, when R(m+
n)/N ↔ 0, the right side tends to zero at global
optimality (ignoring logarithmic terms). Further-
more, Corollary 2 recovers the state-of-the-art result
by Bartlett et al. (2019).

Transformers: Finally, we move on to our last appli-
cation (though of course, the applications are in fact
myriad in principle) to a single layer multi-head atten-
tion, which are backbones for transformer-style archi-
tecture (Vaswani et al., 2017). In practice, transform-
ers are shown to have remarkable generalization capa-
bilities (Zhou et al., 2024). However, there is a lack of
intensive theoretical analysis for this architecture. Few
attempts on estimating the capacities of the attention
mechanisms have been made in Edelman et al. (2022)
and Trauger and Tewari (2024), among others. For our
analysis, we consider the case where the output of the

model is one particular token within the input (e.g.,
transformers use a dedicated class token for the output
initialized as a constant vector). The output for one at-
tention head is modeled as V X↼((KX)≃Qxout) where
xout is the column of X corresponding to the trans-
former output. We then reparameterize KT

Qxout = z
and present the following result.

Corollary 3 (Transformers). Consider the true model
for (X,y), where X ⇐ Rn→T is a random matrix
with i.i.d. entries Xlk ∈ N (0, 1/(nT )) and y =
A

↓
Xb↓ + ω, where A

↓ ⇐ Rm→n, b↓ ⇐ ST⇐1 and ω ∈
N (0, (↼2

/m)Im) is independent from X. For all i ⇐
[N ], let (Xi,yi) be i.i.d. samples from this true model.

Consider the estimator ŷ =
∑

R

j=1 VjX↼(XT zj), Vj ⇐
Rn

, zj ⇐ Rn. Let ⇀ ⇐ (0, 1] be fixed. Define the non-
convex problem

NCTF
µN
({(Vj , zj)}):=

1

2N

N∑

i=1

↗yi↘
R∑

j=1

VjXi↼t(X
T

i
zj)↗22

+ ϖ

R∑

j=1

[
↗Vj↗F + ⇀{z:⇒z⇒2↗1}(zj)

]
, (30)

where, ↼t(·) is softmax function with temperature t, for

k ⇐ [T ] defined ↼t(u)k := exp(tuk)/
∑

T

l=1 exp(tul) and

define NCTF
µ
({(Vj , zj)}) similarly with the sum over i

replaced by expectation taken over (X,y).

Let {(V̂j , ẑj)} be a stationary point of NCTF
µN

(·). Sup-

pose there exists CV , BV > 0 such that
∑

R

j=1 ↗V̂j↗F ≃
CV ↗A↓↗F , and for all j ⇐ [R], ↗V̂j↗F ≃ BV . Then
with probability at least 1↘ ⇀ it holds that

1

m

∣∣∣NCTF
µ
({(V̂j , ẑj)})↘ NCTF

µN
({(V̂j , ẑj)})

∣∣∣ ↫ (31)

1

2m
↗A↓↗F


1

N

N∑

i=1

↗yi ↘ ŷi↗2↗Xi↗2 ↘ ϖ



+ C
2
V
↗A↓↗2

F
→


R(m+n)log(R(m+n)(CV +BV ))log(N)+log(1/⇀)

N
.

Remarks: The dependence on b↓ is not explicitly
reflected in Equation (31) because the ground truth
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model is bilinear. Consequently, assuming b↓ is unit-
norm without loss of generality, as its norm can be
absorbed into A

↓. Thus, the dependence on b↓ is im-
plicitly captured by the norm of A↓ in Equation (31).
As in the previous two applications, we can achieve
consistency at global optimality when N ↭ R(m+ n),
ignoring logarithmic terms. Note that the sample
complexity has no dependency on the number of to-
kens, T , which suggests an explanation for the success
behind the prediction capabilities of transformers for
longer length inputs (Zhou et al., 2024). Our sample
complexity matches the state-of-the-art bounds on the
transformers by Trauger and Tewari (2024).

6 CONCLUSIONS

In this work, we provide generalization bounds for non-
convex problems of the form of sums of (slightly gener-
alized) positively homogeneous functions with a gen-
eral objective. Our bounds provide sample complex-
ities that are near-optimal and applicable to various
problems, such as low-rank matrix sensing, two-layer
neural networks, and single-layer multi-head attention.
The sample complexity of our bounds grows almost lin-
ear with the total number of parameters in the model,
and for matrix sensing, this sample complexity is op-
timal, as demonstrated in Candès and Plan (2011).
Our proofs are based on analyzing closely related con-
vex programs in the prediction space; this perspective
enabled us to provide near-optimal sample complexi-
ties due to existing results on generalization properties
for convex functions. In future work, it would be in-
teresting to sharpen the dependence of our bounds on
all the relevant parameters and apply our techniques
to other machine learning problems.
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A CONVEX BOUNDS FOR LEARNING

In this section, we discuss the proof for Theorem 1 that establishes the optimality gaps in the empirical and
population landscapes. First, we analyze the convexity of the induced regularizer, %(·) and properties of the
stationary points in non-convex landscape. These are the key components of our proof for Theorem 1. We state a
more general version of Assumption 2 by having the flexibility of the loss being strongly convex to derive tighter
results.

Assumption 2’ (Convex Loss). The loss ϑ(Y, Ŷ ) is second-order di!erentiable (written ϑ ⇐ C2), φ-strong and
L-smooth w.r.t. Ŷ , i.e, for any Y, Ŷ ⇐ RnY

0 ↖ φInY ↖ ↙2
Ŷ
ϑ(Y, Ŷ ) ↖ LInY . (32)

Additionally, the gradient of the loss is bi-Lipschitz; that is, for all Y1, Y2, Ŷ1, Ŷ2 ⇐ RnY

↗↙
Ŷ
ϑ(Y2, Ŷ2)↘↙

Ŷ
ϑ(Y1, Ŷ1)↗ ≃ L

[
↗Y2 ↘ Y1↗2 + ↗Ŷ2 ↘ Ŷ1↗2

]
, (33)

and the loss is constant if both the arguments are the same, i.e., for all Y1, Y2 ⇐ RnY , ϑ(Y1, Y1) = ϑ(Y2, Y2).

Note that we allow φ = 0, in which case we recover Assumption 2.

A.1 Induced Regularizer in Convex Space

First, we show that the induced regularizer is convex in the function spaces through Proposition 1.

Proposition 1 (Convexity of induced regularizer). Suppose assumptions 1-2’ hold. Then %(f) is convex in f

in the space of functions RnX ↔ RnY .

Proof. This proof is infinite dimensional extension of Hae”ele and Vidal (2015). Recall the definition of induced
regularizer:

%(f) := inf
r,{Wj}

$r({Wj}) such that f(X) = #r({Wj}); ⇔X ⇐ X . (34)

Define the function class

F! := {#r({Wj}) : r ⇐ N,Wj ⇐ W}. (35)

By definition if f /⇐ F! then %(f) evaluates to infinity. Now suppose that ς ⇑ 0 and for any f ⇐ F!,

%(ςf) = inf
r,{Wj}

$r({Wj}) such that ςf(X) = #r({Wj}); ⇔X ⇐ X , (36)

Now by Assumption 2’, there exists ς̂ such that ς#r({Wj}) = #r({ς̂Wj}), and ς$r({Wj}) = $r({ς̂Wj})
(throughout note that this scaling is applied only to the Wp subset of parameters from Assumption 2, but we
do not notate this explicitly for brevity of notation). Now we perform a change of variables in the induced
regularizer, obtaining

%(ςf) = inf
r,{φ̂Wj}

$r({ς̂Wj}) such that ςf(X) = #r({ς̂Wj}); ⇔X ⇐ X . (37)

Then we have that

%(ςf) = inf
r,{Wj}

ς$r({Wj}) such that ςf(X) = ς#r({Wj}); ⇔X ⇐ X = ς%(f). (38)
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We have established that the function %(·) is 1-degree homogeneous. Now we prove that the function %(·) is
sub-additive. Choose any f1, f2 ⇐ F!, because the case when either of them is not in F! is trivially sub-additive.
Recall

%(f1) = inf
r,{Wj}

$r({Wj}) such that f1(X) = #r({Wj}); ⇔X ⇐ X , (39)

%(f2) = inf
r,{Wj}

$r({Wj}) such that f2(X) = #r({Wj}); ⇔X ⇐ X , (40)

%(f1 + f2) = inf
r,{Wj}

$r({Wj}) such that f1(X) + f2(X) = #r({Wj}); ⇔X ⇐ X . (41)

For any ω > 0 let (r1, {W 1
j
}) and (r2, {W 2

j
}) be parameters which come within ω of the infimum in the optimization

problems for %(f1) and %(f2) respectively. Then note that

%(f1 + f2) ≃ $r1({W 1
j
}) +$r2({W 2

j
}) ≃ %(f1) + %(f2) + 2ω. (42)

Letting ω ↔ 0 gives that %(f1 + f2) ≃ %(f1) + %(f2). Thus, as %(·) is both positively homogenous with degree
one and sub-additive, it is convex.

From the above proposition we have that %(·) is a convex function, therefore we have that C·(·) is indeed a convex
function in the prediction functions space. Our results primarily depend upon the optimal regularization of the
globally optimal solution of a convex function, C·(·). As we operate in the space of functions, it is very unlikely
that we have the knowledge of the global optima. Nevertheless, by exploiting the convexity of C·(·) we can upper
bound the optimal regularization. Proposition 2 establishes the upper bound for the optimal regularization for
regression loss.

Proposition 2. Consider ϑ(Y1, Y2) = 1
2↗Y1 ↘ Y2↗22, {Wj} ⇐ FW . Suppose X ∈ µ, ω is random variable such

that E[ω] = 0 and independent from x. Let Y = #r({Wj})(X) + ω, and suppose f
↓
µ
is the global optimal solution

of Cµ(·). Then we have
%(#r({Wj})) ⇑ %(f↓

µ
). (43)

Proof. As f↓
µ
is the global optimal solution, we have that

E
[
1

2
↗#r({Wj})(X) + ω↘ f

↓
µ
(X)↗22


+ ϖ%(fµ) ≃ E

[
1

2
↗#r({Wj})(X) + ω↘ #r({Wj})(X)↗22



+ ϖ%(#r({Wj}))
(44)

Now, by re-arranging the terms we obtain

E
[
1

2
↑#r({Wj})(X)↘ f

↓
µ
(X), ω↓


+ ϖ%(fµ) ≃ ϖ%(#r→({Wj})). (45)

As ω is independent of X,

1

2
↑EX

[
#r({Wj})(X)↘ f

↓
µ
(X)

]
,Eϱ [ω]↓+ ϖ%(fµ) ≃ ϖ%(#r→({Wj})). (46)

Then we have
%(fµ) ≃ %(#r({Wj})). (47)

A.2 Proof of Theorem 1

Optimization algorithms used to optimize DNNs try to find the set of parameters that are first-order optimal.
However, we do not have a guarantee that these points are saddle/local minima/global minima. In proposition
3, we provide properties that any first-order optimal satisfies for positively homogeneous networks.

Proposition 3 (Stationary Points). Under assumption 2, if {Wj} are stationary points of NCµ(·), then for all
j ⇐ [r],

↑↘ 1

ϖ
↙

Ŷ
ϑ(g,#r({Wj})),ε(Wj)↓ = ϱ(Wj). (48)
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Proof. This proof is similar to that of Proposition 2 in Hae”ele and Vidal (2020) but applied to a general class
of (slightly) positively homogeneous functions (see assumption 2).

From assumption 2, there exists a subset of parameters where both ϱ and ε are positively homogeneous. Let wi

be the subset of parameters in Wp from assumption 2. Then we have

↑wi, ⇁wiϱ(w1, . . . ,wi, . . . ,wn)↓ = lim
ϱ⇑0

[
ϱ(w1, . . . , (1 + ω)wi, . . . ,wn)

ω
↘ ϱ(w1, . . . ,wi, . . . ,wn)

ω


. (49)

Let pi be the homogeneous degree of the parameters wi. Note that ⇁wiϱ(w1, . . . ,wi, . . . ,wn) ⇐ Rdim(wi)→1,
⇁wiε(w1, . . . ,wi, . . . ,wn) ⇐ Rdim(wi)→nY . Then

↑wi, ⇁wiϱ(w1, . . . ,wi, . . . ,wn)↓ = ϱ(w1, . . . ,wi, . . . ,wn) lim
ϱ⇑0

(1 + ω)pi ↘ 1

ω
, (50)

= piϱ(w1, . . . ,wi, . . . ,wn). (51)

Similarly, following a similar argument for ε we obtain

↑⇁wiε(w1, . . . ,wi, . . . ,wn),wi↓ = piε(w1, . . . ,wi, . . . ,wn). (52)

As Wj are the stationary points we have that

0 ⇐ ⇁Wj#r({Wj})↙Ŷ
ϑ(g,#r({Wj}))µ + ϖ⇁Wj$r({Wj}). (53)

Since #r({Wj}) =
∑

r

j=1 ε(Wj), we have that ⇁Wj#r({Wj}) = ⇁Wjε(Wj). Similarly, ⇁Wj$r({Wj}) = ⇁Wjϱ(Wj)
holds true. Consequently,

0 ⇐ ⇁Wjε(Wj)↙Ŷ
ϑ(g,#r({Wj}))µ + ϖ⇁Wjϱ(Wj). (54)

Letting Wj =
[
w1 . . . wn

]
, for all wi it holds that

0 ⇐ ⇁wiε(Wj)↙Ŷ
ϑ(g,#r({Wj}))µ + ϖ⇁wiϱ(Wj). (55)

Taking the inner product of the above equation with wi , when pi ∋= 0 we have that

0 ⇐ wi
T
⇁wiε(Wj)↙Ŷ

ϑ(g,#r({Wj}))µ + ϖwi
T
⇁wiϱ(Wj). (56)

From (51) we have that

0 = piε(Wj)
T↙

Ŷ
ϑ(g,#r({Wj}))µ + ϖpiϱ(Wj). (57)

Rearranging, we obtain

↑↘ 1

ϖ
↙

Ŷ
ϑ(g,#r({Wj})),ε(Wj)↓ = ϱ(Wj), (58)

which holds for all j ⇐ [r].

Proposition 3 establishes that at any stationary point, the inner product between the prediction errors and the
predictions equates to the the current regularization. Next, we exploit this property of stationary points that
enable us to tie the non-convex landscape to its convex counterpart. Lemma 1 establishes the di”erence between
the non-convex and convex objective values at stationary points.

Lemma 1 (Optimality Gap). Let ϑ(·, ·) denote any L-smooth, and φ-strongly convex loss function, let q be some
measure, and suppose that {Wj} is a stationary point of NCq({Wj}). Let f↓

q
denote the global minimizer of Cq(·).

Then for any f ⇐ L
2(q), we have that

Cq(f
↓
q
) ≃ NCq({Wj}) ≃ Cq(f) + ϖ%q(f)

[
%↔

q

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


↘ φ

2
↗f ↘ #r({Wj})↗2q (59)
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Proof. The loss ϑ(Y, Ŷ ) is (L,ϖ)-convex in Ŷ . Therefore, for any functions g : X → E ↔ Y, and f1, f2 ⇐ L
2(q)

we have that

ϑ (g(X, ω), f(X)) ⇑ ϑ (g(X, ω),#r({Wj})(X)) (60)

+ ↑↙
Ŷ
ϑ (g(X, ω),#r({Wj})(X)) , f(X)↘ #r({Wj})(X)↓Y (61)

+
φ

2
↗f(X)↘ #r({Wj})(X)↗2Y . (62)

Taking expectations of both sides with respect to the probability measure q, we have that

ϑ(g, f)q ⇑ ϑ (g,#r({Wj}))q + ↑↙
Ŷ
ϑ (g,#r({Wj})) , f ↘ #r({Wj})↓q +

φ

2
↗f ↘ #r({Wj})↗2q. (63)

As the {Wj} are the stationary points of NCq({Wj}) from Proposition 3 we have that for all j ⇐ [r]

↑↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj})) ,ε(Wj)↓q = ϱ(Wj). (64)

Summing the above identity up overall j, it holds that

↑↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓q = $r({Wj}). (65)

Therefore, plugging this identity into the inequality (63), we have that

ϑ(g, f)q ⇑ ϑ (g,#r({Wj}))q + ϖ$r({Wj})
︸ ︷︷ ︸

NCq({Wj})

+↑↙
Ŷ
ϑ (g,#r({Wj})) , f↓q +

φ

2
↗f ↘ #r({Wj})↗2q, (66)

which implies that

ϑ(g, f)q + ϖ↑↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj})) , f↓q ⇑ NCq({Wj}) +

φ

2
↗f ↘ #r({Wj})↗2q. (67)

We have established from Proposition 1 that % is a convex function. As a well-known result from convex
analysis (see Proposition 5) we have that for any convex function % and any f, g ⇐ L

2(q), it holds that ↑f, g↓q ≃
%q(f)%↔

q
(g). Consequently,

ϑ(g, f)q + ϖ%q(f)%
↔
q

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


⇑ NCq({Wj}) +

φ

2
↗f ↘ #r({Wj})↗2q. (68)

Therefore, rearranging,

ϑ(g, f)q + ϖ%q(f)︸ ︷︷ ︸
Cq(f)

+ϖ%q(f)

[
%↔

q

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


⇑ NCq({Wj}) +

φ

2
↗f ↘ #r({Wj})↗2q, (69)

and, as a result,

NCq({Wj}) ≃ Cq(f) + ϖ%q(f)

[
%↔

q

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


↘ φ

2
↗f ↘ #r({Wj})↗2q. (70)

Let f
↓
q
= argminf Cq(f), and (r↓, {W ↓

j
}) = arg min

r,{Wj} NCq({Wj}). Since f
↓
q
is the minimizer of Cq(f), it

holds that

Cq(f
↓
q
) ≃ Cq(#r→({W ↓

j
})) = ϑ(g,#r→({W ↓

j
}))q + ϖ%q(#r→({W ↓

j
})). (71)

Therefore, we obtain

Cq(f
↓
q
) ≃ ϑ(g,#r→({W ↓

j
}))q + ϖ%q(#r→({W ↓

j
})) (72)

≃ ϑ(g,#r→({W ↓
j
}))q + ϖ$r→({W ↓

j
}) (73)

= NCq({W ↓
j
}) (74)

≃ NCq({Wj}). (75)
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Therefore, combining Equations (75) and (70), we obtain the bound

Cq(f
↓
q
) ≃ NCq({Wj}) ≃ Cq(f) + ϖ%q(f)

[
%↔

q

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


↘ φ

2
↗f ↘ #r({Wj})↗2q. (76)

Lemma 1 has established that the non-convex objective, NCq(·) is both upper and lower bounded by the convex
function, Cq(·). Now, we utilize this result to compute the empirical gap with the measure, µN for the stationary
points obtained from the ERM. On these stationary points, we bound the optimality gap by changing the measure
to µ, i.e., the behavior of ERM’s first-order points on population landscape.

Theorem 3 (Global Optimality). Under assumptions 1, 2’, 3. Let f
↓
µN

(or f
↓
µ
) be the global minimizer for

CµN (·) (or Cµ(·)). For any stationary points, (r, {Wj}) of the function NCµN (·) and any f ⇐ L
2(µ)′L

2(µN ) the
following items are true:

1. Empirical optimality gap:

CµN (f↓
µN

) ≃ NCµN ({Wj}) ≃ CµN (f)+ϖ%(f)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


↘ φ

2
↗f↘#r({Wj})↗2µN

, (77)

2. Population optimality gap:

Cµ(f
↓
µ
) ≃ NCµ({Wj}) ≃ Cµ(f) + ϖ%(f)

[
%↔

µ

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


↘ φ

2
↗f ↘ #r({Wj})↗2µ

+
[
↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ ↘ ↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µN

]
. (78)

where %↔
q
(·) is the polar in the measure q defined as

%↔
q
(g) := sup

ε(W )↗1
↑g,ε(W )↓q (79)

Remarks: Setting f = f
↓
µN

in Equation 77 and taking (r, {Wj}) to be any stationary point of NCµN (·) gives a
means to verify if {Wj} is a globally optimal solution. We see that it su!ces to check if #r({Wj}) is a first-order
stationary point of CµN (·), which is a necessary condition for a local minimum of convex functions.

From convex analysis, if a function f ⇐ L
2(µN ) is a first-order solution of CµN then we have that 0 belongs to

the sub-gradient of Cµ(·) at f . As the loss ϑ is first-order di”erentiable (by Assumption 3 or 2’) we have that

0 ⇐ ⇁CµN (f) △▽ ↘ 1

ϖ
↙

Ŷ
ϑ(g, f)µN ⇐ ⇁%(f), (80)

where ⇁CµN (f) denotes the subgradient of C (viewed as a function of f). The above condition for f can also be
verified by a dual notion known as the polar condition, Definition 6 (Rockafellar, 1970). The sub-gradient of a
convex function can be defined through the notion of it’s polar via

⇁%µN (f) =
{
g ⇐ L2(µN ) : ↑g, f↓µN = %µN (f),%↔

µN
(g) ≃ 1

}
. (81)

From Lemma 1 in the supplement of Hae”ele and Vidal (2017) the following statements are equivalent:

1. {Wj} is an optimal factorization of f ; i.e, $r({Wj}) = %µN (f).

2. ̸h ⇐ L
2(µN ) such that %↔

µN
(h) ≃ 1 and ↑h,#r({Wj})↓µN = $r({Wj}).

3. ̸h ⇐ L
2(µN ) such that %↔

µN
(h) ≃ 1 and ↑h,ε(Wj)↓µN = ϱ(Wj); ⇔i ⇐ [r].

Further, if (2) or (3) above is satisfied then we have that h ⇐ ⇁%µN (f). From Proposition 3 we have that for any
stationary point (r, {Wj}) of NCµN ,

↑↘ 1

ϖ
↙ϑµN (g,#r({Wj})),#r({Wj})↓µN = $r({Wj}). (82)
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Consequently, to check if a stationary point is globally optimal, it then su!ces to check whether the polar
condition %↔

µN

(
↘ 1

↼
↙ϑ(g,#r({Wj}))µN

)
≃ 1 holds at the stationary point, (r, {Wj}). In the case when the polar

condition holds true, the upper bound evaluates to CµN (f↓
µ
) matching the lower bound of NCµN (·), which in turn

implies global optimality.

Then, we can claim the following:

At a stationary point {Wj}, if %↔
µN

(
↘ 1

↼
↙ϑ(g,#r({Wj}))µN

)
≃ 1, then {Wj} is globally optimal.

Now we prove Theorem 1.

Proof. The proof sketch is similar to Proposition 4 from Hae”ele and Vidal (2020). Equation (12) can be obtained
from the Lemma 1, for any stationary points, (r, {Wj}) of NCµN (·).

Since, f ⇐ L
2(µ)′L

2(µN ) ∞ L
2(µn), and the parameters satisfy the equality in Lemma 1, we can conclude that

Equation (12) holds. The local minima of NCµN (·) need not be local minima of NCµ(·), therefore we shall obtain
an discrepency term. From the fact that ϑ is a φ-strongly convex function we have the inequality

ϑ(g, f)µ ⇑ ϑµ (g,#r({Wj})) + ↑↙
Ŷ
ϑ (g,#r({Wj})) , f ↘ #r({Wj})↓µ +

φ

2
↗f ↘ #r({Wj})↗2µ. (83)

Adding ϖ$r({Wj}) on both sides we obtain the inequality

ϑ(g, f)µ + ϖ$r({Wj}) ⇑ ϑµ (g,#r({Wj})) + ϖ$r({Wj}) (84)

+ ↑↙
Ŷ
ϑ (g,#r({Wj})) , f ↘ #r({Wj})↓µ +

φ

2
↗f ↘ #r({Wj})↗2µ. (85)

Now replacing the first term term on the side with NCµ({Wj}) we obtain

ϑ(g, f)µ + ϖ$r({Wj}) ⇑ NCµ({Wj}) + ↑↙
Ŷ
ϑ (g,#r({Wj})) , f ↘ #r({Wj})↓µ +

φ

2
↗f ↘ #r({Wj})↗2µ. (86)

From Proposition 3 we have that for stationary points {Wj}, it holds that $r({Wj}) =
↑↘ 1

↼
↙

Ŷ
ϑµN (g,#r({Wj})),#r({Wj})↓µN . Therefore, by plugging this into the inequality above, we obtain that

ϑ(g, f)µ+ϖ↑↘ 1

ϖ
↙

Ŷ
ϑµN (g,#r({Wj}))µN ,#r({Wj})↓ (87)

⇑ NCµ({Wj}) + ↑↙
Ŷ
ϑ (g,#r({Wj})) , f ↘ #r({Wj})↓µ +

φ

2
↗f ↘ #r({Wj})↗2µ. (88)

Rearranging the terms we have

ϑ(g, f)µ+ϖ↑↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj})) , f↓µ (89)

+ ↑↙
Ŷ
ϑµ(g,#r({Wj})),#r({Wj})↓µ ↘ ↑↙

Ŷ
ϑµN (g,#r({Wj})),#r({Wj})↓µN (90)

⇑ NCµ({Wj}) +
φ

2
↗f ↘ #r({Wj})↗2µ. (91)

Next, the following inequality always holds:

↑f,↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))↓µ ≃ %µ(f)%

↔
µ

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


. (92)

Rearranging (98) and plugging in (92), we obtain the inequality

ϑ(g, f)µ+ϖ%µ(f)%
↔
µ

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


(93)

+ ↑↙
Ŷ
ϑµ(g,#r({Wj})),#r({Wj})↓µ ↘ ↑↙

Ŷ
ϑµN (g,#r({Wj})),#r({Wj})↓µN (94)

⇑ NCµ({Wj}) +
φ

2
↗f ↘ #r({Wj})↗2µ. (95)
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We add and subtract %(f) to obtain

ϑ(g, f)µ + ϖ%µ(f)+ϖ%µ(f)

[
%↔

µ

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


(96)

+ ↑↙
Ŷ
ϑµ(g,#r({Wj})),#r({Wj})↓µ ↘ ↑↙

Ŷ
ϑµN (g,#r({Wj})),#r({Wj})↓µN (97)

⇑ NCµ({Wj}) +
φ

2
↗f ↘ #r({Wj})↗2µ. (98)

Rearranging the right most term and using the definition of Cµ(f) we obtain,

NCµ({Wj}) ≃ Cµ(f) + ϖ%µ(f)

[
%↔

µ

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


↘ φ

2
↗f ↘ #r({Wj})↗2µ (99)

+
[
↑↙

Ŷ
ϑ(g,#r({Wj}))µN ,#r({Wj})↓µ ↘ ↑↙

Ŷ
ϑ(g,#r({Wj}))µN ,#r({Wj})↓µN

]
. (100)

This yields the right hand side of (13). As for the left hand side, by definition we have that for any (r, {Wj}),
Cµ(f↓

µ
) ≃ NCµ({Wj}). This completes the proof.

