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Abstract

Despite the empirical success of Low-
Rank Adaptation (LoRA) in fine-tuning pre-
trained models, there is little theoretical un-
derstanding of how first-order methods with
carefully crafted initialization adapt models
to new tasks. In this work, we take the
first step towards bridging this gap by the-
oretically analyzing the learning dynamics of
LoRA for matrix factorization (MF) under
gradient flow (GF), emphasizing the crucial
role of initialization. For small initialization,
we theoretically show that GF converges to
a neighborhood of the optimal solution, with
smaller initialization leading to lower final er-
ror. Our analysis shows that the final error
is a!ected by the misalignment between the
singular spaces of the pre-trained model and
the target matrix, and reducing the initial-
ization scale improves alignment. To address
this misalignment, we propose a spectral ini-
tialization for LoRA in MF and theoretically
prove that GF with small spectral initializa-
tion converges to the fine-tuning task with
arbitrary precision. Numerical experiments
fromMF and image classification validate our
findings.

1 INTRODUCTION

Low-Rank Adaptation (Hu et al., 2022) (LoRA) has
proven to be a highly e!ective and parameter-e”cient
method for fine-tuning pre-trained models, showing
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significant empirical success in both natural language
processing (Meng et al., 2020; Liang et al., 2022; Zhang
et al., 2023; Yang et al., 2024) and computer vision
tasks (Zhai et al., 2022; Filatov and Kindulov, 2023).
This method can be broadly described as follows:
given a pre-trained model f(x;W1, . . . ,WL) parame-
terized by W1, . . . ,WL, LoRA modifies it to f(x;W1+
B1A1, . . . ,WL +BLAL), where Wi → Rni+1↑ni , Bi →

Rni+1↑ri , Ai →Rri↑ni , and ri ↑min(ni, ni+1). In the
fine-tuning stage, Ai and Bi are the trainable param-
eters, while Wi remains fixed, with Bi initialized as
zero matrices and Ai initialized randomly.

Despite LoRA’s empirical success, its theoretical un-
derpinnings remain poorly understood. A key question
is why pre-trained models can be e”ciently fine-tuned
with LoRA using gradient-based methods, despite the
non-convex objective. Moreover, given LoRA’s fine-
tuning nature and specific initialization, it is essential
to explore how the pre-trained model and initialization
a!ect its learning dynamics. Existing theoretical work
primarily focuses on LoRA’s expressiveness (Zeng and
Lee, 2023) or characterizing the optimization land-
scape and generalization in the Neural Tangent Kernel
(NTK) regime (Malladi et al., 2023; Jang et al., 2024).
Other studies (Hayou et al., 2024a,b) suggest di!er-
ent learning rate scales for Ai and Bi, and initializing
Ai to zero while initializing Bi randomly yields bet-
ter performance on average compared to the reverse.
However, to the best of our knowledge, no prior work
has provided a thorough theoretical analysis of LoRA’s
learning dynamics with explicit convergence rates or
guarantees on the accuracy of the solution.

Contributions. In this paper, we study LoRA for
fine-tuning a matrix factorization (MF) task via gra-
dient flow (GF). Our analysis represents an initial
step towards understanding the learning dynamics of
LoRA. Our contributions are as follows:
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1. We first theoretically analyze the learning dynam-
ics of LoRA under GF with LoRA-based small ini-
tialization, focusing on the case where the di!er-
ence between the target matrices of the pre-training
and fine-tuning tasks is rank-one, and assuming
the pre-training MF task is perfectly solved by the
pre-trained weights. Our analysis reveals two key
phases: An alignment phase, where GF orients the
singular vectors of the LoRA weights to correct
the misalignment between the model and the fine-
tuning task, with smaller initialization scale imply-
ing greater alignment. A local convergence phase,
where the loss decreases linearly for a finite time un-
til reaching a threshold determined by the initializa-
tion scale, with smaller initialization scale implying
smaller final loss.

2. Motivated by the dependence of the final loss on
model misalignment, we propose a spectral initial-
ization that incorporates information from both the
fine-tuning task and the pre-trained model. We the-
oretically prove that GF with small spectral initial-
ization can converge to the target matrix with ar-
bitrary precision for general MF fine-tuning tasks.

3. We validate our theoretical findings through exten-
sive experiments on MF and several image classi-
fication tasks. In both settings, we observe that
smaller scales of LoRA-based initialization lead to
better alignment and lower final training error un-
der GD. Additionally, in certain computer vision
tasks, we observe improved test performance as the
initialization scale decreases. While our focus is
on LoRA’s optimization process, these results sug-
gest that the initialization scale may also impact
generalization performance. Finally, GF with small
spectral initialization in MF converges to the target
matrix with arbitrary precision.

1.1 Related Work

Theory of LoRA. Zeng and Lee (2023) analyze the
expressiveness of LoRA, and show that under certain
assumptions, LoRA can approximate any deep linear
network, multi-layer feed-forward network and trans-
former network. However, it is unclear whether LoRA,
optimized via gradient-based algorithms, can learn
these weights e”ciently. Another line of work (Mal-
ladi et al., 2023; Jang et al., 2024) studies LoRA in
the NTK regime. Specifically, Malladi et al. (2023)
characterize the conditions under which one can study
LoRA in the NTK regimes, and Jang et al. (2024)
show that when the LoRA rank is ri ↭

↓
N where N

is the number of samples, the optimization landscape
of LoRA has no spurious local minima, and GD can
find O(

↓
N)-rank solutions that generalize well. Addi-

tional research (Hayou et al., 2024a,b) experimentally
explores the e!ects of learning rates and initialization,
recommending di!erent learning rates for Ai and Bi,
and showing that initializing Bi as zero matrices and
Ai randomly improves performance compared to the
reverse. However, none of these studies provide ex-
plicit convergence rates or consider the influence of
pre-trained models in the optimization process, leav-
ing gaps in the understanding of LoRA’s learning dy-
namics.

Learning Dynamics of Low-Rank MF with
Small Initialization. Our analysis of LoRA builds
upon techniques developed for low-rank MF with small
initialization, which falls outside the NTK regime.
Specifically, Stöger and Soltanolkotabi (2021); Jin
et al. (2023); Soltanolkotabi et al. (2023) analyze GD
under small initialization, demonstrating the conver-
gence and learning dynamics of GD. However, apply-
ing these techniques to LoRA in the context of MF in-
troduces several key di!erences, such as distinct learn-
ing dynamics and initialization methods. We refer
readers to §2.1 for a detailed discussion of these dif-
ferences and the additional challenges they present.

Spectral Initialization for LoRA. Several spectral
initialization methods for LoRA (Ba#lazy et al., 2024;
Lin et al., 2024; Meng et al., 2024; Wang et al., 2024)
have been proposed, based on the singular value de-
composition (SVD) of pre-trained weights. Specifi-
cally, Ba#lazy et al. (2024); Lin et al. (2024); Meng
et al. (2024) suggest initializing the left (and right)
singular spaces of LoRA weights Bi (and Ai) using
the top-ri singular spaces of the pre-trained weights,
ensuring that during training, BiAi aligns with the
principal components of Wi. Conversely, Wang et al.
(2024) initialize Bi and Ai using the bottom-ri singu-
lar spaces of the pre-trained weights. Despite their dif-
ferences, both approaches report better performance
than standard LoRA. However, these methods over-
look the fine-tuning task. In Appendix G, we pro-
vide examples where previous methods fail to fine-tune
pre-trained models for MF, underscoring the impor-
tance of considering the fine-tuning data when design-
ing spectral initialization for LoRA. In this work, we
propose a spectral initialization that leverages both
the pre-trained weights and the fine-tuning target ma-
trix, demonstrating superior performance compared to
standard LoRA-based initialization (see §4 for details).

1.2 Notation

We use lower case letters a to denote a scalar, and
capital letters A and A

↓ to denote a matrix and its
transpose. We use ↔A↔F and ↔A↔ to denote the Frobe-
nius and spectral norms of A, and A[i, j] to denote its
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(i, j)-th element. We use a to denote a vector. For a
function f(t), we use ḟ(t) := d

dtf(t) to denote its time
derivative.

2 PRELIMINARIES

In this section, we first introduce the problem of apply-
ing LoRA to fine-tune MF tasks. Then we outline the
key assumptions that underlie our analysis, addressing
their implications. Furthermore, we highlight the crit-
ical distinctions between LoRA and traditional MF,
and discuss the associated challenges in the analysis.

We consider applying LoRA to the classic MF. Specif-
ically, we assume that we have a solution (W1,W2) to
a pre-training task of factorizing a target matrix Ypre:

(W2,W1) → argmin
U,V

1

2
↔Ypre ↗ UV ↔

2
F (1)

where W2 → Rm↑h
,W1 → Rh↑n are the pre-trained

weights. Problem 1 covers low-rank MF (Chi et al.,
2019; Koren et al., 2009) (h ↘ min(m,n)), and over-
parametrized MF (Li et al., 2018; Tarmoun et al., 2021;
Min et al., 2021; Geyer et al., 2020; Eftekhari, 2022;
Xu et al., 2023) (h > min(m,n)).

We are interested in solving a fine-tuning task using
LoRA by minimizing the following objective

min
A1,A2,B1,B2

1

2
↔Yft↗(W2+B2A2)(W1+B1A1)↔

2
F

︸ ︷︷ ︸
:=L(A1,A2,B1,B2)

(2)

where Yft → Rm↑n is the target data matrix for
this fine-tuning task, A1 → Rr↑n

, B1 → Rh↑r
, A2 →

Rr↑h
, B2 → Rm↑r are LoRA weight matrices, and r is

the LoRA rank. In practice, the chosen LoRA rank
is typically much smaller than the dimensions of the
pre-trained weights, satisfying r ↑ min(m,h, n).

Gradient Flow as Training Algorithm. We con-
sider solving Problem 2 using GF

Ȧi(t)=↗
ωL(t)

ωAi(t)
, Ḃi(t)=↗

ωL(t)

ωBi(t)
, i = 1, 2 (3)

where we use t to denote the time index in the
gradient flow, and use L(t) as a shorthand for
L(A1(t), A2(t), B1(t), B2(t)). Throughout the paper,
we will use Ai, Bi to denote Ai(t), Bi(t) when no con-
fusion is caused by dropping t.

LoRA-based Initialization. We initialize
A1(0), A2(0), B1(0), B2(0) entry-wise i.i.d. as fol-
lows: A1(0)[i, j], A2(0)[i, j] ≃ N (0,ε2), B1(0)[i, j] =
B2(0)[i, j] = 0. We are particularly interested in the
training dynamics when ε is small, or equivalently

when A1 and A2 are initialized near zero matrices.
The learning dynamics of GF/GD with weights ini-
tialized close to zero have been studied in the context
of MF (Stöger and Soltanolkotabi, 2021; Jin et al.,
2023; Soltanolkotabi et al., 2023) and two-layer neural
networks (Bui Thi Mai and Lampert, 2021; Min et al.,
2024). Throughout this paper, we use the term small
initialization to refer to LoRA-based initialization
with a small ε, unless otherwise specified.

We make the following assumptions in the paper:

Assumption 2.1. We assume that W2,W1 factorize
Ypre perfectly, i.e., Ypre = W2W1. Moreover, we as-
sume that W2,W1 satisfy: W2 = UY $W2G

↓
,W1 =

G$W1V
↓
Y , where G is an orthogonal matrix.

Assumption 2.2. Consider the SVD of Ypre =
UY $preV

↓
Y . Then, we assume the SVD of %Y :=

Yft↗Ypre has the same left and right singular matrices
as Ypre, i.e., %Y =UY $!Y V

↓
Y .

Assumption 2.1 ensures that the pre-training task is
solved perfectly, and that the left and right singu-
lar matrices of W1 and W2, respectively, are perfectly
aligned with the singular matrices of Ypre. This as-
sumption is satisfied if the pre-trained task is solved
using GF with either spectral initialization (Li et al.,
2019; Luo et al., 2019; Lu and Li, 2020) or balanced
initialization (Bui Thi Mai and Lampert, 2021; Min
et al., 2024).

Assumption 2.2 ensures certain similarities between
pre-trained and fine-tuning tasks. Empirical evidence
from several studies (Yosinski et al., 2014; Peters et al.,
2019; Matsoukas et al., 2022) demonstrates that fine-
tuning yields optimal results when there exists a sub-
stantial correlation between the pre-training and fine-
tuning tasks. In the context of MF, we formally char-
acterize this similarity as a rank(%Y ) modification of
the pre-training target matrix to the fine-tuning target
matrix. Specifically, this modification occurs along the
subspace spanned by a subset of singular vectors of the
pre-trained target matrix, Ypre, and the magnitude of
this modification along the subspaces is quantified by
the parameter $!Y .

2.1 Challenges in the Analysis of Learning
Dynamics of Problem 2 Optimized via
GF

In this section, we discuss the di!erence between Prob-
lem 2 and MF, and how this di!erence leads to addi-
tional challenges in analyzing the learning dynamics of
Problem 2 optimized via GF.

Initialization of LoRA Weights Near Saddle
Points. In LoRA, the weights A1 and A2 are ran-
domly initialized from a Gaussian distribution, while
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B1 and B2 are initialized as zero matrices. This con-
trasts with MF, where both factor matrices are typi-
cally initialized randomly. Upon inspection, it is ev-
ident that when both Ai and Bi are zero matrices,
they correspond to a saddle point in the objective.
Thus, the LoRA weights are initialized near these sad-
dle points when the initialization scale ε is small. It
remains unclear whether GF will converge to a global
optimum or become trapped in a local minimum or
saddle point for Problem 2.

Complex Learning Dynamics. In low-rank MF,
the objective is to approximate a target matrix by the
product of two low-rank matrices. However, in LoRA,
the model adopts a distinct architecture due to the
influence of the pre-trained weights, as shown below:

(W2+B2A2)(W1+B1A1)

=W2B1A1+B2A2W1+B2A2B1A1 (4)

As one can see, the products of the low-rank matri-
ces are influenced by the pre-trained weights W2 and
W1, resulting in terms W2B1A1+B2A2W1. Moreover,
the fine-tuning model includes a fourth-order term,
B2A2B1A1. These adjustments create dependencies
between the low-rank factors and the fixed pre-trained
weights and introduce higher-order terms of the LoRA
weights, which complicates the learning dynamics and
poses new challenges for analyzing the optimization
process.

The aforementioned challenges indicate that Prob-
lem 2 is more complex than classical MF. In the fol-
lowing sections, we address these challenges and derive
convergence results for LoRA.

3 LEARNING DYNAMICS UNDER
SMALL INITIALIZATION

In this section, we present our main theorem on the
learning dynamics of Problem 2 trained via GF for
the case where rank(%Y ) = 1. In addition, we pro-
vide an overview of the proof strategy by formally
characterizing the alignment and local convergence
phases, and examine how key parameters—such as
pre-trained weights, initialization scale, and the tar-
get matrix—a!ect the learning behavior.

3.1 Main Theorem

In this section, we first introduce some notation that
will be used later. Then, we present our main results
in the context of rank(%Y ) = 1.

Notation. Let Z1 =

(
B1

A
↓
1

)
and Z2 =

(
B2

A
↓
2

)
denote

the concatenation of the LoRA weights. We use US
Z1

and US
Z2

to represent the top left singular vectors of
Z1 and Z2, respectively. When rank(%Y ) = 1, let
%Y =ϑuv↓ where u and v are a pair of singular vec-
tors of Ypre (Assumption 2.2). From Assumption 2.1,
we can infer that u and v are left and right singular
vectors ofW2 andW1, respectively. Let (ϑW1 , g, v) and
(ϑW2 , u, g) be the pairs of singular values and their cor-
responding singular vectors for W1 and W2. Finally,
we define ϖw=

ωW1
ωW2

.

Theorem 3.1. Assume ϖw ⇐=1; without loss of gener-
ality take ϖw < 1. Then, for any LoRA rank r, there
exists constants c1, c2=polylog( 1

|1↔εw| ,ϑW2 ,ϑW1), and

c3,ε
→ = polylog(|1↗ϖw|,ϑW2 ,ϑW1) such that for any

0 < ε ↘ ε
→, after time T =

c1 log
(

1
ω

)

ωωW2
+

c2 log
(

L(0)
ω

)

ωωW2
, we

have L(T ) ↘ 2εc3 .

The proof of Theorem can be found in Appendix B. In
Theorem 3.1, we assume without loss of generality that
ϖw < 1. This assumption introduces a dependency of
the training time T on ϑW2 . Symmetrically, if one
assumes ϖw > 1, the training time would instead be
given by:

T =
c1 log

(
1
ϑ

)

ϑϑW1

+
c2 log

(L(0)
ϑ

)

ϑϑW1

. (5)

For consistency and ease of presentation, we will as-
sume ϖw < 1 throughout the paper.

Theorem 3.1 states that after training for time T , the
training loss L(T ) decreases to a value depending on
the initialization scale ε. Notice that L(T ) can be
made arbitrarily small by selecting a su”ciently small
ε, and the dependence of T on ε is logarithmic. Thus,
reducing ε leads to only a mild increase in the required
training time to achieve a low training loss. Further-
more, in Figure 1, we numerically validate that, for
di!erent initialization scales ε, the final loss to which
GF converges decreases as ε decreases.

Interpretation of Training Time T . Recall in §1,
the learning dynamics can be decomposed into two
phases: alignment and local convergence. As will be-
come clear in §3.2 and §3.3, the sum decomposition
of the training time T in Theorem 3.1 in fact derives
from this two-phase structure:

T =
c1 log

(
1
ϑ

)

ϑϑW2︸ ︷︷ ︸
Phase I: alignment

+
c2 log

(L(0)
ϑ

)

ϑϑW2︸ ︷︷ ︸
Phase II: local convergence

. (6)

As one can observe, the training time required for each
phase scales inversely with ϑϑW2 . In the subsequent
sections (§3.2 and §3.3), we demonstrate that this is
because, during the alignment phase, US

Z1
(t) aligns
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Figure 1: We simulate Problem 2 in the context of ϖw<1 using both small initialization (see §2) and small spectral
initialization (see §4). Each simulation is repeated thirty times, with shaded regions representing one standard
deviation above and below the mean (see §5.1 for details). The left panel shows the evolution of the loss for
di!erent initialization scales ε with small and spectral initialization. The middle panel tracks the alignment
quality between US

Z1
and ω1, measured by log10(1 ↗ cos(ϱ1,US

Z1
(t))), where smaller values indicate better

alignment. The right panel focuses on small initialization with ε = 10↔5, illustrating how the reconstruction
loss, alignment between US

Z1
and ω1, and ↔Z1↔ evolve during the alignment phase.

with ω1 =

(
g
v

)
, and the speed of this alignment is

governed by ϑϑW2 . Moreover, smaller initialization
leads to longer alignment phase and better quality of
the alignment as illustrated in the middle panel in Fig-
ure 1. In the local convergence phase, we demonstrate
that Problem 2 satisfies a local Polyak-#Lojasiewicz
(PL) condition, with the PL constant being propor-
tional to ϑϑW2 . Consequently, the training time for
each phase is inversely proportional to ϑϑW2 .

In the following sections, we present a proof sketch for
Theorem 3.1 by formally characterizing the alignment
phase and local convergence phase.

3.2 Proof Strategy of Alignment Phase

In this section, we argue that during the initial phase
of training, GF implicitly performs spectral initializa-
tion by aligning US

Z1
(t) with ω1. Simultaneously, ↔Z1↔

continues to grow, and the di!erence between ϑW1 and
ϑW2 leads to a progressive increase in the imbalance
between ↔Z1↔ and ↔Z2↔. Moreover, the initialization
scale a!ects the quality of alignment, with smaller ini-
tialization leading to better alignment.

.

We now present the main intuition behind the align-
ment phase. Our starting point is the following obser-
vation that the learning dynamics can be decomposed

as follows

Ż1=

(
ϑϑW2H1+

(
0 D1

D
↓
1 0

))
Z1 ,

Ż2=

(
ϑϑW1H2+

(
0 D2

D
↓
2 0

))
Z2 , (7)

where H1, H2, D1, D2 are defined as follows

H1=

(
0 gv↓

vg↓ 0

)
, H2=

(
0 ug↓

gu↓ 0

)

F =W2B1A1+B2A2W1+B2A2B1A1, E=%Y ↗F

D1=A
↓
2 B

↓
2 E↗W

↓
2 F, D2=EA

↓
1 B

↓
1 ↗FW

↓
1 . (8)

At initialization, the magnitude of ϑϑW2H1,ϑϑW1H2

are significantly larger than those of D1, D2, since
↔D1↔F , ↔D2↔F ≃ O(ε2). Therefore, when ε is su”-
ciently small, the learning dynamics shown in (7) can
be approximated as follows

Ż1 ⇒ ϑϑW2H1Z1, Ż2 ⇒ ϑϑW1H2Z2 . (9)

Our analysis of the alignment phase centers on inter-
preting (7) as a perturbation of the approximate learn-
ing dynamics in (9). To build intuition, we summarize
the simplified dynamics (9) in the following claim, de-
ferring the perturbation analysis to Appendix C.

Claim 3.1. Consider the following ODE system: Ż1=
ϑϑW2H1Z1, Ż2=ϑϑW1H2Z2. Taking Z1 as an exam-
ple, one can first show that the eigenvalue decomposi-

tion of H1 is H1 = ω1ω↓
1 ↗ ω̄1ω̄↓

1 , where ω̄1 =

(
g
↗v

)
.