Theorem 1 provides the behavior of ERM solutions in the population landscape. This paves a path to bound
the empirical and population objectives at these stationary points.

B STATISTICAL BOUNDS

This section provides a more general version of Theorem 2 that does not need Assumption 7 to hold uniformly
for all the data points, (X,Y ). Rather, we relax the assumption to the following.

Assumption 7’ (Probabilistic boundedness). There exists a convex set, C ∞ RnX → RnY such that

P (′N

i=1(Xi, ωi) ⇐ C) ⇑ 1↘ ⇀C . (101)

For all (X, ω) ⇐ C, and {Wj} ⇐ FW the predictions and gradients are bounded; i.e.,

↗#r({Wj})(X)↗ ≃ B!, ↗↙Ŷ
ϑ(g(X, ω),#r({Wj})(X)↗ ≃ Bω. (102)

Further, for any {Wj}, {W̃ ↘
j
} ⇐ FW , W, W̃ ⇐ Fε, (X, ω) ⇐ C, the network ε and #r are Lipschitz in the

parameters; i.e,
↗#r({Wj})(X)↘ #r({W̃j})(X)↗ ≃ L̃! max

j

↗Wj ↘ W̃j↗2, (103)

and
↗ε(W )(X)↘ ε(W̃ )(X)↗ ≃ L̃ϑ↗W ↘ W̃↗2. (104)

Additionally, define the quantity

B(C) :=
[
(1 + φ) sup

{Wj}↑FW

∣∣↗f↓
µ
◦ PC ↘ #r({Wj}) ◦ PC↗2µ ↘ ↗f↓

µ
↘ #r({Wj})↗2µ

∣∣ (105)

+ sup{Wj}↑FW ,W ↑↑Fω

∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,ε(W ↘) ◦ PC↓µ ↘ ↑↙

Ŷ
ϑ (g,#r({Wj})) ,ε(W ↘)↓µ

∣∣ (106)

+ sup{Wj}↑FW

∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,#r({Wj}) ◦ PC↓µ ↘ ↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ

∣∣
]
, (107)

where PC(·) is the Euclidean projection to the set C.

Comparison with Assumption 7: Unlike in Assumption 7, we do not require the equations (102), (103), and
(104) to hold for all the inputs. However, we relax this restriction by assuming that there exists a convex set, C
which consists of the data points with probability at least 1↘ ⇀C . For well-behaved probability distributions like
sub-Gaussian distributions (see Assumption 2’), such a convex exists with very high probability; i.e., very small
⇀C .

Now we state the general master theorem that relies on Assumptions 1, 2’, 3, 4, 5, 6 and 7’ (but not on Assumption
7).
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Theorem 4 (General Master Theorem). Suppose Assumptions 1, 2’, 3, 4, 5, 6 and 7’ hold. Let ⇀ ⇐ (0, 1] be
fixed, and let f↓

µ
be the global optimum of Cµ. Suppose that ↽ ⇑ %(f↓

µ
)Lϑ, and define

ω1 = 16↽2
↼
2
X
max


1,

L

4


1 +

↗g↗2
Lip

↽2


1 +

↼
2
Y |X

↼
2
X


; (108)

ω2 = 4L̃!B! max


1, 2L+

2Bω

B!
, 8%(f↓

µ
)
BωL̃ϑ

L̃!B!

, 8L%(f↓
µ
)


. (109)

Let {Wj} denote any stationary point of NCµN (·). Then with probability at least 1↘ (⇀ + ⇀C), it holds that

1

nY

|NCµ({Wj})↘ NCµN ({Wj})| (110)

↫ ϖ

nY

%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


↘ φ

2nY

↗f↓
µ
↘ #r({Wj})↗2µN

(111)

+
B(C)
nY

+ (1 + φ)ω1


R · dim(W) log (↽ω2rε/Lϑ) log(N) + log(1/⇀)

N
. (112)

Additional Remarks: In addition to the discussion in Section 4, the general version mentioned above (i) takes
into account unbounded sub-Gaussian distributions, and (ii) imposes a weaker notion of Lipschitz continuity on
the parameters. For sub-Gaussian inputs, one may choose the convex set C to be a ball with radius B(g). As
we grow g, the term B(C) decays exponentially, and ω2 only grows in the order of polynomial. This fast decay
allows us to keep the statistical error under control while pertaining to the optimal sample complexity. Theorem
4 reduces to Theorem 2 by setting φ = 0 and C = conv(X ). Under this choice, Assumption 7’ coincides with
Assumption 7.

We discuss the proof in section B.2. Before diving into the proof, we discuss a few preliminaries on the covering
number essential to estimate the capacity of the hypotheses class.

B.1 Computing Function Class Capacities

Lemma 2 (Covering number of FW). Under assumption 6, and 7’ the ν-net covering number of the set FW on
the metric, ↗.↗⇓,d is upper bounded via

CFW (ν) ≃ (Cε(Lϑν/↽))
R
, (113)

where Cε(ν) := N ({W : ϱ(W ) ≃ 1}, d(., .), ν).

Proof. Recall that

CFW (ν) := N (FW ,max
i

d(., .), ν); (114)

Cε(ν) := N (Fε, d(., .), ν). (115)

By the definition of ν covering number,

N (FW , ↗.↗⇓,d, ν) := inf

∣∣∣∣

{
{W 0

j
} ⇐ FW : ⇔{Wj} ⇐ FW : ↗{Wj}↘ {W 0

j
}↗⇓,d = max

j

d(Wj ,W
0
j
) ≃ ν

}∣∣∣∣ ; (116)

N (Fε, d(·, ·), ν) := inf
∣∣{W 0 ⇐ Fε : ⇔W ⇐ Fε : d(W,W

0) ≃ ν
}∣∣ . (117)

Therefore we can upper bound N (FW , ↗.↗⇓,d, ν) witht he product of N (Fε, d(·, ·), ν) R times. We have

N (FW , ↗.↗⇓,d, ν) ≃
[
N

(
↽

Lϑ

Fε, d(., .), ν

R
, (118)

Rewriting the above for appropriately chosen ν we get

N (FW , ↗.↗⇓,d, ν) ≃
[
N

(
Fε, d(., .),

Lϑν

↽

R
. (119)

This concludes our proof.



A Convex Relaxation Approach to Generalization Analysis

Lemma 3 (Bounding covering number). Consider a metric space, (W ∞ Rn
, ↗ ·↗2) and a compact set, FW ∞ W.

Suppose that there exist r < ⇒ such that FW ∞ B(r). Then we have

N (FW , ↗ · ↗2, ν) ≃
(
1 +

2r

ν

n

. (120)

Proof. We have that FW ∞ B(r). By monotonicity of covering numbers, we have that

N (FW , ↗ · ↗2, ν) ≃ N (B(r), ↗ · ↗2, ν). (121)

From Corollary 4.2.13 in Vershynin (2018) we have that,

N (FW , ↗ · ↗2, ν) ≃ N (B(r), ↗ · ↗2, ν) ≃
(
1 +

2r

ν

n

. (122)

B.2 Proof of Theorem 2

This section discusses the proof of Theorem 4. We extensively use concentration results from Section D that are
preliminaries for the upcoming technical details.

Proof. First, we recall the definition of generalization error:

Generalization Error := |NCµ({Wj})↘ NCµN ({Wj})| . (123)

We can bound the above from the optimality gaps obtained in Theorem 1 via the following decomposition:

NCµ({Wj})↘ NCµN ({Wj}) = [NCµ({Wj})↘ Cµ(fµ)]︸ ︷︷ ︸
Population Gap

↘ [NCµN ({Wj})↘ CµN (fµN )]
︸ ︷︷ ︸

Empirical Gap

(124)

+ [Cµ(fµ)↘ CµN (fµN )]
︸ ︷︷ ︸

Convex Gap

. (125)

From Theorem 1 we have that for any fµ, fµN ⇐ L
2(µ) ′ L

2(µN ) and stationary points (r, {Wj}), the empirical
gap is bounded by

CµN (f↓
µN

)↘ CµN (fµN ) ≃ NCµN ({Wj})↘ CµN (fµN ) (126)

≃ ϖ%(fµN )

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


↘ φ

2
↗fµN ↘ #r({Wj})↗2µN

, (127)

and the population gap is bounded by

Cµ(f
↓
µ
)↘ Cµ(fµ) ≃ NCµ({Wj})↘ Cµ(fµ) (128)

≃ ϖ%(fµ)

[
%↔

µ

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


↘ φ

2
↗fµ ↘ #r({Wj})↗2µ (129)

+
[
↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ ↘ ↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µN

]
. (130)

For any fµ, fµN , subtracting the above two equations we obtain

Cµ(f
↓
µ
)↘ CµN (fµN )↘ ϖ%(fµN )

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


+

φ

2
↗fµN ↘ #r({Wj})↗2µN

(131)

≃ NCµ({Wj})↘ NCµN ({Wj}) (132)

≃ ϖ%(fµ)

[
%↔

µ

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


↘ φ

2
↗fµ ↘ #r({Wj})↗2µ (133)

+
[
↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ ↘ ↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µN

]
(134)

+
[
Cµ(fµ)↘ CµN (f↓

µN
)
]
. (135)
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By choosing fµ = fµN = f
↓
µ
(as f

↓
µ
⇐ L

2(µ) ′ L
2(µN )) and noting that f↓

µ
is not a random variable unlike f

↓
µN

(which depends on the data points) we get

Cµ(f
↓
µ
)↘CµN (f↓

µ
)↘ ϖ%(f↓

µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


+

φ

2
↗f↓

µ
↘ #r({Wj})↗2µN

(136)

≃ NCµ({Wj})↘ NCµN ({Wj}) (137)

≃ ϖ%(f↓
µ
)

[
%↔

µ

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


↘ φ

2
↗f↓

µ
↘ #r({Wj})↗2µ (138)

+
[
↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ ↘ ↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µN

]
(139)

+
[
Cµ(f

↓
µ
)↘ CµN (f↓

µN
)
]
. (140)

Since f
↓
µ
is the global minimizer of Cµ(·), it always holds that Cµ(f↓

µ
) ≃ Cµ(f↓

µN
). We use this fact to upper

bound the right side term, upon which we obtain the bound

Cµ(f
↓
µ
)↘ CµN (f↓

µ
)↘ ϖ%(f↓

µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


+

φ

2
↗f↓

µ
↘ #r({Wj})↗2µN

(141)

≃ NCµ({Wj})↘ NCµN ({Wj}) (142)

≃ ϖ%(f↓
µ
)

[
%↔

µ

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


↘ φ

2
↗f↓

µ
↘ #r({Wj})↗2µ (143)

+
[
↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ ↘ ↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µN

]
(144)

+
[
Cµ(f

↓
µN

)↘ CµN (f↓
µN

)
]
. (145)

Now we add and subtract %↔
µ
(·)5 and ↽

2 ↗f ↘ #r({Wj})↗2µ on the right side. We then have that

Cµ(f
↓
µ
)↘ CµN (f↓

µ
)

︸ ︷︷ ︸
=:T1

↘ ϖ%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


(146)

+
φ

2
↗f↓

µ
↘ #r({Wj})↗2µN

(147)

≃ NCµ({Wj})↘ NCµN ({Wj}) (148)

≃ ϖ%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


↘ φ

2
↗f↓

µ
↘ #r({Wj})↗2µN

(149)

+
φ

2



↗f↓
µ
↘ #r({Wj})↗2µN

↘ ↗f↓
µ
↘ #r({Wj})↗2µ︸ ︷︷ ︸

=:T2



 (150)

+ ϖ%(f↓
µ
)




%↔

µ

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ %↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))



︸ ︷︷ ︸
=:T3




(151)

+



↑↙Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ ↘ ↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µN︸ ︷︷ ︸

=:T5



 (152)

+



Cµ(f
↓
µN

)↘ CµN (f↓
µN

)
︸ ︷︷ ︸

=:T5



 . (153)

Now we apply uniform concentration on the quantities T1, T2, T3, T4, and T5 to get bound the statistical error
terms.

From assumption 7’ we assume that C is some convex set in RnX → RnY such that the following hold true:

5
We are ignoring the input arguments for brevity.
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1. For any i.i.d. samples {Xi, ωi} the P (
⋂

N

i=1(Xi, ωi) ⇐ C) ⇑ 1↘ ⇀C .

2. For all (X, ω) ⇐ C and ⇔ζ ⇐ FW : ↗f⇀(X)↗ ≃ B!.

3. For all (X, ω) ⇐ C we have ⇔ζ ⇐ FW : ↗↙
Ŷ
ϑ(g(X, ω), f⇀(X))↗ ≃ Bω.

4. For all (X, ω) ⇐ C and ⇔ζ, ζ ↘ ⇐ FW : ↗f⇀(X)↘ f⇀↑(X)↗ ≃ L̃!↗ζ ↘ ζ
↘↗⇓,2.

5. For all (X, ω) ⇐ C and ⇔ζ, ζ ↘ ⇐ Fε : ↗f⇀(X)↘ f⇀↑(Z)↗ ≃ L̃ϑ↗ζ ↘ ζ
↘↗2.

6. For any Ŷ1, Ŷ2 ⇐ RnY we have ↗↙
Ŷ
ϑ(Y, Ŷ1)↘↙

Ŷ
ϑ(Y, Ŷ2)↗ ≃ L↗Ŷ1 ↘ Ŷ2↗.

7. Bnrm(C) := sup
⇀↑FW

∣∣↗f↓
µ
◦ PC ↘ f⇀ ◦ PC↗2µ ↘ ↗f↓

µ
↘ f⇀↗2µ

∣∣ < ⇒.

8. Bplr(C) := sup
⇀↑FW ,⇀↑↑Fω

∣∣↑↙
Ŷ
ϑ (g ◦ PC , f⇀ ◦ PC) , f⇀↑ ◦ PC↓µ ↘ ↑↙

Ŷ
ϑ (g, f⇀) , f⇀↑↓µ

∣∣ < ⇒.

9. Beql(C) := sup
⇀↑FW

∣∣↑↙
Ŷ
ϑ (g ◦ PC , f⇀ ◦ PC) , f⇀ ◦ PC↓µ ↘ ↑↙

Ŷ
ϑ (g, f⇀) , f⇀↓µ

∣∣ < ⇒.

Next, we define the events

Ecvx(ω) := {⇔ζ ⇐ FW : |CµN (f⇀)↘ Cµ(f⇀)| ≃ ω+Bnrm(C)};
Eeql(ω) := {⇔ζ ⇐ FW :

∣∣↑↙
Ŷ
ϑ (g, f⇀) , f⇀↓µ ↘ ↑↙

Ŷ
ϑ (g, f⇀) , f⇀↓µN

∣∣ ≃ ω+Beql(C)}.

Since %↔(·) is positively homogeneous function we can ignore the scalar ↘ 1
↼
while defining the events below:

Eplr(ω) := {⇔ζ ⇐ FW :
∣∣%↔

µN

(
↙

Ŷ
ϑ (g, f⇀)

)
↘ %↔

µ

(
↙

Ŷ
ϑ (g, f⇀)

)∣∣ ≃ ω+Bplr(C)}; (154)

Enrm(ω) := {⇔ζ ⇐ FW :
∣∣↗f↓

µ
↘ f⇀↗2µN

↘ ↗f↓
µ
↘ f⇀↗2µ

∣∣ ≃ ω+Bnrm(C)}. (155)

Finally, define the following good event:

Egood(ω) := Ecvx

ω

4


′ Eeql


ω

4


′ Eplr

(
ω

4%(f↓
µ
)


′ Enrm


ω

2


. (156)

When the event Egood(ω) holds then we obtain following from the inequality (153),

↘ω/4↘Bcvx(C)↘ϖ%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


+

φ

2
↗f↓

µ
↘ #r({Wj})↗2µN

(157)

≃ NCµ({Wj})↘ NCµN ({Wj}) (158)

≃ ϖ%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


↘ φ

2
↗f↓

µ
↘ #r({Wj})↗2µN

(159)

+
φ

2
[ω/2 +Bnrm(C)] + ϖ%(f↓

µ
)
[
ω/(4ϖ%(f↓

µ
)) +Bplr(C)

]
(160)

+ [ω/4 +Beql(C)] + [ω/4 +Bnrm(C)] . (161)

For φ ⇑ 0, these inequalities imply that

|NCµ({Wj})↘NCµN ({Wj})| ≃ ϖ%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


(162)

↘ φ

2
↗f↓

µ
↘ #r({Wj})↗2µN

+ (1 + φ)ω+ (1 + φ)Bnrm(C) +Beql(C) + ϖ%(f↓
µ
)Bplr(C).
(163)

Equation (163) holds with probability P(Egood(ω)). We can bound the good event with union bound via

P(Egood(ω)) ⇑ 1↘ P

Ec

nrm


ω

2



︸ ︷︷ ︸
Lemma 8

↘P

Ec

cvx


ω

4



︸ ︷︷ ︸
Lemma 9

↘P

Ec

eql


ω

4



︸ ︷︷ ︸
Lemma 10

↘P
(
Ec

plr

(
ω

4ϖ%(f↓
µ
)



︸ ︷︷ ︸
Lemma 11

(164)

Under Assumptions 1-6 and 7’ we can apply Lemma 8 , 9, 10, and 11 to bound the probability of the occurrence
of the events, Ecvx(·), Eeql(·), Eplr(·), and Enrm(·).
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Define the constants

B1 := 4nY L

[
(↽2 + ↗g↗2Lip)↼2

X
+ ↗g↗2Lip↼2

Y |X

]
; (165)

B2 := 16ny↽↗↙Ŷ
ϑ↗Lip↼X

√
(↽2 + ↗g↗2Lip)↼2

X
+ ↗g↗2Lip↼2

E|X ; (166)

B3 := 16ny%(f
↓
µ
)Lϑ↗↙Ŷ

ϑ↗Lip↼X

√
(↽2 + ↗g↗2Lip)↼2

X
+ ↗g↗2Lip↼2

E|X ; (167)

B4 := 128nY ↽
2
↼
2
X
; (168)

ω0 := max{B1, B2, B3, B4}; (169)

ω1 := max{B1, B2, B3, B4}; (170)

b1 := 8BωL̃!; (171)

b2 := 8L̃! [Bω +B!L] ; (172)

b3 := 32%(f↓
µ
)max{L̃ϑBω, LL̃!B!}; (173)

b4 := 4L̃!B!; (174)

ω2 := max{b1, b2, b3, b4}. (175)

Under the above conditions by Lemma 8, for any ω ⇐ [0, B4] we have that

P

Ec

nrm


ω

2


≃ ⇀C + c4 exp


log

(
CFW

(
ω

b4


↘N

(
ω

B4

2

. (176)

By Lemma 9, for any ω ⇐ [0, B1], we have

P

Ec

cvx


ω

4


≃ ⇀C + 2 exp


log

(
CFW

(
ω

b1


↘ c1N

(
ω

B1

2

, (177)

for some positive constant, c1.

Additionally by Lemma 10, for any ω ⇐ [0, B2] we have that

P

Ec

eql


ω

4


≃ ⇀C + c1 exp


log

(
CFW

(
ω

b2


↘N

(
ω

B2

2

, (178)

for some positive constant, c2. Furthermore, by Lemma 11, for any ω ⇐ [0, B3] we have that

P
(
Ec

plr

(
ω

4%(f↓
µ
)


≃ ⇀C + c3 exp


log

(
CFW

(
ω

b3


+ log

(
CFω

(
ω

b3


↘N

(
ω

B3

2

, (179)

for some positive constant, c3.

For the inequalities (177), (178), (179), and (176) to all hold we choose ω ⇐ [0, ω0] and we upper bound the
covering numbers CFW (ν) as they are strictly decreasing in ν by definition. Therefore, we have that

max

{
log


CFW


ϱ

b1


, log


CFW


ϱ

b2


, log


CFW


ϱ

b3


, log


CFW


ϱ

b4

}
≃ log


CFW


ϱ

ϱ2


, (180)

and

log

(
CFω

(
ω

b3


≃ log

(
CFω

(
ω

ω2


. (181)

Now we plug in inequalities (177), (178), (179), and (176) in the inequality (164). Denote

c5 := max{2, c2, c3, c4}. (182)
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Then

P(Egood(ω)) ⇑ 1↘ c5 exp(log(CFW (ω/ω3)))→

exp


↘c1N

(
ω

B1

2


+ exp


↘N

(
ω

B2

2


(183)

+ exp


log

(
CFω

(
ω

ω3


↘N

(
ω

B3

2


+ exp


↘N

(
ω

B4

2


↘ 4⇀C . (184)

Now we lower bound the right side by replacing B1, B2, B3, B4 with the upper bound ω1 yielding

P(Egood(ω)) ⇑ 1↘ c6 exp


log (CFW (ω/ω2)) + log

(
CFω

(
ω

ω3


↘ c7N

(
ω

ω1

2


↘ 4⇀C ,

for some positive constants, c6, c7.

From Lemma 2 we have that for any ν > 0 it holds that

log(CFW (ν)) ≃ R log(CFω (Lϑν/↽)). (185)

Then we obtain

P(Egood(ω)) ⇑ 1↘ c8 exp


R log

(
CFω

(
Lϑω

↽ω2


↘ c9N

(
ω

ω1

2


↘ 4⇀C , (186)

for some positive constants c8, c9.

From inequality (163), and (186) for any ω ⇐ [0, ω0] we have that

P
(
|NCµ({Wj})↘NCµN ({Wj})| ⇑ ϖ%(f↓

µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1



↘φ

2
↗f↓

µ
↘ #r({Wj})↗2µN

+ (1 + φ)ω+Beql(C) +Bplr(C) + (1 + φ)Bnrm(C)


≃ c8 exp


R log

(
CFω

(
Lϑω

↽ω2


↘ c9N

(
ω

ω1

2


+ 4⇀C . (187)

Next, we derive the operation conditions for ω in terms of B2, B3, and B4.

• B2 ⇑ B3: observe that

B2 ⇑ B3 △▽ ↽ ⇑ %(f↓
µ
)Lϑ, (188)

which establishes an upper bound on the regularization parameter.

• To establish a lower bound on regularization, we will require that min{B2, B3} ⇑ B4: We have that

min{B2, B3} ⇑ B4 △▽ (189)

(
4min

{
1,

%(f↓
µ
)Lϑ

↽

}
4↽2

↼
2
X

√

1 + ↗g↗2Lip/↽2


+

↗g↗2Lip↼2
Y |X

↽2↼2
X

⇑ 16↽2
↼
2
X
. (190)

It is su!cient to have the below inequality to hold:

min

{
1,

%(f↓
µ
)Lϑ

↽

}
⇑ ↽√

↽2 + ↗g↗2Lip
=▽ min{B2, B3} ⇑ B4. (191)

Therefore, ↽ ⇑ %(f↓
µ
)Lϑ is su!cient condition for B2 ⇑ B3 ⇑ B4.

Then we have that

ω0 = min{B1, B4} = 16nY ↽
2
↼
2
X
min


1,

L

4


1 +

↗g↗2Lip
↽2


1 +

↼
2
Y |X

↼
2
X


, (192)
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and

ω1 = 16nY ↽
2
↼
2
X
max


1,

L

4


1 +

↗g↗2Lip
↽2


1 +

↼
2
Y |X

↼
2
X


. (193)

Now rescale the quantities ω ∀ nY
ϱ

(1+↽) , ω0 ∀ nY ω0, and ω1 ∀ nY ω1. Then we have

ω0 = 16↽2
↼
2
X
min


1,

L

4


1 +

↗g↗2Lip
↽2


1 +

↼
2
Y |X

↼
2
X


; (194)

ω1 = 16↽2
↼
2
X
max


1,

L

4


1 +

↗g↗2Lip
↽2


1 +

↼
2
Y |X

↼
2
X


; (195)

ω2 = max{8BωL̃!, 8[L̃!Bω + L̃!B!L], 32%(f
↓
µ
)L̃! max{L̃ϑBω/L̃!, LB!}, 4L̃!B!}, (196)

and

P
(

1

nY

|NCµ({Wj})↘ NCµN ({Wj})| ⇑
ϖ

nY

%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1



↘ φ

2nY

↗f↓
µ
↘ #r({Wj})↗2µN

+
1

nY

[
Beql(C) + ϖ%(f↓

µ
)Bplr(C) + (1 + φ)Bnrm(C)

]
+ ω



≃ c8 exp


R log

(
CFω

(
Lϑω

↽ω2


↘ c9N

(
ω

(1 + φ)ω1

2


+ 4⇀C . (197)

Now we bound the covering number under Assumption 4 and Lemma 2 via

log

(
CFω

(
Lϑω

↽ω2


≃ dim(W) log(1 + 2↽ω2rε/(Lϑω)) ≃ c11dim(W) log(↽ω2rε/(Lϑω)) (198)

for some positive constant c11.