Based on this, the following conditions hold:
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1. Closed-form Solution for Z1:

Z1(t) = exp(ϑϑW2t)ω1ω
↓
1 Z1(0)

+ exp(↗ϑϑW2t)ω̄1ω̄
↓
1 Z1(0) . (10)

2. Growth of ↔ω1ω↓
1 Z1↔:

d
dt log↔ω1ω↓

1 Z1↔
2=2ϑϑW2 .

3. Imbalance Between ↔ω1ω↓
1 Z1↔ and ↔ω2ω↓

2 Z2↔:

d

dt
log

(
↔ω1ω↓

1 Z1(t)↔2

↔ω2ω↓
2 Z2(t)↔2

)
= 2ϑ(ϑW2↗ϑW1) , (11)

where ω2=

(
u
g

)
.

Claim 3.1 demonstrates that the simplified dynamics
of Z1 and Z2 lead to the alignment of US

Z1
with ω1,

the growth of the spectrum of Z1 projected onto the
space spanned by ω1ω↓

1 , and the increasing imbalance
between ↔Z1↔ and ↔Z2↔. Moreover, as training pro-
gresses, US

Z1
will be su”ciently aligned with ω1, lead-

ing to ↔Z1↔⇒↔ω1ω↓
1 Z1↔ (respectively Z2).

LoRA Weights Escape Saddle Points. In §2.1,
we discussed that at initialization, the LoRA weights
are close to a saddle point where both Ai and Bi, for
i = 1 or 2, are zero matrices. Claim 3.1 provides in-
sights into how the LoRA weights gradually escape this
saddle point during the alignment phase, through the
growth of ↔Z1↔. Consequently, GF will not be trapped
in this saddle point, which ensures convergence. The
right panel in Figure 1 numerically demonstrates that
↔Z1↔moves away from zero at the end of the alignment
phase, following the actual dynamics of LoRA.

The simplified dynamics summarized in Claim 3.1 ac-
curately approximate the true LoRA dynamics only up
to a finite time T1, due to the growth of perturbation
terms D1 and D2 (see again Appendix C). The time
T1 is the end of the alignment phase, at which point
the alignment and imbalance of the true dynamics are
characterized by the following claim.

Claim 3.2. Under the same setting in Theorem 3.1,
there exists constants c4, c5 such that at T1, one has

1. Good Alignment: cos2 (US
Z1

(T1),ω1)⇑1↗c4ε
1+εw
3+εw .

2. Su!cient Imbalance: ↗Z1(T1)↗2
2

↗Z2(T1)↗2
2
⇑c5ε

↔ 4(1→εw)
(5→εw) .

The Proof of Claim 3.2 can be found in Appendix C.

3.3 Proof Strategy of Local Convergence
Phase

At the end of the alignment phase, we established suf-
ficient alignment between US

Z1
(T1) and ϱ1, as well as a

significant imbalance between the norms of ↔Z1(T1)↔
and ↔Z2(T1)↔ (see Claim 3.2). However, it remains
unclear whether these properties persist into the local
convergence phase, or how the quality of alignment
and imbalance a!ect the convergence results.

In this section, we first demonstrate how the large
imbalance between ↔Z1↔ and ↔Z2↔ leads to simplified
learning dynamics for gradient flow (GF). Specifically,
with ↔Z1↔ ⇓ ↔Z2↔, the objective function can be ap-
proximated as:

L(t) =
1

2
↔%Y ↗W2A1B1 ↗A2B2W1 ↗A2B2A1B1↔

2
F

⇒
1

2
↔%Y ↗W2A1B1↔

2
F . (12)

This approximation reduces the objective to a form
similar to MF, where the factors are A1 and B1. Con-
sequently, we can leverage the techniques developed
in Stöger and Soltanolkotabi (2021); Jin et al. (2023);
Soltanolkotabi et al. (2023) to derive the linear con-
vergence of GF in this setting.

The following theorem formally characterizes the per-
sistence of the alignment and the imbalance through-
out the local convergence phase, and establishes the
linear convergence rate of GF.

Theorem 3.2 (Local convergence). Under the same

setting as Theorem 3.1, let T2 =
c2 log

(↘
2L(0)
ω

)

ωωW2
. Then,

there exists constants c6, c7 such that for ⇔t → [T1, T1+
T2], the following holds

1. Good Alignment of US
Z1

(t) with ω1:

cos2 (US
Z1

(t),ω1)⇑cos2c6 (US
Z1

(T1),ω1) . (13)

2. Imbalance Between ↔Z1(t)↔ and ↔Z2(t)↔ Persists:

↔Z1(t)↔

↔Z2(t)↔
⇑

(
↔Z1(T1)↔

↔Z2(T1)↔

)c7

. (14)

3. Loss Converges Linearly:

L(t)

↘2 exp

(
↗

(
1↗ ↗Z2(T1)↗

↗Z1(T2)↗
)
(1↗ϖw)ϑϑW2(t↗T1)

16

)
L(T1)

+c8

(
1↗cos2 (US

Z1
(T1),ω1)

)
. (15)

Moreover, by substituting the alignment and imbalance
results from Claim 3.2 and assuming ε↘ ε

→, we can
simplify convergence rate in (15) as follows:

L(t)↘2 exp

(
↗(1↗ϖw)ϑϑW2(t↗T1)

32

)
L(T1)+2εc3 .

(16)
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The proof of Theorem 3.2 can be found in Appendix D.
Theorem 3.2 establishes that the alignment and im-
balance achieved during the alignment phase persist
throughout the local convergence phase, and shows
how these properties influence the rate of convergence.
Specifically, (15) demonstrates that the upper bound
on L(t) consists of two components: the first part con-
verges to zero at a linear rate, while the second part
is a constant that depends on the quality of the align-
ment between US

Z1
(T1) and ω1 at the end of the align-

ment phase, with better alignment leading to smaller
final loss. By applying the result from Claim 3.2, we
conclude that the rate of convergence is determined
by the pre-trained weights and the di!erence between
the target matrices of the pre-trained and fine-tuning
tasks, i.e., ϑϑW2 . Moreover, this rate is independent
of the initialization scale ε.

In §3, we analyzed GF with small initialization for
rank(%Y )= 1, showing that smaller initialization im-
proves alignment between US

Z1
and ω1, leading to a

lower final loss. This raises the question: if US
Z1

is per-
fectly aligned with ω1 at initialization, can GF achieve
zero loss? The following section confirms this by care-
fully designing spectral initialization for LoRA in MF.

4 LEARNING DYNAMICS UNDER
SPECTRAL INITIALIZATION

In this section, we introduce the spectral initialization
for LoRA applied to Problem 2 when LoRA rank r⇑

rank(%Y ) > 1. Then, we present the main theorem
on its learning dynamics, and compare them to the
rank-one case analyzed in §3.

Spectral Initialization. We initialize B1, B2 as
zero matrices. For A1, A2, we initialize them us-
ing the singular vector matrices of %Y,W2. In As-
sumptions 2.2 and 2.1, we assume the full SVD of
%Y,W2 are UY $!Y V

↓
Y , UY $W2G

↓ respectively. Let
U

S
Y , V

S
Y be the singular matrices of %Y correspond-

ing to the non-zero singular values. Then, we de-
fine G

S to be the left singular vectors of W2 corre-
sponding to the subcolumns U

S
Y of UY . Based on

the definition above, we initialize A1, A2 as follows:
A1 = G11$A1G

↓
12, A2 = G21$A2G

↓
22, where $A1 ,$A2

are diagonal matrices and initialized entry-wise i.i.d.
as $A1 [i, i],$A2 [i, i]≃N (0,ε2), and G11, G21 → Rr↑r

are arbitrary orthogonal matrices. The matrices G12=
[V S

Y , V
S
Y,≃], G22 = [GS

, G
S
≃] are constructed from the

orthogonal matrices V
S
Y,≃ → Rr↑(n↔r)

, G
S
≃ → Rr↑(h↔r)

where V
S
Y ↖V

S
Y,≃, G

S
↖G

S
≃.

Remark 4.1. Ba”lazy et al. (2024); Lin et al. (2024);
Meng et al. (2024); Wang et al. (2024) propose spectral
initialization for LoRA based solely on the pre-trained

weights. In contrast, our spectral initialization depends
on both the pre-trained weights and the fine-tuning tar-
get matrix. In Appendix G, we provide examples where
methods built purely on pre-trained weights fail to fine-
tune pre-trained models for MF, highlighting the im-
portance of incorporating the fine-tuning target matrix
when designing spectral initialization for LoRA.

Learning Dynamics of LoRA Under Spectral
Initialization. Under spectral initialization, the
learning dynamics of GF can be decoupled into several
scalar dynamics. Specifically, let B̄1=G

↓
B1G

↓
11, Ā1=

G
↓
11A1G12, B̄2 = U

↓
Y B2G

↓
21, Ā2 =G

↓
21A2G22, then one

can write the learning dynamics of Ā1, B̄1 as follows

d

dt
B̄1 = ($W2+B̄2Ā2)($!Y ↗F̄ )Ā↓

1 ,

d

dt
Ā1 = B̄

↓
1 ($W2+B̄2Ā2)

↓($!Y ↗F̄ ) .

where F̄ := $W2B̄1Ā1+ B̄2Ā2$W1 + B̄2Ā2B̄1Ā1. At
initialization, B̄i, Āi, i = 1, 2 are diagonal matrices
due to spectral initialization, then they remain di-
agonal during the training based on (17). Thus,
the learning dynamics of LoRA weights decouple
into the learning dynamics of the singular values of
LoRA weights. For ease of presentation in the fol-

lowing theorem, we will use ϑ
(i)
A1

to represent the
ith diagonal element of Ā1 (similar definition for

ϑ
(i)
A2

,ϑ
(i)
B1

,ϑ
(i)
B2

,ϑ
(i)
!Y ,ϑ

(i)
W2

,ϑ
(i)
W1

,ϑ
(i)
F̄
).

Theorem 4.1. Let ϖ
(i)
w =

ω(i)
W2

ω(i)
W1

, ς
(i)(t) = 1

2

(
ϑ
(i)
!Y ↗

ϑ
(i)
F̄

)2
, z

(i)
1 =(ϑ(i)

A1
)2+(ϑ(i)

B1
)2 (respectively z

(i)
2 ). In the

case where ϖ
(i)
w ⇐= 1, we assume ϖ

(i)
w < 1 WLOG, then

the learning dynamics has two phases which can be

separated by T
(i)
1 = 2

(3+ε(i)w )ω(i)
!Y ω(i)

W2

log
( ω(i)

!Y

16z(i)
1 (0)

)

1. Growth of Norm and Imbalance: ⇔t↘T
(i)
1

d

dt
log z(i)1 ⇑

3+ϖ
(i)
w

2
ϑ
(i)
!Y ϑ

(i)
W2

,

d

dt
log

(
z
(i)
1

z
(i)
2

)
⇑

3(1↗ϖ
(i)
w )

2
ϑ
(i)
!Y ϑ

(i)
W2

. (17)

2. Local Convergence: for ⇔t⇑T
(i)
1 , the loss converges

linearly

ς
(i)(t)↘exp

(
↗
(1↗ϖ

(i)
w )ϑ(i)

!Y ϑ
(i)
W2

(t↗T1)

8

)
ς
(i)(T1) .

The proof of Theorem 4.1 can be found in Appendix F.

Comparison with Small Initialization. Theo-
rem 4.1 shows that the dynamics of each singular value
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Figure 2: The left and middle panels report the loss and accuracy evaluated on the training and evaluation
datasets for ResNet on the CIFAR-10 dataset. The right panel shows the evolution of the alignment between
the singular matrices of the LoRA weights and the target directions (with smaller values indicating better
alignment), as well as the norm of the LoRA weights. We repeat the simulation thirty times, with the shaded
regions representing one standard deviation above and below the mean.

go through two distinct phases: a growth of norm and
imbalance phase, where the norm of the singular val-
ues increases from zero, and one pair of singular values
of the LoRA weights becomes dominant depending on
the singular values of the pre-trained weights along the

same direction, i.e., ϖ(i)w . A local convergence phase,
where the singular values of the model converge to
the singular values of the target matrix, with the loss
decreasing at a linear rate. The phenomena described
above can also be observed in Theorem 3.1. Due to the
spectral initialization of the LoRA weights, the model
is perfectly aligned with the singular spaces of %Y

from the beginning. Thus, unlike Theorem 3.1, The-
orem 4.1 does not require an alignment phase. A key
di!erence of Theorem 4.1 is that the loss provably con-
verges to arbitrary precision, whereas in Theorem 3.1,
the final loss is constrained by the initialization scale
(see Figure 1 for numerical validation).

Comparison with Incremental Learning in Low-
rank MF. Jin et al. (2023); Pesme and Flammarion
(2023) theoretically establish the incremental learning
phenomenon in MF/matrix sensing problems. They
show that GD/GF with small initialization gradually
learns solutions with increasing ranks, with the order
of learned singular values determined by their magni-
tudes. In Theorem 4.1, we characterize the duration
of the growth of norm and imbalance phase and the
convergence rate in the local convergence phase, both
determined by the product of the singular values of

%Y and W2 (or W1, depending on ϖ
(i)
w ). Specifically,

larger values of ϑ(i)
!Y ϑ

(i)
W2

(or ϑ
(i)
!Y ϑ

(i)
W1

, depending on

ϖ
(i)
w ) lead to a shorter growth of norm and imbalance
phase and faster convergence in the local convergence
phase, indicating that the singular values of the target

matrix along this direction are learned faster.

5 EXPERIMENTAL RESULTS

In this section, we run experiments on LoRA applied
to MF and image classification problems to validate
the theoretical findings in §3. Specifically, we are inter-
ested in the following questions: First, does decreasing
the initialization scale lead to a smaller final training
error? Second, does the alignment phenomenon occur
in the early stages of training? In both experiments,
we provide a”rmative answers to these questions.

5.1 Experiments for MF

In this section, we solve Problem 2 with rank(%Y )=1,
LoRA rank r=4, and the factor matrix sizes are W2 →

R10↑100 and W1 → R100↑10. We optimize the objective
using GD with a small step size of 10↔4. We gener-
ate the pre-trained and fine-tuning target matrices as
follows: Ypre → R10↑10, where Ypre[i, j] ≃ N (0, 1), and
Yft = Ypre+5u1v

↓
1 , where u1 and v1 are the top sin-

gular vectors of Ypre. For the pre-trained weights, we

generate them as follows: W2=1.05↙UY $
1/2
preG

↓, and

W1=
1

1.05G$1/2
preV

↓
Y , whereG → R100↑100 is an orthogo-

nal matrix. We initialize the LoRA weights using small
initialization and spectral initialization, with di!erent
initialization scales ε → {10↔5

, 10↔4
, 10↔3

}.

Figure 1 numerically validates our theoretical findings
from Theorem 3.1, Theorem 4.1 and Claim 3.2. The
right panel shows that when the initialization scale
is small, the final loss converges to a value that de-
pends on initialization scale, with smaller scales lead-
ing to lower final loss, as predicted by Theorem 3.1.
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Moreover, when using spectral initialization, GF con-
verges to machine-precision loss regardless of the ini-
tialization scale supporting Theorem 4.1. The middle
panel illustrates that smaller initialization results in a
longer alignment phase and better alignment, consis-
tent with Claim 3.2. Finally, the left panel demon-
strates that during the alignment phase, US

Z1
first

aligns with ϱ1, followed by an increase in the norm
of the LoRA weights. By the end of the alignment
phase, su”cient alignment is achieved, and the LoRA
weights move away from saddle points, where Ai and
Bi are zero matrices.

5.2 Experiments for Image Classification

In this section, we fine-tune ResNet-50 (He et al.,
2016), pre-trained on ImageNet (Deng et al., 2009),
for CIFAR-10 classification by adjusting the final fully-
connected layer to 10 classes. LoRA is applied to
this layer with initialization standard deviations rang-
ing from 1.0 to 0.025, and training is conducted us-
ing the Adam optimizer with a learning rate of 0.01.
We measure the e!ect of initialization scales on LoRA
weights by evaluating training and validation losses
and accuracies, as shown in Figure 2. Alignment
measures how well LoRA’s singular vectors align with
target directions, with smaller values indicating bet-
ter alignment. Appendix H details how target di-
rections are determined, and includes more experi-
ments on VGG (Simonyan and Zisserman, 2014) and
ViT-base-patch16 (Dosovitskiy et al., 2021).

The left and middle panel in Figure 2 demonstrate that
smaller initialization leads to lower training and eval-
uation losses for ResNet. The left panel shows that in
the first hundred steps of training, the singular vectors
of LoRA align with the target directions, and the norm
grows. The simulation results for ResNet match our
theoretical findings for Problem 2. Moreover, although
our theory focuses on training error of Problem 2, the
improved test performance as the initialization scale
decreases suggests that the initialization scale may also
a!ect generalization performance.

6 Conclusion

This paper studied the learning dynamics of LoRA for
MF under GF, highlighting the critical role of initial-
ization. We theoretically derive convergence results
for LoRA with both small initialization and spectral
initialization. Our analysis reveals di!erent behaviors
under these two initializations: GF with small initial-
ization converges to a neighborhood around the tar-
get matrix, with smaller initialization scales leading
to more accurate convergence, while GF with spec-
tral initialization converges to the target matrix with
arbitrary precision. Numerical results from MF and

computer vision validate our theoretical findings.
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Supplementary Materials

A Preliminary Lemma

In this section, we present several preliminary lemma which will be used in the following sections.

Lemma A.1. For matrix A,B, we have

ϑ
2
min(A)↔B↔

2
F ↘ ↔AB↔

2
F ↘ ϑ

2
max(A)↔B↔

2
F

ϑ
2
min(B)↔A↔

2
F ↘ ↔AB↔

2
F ↘ ϑ

2
max(B)↔A↔

2
F . (18)

Proof.

↔AB↔
2
F = tr

(
ABB

↓
A

↓)

= tr
(
A

↓
ABB

↓) use cyclic property of trace

↘ φmax

(
A

↓
A
)
↔B↔

2
F use trace inequality

= ϑ
2
max(A)↔B↔

2
F . (19)

For the other way

↔AB↔
2
F = tr

(
ABB

↓
A

↓)

= tr
(
A

↓
ABB

↓)

↘ φmax

(
BB

↓)
↔A↔

2
F

= ϑ
2
max(B)↔A↔

2
F . (20)

The lower bound is similar.

Lemma A.2. For matrix A → Rm↑r
, B

r↑n, we have

↔AB↔ ↘ ↔A↔ · ↔B↔ ↘
1

2

(
↔A↔

2 + ↔B↔
2
)
↘

1

2

(
↔A↔

2
F + ↔A↔

2
F

)
. (21)

The proof of Lemma A.2 follows the basic property of norm and Cauchy-Swartz inequality.

Lemma A.3 (Singular Space Perturbation Bound). Let M→ and M = M
→+E be two matrices in Rm↑n (WLOG,

we assume m ↘ n) whose SVDs are given respectively by

M
→ =

(
U

→
U

→
≃
)($→ 0 0

0 $→
≃ 0

)(
(V →)↓

(V →
≃)

↓

)
, (22)

M =
(
U U≃

)($ 0 0
0 $≃ 0

)(
(V )↓

(V≃)↓

)
. (23)

Here, ϑ1 ⇑ · · · ⇑ ϑm (respectively ϑ
→
1 ⇑ · · · ⇑ ϑ

→
m), and $,$→

→ Rr↑r. If ↔E↔ < ϑ
→
r ↗ ϑ

→
r+1, then one has

↔UU
↓
↗ U

→(U→)↓↔ ↘

↓
2max↔E↔

ϑ→
r ↗ ϑ

→
r+1 ↗ ↔E↔

. (24)

We refer the readers to the proof of this lemma to Theorem2.9 in Chen et al. (2021).
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Lemma A.4 (Theorem 7.3.3 from Horn and Johnson (2012)). Let A → Rm↑n, let q = min(m,n), let ϑ1 ⇑ ϑ2 ⇑

· · · ⇑ ϑq be the ordered singular values of A, and define the Hemitian matrix

A =

(
0 A

A
→ 0

)
. (25)

WLOG, assume n ⇑ m. Then, let the SVD of A is A = V $W →
,$ = [$m, 0], V = [V1, V2], V̂1 = 1↘

2
V1, Ŵ = 1↘

2
W ,

and U =

(
V̂ ↗V̂ V2

Ŵ Ŵ 0

)
. Then, the eigenvalue decomposition of A is

A = U




$m 0 0
0 ↗$m 0
0 0 0



U
→
. (26)

We refer the readers to Horn and Johnson (2012) for detailed proof.

Lemma A.5 (Learning dynamics of LoRA). When applying GF in (3) to Problem 2, the learning dynamics of
LoRA weights satisfy the following ODEs

d

dt

(
B1

A
↓
1

)
=

(
0 (W2 +B2A2)↓E

E
↓(W2 +B2A2) 0

)(
B1

A
↓
1

)
,

d

dt

(
B2

A
↓
2

)
=

(
0 E(W1 +B1A1)↓

(W1 +B1A1)E↓ 0

)(
B1

A
↓
1

)
(27)

Proof. We take A1, B1 as an example. Direct calculations based on (3) yields the following

Ȧ1 = B
↓
1 (W2 +B2A2)

↓
E, Ḃ1 = (W2 +B2A2)

↓
EA

↓
1 . (28)

Then, one can combine the above equations to derive the result.

Lemma A.6. Given matrix A → Rm↑n, and use ai to denotes its i-th column. Let ϱ → Rm be any unit vector.

If cos

(
ϱ,

ai
↗ai↗

)
⇑ q holds for all i → [r], then the following holds

ϱ
↓
AA

↓
ϱ ⇑ q

2
↔A↔

2
F . (29)

Proof.