Define
B(C) := Beql(C) + ϖ%(f↓

µ
)Bplr(C) + (1 + φ)Bnrm(C). (199)

Then we have that

P
(

1

nY

|NCµ({Wj})↘ NCµN ({Wj})| ⇑
ϖ

nY

%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1



↘ φ

2nY

↗f↓
µ
↘ #r({Wj})↗2µN

+
1

nY

B(C) + ω



≃ c12 exp


c11Rdim(W) log(↽ω2rε/(Lϑω))↘ c12N

(
ω

(1 + φ)ω1

2


+ 4⇀C . (200)

For some fixed ⇀ ⇐ (0, 1] choose

ω = $̃


(1 + φ)ω1


Rdim(W) log(↽ω2rε/Lϑ) log(N) + log(1/⇀)

N


. (201)

Then the right side term of inequality (200) will be

exp


Rdim(W) log(↽ω2rε/(Lϑω))↘ c12N

(
ω

(1 + φ)ω1

2


= Õ(⇀). (202)

Rewriting the equation (200), we have
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P
(

1

nY

|NCµ({Wj})↘ NCµN ({Wj})| ↭
ϖ

nY

%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1



↘ φ

2nY

↗f↓
µ
↘ #r({Wj})↗2µN

+
1

nY

B(C)

+(1 + φ)ω1


Rdim(W) log(↽ω2rε/Lϑ) log(N) + log(1/⇀)

N


↫ ⇀ + ⇀C . (203)

Theorem 4 has established generalization error for a generic parallel positively homogeneous network. Theorem
2 mentioned in the main text is a special case of Theorem 4, with the choice of convex set C = conv(X → RnY )
by changing Assumption 7’ to Assumption 7. Further, B(X →RnY ) will evaluate to 0, as Pconv(X→RnY )(·) is just
an identity operator.

C APPLICATIONS

In this section, we apply our Theorem 4 for various applications. We apply our general theorem to low-rank
matrix sensing, structured matrix sensing, two-layer linear neural network, two-layer ReLU neural network, and
multi-head attention.

C.1 Low-Rank Matrix Sensing

In this section, we state the corollary and its proof for matrix sensing, which is a direct consequence of Theorem
4. Firstly, we need to choose a convex set, C, such that the Assumption 7’ is satisfied. For matrix sensing we
choose, C = {(X, ω) : ↗X↗F ≃ g, ↗ω↗F ≃ g} to verify Assumption 7’. We need to compute, B(C). This involves
computing the expectation over the projection. Lemma 4 is pivotal for estimating B(C) in all the applications
that are going to be discussed here.

Lemma 4 (Projection of Gaussian vector on balls). Consider a n-dimensional Gaussian vector x ∈
N (0, (1/n)In). Let M be a fixed matrix in Rn→n and A be any set. Then

∣∣↑M,E
[[
xxT ↘ PB(g)(x)PB(g)(x)

T
]]
1A(x)↓

∣∣ ≃

ge

⇐g
2
/2↗M↗2 if g ⇑ 1

1
g
e
⇐g

2
/2↗M↗2 otherwise

(204)

where PB(g)(·) is Euclidean projection onto the ball B(g) := {x : ↗x↗2 ≃ g}.

Proof. Define an event E := {x ⇐ B(g)}. When E holds the function evaluates to zero,

E
[[
xxT ↘ PB(g)(x)PB(g)(x)

T
]
1A(x)

]
= E

[(
xxT ↘ PB(g)(x)PB(g)(x)

T
)
1Ec(x)1A(x)

]
, (205)

so it su!ces to consider the complement of the event E . Now we take the inner product with M yielding
∣∣↑M,E

[[
xxT ↘ PB(g)(x)PB(g)(x)

T
]
1A(x)

]
↓
∣∣ =

∣∣↑M,E
[(
xxT ↘ PB(g)(x)PB(g)(x)

T
)
1Ec(x)1A(x)

]
↓
∣∣

(a)
≃ ↗M↗2↗E

[(
xxT ↘ PB(g)(x)PB(g)(x)

T
)
1Ec(x)1A(x)

]
↗

(b)
≃ ↗M↗2E

[
↗
(
xxT ↘ PB(g)(x)PB(g)(x)

T
)
1Ec(x)↗1A(x)

]

(c)
= ↗M↗2E

[
↗x↗22 ↘ g

2|1Ec(x)1A(x)
]

(d)
= ↗M↗2E

[∣∣↗x↗22 ↘ g
2
∣∣ |1Ec(x)1A(x)

]

(e)
≃ ↗M↗2E

[∣∣↗x↗22 ↘ g
2
∣∣ |1Ec(x)

]

(f)
= ↗M↗2

∫

x↑Ec

∣∣↗x↗22 ↘ g
2
∣∣ 1∃

2▷
e
⇐ ↓x↓22

2 dx

(g)
= ↗M↗2

[
ge

⇐g
2
/2 ↘


▷

2
(g2 ↘ 1)erfc(g/

∃
2)


.



Tadipatri, Hae!ele, Agterberg, Vidal

The aforementioned computations involves (a) Cauchy-Schwartz inequality, (b) Jensen’s inequality, (c) the norm
of PB(g)(x) when xinEc is g, (d) conditioning on indicator functions, (e) removing the conditioning increases the
expectation over non-negative terms, (f) we apply the density of Gaussian, (g) standard normal integral. As a
consequence of Theorem 1 from Zhang et al. (2020) we bound the complement error function,

e
⇐z

2

∃
▷z

⇑ erfc(z) ⇑ 2∃
▷

e
⇐z

2

z +
∃
z2 + 2

. (206)

Then we have that

∣∣↑M,E
[[
xxT ↘ PB(g)(x)PB(g)(x)

T
]
1A(x)

]
↓
∣∣ ≃


ge

⇐g
2
/2↗M↗2 if g ⇑ 1

1
g
e
⇐g

2
/2↗M↗2 otherwise.

(207)

Now, we state the generalization bound for the low-rank matrix sensing followed by its proof.

Corollary 4 (Low-Rank Matrix Sensing). Consider the true model for (X, y), where X ⇐ Rm→n is a random
matrix with i.i.d. entries Xlk ∈ N (0, 1

mn
) and y = ↑M↓

, X↓ + ω, where M
↓ ⇐ Rm→n and ω ∈ N (0,↼2) is

independent from X. For all i ⇐ [N ], let (Xi, yi) be i.i.d. samples from this true model. Consider the estimator
ŷ = ↑UV

T
, X↓, where U ⇐ Rm→R and V ⇐ Rn→R. Let ⇀ ⇐ (0, 1] be fixed. Define the non-convex problem

NCMS
µN

((U, V )) :=
1

2N

N∑

i=1

(
yi ↘ ↑UV

T
, Xi↓

)2
+ ϖ

R∑

j=1

↗uj↗2↗vj↗2, (208)

and define NCMS

µ
((U, V )) similarly with the sum over i replaced by expectation taken over (X, y).

Let (U, V ) be a stationary point of NCMS
µN

((U, V )). Suppose there exists CUV , Bu, Bv > 0 such that ↗UV
T ↗2 ≃

CUV ↗M↓↗↓, and for all j ⇐ [R], ↗uj↗2 ≃ Bu, ↗vj↗2 ≃ Bv. Then, with probability at least 1↘ ⇀, it holds that

∣∣∣∣NC
MS
µ

((U, V )))↘ NCMS
µN

((U, V ))

∣∣∣∣ ↫ ↗M↓↗↓


↗ 1

N

N∑

i=1

(yi ↘ ↑UV
T
, Xi↓)Xi↗2 ↘ ϖ



+ C
2
UV

↗M↓↗2↓ →


R log (R(CUV +BuBv)) (m+ n) log(N)+log(1/⇀)

N
.

Proof. We set the following to obtain a generalization bound from Theorem 4 for the case of matrix sensing.
First,

ϑ(Y, Ŷ ) =
1

2
↗Y ↘ Ŷ ↗22 =▽ (φ, L) = (0, 1); (209)

ε(W ) = ↑uvT
, X↓; (210)

ϱ(W ) = ↗u↗2↗v↗2. (211)

Estimating %(f↓
µ
): Since, M

↓ is the true matrix the regularizer at globally optimal solution can be upper
bounded by Proposition 2,

%(f↓
µ
) ≃ ↗M↓↗↓. (212)
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Estimating %↔
µN

(·): Now we move on to compute the polar. We have

%↔
µN

(
↘ 1

ϖ
↙

Ŷ
ϑ(g,#r({Wj}))


= %↔

µN

(
1

ϖ
(g ↘ #r({Wj}))



= sup
⇒u⇒↗1;⇒v⇒↗1

1

Nϖ

N∑

i=1

↑Yi ↘ ↑UV
T
, Xi↓,uT

Xiv↓

= sup
⇒u⇒↗1;⇒v⇒↗1

1

Nϖ
↑v,

N∑

i=1

(Yi ↘ ↑UV
T
, Xi↓)TuT

Xi↓

= sup
⇒u⇒↗1

1

Nϖ
↗

N∑

i=1

(Yi ↘ ↑UV
T
, Xi↓)uT

Xi↗

= sup
⇒u⇒↗1

1

Nϖ
↗

N∑

i=1

(Yi ↘ ↑UV
T
, Xi↓)XT

i
u↗

=
1

ϖ
↗ 1

N

N∑

i=1

(Yi ↘ ↑UV
T
, Xi↓)Xi↗2.

Defining Fε: Next, we estimate the relevant constants. First we estimate the constants from Assumption 4,
suppose that B := {(u,v) : ↗u↗2 ≃ 1, ↗v↗2 ≃ 1}

Fε := {uvT : ↗u↗2↗v↗2 ≃ 1} ′ B (213)

Estimating Lϑ: The Lipschitz constant Lϑ in the function Fε is Lϑ = sup(u,v)↑Fω
↗↑uvT

, .↓↗Lip = 1.

Estimating rε: We have that from A.M-G.M inequality,

↗u↗2↗v↗2 ≃ 1

2
[↗u↗22 + ↗v↗22]. (214)

Now for any (u,v) ⇐ Fε we have that 0.5[↗u↗2 + ↗v↗2] ≃ 1. Therefore, ⇔(u,v) ⇐ Fε we have

↗u↗2↗v↗2 ≃ 1

2
[↗u↗22 + ↗v↗22] ≃


1

2
[↗u↗22 + ↗v↗22] (215)

Then we need that Fε ∞ B(rε), then must be rε = 1⇔
2
.

Defining FW : From the corollary’s assumptions we have that, BR := {(u,v) : ↗u↗2 ≃ Bu, ↗v↗ ≃ Bv}; our
hypothesis class is defined as

FW :=
{
{(uj ,vj)} : ↗↑UV

T
, ·↓↗Lip = ↗UV

T ↗2 ≃ ↽
}
′ BR. (216)

As ↽ ⇑ %(f↓
µ
)Lϑ, we choose ↽ = CUV ↗M↓↗↓ for CUV ⇑ 1. We have that

FW =
{
{(uj ,vj)} : ↗↑UV

T
, ·↓↗Lip = ↗UV

T ↗2 ≃ CUV ↗M↓↗↓, ↗uj↗ ≃ Bu, ↗vj↗ ≃ Bv

}
. (217)

Estimating ω0: From the data generating mechanism we have ↗g↗Lip = ↗M↓↗2, ↼X = 1, ↼Y |X = ↼. Then we
have the following constants from Theorem 4:

ω0 = 16↽2
↼
2
X
min


1,

L

4


1 +

↗g↗2Lip
↽2


1 +

↼
2
Y |X

↼
2
X


, (218)

which evaluates to

ω0 = 16C2
UV

↗M↓↗2↓ min

{
1,

1 + ↼
2

4C2
UV

}
. (219)
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From the corollary assumption we have that CUV ≃ 0.5
∃
1 + ↼2, which implies that

ω0 = 4(1 + ↼
2)↗M↓↗2↓. (220)

Estimating ω1: Similarly, we evaluate

ω1 = 16↽2
↼
2
X
max


1,

L

4


1 +

↗g↗2Lip
↽2


1 +

↼
2
Y |X

↼
2
X


, (221)

obtaining

ω1 = 16C2
UV

↗M↓↗2↓ max

{
1,

1 + ↼
2

4C2
UV

}
. (222)

From corollary assumption we have that CUV ≃ 0.5
∃
1 + ↼2 which gives

ω1 = 16C2
UV

↗M↓↗2↓. (223)

Defining convex set C: Consider a convex set C = B(g) = {X : ↗vec(X)↗2 ≃ g}.

First and foremost we need to estimate ⇀C for the following inequality to hold:

P (′N

i=1Xi ⇐ C) ⇑ 1↘ ⇀C . (224)

The probability of X ⇐ C = B(g) is equivalent to saying the probability of the event when ↗vec(X)↗2 ≃ g. Since,
Xij ∈ N (0, 1/(m → n)) as a consequence of Bernstein’s Inequality (Vershynin, 2018, Corollary 2.8.3) we have
that for any t ⇑ 0,

P (|↗vec(X)↗2 ↘ 1| ≃ t) ⇑ 1↘ 2 exp
(
↘cnXt

2
)

(225)

for some constant c ⇑ 0. Now we have

P (↗vec(X)↗2 ≃ g)


⇑ 1↘ 2 exp

(
↘cnX(g ↘ 1)2

)
if g ⇑ 1

≃ 2 exp
(
↘cnX(g ↘ 1)2

)
otherwise.

(226)

We consider the case where g ⇑ 1, then we have that

P (′N

i=1Xi ⇐ C) = P (′N

i=1↗vec(X)↗2 ≃ g) ⇑ 1↘ 2N exp
(
↘cnX(g ↘ 1)2

)
︸ ︷︷ ︸

=ςC

. (227)

We have that ⇀C = 2N exp
(
↘cnX(g ↘ 1)2

)
.

Now we evaluate Bω, B!, L̃!, L̃ϑ.

Estimating B!: Recall that rε = 1⇔
2
. Then we have

B! = sup
Z↑C,{(uj ,vj)}↑FW

↗↑UV
T
, Z↓↗ (228)

= sup
Z↑C,{(uj ,vj)}↑FW

↗↑vec(UV
T ), vec(Z)↓↗ (229)

= g sup
{(uj ,vj)}↑FW

↗vec(UV
T )↗2 (230)

= g sup
{(uj ,vj)}↑FW

↗
R∑

j=1

vec(ujv
T

j
)↗2 (231)

= gR sup
{(uj ,vj)}↑FW

↗vec(ujv
T

j
)↗2 (232)

= gR sup
{(uj ,vj)}↑FW

↗ujv
T

j
↗F (233)

= gR sup
{(uj ,vj)}↑FW

↗uj↗2↗vj↗2 (234)

= gBuBvR. (235)
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Estimating Bω: Similarly, we have

Bω = sup
Z↑C,{(uj ,vj)}↑FW

↗↑UV
T ↘M

↓
, Z↓↗ (236)

= g sup
{(uj ,vj)}↑FW

↗vec(UV
T ↘M

↓)↗2 (237)

≃ g[↗M↓↗F +BuBvR]. (238)

Estimating L̃!: Now, we compute the Lipschitz constant with respect to U, V . We have that

L̃! = sup
Z↑C,(U,V ),(U ↑,V ↑)↑FW

↗↑UV
T ↘ U

↘
V

↘T
, Z↓↗

maxj
√

↗uj ↘ u↘
j
↗2 + ↗vj ↘ v↘

j
↗2

(239)

= g sup
(U,V ),(U ↑,V ↑)↑FW

↗UV
T ↘ U

↘
V

↘T ↗F
maxj

√
↗uj ↘ u↘

j
↗2 + ↗vj ↘ v↘

j
↗2

(240)

= gR sup
(U,V ),(U ↑,V ↑)↑FW

↗ujvT

j
↘ u↘

j
v↘T
j
↗F√

↗uj ↘ u↘
j
↗2 + ↗vj ↘ v↘

j
↗2

(241)

= gR sup
(U,V ),(U ↑,V ↑)↑FW

↗(uj ↘ u↘
j
)vT

j
↘ u↘

j
(v↘

j
↘ vj)T ↗F√

↗uj ↘ u↘
j
↗2 + ↗vj ↘ v↘

j
↗2

(242)

≃ gR sup
(U,V ),(U ↑,V ↑)↑FW

↗(uj ↘ u↘
j
)↗2↗vj↗2 + ↗u↘

j
↗2↗(v↘

j
↘ vj)↗2√

↗uj ↘ u↘
j
↗2 + ↗vj ↘ v↘

j
↗2

(243)

≃ gR sup
(U,V ),(U ↑,V ↑)↑FW

√
↗vj↗22 + ↗u↘

j
↗22 (244)

= g

√
B2

u
+B2

v
R. (245)

Estimating L̃ϑ: Similarly we get L̃ϑ = g
√
B2

u
+B2

v
.

Estimating ω2: Recall that

ω2 = max{8BωL̃!, 8L̃![Bω +B!L], 32%(f
↓
µ
)L̃ϑ max{Bω, LB!}, 4L̃!B!}. (246)

From all the constants computed earlier, we have that

ω2 = k1g
2
R

2(↗M↓↗F +BuBv)
2 (247)

for some constant k1 ⇑ 0.

Next we move on estimating B(C) we need to analyze three terms:
The First Term: We define the first term via

T1 := sup
{Wj}↑FW

∣∣↗f↓
µ
◦ PC ↘ #r({Wj}) ◦ PC↗2µ ↘ ↗f↓

µ
↘ #r({Wj})↗2µ

∣∣ .

For fixed (U, V ), we have
∣∣∣∣↗f

↓
µ
◦ PC ↘ #r({Wj}) ◦ PC↗2µ ↘ ↗f↓

µ
↘ #r({Wj})↗2µ

∣∣∣∣

=
∣∣E

[
↑M↓ ↘ UV

T
,PC(X)↓2 ↘ ↑M↓ ↘ UV

T
, X↓2

]∣∣

=

∣∣∣∣E
[
↑vec(M↓ ↘ UV

T )vec(M↓ ↘ UV
T )T , vec(PC(X))vec(PC(X))T ↓

↘ ↑vec(M↓ ↘ UV
T )vec(M↓ ↘ UV

T )T , vec(X)vec(X)T ↓
∣∣∣∣

=
∣∣↑vec(M↓ ↘ UV

T )vec(M↓ ↘ UV
T )T ,E

[
vec(PC(X))vec(PC(X))T ↘ vec(X)vec(X)T

]
↓
∣∣
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From Lemma 4, taking g ⇑ 1,
∣∣∣↗f↓

µ
◦ PC ↘ #r({Wj}) ◦ PC↗2µ ↘ ↗f↓

µ
↘ #r({Wj})↗2µ

∣∣∣

≃ ge
⇐g

2
/2↗vec(M↓ ↘ UV

T )vec(M↓ ↘ UV
T )T ↗2,

(248)

whereupon further simplifying, we obtain

∣∣↗f↓
µ
◦ PC ↘ #r({Wj}) ◦ PC↗2µ ↘ ↗f↓

µ
↘ #r({Wj})↗2µ

∣∣ ≃ ge
⇐g

2
/2↗M↓ ↘ UV

T ↗2
F
. (249)

Now, applying triangular inequality and taking the supremum, we obtain

T1 ≃ ge
⇐g

2
/2(↗M↓↗F +RBuBv)

2
. (250)

The Second Term: We define the second term via

T2 := sup
{Wj}↑FW ,W ↑↑Fω

∣∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,ε(W

↘) ◦ PC↓µ

↘ ↑↙
Ŷ
ϑ (g,#r({Wj})) ,ε(W ↘)↓µ

∣∣∣.
(251)

We have
∣∣∣∣↑↙Ŷ

ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,ε(W
↘) ◦ PC↓µ ↘ ↑↙

Ŷ
ϑ (g,#r({Wj})) ,ε(W ↘)↓µ

∣∣∣∣

=
∣∣E

[
↑UV

T ↘M
↓
,PC(X)↓↑uvT

,PC(X)↓ ↘ ↑UV
T ↘M

↓
, X↓↑uvT

, X↓
]∣∣

=
∣∣↑vec(M↓ ↘ UV

T )vec(uvT )T ,E
[
vec(X)vec(X)T ↘ vec(PC(X))vec(PC(X))T

]
↓
∣∣ .

As a consequence of Lemma 4 we have

∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,ε(W

↘) ◦ PC↓µ ↘ ↑↙
Ŷ
ϑ (g,#r({Wj})) ,ε(W ↘)↓µ

∣∣

≃ ge
⇐g

2
/2↗vec(M↓ ↘ UV

T )vec(uvT )T ↗2 = ge
⇐g

2
/2↗M↓ ↘ UV

T ↗F ↗uvT ↗F . (252)

Now we apply supremum over (u,v) ⇐ Fε and then (U, V ) obtaining

T2 ≃ ge
⇐g

2
/2 [↗M↓↗F +RBuBv] . (253)

The Third Term: We define

T3 := sup
{Wj}↑FW

∣∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,#r({Wj}) ◦ PC↓µ

↘ ↑↙
Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ

∣∣∣.
(254)

Similarly to the earlier item, we rewrite the above as

∣∣↑vec(M↓ ↘ UV
T )vec(UV

T )T ,E
[
vec(X)vec(X)T ↘ vec(PC(X))vec(PC(X))T

]
↓
∣∣ (255)

As a consequence of Lemma 4 we have

∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,#r({Wj}) ◦ PC↓µ ↘ ↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ

∣∣

≃ ge
⇐g

2
/2↗vec(M↓ ↘ UV

T )vec(UV
T )T ↗2 = ge

⇐g
2
/2↗M↓ ↘ UV

T ↗F ↗UV
T ↗F . (256)

Finally, we apply supremum over (U, V ) ⇐ FW , obtaining

T3 ≃ ge
⇐g

2
/2
BuBvR [↗M↓↗F +RBuBv] . (257)
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Now combining equations (250), (253), (257) we obtain that

B(C) ≃ ge
⇐g

2
/2

[
φ(↗M↓↗F +RBuBv)

2 + ↗M↓↗F +RBuBv +BuBvR [↗M↓↗F +RBuBv]
]

(258)

We further upper bound for simplicity as

B(C) ≃ 4ge⇐g
2
/2(↗M↓↗F +RBuBv)

2
. (259)

From Theorem 4 we have that

1

nY

|NCµ({Wj})↘ NCµN ({Wj})| ↫
ϖ

nY

%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


(260)

+
4

nY

ge
⇐g

2
/2{↗M↓↗F +RBuBv}2 + 16C2

UV
↗M↓↗2↓ →


(261)

Rdim(W)log

CUV ↗M↓↗↓k1g2R2(↗M↓↗F +BuBv)2

1⇔
2


log(N) + log(1/⇀)

N





(262)

holds true w.p at least 1↘ ⇀ ↘ 2N exp
(
↘cnX(g ↘ 1)2

)
.

Now choose

g = 1 +O
(√

log(
∃
NR100) + log(1/⇀)


. (263)

Then we get that

1

nY

|NCµ({Wj})↘ NCµN ({Wj})| (264)

↫ ϖ

nY

%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1


(265)

+
4

nY

{↗M↓↗F +RBuBv}2
⇀

√
log(NR100) + log(1/⇀)

NR100
(266)

+ 16C2
UV

↗M↓↗2↓


R(m+n) log

(
CUV ⇒M→⇒→k1[log(NR)+log(1/ς)]R2(⇒M→⇒F+BuBv)2 1↔

2

)
log(N)+log(1/ς)

N
(267)

holds true w.p at least 1↘⇀. Now ignoring loglog terms and keeping the right most term because of the dominance,
we obtain

1

nY

|NCµ({Wj})↘ NCµN ({Wj})| ↫
ϖ

nY

%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1



+C
2
UV

↗M↓↗2↓


Rlog (R(CUV +BuBv)) (m+ n) log(N) + log(1/⇀)

N
(268)

holds true w.p at least 1↘ ⇀.

C.2 Structured Matrix Sensing

Next, we move on to a slightly more generalized matrix sensing problem through which we impose certain
structure in the factor U . Consider an atomic set U that represents the set of structured columns, and suppose
that U consists of columns that are a!ne combinations of the atoms in U . We consider a gauge function ↽U (·)
which is defined via

↽U (u) := inf {t, t ⇑ 0 such that u ⇐ tconv(U)} (269)

For instance, U can be the intersection of L2 unit ball and L1 unit ball, which induces UV
T to be low-rank and

U to be sparse. Imposing such structures has been well studied for convex problems by Chandrasekaran et al.
(2012). Bach (2013) analyzed such structures for non-convex matrix factorization problems. However, their work
was focused primarily on the optimization guarantees whereas our result below provides generalization/recovery
guarantees for structured matrix sensing problems. We have the following corollary.
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Corollary 5 (Structured matrix sensing). Consider the true model for (X, y), where X ⇐ Rm→n is a random
matrix with i.i.d. entries Xlk ∈ N (0, 1

mn
) and y = ↑U↓

V
↓T

, X↓ + ω, where U
↓ ⇐ Rm→R

→
, V

↓ ⇐ Rn→R
→
and

ω ∈ N (0,↼2) is independent from X. For all i ⇐ [N ], let (Xi, yi) be i.i.d. samples from this true model. Consider
the estimator ŷ = ↑UV

T
, X↓, where U ⇐ Rm→R and V ⇐ Rn→R. Let ⇀ ⇐ (0, 1] be fixed. Define the non-convex

problem with the atomic set, U

NCSMS
µN

((U, V )) :=
1

2N

N∑

i=1

(
yi ↘ ↑UV

T
, Xi↓

)2
+ ϖ

R∑

j=1

↽U (uj)↗vj↗2, (270)

and define NCSMS

µ
((U, V )) similarly with the sum over i replaced by expectation taken over (X, y). Here ↽U (u) :=

inf {t; t ⇑ 0,u ⇐ tconv(U)} for some specified atomic set, U . Define

K1 :=
r
→∑

j=1

↽U (u
↓
j
)↗v↓

j
↗2;K2 := sup

⇒u⇒↗1
↽U (u). (271)

Let (U, V ) be a stationary point of NCSMS
µN

((U, V )). Suppose there exists CUV , Bu, Bv > 0 such that ↗UV
T ↗2 ≃

CUV K1, and for all j ⇐ [R], ↗uj↗2 ≃ Bu, ↗vj↗2 ≃ Bv. Then, with probability at least 1↘ ⇀, it holds that

∣∣∣∣NC
SMS
µ

((U, V )))↘ NCSMS
µN

((U, V ))

∣∣∣∣ ↫ K1


K2↗

1

N

N∑

i=1

(yi ↘ ↑UV
T
, Xi↓)Xi↗2 ↘ ϖ


(272)

+ C
2
UV

K
2
1


R log (R(CUV +BuBv)) (m+ n) log(N)+log(1/⇀)

N
.

Remarks: Similar to matrix sensing, the sample complexity required for consistency is only that N ↭ R(m+n)
up to logarithmic terms, assuming a global minimum is found. The sample complexity is similar to low-rank
matrix sensing (ignoring the scale and logarithmic dependency). To the best of our knowledge, this problem has
not been studied from a statistical perspective, and our sample complexities match the corresponding convex
slightly structured matrix sensing of Kakade et al. (2008). Unlike low-rank matrix sensing, the main technical
challenge is to compute the polar/supremum term in the optimization error. In general, such a computation is
NP-hard when the atomic set U has non-negative atoms (Hendrickx and Olshevsky, 2010).

Proof. The proof is similar to that of Corollary 1, except for the computation of the polar. Therefore, we only
compute the polar.

Estimating %(f↓
µ
): Since M

↓ is the true matrix the globally optimal solution would be M
↓; therefore, from

Proposition 2 we have

%(f↓
µ
) ≃




r
→∑

j=1

↽U (u
↓
j
)↗v↓

j
↗2



 . (273)
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Estimating %↔
µN

(·): Now we move on to compute the polar.

%↔
µN

(
↘ 1

ϖ
↙

Ŷ
ϑ(g,#r({Wj}))


= %↔

µN

(
1

ϖ
(g ↘ #r({Wj}))


%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ(g,#r({Wj}))



= %↔
µN

(
1

ϖ
(g ↘ #r({Wj}))



= sup
ϖU (u)↗1;⇒v⇒↗1

1

Nϖ

N∑

i=1

↑Yi ↘ ↑UV
T
, Xi↓,uT

Xiv↓

= sup
ϖU (u)↗1;⇒v⇒↗1

1

Nϖ
↑v,

N∑

i=1

(Yi ↘ ↑UV
T
, Xi↓)TuT

Xi↓

= sup
ϖU (u)↗1

1

Nϖ
↗

N∑

i=1

(Yi ↘ ↑UV
T
, Xi↓)uT

Xi↗

= sup
ϖU (u)↗1

1

Nϖ
↗

N∑

i=1

(Yi ↘ ↑UV
T
, Xi↓)XT

i
u↗.

This yields

%↔
µN

(
↘ 1

ϖ
↙

Ŷ
ϑ(g,#r({Wj}))


≃


sup

⇒u⇒↗1
↽U (u)


1

Nϖ
↗

N∑

i=1

(Yi ↘ ↑UV
T
, Xi↓)XT

i
↗2. (274)

The rest of the proof is the same as that of low-rank matrix sensing (see section C.1).

C.3 Two-Layer Linear NN

Next, we consider the closely related problem of 2-Layer Linear Neural Networks, which is essentially a multi-
dimensional matrix sensing problem; this is also referred to as non-convex linear regression. In practice, this
approach has seemed to have better linear convergence (Arora et al., 2019) and generalization capabilities (Allen-
Zhu et al., 2019) than vanilla linear regression. Corollary 6 provides generalization error upper bounds.

Corollary 6 (2-Layer Linear Neural Network). Consider the true model for (x,y), where x ∈ N (0, (1/n)In) ⇐
Rn, y = U

↓
V

↓Tx + ω, where U
↓ ⇐ Rm→R

→
, V ↓ ⇐ Rn→R

→
, and ω ∈ N (0, (↼2

/m)Im) ⇐ Rm independent from x.
For all i ⇐ [N ], let (xi,yi) be i.i.d. samples from this true model. Consider the estimator ŷ = UV

Tx, where
U ⇐ Rm→R

, V ⇐ Rn→R. Let ⇀ ⇐ (0, 1] be fixed. Define the non-convex problem

NC2LNN
µN

((U, V )) :=
1

2N

N∑

i=1

↗yi ↘ U [V Txi]+↗22 +
ϖ

2

(
↗U↗2

F
+ ↗V ↗2

F

)
, (275)

and define NC2LNN
µ

((U, V )) similarly with the sum over i replaced by expectation taken over (x,y).

Let (U, V ) be a stationary point of NC2LNN
µN

((U, V )). Suppose there exists CUV , Bu, Bv > 0 such that ↗UV
T ↗2 ≃

CUV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]
, and for all j ⇐ [R], ↗uj↗2 ≃ Bu, ↗vj↗2 ≃ Bv. Then, with probability at least 1 ↘ ⇀, it

holds that

1

m

∣∣∣NC2LNN
µ

((U, V ))↘ NC2LNN
µN

((U, V ))
∣∣∣ ↫ 1

2m

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]

1

N

N∑

i=1

↗yi ↘ ŷi↗2↗xi↗2 ↘ ϖ



C
2
UV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]2


R log (R (CUV +B2
u
+B2

v
)) (m+ n) log(N) + log(1/⇀)

N
.

Similar to matrix sensing, we require that N ↭ R(m+n), with R(m+n)
N

↔ 0 for consistency at a global minimum.
This matches classical results for (convex) linear regression.

Proof. To obtain a generalization bound from Theorem 4 for this setting, we set the following problem parameters:

ϑ(Y, Ŷ ) =
1

2
↗Y ↘ Ŷ ↗ =▽ (φ, L) = (0, 1); (276)
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ε(W ) = ↑v,x↓u; (277)

ϱ(W ) =
1

2

[
↗u↗22 + ↗v↗22

]
. (278)

Estimating %(f↓
µ
): From Proposition 2 we have that

%(f↓
µ
) ≃ ↗U↓↗2

F
+ ↗V ↓↗2

F

2
(279)

Choosing Fε:
Fε := {(u,v) : ↗u↗2 + ↗v↗2 ≃ 2, ↗u↗2 ≃ 1, ↗v↗2 ≃ 1}. (280)

Estimating Lϑ:
Lϑ = sup

(u,v)↑Fω

↗uvT (·)↗Lip = sup
(u,v)↑Fω

↗uvT ↗2 = 1. (281)

Estimating rε: For any (u,v) ⇐ Fε, we have that,

↗u↗2 + ↗v↗2
2

≃


↗u↗2 + ↗v↗2
2

=▽ Fε ∞ B(1/
∃
2). (282)

Then we have rε = 1/
∃
2.

Choosing FW :
FW := {(U, V ) : ↗UV

T ↗2 ≃ ↽, ↗uj↗ ≃ Bu, ↗vj↗ ≃ Bv}. (283)

As ↽ ⇑ %(f↓
µ
)Lϑ = ⇒U→⇒2

F+⇒V →⇒2
F

2 , we may take ↽ = CUV

[
⇒U→⇒2

F+⇒V →⇒2
F

2

]
for some CUV . We have that

FW =

{
{(uj ,vj)} : ↗↑UV

T
, ·↓↗Lip = ↗UV

T ↗2 ≃ CUV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

2


, ↗uj↗ ≃ Bu, ↗vj↗ ≃ Bv

}
. (284)

Estimating ω0: From the data generating mechanism we have ↗g↗Lip = ↗M↓↗2, ↼X = 1, ↼Y |X = ↼, which yields
the following constants from Theorem 4:

ω0 = 16↽2
↼
2
X
min


1,

L

4


1 +

↗g↗2Lip
↽2


1 +

↼
2
Y |X

↼
2
X


, (285)

which evaluates to when CUV ≃ 0.5
√

(1 + ↼2)

ω0 = 8C2
UV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]
min

{
1,

1 + ↼
2

4C2
UV

}
= 2

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]
. (286)

Estimating ω1: Similarly, we evaluate

ω1 = 16↽2
↼
2
X
max


1,

L

4


1 +

↗g↗2Lip
↽2


1 +

↼
2
Y |X

↼
2
X


, (287)

obtaining
ω1 = 8C2

UV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]
. (288)

Choosing the convex set C: Consider a convex set C = B(g) = {X : ↗vec(X)↗2 ≃ g}.

First and foremost we need to estimate ⇀C for the following inequality to hold:

P (′N

i=1Xi ⇐ C) ⇑ 1↘ ⇀C . (289)

The probability of x ⇐ C = B(g) is equivalent to saying the probability of the event when ↗x↗2 ≃ g. Since,
xi ∈ N (0, 1/n) as a consequence of Bernstein’s Inequality (Vershynin, 2018, Corollary 2.8.3) we have that for
any t ⇑ 0,

P (|↗x↗2 ↘ 1| ≃ t) ⇑ 1↘ 2 exp
(
↘cnXt

2
)

(290)
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for some constant c ⇑ 0. Now we have

P (↗x↗2 ≃ g)


⇑ 1↘ 2 exp

(
↘cnX(g ↘ 1)2

)
if g ⇑ 1

≃ 2 exp
(
↘cnX(g ↘ 1)2

)
otherwise

(291)

We consider the case where g ⇑ 1, then we have that

P (′N

i=1Xi ⇐ C) = P (′N

i=1↗x↗2 ≃ g) ⇑ 1↘ 2N exp
(
↘cnX(g ↘ 1)2

)
︸ ︷︷ ︸

=ςC

. (292)

We have that ⇀C = 2N exp
(
↘cn(g ↘ 1)2

)
.

Now we evaluate Bω, B!, L̃!, L̃ϑ.

Estimating B!: We have

B! = sup
z↑C,{(uj ,vj)}↑FW

↗UV
T z↗ (293)

= g sup
{(uj ,vj)}↑FW

↗UV
T ↗2 (294)

= g↽ (295)

Estimating Bω: Similarly, we have

Bω = sup
z↑C,{(uj ,vj)}↑FW

↗(UV
T ↘ U

↓
V

↓T )z↗ (296)

= g sup
{(uj ,vj)}↑FW

↗UV
T ↘ U

↓
V

↓T ↗2 (297)

= g(↗U↓
V

↓T ↗2 + ↽). (298)

Estimating L̃!: Now, we compute the Lipschitz constant with respect to U, V . We have

L̃! = sup
z↑C,(U,V ),(U ↑,V ↑)↑FW

↗(UV
T ↘ U

↘
V

↘T )z↗
maxj

√
↗uj ↘ u↘

j
↗2 + ↗vj ↘ v↘

j
↗2

(299)

= g sup
(U,V ),(U ↑,V ↑)↑FW

↗UV
T ↘ U

↘
V

↘T ↗2
maxj

√
↗uj ↘ u↘

j
↗2 + ↗vj ↘ v↘

j
↗2

(300)

≃ g sup
(U,V ),(U ↑,V ↑)↑FW

↗UV
T ↘ U

↘
V

↘T ↗F
maxj

√
↗uj ↘ u↘

j
↗2 + ↗vj ↘ v↘

j
↗2

(301)

= g sup
(U,V ),(U ↑,V ↑)↑FW

↗
∑

R

j=1 ujvT

j
↘ u↘

j
v↘T
j
↗F

maxj
√

↗uj ↘ u↘
j
↗2 + ↗vj ↘ v↘

j
↗2

(302)

= gR sup
(U,V ),(U ↑,V ↑)↑FW

↗ujvT

j
↘ u↘

j
v↘T
j
↗F√

↗uj ↘ u↘
j
↗2 + ↗vj ↘ v↘

j
↗2

(303)

= gR sup
(U,V ),(U ↑,V ↑)↑FW

↗(uj ↘ u↘
j
)vT

j
↘ u↘

j
(v↘

j
↘ vj)T ↗2√

↗uj ↘ u↘
j
↗2 + ↗vj ↘ v↘

j
↗2

(304)

≃ gR sup
(U,V ),(U ↑,V ↑)↑FW

↗(uj ↘ u↘
j
)↗2↗vj↗2 + ↗u↘

j
↗2↗(v↘

j
↘ vj)↗2√

↗uj ↘ u↘
j
↗2 + ↗vj ↘ v↘

j
↗2

(305)

= gR sup
(U,V ),(U ↑,V ↑)↑FW

√
↗vj↗22 + ↗u↘

j
↗22 (306)

= g

√
B2

u
+B2

v
R. (307)
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Estimating L̃ϑ: Similarly we get L̃ϑ = g
√
B2

u
+B2

v
.

Estimating ω2: Recall that

ω2 = max{8BωL̃!, 8L̃![Bω +B!L], 32%(f
↓
µ
)L̃ϑ max{Bω, LB!}, 4L̃!B!}. (308)

From all the constants computed earlier, we have that

ω2 = k1g
2
R

2
C

2
UV

(↗U↓↗2
F
+ ↗V ↓↗2

F
)
√
B2

u
+B2

u
(309)

for some constant k1 ⇑ 0.

Next, we move on to estimating B(C). We need to analyze three terms:
The First Term: Define

T1 := sup
{Wj}↑FW

∣∣↗f↓
µ
◦ PC ↘ #r({Wj}) ◦ PC↗2µ ↘ ↗f↓

µ
↘ #r({Wj})↗2µ

∣∣

We have ∣∣↗f↓
µ
◦ PC ↘ #r({Wj}) ◦ PC↗2µ ↘ ↗f↓

µ
↘ #r({Wj})↗2µ

∣∣ = (310)

=
∣∣∣E

[
↗(U↓

V
↓T ↘ UV

T )PC(x)↗2 ↘ ↗(U↓
V

↓T ↘ UV
T )x↗2

]∣∣∣ (311)

=
∣∣∣E
[
↑(U↓

V
↓T ↘ UV

T )(U↓
V

↓T ↘ UV
T )T , (PC(x))(PC(x))

T ↓

↘ ↑(U↓
V

↓T ↘ UV
T )(U↓

V
↓T ↘ UV

T )T ,xxT ↓
]∣∣∣

(312)

=
∣∣∣↑(U↓

V
↓T ↘ UV

T )(U↓
V

↓T ↘ UV
T )T ,E

[
(PC(x))(PC(x))

T ↘ xxT
]
↓
∣∣∣ (313)

From Lemma 4 we obtain that (taking g ⇑ 1)

∣∣↗f↓
µ
◦ PC ↘ #r({Wj}) ◦ PC↗2µ ↘ ↗f↓

µ
↘ #r({Wj})↗2µ

∣∣

≃ ge
⇐g

2
/2↗(U↓

V
↓T ↘ UV

T )(U↓
V

↓T ↘ UV
T )T ↗2, (314)

on further simplifying, we get

∣∣↗f↓
µ
◦ PC ↘ #r({Wj}) ◦ PC↗2µ ↘ ↗f↓

µ
↘ #r({Wj})↗2µ

∣∣ ≃ ge
⇐g

2
/2↗U↓

V
↓T ↘ UV

T ↗22. (315)

Now applying triangular inequality and taking the supremum, we obtain

T1 ≃ ge
⇐g

2
/2(↗U↓

V
↓T ↗2 + ↽)2, (316)

The Second Term: Define

T2 := sup
{Wj}↑FW ,W ↑↑Fω

∣∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,ε(W

↘) ◦ PC↓µ

↘ ↑↙
Ŷ
ϑ (g,#r({Wj})) ,ε(W ↘)↓µ

∣∣∣.
(317)

We have ∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,ε(W

↘) ◦ PC↓µ ↘ ↑↙
Ŷ
ϑ (g,#r({Wj})) ,ε(W ↘)↓µ

∣∣ =
∣∣∣E

[
↑(UV

T ↘ U
↓
V

↓T )PC(x),uv
TPC(x)↓ ↘ ↑(UV

T ↘ U
↓
V

↓T )x,uvTx↓
]∣∣∣ (318)

is the same as
=

∣∣∣↑(U↓
V

↓T ↘ UV
T )(uvT )T ,E

[
xxT ↘ (PC(x))(PC(x))

T
]
↓
∣∣∣ (319)

As a consequence of Lemma 4 we have

∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,ε(W

↘) ◦ PC↓µ ↘ ↑↙
Ŷ
ϑ (g,#r({Wj})) ,ε(W ↘)↓µ

∣∣
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≃ ge
⇐g

2
/2↗(U↓

V
↓T ↘ UV

T )(uvT )T ↗2 = ge
⇐g

2
/2↗U↓

V
↓T ↘ UV

T ↗F ↗uvT ↗F . (320)

Now we apply supremum over (u,v) ⇐ Fε, and then over (U, V ) ⇐ FW , yielding

T2 ≃ ge
⇐g

2
/2

[
↗U↓

V
↓T ↗2 + ↽

]
. (321)

The Third Term: Define

T3 := sup
{Wj}↑FW

∣∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,#r({Wj}) ◦ PC↓µ

↘ ↑↙
Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ

∣∣∣.
(322)

Similarly to the earlier item, we rewrite the above as

=
∣∣∣↑(U↓

V
↓T ↘ UV

T )(UV
T )T ,E

[
xxT ↘ (PC(x))(PC(x))

T
]
↓
∣∣∣ (323)

As a consequence of Lemma 4 we have
∣∣↑↙

Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,#r({Wj}) ◦ PC↓µ ↘ ↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ

∣∣

≃ ge
⇐g

2
/2↗(U↓

V
↓T ↘ UV

T )(UV
T )T ↗2 ≃ ge

⇐g
2
/2↗U↓

V
↓T ↘ UV

T ↗2↗UV
T ↗2. (324)

Finally, we apply supremum over (U, V ) ⇐ FW , obtaining

T3 ≃ ge
⇐g

2
/2
↽

[
↗U↓

V
↓T ↗2 + ↽

]
. (325)

Now combining equations (316), (321), (325) we obtain that

B(C) ≃ ge
⇐g

2
/2

[
φ(↗U↓

V
↓T ↗2 + ↽)2 + ↗U↓

V
↓T ↗2 + ↽ + ↽

[
↗U↓

V
↓T ↗2 + ↽

]]
. (326)

We further upper bound for simplicity as

B(C) ≃ ge
⇐g

2
/2(1 + ↽)(↗U↓

V
↓T ↗2 + ↽). (327)

From Theorem 4 we have that

1

nY

|NCµ({Wj})↘ NCµN ({Wj})| ↫
ϖ

nY

%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1



+
4

nY

ge
⇐g

2
/2(1 + ↽)(↗U↓

V
↓T ↗2 + ↽) + 8C2

UV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]2 →


R(m+ n) log

k1g

2R2C2
UV

(↗U↓↗2
F
+ ↗V ↓↗2

F
)
√

B2
u
+B2

u
CUV [↗U↓↗2

F
+ ↗V ↓↗2

F
]

log(N) + log(1/⇀)

N



 (328)

holds true w.p at least 1↘ ⇀ ↘ 2N exp
(
↘cnX(g ↘ 1)2

)
.

Now choose
g = 1 +O

√
log(N) + log(1/⇀)


. (329)

Now ignoring loglog terms and keep the right most term because of the dominance,

1

nY

|NCµ({Wj})↘ NCµN ({Wj})| ↫
ϖ

nY

%(f↓
µ
)

[
%↔

µN

(
↘ 1

ϖ
↙

Ŷ
ϑ (g,#r({Wj}))


↘ 1



+C
2
UV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]2


Rlog (R (CUV +B2
u
+B2

v
)) (m+ n) log(N) + log(1/⇀)

N
(330)

holds true w.p at least 1↘ ⇀.
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C.4 Two-Layer ReLU NN

Next, we present and prove the generalization bound for the two-layer ReLU neural network. This is one step
ahead of all the linear models that were discussed earlier. Similarly to the Gaussian projections discussed in
matrix sensing, we discuss ReLU projection results that will be used in the main proof.

Lemma 5 (ReLU projection 1). Consider U1, U2 ⇐ Rm→r, V1, V2 ⇐ Rn→r. Denote, convex set C = B(g) that is
g-radius hyper sphere, then we have that

∣∣∣E
[
↗U1[V

T

1 PC(x)]+ ↘ U2[V
T

2 PC(x)]+↗2 ↘ ↗U1[V
T

1 x]+ ↘ U2[V
T

2 x]+↗2
]∣∣∣

≃ 2ge⇐g
2
/2[↗U1↗2F ↗V1↗2F + ↗U2↗2F ↗V2↗2F ].

(331)

Proof. First, we re-write

↗U1[V
T

1 x]+ ↘ U2[V
T

2 x]+↗2 = ↗
r∑

j=1

uj1[v
T

j1x]+ ↘ uj2[v
T

j2x]+↗2 (332)

= ↗
r∑

j=1

uj1v
T

j1x1vT
j1x↖0 ↘ uj2v

T

j2x1vT
j1x↖0↗2 (333)

=
r∑

j=1

r∑

l=1

[
↑(uj1v

T

j1)
T (uj1v

T

j1),xx
T1vT

j1x↖0↓+ ↑(uj2v
T

j2)
T (uj2v

T

j2),xx
T1vT

j2x↖0↓

↘ 2↑(uj2v
T

j2)
T (uj1v

T

j1),xx
T1vT

j1x↖01vT
j2x↖0↓

]
.

(334)

Note that 1vTx>0 = 1vTPC(x)>0. Similarly, we have

↗U1[V
T

1 PC(x)]+ ↘ U2[V
T

2 PC(x)]+↗2 =
r∑

j=1

r∑

l=1

[
↑(uj1v

T

j1)
T (uj1v

T

j1),PC(x)PC(x)
T1vT

j1x↖0↓

+ ↑(uj2v
T

j2)
T (uj2v

T

j2),PC(x)PC(x)
T1vT

j2x↖0↓

↘ 2↑(uj2v
T

j2)
T (uj1v

T

j1),PC(x)PC(x)
T1vT

j1x↖01vT
j2x↖0↓

]
.

(335)

Now computing the di”erence between equations (334), and (335) we get
∣∣E

[
↗U1[V

T

1 PC(x)]+ ↘ U2[V
T

2 PC(x)]+↗2 ↘ ↗U1[V
T

1 x]+ ↘ U2[V
T

2 x]+↗2
]∣∣ =

∣∣∣
r∑

j=1

r∑

l=1

E
[
↑(uj1v

T

j1)
T (uj1v

T

j1), (PC(x)PC(x)
T ↘ xxT )1vT

j1x↖0↓

+ ↑(uj2v
T

j2)
T (uj2v

T

j2), (PC(x)PC(x)
T ↘ xxT )1vT

j2x↖0↓

↘ 2↑(uj2v
T

j2)
T (uj1v

T

j1), (PC(x)PC(x)
T ↘ xxT )1vT

j1x↖01vT
j2x↖0↓

]∣∣∣.

(336)

After applying Lemma 4 and the triangular inequality we obtain, for g ⇑ 1,
∣∣∣E

[
↗U1[V

T

1 PC(x)]+ ↘ U2[V
T

2 PC(x)]+↗2 ↘ ↗U1[V
T

1 x]+ ↘ U2[V
T

2 x]+↗2
]∣∣∣

(a)
≃ ge

⇐g
2
/2

r∑

j=1

[ r∑

l=1

↗uj1↗2↗vj1↗2

+ 2↗uj1↗↗uj2↗↗vj1↗↗vj2↗+ ↗uj2↗2↗vj2↗2
]

(b)
≃ 2ge⇐g

2
/2

r∑

j=1

r∑

l=1

[
↗uj1↗2↗vj1↗2 + ↗uj2↗2↗vj2↗2

]

(c)
≃ 2ge⇐g

2
/2[↗U1↗2F ↗V1↗2F + ↗U2↗2F ↗V2↗2F ].

(337)
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In (a) we apply triangular inequality and apply Lemma 4, (b) we use the identity that a2 + 2ab+ b
2 = (a+ b)2,

and (c) we use the identity that (a2c2 + b
2
d
2) ≃ (a2 + b

2)(c2 + d
2). This completes the proof.

Lemma 6 (ReLU projection 2). Consider U1, U2 ⇐ Rm→r, V1, V2 ⇐ Rn→r. Denote the convex set C = B(g); that
is, the g-radius hyper sphere. Then we have that

∣∣∣E
[
↑U1[V

T

1 PC(x)]+ ↘ U2[V
T

2 PC(x)]+, U
↘
1[V

↘
1
TPC(x)]+ ↘ U

↘
2[V

↘
2
TPC(x)]+↓

↘ ↑U1[V
T

1 x]+ ↘ U2[V
T

2 x]+, U
↘
1[V

↘
1
T
x]+ ↘ U

↘
2[V

↘
2
T
x]+↓

]∣∣∣

≃ 2ge⇐g
2
/2[↗U1↗F ↗U ↘

1↗F ↗V1↗F ↗V ↘
1↗F + ↗U2↗F ↗U ↘

2↗F ↗V2↗F ↗V ↘
2↗F ].

(338)

Proof. The proof is similar to the proof of Lemma 5.