ϱ
↓
AA

↓
ϱ ⇑ = ϱ

↓
r∑

i=1

aia
↓
i ϱ

=
r∑

i=1

↔ai↔
2
· cos2

(
ϱ,

ai

↔ai↔

)

⇑ q
2

r∑

i=1

↔ai↔
2

= q
2
↔A↔

2
F . (30)

B Proof of Theorem 3.1

Our proof strategy for Theorem 3.1 involves decomposing the learning dynamics into two distinct phases: the
alignment phase and the local convergence phase. Theorem 3.1 builds on Claim 3.2 and Theorem 3.2, with
Theorem 3.2 itself relying on Claim 3.2. In this section, we assume Claim 3.2 and Theorem 3.2 hold, and prove
Theorem 3.1 based on this. Detailed proofs for Claim 3.2 and Theorem 3.2 are provided separately in Appendix C
and Appendix D. We state a detailed version of Theorem 3.1 as follows.
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Theorem B.1. Assuming ϖw ⇐=1, for any LoRA rank r, there exists constants c1, c2=polylog( 1
|1↔εw| ,ϑW2 ,ϑW1),

and c3,ε
→=polylog(|1↗ϖw|,ϑW2 ,ϑW1) such that for any 0 < ε ↘ ε

→, after time T =
c1 log

(
1
ω

)

ωωW2
+

c2 log
(

L(0)
ω

)

ωωW2
, we

have L(T ) ↘ 2εc3 .

Proof. Under the assumption that Theorem 3.2 holds, the following holds (See (16))

L(t)↘exp

(
↗
(1↗ϖw)ϑϑW2(t↗T1)

32

)
L(T1)+ε

c3 ↘exp

(
↗
(1↗ϖw)ϑϑW2(t↗T1)

32

)
L(0)+ε

c3 , (31)

where the last inequality holds because L under GF is non-increasing. Then, we choose t = T2 + T1 such that

exp

(
↗

(1↔εw)ωωW2 (t↔T1)
32

)
L(0)=ε

c3 , or equivalently

T2 =
32

(1↗ϖw)ϑϑW2

log

(
L(0)

εc3

)
, (32)

then we have L(T1 + T2) ↘ 2εc3 . Finally, we choose c2 in Theorem 3.1 such that

c2 =
32c3 log

(L(0)
ϑ

)

(1↗ ϖw) log
(L(0)

ϑ

) =
32c3
1↗ ϖw

, (33)

which completes the proof.

C Proof of Claim 3.2

In this section, we provide the proof of Claim 3.2. Our proof strategy is to divide the alignment phase into two
distinct subphases: early alignment phase and escape saddle phase. In the early alignment, we will show that
US

Z1
(t) aligns with ϱ1, and the norm of the LoRA weights stay small. In the escape saddle phase, we will show

that US
Z1

(t) continues to align with ϱ1 while the norm of the Z1 move away from zero. Claim 3.2 can be viewed
as a consequence of the escape saddle phase.

C.1 Proof of early alignment phase

In this section, we first provide a characterization of the early alignment phase, and its proof.

Theorem C.1 (early alignment phase). Under the same setting as Theorem B.1, we define

T̂1 =
2

(5↗ ϖw)ϑϑW2

log

(
1

εz2max

(
↔E↔+↔W1↔

2+↔W1↔↔W2↔+↔W2↔
2+

√
↔W1↔+ ↔W2↔

)
)
. (34)

There exists constants ↼1,↼2,↼3 that is independent of the initialization scale ε such that the following holds

↔Z1(T̂1)↔2F
↔Z2(T̂1)↔2F

⇑ ↼1ε
↔ 2(1→εw)

5→εw ,

cos2
(
ϱ1,U

S
Z1

(T̂1)

)
⇑ 1↗ ↼2ε

3+εw
5→εw ,

↔Z1(T̂1)↔F , ↔Z2(T̂1)↔F ↘ ↼3ε . (35)

Proof. Our proof for Theorem C.1 is based on the following decomposition of the learning dynamics of LoRA
(which is also shown in (7)),

Ż1=
(
ϑϑW2H1+D̂1

)
Z1 ,

Ż2=
(
ϑϑW1H2+D̂2

)
Z2 , (36)
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where H1, H2, D1, D2 are defined as follows

H1=

(
0 gv

↓

vg
↓ 0

)
, H2=

(
0 ug

↓

gu
↓ 0

)
, F =W2B1A1+B2A2W1+B2A2B1A1, E=%Y ↗F,

D̂1=

(
0 D1

D
↓
1 0

)
, D̂2=

(
0 D2

D
↓
2 0

)
, D1=A

↓
2 B

↓
2 E↗W

↓
2 F, D2=EA

↓
1 B

↓
1 ↗FW

↓
1 . (37)

Our analysis is built on the observation that during the early stage of the training, ↔D̂1↔, ↔D̂2↔ ≃ O(ε2), which
is extremely small compared with the magnitude of ϑϑW1H2,ϑϑW2H1. Claim 3.1 characterizes

We first characterize the learning dynamics of the angle and norm of each column of Z1 (or equivalently Z2) as
follows

d

dt
↔w1j↔

2 = 2∝ẇ1j , w1j′ = 2∝w1j , (ϑϑW2H1 + D̂1)w1j′

d

dt

w1j

↔w1j↔
=

ẇ1j

↔w1j↔
↗

w1j

↔w1j↔
2
·
ẇ

↓
1jw1j

↔w1j↔
= ϑϑW2

(
I ↗

w1jw
↓
1j

↔w1j↔
2

)
H1w1j

↔w1j↔
+

(
I ↗

w1jw
↓
1j

↔w1j↔
2

)
D̂1w1j

↔w1j↔
. (38)

Based on the above equation, one can characterize the growth of ↔w1j↔,
↗Z1↗F

↗Z2↗F
and angle alignment between w1j

with ϱ1, as is shown the following lemma

Lemma C.1. For any unit vector ϱ̂1 ↖ ϱ1, the following conditions hold

d

dt
log(↔w1j↔

2) ↘ 2(ϑϑW2 + ↔D1↔) ,
d

dt
log(↔Z1↔

2
F ) ↘ 2(ϑϑW2 + ↔D1↔)

d

dt
log

(
↔Z1↔

2
F

↔Z2↔
2
F

)
⇑ 2((1↗ ϖw)ϑϑW2 ↗ ↔D1↔ ↗ ↔D2↔) ,

d

dt
log

(cos(ϱ1,
w1j

↗w1j↗ )

cos(ϱ̂1,
w1j

↗w1j↗ )

)
⇑ ϑϑW2 ↗ 2↔D1↔ . (39)

We refer the readers to Appendix E.1 for the proof of Lemma C.1. Based on Lemma C.1, one can see that when
↔D1↔, ↔D2↔ is su”ciently small, one can control the growth of ↔w1j↔, ↔Z1↔F (and ↔w2j↔, ↔Z2↔F respectively) and
↗Z1↗2

F

↗Z2↗2
F
, cos(ϱ1,

w1j

↗w1j↗ ) monotonically increase. The following lemma formally characterize these properties.

Lemma C.2. We first define the following quantities

wmax=
1

ε
max
j⇐[r]

{
↔w1j↔, ↔w2j↔


, zmax=

1

ε
max

{
↔Z1(0)↔F , ↔Z2(0)↔F



cmin=min
j⇐[r]

{cos

(
ϱ1,

w1j(0)
↗w1j(0)↗

)

cos

(
ϱ̂1,

w1j(0)
↗w1j(0)↗

)


d1=
↔Z1(0)↔F
↔Z2(0)↔F

, d2 =
(m+ h↗ 1)

cmin
. (40)

Assume until T1(ϖ1, ϖ2), the following holds ↔D1(T1(ϖ1, ϖ2))↔ ↘ ϖ1, ↔D2(T1(ϖ1, ϖ2))↔ ↘ ϖ2. Then, the following
holds for all 0 ↘ t ↘ T1(ϖ1, ϖ2)

↔w1j(t)↔
2
↘ ε

2 exp

(
2(ϑϑW2 + ϖ1)t

)
w

2
max ,

↔Z1(t)↔
2
F ↘ ε

2 exp

(
2(ϑϑW2 + ϖ1)t

)
z
2
max ,

↔Z1(t)↔2F
↔Z2(t)↔2F

⇑ d1 exp

(
2
(
(1↗ ϖw)ϑϑW2 ↗ ϖ1 ↗ ϖ2

)
t

)
,

cos2
(
ϱ1,

w1j

↔w1j↔

)
⇑

1

1 + d2 exp
(
↗2(ϑϑW2 ↗ 2ϖ1)t

) . (41)
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We refer the readers to Appendix E.2 for the proof of Lemma C.2. Since we initialize Ai = 0, Bi ≃ N (0,ε2),
therefore the value of wmax, zmax, cmin, d1, d2 are all independent of ε. Moreover, when T1(ϖ1, ϖ2) is large, one can
show there will be su”cient imbalance and alignment at T1(ϖ1, ϖ2). Next, we will show that when ϖ1 = ϖ2 = ε,
we can characterize a lower bound on T1(ϖ1, ϖ2) which depends on ε, and it further leads to an characterization
of the alignment and imbalance between ↔Z1↔F , ↔Z2↔F evaluated at T1(ϖ1, ϖ2) depending on ε.

Lemma C.3. Under the same setting as Theorem C.1, we define T̂1 := T1(ε,ε) as follows

T̂1 =
2

(5↗ ϖw)ϑϑW2

log

(
1

εz2max(↔E↔+↔W2↔
2+↔W1↔↔W2↔+

√
↔W2↔)

)
. (42)

There exists constants ↼1,↼2,↼3 that is independent of the initialization scale ε such that the following holds

↔Z1(T̂1)↔2F
↔Z2(T̂1)↔2F

⇑ d1d

2(1→εw)
5→εw

3 ε
↔ 2(1→εw)

5→εw ,

cos2
(
ϱ1,

w1j(T̂1)

↔w1j(T̂1)↔

)
⇑ 1↗ d2d

↔ 3+εw
5→εw

3 ε
3+εw
5→εw ,

↔Z1(T̂1)↔F , ↔Z2(T̂1)↔F ↘
ε

d3
, (43)

where d3 = 1

z2
max(↗E↗+↗W2↗2+↗W1↗↗W2↗+

↓
↗W2↗)

.

We refer the readers to Appendix E.3 for details. Then, in the remaining of the proof of Theorem C.1, we will

show that cos2
(
ϱ1,

w1j(T̂1)

↗w1j(T̂1)↗

)
⇑ 1↗ d2d

↔ 3+εw
5→εw

3 ε
3+εw
5→εw ensures su”ciently alignment between ϱ1 and US

Z1
(T̂1).

Our starting point is the observation that

↔ϱ1ϱ
↓
1 Z1(T̂1)↔

2
F =

2∑

j=1

↔ϱ1ϱ
↓
1 w1j(T̂1)↔

2

=
2∑

j=1

cos2
(
ϱ1,

w1j(T̂1)

↔w1j(T̂1)↔

)
↔w1j(T̂1)↔

2

⇑

(
1↗ d2d

↔ 3+εw
5→εw

3 ε
3+εw
5→εw

)
↔Z1(T̂1)↔

2
F . (44)

and ↔(I ↗ ϱ1ϱ
↓
1 )Z1(T̂1)↔2F ↘ d2d

↔ 3+εw
5→εw

3 ε
3+εw
5→εw ↔Z1(T̂1)↔2F .

Then, we can apply Lemma A.3 (singular space perturbation bound) with M = Z1(T̂1),M→ = ϱ1ϱ
↓
1 Z1(T̂1) and

r = 1:

↔ϱ1ϱ
↓
1 ↗US

Z1
(T̂1)

(
US

Z1
(T̂1)

)↓
↔ ↘

↔(I ↗ ϱ1ϱ
↓
1 )Z1(T̂1)↔

↔ϱ1ϱ
↓
1 Z1(T̂1)↔ ↗ ↔(I ↗ ϱ1ϱ

↓
1 )Z1(T̂1)↔

↘
d2d

↔ 3+εw
5→εw

3 ε
3+εw
5→εw

1↗ 2d2d
↔ 3+εw

5→εw
3 ε

3+εw
5→εw

↘ 2d2d
↔ 3+εw

5→εw
3 ε

3+εw
5→εw , (45)

where the last inequality holds due to the assumption that d2d
↔ 3+εw

5→εw
3 ε

3+εw
5→εw ↘

1
2 .

C.2 Proof of escape saddle phase

At the end of the early alignment phase, we have shown su”cient alignment between each column of Z1(T̂1) (and
US

Z1
(T̂1)) with ϱ1, along with a significant imbalance between ↔Z1(T̂1)↔F and ↔Z2(T̂1)↔F . Moreover, the norm
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of the LoRA weights remains small at this stage. In the escape saddle phase, we show that this alignment and
imbalance persist, while the norm of the LoRA weights gradually increases until reaching a certain threshold.

The following theorem characterizes these properties formally.

Theorem C.2 (escape saddle phase). Under the same setting as Theorem B.1, when ε is su!ciently small, let

T̃1 =

2 log

(
1 + (1↔ε2w)ω2

4ϑ2z2
max

)

(1 + ϖw)ϑϑW2

. (46)

Then, there exists a time T1 → [T̂1, T̂1 + T̃1] such that the following holds

g
↓
B1(T1)A1(T1)v ⇑

(1↗ ϖw)ϑ

4ϑW2

,

↔Z1(T1)↔2F
↔Z2(T1)↔2F

⇑ ↼1ε
↔ 2(1→εw)

5→εw ,

cos2
(
ϱ1,U

S
Z1

(T1)

)
⇑ 1↗ ↼2ε

3+εw
5→εw . (47)

Proof. In this regime, we first show that when ↔D1↔, ↔D2↔ ↘
(1↔εw)ωωW2

2 , each column of Z1 continues to align

with ϱ1, and
↗Z1↗F

↗Z2↗F
continues to grow. This is because in Lemma C.1 and Lemma C.2, we have shown that

d

dt
log

(
↔Z1↔

2
F

↔Z2↔
2
F

)
⇑ 2((1↗ ϖw)ϑϑW2 ↗ ↔D1↔ ↗ ↔D2↔) ,

d

dt
log

(cos(ϱ1,
w1j

↗w1j↗ )

cos(ϱ̂1,
w1j

↗w1j↗ )

)
⇑ ϑϑW2 ↗ 2↔D1↔ . (48)

When ↔D1↔, ↔D2↔ ↘
(1↔εw)ωωW2

2 , we have

d

dt
log

(
↔Z1↔

2
F

↔Z2↔
2
F

)
⇑ 0 ,

d

dt
log

(cos(ϱ1,
w1j

↗w1j↗ )

cos(ϱ̂1,
w1j

↗w1j↗ )

)
⇑ ϑϑW2 ↗ 2↔D1↔ ⇑ ϖϑϑW2 > 0 . (49)

Then, we characterize speed of growth of g↓B1A1v.

Lemma C.4. One can characterize the growing speed of g↓B1A1v as follows

d

dt
g
↓
B1A1v ⇑

(
ϑϑW2 ↗ ↔D1↔

)
↔Z1↔

2
F min

j⇐[r]
cos2

(
ϱ1,

w1j

↔w1j↔

)
. (50)

The detailed proof of Lemma C.4 can be found in Appendix E.4

Based on Lemma C.4, we can show that for all t ⇑ T̂1, we have

d

dt
g
↓
B1A1v ⇑

(1 + ϖw)ϑϑW2

2
↔Z1↔

2
F

(
1↗ ↼2ε

3+εw
5→εw

)

⇑ ε
2
z
2
max exp

(
(1 + ϖw)ϑϑW2t

2

)
(1 + ϖw)ϑϑW2

2

(
1↗ ↼2ε

3+εw
5→εw

)

∞∈ g
↓
B1A1v ⇑ ε

2
z
2
max

(1 + ϖw)ϑϑW2

2

(
1↗ ↼2ε

3+εw
5→εw

)exp
(

(1+εw)ωωW2 t
2

)
↗1

(1+εw)ωωW2
2

. (51)
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Thus, for the time for g↓B1A1v to reach (1↔εw)ω
4ωW2

is upper bounded by

T̃1 =

2 log

(
1 + (1↔ε2w)ω2

4ϑ2z2
max

)

(1 + ϖw)ϑϑW2

. (52)

Notice the above T̃1 is derived under the assumption that ↔D1↔, ↔D2↔ ↘
(1↔εw)ωωW2

2 for all T̂1 ↘ t ↘ T̂1. However,

it is possible for ↔D1↔, ↔D2↔ to reach
(1↔εw)ωωW2

2 during this time. In the following section, we assume ↔D1↔

reaches
(1↔εw)ωωW2

2 first at time t→1 where T̂1 ↘ t
→
1 ↘ T̂1. Then, we show how to derive a lower bound on g

↓
B1A1v

based on this condition.

We first provide a lemma that will be used in the remaining of the proof.

Lemma C.5. Let &1 = 1
ϑ2 (B1(0)↓B1(0) ↗ A1(0)A1(0)↓). Then, when ε is su!ciently small, the following

condition holds for all t ⇑ 0

↔Z1↔
2
F ↗ 2ε2

r
2
↔&1↔

2r
↘ ↔B1A1↔ ↘

1

2
↔Z1↔

2
F . (53)

Remark C.1. Notice when LoRA weights are trained via GF, D1 is constant during the training. Similar
argument has been shown in Saxe et al. (2013); Tarmoun et al. (2021). Moreover, since B1(0) is initialized as
a zero matrix, and A1(0) is initialized entry-wise i.i.d. using N (0,ε2), D1 defined as above is determined by a
random matrix whose entry are N (0, 1). Thus, when ε is chosen to be small, it does not a#ect the magnitude of
D1.

We refer the readers to Appendix E.5 for detailed proof of Lemma C.5.

Now, we show an lower bound on g
↓
B1A1v as follows

↔D1↔ =↔A
↓
2 B

↓
2 E ↗W

↓
2 (W2B1A1 +B2A2W1 +B2A2B1A1)↔

↘↔W
↓
2 W2B1A1↔+ ↔B2A2↔

(
↔E↔+ ↔W1↔↔W2↔+ ↔W2↔↔B1A1↔

)

=↔uu
↓
W

↓
2 W2B1A1vv

↓
↔+ ↔uu

↓
W

↓
2 W2B1A1v≃v

↓
≃↔+ ↔u≃u

↓
≃W

↓
2 W2B1A1↔

+ ↔B2A2↔

(
↔E↔+ ↔W1↔↔W2↔+ ↔W2↔↔B1A1↔

)

=↔ϑ
2
W2

ug
↓
B1A1vv

↓
↔+ ↔ϑ

2
W2

ug
↓
B1A1v≃v

↓
≃↔+ ↔u≃u

↓
≃W

↓
2 W2B1A1↔

+ ↔B2A2↔

(
↔E↔+ ↔W1↔↔W2↔+ ↔W2↔↔B1A1↔

)

↘ϑ
2
W2

g
↓
B1A1v + ϑ

2
W2

↔B1A1v≃v
↓
≃↔+ ↔W2↔

2
↔u≃u

↓
≃B1A1↔

+ ↔B2A2↔

(
↔E↔+ ↔W1↔↔W2↔+ ↔W2↔↔B1A1↔

)
. (54)

The first term on the RHS is our target quantity, we will show that the rest of the terms on the RHS is small.

For ↔B1A1v≃v
↓
≃↔, we can use the alignment between each column of Z1 with ϱ1 to lower bound it. Specifically,

in the early alignment phase, we have proved that each column of Z1 aligns with ϱ1, i.e., cos(ϱ1,
w1j

↗w1j↗ ) ⇑

1 ↗ ↼2ε
3+εw
5→εw . Moreover, in the previous discussion, we can see that this alignment persist in the escape saddle

phase. This property ensures that each column of Z1 aligns well with ϱ1. The following lemma characterizes this
property ensures ↔g≃g↓≃B1A1↔

2
, ↔B1A1v≃v

↓
≃↔

2 are small.

Lemma C.6. Under the assumption that cos2(ϱ1,
w1j

↗w1j↗ ) ⇑ 1↗ ↼2ε
d, then one can show that

↔g≃g
↓
≃B1A1↔, ↔B1A1v≃v

↓
≃↔ ↘

√
↼2ε

d↔Z1↔
2
F (55)
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We refer the readers to Appendix E.6 for the proof. Based on Lemma C.6, we can show that

↔B1A1v≃v
↓
≃↔

2
, ↔g≃g

↓
≃B1A1↔

2
↘ ↼2ε

3+εw
5→εw ↔Z1↔

4
F . (56)

Based on these, we can further show that

↔D1↔ ↘ ϑ
2
W2

g
↓
B1A1v + ϑ

2
W2

↔B1A1v≃v
↓
≃↔+ ↔W2↔

2
↔u≃u

↓
≃B1A1↔

+ ↔B2A2↔

(
↔E↔+ ↔W1↔↔W2↔+ ↔W2↔↔B1A1↔

)

↘ ϑ
2
W2

g
↓
B1A1v + 2↔W2↔

2
√
↼2ε

3+εw
10→2εw ↔Z1↔

2
F

+
1

2
↔Z2↔

2
F

(
↔E↔+ ↔W1↔↔W2↔+ ↔W2↔

1

2
↔Z1↔

2
F

)

↘ ϑ
2
W2

g
↓
B1A1v + 2↔W2↔

2
√
↼2ε

3+εw
10→2εw ↔Z1↔

2
F

+
1

2↼1
ε

2(1→εw)
5→εw ↔Z1↔

2
F

(
↔E↔+ ↔W1↔↔W2↔+ ↔W2↔

1

2
↔Z1↔

2
F

)
(57)

If one can show that ↔Z1↔
2
F is upper bounded, i.e., ↔Z1↔

2
F ↘ d4, then we can show

g
↓
B1A1v ⇑

(1↗ ϖ)ϑ

2ϑW2

↗

2↔W2↔
2
↓
↼2ε

3+εw
10→2εw d

2
4 +

1
2ϖ1

ε
2(1→εw)
5→εw d

2
4

(
↔E↔+ ↔W1↔↔W2↔+ ↔W2↔

1
2d

2
4

)

ϑ
2
W2

⇑
(1↗ ϖ)ϑ

4ϑW2

, (58)

where the last inequality holds when ε is su”ciently small, and the absolute value of all the negative term are
less or equal than (1↔ε)ω

4ωW2
.

Finally, we show at t→1, ↔Z1↔ is upper bounded. By the assumption that ↔D1↔ reaches
(1↔εw)ωωW2

2 before g↓B1A1v

reaches (1↔εw)ω
4ωW2

. We start with the following observation

↔ϱ1ϱ
↓
1 Z1↔

2
F =

2∑

j=1

↔ϱ1ϱ
↓
1 w1j↔

2

=
2∑

j=1

cos2
(
ϱ1,

w1j

↔w1j↔

)
↔w1j↔

2

⇑

(
1↗ d2d

↔ 3+εw
5→εw

3 ε
3+εw
5→εw

)
↔Z1↔

2
F . (59)

Thus, if one can show that ↔ϱ1ϱ
↓
1 Z1↔

2
F is upper bounded, then when ε is small, it directly implies ↔Z1↔

2
F is

bounded.

↔ϱ1ϱ
↓
1 Z1↔

2
F = g

↓
B1B

↓
1 g + v

↓
A

↓
1 A1v + 2g↓B1A1v ↘ g

↓
B1B

↓
1 g + v

↓
A

↓
1 A1v +

(1↗ ϖw)ϑ

2ϑW2

. (60)

Due to the property that A1A
↓
1 ↗B

↓
1 B1 = ε

2&1 is small, one can connect g↓B1B
↓
1 g+g

↓
B1B

↓
1 g with g

↓
B1A1v.

The following Lemma characterizes this formally.

Lemma C.7.

(g↓B1B
↓
1 g)2 ↘ (v↓A↓

1 B
↓
1 g)2 + ε

2
↔D1↔g

↓
B1B

↓
1 g + 2↼2ε

3+εw
5→εw ↔Z1↔

4
F

(v↓A↓
1 A1v)

2
↘ (v↓B↓

A
↓
1 g)

2 + ε
2
↔D1↔v

↓
A

↓
1 A1v + 2↼2ε

3+εw
5→εw ↔Z1↔

4
F . (61)
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We refer the readers to Appendix E.7 for detailed proof of Lemma C.7. Based on Lemma C.7, one has

(
v
↓
A

↓
1 A1v + g

↓
B1B

↓
1 g

)2

↘ 2(v↓A↓
1 A1v)

2 + 2(g↓B1B
↓
1 g)2

↘ 2(v↓A↓
1 B

↓
1 g)2 + ε

2
↔D1↔

(
v
↓
A

↓
1 A1v + g

↓
B1B

↓
1 g

)
+4↼2ε

3+εw
5→εw ↔Z1↔

4
F . (62)

And it leads to the following upper bound on g
↓
B1B

↓
1 g + v

↓
A

↓
1 A1v

g
↓
B1B

↓
1 g + v

↓
A

↓
1 A1v ↘

ε
2
↔D1↔+


ε4↔D1↔

2 + 8(g↓B1A1v)2 + 16↼2ε
3+εw
5→εw ↔Z1↔

4
F

2

↘ ε
2
↔D1↔+

↓
2g↓B1A1v + 2

√
↼↔Z1↔

2
Fε

3+εw
10→2εw (63)

Then, we plug in the above equation to (60).

↔ϱ1ϱ
↓
1 Z1↔

2
F ↘ g

↓
B1B

↓
1 g + v

↓
A

↓
1 A1v +

(1↗ ϖw)ϑ

2ϑW2

↘ ε
2
↔D1↔+ 2

√
↼↔Z1↔

2
ε

3+εw
10→2εw +

(2 +
↓
2)(1↗ ϖw)ϑ

4ϑW2

. (64)

Combine this result with (59), we can derive the following upper bound on ↔Z1↔

↔Z1↔ ↘

ε
2
↔D1↔+

(2+
↘
2)(1↔εw)ω
4ωW2

1↗ d2d
↔ 3+εw

5→εw
3 ε

3+εw
5→εw ↗ 2

↓
↼↔Z1↔ε

3+εw
10→2εw

↘ 2↔D1↔+
(2 +

↓
2)(1↗ ϖw)ϑ

2ϑW2

:= d4 , (65)

where the last inequality holds when ε is su”ciently small.

The second case is when ↔D2↔ =
(1↔εw)ωωW2

2 happens first. We argue that if one lets the training goes on, one of

the following happens: either ↔D1↔ =
(1↔εw)ωωW2

2 or g↓B1A1v = (1↔ε)ω
4ωW2

. Let us use time T
⇒
1 to denote the time

that the above event happens. If one can show that there exists constant d such that ↔Z1(t)↔2Fε
d
⇑ ↔Z2(t)↔2F

holds for all T̂1 ↘ t ↘ T
⇒
1, then ↔D1↔ =

(1↔εw)ωωW2
2 implies g

↓
B1A1v = (1↔εw)ω

4ωW2
. Moreover, it is obvious that

T
⇒
1 ↘ T̂1+ T̂2. In the rest of the proof, we will show that one can actually find the constant d which is independent

of ε.

Our starting point is that

d

dt
log

(
↔Z1↔

2
F

↔Z2↔
2
F

)
⇑ 2((1↗ ϖw)ϑϑW2 ↗ ↔D1↔ ↗ ↔D2↔) ,

∈ log

(
↔Z1(t)↔2F
↔Z2(t)↔2F

)
↗ log

(
↔Z1(T̂1)↔2F
↔Z2(T̂1)↔2F

)
⇑ (1↗ ϖw)ϑϑW2(t↗ T̂1)↗

 t

T̂1

↔D2(s)↔ds

∈
↔Z1(t)↔2F
↔Z2(t)↔2F

⇑
↔Z1(T̂1)↔2F
↔Z2(T̂1)↔2F

exp
(
↗

 t

T̂1

↔D2(s)↔ds
)

(66)

Therefore, it su”ces to show that
 T̂1+T ↑

1

T̂1
↔D2(s)↔ds is upper bounded by a constant independent of ε. To show
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this, we first bound
 T̂1+T ↑

1

T̂1
↔D2(s)↔ds as follows

↔D2↔
2
F =↔EA

↓
1 B

↓
1 ↗ FW

↓
1 ↔

2
F

=↔(uu↓ + u≃u
↓
≃)(EA

↓
1 B

↓
1 ↗ FW

↓
1 )(gg↓ + g≃g

↓
≃)↔

2
F

↘↔uu
↓(EA

↓
1 B

↓
1 ↗ FW

↓
1 )gg↓↔2F

+ ↔u≃u
↓
≃(EA

↓
1 B

↓
1 ↗ FW

↓
1 )↔2F

+ ↔uu
↓(EA

↓
1 B

↓
1 ↗ FW

↓
1 )g≃g

↓
≃↔

2
F

↘↔uu
↓(Evv

↓
A

↓
1 B

↓
1 ↗ FW

↓
1 )gg↓↔2F + ↔uu

↓
Ev≃v

↓
≃A

↓
1 B

↓
1 gg

↓
↔
2
F

+ ↔u≃u
↓
≃FA

↓
1 B

↓
1 ↔

2
F + ↔u≃u

↓
≃FW

↓
1 ↔

2
F + ↔EA

↓
1 B

↓
1 g≃g

↓
≃↔

2
F + ↔FW

↓
1 g≃g

↓
≃↔

2
F

↘↔uu
↓((%Y ↗W2B1A1)vv

↓
A

↓
1 B

↓
1 ↗W2B1A1W

↓
1 )gg↓↔2F + ↔uu

↓
Ev≃v

↓
≃A

↓
1 B

↓
1 gg

↓
↔
2
F

+ ↔B2A2W1 +B2A2B1A1↔
2
F

+ ↔u≃u
↓
≃FA

↓
1 B

↓
1 ↔

2
F + ↔u≃u

↓
≃FW

↓
1 ↔

2
F + ↔EA

↓
1 B

↓
1 g≃g

↓
≃↔

2
F + ↔FW

↓
1 g≃g

↓
≃↔

2
F

↘|(ϑ ↗ ϑW2g
↓
B1A1v)g

↓
B1A1v ↗ ϑW2ϑW1g

↓
B1A1v|

2 + ↔uu
↓
Ev≃v

↓
≃A

↓
1 B

↓
1 gg

↓
↔
2
F

+ ↔B2A2W1 +B2A2B1A1↔
2
F

+ ↔u≃u
↓
≃FA

↓
1 B

↓
1 ↔

2
F + ↔u≃u

↓
≃FW

↓
1 ↔

2
F + ↔EA

↓
1 B

↓
1 g≃g

↓
≃↔

2
F + ↔FW

↓
1 g≃g

↓
≃↔

2
F

↘

(ϑ ↗ ϑW2g
↓
B1A1v)g

↓
B1A1v ↗ ϑW2ϑW1g

↓
B1A1v


2

+↔uu
↓
Fv≃v

↓
≃A

↓
1 B

↓
1 gg

↓
↔
2
F

+ ↔B2A2↔
2
F (↔W1↔

2
F + ↔B1A1↔

2
F )

+ ↔u≃u
↓
≃FA

↓
1 B

↓
1 ↔

2
F + ↔u≃u

↓
≃FW

↓
1 ↔

2
F + ↔EA

↓
1 B

↓
1 g≃g

↓
≃↔

2
F + ↔FW

↓
1 g≃g

↓
≃↔

2
F . (67)

Notice since g
↓
B1A1v ↘

(1↔εw)ω
4ωW2

, we can show that

(ϑ ↗ ϑW2g
↓
B1A1v)g

↓
B1A1v ↗ ϑW2ϑW1g

↓
B1A1v

 ↘ (ϑ ↗ ϑW2g
↓
B1A1v)g

↓
B1A1v + ϑW2ϑW1g

↓
B1A1v

↘

(
(3 + ϖw)ϑ

4
+ ϑW2ϑW1

)
g
↓
B1A1v . (68)

Thus, we derive the following upper bound on ↔D1↔

↔D1↔ ↘ ↔D1↔F ↘

(
(3 + ϖw)ϑ

4
+ ϑW2ϑW1

)
g
↓
B1A1v

+ ↔uu
↓
Fv≃v

↓
≃A

↓
1 B

↓
1 gg

↓
↔F + ↔B2A2↔F (↔W1↔F + ↔B1A1↔F )

+ ↔u≃u
↓
≃FA

↓
1 B

↓
1 ↔F + ↔u≃u

↓
≃FW

↓
1 ↔F + ↔EA

↓
1 B

↓
1 g≃g

↓
≃↔F + ↔FW

↓
1 g≃g

↓
≃↔F . (69)

Notice except for the first term, the rest of the term either depends on B2A2 or g≃g↓≃B1A1 or B1A1v≃v
↓
≃ . Based

on Lemma C.6 and the conditon that ↔Z1(t)↔2Fε
d
⇑ ↔Z2(t)↔2F , we can conclude that the rest of the term is

extremely small compared with the first term when ε is su”ciently small which is formally characterized by the
following lemma.

Lemma C.8. Under the following conditions

↔Z1(t)↔
2
Fε

d
⇑ ↔Z2(t)↔

2
F

cos2
(
ϱ1,

w1j

↔w1j↔

)
⇑ 1↗ d2d

↔ 3+εw
5→εw

3 ε
3+εw
5→εw ,

g
↓
B1A1v ↘

(1↗ ϖw)ϑ

4ϑW2

(70)
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we can show that

↔uu
↓
Fv≃v

↓
≃A

↓
1 B

↓
1 gg

↓
↔F + ↔B2A2↔F (↔W1↔F + ↔B1A1↔F )

+ ↔u≃u
↓
≃FA

↓
1 B

↓
1 ↔F + ↔u≃u

↓
≃FW

↓
1 ↔F + ↔EA

↓
1 B

↓
1 g≃g

↓
≃↔F + ↔FW

↓
1 g≃g

↓
≃↔F

↘

(
(3 + ϖw)ϑ

4
+ ϑW2ϑW1

)
g
↓
B1A1v . (71)

We refer the readers to Appendix E.8 for the proof of Lemma C.8. Thus, based on Lemma C.8 one can conclude
that

↔D2↔F ↘

(
(3 + ϖw)ϑ

2
+ 2ϑW2ϑW1

)
g
↓
B1A1v . (72)

Thus,
 T̂1+T ↑

1

T̂1
↔D2(s)↔ds ↘

(
(3+εw)ω

2 + 2ϑW2ϑW1

) T̂1+T ↑
1

T̂1
g
↓
B1(s)A1(s)vds.

Therefore, it su”ces to show that
 T̂1+T ↑

1

T̂1
g
↓
B1(s)A1(s)vds is bounded.

d

dt
g
↓
B1A1v = g

↓
Ḃ1A1v + g

↓
B1Ȧ1v

= g
↓(

ϑϑW2gv
↓ +D1

)
A

↓
1 A1v + g

↓
B1B

↓
1

(
ϑϑW2gv

↓ +D1

)
v

= ϑϑW2(g
↓
B1B

↓
1 g + v

↓
A

↓
1 A1v) + g

↓
D1A

↓
1 A1v + g

↓
B1B

↓
1 D

↓
1 v

⇑
(1 + ϖw)ϑϑW2

2
(g↓B1B

↓
1 g + v

↓
A

↓
1 A

↓
1 v)

⇑ (1 + ϖw)ϑϑW2g
↓
B1A1v (73)

where in the last inequality, we use Cauchy Swartz. One directly has

g
↓
A1(T

⇒
1)B1(T

⇒
1)v ⇑ g

↓
A1(T̂1)B1(T̂1)v ⇑ (1 + ϖw)ϑϑW2

 T ↑
1+T̂1

T̂1

g
↓
B1(s)A1(s)vds

∈

 T ↑
1+T̂1

T̂1

g
↓
B1(s)A1(s)vds ↘ g

↓
A1(T

⇒
1)B1(T

⇒
1)v =

(1↗ ϖw)ϑ

4ϑW2

, (74)

which completes the proof.

D Proof of Theorem 3.2

In this section, we provide proof of Theorem 3.2. In Appendix B, we have shown that at the end of alignment
phase, there is su”cient alignment and imbalance, and g

↓
B1A1v has reached a constant order which is indepen-

dent of ε. In this section, we will show that how these properties lead to linear convergence of the loss until it
reaches a neighourhood around the global minimum. We first present a detailed version of Theorem 3.2.

Theorem D.1. Under the same setting as Theorem 3.1, let T2 =
c2 log

(↘
2L(0)
ω

)

ωωW2
. Then, there exists constants

c6, c7 such that for ⇔t → [T1, T1+T2], the following holds

1. Good Alignment of US
Z1

(t) with ϱ1:

cos2 (US
Z1

(t), ϱ1)⇑cos2c6 (US
Z1

(T1), ϱ1) . (75)

2. Imbalance Between ↔Z1(t)↔ and ↔Z2(t)↔ Persists:

↔Z1(t)↔

↔Z2(t)↔
⇑

(
↔Z1(T1)↔

↔Z2(T1)↔

)c7

. (76)
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3. Loss Converges Linearly:

L(t) ↘2 exp

(
↗

(
1↗ ↗Z2(T1)↗2

F

↗Z1(T2)↗2
F

)
(1↗ϖw)ϑϑW2(t↗T1)

16

)
L(T1)

+c8

(
1↗ cos2 (US

Z1
(T1), ϱ1)

)
. (77)

Moreover, by substituting the alignment and imbalance results from Claim 3.2 and assuming ε ↘ ε
→, we can

simplify convergence rate in (15) as follows:

L(t) ↘ 2 exp

(
↗(1↗ϖw)ϑϑW2(t↗T1)

32

)
L(T1)+2εc3 . (78)

Proof. We start with a decomposition of the loss into signal and noise part.

L=
1

2
↔Yft↗(W2+B2A2)(W1+B1A1)↔

2
F

=
1

2
↔(uu↓+u≃u

↓
≃)

(
Yft↗(W2+B2A2)(W1+B1A1)

)
(vv↓+v≃v

↓
≃)↔

2
F

=
1

2
↔ϑuv

↓
↗ϑW2g

↓
B1A1v↗ϑW2u

↓
B2A2g↗uu

↓
B2A2B1A1vv

↓
↔
2
F ,

︸ ︷︷ ︸
Signal loss: LS

+
1

2
↔u≃u

↓
≃F+uu

↓
Fv≃v

↓
≃↔

2
F

︸ ︷︷ ︸
Noise loss: LN

(79)

where F = W2B1A1 +B2A2W1 +B2A2B1A1. Our proof strategy it to show that LS converges linearly until it
reaches a small value depending on ε while LN remains small. Moreover, we will show that the alignment and
imbalance we achieve in the alignment phase remains good in the local convergence phase.

Bounds on several key quantities. We first assume that for any T1 ↘ t ↘ T2, there is su”cient alignment
between each column of Z1 with ϱ1, and su”cient imbalance between ↔Z1↔, ↔Z2↔. Moreover, the norm of Z1 is
bounded.

↔Z1↔F ↘ d5, ↔Z1↔
2
F ⇑ ε

↔d6↔Z2↔
2
F , min

j⇐[r]
cos2

(
ϱ1,

w1j

↔w1j↔

)
⇑ 1↗ ε

d7 , (80)

where d5, d6, d7 are constants only depending on W1,W2,%Y and independent of ε. We will derive convergence
results based on these constants. In the end of this section, we will provide expressions for d5, d6, d7.

Bound on the noise loss LN .

LN =
1

2
↔u≃u

↓
≃F + uu

↓
Fv≃v

↓
≃↔

2
F

↘
1

2
↔u≃u

↓
≃F↔

2
F +

1

2
↔uu

↓
Fv≃v

↓
≃↔

2
F

↘
1

2
↔u≃u

↓
≃W2B1A1↔

2
F +

1

2
↔u≃u

↓
≃B2A2W1↔

2
F +

1

2
↔u≃u

↓
≃B2A2B1A1↔

2
F

+
1

2
↔uu

↓
W2B1A1v≃v

↓
≃↔

2
F +

1

2
↔uu

↓
B2A2W1v≃v

↓
≃↔

2
F +

1

2
↔uu

↓
B2A2B1A1v≃v

↓
≃↔

2
F

↘
1

2
↔u≃u

↓
≃W2B1A1↔

2
F +

1

2
↔uu

↓
W2B1A1v≃v

↓
≃↔

2
F +

(
↔W1↔

2 + ↔B1A1↔
2
F

)
↔B2A2↔

2
F

↘
1

2
↔W2↔

2

(
↔g≃g

↓
≃B1A1↔

2
F + ↔B1A1v≃v

↓
≃↔

2
F

)
+
1

2
↔Z2↔

2
F

(
↔W1↔

2 +
1

2
↔Z1↔

2
F

)

↘r
2
↔W2↔

2
↓

εd7d
4
5 +

(
↔W2↔

2 +
d
2
5

2

)
↙
1

2
ε
d6d

2
5 , (81)

The above upper bound on LN demonstrates that the noise loss is small if the initialization scale ε is small.
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Convergence on the signal loss LS. For the convergence of LS , we study L̇S first.

L̇S =
2∑

i=1

 LS

ωAi
, Ȧi


+
 LS

ωBi
, Ḃi



= ↗

2∑

i=1

 LS

ωAi
,

L

ωAi


+
 LS

ωBi
,

L

ωBi



= ↗

2∑

i=1

↔
LS

ωAi
↔
2
F + ↔

LS

ωBi
↔
2
F + ∝

LS

ωAi
,
LN

ωAi


+
 LS

ωBi
,
LN

ωBi



↘ ↗↔
LS

ωA1
↔
2
F ↗ ↔

LS

ωB1
↔
2
F ↗

2∑

i=1

∝
LS

ωAi
,
LN

ωAi


+
 LS

ωBi
,
LN

ωBi


. (82)

In the following section, we provide lemmas that provide bounds for ↔
LS
ϱA1

↔
2
F + ↔

LS
ϱB1

↔
2
F and

2
i=1∝

LS
ϱAi

,
LN
ϱAi


+


LS
ϱBi

,
LN
ϱBi


separately.

Lemma D.1. Under the condition that ↔Z1↔F ↘ d5, ↔Z1↔
2
F ⇑ ε

↔d6↔Z2↔
2
F , one has

↔
LS

ωA1
↔
2
F + ↔

LS

ωB1
↔
2
F ⇑ ↔ϱ

↓
1 Z1↔

2
F

(
ϑ
2
W2

↗
ε
d6d

2
5

2
ϑW2

)
LS . (83)

Lemma D.2. At the end of alignment phase, one can show that the error satisfies

↔E(T1)↔F ↘

(
1↗

(1↗ ϖw)

8

)
ϑ . (84)

Then, since the loss under GF is non-increasing, we have ↔E(t)↔F ↘ ↔E(T1)↔F . Based on this, one can show
that for all T1 ↘ t ↘ T2,

↔ϱ
↓
1 Z1↔

2
F ⇑

(1↗ ϖw)ϑ

8ϑW2

. (85)

Remark D.1. In Lemma D.1, we the following is implied in the intermediate step

↔
LS

ωA1
↔
2
F + ↔

LS

ωB1
↔
2
F ⇑ ϑ

2
W2

↔ϱ
↓
1 Z1↔

2
F

(
1↗

↔Z2↔
2
F

ϑW2

)
LS . (86)

To bound ↔Z2↔
2
F , we use ↔Z2↔

2
F = ↗Z2↗2

F

↗Z1↗2
F
↔Z1↔

2
F , and we highlight the role of ↗Z2↗2

F

↗Z1↗2
F

in the theorem.