Corollary 7 (Two-Layer ReLU Neural Network). Consider the true model for (x,y), where x ∈ N (0, (1/n)In) ⇐
Rn, y = U

↓[V ↓Tx]+ + ω, where U
↓ ⇐ Rm→R

→
, V ↓ ⇐ Rn→R

→
, and ω ∈ N (0, (↼2

/m)Im) ⇐ Rm independent from x.
For all i ⇐ [N ], let (xi,yi) be i.i.d. samples from this true model. Consider the estimator ŷ = U [V Tx]+, where
U ⇐ Rm→R

, V ⇐ Rn→R. Let ⇀ ⇐ (0, 1] be fixed. Define the non-convex problem

NCReLU
µN

((U, V )) :=
1

2N

N∑

i=1

↗yi ↘ U [V Txi]+↗22 +
ϖ

2

(
↗U↗2

F
+ ↗V ↗2

F

)
, (339)

and define NCReLU
µ

((U, V )) similarly with the sum over i replaced by expectation taken over (x,y).

Let (U, V ) be a stationary point of NCReLU
µN

((U, V )). Suppose there exists CUV , Bu, Bv > 0 such that ↗UV
T ↗2 ≃

CUV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]
, and for all j ⇐ [R], ↗uj↗2 ≃ Bu, ↗vj↗2 ≃ Bv. Then with probability at least 1 ↘ ⇀, it

holds that

1

m

∣∣∣NCReLU
µ

((U, V ))↘ NCReLU
µN

((U, V ))
∣∣∣ ↫ 1

2m

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]

1

N

N∑

i=1

↗yi ↘ ŷi↗2↗xi↗2↘ϖ



+ C
2
UV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]

R(m+ n) log

(
R(m+n)(CUV +B

2
u
+B

2
v
)
)
log(N) + log(1/⇀)

N

1/2

.

Proof. To obtain a generalization bound from Theorem 4 for this setting, we set the following problem parameters:

ϑ(Y, Ŷ ) =
1

2
↗Y ↘ Ŷ ↗ =▽ (φ, L) = (0, 1) (340)

ε(W ) = [↑v,x↓]+u; (341)

ϱ(W ) =
1

2

[
↗u↗22 + ↗v↗22

]
. (342)

Estimating %(f↓
µ
): From Proposition 2 we have that

%(f↓
µ
) ≃ ↗U↓↗2

F
+ ↗V ↓↗2

F

2
(343)

Choosing Fε:
Fε := {(u,v) : ↗u↗2 + ↗v↗2 ≃ 2, ↗u↗2 ≃ 1, ↗v↗2 ≃ 1}. (344)

Estimating Lϑ: The Lipschtiz constant Lϑ in the function Fε is Lϑ := sup⇒u⇒↗1,⇒v⇒↗1 ↗u[vT
.]+↗Lip ≃

sup⇒u⇒↗1,⇒v⇒↗1 ↗u↗↗v↗ = 1.

Estimating rε: For any (u,v) ⇐ Fε, we have that,

↗u↗2 + ↗v↗2
2

≃


↗u↗2 + ↗v↗2
2

=▽ Fε ∞ B(1/
∃
2). (345)
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Then we have rε = 1/
∃
2.

Choosing FW : From the corollary’s assumptions we have that BR := {(u,v) : ↗u↗2 ≃ Bu, ↗v↗2 ≃ Bv}; our
hypothesis class is defined as

FW := {(U, V ) : ↗U [V T
.]+↗Lip ≃ ↗U↗2↗V ↗2 ≃ ↽, ↗uj↗ ≃ Bu, ↗vj↗ ≃ Bv}. (346)

From Proposition 2, we have that, %(f↓
µ
) ≃ 1

2

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]
. As we require ↽ ⇑ %(f↓

µ
)Lϑ =

1
2

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]
, we set ↽ = CUV

[⇒U→⇒2
F+⇒V →⇒2

F ]
2 .

FW =

{(uj ,vj)} : ↗U [V T ]+·↗Lip = ↗UV

T ↗2 ≃ CUV

2

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]
,

↗uj↗ ≃ Bu, ↗vj↗ ≃ Bv


.

(347)

Estimating %↔
µN

(·): We have

%↔
µN

(
↘ 1

ϖ
↙

Ŷ
ϑ(g,#r({Wj}))


= %↔

µN

(
1

ϖ
(g ↘ #r({Wj}))


(348)

= sup
⇒u⇒↗1;⇒v⇒↗1

1

Nϖ

N∑

i=1

↑Yi ↘ U [V Txi]+,u[v
Txi]+↓ (349)

= sup
⇒v⇒↗1

1

Nϖ

N∑

i=1

[vTxi]+↗Yi ↘ Ŷi↗2 (350)

≃ 1

Nϖ

N∑

i=1

sup
⇒v⇒↗1

[vTxi]+↗Yi ↘ Ŷi↗2 (351)

=
1

Nϖ

N∑

i=1

↗xi↗2↗Yi ↘ Ŷi↗2. (352)

Estimating ω0: From the data generating mechanism we have ↗g↗Lip ≃ ↗U↓↗2↗V ↓↗2 ≃ 1
2 [↗U

↓↗F + ↗V ↓↗F ],
↼X = 1, ↼Y |X = ↼. Then we have the following constants from Theorem 4:

ω0 = 16↽2
↼
2
X
min


1,

L

4


1 +

↗g↗2Lip
↽2


1 +

↼
2
Y |X

↼
2
X


, (353)

which evaluates to

ω0 = 8C2
UV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]
min

{
1,

(1 + ↼
2)

4C2
UV

}
. (354)

Let CUV ≃ 0.5
∃
1 + ↼2 then we have

ω0 = 2(1 + ↼
2)

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]
. (355)

Estimating ω1: Similarly,

ω1 = 16↽2
↼
2
X
max


1,

L

4


1 +

↗g↗2Lip
↽2


1 +

↼
2
Y |X

↼
2
X


, (356)

obtaining

ω1 = 8C2
UV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]
. (357)
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Defining a convex set C: Consider a convex set C = B(g) = {x : ↗x↗2 ≃ g}.

First and foremost we need to estimate, ⇀C for the following inequality to hold:

P (′N

i=1xi ⇐ C) ⇑ 1↘ ⇀C . (358)

The probability of x ⇐ C = B(g) is equivalent to saying the probability of the event when ↗x↗2 ≃ g. Since,
xi ∈ N (0, 1/n) as a consequence of Bernstein’s Inequality (Vershynin, 2018, Corollary 2.8.3) we have that, for
any t ⇑ 0,

P (|↗x↗2 ↘ 1| ≃ t) ⇑ 1↘ 2 exp
(
↘cnXt

2
)
, (359)

for some constant c ⇑ 0. Now we have

P (↗x↗2 ≃ g)


⇑ 1↘ 2 exp

(
↘cnX(g ↘ 1)2

)
if g ⇑ 1

≃ 2 exp
(
↘cnX(g ↘ 1)2

)
otherwise.

(360)

We consider the case where g ⇑ 1 yielding

P (′N

i=1xi ⇐ C) = P (′N

i=1↗x↗2 ≃ g) ⇑ 1↘ 2N exp
(
↘cnX(g ↘ 1)2

)
︸ ︷︷ ︸

=ςC

. (361)

We have that ⇀C = 2N exp
(
↘cn(g ↘ 1)2

)
.

Now we evaluate Bω, B!, L̃!, L̃ϑ.

Estimating B!: We have

B! = sup
z↑C,{(uj ,vj)}↑FW

↗U [V T z]+↗2 (362)

≃ sup
z↑C,{(uj ,vj)}↑FW

↗U↗2↗[V T z]+↗2 (363)

≃ sup
z↑C,{(uj ,vj)}↑FW

↗U↗2↗V ↗2↗z↗2 (364)

= g↽. (365)

Estimating Bω: Similarly, we have

Bω = sup
z↑C,{(uj ,vj)}↑FW

↗U [V T z]+ ↘ U
↓[V ↓T z]↗2 (366)

= 2g↽ (367)

Estimating L̃!: Now, we compute the Lipschitz constant with respect to U, V . We have

L̃! = sup
z↑C,(U,V ),(U ↑,V ↑)↑FW

↗U [V T z]+ ↘ U
↘[V ↘T z]+↗

maxj
√

↗uj ↘ u↘
j
↗2 + ↗vj ↘ v↘

j
↗2

(368)

= R sup
z↑C,(U,V ),(U ↑,V ↑)↑FW

↗u[vT z]+ ↘ u↘[v↘T z]+↗√
↗u↘ u↘↗2 + ↗v ↘ v↘↗2

(369)

= R sup
z↑C,(U,V ),(U ↑,V ↑)↑FW

↗(u↘ u↘)[vT z]+ ↘ u↘[[v↘T z]+ ↘ [vT z]+]↗√
↗u↘ u↘↗2 + ↗v ↘ v↘↗2

(370)

≃ R sup
z↑C,(U,V ),(U ↑,V ↑)↑FW

↗(u↘ u↘)[vT z]+↗+ ↗u↘[[v↘T z]+ ↘ [vT z]+]↗√
↗u↘ u↘↗2 + ↗v ↘ v↘↗2

(371)

≃ R sup
z↑C,(U,V ),(U ↑,V ↑)↑FW

↗(u↘ u↘)[vT z]+↗+ ↗u↘[[v↘T z]+ ↘ [vT z]+]↗√
↗u↘ u↘↗2 + ↗v ↘ v↘↗2

(372)

≃ gR sup
(U,V ),(U ↑,V ↑)↑FW

Bv↗(u↘ u↘)↗+Bu↗v ↘ v↘↗√
↗u↘ u↘↗2 + ↗v ↘ v↘↗2

(373)

= g

√
B2

u
+B2

v
R. (374)
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Estimating L̃ϑ: Similarly we get L̃ϑ = g
√
B2

u
+B2

v
.

Estimating ω2: Recall that

ω2 = max{8BωL̃!, 8L̃![Bω +B!L], 32%(f
↓
µ
)L̃ϑ max{Bω, LB!}, 4L̃!B!}. (375)

From all the constants computed earlier, we have that

ω2 = k1g
2
R

2
CUV

√
B2

u
+B2

v

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]
, (376)

for some constant k1 ⇑ 0.

Next, we move on to estimating B(C). We need to analyze three terms:
The First Term: Define

T1 := sup
{Wj}↑FW

∣∣↗f↓
µ
◦ PC ↘ #r({Wj}) ◦ PC↗2µ ↘ ↗f↓

µ
↘ #r({Wj})↗2µ

∣∣ . (377)

For a fixed (U, V ), we have
∣∣∣↗f↓

µ
◦ PC ↘ #r({Wj}) ◦ PC↗2µ ↘ ↗f↓

µ
↘ #r({Wj})↗2µ

∣∣∣

=
∣∣∣E
[
↗U↓[V ↓TPC(x)]+ ↘ U [V TPC(x)]+↗2 ↘ ↗U↓[V ↓Tx)+ ↘ U [V Tx]+↗2

]∣∣∣.
(378)

From Lemma 5 taking g ⇑ 1 we have
∣∣∣↗f↓

µ
◦ PC ↘ #r({Wj}) ◦ PC↗2µ ↘ ↗f↓

µ
↘ #r({Wj})↗2µ

∣∣∣

≃ 2ge⇐g
2
/2

[
↗U↓↗2

F
↗V ↓↗2

F
+ ↗U↗2

F
↗V ↗2

F

]
,

(379)

whereupon further simplifying, we obtain

sup
(U,V )↑FW

∣∣∣↗f↓
µ
◦ PC ↘ #r({Wj}) ◦ PC↗2µ ↘ ↗f↓

µ
↘ #r({Wj})↗2µ

∣∣∣

≃ 2ge⇐g
2
/2(↗U↓↗2

F
↗V ↓↗2

F
+R

2
↽
2).

(380)

Now, applying triangular inequality and taking the supremum we obtain

T2 ≃ 2ge⇐g
2
/2(↗U↓↗2

F
↗V ↓↗2

F
+R

2
↽
2). (381)

The Second Term: Define

T2 := sup
{Wj}↑FW ,W ↑↑Fω

∣∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,ε(W

↘) ◦ PC↓µ

↘ ↑↙
Ŷ
ϑ (g,#r({Wj})) ,ε(W ↘)↓µ

∣∣∣.
(382)

For a fixed (U, V ), (u,v) we have
∣∣↑↙

Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,ε(W

↘) ◦ PC↓µ ↘ ↑↙
Ŷ
ϑ (g,#r({Wj})) ,ε(W ↘)↓µ

∣∣ =
∣∣∣E
[
↑U [V TPC(x)]+ ↘ U

↓[V ↓TPC(x)]+,u[v
TPC(x)]+↓

↘↑U [V TPC(x)]+ ↘ U
↓[V ↓Tx]+,u[v

Tx]+↓
]∣∣∣.

(383)

As a consequence of Lemma 6 we have

∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,ε(W

↘) ◦ PC↓µ ↘ ↑↙
Ŷ
ϑ (g,#r({Wj})) ,ε(W ↘)↓µ

∣∣
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≃ 2ge⇐g
2
/2 [↗U↗F ↗V ↗F ↗u↗↗v↗+ ↗U↓↗F ↗V ↓↗F ↗u↗↗v↗] . (384)

Now we apply supremum over (u,v) ⇐ Fε, obtaining

T2 ≃ 2ge⇐g
2
/2 [↗U↗F ↗V ↗F + ↗U↓↗F ↗V ↓↗F ] . (385)

Finally, we apply supremum over (U, V ) ⇐ FW , obtaining

T2 ≃ 2ge⇐g
2
/2 [↗U↓↗F ↗V ↓↗F +R↽] . (386)

The Third Term: Define

T3 := sup
{Wj}↑FW

∣∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,#r({Wj}) ◦ PC↓µ

↘ ↑↙
Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ

∣∣∣.
(387)

For a fixed (U, V ) we can rewrite the above to

∣∣∣E
[
↑U [V TPC(x)]+ ↘ U

↓[V ↓TPC(x)]+, U [V TPC(x)]+↓

↘↑U [V TPC(x)]+ ↘ U
↓[V ↓Tx]+, U [V Tx]+↓

]∣∣∣.
(388)

As a consequence of Lemma 4 we have

∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,#r({Wj}) ◦ PC↓µ ↘ ↑↙

Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ

∣∣

≃ 2ge⇐g
2
/2↗U↗F ↗V ↗F [↗U↗F ↗V ↗F + ↗U↓↗F ↗V ↓↗F ] . (389)

Finally, we apply supremum over (U, V ) ⇐ FW , obtaining

T3 ≃ 2ge⇐g
2
/2
R↽ [↗U↓↗F ↗V ↓↗F +R↽] . (390)

Now combining T1, T2 and T3 from equations (381), (386), (390) we have

B(C) ≃ 2ge⇐g
2
/2

[
φ(↗U↓↗2

F
↗V ↓↗F +R

2
↽
2) + ↗U↗F ↗V ↗F +R↽ +R↽ [↗U↓↗F ↗V ↓↗F+R↽]

]
. (391)

We further upper bound for simplicity via

B(C) ≃ 4Rge
⇐g

2
/2
↽ [↗U↗F ↗V ↗F + ↽] . (392)

From Theorem 4 we have that

1

m
|NCµ({Wj})↘ NCµN ({Wj})| ↫

ϖ

2m

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]

sup

⇒v⇒↗1

1

N

N∑

i=1

[vTxi]+↗Yi ↘ U [V Txi]+↗ ↘ ϖ



+
2

m
Rge

⇐g
2
/2
CUV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

] [
↗U↗F ↗V ↗F + CUV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]]
+ C

2
UV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]2

R(m+ n) log

k1g

2R2C2
UV

√
B2

u
+B2

v
[↗U↓↗2

F
+ ↗V ↓↗2

F
]
2

log(N) + log(1/⇀)

N
, (393)

holds true w.p at least 1↘ ⇀ ↘ 2N exp
(
↘cnX(g ↘ 1)2

)
.

Now choose
g = 1 +O

√
log(NR) + log(1/⇀)


. (394)
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After ignoring all the log-log terms and using only dominant terms, we have that

1

m
|NCµ({Wj})↘ NCµN ({Wj})| ↫

ϖ

2m

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]

sup

⇒v⇒↗1

1

N

N∑

i=1

[vTxi]+↗Yi ↘ U [V Txi]+↗ ↘ ϖ



+C
2
UV

[
↗U↓↗2

F
+ ↗V ↓↗2

F

]2


R(m+ n) log (R(m+ n)(CUV +B2
u
+B2

v
)) log(N) + log(1/⇀)

N
, (395)

holds true w.p at least 1↘ ⇀.

C.5 Multi-head Attention

Next, we move to applying Theorem 4 to the single-layer multi-head attention problem. We require similar
Gaussian projections arguments onto convex sets are needed to be established. For this application, we require
Gaussian projections onto softmax, which is analyzed through Lemma 7. First, we define the soft max operation,
↼t(·) : Rn ↔ Rn.

[↼t(u)]i := exp(tui)/(
n∑

j=1

exp(tuj)), (396)

where t is called the temperature.

A discrete version of soft-max is known as hard-max that is defined as

[↼(u)]i := 1ui=maxi ui . (397)

Note that when t ↔ ⇒, ↼t(u) ↔ ↼(u).

Lemma 7 (Gaussian Softmax Projection). Let X ⇐ Rm→n and Xij ∈ N (0, 1/(mn)) be independent random
variables. Suppose ↼t(·) is a softmax with temperature, t, and M is fixed matrix in Rm→n. Consider a convex
set C = {X = (x1, . . . ,xn) : ⇔j ⇐ [n]; ↗xj↗ ≃ g} for g ⇑ 1. Then

sup
z↑Fz

∣∣↑M,E
[
X↼t(X

T z)(X↼t(X
T z))T ↘ PC(X)↼t(PC(X)T z)(PC(X)↼t(PC(X)T z))T

]
↓
∣∣

≃ c1m
2↗M↗F g exp

(
↘c2mg

2
)
. (398)

for some positive constant, c1, c2.

Proof. Denote

T := sup
z↑Fz

∣∣↑M,E
[
X↼t(X

T z)(X↼t(X
T z))T ↘ PC(X)↼t(PC(X)T z)(PC(X)↼t(PC(X)T z))T

]
↓
∣∣ . (399)

Firstly, we upper bound the earlier term by Cauchy-Schwartz inequality:

T ≃ ↗M↗F sup
z↑Fz

↗E
[
X↼t(X

T z)(X↼t(X
T z))T↘PC(X)↼t(PC(X)T z)(PC(X)↼t(PC(X)T z))T

]
↗F . (400)

Denote at(z, i, j) = ↼t(XT z)i↼t(XT z)j and ãt(z, i, j) = ↼t(PC(X)T z)i↼t(PC(X)T z)j ,

T ≃ ↗M↗F sup
z↑Fz

↗
T∑

i=1

T∑

j=1

E
[
xix

T

j
at(z, i, j)↘ PC(xi)PC(xj)

T
ãt(z, i, j)

]
↗F . (401)

Now we apply triangular inequality,

T ≃ ↗M↗F sup
z↑Fz

T∑

i=1

T∑

j=1

↗E
[
xix

T

j
at(z, i, j)↘ PC(xi)PC(xj)

T
ãt(z, i, j)

]
↗F . (402)
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Now we apply Cauchy-Schwartz,

T ≃ ↗M↗F
m∑

i=1

m∑

j=1

sup
z↑Fz

↗E
[
xix

T

j
at(z, i, j)↘ PC(xi)PC(xj)

T
ãt(z, i, j)

]
↗F . (403)

We can upper bound the earlier term via taking a supremum over indices i, j ⇐ [T ] then we have

T ≃ ↗M↗Fm2 sup
i,j

sup
z↑Fz

↗E
[
xix

T

j
at(z, i, j)↘ PC(xi)PC(xj)

T
ãt(z, i, j)

]
↗F . (404)

Observe that argument inside the expectation is 0 on the event X ⇐ C, thereby we only have the case where
X /⇐ C then we have

T ≃ ↗M↗Fm2 sup
i,j

sup
z↑Fz

↗E
[
xix

T

j
at(z, i, j)↘ PC(xi)PC(xj)

T
ãt(z, i, j)1Ec

]
↗F . (405)

On application Cauchy-Schwartz identity again we have

T ≃ ↗M↗Fm2 sup
i,j

sup
z↑Fz

E
[
↗xix

T

j
at(z, i, j)↘ PC(xi)PC(xj)

T
ãt(z, i, j)↗F1Ec

]
. (406)

We have that x /⇐ C,PC(x) = gx/↗x↗. By using this fact we have

T ≃ ↗M↗Fm2 sup
i,j

sup
z↑Fz

E
[
↗
(
at(z, i, j)↘

g
2

↗xi↗↗xj↗
ãt(z, i, j)


xix

T

j
↗F1Ec


. (407)

Now we recall Reverse Fatou’s Lemma, for any function sequence, fn ⇐ L
2(µ), we have

lim sup
n⇑⇓

∫
fndµ ≃

∫
lim sup
n⇑⇓

fndµ. (408)

on applying this identity we have

T ≃ ↗M↗Fm2 sup
i,j

E
[
sup
z↑Fz

∣∣∣∣at(z, i, j)↘
g
2

↗xi↗↗xj↗
ãt(z, i, j)

∣∣∣∣ ↗xix
T

j
↗F1Ec


. (409)

Observe that at(z, i, j) ≃ 1 and g
2

⇒xi⇒⇒xj⇒ ãt(z, i, j) ≃ 1 when X /⇐ C therefore we have

T ≃ ↗M↗Fm2 sup
i,j

E
[
↗xix

T

j
↗F1Ec

]
. (410)

Now since xi and xj are iid we have

T ≃ ↗M↗Fm2 sup
i,j

E [↗xi↗21Ec ]E [↗xj↗21Ec ] . (411)

By Gaussian integral over norm for g ⇑ 1 we have

T ↫ m
2↗M↗F g exp

(
↘mg

2
)

(412)

With the above result on Gaussian softmax projection, we now state the corollary for the single-layer multi-head
attention problem and its proof.

Corollary 8 (Transformers). Consider the true model for (X,y), where X ⇐ Rn→T is a random matrix with
i.i.d. entries Xlk ∈ N (0, 1/(nT )) and y = A

↓
Xb↓+ω, where A

↓ ⇐ Rm→n, b↓ ⇐ ST⇐1 and ω ∈ N (0, (↼2
/m)Im) is

independent from X. For all i ⇐ [N ], let (Xi,yi) be i.i.d. samples from this true model. Consider the estimator

ŷ =
∑

R

j=1 VjX↼(XT zj), Vj ⇐ Rn
, zj ⇐ Rn. Let ⇀ ⇐ (0, 1] be fixed. Define the non-convex problem



Tadipatri, Hae!ele, Agterberg, Vidal

NCTF
µN
({(Vj , zj)}):=

1

2N

N∑

i=1

↗yi ↘
R∑

j=1

VjXi↼t(X
T

i
zj)↗22 + ϖ

R∑

j=1

[
↗Vj↗F + ⇀{z:⇒z⇒2↗1}(zj)

]
,

where, ↼t(·) is softmax function with temperature t, for k ⇐ [T ] defined ↼t(u)k := exp(tuk)/
∑

T

l=1 exp(tul) and

define NCTF
µ
({(Vj , zj)}) similarly with the sum over i replaced by expectation taken over (X,y).

Let {(Vj , zj)} be a stationary point of NCTF
µN

({(Vj , zj)}). Suppose there exists CV , BV > 0 such that
∑

R

j=1 ↗Vj↗F ≃ CV ↗A↓↗F , and for all j ⇐ [R], ↗Vj↗F ≃ BV .

Then with probability at least 1↘ ⇀, it holds that

1

m

∣∣∣NCTF
µ
({(Vj , zj)})↘ NCTF

µN
({(Vj , zj)})

∣∣∣ ↫ 1

2m
↗A↓↗F


1

N

N∑

i=1

↗yi ↘ ŷi↗2↗Xi↗2 ↘ ϖ



+ C
2
V
↗A↓↗2

F


R(m+n)log(R(m+n)(CV +BV ))log(N)+log(1/⇀)

N
.

Proof. To obtain a generalization bound from Theorem 4 for the case of matrix sensing, we set the following
problem parameters.

ϑ(Y, Ŷ ) =
1

2
↗Y ↘ Ŷ ↗ =▽ (φ, L) = (0, 1); (413)

ε(W ) = V X↼t(X
T z); (414)

ϱ(W ) = ↗V ↗F + ⇀z↑B(1). (415)

Estimating %µN (·): Now we move on to compute the polar:

%↔
µN

(
↘ 1

ϖ
↙

Ŷ
ϑ(g,#r({Wj}))


= %↔

µN

(
1

ϖ
(g ↘ #r({Wj}))


,

= sup
⇒V ⇒F↗1,⇒z⇒↗1

1

Nϖ

N∑

i=1

↑Yi ↘ Ŷi, V Xi↼t(X
T z)↓,

= sup
⇒V ⇒F↗1,⇒z⇒↗1

1

Nϖ
↗

N∑

i=1

↑(Yi ↘ Ŷi)(Xi↼t(X
T z))T , V ↓↗,

= sup
⇒V ⇒F↗1,⇒z⇒↗1

1

Nϖ
↗

N∑

i=1

↑(Yi ↘ Ŷi)(Xi↼t(X
T z))T , V ↓↗,

%↔
µN

(
↘ 1

ϖ
↙

Ŷ
ϑ(g,#r({Wj}))


≃ sup

⇒z⇒↗1

1

Nϖ
↗

N∑

i=1

(Yi ↘ Ŷi)(Xi↼t(X
T z))T ↗F ,

≃ 1

Nϖ

N∑

i=1

sup
⇒z⇒↗1

↗(Yi ↘ Ŷi)(Xi↼t(X
T z))T ↗F ,

≃ 1

Nϖ

N∑

i=1

sup
⇒z⇒↗1

↗Yi ↘ Ŷi↗F ↗(Xi↼t(X
T z))T ↗F ,

≃ 1

Nϖ

N∑

i=1

sup
⇒z⇒↗1

↗Yi ↘ Ŷi↗F ↗(Xi↼t(X
T z))T ↗F ,

≃ 1

Nϖ

N∑

i=1

↗Yi ↘ Ŷi↗2↗Xi↗2.
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Choose Fε: From Assumptions 4 suppose that

Fε := {(V, z) : ↗V ↗2 ≃ 1, ↗z↗2 ≃ 1}; (416)

Computing Lϑ: The Lipschtiz constant Lϑ in the function Fε is Lϑ := sup⇒V ⇒↗1,⇒z⇒↗1 ↗V (·)↼((·)T z)↗Lip ≃
sup⇒V ⇒↗1 ↗V ↗ = 1.

Computing rϑ: Clearly, when rε =
∃
2 we have that Fε ∞ B(

∃
2).

Choose FW : From the corollary’s assumptions we have that, BR := {(V, z) : ↗V ↗2 ≃ BV , ↗z↗2 ≃ 1}; our
hypothesis class is defined as

FW := {{(Vj , zj)} : ↗
r∑

j=1

Vj · ↼((·)T zj)↗Lip ≃
r∑

j=1

↗Vj↗F ≃ ↽, ↗Vj↗F ≃ BV , ↗z↗ ≃ 1}. (417)

From Proposition 2 we have %(f↓
µ
) ≃ ↗A↓↗F . We have ↽ ⇑ %(f↓

µ
)Lϑ = ↗A↓↗F , then we set ↽ = CV ↗A↓↗F . We

have that

FW :=

{(Vj , zj)} : ↗

r∑

j=1

Vj · ↼((·)T zj)↗Lip ≃
r∑

j=1

↗Vj↗F ≃ CV ↗A↓↗F ,

↗Vj↗F ≃ BV , ↗z↗ ≃ 1

.

(418)

Estimating ω0: From the data generating mechanism we have ↗g↗Lip ≃ ↗A↓↗F , ↼X = 1, ↼Y |X = ↼, then we
have the following constants from Theorem 4:

ω0 = 16↽2
↼
2
X
min


1,

L

4


1 +

↗g↗2Lip
↽2


1 +

↼
2
Y |X

↼
2
X


, (419)

this evaluates to,
ω0 = 16(↼2 + 1)↗A↓↗2

F
, (420)

when CV ≃
∃
1 + ↼2.

Estimating ω1: Similarly, we evaluate

ω1 = 16↽2
↼
2
X
max


1,

L

4


1 +

↗g↗2Lip
↽2


1 +

↼
2
Y |X

↼
2
X


, (421)

obtaining,
ω1 = 16C2

V
↗A↓↗2

F
, (422)

when CV ≃
∃
1 + ↼2.

Choosing the convex set C: Consider a convex set C = {X = (x1, . . . ,xT ) : ↗xj↗2 ≃ g/
∃
T}.

First and foremost we need to estimate ⇀C for the inequality to hold:

P (′N

i=1xi ⇐ C) ⇑ 1↘ ⇀C . (423)

The probability of x ⇐ C = B(g) is equivalent to saying the probability of the event when ↗x↗2 ≃ g. Since,
xi ∈ N (0, 1/n) as a consequence of Bernstein’s Inequality (Vershynin, 2018, Corollary 2.8.3) we have that, for
any t ⇑ 0.

P (|↗x↗2 ↘ 1| ≃ t) ⇑ 1↘ 2 exp
(
↘cnT t

2
)
, (424)

for some constant c ⇑ 0. Now we have

P (↗x↗2 ≃ g/

∃
T )


⇑ 1↘ 2 exp

(
↘cn(g ↘ 1)2

)
if g ⇑ 1

≃ 2 exp
(
↘cn(g ↘ 1)2

)
otherwise

. (425)
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We consider the case where g ⇑ 1. Then we have that

P (′N

i=1xi ⇐ C) = P (′N

i=1↗x↗2 ≃ g/

∃
T ) ⇑ 1↘ 2N exp

(
↘cn(g ↘ 1)2

)
︸ ︷︷ ︸

=ςC

. (426)

We have that ⇀C = 2N exp
(
↘cn(g ↘ 1)2

)
.

Estimating B!:

B! = sup
X↑C,{(Vj ,zj)}↑FW

↗
r∑

j=1

VjX↼t(X
T zj)↗2, (427)

≃ R sup
X↑C,{(Vj ,zj)}↑FW

↗Vj↗F ↗X↼t(X
T z)↗2, (428)

≃ R sup
X↑C,{(Vj ,zj)}↑FW

↗Vj↗F ↗X↼t(X
T z)↗2, (429)

≃ gRBV /

∃
T . (430)

Estimating Bω: we have

Bω = sup
X↑C,{(Vj ,zj)}↑FW

↗
r∑

j=1

VjX↼t(X
T zj)↘A

↓
XB

↓↗, (431)

= g [RBV + ↗A↓↗F ] /
∃
T . (432)

Estimating L̃!: We have

L̃! = gR

√
B

2
V
+ 1/

∃
T . (433)

Estimating L̃ϑ: Similarly we get L̃ϑ = g

√
B

2
V
+ 1/

∃
T as we have only one slice of factor.

Estimating ω2: Recall that,

ω2 = max{8BωL̃!, 8L̃![Bω +B!L], 32%(f
↓
µ
)L̃ϑ max{Bω, LB!}, 4L̃!B!}. (434)

From all the constants computed earlier, we have that,

ω2 = k1g
2
R

2
B

2
V
/T, (435)

for some constant k1 ⇑ 0.

Next, we move on estimating B(C) we need to analyze three terms

The First Term is defined via

T1 := sup
{Wj}↑FW

∣∣∣↗f↓
µ
◦ PC ↘ #r({Wj}) ◦ PC↗2µ

↘ ↗f↓
µ
↘ #r({Wj})↗2µ

∣∣∣.
(436)

From Lemma 7 we obtain that, taking g ⇑ 1 and further simplifying, we get,

T1 ≃ c1T
2
ge

⇐c2Tg
2 [

R
2
↽
2 + ↗A↓↗2

]
, (437)
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The Second Term is defined via

T2 := sup
{Wj}↑FW ,W ↑↑Fω

∣∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,ε(W

↘) ◦ PC↓µ

↘ ↑↙
Ŷ
ϑ (g,#r({Wj})) ,ε(W ↘)↓µ

∣∣∣.
(438)

As a consequence of Lemma 7 we have

T2 ≃ c1T
2
ge

⇐c2Tg
2

[↗A↓↗2 +R↽] . (439)

The Third Term is defined via

T3 := sup
{Wj}↑FW

∣∣∣↑↙
Ŷ
ϑ (g ◦ PC ,#r({Wj}) ◦ PC) ,#r({Wj}) ◦ PC↓µ

↘ ↑↙
Ŷ
ϑ (g,#r({Wj})) ,#r({Wj})↓µ

∣∣∣.
(440)

As a consequence of Lemma 7 we have

T3 ≃ c1T
2
ge

⇐c2Tg
2

R↽ [↗A↓↗2 +R↽] , (441)

for some positive constant, c1, c2.

Now combining T1, T2, and T3 from equations (437), (439), (441) we obtain that

B(C) ≃ c1T
2
ge

⇐c2Tg
2 [

φ(↗A↓↗2 +R
2
↽
2) + ↗A↓↗2 +R↽ +R↽ [↗A↓↗2 +R↽]

]
. (442)

We further upper bound for simplicity as

B(C) ≃ 4Rc1


log(T )

T 5
ge

⇐c2g
2

↽ [↗A↓↗2 + ↽] . (443)

From Theorem 4 we have that

1

m
|NCµ({Wj})↘ NCµN ({Wj})| ↫

1

2m
↗A↓↗F


sup

⇒z⇒↗1

1

N
↗

N∑

i=1

(Yi ↘ Ŷi)
T (Xi↼t(X

T z))↗F ↘ ϖ



+
2

m
Rc1T

2
ge

⇐c2Tg
2

CV [↗A↓↗F ] [↗A↓↗2 + ↽] + C
2
V
[↗A↓↗F ]

→

R(m+ n) log

C

2
V
[↗U↓↗2

F
+ ↗V ↓↗2

F
]
2
k1g

2RBV /T


log(N) + log(1/⇀)

N
. (444)

holds true w.p at least 1↘ ⇀ ↘ 2N exp
(
↘cnX(g ↘ 1)2

)
.

Now choose

g = 1 + Õ
(
1

T
log

(
N

R(m+ n) + log(1/⇀)


. (445)

Then we have

2

m
Rc1T

2
ge

⇐c2Tg
2

CV [↗A↓↗F ] [↗A↓↗2 + ↽] ↫

R(m+ n) log

C

2
V
[↗U↓↗2

F
+ ↗V ↓↗2

F
]
2
k1g

2RBV /T


log(N) + log(1/⇀)

N
.

(446)
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Therefore we can upper bound the middle term to the right most leaving us behind

1

m
|NCµ({Wj})↘ NCµN ({Wj})| ↫

1

2m
↗A↓↗F


1

N

N∑

i=1

↗Yi ↘ Ŷi↗2↗Xi↗2 ↘ ϖ



+C
2
V
[↗A↓↗F ]


R(m+ n) log (R(m+ n)(CV +BV )) log(N) + log(1/⇀)

N
, (447)

holds true w.p at least 1↘ ⇀.
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D GOODS EVENTS

In this section, we provide compute the probabilities of events defined in the proof of Theorem 4. Recall the
definition of our function classes:

Fε := {{Wj} : ↗#R({Wj})↗Lip ≃ ↽,$R({Wj}) ≃ ↽/Lϑ} ; (448)

FW := {{Wj} : ↗#R({Wj})↗Lip ≃ ↽,$R({Wj}) ≃ ↽/Lϑ} ; (449)

F! := {#R(ζ) : ⇔ζ ⇐ FW} (450)

We define the below events:

Ecvx(ω) := {⇔ζ ⇐ FW : |CµN (f⇀)↘ Cµ(f⇀)| ≃ ω+Bnrm(C)}; (451)

Eeql(ω) := {⇔ζ ⇐ FW :
∣∣↑↙

Ŷ
ϑ (g, f⇀) , f⇀↓µN ↘ ↑↙

Ŷ
ϑ (g, f⇀) , f⇀↓µ

∣∣ ≃ ω+Beql(C)}; (452)

Eplr(ω) := {⇔ζ ⇐ FW :
∣∣%↔

µN

(
↙

Ŷ
ϑ (g, f⇀)

)
↘ %↔

µ

(
↙

Ŷ
ϑ (g, f⇀)

)∣∣ ≃ ω+Bplr(C)}; (453)

Enrm(ω) := {⇔ζ ⇐ FW :
∣∣↗f↓

µ
↘ f⇀↗2µN

↘ ↗f↓
µ
↘ f⇀↗2µ

∣∣ ≃ ω+Bnrm(C)}. (454)

In each of the sections below, we discuss the technical analysis to estimate the probability of the events, Ecvx(ω),
Eeql(ω), Eplr(ω) and Enrm(ω).

D.1 Concentration of Norms

In this section, we upper bound the probability of the event, Enrm(ω) through Lemma 8.

Lemma 8 (Concentration of Norms). Consider an nX-dimensional sub-Gaussian vector X ∈ SG(0, (↼2
X
/nX)I),

and set of functions f⇀ : RnX ↔ R as parameterized by ζ ⇐ FW . Let C be some convex obeying P (
⋂

N

i=1 Xi ⇐
C) ⇑ 1↘ ⇀C for i.i.d samples {Xi}Ni=1. Assume that for any fixed, ζ, ζ ↘ ⇐ FW , and fixed Z ⇐ C, we have

↗f⇀(Z)↘ f⇀↑(Z)↗ ≃ L̃!d(ζ1, ζ2) and ↗f⇀(Z)↗ ≃ B!. (455)

Denote,
Bnrm(C) := sup

⇀↑FW

∣∣↗f↓
µ
◦ PC ↘ f⇀ ◦ PC↗2µ ↘ ↗f↓

µ
↘ f⇀↗2µ

∣∣ , (456)

where PC(·) denotes the Euclidean projection onto the set C. Define,

K := 64nY ↽
2
↼
2
X
. (457)

Then for any ω ⇐ [0,K],

P


sup
⇀↑FW

∣∣↗f↓
µ
↘ f⇀↗2µN

↘ ↗f↓
µ
↘ f⇀↗2µ

∣∣ ⇑ ω+Bnrm(C)


≃ ⇀C + c exp

(
log(CFW

(
ω

4L̃!B!


)↘N

ω
2

K2


. (458)

for some positive constant, c and CFW (ν) is the ν-net covering number of the set FW .

Proof. If X ⇐ RnX ∈ SG


⇁
2
X

nX
InX→nX


, The function map, ↗f↓

µ
↘ f⇀↗ has Lipschitz constant of ↗f↓

µ
↗Lip +

↗f⇀↗Lip ≃ 2↽; as f⇀ , f↓
µ
⇐ F!. Therefore from Theorem 5.1.4 in Vershynin (2018) we have that, f↓

µ
(X)↘f⇀(X) ∈

SG
(
4↽2

↼
2
X
InY →nY

)
. Thus, ↗f↓

µ
(X)↘ f⇀(X)↗2 ∈ SE

(
4nY ↽

2
↼
2
X

)

Now, applying the concentration inequality for sub-exponential from Theorem 2.8.1 Vershynin (2018) for a fixed
ζ ⇐ FW , we have that

P
(∣∣↗f↓

µ
↘ f⇀↗2µN

↘ ↗f↓
µ
↘ f⇀↗2µ

∣∣ ⇑ ω
)
≃ C exp

(
↘N min

{
ω
2

16n2
Y
↽4↼4

X

,
ω

4nY ↽
2↼2

X

}
, (459)
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for some positive constant, C ⇑ 0. We use Lemma 14 for applying the concentration bounds. Now set

gε = ↗f↓
µ
↘ f⇀↗2. (460)

We need to check if the function, g, is Lipschitz on some metric and convex set C ∞ RnX , choose for any Z ⇐ C.
We have P (

⋂
N

i=1 Xi ⇐ C) ⇑ 1↘ ⇀C . Recall that

1. ⇔ζ1, ζ2 ⇐ FW : ↗f⇀1(Z)↘ f⇀2(Z)↗ ≃ L̃!d(ζ1, ζ2), for all Z ⇐ C.
2. ⇔ζ ⇐ FW : ↗f⇀(Z)↗ ≃ B!, for all Z ⇐ C.
3. For a fixed ζ ⇐ FW ,

∣∣E
[
↗f↓

µ
(PC(X))↘ f⇀(PC(X))↗2 ↘ ↗f↓

µ
(X)↘ f⇀(X)↗2

]∣∣ ≃ Bnrm(C). (461)

By exploiting the above items we have

|gε1 ↘ gε2 | =
∣∣↗f↓

µ
↘ f⇀1↗2 ↘ ↗f↓

µ
↘ f⇀2↗2

∣∣ ,=
∣∣↑2f↓

µ
↘ (f⇀1 + f⇀2), f⇀1 ↘ f⇀2↓

∣∣ ,
≃ ↗2f↓

µ
↘ (f⇀1 + f⇀2)↗↔↗f⇀1 ↘ f⇀2↗,

≃ 4L̃!B!d(ζ1, ζ2).

Then we have that for covering number CFW (ν) = N (FW , d(., .), ν), and K = 4L̃!B!

P


sup
⇀↑FW

∣∣↗f↓
µ
↘ f⇀↗2µN

↘ ↗f↓
µ
↘ f⇀↗2µ

∣∣ ⇑ ω+Bnrm



≃ ⇀C + C exp

(
log(CFW

(
ω

4L̃!B!


)↘N min

{
ω
2

256n2
Y
↽4↼4

X

,
ω

64nY ↽
2↼2

X

}
. (462)

We conclude the result by choosing ω ⇐ [0, 64nY ↽
2
↼
2
X
].

D.2 Concentration of Convex functions

In this section, we upper bound the probability of the event, Ecvx(ω) through Lemma 9. In this, we consider
strongly and smooth convex function (see assumption 3) through Taylor expansion of the function is always
bounded quadratically. Lemma 8 plays an important role in establishing Lemma 9.

Lemma 9 (Concentration of Convex functions). Consider an nX-dimensional sub-Gaussian vector X ∈
SG(0, (↼2

X
/nX)I), and set of functions f⇀ : RnX ↔ R as parameterized by ζ ⇐ FW . Let C be some convex

obeying P (
⋂

N

i=1 Xi ⇐ C) ⇑ 1 ↘ ⇀C for i.i.d samples {Xi}Ni=1. Assume that for any fixed, ζ, ζ ↘ ⇐ FW , and fixed
Z ⇐ C, we have

↗f⇀(Z)↘ f⇀↑(Z)↗ ≃ L̃!d(ζ1, ζ2) and ↗f⇀(Z)↗ ≃ B!. (463)

Denote
Bnrm(C) := sup

⇀↑FW

∣∣↗f↓
µ
◦ PC ↘ f⇀ ◦ PC↗2µ ↘ ↗f↓

µ
↘ f⇀↗2µ

∣∣ . (464)

where PC(·) denotes the Euclidean projection onto the set C. Define

K := nY L

[
(↽2 + ↗g↗2

Lip
)↼2

X
+ ↗g↗2

Lip
↼
2
Y |X

]
. (465)

Then for any ω ⇐ [0,K],

P


sup
⇀↑FW

|CµN (f⇀)↘ Cµ(f⇀)| ⇑ ω+Bnrm(C)


(466)

≃ ⇀C + 2 exp

(
log

(
CFW

(
ω

2BωL̃!


↘ cN


ω

K

2

,

for some positive constant, c and CFW (ν) is the ν-net covering number of the set FW .
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Proof. Recall the definitions of the convex functions:

CµN (f) := ϑ(g, f)µN + ϖ%(f), and Cµ(f) := ϑ(g, f)µ + ϖ%(f). (467)

The di”erence between these two terms is

|CµN (f)↘ Cµ(f)| = |ϑ(g, f)µN ↘ ϑ(g, f)µ| . (468)

From assumption 3, ϑ(., .) is second-order di”erentiable in the second argument. By 2nd-order Taylor’s theorem,
we have

ϑ(Y, Ŷ ) = ϑ(Y, Ŷ0) + ↑↙
Ŷ
ϑ(Y, Ŷ0), Ŷ ↘ Ŷ0↓+ ↑

∫ 1

0
t↙2

Ŷ
ϑ(Y, Ŷ0 + t(Ŷ ↘ Ŷ0))dt, (Ŷ ↘ Ŷ0)(Ŷ ↘ Ŷ0)

T ↓. (469)

Now choose Y = Ŷ0 = g(X(◁), E(◁)), and Ŷ = f⇀(X(◁)). As ϑ(Y, Y ) = 0, and ↙
Ŷ
ϑ(Y, Y ) = 0. Plugging these

parameters in the Taylor expansion we have that (ignoring the inputs, (X(◁), E(◁)) for simplicity),

ϑ(g, f) = ↑
∫ 1

0
t↙2

Ŷ
ϑ(g, g + t(f⇀ ↘ g))dt, (f⇀ ↘ g)(f⇀ ↘ g)T ↓. (470)

Now we apply expectation over the measure µN , and µ respectively on the above equality. Then we have that

ϑ(g, f⇀)µ = ↑
∫ 1

0
t↙2

Ŷ
ϑ(g, g + t(f⇀ ↘ g))dt, (f⇀ ↘ g)(f⇀ ↘ g)T ↓µ; (471)

ϑ(g, f⇀)µN = ↑
∫ 1

0
t↙2

Ŷ
ϑ(g, g + t(f⇀ ↘ g))dt, (f⇀ ↘ g)(f⇀ ↘ g)T ↓µN . (472)

Since f⇀ and g are Lipschitz functions and the inputs are sub-Gaussian, we have that f⇀ ↘ g is a sub-Gaussian
vector. As a consequence of Lemma 2.7.6 from Vershynin (2018) we obtain that (f⇀ ↘ g)(f⇀ ↘ g)T follows a
sub-exponential distribution, whose concentration is well-studied.

As a consequence of assumption 3 the hessian is bounded, i.e, φI ↖ ↙2
Ŷ
ϑ(., .) ↖ LI. We can argue that the

product of a bounded RV and sub-exponential RV is sub-exponential. Recall Item (iii) from Proposition 2.7.1
of Vershynin (2018). The random variable Z is sub-exponential i”

EZ

[
e
↼|Z|

]
≃ e

↼K ; ⇔ϖ ⇐ [0, 1/K], (473)

for some positive constant, K ⇑ 0.

We now verify if ↑H(x, z),xxT ↓ is sub-exponential. Given that x ∈ SG(↼2
X
/nxInx→nx), z is a R.V. Suppose

A ↖ H(x, z) ↖ B a.s. Then we have that

Ex,z

[
e
↼|↙H(x,z),xxT ∝|

]
≃ Ex,z

[
e
↼⇒H(x,z)⇒2⇒xxT ⇒2

]
, (474)

≃ Ex,z

[
e
↼max{ρ(A),ρ(B)}⇒x⇒2

2

]
, (475)

(476)

where, 0(A) is the spectral radius of the matrix, A. Since, x ∈ SG(↼2
X
/nxInx→nx), we have ↗x↗2 ∈ SE(↼2

X
).

Then,

Ex,z

[
e
↼|↙H(x,z),xxT ∝|

]
≃ e

↼max{ρ(A),ρ(B)}⇁2
X ,

implies that ↑H(x, z),xxT ↓ ∈ SE(max{0(A), 0(B)}↼2
X
). From this analysis we have

↑
∫ 1

0
t↙2

Ŷ
ϑ(g, g + t(f⇀ ↘ g))dt, (f⇀ ↘ g)(f⇀ ↘ g)T

︸ ︷︷ ︸
′SE

([
(⇒fϑ⇒2

Lip+⇒g⇒2
Lip)⇁

2
X+⇒g⇒2

Lip⇁
2
Y |X

]
Iny↗ny

)

↓
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∈ SE

(
nY

L

2

[
(↗f⇀↗2Lip + ↗g↗2Lip)↼2

X
+ ↗g↗2Lip↼2

Y |X

]
. (477)

For convex functions, we know that 0 ≃ φ ≃ L. As a consequence, we have ↽

2 I ↖
∫ 1
0 t↙2

Ŷ
ϑ(g, g+t(f⇀↘g))dt ↖ L

2 I.
Now we apply sub-exponential concentration for a fixed ζ ⇐ FW , yielding

P (|CµN (f⇀)↘ Cµ(f⇀)| ⇑ ω)

≃ 2 exp

↘ cN min




 2ω

nY L

[
(↽2 + ↗g↗2Lip)↼2

X
+ ↗g↗2Lip↼2

Y |X

]




2

,

2ω

nY L

[
(↽2 + ↗g↗2Lip)↼2

X
+ ↗g↗2Lip↼2

Y |X

]


, (478)

for some positive constant, c ⇑ 0.

Next, we move on to obtain a uniform concentration for all ζ ⇐ FW . Now we apply covering argument from
Lemma 14, and set

gε = ϑ(g, f⇀). (479)

We need to check if the function, g, is Lipschitz on some metric and convex set C ∞ RnX , choose for any Z ⇐ C.
We have P (

⋂
N

i=1 Xi ⇐ C) ⇑ 1↘ ⇀C . Recall that

1. ⇔ζ1, ζ2 ⇐ FW : ↗f⇀1(Z)↘ f⇀2(Z)↗ ≃ L̃!d(ζ1, ζ2), for all Z ⇐ C.
2. ⇔ζ ⇐ FW : ↗↙

Ŷ
ϑ(g(Z), f⇀(Z))↗ ≃ Bω, for all Z ⇐ C.

3. For a fixed ζ ⇐ FW ,
∣∣E

[
↗f↓

µ
(PC(X))↘ f⇀(PC(X))↗2 ↘ ↗f↓

µ
(X)↘ f⇀(X)↗2

]∣∣ ≃ Bnrm(C). (480)

From Taylor expansion we have that,

|gε1 ↘ gε2 | = |↑
∫

t

↙
Ŷ
ϑ(g, f⇀1 + t(f⇀2 ↘ f⇀1))dt, f⇀1 ↘ f⇀2↓|,

≃ ↗
∫

t

↙
Ŷ
ϑ(g, f⇀1 + t(f⇀2 ↘ f⇀1))dt↗↗f⇀2 ↘ f⇀1↗,

≃ Bω↗f⇀2 ↘ f⇀1↗,
≃ BωL̃!d(ζ1, ζ2).

From Lemma 14 we have

P


sup
⇀↑FW

|CµN (f⇀)↘ Cµ(f⇀)| ⇑ ω


(481)

≃ ⇀C + 2 exp



log

(
CFW

(
ω

2BωL̃!


↘ cN min








 ω

nY L

[
(↽2 + ↗g↗2Lip)↼2

X
+ ↗g↗2Lip↼2

Y |X

]




2

,

ω

nY L

[
(↽2 + ↗g↗2Lip)↼2

X
+ ↗g↗2Lip↼2

Y |X

]








 , (482)

for some positive constant, c. Now restrict ω ⇐
[
0, nY L

[
(↽2 + ↗g↗2Lip)↼2

X
+ ↗g↗2Lip↼2

Y |X

]]
. This completes our

proof.
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D.3 Concentration of Equilibria

In this section, we upper bound the probability of the event, Eeql(ω) through Lemma 10. We first present the
concentration of bi-Lipschtiz functions for sub-Gaussian inputs.