We refer the readers to Appendix E.9 and Appendix E.10 for the proof of Lemma D.1 and Lemma D.2. By
combining these results together, we can show that

↔
LS

ωA1
↔
2
F + ↔

LS

ωB1
↔
2
F ⇑

(1↗ ϖw)ϑ

8

(
ϑW2↗

ε
d6d

2
5

2

)
LS ⇑

(1↗ ϖw)ϑϑW2

16
LS . (87)

Then, we show that
2

i=1∝
LS
ϱAi

,
LN
ϱAi


+


LS
ϱBi

,
LN
ϱBi


is small.

Lemma D.3. One can derive the following upper bound


ωLS

ωA1
,
ωLN

ωA1

+

ωLS

ωB1
,
ωLN

ωB1

+

ωLS

ωA2
,
ωLN

ωA2

+

ωLS

ωB2
,
ωLN

ωB2



↘2
√

2LS

(
2↔W2↔

2
F + 2εd6d

2
5

)
↙d

2
5 ↙

(
↔W2↔

↓

εd7d
2
5 +

1

2
ε
d6d

2
5 ↙ (↔W1↔+

d
2
5

2
)

)

+ 4
√
2LS(↔W1↔

2
F +

1

2
d
2
5)ε

d6d
2
5

(
↔W2↔

↓

εd7d
2
5+

1

2
ε
d6d

2
5 ↙ (↔W1↔+

d
2
5

2
)

)
. (88)
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We refer the readers to Appendix E.11 for the proof of Lemma D.3. For convenience, we use f1 to denote

f1 =2
(
2↔W2↔

2
F + 2εd6d

2
5

)
↙d

2
5 ↙

(
↔W2↔

↓

εd7d
2
5 +

1

2
ε
d6d

2
5 ↙ (↔W1↔+

d
2
5

2
)

)

+ 4(↔W1↔
2
F +

1

2
d
2
5)ε

d6d
2
5

(
↔W2↔

↓

εd7d
2
5+

1

2
ε
d6d

2
5 ↙ (↔W1↔+

d
2
5

2
)

)
. (89)

Remark D.2. We are particular interested in the dependence of f1 on ε. One can see that f2
1 ≃ O(εmin(d7,2d6)).

Then, based on (87) and Lemma D.3, we can conclude

L̇S ↘ ↗
(1↗ ϖw)ϑϑW2

16
LS + f1

√
2LS . (90)

For this ODE system, we can show that

√
LS ↘ exp

(
↗
(1↗ ϖw)ϑϑW2(t↗ T1)

32

)√
L(T1) +

32f1
(1↗ ϖw)ϑϑW2

, (91)

which leads to

LS(t) ↘ 2 exp

(
↗
(1↗ ϖw)ϑϑW2(t↗ T1)

16

)
L(T1) + 2

(
32f1

(1↗ ϖw)ϑϑW2

)2

, (92)

We choose T2 such that

exp

(
↗
(1↗ ϖw)ϑϑW2(t↗ T1)

16

)
L(T1) =

(
32f1

(1↗ ϖw)ϑϑW2

)2

∞∈ T2 =
16

(1↗ ϖw)ϑϑW2

log

(
(1↗ ϖw)2ϑ2

ϑ
2
W2

L(T1)

1024f2
1

)
(93)

In the remaining of the proof, we show the existence of d5, d6, d7. First, for convenience, we use f2 to denote the
upper bound on LN .

d

dt
↔Z1↔

2
F = 2∝B1, (W2 +B2A2)

↓
EA

↓
1 ′+ 2∝A1, B

↓
1 (W2 +B2A2)

↓
E′

↘ 4↔A1↔F ↔B1↔F ↔W2 +B2A2↔F ↔E↔F

↘ 2↔Z1↔
2
F ↔E↔F (↔W2↔F +

1

2
d
2
5ε

d6) . (94)

Thus, one can show that

log(↔Z1↔
2
F ) ↘

 T1+T2

T1

(2↔W2↔F + ε
d6d

2
5)↔E(s)↔F ds

↘

 T1+T2

T1

(2↔W2↔F + ε
d6d

2
5)

(
exp

(
↗
(1↗ ϖw)ϑϑW2(t↗ T1)

32

)√
L(T1) +

32f1
(1↗ ϖw)ϑϑW2

)
ds

= log(↔Z1(T1)↔
2
F ) + (2↔W2↔F + ε

d6d
2
5)
√
L(T1)

1↗ 32f1
(1↔εw)ωωW2

(1↔εw)ωωW2
32

+

(
32f1L(T1)

(1↗ ϖw)ϑϑW2

+ f2

)
16

(1↗ ϖw)ϑϑW2

log

(
(1↗ ϖw)2ϑ2

ϑ
2
W2

L(T1)

1024f2
1

)
. (95)

We set log(d5) larger or equal to the RHS of the above inequality, denoted by R1(ε). Notice when ε goes to

zero, R1 converges to log(↔Z1(T1)↔2F ) +
64↗W2↗

(1↔εw)ωωW2
. Moreover, one can show that when ε is su”ciently small,

↔Z1(T1)↔2F ↘ 4g↓B1A1v = (1 ↗ ϖw)ϑϑW2 . We set d→5 = exp

(
2 log((1 ↗ ϖw)ϑϑW2) +

64↗W2↗
(1↔εw)ωωW2

)
Thus, when ε

is small enough, R1(ε) ↘ log(d→5), which verifies ↔Z1(t)↔F ↘ d
→
5 for all T1 ↘ t ↘ T1 + T2.
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For d6, we have

d

dt
log

(
↔Z1↔

2
F

↔Z2↔
2
F

)
⇑2(1↗ ϖw)ϑW2 ↗ 2↔D1↔ ↗ 2↔D2↔

⇑2(1↗ ϖw)ϑW2 ↗ 2↔A↓
2 B

↓
2 E↔ ↗ 2↔W2↔↔F↔ ↗ 2↔EA

↓
1 B

↓
1 ↔ ↗ 2↔W1↔↔F↔

⇑2(1↗ ϖw)ϑW2 ↗ (↔Z1↔
2
F + ↔Z2↔

2
F )↔E↔F ↗ 2(↔W1↔+ ↔W2↔)(↔%Y ↔+ ↔E(T1)↔)

⇑2(1↗ ϖw)ϑW2 ↗ 2(↔W1↔+ ↔W2↔)↔%Y ↔

↗ 2
(
(d→5)

2(1 + ε
d6) + ↔W1↔+ ↔W2↔

)(
exp

(
↗
(1↗ ϖw)ϑϑW2(t↗ T1)

32

)√
L(T1) +

32f1
(1↗ ϖw)ϑϑW2

)

(96)

Thus, we have

log

(
↔Z1↔

2
F

↔Z2↔
2
F

)
⇑

(
2(1↗ ϖw)ϑW2 ↗ 2(↔W1↔+ ↔W2↔)%Y ↔

)
16

(1↗ ϖw)ϑϑW2

log

(
(1↗ ϖw)2ϑ2

ϑ
2
W2

L(T1)

1024f2
1

)

↗ 2
(
(d→5)

2(1 + ε
d6) + ↔W1↔+ ↔W2↔

) 32f1
(1↗ ϖw)ϑϑW2

16

(1↗ ϖw)ϑϑW2

log

(
(1↗ ϖw)2ϑ2

ϑ
2
W2

L(T1)

1024f2
1

)

↗ 2
(
(d→5)

2(1 + ε
d6) + ↔W1↔+ ↔W2↔

)√
L(T1)

32f1
(1↗ ϖw)ϑϑW2

+ log

(
↔Z1(T1)↔2F
↔Z2(T1)↔2F

)
(97)

We use R2(ε) to denote the RHS of the above inequality. Then, when ε goes to zero, the LHS is of the following
order

R2(ε) ≃ log

(
1

ε

)(
2(1↗ ϖw)

5↗ ϖw
+

32min(2d6, d7)

(
2(1↗ ϖw)ϑW2 ↗ 2(↔W1↔+ ↔W2↔)%Y ↔

)

(1↗ ϖw)ϑϑW2

)
(98)

For d7, for all j → [r], for any ϱ̂1 ↖ ϱ1we have

d

dt
log

(cos(ϱ1,
w1j

↗w1j↗ )

cos(ϱ̂1,
w1j

↗w1j↗ )

)
⇑ϑϑW2 ↗ 2↔D1↔

⇑ϑϑW2 ↗ 2↔A↓
2 B

↓
2 E↔ ↗ 2↔W2↔↔F↔

⇑ϑϑW2 ↗ 2εd6(d→5)
2
↔E↔F ↗ 2↔W2↔(↔%Y ↔+ ↔E↔) . (99)

Thus, one can show that

log

(cos(ϱ1,
w1j

↗w1j↗ )

cos(ϱ̂1,
w1j

↗w1j↗ )

)

⇑ log

(cos(ϱ1,
w1j(T1)

↗w1j(T1)↗ )

cos(ϱ̂1,
w1j(T1)

↗w1j(T1)↗ )

)
+(ϑϑW2 ↗ 2↔W2↔↔%Y ↔)T2

↗ (2εd6(d→5)
2 + 2↔W2↔)T2

(
32f1L(T1)

(1↗ ϖw)ϑϑW2

+ f2

)
16

(1↗ ϖw)ϑϑW2

log

(
(1↗ ϖw)2ϑ2

ϑ
2
W2

L(T1)

1024f2
1

)

↗ (2εd6(d→5)
2 + 2↔W2↔)E(T1)

1↗ 32f1
(1↔εw)ωωW2

(1↔εw)ωωW2
32

. (100)

Let the RHS of the above inequality be R3(ε). We can show that when ε goes to zero, R3 is of the following
order

R3(ε) ≃ log(
1

ε
)

(
3 + ϖw

5↗ ϖw
↗ ϑ(2↔W2↔ ↗ ϑW2)

32min(2d6, d7)

(1↗ ϖw)ϑϑW2

)
(101)
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Following the same argument of providing lower bound on d5, one only needs to ensure

2(1↗ ϖw)

5↗ ϖw
+

32min(2d6, d7)

(
2(1↗ ϖw)ϑW2 ↗ 2(↔W1↔+ ↔W2↔)%Y ↔

)

(1↗ ϖw)ϑϑW2

⇑
1

2
d6

3 + ϖw

5↗ ϖw
↗ ϑ(2↔W2↔ ↗ ϑW2)

32min(2d6, d7)

(1↗ ϖw)ϑϑW2

⇑
1

2
d7 . (102)

It is obvious that there exists d6, d7 such that the above inequality holds.

E Proof of Several Lemmas Used in Appendix C and Appendix D

E.1 Proof of Lemma C.1

Proof. We start with characterizing each column of Z1 align with ϱ1. Let W1j = Z1ej , ⇔j → [r] where ej is the
standard basis. Then, we have

ẇ1j = ϑϑW2H1w1j + D̂1w1j . (103)

Then, based on (103), we can characterize the growth of ↔w1j↔ as follows

d

dt
↔w1j↔

2 = 2∝w1j , ẇ1j′

↘ 2(ϑϑW2 + ↔D̂1↔)↔w1j↔
2

= 2(ϑϑW2 + ↔D1↔)↔w1j↔
2
, Apply Lemma A.4 (104)

Moreover, one can use a similar argument to derive the lower bound on the growth of ↔w1j↔
2

d

dt
↔w1j↔

2 = 2∝w1j , ẇ1j′

⇑ 2(ϑϑW2 ↗ ↔D̂1↔)↔w1j↔
2

= 2(ϑϑW2 ↗ ↔D1↔)↔w1j↔
2
, Apply Lemma A.4 (105)

Since ↔Z1↔
2
F =

r
j=1↔w1j↔

2, therefore one has

d

dt
↔Z1↔

2
F =

r∑

j=1

d

dt
↔w1j↔

2
↘ 2(ϑϑW2 + ↔D1↔)

r∑

j=1

↔w1j↔
2 = 2(ϑϑW2 + ↔D1↔)↔Z1↔

2
F ,

d

dt
↔Z1↔

2
F =

r∑

j=1

d

dt
↔w1j↔

2
⇑ 2(ϑϑW2 ↗ ↔D1↔)

r∑

j=1

↔w1j↔
2 = 2(ϑϑW2 ↗ ↔D1↔)↔Z1↔

2
F , (106)

The above equations yield the following

2(ϑϑW2 ↗ ↔D1↔) ↘
d

dt
log(↔Z1↔

2
F ) ↘ 2(ϑϑW2 + ↔D1↔) . (107)

A similar results hold for ↔Z2↔
2
F respectively. Thus, one can show the following characterization of the growth

of ↗Z1↗2
F

↗Z2↗2
F

as follows

d

dt
log

(
↔Z1↔

2
F

↔Z2↔
2
F

)
⇑ 2(ϑϑW2 ↗ ↔D1↔ ↗ ϑϑW1 ↗ ↔D2↔) = 2

(
(1↗ ϖw)ϑϑW2 ↗ ↔D1↔ ↗ ↔D2↔

)
. (108)

Now, we move on to the study of the angular dynamics of w1j .

d

dt

w1j

↔w1j↔
=

ẇ1j

↔w1j↔
↗

w1j

↔w1j↔
2
·
ẇ

↓
1jw1j

↔w1j↔

= ϑϑW2

(
I ↗

w1jw
↓
1j

↔w1j↔
2

)
H1w1j

↔w1j↔
+

(
I ↗

w1jw
↓
1j

↔w1j↔
2

)
D̂1w1j

↔w1j↔
. (109)
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For ϱ1, we have

d

dt
cos

(
ϱ1,

w1j

↔w1j↔

)
=


ϱ1,ϑϑW2

(
I ↗

w1jw
↓
1j

↔w1j↔
2

)
H1w1j

↔w1j↔
+

(
I ↗

w1jw
↓
1j

↔w1j↔
2

)
D̂1w1j

↔w1j↔



=ϑϑW2ϱ
↓
1

(
I ↗

w1jw
↓
1j

↔w1j↔
2

)(
(ϱ1ϱ↓

1 ↗ ϱ̄1ϱ̄
↓
1 )w1j

↔w1j↔

)
+
ϱ
↓
1 D̂1w1j

↔w1j↔
↗ cos

(
ϱ1,

w1j

↔w1j↔

)
w

↓
1jD̂1w1j

↔w1j↔
2

=ϑϑW2 cos

(
ϱ1,

w1j

↔w1j↔

)
1↗ cos2

(
ϱ1,

w1j

↔w1j↔

)
+ϑϑW2 cos

(
ϱ1,

w1j

↔w1j↔

)
cos2

(
ϱ̄1,

w1j

↔w1j↔

)

+
ϱ
↓
1 D̂1w1j

↔w1j↔
↗ cos

(
ϱ1,

w1j

↔w1j↔

)
w

↓
1jD̂1w1j

↔w1j↔
2

(110)

For ϱ̄1, we have

d

dt
cos

(
ϱ̄1,

w1j

↔w1j↔

)
=


ϱ̄1,ϑϑW2

(
I ↗

w1jw
↓
1j

↔w1j↔
2

)
H1w1j

↔w1j↔
+

(
I ↗

w1jw
↓
1j

↔w1j↔
2

)
D̂1w1j

↔w1j↔



=ϑϑW2 ϱ̄
↓
1

(
I ↗

w1jw
↓
1j

↔w1j↔
2

)(
(ϱ1ϱ↓

1 ↗ ϱ̄1ϱ̄
↓
1 )w1j

↔w1j↔

)
+
ϱ̄
↓
1 D̂1w1j

↔w1j↔
↗ cos

(
ϱ̄1,

w1j

↔w1j↔

)
w

↓
1jD̂1w1j

↔w1j↔
2

=↗ ϑϑW2 cos

(
ϱ̄1,

w1j

↔w1j↔

)
1↗ cos2

(
ϱ̄1,

w1j

↔w1j↔

)
↗ϑϑW2 cos

(
ϱ̄1,

w1j

↔w1j↔

)
cos2

(
ϱ1,

w1j

↔w1j↔

)

+
ϱ̄
↓
1 D̂1w1j

↔w1j↔
↗ cos

(
ϱ̄1,

w1j

↔w1j↔

)
w

↓
1jD̂1w1j

↔w1j↔
2

(111)

For any unit vector ϱ̃1 ↖ ϱ1, ϱ̄1, we have

d

dt
cos

(
ϱ̃1,

w1j

↔w1j↔

)
=


ϱ̃1,ϑϑW2

(
I ↗

w1jw
↓
1j

↔w1j↔
2

)
H1w1j

↔w1j↔
+

(
I ↗

w1jw
↓
1j

↔w1j↔
2

)
D̂1w1j

↔w1j↔



=ϑϑW2 ϱ̃
↓
1

(
I ↗

w1jw
↓
1j

↔w1j↔
2

)(
(ϱ1ϱ↓

1 ↗ ϱ̄1ϱ̄
↓
1 )w1j

↔w1j↔

)
+
ϱ̃
↓
1 D̂1w1j

↔w1j↔
↗ cos

(
ϱ̃1,

w1j

↔w1j↔

)
w

↓
1jD̂1w1j

↔w1j↔
2

=↗ ϑϑW2 cos

(
ϱ̃1,

w1j

↔w1j↔

)
cos2

(
ϱ1,

w1j

↔w1j↔

)
↗ cos2

(
ϱ̄1,

w1j

↔w1j↔

)

+
ϱ̃
↓
1 D̂1w1j

↔w1j↔
↗ cos

(
ϱ̃1,

w1j

↔w1j↔

)
w

↓
1jD̂1w1j

↔w1j↔
2

(112)

Based on (110), (111) and (112), we can show

d

dt
log

(cos(ϱ1,
w1j

↗w1j↗ )

cos(ϱ̄1,
w1j

↗w1j↗ )

)
⇑ 2ϑϑW2 ↗ 2↔D1↔ ,

d

dt
log

(cos(ϱ1,
w1j

↗w1j↗ )

cos(ϱ̃1,
w1j

↗w1j↗ )

)
⇑ ϑϑW2 ↗ 2↔D1↔ . (113)

Thus, for any unit vector ϱ̂1 that is orthogonal to ϱ1, we have

d

dt
log

(cos(ϱ1,
w1j

↗w1j↗ )

cos(ϱ̂1,
w1j

↗w1j↗ )

)
⇑ ϑϑW2 ↗ 2↔D1↔ . (114)
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E.2 Proof of Lemma C.2

Proof. Since for all 0 ↘ t ↘ T1(ϖ1, ϖ2), we have ↔D1(T1(ϖ1, ϖ2))↔ ↘ ϖ1, ↔D2(T1(ϖ1, ϖ2))↔ ↘ ϖ2, then one can further
derive the following based on Lemma C.1

d

dt
log(↔w1j↔

2) ↘ 2(ϑϑW2 + ϖ1) ,
d

dt
log(↔Z1↔

2
F ) ↘ 2(ϑϑW2 + ϖ1)

d

dt
log

(
↔Z1↔

2
F

↔Z2↔
2
F

)
⇑ 2((1↗ ϖw)ϑϑW2 ↗ ϖ1 ↗ ϖ2) > 0 ,

d

dt
log

(cos(ϱ1,
w1j

↗w1j↗ )

cos(ϱ̂1,
w1j

↗w1j↗ )

)
⇑ ϑϑW2 ↗ 2ϖ1 > 0 . (115)

Therefore, we can show that for all 0 ↘ t ↘ T1(ϖ1, ϖ2)

↔w1j(t)↔
2
↘ exp

(
2(ϑϑW2 + ϖ1)t

)
↔w1j(0)↔

2

↔Z1(t)↔
2
F ↘ exp

(
2(ϑϑW2 + ϖ1)t

)
↔Z1(0)↔

2
F

↔Z1(t)↔2F
↔Z2(t)↔2F

⇑ exp

(
2
(
(1↗ ϖw)ϑϑW2 ↗ ϖ1 ↗ ϖ2

)
t

)
↔Z1(0)↔2F
↔Z2(0)↔2F

cos

(
ϱ1,

w1j

(
t
)

↗w1j(t)↗

)

cos

(
ϱ̂1,

w1j(t)
↗w1j(t)↗

) ⇑ exp
(
(ϑϑW2 ↗ 2ϖ1)t

)cos
(
ϱ1,

w1j(0)
↗w1j(0)↗

)

cos

(
ϱ̂1,

w1j(0)
↗w1j(0)↗

) (116)

We select ϱ̂1,2, ϱ̂1,3, · · · , ϱ̂1,n+h that forms an orthogonal basis for Rn+h, since the following holds

cos2
(
ϱ1,

w1j

↔w1j↔

)
+

m+h∑

i=2

cos2
(
ϱ1,i,

w1j

↔w1j↔

)
= 1 (117)

One can lower bound cos

(
ϱ1,

w1j(t)
↗w1j(t)↗

)
as follows

1 = cos2
(
ϱ1,

w1j

↔w1j↔

)
+

m+h∑

i=2

cos2
(
ϱ1,i,

w1j

↔w1j↔

)

↘ cos2
(
ϱ1,

w1j

↔w1j↔

)
+(m+ h↗ 1) cos2

(
ϱ1,

w1j

↔w1j↔

)
exp

(
↗2(ϑϑW2 ↗ 2ϖ1)t

)
cmax

= cos2
(
ϱ1,

w1j

↔w1j↔

)
↙

(
1 + cmax(m+ h↗ 1) exp

(
↗2(ϑϑW2 ↗ 2ϖ1)t

))

∞∈ cos2
(
ϱ1,

w1j

↔w1j↔

)
⇑

1

1 + d2 exp
(
↗2(ϑϑW2 ↗ 2ϖ1)t

) (118)

where in the above equation, w1j

↗w1j↗ is its value evaluated at t. We omit the time dependency for simplicity.
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E.3 Proof of Lemma C.3

Proof. Under the assumption that ϖ1=ϖ2=ϖ :=ε, we first derive an upper bound on ↔D1↔.