Proposition 4. Let X ∈ SG(⇁
2
X

nx
Inx→nx) and Y |X ∈ SG(

⇁
2
Y |X
ny

Iny→ny ), where ↼Y |X is independent of X = x,

then for any Lipschitz function, ε : Z ↔ R and a function, f : X → Y ↔ Z, satisfies the following. Then

ε(f(X,Y )) ∈ SG


4↗ε↗2

Lip
↗f↗2

Lip

[
↼
2
X
+ ↼

2
Y |X

]
.

↗f(X2, Y2)↘ f(X1, Y1)↗ ≃ ↗f↗Lip [↗X2 ↘X1↗+ ↗Y2 ↘ Y1↗] . (483)

Proof. Let us compute the moments of the random variable ε(f(X,Y )) for any Lipschitz function, ε : Z ↔ R.

By symmetrization, we have

EX,Y [exp(ϖ[ε(f(X,Y ))↘ EX,Y [ε(f(X,Y ))]])]

= EX,Y [exp(ϖ[ε(f(X,Y ))↘ EX↑,Y ↑ [ε(f(X ↘
, Y

↘))])] (484)

= EX,Y [exp(ϖEX↑,Y ↑ [ε(f(X,Y ))↘ ε(f(X ↘
, Y

↘))])] . (485)

By Jensen’s inequality we have

≃ EX,Y,X↑,Y ↑ [exp(ϖ[ε(f(X,Y ))↘ ε(f(X ↘
, Y

↘))])] , (486)

By Lipschitz continuity we have

≃ EX,Y,X↑,Y ↑ [exp(↗ε↗Lipϖ[↗f(X,Y )↘ f(X ↘
, Y

↘)↗]] . (487)

By construction, we have.

≃ EX,Y,X↑,Y ↑ [exp(↗ε↗Lip↗f↗Lipϖ[↗X ↘X
↘↗+ ↗Y ↘ Y

↘↗]] . (488)

By Cauchy-Schwartz’s inequality we have

≃ EX,Y,X↑,Y ↑ [exp(↗ε↗Lip↗f↗Lipϖ[↗X↗+ ↗X ↘↗+ ↗Y ↗+ ↗Y ↘↗]] . (489)

As the symmetrized random variables are independent,

≃ EX,Y [exp(2↗ε↗Lip↗f↗Lipϖ[↗X↗+ ↗Y ↘↗]] . (490)

Now perform conditional expectation,

≃ EXEY |X [exp(2↗ε↗Lip↗f↗Lipϖ[↗X↗+ ↗Y ↗]] , (491)

≃ EX exp(2↗ε↗Lip↗f↗Lipϖ[↗X↗])EY |X [exp(2↗ε↗Lip↗f↗Lipϖ[↗Y ↗]] , (492)

≃ exp

(
ϖ
2

2
4↗ε↗2Lip↗f↗2Lip

[
↼
2
X
+ ↼

2
Y |X

]
+ ϖ[EX [↗X↗] + EY |X [↗Y ↗]]


, (493)

≃ K exp

(
ϖ
2

2
4↗ε↗2Lip↗f↗2Lip

[
↼
2
X
+ ↼

2
Y |X

]
. (494)

for some constant, K ⇑ 0.

This implies that, ε(f(X,Y )) ∈ SG


4↗ε↗2Lip↗f↗2Lip

[
↼
2
X
+ ↼

2
Y |X

]
.

With the above result, we now state and prove the probability of the event, Eeql(ω).
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Lemma 10 (Concentration of Equilibria). Consider an nX-dimensional sub-Gaussian vector X ∈
SG(0, (↼2

X
/nX)I), and set of functions f⇀ : RnX ↔ R as parameterized by ζ ⇐ FW . Let C be some convex

obeying P (
⋂

N

i=1 Xi ⇐ C) ⇑ 1 ↘ ⇀C for i.i.d samples {Xi}Ni=1. Assume that for any fixed, ζ1, ζ2 ⇐ FW , and fixed
Z ⇐ C, we have

↗↙
Ŷ
ϑ(g(Z), f⇀(Z))↗ ≃ Bω, ↗f⇀(Z)↗ ≃ B!, and (495)

↗f⇀(Z)↘ f⇀↑(Z)↗ ≃ L̃!d(ζ, ζ
↘). (496)

In addition, we have that,

sup
⇀↑FW

∣∣E
[
↑↙

Ŷ
ϑ (g ◦ PC , f⇀ ◦ PC) , f⇀↑ ◦ PC↓µ ↘ ↑↙

Ŷ
ϑ (g, f⇀) , f⇀↑↓µ

]∣∣ = Beql(C). (497)

Define

K := 4ny↽↗↙Ŷ
ϑ↗Lip↼X

√
(↽2 + ↗g↗2

Lip
)↼2

X
+ ↗g↗2

Lip
↼
2
E|X . (498)

Then for any ω ⇐ [0,K],

P


sup
⇀↑FW

∣∣↑↙
Ŷ
ϑ(g, f⇀), f⇀↓µN ↘ ↑↙

Ŷ
ϑ(g, f⇀), f⇀↓µ

∣∣ ⇑ ω+Beql(C)


≃

⇀C + c exp

(
log

(
CFW

(
ω

2L̃! [Bω +B!L]


↘N

ω
2

K2


, (499)

for some positive constant, c and CFW (ν) is the ν-net covering number of the set FW ..

Proof. From Assumptions 1-5, we have that for any g1, f1, g2, f2 ⇐ L
2(µ)

↗↙
Ŷ
ϑ(g2(X(◁),E(◁)), f2(X(◁)))↘↙

Ŷ
ϑ(g1(X(◁), E(◁)), f1(X(◁)))↗ (500)

≃ ↗↙
Ŷ
ϑ↗Lip [↗g2(X(◁), E(◁))↘ g1(X(◁), E(◁))↗+ ↗f2(X(◁))↘ f1(X(◁))↗] . (501)

Since X(◁) and E(◁) are Lipschitz concentrated R.Vs, it holds that

g(X,E)|E ∈ SG(↗g↗2Lip↼2
X
Iny→ny ), g(X,E)|X ∈ SG(↗g↗2Lip↼2

E|XIny→ny ), (502)

and f⇀(X) ∈ SG(↗f⇀↗2Lip↼2
X
Iny→ny ). (503)

From Proposition 4 we have
↙

Ŷ
ϑ(g(X(◁), E(◁)), f⇀(X(◁))) ∈

SG


4↗↙

Ŷ
ϑ↗2Lip

[
(↗f⇀↗2Lip + ↗g↗2Lip)↼2

X
+ ↗g↗2Lip↼2

E|X

]
Iny


. (504)

Now we have the inner product between two sub-Gaussian random variables from Proposition 7 we have that
the result is sub-exponential, i.e.,

↑ ↙
Ŷ
ϑ(g(X(◁), E(◁)), f⇀(X(◁)))

︸ ︷︷ ︸
′SG

(
4⇒∞Ŷ ω⇒2

Lip

[
(⇒fϑ⇒2

Lip+⇒g⇒2
Lip)⇁

2
X+⇒g⇒2

Lip⇁
2
E|X

]
Iny↗ny

)

, f⇀(X(◁))
︸ ︷︷ ︸

′SG(⇒fϑ⇒2
Lip⇁

2
XIny )

↓

∈ SE


2ny↗↙Ŷ

ϑ↗Lip↗f⇀↗Lip↼X

√
(↗f⇀↗2Lip + ↗g↗2Lip)↼2

X
+ ↗g↗2Lip↼2

E|X


. (505)

The class of functions, f⇀ for ζ ⇐ FW , has bounded Lipschitz constant ↽. As a consequence of the sub-exponential
concentration bound from Theorem 2.8.1 in Vershynin (2018), we have that for a fixed ζ ⇐ FW ,

P
(∣∣↑↙

Ŷ
ϑ(g, f⇀), f⇀↓µN ↘ ↑↙

Ŷ
ϑ(g, f⇀ , f⇀↓µ

∣∣ ⇑ ω
)
≃ C exp

(
↘N min

{
ω
2

K2
,
ω

K

}
. (506)
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where K := 2ny↽↗↙Ŷ
ϑ↗Lip↼X

√
(↽2 + ↗g↗2Lip)↼2

X
+ ↗g↗2Lip↼2

E|X and some positive constant, C.

Now we move on to providing a uniform concentration in the inequality (506). We will apply uniform concen-
tration result from Lemma 14, for this set:

gε = ↑↙
Ŷ
ϑ(g, f⇀), f⇀↓. (507)

Recall the below items:

1. For a fixed Z ⇐ C we have ⇔ζ ⇐ FW : ↗↙
Ŷ
ϑ(g(Z), f⇀(Z))↗ ≃ Bω.

2. For a fixed Z ⇐ C we have ⇔ζ ⇐ FW : ↗f⇀(Z)↗ ≃ B!.

3. For a fixed Z ⇐ C we have ⇔ζ, ζ ↘ ⇐ FW : ↗f⇀(Z)↘ f⇀↑(Z)↗ ≃ L̃!d(ζ, ζ ↘).

4. For a any Ŷ1, Ŷ2 ⇐ RnY we have ↗↙
Ŷ
ϑ(Y, Ŷ1)↘↙

Ŷ
ϑ(Y, Ŷ2)↗ ≃ L↗Ŷ1 ↘ Ŷ2↗.

5. For a fixed ζ ⇐ FW ,

sup
⇀↑FW

∣∣E
[
↑↙

Ŷ
ϑ (g ◦ PC , f⇀ ◦ PC) , f⇀ ◦ PC↓µ ↘ ↑↙

Ŷ
ϑ (g, f⇀) , f⇀↓µ

]∣∣ = Beql(C). (508)

Now we check the Lipschitz continuity of the function gε:

|gε1 ↘ gε2 | =
∣∣↑↙

Ŷ
ϑ(g, f⇀1), f⇀1↓ ↘ ↑↙

Ŷ
ϑ(g, f⇀2), f⇀2↓

∣∣ ,
=

∣∣↑↙
Ŷ
ϑ(g, f⇀1), f⇀1 ↘ f⇀2↓ ↘ ↑↙

Ŷ
ϑ(g, f⇀2)↘↙

Ŷ
ϑ(g, f⇀1), f⇀2↓

∣∣ ,
≃

∣∣↑↙
Ŷ
ϑ(g, f⇀1), f⇀1 ↘ f⇀2↓

∣∣+
∣∣↑↙

Ŷ
ϑ(g, f⇀2)↘↙

Ŷ
ϑ(g, f⇀1), f⇀2↓

∣∣ ,
≃ ↗↙

Ŷ
ϑ(g, f⇀1)↗↗f⇀1 ↘ f⇀2↗+ ↗↙

Ŷ
ϑ(g, f⇀2)↘↙

Ŷ
ϑ(g, f⇀1)↗↗f⇀2↗,

≃ Bω↗f⇀1 ↘ f⇀2)↗+B!L↗f⇀1 ↘ f⇀2↗,
≃ L̃! [Bω +B!L] d(ζ1, ζ2).

Then from Lemma 14 we have that

P


sup
⇀↑FW

∣∣↑↙
Ŷ
ϑ(g, f⇀), f⇀↓µN ↘ ↑↙

Ŷ
ϑ(g, f⇀), f⇀↓µ

∣∣ ⇑ ω+Beql(C)


(509)

≃ ⇀C + C exp

(
log

(
CFW

(
ω

2L̃! [Bω +B!L]


↘N min

{
ω
2

4K2
,

ω

2K

}
. (510)

D.4 Concentration of Polar

In this section, we compute the probability of the occurrence of the event, Eplr(ω) through Lemma 11. The
analysis of Eplr(ω) resembles to that of Eeql(ω) following similar arguments.

Lemma 11 (Concentration of Polar). Consider an nX-dimensional sub-Gaussian vector X ∈ SG(0, (↼2
X
/nX)I),

and set of functions f⇀ : R⊋X ↔ R as parameterized by ζ ⇐ FW . Let C be some convex obeying P (
⋂

N

i=1 Xi ⇐
C) ⇑ 1↘ ⇀C for i.i.d samples {Xi}Ni=1. Assume that for any fixed, ζ1, ζ2 ⇐ FW , ζ ↘1, ζ

↘
2 ⇐ Fε, and fixed Z ⇐ C, we

have
↗↙

Ŷ
ϑ(g(Z), f⇀(Z))↗ ≃ Bω, ↗f⇀(Z)↗ ≃ B!, (511)

↗f⇀1(Z)↘ f⇀2(Z)↗ ≃ L̃!d(ζ1, ζ2), and ↗f⇀↑
1
(Z)↘ f⇀↑

2
(Z)↗ ≃ L̃ϑd(ζ

↘
1, ζ

↘
2). (512)

In addition, we have that,

sup
⇀↑FW ,⇀↑↑Fω

∣∣E
[
↑↙

Ŷ
ϑ (g ◦ PC , f⇀ ◦ PC) , f⇀↑ ◦ PC↓µ ↘ ↑↙

Ŷ
ϑ (g, f⇀) , f⇀↑↓µ

]∣∣ = Bplr(C). (513)

Define

K := 4nY ↗↙Ŷ
ϑ↗LipLϑ↼X

√
(↽2 + ↗g↗2

Lip
)↼2

X
+ ↗g↗2

Lip
↼
2
E|X . (514)
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Then for any ω ⇐ [0,K],

P


sup
⇀↑FW

:
∣∣%↔

µN

(
↙

Ŷ
ϑ (g, f⇀)

)
↘ %↔

µ

(
↙

Ŷ
ϑ (g, f⇀)

)∣∣ ⇑ ω+Bplr(C)


≃ ⇀C + c exp


log


CFW


ω

8max{L̃ϑBω, LL̃!B!}



+ log


CFω


ω

8max{L̃ϑBω, LL̃!B!}


↘N

ω
2

K2


,

(515)

for some positive constant, c and CFW (ν) (and CFω (ν)) is the ν-net covering number of the set FW(and Fε).

Proof. Recall the definition of the polar in Equation 6:

%↔
µN

(
↙

Ŷ
ϑ (g, f⇀)

)
:= sup

⇀↑↑Fω

↑↙
Ŷ
ϑ (g, f⇀) , f⇀↑↓µN , (516)

%↔
µ

(
↙

Ŷ
ϑ (g, f⇀)

)
:= sup

⇀↑↑Fω

↑↙
Ŷ
ϑ (g, f⇀) , f⇀↑↓µ. (517)

Now, by taking the di”erence between the above two polars, we have

∣∣∣%↔
µN

(
↙

Ŷ
ϑ (g, f⇀)

)
↘ %↔

µ

(
↙

Ŷ
ϑ (g, f⇀)

) ∣∣∣

=

∣∣∣∣∣ sup⇀↑↑Fω

↑↙
Ŷ
ϑ (g, f⇀) , f⇀↑↓µN ↘ sup

⇀↑↑Fω

↑↙
Ŷ
ϑ (g, f⇀) , f⇀↑↓µ

∣∣∣∣∣ .
(518)

Denote, ζ ↘↓
µ

= arg sup
⇀↑↑Fω

↑↙
Ŷ
ϑ (g, f⇀) , f⇀↑↓µ and ζ

↘↓
µN

= arg sup
⇀↑↑Fω

↑↙
Ŷ
ϑ (g, f⇀) , f⇀↑↓µN , then, by definition we

have that

↘↑↙
Ŷ
ϑ (g, f⇀) , f⇀↑→

µ
↓µN + ↑↙

Ŷ
ϑ (g, f⇀) , f⇀↑→

µ
↓µ ≃ %↔

µN

(
↙

Ŷ
ϑ (g, f⇀)

)
↘ %↔

µ

(
↙

Ŷ
ϑ (g, f⇀)

)
≃

↑↙
Ŷ
ϑ (g, f⇀) , f⇀↑→

µ
↓µN ↘ ↑↙

Ŷ
ϑ (g, f⇀) , f⇀↑→

µ
↓µ. (519)

Applying modulus on both sides we obtain

∣∣∣%↔
µN


↙

Ŷ
ϑ


g, f⇀


↘ %↔

µ


↙

Ŷ
ϑ


g, f⇀

∣∣∣

≃ max
∣∣∣↑↙

Ŷ
ϑ


g, f⇀


, f⇀↑→

µ
↓µN ↘ ↑↙

Ŷ
ϑ


g, f⇀


, f⇀↑→

µ
↓µ
∣∣∣,

∣∣∣↑↙
Ŷ
ϑ


g, f⇀


, f⇀↑→

µN
↓µN ↘ ↑↙

Ŷ
ϑ


g, f⇀


, f⇀↑→

µN
↓µ
∣∣∣


≃ sup
⇀↑↑Fω

∣∣∣↑↙
Ŷ
ϑ


g, f⇀


, f⇀↑↓µN ↘ ↑↙

Ŷ
ϑ


g, f⇀


, f⇀↑↓µ

∣∣∣.

(520)

Now, we have to compute a lower bound on

P


sup
⇀↑↑Fω

∣∣↑↙
Ŷ
ϑ (g, f⇀) , f⇀↑↓µN ↘ ↑↙

Ŷ
ϑ (g, f⇀) , f⇀↑↓µ

∣∣ ≃ ω


. (521)

The computation of Equation (521) is similar to that of Lemma 10. We can re-write the concentration of polars
and apply the monotonicty of probability in inequality (520) by doing this we have

P


sup
⇀↑FW

:
∣∣%↔

µN

(
↙

Ŷ
ϑ (g, f⇀)

)
↘ %↔

µ

(
↙

Ŷ
ϑ (g, f⇀)

)∣∣ ⇑ ω


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≃ P


sup
⇀↑F!,⇀↑↑Fω

:
∣∣↑↙

Ŷ
ϑ (g, f⇀) , f⇀↑↓µN ↘ ↑↙

Ŷ
ϑ (g, f⇀) , f⇀↑↓µ

∣∣ ≃ ω


. (522)

As the data follow the sub-Gaussian distribution from Proposition ?? and Proposition 7, we have

↑ ↙
Ŷ
ϑ (g, f⇀)︸ ︷︷ ︸

′SG

(
4⇒∞Ŷ ω⇒2

Lip

[
(⇒fϑ⇒2

Lip+⇒g⇒2
Lip)⇁

2
X+⇒g⇒2

Lip⇁
2
E|X

]
InY ↗nY

)

, f⇀↑
︸︷︷︸

′SG(⇒fϑ↑⇒2
Lip⇁

2
XInY ↗nY

)

↓µN

∈ SE


2nY ↗↙Ŷ

ϑ↗Lip↗f⇀↑↗Lip↼X

√
(↗f⇀↗2Lip + ↗g↗2Lip)↼2

X
+ ↗g↗2Lip↼2

E|X


. (523)

From Assumption 6 the class, F! has Lipschitz constant at most, ↽. From the assumption 4 Fε has a Lipschitz
constant at most ↽ε. Therefore, the inner product described above is concentrated as a consequence of Theorem
2.8.1 from Vershynin (2018). Now for a fixed ζ ⇐ FW , ζ

↘ ⇐ Fε, we have that

P
(∣∣↑↙

Ŷ
ϑ (g, f⇀) , f⇀↑↓µN ↘ ↑↙

Ŷ
ϑ (g, f⇀) , f⇀↑↓µ

∣∣ ≃ ω
)
≃ C exp

(
↘N min

{
ω
2

K2
,
ω

K

}
. (524)

where, K = 2nY ↗↙Ŷ
ϑ↗LipLϑ↼X

√
(↽2 + ↗g↗2Lip)↼2

X
+ ↗g↗2Lip↼2

E|X .

Now we utilize Lemma 14 to have this concentration uniformly for all, ζ ⇐ FW , ζ
↘ ⇐ Fε. Set

gε = ↑↙
Ŷ
ϑ(g, f⇀), f⇀↑↓. (525)

Recall the below items:

1. For a fixed Z ⇐ C we have ⇔ζ ⇐ FW : ↗↙
Ŷ
ϑ(g(Z), f⇀(Z))↗ ≃ Bω.

2. For a fixed Z ⇐ C we have ⇔ζ ⇐ FW : ↗f⇀(Z)↗ ≃ B!.

3. For a fixed Z ⇐ C we have ⇔ζ, ζ ↘ ⇐ FW : ↗f⇀(Z)↘ f⇀↑(Z)↗ ≃ L̃!d(ζ, ζ ↘).

4. For a fixed Z ⇐ C we have ⇔ζ, ζ ↘ ⇐ Fε : ↗f⇀(Z)↘ f⇀↑(Z)↗ ≃ L̃ϑd(ζ, ζ ↘).

5. For a any Ŷ1, Ŷ2 ⇐ RnY we have ↗↙
Ŷ
ϑ(Y, Ŷ1)↘↙

Ŷ
ϑ(Y, Ŷ2)↗ ≃ L↗Ŷ1 ↘ Ŷ2↗.

6. For a fixed ζ ⇐ FW , ζ
↘ ⇐ Fε,

sup
⇀↑FW ,⇀↑↑Fω

∣∣E
[
↑↙

Ŷ
ϑ (g ◦ PC , f⇀ ◦ PC) , f⇀↑ ◦ PC↓µ ↘ ↑↙

Ŷ
ϑ (g, f⇀) , f⇀↑↓µ

]∣∣ = Bplr(C). (526)

Now we check the Lipschitzness of g:

|gε1 ↘ gε2 | =
∣∣↑↙

Ŷ
ϑ(g, f⇀1), f⇀↑

1
↓ ↘ ↑↙

Ŷ
ϑ(g, f⇀2), f⇀↑

2
↓
∣∣

=
∣∣↑↙

Ŷ
ϑ(g, f⇀1), f⇀↑

1
↘ f⇀↑

2
↓ ↘ ↑↙

Ŷ
ϑ(g, f⇀2)↘↙

Ŷ
ϑ(g, f⇀1), f⇀↑

2
↓
∣∣ ,

≃
∣∣↑↙

Ŷ
ϑ(g, f⇀1), f⇀↑

1
↘ f⇀↑

2
↓
∣∣+

∣∣↑↙
Ŷ
ϑ(g, f⇀2)↘↙

Ŷ
ϑ(g, f⇀1), f⇀↑

2
↓
∣∣ ,

≃ ↗↙
Ŷ
ϑ(g, f⇀1)↗↗f⇀↑

1
↘ f⇀↑

2
↗,+↗↙

Ŷ
ϑ(g, f⇀2)↘↙

Ŷ
ϑ(g, f⇀1)↗↗f⇀↑

2
↗,

≃ BωL̃ϑd(ζ
↘
1, ζ

↘
2) +B!LL̃!d(ζ1, ζ2),

≃ 2max{L̃ϑBω, LL̃!B!}max{d(ζ ↘1, ζ ↘2), d(ζ1, ζ2)}.

Now, we have a product of two metric spaces whose metric is a maximum of individual metrics, therefore simply
we can upper bound the covering number by product of these two metric spaces.,i.e.,

N (FW → Fε, ↗ · ↗⇓,d(.,.), ν) ≃ N (FW , d(., .), ν)N (Fε, d(., .), ν). (527)

From Lemma 14 we have that

P


sup
⇀↑FW ,⇀↑↑Fω

:
∣∣↑↙

Ŷ
ϑ (g, f⇀) , f⇀↑↓µN ↘ ↑↙

Ŷ
ϑ (g, f⇀) , f⇀↑↓µ

∣∣ ⇑ ω+Bplr(C)


(528)



Tadipatri, Hae!ele, Agterberg, Vidal

≃ ⇀C + C exp

log

(
CFW

(
ω

8L̃! max{Bω, LB!}



+ log

(
CFω

(
ω

8L̃! max{Bω, LB!}


↘N min

{
ω
2

4K2
,

ω

2K

}
.

(529)

This completes our result.

E NUMERICAL EXPERIMENTS

Figure 1: Numerical simulations of the Lipschitz constant (or upper bound thereof) obtained for di”erent model
widths (r).

In this section, we present numerical simulations for the problems of low-rank matrix sensing, two-layer ReLU neu-
ral networks, and multi-head attention. In each simulation shown in Figure E, we generated data using a teacher
model with random initialization of parameters, Y = #r→({Wj})(X) + ω, where r

↓ = 64, X ∈ N (0, (↼2
X
/nX)I),

and ω ⇐ N (0, (↼2
E
/nY )I). We used gradient descent to reach a stationary point for each R (rank, number of

neurons, or number of heads), starting from 1 and increasing up to 300. The first factor was initialized with
small-scale random values. For each subsequent factor, we initialized the new factor with the supremum obtained
from the polar equation (14), following the algorithm in Hae”ele and Vidal (2015, 2020).

In each problem shown in Figure E, we plot the upper bounds on the Lipschitz constant for these problems.
For matrix sensing, the Lipschitz constant is trivially upper-bounded by ↗UVT ↗2; for the ReLU neural network,
it is upper-bounded by ↗U↗2↗V↗2; and for multi-head attention, it is upper-bounded by

∑
r

j=1 ↗Vj↗2. We can
observe from Figure E upper bounds on the Lipschitz constants are uniformly bounded, indicating that our
Assumption 6 is realistic and holds empirically.

We conjecture that it is possible to show that the Lipschitz constants are uniformly bounded for any stationary.
However, the analysis of this is beyond the scope of this work. Similar analyses based on gradient descent can
be found in Oymak and Soltanolkotabi (2019).

F OTHER RELATED WORKS

In this section, we provide a comprehensive study of the related works of the applications that are of the concern
in this work.

Statistical Learning Theory (SLT): SLT provides a theoretical framework for analyzing generalization error,
often producing results of the form (530). The seminal work by Vapnik (2000) established a systematic approach
to deriving bounds of this nature. Over time, various approaches in SLT have attempted to estimate ω(F , N, ⇀),
as summarized in Table 2. A recurring challenge in these bounds is the need to quantify the “capacity” of the
model’s hypothesis class, which is particularly di!cult for DNNs.

While there have been attempts to estimate the VC-dimension, such as those based on the norm of the parameters
(Neyshabur et al., 2017), the resulting bounds heavily depend on the norm of the parameters. Consequently, it
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remains unclear how to accurately estimate the sample complexity of models when varying the depth or width of
DNNs. More recent work, such as Imaizumi and Schmidt-Hieber (2023), presents bounds that are tight but still
dependent on the norm of the weights, assuming that the SGD iterates converge to a specific class of parameters.

Another line of research by Muthukumar and Sulam (2023) explores bounds that leverage the sparsity of feed-
forward neural networks. However, there is still a lack of data-dependent bounds that do not rely on capacity
estimates for models trained on random labels.

P

sup
f↑F

∣∣∣∣∣EX,Y [ϑ(Y, f(X))]↘ 1

N

N∑

i=1

ϑ(Yi, f(Xi))

∣∣∣∣∣ ≃ ω(F , ⇀, N)


⇑ 1↘ ⇀ (530)

Description ω(F , N, ⇀)

Vapnik-Chernoviks Dimension, (Vapnik, 2000)
√

VCdim(F)⇐log(ς)
N

Rademacher Complexity, (Bartlett and Mendelson, 2001) RN (F) +
√

⇐ log(ς)
N

PAC-Bayes Bounds, (McAllester, 1999) KL(Q||P )⇐log(ς)
N

Gaussian Complexity, (Bartlett and Mendelson, 2001) GN (F) +
√

⇐ log(ς)
N

Information-theoretic Bounds, (?) 1
N

∑
N

i=1

√
I(W ; (Xi, Yi))

Algorithmic Stability, (Feldman and Vondrak, 2019) ς +
√

⇐ log(ς)
N

Table 2: SLT frameworks (in chronological order)

Matrix recovery: This is a fundamental problem in signal processing, where we seek to recover a matrix
by indirect measurements, like random measurements, and random entry access. We typically have limited
measurements; the problem itself is ill-posed when reconstructing the matrix. However, if the underlying matrix
has certain special structures like low-rankedness, or sparsity in entries, the problem becomes tractable so as to
reconstruct the true matrix. In practice, the problem tends to have low-rankedness, therefore having immense
literature in this area, our work also presents such results, considering the optimization.

Let, Yi = ↑M↓
, Xi↓+ω ⇐ R, where, Xi ⇐ Rm→n(m ⇑ n) is Gaussian entried matrix, ω ∈ N (0,↼2) and M

↓ ⇐ Rm→n

is a r
↓-rank matrix. Consider the below problem

min
M→Rm↗n

rank(M)

s.t. ↔Yi ≃ ⇐M,Xi⇒↔ ↗ ϑ
(531)

min
M→Rm↗n

↔M↔↑

s.t. ↔Yi ≃ ⇐M,Xi⇒↔ ↗ ϑ
(532)

min
r→N,U→Rm↗r,V →Rn↗r

↔UV T ↔↑

s.t. ↔Yi ≃ ⇐UV T , Xi⇒↔ ↗ ϑ
(533)

min
r→N,U→Rm↗r,V →Rn↗r

1

2

(
↔U↔2F + ↔V ↔2F

)

s.t. ↔Yi ≃ ⇐UV T , Xi⇒↔ ↗ ϑ

(534)

Table 3: Optimization problems for matrix sensing

min
r↑N,U↑Rm↗r,V ↑Rn↗r

↗Yi ↘ ↑UV
T
, Xi↓↗2 +

ϖ

2

[
↗U↗2

F
+ ↗V ↗2

F

]
(535)

The optimization problem in (531) is non-convex due to its rank-minimization nature, an NP-HARD problem.
However, under certain specific conditions on the measurement matrices Xi, the convex relaxation (532) can
recover solutions to (531), as demonstrated in Recht et al. (2008). Solving the convex program (532) requires
computing the Singular Value Decomposition (SVD), which has a computational complexity of O(mn

2).

To mitigate this computational burden, the Burer-Monteiro (BM) factorization (Burer and Monteiro, 2003) is
employed, yielding the bilinear factorization in the non-convex program (533). This approach is more e!cient
than (532) because it introduces an implicit rank constraint, rank(UV

T ) ≃ min(n, r), which reduces the runtime
of SVD toO((m+n)r2). Additionally, the equivalence between the nuclear norm and the sum of Frobenius norms,
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as shown by Giampouras et al. (2020), further accelerates the optimization process, reducing the complexity to
O((m+ n)r).

While the BM factorization program (533) is non-convex, in contrast to the convex program (532), gradient
descent (GD) algorithms typically guarantee only local minima for non-convex optimization problems (Reddy
and Vidyasagar, 2023). However, Ge et al. (2017) has proven that the program (533) has no spurious local
minima, and any local minimum is indeed a global minimum. Numerous studies (Jia et al., 2023) have explored
the optimization landscapes and the convergence to global minima.

Our work primarily focuses on the generalization capabilities of the BM factorization program (535), which
represents the Lagrangian form of the program (533). Table F summarizes the results from the literature that
provide matrix recovery guarantees; from this we can suggest there are no bounds in the literature for low-rank
matrix recovery with nuclear norm regularization under noisy settings with generic parameterization. Our work
presents results first of its kind.

Measurement Type Scenario Reference Result

Exact Under-Parameterized (r < r
↓) N/A N/A

Exactly-Parameterized (r = r
↓) N/A Not directly available.

Over-Parameterized (r > r
↓) (Stöger and Soltanolkotabi, 2021) ↗UU

T ↘M
↓↗F ↫ r

↓1/8(r ↘ r
↓)3/8 when r ⇐ (r↓, 2r↓).

Generic Parameterization (r ⇑ 1) (Jin et al., 2023) GD learns rank incrementally, ↗M↓ ↘ UU
T ↗F ↫ φ

1
C2k2→ , but analysis is algorithmic.

SDP Relaxation (Full SDP Matrix ) N/A Not directly available.

Noisy Under-Parameterized (r < r
↓) N/A N/A

Exactly-Parameterized (r = r
↓) (Ma et al., 2020) ↗M↓ ↘ UU

T ↗F ↫
√

log(m)
N

under RIP assumptions ⇀4r→ ≃ 0.1.

(Negahban and Wainwright, 2011) ↗M̂ ↘M↗F ↫
√
r↓m+n

N
.

Over-Parameterized (r > r
↓) (Ma et al., 2020) ↗M↓ ↘ UU

T ↗F ↫
√

⇀r+r→↗M↓↗2.

Generic Parameterization (r ⇑ 1) N/A N/A

SDP Relaxation (Full SDP Matrix ) (Candès and Plan, 2011) ↗M̂ ↘M
↓↗F ↫

√
nr↓/N under RIP assumptions.

(Koltchinskii et al., 2011) ↗M̂ ↘M↗F ↫ mnr
→ log(N)
N

under uniform noisy measurements.

Table 4: Summary of Related Works on Matrix Recovery. N/A is an acronym for ”Not Available”.

Transformers: The remarkable success of Large Language Models (LLMs) (Team, 2024) can largely be at-
tributed to their foundational architecture—Transformers (Vaswani et al., 2017). The optimization dynamics
of Transformers have been a subject of extensive recent research (Bordelon et al., 2024), (Singh, 2023), (Yang
et al., 2022), (Tian et al., 2023), (Nichani et al., 2024). Although Transformers exhibit impressive generalization
capabilities in practical applications (Zhou et al., 2024), there is still a significant gap in the theoretical analysis
of their generalization error.

To apply classical SLT bounds, one must determine the capacities of the function classes induced by Transformers.
Previous attempts, such as in (Edelman et al., 2022), have made progress but were limited to scenarios where
input data is bounded. In contrast, our work extends these results to settings where the inputs are not necessarily
bounded.

Another line of research (Li et al., 2023), (Deora et al., 2024) has provided bounds that depend on step sizes and
initialization choices for Gradient Descent (GD). For instance, Li et al. (2023) o”ered bounds within the context
of in-context learning (Zhang et al., 2024), yet without evaluating the capacities of the stable algorithms used
to train these Transformers.

In the broader literature, existing studies on generalization bounds often rely on strong assumptions, such as
(i) bounded input data, (ii) algorithmic stability in some defined sense, and (iii) Lipschitz continuity of the
loss function (which does not hold globally for mean squared error). Our results address these limitations by
providing near-tight sample complexity bounds, o”ering a more comprehensive understanding of generalization
in Transformer models.
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G PRELIMINARIES

This section provides preliminaries of convex analysis and concentration of measure.

G.1 Convex Functions

Definition 1 (L2 functions). A function f : X ↔ Y is said to be square integrable on measure µ, i.e., L2(µ) if
and only if,

↑f, f↓µ =

∫

x↑X
↑f(x), f(x)↓Ydµ(x) < ⇒. (536)

Definition 2 (Convex Set, (Rockafellar, 1970)). A set C is said to be convex if and only if ⇔f, g ⇐ C, φf + (1↘
φ)g ⇐ C; ⇔φ ⇐ [0, 1].

Definition 3 (Convex functions, (Rockafellar, 1970)). A function, % is said to be convex if and only if dom(%)
is convex and ⇔f, g ⇐ dom(%) and any φ ⇐ [0, 1].

%(φf + (1↘ φ)g) ≃ φ%(f) + (1↘ φ)%(g). (537)

Definition 4 (Gauge function, (Rockafellar, 1970)). The gauge function or the Minkowski functional is defined
in a set C ⇐ L

2(µ) for a point f as follows,

↼C(f) := inf {t ⇑ 0; such that f ⇐ tconv(C)} . (538)

Definition 5 (Polar Set, (Rockafellar, 1970)). The polar set of any set C ∞ L
2(µ) is given be

C↔ :=
{
g ⇐ L

2(µ) : such that ↑g, f↓µ ≃ 1; ⇔f ⇐ C
}
. (539)

Proposition 5 (Polar Properties).

Definition 6 (Polar function, (Rockafellar, 1970)). The polar function of any gauge function, ↼ defined in the
set C ∞ L

2(µ) is given be

↼
↔
C(g) := ↼C↘(g). (540)

Definition 7 (Fenchal dual, (Rockafellar, 1970)). The fenchal-dual for any µ-measurable function, % evaluated
at g ⇐ L

2(µ) is defined by,

%↓(g) := sup
f↑L2(µ)

↑g, f↓µ ↘ %(f). (541)

Lemma 12 (First Convexity, (Rockafellar, 1970)). Any function % that is first-order di!erentiable, % ⇐ C1 is
convex if and only if for any f, g ⇐ dom(%)

%(f) ⇑ %(g) + ↑↙%(g), f ↘ g↓µ. (542)

Lemma 13 (Strongly Convex, (Rockafellar, 1970)). Any function % that is first-order di!erentiable, % ⇐ C1 is
said to be ϖ(⇑ 0)-strongly convex if and only if for any f, g ⇐ dom(%)

%(f) ⇑ %(g) + ↑↙%(g), f ↘ g↓µ +
ϖ

2
↗f ↘ g↗2

µ
. (543)

Definition 8 (Lipschitz Continuous). A function f : X ↔ Y is said to be Lipschitz continuous with Lipschitz
constant ↗f↗Lip if for any x2, x2 ⇐ X

↗f(x1)↘ f(x2)↗Y ≃ ↗f↗Lip↗x1 ↘ x2↗X . (544)

Remark: Lipschitz constant, ↗f↗Lip is not a norm but only a semi-norm. Because ↗f↗Lip = 0, it implies that f
can be any constant function.



Tadipatri, Hae!ele, Agterberg, Vidal

Definition 9 (Lipschitz Smooth). A first-order di!erentiable function f : X ↔ Y ⇐ C1 is said to be lipchtiz
smooth if ↙f is Lipschitz continous.

Definition 10 ((L,ϖ) convex function). A first-order di!erentiable function f : X ↔ Y ⇐ C1 is said to be (L,ϖ)
convex if and only if f is L-Lipschitz smooth and ϖ-strongly convex, here L ⇑ ϖ ⇑ 0.

Proposition 6 (Properties of Lipschitz). The below are few properties of Lipschitz functions,

1. If function f : X ↔ Y ⇐ C1 then sup
x↑X

⇒↙∞f(x),x∝⇒Y
⇒x⇒X

= ↗f↗Lip.

2. If convex function f : X ↔ Y ⇐ C1 is L-Lipschitz smooth then,

f(x0) + ↑↙f(x0), x↘ x0↓Y ≃ f(x) ≃ f(x0) + ↑↙f(x0), x↘ x0↓Y +
L

2
↗x↘ x0↗2X . (545)

3. If convex function f : X ↔ Y ⇐ C1 is (L,ϖ) convex then,

f(x0) + ↑↙f(x0), x↘ x0↓Y +
ϖ

2
↗x↘ x0↗2X ≃ f(x)

≃ f(x0) + ↑↙f(x0), x↘ x0↓Y +
L

2
↗x↘ x0↗2X .

(546)

G.2 Concentration of Measure

Definition 11 (Greater than or approximately equal to). The inequality f ↭ g means that ̸C > 0 such that
f ⇑ Cg.

Definition 12 (Sub-Gaussianity). A random variable, X is said to be sub-Gaussian with proxy variance, ↼2 if
the following is satisfied,

EX

[
e
t[X ↘ E[X]]

]
≃ exp

(
↘ t

2
↼
2

2


; ⇔t ⇑ 0. (547)

We denote, X ∈ SG(↼2).

Definition 13 (Sub-exponential). A random variable X is said to be subexponential with the proxy parameter
ϖ if the following is satisfied

EX

[
e
t[X⇐E[X]]

]
≃ exp

(
↘ tϖ

2


; ⇔t ⇑ 0. (548)

We denote X ∈ SE(ϖ).

Proposition 7 (Properties of Sub-Gaussianity and Sub-exponential). Let X,Y be two random variables that
need not be independent.

1. X ⇐ Rn ∈ SG


⇁
2
X
n
In→n


if and only if ↗X↗2 ∈ SE(↼2

X
).

2. If X ⇐ Rn ∈ SG


⇁
2
X
n
In→n


, then for any Lipschitz function ε : X ↔ R, ε(X) ∈ SG(↗ε↗2

Lip
↼
2
X
/n).

3. If X ⇐ Rn ∈ SG


⇁
2
X
n
In→n


, and Y ⇐ Rn ∈ SG


⇁
2
Y
n
In→n


, then ↑X,Y ↓ ∈ SE(↼X↼Y ).

Lemma 14 (Uniform concentration of function). Consider an nX-dimensional vector X, and a parameterized
function, gε : X ↔ R, where ϱ ⇐ Fε. Let C be some convex set obeying P (′N

i=1Xi ⇐ C) ⇑ 1 ↘ ⇀C. Assume that
for any fixed ϱ1, ϱ1 ⇐ Fε and any Z ⇐ C we have

|gε1(Z)↘ gε2(Z)| ≃ Kd(ϱ1, ϱ2). (549)

In addition, suppose that for any fixed ϱ ⇐ Fε, we have

|E [gε(PC(X))↘ gε(X)]| ≃ B, (550)
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where PC(·) denotes the Euclidean projection onto the set C. Finally, suppose that for any fixed ϱ and ω ⇐ [↘t, t]
it holds that

P

(∣∣∣∣
∫

ω

(gε ◦ PC)dµN (◁)↘
∫

ω

(gε ◦ PC)dµ(◁)

∣∣∣∣ ⇑ ω


≃ ⇀(1), (551)

Then for any ω ⇐ [↘t, t],

P

(
sup
ε↑Fω

∣∣∣∣
∫

ω

gεdµN (◁)↘
∫

ω

gεdµ(◁)

∣∣∣∣ ⇑ ω+B


≃ N (Fε, d(., .), ω/(2K))⇀(ω/4) + ⇀C . (552)

Proof. The proof technique is similar to that of (Li and Wei, 2023, Lemma 6) but includes more general parameter
sets Fε. Let us define

hε(X) := gε(PC(X)), (553)

from the assumptions in the lemma, we have that,

P

(∣∣∣∣
∫

ω

hεdµN (◁)↘
∫

ω

hεdµ(◁)

∣∣∣∣ ⇑ ω


≃ ⇀(1), (554)

Next, we must establish uniform concentration overall ϱ ⇐ Eε. Let us construct a ν-net for Fε. For any
ϱ
↘ ⇐ N▷(Fε, d(., .)), ϱ ⇐ Fε from the triangular inequality, and as

|hε ↘ hε↑ | = |hε(X)↘ hε↑(X)| = |gε(PC(X))↘ gε↑(PC(X))| ≃ Kd(ϱ, ϱ↘). (555)

Then for any, X we have that that,

hε↑ ↘Kd(ϱ, ϱ↘) ≃ hε ≃ hε↑ +Kd(ϱ, ϱ↘). (556)

Integrating with respect to the measure µN , we obtain
∫

ω

hε↑dµN (◁)↘Kd(ϱ, ϱ↘) ≃
∫

ω

hεdµN (◁) ≃
∫

ω

hε↑dµN (◁) + LXd(ϱ, ϱ↘). (557)

Similarly for the measure µ we obtain

=▽
∫

ω

hε↑dµ(◁)↘Kd(ϱ, ϱ↘) ≃
∫

ω

hεdµ(◁) ≃
∫

ω

hε↑dµ(◁) +Kd(ϱ, ϱ↘). (558)

Now, subtracting the above equations, we obtain
∫

ω

hε↑dµN (◁)↘
∫

ω

hε↑dµ(◁)↘ 2Kd(ϱ, ϱ↘)

≃
∫

ω

hεdµN (◁)↘
∫

ω

hεdµ(◁) ≃
∫

ω

hε↑dµN (◁)↘
∫

ω

hε↑dµ(◁) + 2Kd(ϱ, ϱ↘). (559)

Now, take the absolute value on both sides. Later on, applying triangular inequality, we obtain
∣∣∣∣
∫

ω

hεdµN (◁)↘
∫

ω

hεdµ(◁)

∣∣∣∣ ≃
∣∣∣∣
∫

ω

hε↑dµN (◁)↘
∫

ω

hε↑dµ(◁)

∣∣∣∣+ 2Kd(ϱ, ϱ↘). (560)

Now choose, ϱ↓ as arg sup
ε↑Fω

∣∣∫
ω
hε↑dµN (◁)↘

∫
ω
hε↑dµ(◁)

∣∣, then we have that,

sup
ε↑Fω

∣∣∣∣
∫

ω

hε↑dµN (◁)↘
∫

ω

hε↑dµ(◁)

∣∣∣∣ ≃
∣∣∣∣
∫

ω

hε↑dµN (◁)↘
∫

ω

hε↑dµ(◁)

∣∣∣∣+ 2Kd(ϱ↓, ϱ↘). (561)
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Now choose any ϱ
↘ that lies at-most ν from ϱ

↓ on the metric, d(., .), i.e, d(ϱ↘, ϱ↓) ≃ ν, we have

sup
ε↑Fω

∣∣∣∣
∫

ω

hεdµN (◁)↘
∫

ω

hεdµ(◁)

∣∣∣∣ ≃
∣∣∣∣
∫

ω

hε↑dµN (◁)↘
∫

ω

hε↑dµ(◁)

∣∣∣∣+ 2Kν. (562)

By definition, we can bound the right hand term by the supremum,

sup
ε↑Fω

∣∣∣∣
∫

ω

hεdµN (◁)↘
∫

ω

hεdµ(◁)

∣∣∣∣ ≃ 2Kν + sup
ε↑↑Nϖ(Fω,d(.,.))

∣∣∣∣
∫

ω

hε↑dµN (◁)↘
∫

ω

hε↑dµ(◁)

∣∣∣∣ . (563)

We apply the probability measure on both side, obtaining,

P

(
sup
ε↑Fω

∣∣∣∣
∫

ω

hεdµN (◁)↘
∫

ω

hεdµ(◁)

∣∣∣∣ ⇑ ω



≃ P


sup

ε↑↑Nϖ(Fω,d(.,.))

∣∣∣∣
∫

ω

hε↑dµN (◁)↘
∫

ω

hε↑dµ(◁)

∣∣∣∣ ⇑ ω↘ 2Kν


, (564)

the inequality is satisfied by the monotonicity of the probability measure. Now we apply the union-argument for
the ν-net cover then we have

P

(
sup
ε↑Fω

∣∣∣∣
∫

ω

hεdµN (◁)↘
∫

ω

hεdµ(◁)

∣∣∣∣ ⇑ ω


≃

P




⋃

ε↑↑Nϖ(Fω,d(.,.))

∣∣∣∣
∫

ω

hεdµN (◁)↘
∫

ω

hεdµ(◁)

∣∣∣∣ ⇑ ω↘ 2Kν



 , (565)

Now we upper bound the right side union term with summation, and then we have

P

(
sup
ε↑Fω

∣∣∣∣
∫

ω

hεdµN (◁)↘
∫

ω

hεdµ(◁)

∣∣∣∣ ⇑ ω


≃

∑

ε↑↑Nϖ(Fω,d(.,.))

P

(∣∣∣∣
∫

ω

hεdµN (◁)↘
∫

ω

hεdµ(◁)

∣∣∣∣ ⇑ ω↘ 2Kν


, (566)

Now we replace the summation with the ν-covering number, N (Fε, d(., .), ν) obtaining

P

(
sup
ε↑Fω

∣∣∣∣
∫

ω

hεdµN (◁)↘
∫

ω

hεdµ(◁)

∣∣∣∣ ⇑ ω


≃ N (Fε, d(., .), ν)⇀(ω↘ 2Kν). (567)

Now set ν = ω/(2K) then we have

=▽ P

(
sup
ε↑Fω

∣∣∣∣
∫

ω

hεdµN (◁)↘
∫

ω

hεdµ(◁)

∣∣∣∣ ⇑ ω


≃ N (Fε, d(., .), ω/(2K))⇀(ω/2). (568)

Now, we have established the uniform concentration for hε. Next, we move onto relating hε with the desired
function hε.

Recall that
|E [hε(X)↘ gε(X)]| ≃ B. (569)

As P (′N

i=1Xi ⇐ C) ⇑ 1 ↘ ⇀C , we can safely claim
∫
ω
gεdµN (◁) =

∫
ω
hεdµN (◁) with probability at least 1 ↘ ⇀C .

We have

∣∣∣∣
∫

ω

gεdµN (◁)↘
∫

ω

gεdµ(◁)

∣∣∣∣ =
∣∣∣∣
∫

ω

hεdµN (◁)↘
∫

ω

gεdµ(◁)

∣∣∣∣
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≃
∣∣∣∣
∫

ω

hεdµN (◁)↘
∫

ω

hεdµ(◁)

∣∣∣∣+
∣∣∣∣
∫

ω

hεdµ(◁)↘
∫

ω

hεdµ(◁)

∣∣∣∣ , (570)

=▽
∣∣∣∣
∫

ω

gεdµN (◁)↘
∫

ω

gεdµ(◁)

∣∣∣∣ ≃
∣∣∣∣
∫

ω

hεdµN (◁)↘
∫

ω

hεdµ(◁)

∣∣∣∣+B, (571)

with probability at least 1↘ ⇀C . Now we check the Lipschitzness of function hε in ϱ we have

|hε1(X)↘ hε2(X)| = |gε1(PC(X))↘ gε2(PC(X))| ≃ Kd(ϱ1, ϱ2). (572)

Similarly, in expectation measure, we have that

|E[hε1(X)]↘ E[hε2(X)]| = |E[gε1(PC(X))]↘ E[gε2(PC(X))]| ≃ E [|gε1(PC(X))↘ gε2(PC(X))|]

≃ Kd(ϱ1, ϱ2). (573)

Consequently for any ϱ
↘ ⇐ {ϱ↘ : d(ϱ, ϱ↘) ≃ ω/(2K)}, we have that

∣∣∣∣
∫

ω

gεdµN (◁)↘
∫

ω

gεdµ(◁)

∣∣∣∣ ≃
∣∣∣∣
∫

ω

hε↑dµN (◁)↘
∫

ω

hε↑dµ(◁)

∣∣∣∣+ ν +B. (574)

Now we choose ϱ = ϱ
↓ = sup

ε↑Fω

∣∣∫
ω
gεdµN (◁)↘

∫
ω
gεdµ(◁)

∣∣ then,

sup
ε↑Fω

∣∣∣∣
∫

ω

gεdµN (◁)↘
∫

ω

gεdµ(◁)

∣∣∣∣ =
∣∣∣∣
∫

ω

gε→dµN (◁)↘
∫

ω

gε→dµ(◁)

∣∣∣∣

≃
∣∣∣∣
∫

ω

hε↑dµN (◁)↘
∫

ω

hε↑dµ(◁)

∣∣∣∣+ ω+B. (575)

We can take a supremum over ϱ↘ in the upper bound of the right side term; we have

sup
ε↑Fω

∣∣∣∣
∫

ω

gεdµN (◁)↘
∫

ω

gεdµ(◁)

∣∣∣∣ ≃ B + ω+ sup
ε↑↑Fω↑

∣∣∣∣
∫

ω

hε↑dµN (◁)↘
∫

ω

hε↑dµ(◁)

∣∣∣∣ . (576)

Then we use the inequality (568) and (571) we have that,

sup
ε↑Fω

∣∣∣∣
∫

ω

gεdµN (◁)↘
∫

ω

gεdµ(◁)

∣∣∣∣ ≃ 2ω+B, (577)

with probability at least 1↘ [N (Fε, d(., .), ω/(2K))⇀(ω/2) + ⇀C ]. Now rescaling we obtain that

P

(
sup
ε↑Fω

∣∣∣∣
∫

ω

gεdµN (◁)↘
∫

ω

gεdµ(◁)

∣∣∣∣ ⇑ ω+B


≃ N (Fε, d(., .), ω/(2K))⇀(ω/4) + ⇀C . (578)
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