↔D1↔ =↔A
↓
2 B

↓
2 E ↗W

↓
2 (W2B1A1 +B2A2W1 +B2A2B1A1)↔

↘↔A
↓
2 B

↓
2 ↔ · ↔E↔+ ↔W2↔ ·

(
↔W2↔ · ↔B2A2↔+ ↔W1↔ · ↔B1A1↔+ ↔B1A1↔ · ↔B2A2↔

)

↘(↔E↔+ ↔W2↔
2)↔B2A2↔+ ↔W1↔ · ↔W2↔ · ↔B1A1↔+ ↔W2↔ · ↔B1A1↔ · ↔B2A2↔

↘(↔E↔+ ↔W2↔
2)↔Z2↔

2
F + ↔W1↔ · ↔W2↔ · ↔Z1↔

2
F +

↔W2↔

4
· ↔Z1↔

2
F · ↔Z2↔

2
F Lemma A.2

↘ε
2
z
2
max(↔E↔+↔W2↔

2) exp(2(ϑϑW1+ϖ2)t) + ε
2
z
2
max↔W1↔ · ↔W2↔ exp(2(ϑϑW2+ϖ1)t)

+ε
4
z
4
max↔W2↔ exp(2((1 + ϖw)ϑϑW2+ϖ1+ϖ2)t) Lemma C.2

↘ε
2
z
2
max(↔E↔+↔W2↔

2 + ↔W1↔ · ↔W2↔) exp(2(ϑϑW2+ϖ)t)+ε
4
z
4
max↔W2↔ exp(4(ϑϑW2+ ϖ)t) . (119)

where in the last inequality, we use the property that ϑW2 > ϑW1 . Similarly, we can show that

↔D2↔ ↘ ε
2
z
2
max(↔E↔+↔W1↔

2 + ↔W1↔ · ↔W2↔) exp(2(ϑϑW2+ϖ)t)+ε
4
z
4
max↔W1↔ exp(4(ϑϑW2+ ϖ)t) . (120)

Furthermore, one can derive the following union upper bound on ↔D1↔, ↔D2↔

max(↔D1↔, ↔D2↔) ↘ε
2
z
2
max(↔E↔+↔W1↔

2 + ↔W1↔↔W2↔+↔W2↔
2) exp(2(ϑϑW2+ϖ)t)

+ε
4
z
4
max(↔W1↔+↔W2↔) exp(4(ϑϑW2+ ϖ)t) . (121)

Then, under the assumption that ε ↘
(1↔εw)ωωW2

4 , we will derive a lower bound on T1(ϖ, ϖ) by studying the
following inequality

ϖ ⇑ε
2
z
2
max(↔E↔+↔W1↔

2 + ↔W1↔↔W2↔+↔W2↔
2) exp(2(ϑϑW2+ϖ)t)

+ε
4
z
4
max(↔W1↔+↔W2↔) exp(4(ϑϑW2+ ϖ)t) (122)

Since we assume ϖ = ε ↘ 1, then both terms in the RHS are smaller than 1, therefore, we can further lower
bound T (ϖ, ϖ) as

ε ⇑ε
2
z
2
max(↔E↔+↔W1↔

2+↔W1↔↔W2↔+↔W2↔
2) exp

(
t(5↗ ϖw)ϑϑW2

2

)

+ε
2
z
2
max

√
↔W1↔+ ↔W2↔ exp

(
t(5↗ ϖw)ϑϑW2

2

)

=ε
2
z
2
max

(
↔E↔+↔W1↔

2+↔W1↔↔W2↔+↔W2↔
2+

√
↔W1↔+ ↔W2↔

)
exp

(
t(5↗ ϖw)ϑϑW2

2

)

∞∈ exp

(
t(5↗ ϖw)ϑϑW2

2

)
=

1

εz2max

(
↔E↔+↔W1↔

2+↔W1↔↔W2↔+↔W2↔
2+

√
↔W1↔+ ↔W2↔

)

∞∈ t =
2

(5↗ ϖw)ϑϑW2

log

(
1

εz2max

(
↔E↔+↔W1↔

2+↔W1↔↔W2↔+↔W2↔
2+

√
↔W1↔+ ↔W2↔

)
)
. (123)

For convenience, we define d3 = 1

z2
max

(
↗E↗+↗W1↗2+↗W1↗↗W2↗+↗W2↗2+

↓
↗W1↗+↗W2↗

) . Thus, we set T1(ε,ε) =

2
(5↔εw)ωωW2

log

(
1

ϑz2
maxd3

)
. Furthermore, based on Lemma C.2, we can further characterize the following proper-

ties

↔Z1(t)↔2F
↔Z2(t)↔2F

⇑ d1 exp

(
2
(
(1↗ ϖw)ϑϑW2 ↗ ϖ1 ↗ ϖ2

)
t

)
,

= d1 exp
(
(1↗ ϖw)t

)

= d1d

2(1→εw)
5→εw

3 ε
↔ 2(1→εw)

5→εw , (124)
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Moreover, the alignment can be described as

cos2
(
ϱ1,

w1j

↔w1j↔

)
⇑

1

1 + d2 exp
(
↗2(ϑϑW2 ↗ 2ϖ1)t

)

⇑
1

1 + d2 exp
(
↗2(ϑϑW2 ↗ 2ϖ1)t

)

⇑
1

1 + d2 exp
(
↗(1↗ ϖw)ϑϑW2t

)

⇑
1

1 + d2d
↔ 2(1→εw)

5→εw
3 ε

2(1→εw)
5→εw

⇑ 1↗ d2d
↔ 2(1→εw)

5→εw
3 ε

2(1→εw)
5→εw . (125)

Finally, we show that until T1(ε,ε), the norm of LoRA weights stay small. In Lemma C.2, we have shown that

↔Z1(t)↔
2
F ↘ exp

(
2(ϑϑW2 + ϖ1)t

)
↔Z1(0)↔

2
F

↘ ε
2
z
2
max exp

(
t(5↗ ϖw)ϑϑW2

2

)

=
ε

d3
. (126)

A similar argument holds for Z2 as well.

E.4 Proof of Lemma C.4

Proof.

d

dt
g
↓
B1A1v = g

↓
Ḃ1A1v + g

↓
B1Ȧ1v

= g
↓(

ϑϑW2gv
↓ +D1

)
A

↓
1 A1v + g

↓
B1B

↓
1

(
ϑϑW2gv

↓ +D1

)
v

= ϑϑW2(g
↓
B1B

↓
1 g + v

↓
A

↓
1 A1v) + g

↓
D1A

↓
1 A1v + g

↓
B1B

↓
1 D

↓
1 v

⇑ (ϑϑW2 ↗ ↔D1↔)(g
↓
B1B

↓
1 g + v

↓
A

↓
1 A1v)

⇑ (ϑϑW2 ↗ ↔D1↔)↔Z1↔
2
F min

j⇐[r]
cos2

(
ϱ1,

w1j

↔w1j↔

)
. Apply Lemma A.6 (127)

E.5 Proof of Lemma C.5

Proof. We first introduce the imbalance quantity: A↓
1 A1↗B1B

↓
1 . This quantity is constant when LoRA weights

are trained via GF. To highlight its dependcy on the ε, we let A1A
↓
1 ↗B

↓
1 B1 := ε

2&1 where &1 is independent
of ε and purely determined at initialization. Then, one can first show that

↔B1A1↔ ↘ ↔B1A1↔F ↘ ↔A1↔F ↔B1↔F ↘
1

2
↔Z1↔

2
F . (128)

On the other hand,

A1A
↓
1 ↗B

↓
1 B1 = ε

2&1

∈B1A1A
↓
1 B

↓
1 = B1B

↓
1 B1B

↓
1 + ε

2
B1&1B

↓
1

∈↔B1A1A
↓
1 B

↓
1 ↔ ⇑ ↔B1B

↓
1 B1B

↓
1 ↔ ↗ ε

2
↔B1&1B

↓
1 ↔

∞∈ ↔B1A1↔
2
⇑ ↔B1↔

4
↗ ε

2
↔&1↔↔B1↔

2

∈↔B1A1↔
2
⇑

1

r2
↔B1↔

4
F ↗ ε

2
↔&1↔↔B1↔

2
F (129)
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Similarly, one can show ↔B1A1↔
2
⇑

1
r2 ↔A1↔

4
F ↗ ε

2
↔&1↔↔A1↔

2
F . Combine these results together, one has

2↔B1A1↔
2
⇑

1

r2
(↔A1↔

4
F + ↔B1↔

4
F )↗ ε

2
↔&1↔↔Z1↔

2
F

⇑
1

2r2
↔Z1↔

4
F ↗ ε

2
↔&1↔↔Z1↔

2
F . (130)

By solving the above inequality, one has

↔Z1↔
2
F ↘ ε

2
r
2
↔&1↔+ r

2


ε4↔&1↔

2 +
4

r2
↔B1A1↔

2

↘ ε
2
r
2
↔&1↔+ ε

2
r
2
↔&1↔+ 2r↔B1A1↔ we use

↓
a+ b ↘

↓
a+

↓

b. (131)

Thus, we have ↔B1A1↔ ⇑
↗Z1↗2

F↔2ϑ2r2↗”1↗
2r .

E.6 Proof of Lemma C.6

Proof. We prove ↔g≃g↓≃B1A1↔
2 here. The same analysis can be applied to derive upper bound on ↔B1A1v≃v

↓
≃↔

2.

Notice ϱ̃1 =

(
g≃

0n↑(h↔1)

)
is orthogonal to ϱ1. Therefore, one can show that for each index j, we have

cos2(ϱ1,
w1j

↔w1j↔
) +

h↔1∑

i=1

cos2(ϱ̃1i,
w1j

↔w1j↔
) ↘ 1 , (132)

where we use ϱ̃1i to denote the i-th column of ϱ̃1. This implies
h↔1

i=1 cos2(ϱ̃1i,
w1j

↗w1j↗ ) ↘ ↼2ε
d. Now, we consider

ϱ̃1ϱ̃
↓
1 Z1

↔ϱ̃1ϱ̃
↓
1 Z1↔

2
F =

r∑

j=1

↔ϱ̃1ϱ̃
↓
1 w1j↔

2

↘

r∑

j=1

h↔1∑

i=1

cos2
(
ϱ̃1i,

w1j

↔w1j↔

)
↔w1j↔

2

↘ ↼2ε
d
↔Z1↔

2
F . (133)

Moreover, we can show that

↔ϱ̃1ϱ̃
↓
1 Z1↔F = ↔ϱ̃

↓
1 Z1↔F = ↔g≃B1↔F . (134)

Thus, we can show that

↔g≃g
↓
≃B1A1↔ ↘ ↔g≃B1↔↔A1↔ ↘

√
↼2ε

d↔Z1↔
2
F . (135)

E.7 Proof of Lemma C.7

Proof. We start with

A1A
↓
1 ↗B

↓
1 B1 := ε

2&1

∈B1A1A
↓
1 B

↓
1 = B1B

↓
1 B1B

↓
1 + ε

2
B1&1B

↓
1

∞∈ g
↓
B1A1(vv

↓ + v≃v
↓
≃)A

↓
1 B

↓
1 g = g

↓
B1B

↓
1 (gg↓ + g≃g

↓
≃)B1B

↓
1 g + ε

2
g
↓
B1&1B

↓
1 g

∈(g↓B1B
↓
1 g)2 ↘ (v↓A↓

1 B
↓
1 g)2 + (v↓A↓

1 B
↓
1 g≃)

2 + (g↓B1B
↓
1 g≃)

2 + ε
2
↔&1↔g

↓
B1B

↓
1 g (136)

Based on Lemma C.6, we have shown that

↔g≃g
↓
≃B1A1↔

2
, ↔B1A1v≃v

↓
≃↔

2
↘ ↼2ε

3+εw
5→εw ↔Z1↔

4
F . (137)
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Therefore, one has

(v↓A↓
1 B

↓
1 g≃)

2
↘ ↔g≃g

↓
≃B1A1↔

2
↘ ↼2ε

3+εw
5→εw ↔Z1↔

4
F . (138)

Moreover, using the same technique, one can show

(g↓B1B
↓
1 g≃)

2
↘ ↔g

↓
≃B1↔F ↔B1↔

↘ ↼2ε
3+εw
5→εw ↔B1↔↔B1↔

↘ ↼2ε
3+εw
5→εw ↔Z1↔

2
F . (139)

Combine all the equations together, we have

(g↓B1B
↓
1 g)2 ↘ (v↓A↓

1 B
↓
1 g)2 + (v↓A↓

1 B
↓
1 g≃)

2 + (g↓B1B
↓
1 g≃)

2 + ε
2
↔&1↔g

↓
B1B

↓
1 g

↘ (v↓A↓
1 B

↓
1 g)2 + ε

2
↔&1↔g

↓
B1B

↓
1 g + 2↼2ε

3+εw
5→εw ↔Z1↔

4
F . (140)

E.8 Proof of Lemma C.8

Proof. We first show that based on these assumptions, one can use g
↓
B1A1v to upper bound ↔Z1↔

2
F . Based on

Lemma C.7, (59) and (63), we can show that
(
1↗ d2d

↔ 3+εw
5→εw

3 ε
3+εw
5→εw

)
↔Z1↔

2
F ↘ ↔ϱ1ϱ

↓
1 Z1↔

2
F

↘ g
↓
B1B

↓
1 g + v

↓
A

↓
1 A1v + 2g↓B1A1v

↘ (2 +
↓
2)g↓B1A1v + ε

2
↔D1↔+ 2

√
↼↔Z1↔

2
Fε

3+εw
10→2εw

↘ (2 +
↓
2)g↓B1A1v + ε

2 (1↗ ϖw)ϑϑW2

2
+ 2

√
↼↔Z1↔

2
Fε

3+εw
10→2εw . (141)

Thus, when ε is su”cently small, one has

↔Z1↔
2
F ↘ 2(2 +

↓
2)g↓B1A1v ↘ 2(2 +

↓
2)

(1↗ ϖw)ϑ

4ϑW2

. (142)

Then, we move the objective of interest.

↔uu
↓
Fv≃v

↓
≃A

↓
1 B

↓
1 gg

↓
↔F + ↔B2A2↔F (↔W1↔F + ↔B1A1↔F )

+ ↔u≃u
↓
≃FA

↓
1 B

↓
1 ↔F + ↔u≃u

↓
≃FW

↓
1 ↔F + ↔EA

↓
1 B

↓
1 g≃g

↓
≃↔F + ↔FW

↓
1 g≃g

↓
≃↔F

↘↔Fv≃v
↓
≃↔F ↔B1A1v≃v

↓
≃↔F +

1

2
↔Z2↔

2
F (↔W1↔F +

1

2
↔Z1↔

2
F )

+ ↔u≃u
↓
≃F↔F ↔B1A1↔F + ↔W1↔↔u≃u

↓
≃F↔F + ↔E↔F ↔g≃g

↓
≃B1A1↔F + ↔W1↔↔Fv≃v

↓
≃↔F (143)

Based on Lemma C.6, we have

↔g≃g
↓
≃B1A1↔

2
F , ↔B1A1v≃v

↓
≃↔

2
F ↘ ↼2r

2
ε

3+εw
5→εw ↔Z1↔

4
F . (144)

One can use the above bound to show that

↔Fv≃v
↓
≃↔F ↘ ↔W2B1A1v≃v

↓
≃↔F + ↔B2A2W1v≃v

↓
≃↔F + ↔B2A2B1A1v≃v

↓
≃↔F

↘ ↔W2↔↔B1A1v≃v
↓
≃↔F + ↔W1↔

1

2
↔Z2↔

2
F +

1

4
↔Z2↔

2
F ↔Z1↔

2
F

↘


↼2r

2ε
3+εw
5→εw ↔Z1↔

2
F ↔W2↔+

↔W1↔

2
ε
d
↔Z1↔

2
F +

1

4
ε
d
↔Z1↔

4
, (145)

and similarly

↔u≃u
↓
≃F↔F ↘


↼2r

2ε
3+εw
5→εw ↔Z1↔

2
F ↔W2↔+

↔W1↔

2
ε
d
↔Z1↔

2
F +

1

4
ε
d
↔Z1↔

4
. (146)
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Therefore, based on (144), (145) and (146), we can show

↔uu
↓
Fv≃v

↓
≃A

↓
1 B

↓
1 gg

↓
↔F + ↔B2A2↔F (↔W1↔F + ↔B1A1↔F )

+ ↔u≃u
↓
≃FA

↓
1 B

↓
1 ↔F + ↔u≃u

↓
≃FW

↓
1 ↔F + ↔EA

↓
1 B

↓
1 g≃g

↓
≃↔F + ↔FW

↓
1 g≃g

↓
≃↔F

↘↔Fv≃v
↓
≃↔F ↔B1A1v≃v

↓
≃↔F +

1

2
ε
d
↔Z1↔

2
F (↔W1↔F +

1

2
↔Z1↔

2
F )

+ ↔u≃u
↓
≃F↔F

1

2
↔Z1↔

2
F + ↔W1↔↔u≃u

↓
≃F↔F + ↔E↔F ↔g≃g

↓
≃B1A1↔F + ↔W1↔↔Fv≃v

↓
≃↔F

↘↔Z1↔
2
F

{
↼2r

2ε
3+εw
5→εw

(
↼2r

2ε
3+εw
5→εw ↔Z1↔

2
F ↔W2↔+

↔W1↔

2
ε
d
↔Z1↔

2
F +

1

4
ε
d
↔Z1↔

4
)

+
1

2
ε
d(↔W1↔F +

1

2
↔Z1↔

2
F )

+
1

2

(
↼2r

2ε
3+εw
5→εw ↔Z1↔

2
F ↔W2↔+

↔W1↔

2
ε
d
↔Z1↔

2
F +

1

4
ε
d
↔Z1↔

4
)

+ 2↔W1↔
(

↼2r
2ε

3+εw
5→εw ↔W2↔+

↔W1↔

2
ε
d +

1

4
ε
d
↔Z1↔

2
)

+ ↔E(0)↔F


↼2r

2ε
3+εw
5→εw



↘2(2 +
↓
2)g↓B1A1v

{
↼2r

2ε
3+εw
5→εw

(
↼2r

2ε
3+εw
5→εw ↔Z1↔

2
F ↔W2↔+

↔W1↔

2
ε
d
↔Z1↔

2
F +

1

4
ε
d
↔Z1↔

4
)

+
1

2
ε
d(↔W1↔F +

1

2
↔Z1↔

2
F )

+
1

2

(
↼2r

2ε
3+εw
5→εw ↔Z1↔

2
F ↔W2↔+

↔W1↔

2
ε
d
↔Z1↔

2
F +

1

4
ε
d
↔Z1↔

4
)

+ 2↔W1↔
(

↼2r
2ε

3+εw
5→εw ↔W2↔+

↔W1↔

2
ε
d +

1

4
ε
d
↔Z1↔

2
)

+ ↔E(0)↔F


↼2r

2ε
3+εw
5→εw


. (147)

Notice all the terms in the big bracket goes to zero as ε goes to zero. Thus, when ε is su”ciently small, one can

show that the RHS of the above inequality is upper bounded by

(
(3+εw)ω

4 +ϑW2ϑW1

)
g
↓
B1A1v, which completes

the proof.

E.9 Proof of Lemma D.1

Proof. We study ↔
LS
ϱA1

↔
2
F as an example.

↔
LS

ωA1
↔
2
F = ↔B

↓
1 (W2 +B2A2)

↓
uu

↓
Evv

↓
↔
2
F

= (u↓
Ev)2Tr

(
u
↓(W2 +B2A2)B1B

↓
1 (W2 +B2A2)

↓
u

)

= 2u↓(W2 +B2A2)B1B
↓
1 (W2 +B2A2)

↓
u↙ LS . (148)

Similarly, one can show

↔
LS

ωB1
↔
2
F = 2v↓A↓

1 A1v ↙ u
↓(W2 +B2A2)(W2 +B2A2)

↓
u↙ LS . (149)

Notice first

u
↓(W2 +B2A2)(W2 +B2A2)

↓
u=ϑ

2
W2

+u
↓
B2A2A

↓
2 B

↓
2 u+ϑW2g

↓
B2A2u ⇑ ϑ

2
W2

↗
↔Z2↔

2
F

2
ϑW2 . (150)

Under the condition that ↔Z1↔F ↘ d5, ↔Z2↔
2
F ↘ ε

d6↔Z1↔
2
F , we can show that

u
↓(W2 +B2A2)(W2 +B2A2)

↓
u=ϑ

2
W2

↗
ε
d6d

2
5

2
ϑW2 . (151)
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On the other hand, we can show that

g
↓
B1B

↓
1 g + v

↓
A

↓
1 A1v = ↔g

↓
B1↔

2 + ↔A1v↔
2
⇑

1

2
↔g

↓
B1 + v

↓
A

↓
1 ↔

2 =
1

2
↔ϱ

↓
1 Z1↔

2
F . (152)

Therefore, one can conclude that

↔
LS

ωA1
↔
2
F + ↔

LS

ωB1
↔
2
F ⇑ ↔ϱ

↓
1 Z1↔

2
F

(
ϑ
2
W2

↗
ε
d6d

2
5

2
ϑW2

)
LS . (153)

E.10 Proof of Lemma D.2

Proof. We first show that at the end of alignment phase, loss has decreased by a constant order.

↔E↔F =↔%Y ↗W2B1A1 +B2A2W1 +B2A2B1A1↔F

=↔uu
↓(%Y ↗W2B1A1 +B2A2W1 +B2A2B1A1)vv

↓
↔F

+ ↔u≃u
↓
≃(%Y ↗W2B1A1 +B2A2W1 +B2A2B1A1)v

↓
↔F

+ ↔uu
↓(%Y ↗W2B1A1 +B2A2W1 +B2A2B1A1)v≃v

↓
≃↔F

↘↔u(ϑ ↗ ϑW2g
↓
B1A1v)v

↓
↔F + ↔W1↔↔B2A2↔F + ↔B2A2↔F ↔B1A1↔F

+ ↔W2↔↔g≃B1A1↔F + ↔W1↔↔B2A2↔F + ↔B2A2↔F ↔B1A1↔F

+ ↔W2↔↔B1A1v≃↔F + ↔W1↔↔B2A2↔F + ↔B2A2↔F ↔B1A1↔F

=

(
1↗

(1↗ ϖw)

4

)
ϑ+3↔W1↔↔B2A2↔F +3↔B2A2↔F ↔B1A1↔F +↔W2↔↔g≃B1A1↔F +↔W2↔↔B1A1v≃↔F

↘

(
1↗

(1↗ ϖw)

4

)
ϑ+

3

2
↔W1↔ε

d6d
2
5+

3

4
ε
d6d

4
5+↔W2↔↔g≃B1A1↔F +↔W2↔↔B1A1v≃↔F (154)

Moreover, by Lemma C.6, we can show that

↔g≃B1A1↔F ↘
↓
r↔g≃B1A1↔ ↘

↓

rεd7↔Z1↔
2
F ,

↔B1A1v≃↔F ↘
↓
r↔B1A1v≃↔ ↘

↓

rεd7↔Z1↔
2
F . (155)

Therefore, one can show that there exists ε
→(↔W1↔, ↔W2↔, d5, d6, d7) such that when 0 < ε ↘

ε
→(↔W1↔, ↔W2↔, d5, d6, d7), we have

↔E↔F ↘

(
1↗

(1↗ ϖw)

4

)
ϑ+

3

2
↔W1↔ε

d6d
2
5+

3

4
ε
d6d

4
5+↔W2↔↔g≃B1A1↔F +↔W2↔↔B1A1v≃↔F

↘

(
1↗

(1↗ ϖw)

4

)
ϑ+

3

2
↔W1↔ε

d6d
2
5+

3

4
ε
d6d

4
5+2↔W2↔

↓

rεd7d
4
5

↘

(
1↗

(1↗ ϖw)

8

)
ϑ . (156)

Moreover, since the loss in non-increasing when trained under GF, we can see that ↔E(t)↔F ↘

(
1 ↗ (1↔εw)

8

)
ϑ

for all t ⇑ T1 . In the remaining of the proof, we show that ↔E(t)↔F ↘

(
1 ↗ (1↔εw)

8

)
ϑ induces an lower bound
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on ↔B1A1↔F .

↔E↔F =↔%Y ↗W2B1A1 +B2A2W1 +B2A2B1A1↔F

=↔uu
↓(%Y ↗W2B1A1 +B2A2W1 +B2A2B1A1)vv

↓
↔F

+ ↔u≃u
↓
≃(%Y ↗W2B1A1 +B2A2W1 +B2A2B1A1)v

↓
↔F

+ ↔uu
↓(%Y ↗W2B1A1 +B2A2W1 +B2A2B1A1)v≃v

↓
≃↔F

⇑↔u(ϑ ↗ ϑW2g
↓
B1A1v)v

↓
↔F ↗ ↔W1↔↔B2A2↔F ↗ ↔B2A2↔F ↔B1A1↔F

↗ ↔W2↔↔g≃B1A1↔F ↗ ↔W1↔↔B2A2↔F ↗ ↔B2A2↔F ↔B1A1↔F

↗ ↔W2↔↔B1A1v≃↔F ↗ ↔W1↔↔B2A2↔F ↗ ↔B2A2↔F ↔B1A1↔F

⇑ϑ ↗ ↔uϑW2g
↓
B1A1vv

↓
↔F ↗ ↔W1↔↔B2A2↔F ↗ ↔B2A2↔F ↔B1A1↔F

↗ ↔W2↔↔g≃B1A1↔F ↗ ↔W1↔↔B2A2↔F ↗ ↔B2A2↔F ↔B1A1↔F

↗ ↔W2↔↔B1A1v≃↔F ↗ ↔W1↔↔B2A2↔F ↗ ↔B2A2↔F ↔B1A1↔F . (157)

Therefore,

ϑW2g
↓
B1A1v ⇑ ϑ ↗ ↔E↔F ↗ ↔W1↔↔B2A2↔F ↗ ↔B2A2↔F ↔B1A1↔F

↗ ↔W2↔↔g≃B1A1↔F ↗ ↔W1↔↔B2A2↔F ↗ ↔B2A2↔F ↔B1A1↔F

↗ ↔W2↔↔B1A1v≃↔F ↗ ↔W1↔↔B2A2↔F ↗ ↔B2A2↔F ↔B1A1↔F

⇑
(1↗ ϖw)ϑ

8
↗

3

2
↔W1↔ε

d6d
2
5↗

3

4
ε
d6d

4
5↗2↔W2↔

↓

rεd7d
4
5

⇑
(1↗ ϖw)ϑ

16
, (158)

where the last line follows when ε is su”ciently small, one can have

3

2
↔W1↔ε

d6d
2
5+

3

4
ε
d6d

4
5+2↔W2↔

↓

rεd7d
4
5 ↘

(1↗ ϖw)ϑ

16
. (159)

Finally,

↔ϱ
↓
1 Z1↔

2
F = ↔g

↓
B1 + v

↓
A

↓
1 ↔

2
⇑ ↔g

↓
B1↔

2 + ↔g
↓
A

↓
1 ↔

2
⇑ 2↔g↓B1A1v↔ . (160)

Thus, ↔ϱ↓
1 Z1↔

2
F ⇑ 2g↓B1A1v ⇑

(1↔εw)ω
8 .

E.11 Proof of Lemma D.3

Proof. We first study

ϱLS
ϱB1

,
ϱLN
ϱB1


.

ωLS

ωB1
,
ωLN

ωB1


=

(W2 +B2A2)

↓
uu

↓
Evv

↓
A

↓
1 , (W2 +B2A2)

↓
uu

↓
Ev≃v

↓
≃A

↓
1



+

(W2 +B2A2)

↓
uu

↓
Evv

↓
A

↓
1 , (W2 +B2A2)

↓
u≃u

↓
≃EA

↓
1



=Tr
(
(W2 +B2A2)

↓
uu

↓
Evv

↓
A

↓
1 A1v≃v

↓
≃F

↓
uu

↓(W2 +B2A2)
)

+Tr
(
(W2 +B2A2)

↓
uu

↓
Evv

↓
A

↓
1 A1Fu≃u

↓
≃(W2 +B2A2)

)

=u
↓
Ev

{
Tr

(
(W2 +B2A2)

↓
uv

↓
A

↓
1 A1v≃v

↓
≃F

↓
uu

↓(W2 +B2A2)
)

+Tr
(
(W2 +B2A2)

↓
uv

↓
A

↓
1 A1F

↓
u≃u

↓
≃(W2 +B2A2)

)
(161)
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Therefore, one has

ωLS

ωB1
,
ωLN

ωB1



=

u
↓
Ev

{
Tr

(
(W2 +B2A2)

↓
uv

↓
A

↓
1 A1v≃v

↓
≃F

↓
uu

↓(W2 +B2A2)
)

+Tr
(
(W2 +B2A2)

↓
uv

↓
A

↓
1 A1F

↓
u≃u

↓
≃(W2 +B2A2)

)

↘

√
2LS

{u↓(W2 +B2A2)(W2 +B2A2)
↓
u≃


F
↙↔u

↓
Fv≃↔F ↙ ↔v

↓
A

↓
1 A1v≃↔F

+
u↓(W2 +B2A2)(W2 +B2A2)

↓
u≃


F
↙↔u

↓
≃F↔F ↙ ↔v

↓
A

↓
1 A1↔F


(162)

Then, we provide bounds for each term on the RHS of the above equation.

First, we can upper bound
u↓(W2 +B2A2)(W2 +B2A2)

↓
u≃


F
↘

(W2 +B2A2)(W2 +B2A2)
↓

F

= ↔W2 +B2A2↔
2
F

↘ 2
(
↔W2↔

2
F + ↔B2A2↔

2
F

)

↘ 2↔W2↔
2
F + 2↔Z2↔

2
F

↘ 2↔W2↔
2
F + 2εd6d

2
5 . (163)

Second,

↔v
↓
A

↓
1 A1v≃↔F , ↔v

↓
A

↓
1 A1↔F ↘ ↔A1↔

2
F . (164)

Last,

↔u
↓
Fv≃↔F ↘ ↔Fv≃↔F

= ↔(W2B1A1 +B2A2W1 +B2A2B1A1)v≃↔F

↘ ↔W2↔↔B1A1v≃↔F + ↔B2A2↔F ↙
(
↔W1↔+ ↔B1A1↔F

)

↘ ↔W2↔

↓

εd7↔Z1↔
2
F +

1

2
↔Z2↔

2
F ↙

(
↔W1↔+

1

2
↔Z1↔

2
F

)

↘ ↔W2↔

↓

εd7d
2
5 +

1

2
ε
d6d

2
5 ↙ (↔W1↔+

d
2
5

2
) . (165)

Similarly, one can show ↔u
↓
≃F↔F ↘ ↔W2↔

↓

εd7d
2
5 +

1
2ε

d6d
2
5 ↙ (↔W1↔+

d2
5
2 ). Combine these results together, one

can show

ωLS

ωB1
,
ωLN

ωB1



↘

√
2LS

{u↓(W2 +B2A2)(W2 +B2A2)
↓
u≃


F
↙↔u

↓
Fv≃↔F ↙ ↔v

↓
A

↓
1 A1v≃↔F

+
u↓(W2 +B2A2)(W2 +B2A2)

↓
u≃


F
↙↔u

↓
≃F↔F ↙ ↔v

↓
A

↓
1 A1↔F



↘2
√
2LS

(
2↔W2↔

2
F + 2εd6d

2
5

)
↙↔A1↔

2
F ↙

(
↔W2↔

↓

εd7d
2
5 +

1

2
ε
d6d

2
5 ↙ (↔W1↔+

d
2
5

2
)

)
. (166)

Similarly, we can also show

ωLS

ωA1
,
ωLN

ωB1



↘2
√
2LS

(
2↔W2↔

2
F + 2εd6d

2
5

)
↙↔B1↔

2
F ↙

(
↔W2↔

↓

εd7d
2
5 +

1

2
ε
d6d

2
5 ↙ (↔W1↔+

d
2
5

2
)

)
. (167)
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Thus, we conclude

ωLS

ωA1
,
ωLN

ωA1

+

ωLS

ωB1
,
ωLN

ωB1

↘ 2
√
2LS

(
2↔W2↔

2
F + 2εd6d

2
5

)
↙d

2
5 ↙

(
↔W2↔

↓

εd7d
2
5 +

1

2
ε
d6d

2
5 ↙ (↔W1↔+

d
2
5

2
)

)

(168)

Next, we study

ϱLS
ϱB2

,
ϱLN
ϱB2


.

ωLS

ωB2
,
ωLN

ωB2


=

uu

↓
Evv

↓(W1 +B1A1)
↓
A

↓
2 , uu

↓
Ev≃v

↓
≃(W1 +B1A1)

↓
A

↓
2



+

uu

↓
Evv

↓(W1 +B1A1)
↓
A

↓
2 , u≃u

↓
≃E(W1 +B1A1)

↓
A

↓
2



=u
↓
Ev

{
Tr

(
v
↓(W1 +B1A1)

↓
A

↓
2 A2(W1 +B1A1)v≃v

↓
≃F

↓
uu

↓
)

+Tr

(
v
↓(W1 +B1A1)

↓
A

↓
2 A2(W1 +B1A1)F

↓
u≃u

↓
≃

)
. (169)

Thus, one can show that

ωLS

ωB2
,
ωLN

ωB2

↘
√
2LS

{W1 +B1A1

2
F
↙↔u

↓
Fv≃↔F ↙ ↔A2↔

2
F +

W1 +B1A1

2
F
↙↔u

↓
≃F↔F ↙ ↔A2↔

2
F


. (170)

We apply (165) to the above inequality

ωLS

ωB2
,
ωLN

ωB2

 ↘
√
2LS

{W1 +B1A1

2
F
↙↔u

↓
Fv≃↔F ↙ ↔A2↔

2
F +

W1 +B1A1

2
F
↙↔u

↓
≃F↔F ↙ ↔A2↔

2
F



↘ 4
√
2LS(↔W1↔

2
F +

1

2
↔Z1↔

2
F )↔A2↔

2
F

(
↔W2↔

↓

εd7d
2
5 +

1

2
ε
d6d

2
5 ↙ (↔W1↔+

d
2
5

2
)

)
. (171)

Similarly, we can also show that

ωLS

ωA2
,
ωLN

ωA2

↘ 4
√
2LS(↔W1↔

2
F +

1

2
↔Z1↔

2
F )↔B2↔

2
F

(
↔W2↔

↓

εd7d
2
5 +

1

2
ε
d6d

2
5 ↙ (↔W1↔+

d
2
5

2
)

)
. (172)

Add them together, and one has

ωLS

ωA2
,
ωLN

ωA2

+

ωLS

ωB2
,
ωLN

ωB2

↘ 4
√
2LS(↔W1↔

2
F +

1

2
↔Z1↔

2
F )ε

d6d
2
5

(
↔W2↔

↓

εd7d
2
5+

1

2
ε
d6d

2
5 ↙ (↔W1↔+

d
2
5

2
)

)
.

(173)

Based on (168) and (173), we conclude

ωLS

ωA1
,
ωLN

ωA1

+

ωLS

ωB1
,
ωLN

ωB1

+

ωLS

ωA2
,
ωLN

ωA2

+

ωLS

ωB2
,
ωLN

ωB2



↘2
√

2LS

(
2↔W2↔

2
F + 2εd6d

2
5

)
↙d

2
5 ↙

(
↔W2↔

↓

εd7d
2
5 +

1

2
ε
d6d

2
5 ↙ (↔W1↔+

d
2
5

2
)

)

+ 4
√
2LS(↔W1↔

2
F +

1

2
↔Z1↔

2
F )ε

d6d
2
5

(
↔W2↔

↓

εd7d
2
5+

1

2
ε
d6d

2
5 ↙ (↔W1↔+

d
2
5

2
)

)
. (174)

F Proof of Theorem 4.1

Theorem F.1. Let ϖ
(i)
w =

ω(i)
W2

ω(i)
W1

, ς
(i)(t) = 1

2

(
ϑ
(i)
!Y ↗ϑ

(i)
F̄

)2
, z

(i)
1 = (ϑ(i)

A1
)2+(ϑ(i)

B1
)2 (respectively z

(i)
2 ). In the case

where ϖ
(i)
w ⇐=1, we assume ϖ

(i)
w <1 WLOG, then the learning dynamics has two phases which can be separated by

T
(i)
1 = 2

(3+ε(i)w )ωω(i)
W2

log

(
(1↔ε(i)w )ω(i)

!Y

8ω(i)
W2

z(i)
1 (0)

)
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1. Growth of Norm and Imbalance: ⇔t↘T
(i)
1

d

dt
log z(i)1 ⇑

3+ϖ
(i)
w

2
ϑ
(i)
!Y ϑ

(i)
W2

,

d

dt
log

(
z
(i)
1

z
(i)
2

)
⇑

3(1↗ϖ
(i)
w )

2
ϑ
(i)
!Y ϑ

(i)
W2

. (175)

2. Local Convergence: for ⇔t⇑T
(i)
1 , the loss converges linearly

ς
(i)(t)↘exp

(
↗
(1↗ϖ

(i)
w )ϑ(i)

!Y ϑ
(i)
W2

(t↗T1)

8

)
ς
(i)(T1) .

Proof. Under spectral initialization, the learning dynamics of LoRA weights can be decoupled to several scalar

dynamics. WLOG, we prove the learning dynamics when i = 1 as an example, and assume ϖ
(i)
w < 1. In the rest

of the proof, we will omit the superscript (i) for convenience. Throughout the paper, we will use e = ϑ!Y ↗ ϑf

to denote the residual.

We first argue that ϑB1ϑA1 ,ϑB2ϑA2 will be always positive during the training. We show this is true for ϑB1ϑA1

as an example. Similar argument holds for ϑB2ϑA2 .

d

dt
ϑB1ϑA1 = (ϑ2

A1
+ ϑ

2
B1

)ϑW2e . (176)

Notice e(0) = ϑ!Y and ϑB1(0)ϑA1(0) = 0, thus, d
dtϑB1ϑA1 > 0 during the training until e = 0 which is a

stationary point.

Growth of Norm and Imbalance phase. We first can see that

d

dt

(
ϑB1

ϑA1

)
=

(
0 (ϑW2 + ϑB2ϑA2)e

(ϑW2 + ϑB2ϑA2)e 0

)(
ϑB1

ϑA1

)

=

(
0 ϑW2ϑ!Y

ϑW2ϑ!Y 0

)(
ϑA1

ϑB1

)
+

(
0 ↗ϑW2ϑf + eϑB2ϑA2

↗ϑW2ϑf + eϑB2ϑA2 0

)

︸ ︷︷ ︸
D1

(
ϑB1

ϑA1

)
. (177)

Similarly, one can show that

d

dt

(
ϑB2

ϑA2

)
=

(
0 ϑW1ϑ!Y

ϑW1ϑ!Y 0

)(
ϑB2

ϑA2

)
+

(
0 ↗ϑW1ϑf + eϑB1ϑA1

↗ϑW1ϑf + eϑB1ϑA1 0

)

︸ ︷︷ ︸
D2

(
ϑB2

ϑA2

)
(178)

For convenience, we define the following notation h1 = ↗ϑW2ϑf + eϑB2ϑA2 , h2 = ↗ϑW1ϑf + eϑB1ϑA1 . It is
obvious that |h1| = ↔D1↔, |h2| = ↔D2↔.

Notice at initialization, ↔D1↔ + ↔D2↔ ≃ O(ε2). We first cut o! the time when ↔D1↔ + ↔D2↔ = 2ε, denoted by
T̂1, then we can show that the imbalance between z1 and z2 grows monotonically for all 0 ↘ t ↘ T̂1.

d

dt
log(

z1

z2
) ⇑ 2(1↗ ϖw)ϑ!Y ϑW2 + 2(h1 ↗ h2) ⇑ (1↗ ϖw)ϑ!Y ϑW2 , (179)

where the last inequality holds under the assumption that ε ↘ (1↗ ϖw)ϑ!Y ϑW2 . We then characterize the time
it takes for ↔D1↔+ ↔D2↔ to reach 2ε.

↔D1↔ = |↗ϑW2ϑf + eϑB2ϑA2 |

↘ ϑW2 |ϑf |+
1

2
|e(0)|↙ z2

↘ ϑW2

(
ϑW2 |ϑB1ϑA1 |+ ϑW1 |ϑB2ϑA2 |+ |ϑB1ϑA1 |↙ |ϑB2ϑA2 |

)
+
1

2
|e(0)|↙ z2

↘
1

2
ϑ
2
W2

z1 + ϑW1ϑW2z2 +
1

4
ϑW2z1z2 +

|e(0)|

2
z2 (180)
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Similarly, one can show that

↔D2↔ ↘
1

2
ϑ
2
W1

z2 + ϑW2ϑW1z1 +
1

4
ϑW1z1z2 +

|e(0)|

2
z1 . (181)

For 0 ↘ t ↘ T̂1, we can show that the growth of z1, z2 is

d

dt
log z1 ↘ (2ϑW2ϑ!Y + 2↔D1↔) ↘ 2(2↗ ϖw)ϑ!Y ϑW2 , (182)

d

dt
log z2 ↘ (2ϑW1ϑ!Y + 2↔D2↔) ↘ 2(2↗ ϖw)ϑ!Y ϑW2 . (183)

Let zmax = 1
ϑ2 max(z1(0), z2(0)). Therefore, one can show that

↔D1↔+ ↔D2↔ ↘

(
3ϑ2

W2
+ |e(0)|

)
ε
2 exp(2(2↗ ϖw)ϑ!Y ϑW2t)zmax +

ε
4
z
2
max

2
exp(4(2↗ ϖw)ϑ!Y ϑW2t) . (184)

We let the RHS of the above equation equal to ε, and derive a lower bound on T̂1. Notice in this case, we can
further upper bound the RHS as

(
3ϑ2

W2
+ |e(0)|

)
ε
2 exp(2(2↗ ϖw)ϑ!Y ϑW2t)zmax +

ε
4
z
2
max

2
exp(4(2↗ ϖw)ϑ!Y ϑW2t)

↘ 2

(
3ϑ2

W2
+ |e(0)|

)
ε
2 exp(2(2↗ ϖw)ϑ!Y ϑW2t)zmax . (185)

Let 2

(
3ϑ2

W2
+ |e(0)|

)
ε
2 exp(2(2↗ ϖw)ϑ!Y ϑW2t)zmax = ε, we can show that

exp

(
2(2↗ ϖw)ϑ!Y ϑW2 T̂1

)
=

1

2

(
3ϑ2

W2
+ |e(0)|

)
ε

. (186)

Based on these, one can show that there exists constants ↼4 such that z1 ⇑ z2↼4ε
↔ 1→εw

4→2εw .

After ↔D1↔+ ↔D2↔ has reached 2ε, we then study when ↔D1↔ or ↔D2↔reach
(1↔εw)ωωW2

4 .

If ↔D1↔ and ↔D2↔ never reaches
(1↔εw)ωωW2

4 for all t ↘ T1, then one can show that z1 grows exponentially fast

d

dt
z1 ⇑ (2ϑW2ϑ!Y ↗ 2↔D1↔)z1 ⇑

(3 + ϖw)ϑϑW2

2
z1 , (187)

and it leads to the following lower bound on z1

log z1(t) ⇑ log z1(0) +
(3 + ϖw)ϑϑW2

2
t

∞∈ z1(t) ⇑ z1(0) exp

(
(3 + ϖw)ϑϑW2

2
t

)
(188)

Therefore, in order for z1(t) to reach (1↔εw)ω!Y

8ωW2
, one needs at most time

z1(0) exp

(
(3 + ϖw)ϑϑW2

2
t

)
=

(1↗ ϖw)ϑ!Y

8ϑW2

∞∈ T1 =
2

(3 + ϖw)ϑϑW2

log

(
(1↗ ϖw)ϑ!Y

8ϑW2z1(0)

)
. (189)

On the other hand, when ↔D1↔ or ↔D2↔reach
(1↔εw)ωωW2

4 happens before z1 reaches (1↔εw)ω!Y

8ωW2
. This must happen

between T̂1 and T1. We consider the following two cases.
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First, ↔D1↔ reaches
(1↔εw)ωωW2

4 before ↔D2↔ reaches
(1↔εw)ωωW2

4 , denoted by T
⇒
1. Notice for all T̂1 ↘ t ↘ T

⇒
1,

d

dt
log(

z1

z2
) ⇑ 2(1↗ ϖw)ϑ!Y ϑW2 ↗ 2(↔D1↔+ ↔D2↔) ⇑ 0 , (190)

Thus, the imbalance between z1 and z2 persists.

Then, one can show that

↔D1↔ >
(1↗ ϖw)ϑϑW2

8

∞∈ |↗ϑW2ϑf + eϑB2ϑA2 | >
(1↗ ϖw)ϑϑW2

8

∈ϑ
2
W2

ϑB1ϑA1 >
(1↗ ϖw)ϑϑW2

8
↗

1

2
z2|e(0)|↗ ϑW2

z2

2

(
ϑW1 +

z1

2

)

∈ϑ
2
W2

ϑB1ϑA1 >
(1↗ ϖw)ϑϑW2

8
↗

1

2↼4
ε

1→εw
4→2εw

(1↗ ϖw)ϑ!Y

16ϑW2

(
|e(0)|+ ϑW1ϑW2 ↗

(1↗ ϖw)ϑ!Y

32

)
. (191)

Notice z1 =

(ϑ2

A1
↗ ϑ

2
B1

)2 + 4ϑ2
A1

ϑ
2
B1

, therefore

ϑ
4
W2

z
2
1 ⇑

((1↗ ϖw)ϑϑW2)
2

16
+ ϑ

4
W2

(ϑ2
A1

↗ ϑ
2
B1

)2

+ 4ε
1→εw
2→εw

{
1

2↼4

(1↗ ϖw)ϑ!Y

16ϑW2

(
|e(0)|+ ϑW1ϑW2 ↗

(1↗ ϖw)ϑ!Y

32

)2

↗
8

2↼4
ε

1→εw
4→2εw

(1↗ ϖw)ϑ!Y

16ϑW2

(
|e(0)|+ ϑW1ϑW2 ↗

(1↗ ϖw)ϑ!Y

32

)
↙
(1↗ ϖw)ϑϑW2

8
(192)

Notice ϑ
2
A1

↗ ϑ
2
B1

is preserved during GF, and its initial value is of order ε
2. Thus, when ε is su”ciently, one

can show that

z1 ⇑
(1↗ ϖw)ϑ

8ϑW2

. (193)

Second, ↔D2↔ reaches
(1↔εw)ωωW2

4 before ↔D1↔, denoted by T1
⇒⇒. We first assume that z2 ↘ z1ε

h3 in this case

before T1 where d3 > 0 is independent of ε. Notice when ↔D1↔ ↘
(1↔εw)ωωW2

4 , z1 continues to grow exponentially

fast d
dt log z1 ⇑

(3+εw)ωωW2
2 . Moreover, whenever ↔D1↔ reaches

(1↔εw)ωωW2
4 before T1, we can both show that z1

will reach (1↔εw)ω
8ωW2

before T1. Then, the only thing that needs to show is the imbalance between z1 and z2 persists

before z1 reaches (1↔εw)ω!Y

8ωW2
. We will show that in this case, when ε is su”ciently, the imbalance between z1

and z2 persists. For convenience, let p1 = ϑB1ϑA1 , p2 = ϑB2ϑA2 .

d

dt
log(

z1

z2
) = 2(1↗ ϖw)ϑϑW2 ↗ 2h1 + 2h2

⇑
7(1↗ ϖw)ϑϑW2

4
↗ 2h2

=
7(1↗ ϖw)ϑϑW2

4
↗ 2(ϑ!Y + 2ϑW1ϑW2)p1 + 2ϑW2p

2
1 + 2p2

(
ϑ
2
W1

+ 2p1ϑW1 + p
2
1

)

⇑
7(1↗ ϖw)ϑϑW2

4
↗ 2(ϑ!Y + 2ϑW1ϑW2)p1

∈ log

(
z1(t)

z2(t)

)
= log

(
z1(T̂1)

z2(T̂1)

)
+
7(1↗ ϖw)ϑϑW2(t↗ T̂1)

4
↗ 2(ϑ!Y + 2ϑW1ϑW2)

 t

T̂1

p1(s)ds (194)

Thus, as long as one can show that
 t
T ↑
1
p1(s)ds is bounded by a constant h4 (independent of ε). One can conclude

that

z1(t)

z2(t)
⇑ exp

(
↗2h4(ϑ!Y + 2ϑW1ϑW2)

)(
z1(T̂1)

z2(T̂1)

)
exp

(
7(1↗ ϖw)ϑϑW2(t↗ T̂1)

4

)
(195)
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It su”ces to show that
 t
T̂1

p1(s)ds is bounded. We first give a detailed characterization of the growth speed of
z1

d

dt
z1 = 2e(ϑW2 + p2)p1

= 2(ϑ!Y ↗ ϑW2p1 ↗ ϑW1p2 ↗ p1p2)(ϑW2 + p2)p1

= 2p1ϑW2ϑ!Y ↗ 2ϑ2
W2

p
2
1 ↗ 2p2

(
ϑ!Y p1 + ϑW2p

2
1 + p1ϑW1ϑW2 + p1p2ϑW1 + p

2
1ϑW2 + p

2
1p2

)

⇑ 2p1ϑW2ϑ!Y ↗ z1ϑ
2
W2

p1 ↗ z2

(
ϑ!Y p1 + ϑW2

z
2
1

4
+

z1

2
ϑW1ϑW2 +

z1z2

4
ϑW1 +

z
2
1

4
ϑW2 +

z
3
1

8
ε
h3
)

⇑ 2p1ϑW2ϑ!Y ↗ z1ϑ
2
W2

p1 ↗ ε
h3z1

(
ϑ!Y p1 + ϑW2

z
2
1

4
+

z1

2
ϑW1ϑW2 +

z1z2

4
ϑW1 +

z
2
1

4
ϑW2 +

z
3
1

8
ε
h3
)
. (196)

Notice we have z1 ↘
(1↔εw)ωωW2

8 . Thus, we can show

2p1ϑW2ϑ!Y ↗ z1ϑ
2
W2

p1 ⇑ 2p1ϑW2ϑ!Y ↗ ϑ
2
W2

p1
(1↗ ϖw)ϑ!Y

8ϑW2

=
(15 + ϖw)ϑ!Y ϑW2

8
. (197)

Moreover, when ε is su”ciently small, one can show that there exists a constant such that

ε
h3z1

(
ϑ!Y p1 + ϑW2

z
2
1

4
+

z1

2
ϑW1ϑW2 +

z1z2

4
ϑW1 +

z
2
1

4
ϑW2 +

z
3
1

8
ε
h3
)
↘ h5ε

h3 . (198)

Therefore, one can show that

d

dt
z1 ⇑

(15 + ϖw)ϑ!Y ϑW2

8
p1 ↗ h5ε

h3

∈z1(t) ⇑ z1(T̂1) +

 t

T̂1

(15 + ϖw)ϑ!Y ϑW2

8
p1(s)ds↗ h5ε

h3(t↗ T̂1)

∈

 t

T̂1

p1(s)ds ↘
8

(15 + ϖw)ϑ!Y ϑW2

(
(1↗ ϖw)ϑ!Y

8ϑW2

+ h5ε
h3

2

(3 + ϖw)ϑϑW2

log

(
(1↗ ϖw)ϑ!Y

8ϑW2z1(0)

))
. (199)

where in the last inequality we use

z1(t) ↘
2

(3 + ϖw)ϑϑW2

log

(
(1↗ ϖw)ϑ!Y

8ϑW2z1(0)

)

t↗ T̂1 ↘
2

(3 + ϖw)ϑϑW2

log

(
(1↗ ϖw)ϑ!Y

8ϑW2z1(0)

))
. (200)

Therefore, one can see that if ε is su”ciently small, we have

 t

T̂1

p1(s)ds ↘
16

(15 + ϖw)ϑ!Y ϑW2

(
(1↗ ϖw)ϑ!Y

8ϑW2

)
. (201)

Local convergence phase. To follow the standard technique to prove local convergence for GF. We first assume

that throughout the training, we have z1ε
h6 ⇑ z2, z1 ↘ h7 where h6, h7 are positive constants and independent

of ε. In the end, we will provide expression for h6, h7.

ς̇ = ↗

2∑

i=1

(
dς

dϑAi

)2

+

(
dς

dϑBi

)2

↘ ↗

(
dς

dϑA1

)2

+

(
dς

dϑB1

)2

= ↗e
2(ϑW2 + ϑB2ϑA2)

2(ϑ2
A1

+ ϑ
2
B1

)

↘ ↗2ϑ2
W2

ς(ϑ2
A1

+ ϑ
2
B1

)

↘ ↗4ϑB1ϑA1ϑ
2
W2

ς . (202)
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Therefore, it su”ces to show that ϑB1ϑA1 has a uniform lower bound for all t ⇑ T1. Recall in the end of Growth

of Norm and Imbalance phase, we have proved that z1 has reached
(1↔εw)ωωW2

8 . Thus, we can show that

|e| = |ϑ!Y ↗ ϑW2p1 ↗ ϑW1p2 ↗ p1p2|

↘ |ϑ!Y ↗ ϑW2p1|+p2(p1 + ϑW1)

↘
(7 + ϖw)ϑ!Y

8
+

1

2
z2(

z1

2
+ ϑW1)

↘
(7 + ϖw)ϑ!Y

8
+

1

2
ε
h6h7(

h7

2
+ ϑW1)

↘
(15 + ϖw)ϑ!Y

16
, (203)

where the last inequality holds when ε is small enough. Since in GF, the loss is non-increasing, we have
|e(t)| ↘ (15+εw)ω!Y

16 for all t ⇑ T1. Then, we show that one can show that

|e| ↘
(15 + ϖw)ϑ!Y

16

∞∈ |ϑ!Y ↗ ϑW2p1 ↗ ϑW1p2 ↗ p1p2| ↘
(15 + ϖw)ϑ!Y

16

∈|ϑW2p1 + ϑW1p2 + p1p2| ⇑
(1↗ ϖw)ϑ!Y

16

∈ϑW2p1 ⇑
(1↗ ϖw)ϑ!Y

16
↗

z2

2
(ϑW2 +

z1

2
)

∈ϑW2p1 ⇑
(1↗ ϖw)ϑ!Y

16
↗

ε
h6h7

2
(ϑW2 +

h7

2
)

∈ϑW2p1 ⇑
(1↗ ϖw)ϑ!Y

32

∞∈ p1 ⇑
(1↗ ϖw)ϑ!Y

32ϑW2

, (204)

where the last inequality holds when ε is su”ciently small. We apply the above lower bound on p1 to (202)

ς̇ ↘ ↗4ϑB1ϑA1ϑ
2
W2

ς ↘ ↗
(1↗ ϖw)ϑ!Y ϑW2

8
ς . (205)

Thus, we concluded ς(t) ↘ exp

(
↗

(1↔εw)ω!Y ωW2 (t↔T1)
8

)
L(T1).

Finally, we provide expressions for h6, h7.

|e| ↘ |e(0)| = ϑ!Y

∞∈ ϑW2p1 + ϑW1p2 + p1p2 ↘ 2ϑ!Y

∈ϑW2p1 ↘ 2ϑ!Y

∈p1 ↘
2ϑ!Y

ϑW2

∈z
2
1 =

(
ϑ
2
A1

↗ ϑ
2
B1

)2

+4p21 ↘

(
ϑ
2
A1

↗ ϑ
2
B1

)2

+
16ϑ2

!Y

ϑ
2
W2

∈z1 ↘
8ϑ!Y

ϑW2

:= h7 , (206)

where in the second to last line, we use the fact that

(
ϑ
2
A1

↗ϑ
2
B1

)2

is of order ε4 and one can choose ε su”cently

small to reach the last line. The same argument can prove p2 ↘
2ω!Y
ωW2

.
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For h6,

d

dt
z1 = 2e(ϑW2 + p2)p1 ⇑ 0

∈ z1(t) ⇑ z1(T1) . (207)

On the other hand

d

dt
log z2 =

2e(ϑW1 + p1)p2
z2

↘ e(ϑW1 + p1) ↘
↓

2ς

(
ϑW2 +

2ϑ!Y

ϑW2

)

∈ log z2(t)↗ log z2(T1) ↘
↓

2ς

(
ϑW2 +

2ϑ!Y

ϑW2

) t

T1

exp

(
↗
(1↗ ϖw)ϑ!Y ϑW2(t↗ T1)

16

)
dt

∈ log z2(t)↗ log z2(T1) ↘
↓

2ς

(
ϑW2 +

2ϑ!Y

ϑW2

)
16

(1↗ ϖw)ϑ!Y ϑW2

∈z2(t) ↘ z2(T1) exp

(
↓

2ς

(
ϑW2 +

2ϑ!Y

ϑW2

)
16

(1↗ ϖw)ϑ!Y ϑW2

)
. (208)

Thus,

z2(t)

z1(t)
↘

z2(T̂1)

z1(T̂1)
exp

(
↓

2ς

(
ϑW2 +

2ϑ!Y

ϑW2

)
16

(1↗ ϖw)ϑ!Y ϑW2

)

↘
1

↼4
ε

1→εw
4→2εw exp

(
↓

2ς

(
ϑW2 +

2ϑ!Y

ϑW2

)
16

(1↗ ϖw)ϑ!Y ϑW2

)

↘ ε
1→εw
2→εw , (209)

where the last inequality holds when ε is su”ciently small, and one can set h6 = 1↔εw
2↔εw

.

G Example of spectral initialization

In this section, we provide examples where methods built purely on pre-trained weights fail to fine-tune pre-
trained models for MF, highlighting the importance of incorporating the fine-tuning target matrix when designing

spectral initialization for LoRA. Assume that we have found a solution W2 = W1 =

(
10 0
0 1

)
to a pretaining

task of factorizing a target matrix Ypre =

(
100 0
0 1

)
. Then, we are interested in solving Problem 2 with LoRA

rank r = 1. The following theorem shows that either initializing LoRA weights using the top-1 or the bottom-1
singular space of W1,W1, there exists a Yft such that the model cannot converge to the target matrix of the
fine-tuning task through minimizing Problem 2 using GF.

Theorem G.1. WLOG, assume one initializes LoRA weights using the top-1 singular space of W1,W1, then let

Yft =

(
100 0
0 1

)
. One can show that L(t) = 1 for ⇔t ⇑ 0.

Proof. As one initializes LoRA weights using the top-1 singular space of W1,W1, therefore one can assume at
initialization, we have Ai = aie

↓
1 , Bi = bie1 where b1(0)=b2(0) = 0. Thus, one has

L̇(0) =
d

dt

1

2



(
b1(0)a1(0) + b2(0)a2(0) + b2(0)a2(0)b1(0)a1(0) 0

0 0

)
2

F

(210)

Since b1(0)=b2(0)=0, one can see that the initialization of LoRA weights is at an stationary point and L̇(0)=0.
Thus, L(t)=L(0)=1 for ⇔t⇑0.

H Experiments on Image Classification Tasks

H.1 Experiments on Matrix Factorization

In this section, we conduct additional experiments on LoRA applied to matrix factorization (MF) with varying
imbalance levels, specifically ϖw →


1

1.052 ,
1
4 ,

1
100


. We also explore scenarios where Yft = Ypre + 5uv↓, where
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(u, v) are the top and bottom singular vectors of Ypre, respectively. Figures 3 and 4 illustrate that, across
di!erent imbalance levels and varying singular components of Ypre that %Y aligns with, smaller LoRA-based
initialization leads to initial alignment, followed by growth in the norm of LoRA weights. Furthermore, smaller
initialization scales consistently result in lower final loss. In contrast, for spectral initialization, the loss invariably
converges to machine precision. Finally, although the Frobenius norm of %Y = 5uv↓ is the same in both cases,
we observe that GF converges overall faster when (u, v) are the top singular components of Ypre compared to
when (u, v) are the bottom singular components. This is because the convergence rate shown in Theorem 3.1
is inversely proportional to 1

ωωW2
. When (u, v) are the top singular components of Ypre, the corresponding ϑW2

values are larger than in the other case, resulting in faster convergence. Thus, our theory e!ectively captures
this phenomenon.

H.2 Experiments on Image Classification

In this section, we present additional experiments on fine-tuning ResNet, VIT, and VGG models pre-trained
on ImageNet for MNIST and CIFAR10. For all models, we apply LoRA to the final layer, initializing B as
zero matrices and A with entries drawn from N (0, 10↔6). All models are trained using SGD with a step size
of 0.1. To approximate gradient GF, it is common practice to choose a very small step size for SGD, typically
10↔4. However, for large-scale models, such small step sizes would result in prohibitively long training times.
Therefore, we choose a relatively larger step size to accelerate training. Our goal is two-folded

• The evolution of LoRA weight alignment and norm during the early stages of training.

• The impact of initialization scale on the final training/test loss and accuracy.

H.2.1 Alignment in Early Stage of Training

In this section, we focus on the evolution of the alignment and the norm of the LoRA weights during the early
stages of training.

We first introduce how we measure the alignments in this case. We consider the model as f(A,B) where A,B

are the LoRA weights. We use W to denote the pre-trained weights of the final layer, and use ↽ = W +AB. Let
ς(·) be the loss function, and we can write the optimization problem of training these models as follows

min
A,B

ς(f(A,B)) . (211)

We consider solving the above problem using GF

Ȧ(t) = ↗
ως(t)

ωA
, Ḃ(t) = ↗

ως(t)

ωB
. (212)

For simplicity, we use A(t), B(t) to denote the LoRA weights at time t, and ς(t) as a shorthand for ς(A(t), B(t)).
Moreover, we use ↽(t) as a shorthand for W + B(t)A(t). Then, we approximate the gradients of LoRA weights
as below

ως(t)

ωA
= B(t)↓

ως(t)

ω↽
⇒ B(t)↓

ως(0)

ω↽
,

ως(t)

ωB
=

ως(t)

ω↽
A(t)↓ (213)

Notice that at initialization, A(0)B(0) = 0. Therefore, ϱς(0)
ϱφ = ϱς(0)

ϱW , which represents the gradient of the loss
of the pre-trained model evaluated on the fine-tuning dataset with respect to the last layer of the pre-trained
model. Consequently, the initial learning dynamics can be simplified as

d

dt

(
B(t)
A(t)↓

)
⇒ ↗


0 ϱς(0)

ϱW
ϱς(0)↓

ϱW 0

(
B(t)
A(t)↓

)
(214)

Let SVD of ϱς(0)
ϱW be UW$WV

↓
W , then we say the left singular matrices of

(
B

A
↓

)
align with Utarget =

(
UW

↗VW

)

To measure the alignment of the left singular spaces of Z(t) =

(
B(t)
A(t)↓

)
w.r.t.Utarget. Let SVD of Z(t) be
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Figure 3: We simulate Problem 2 in the context of ϖw<1 using both small initialization (see §2) and small spectral
initialization (see §4). We generate the data Yft = Ypre +5uv↓ where u, v is the top principle component of Ypre.
Each simulation is repeated thirty times, with shaded regions representing one standard deviation above and
below the mean (see §5.1 for details). The left column shows the evolution of the loss for di!erent initialization
scales ε with small and spectral initialization. The middle column tracks the alignment quality between US

Z1
and

ϱ1, measured by log10(1 ↗ cos(ϱ1,US
Z1

(t))), where smaller values indicate better alignment. The right column
focuses on small initialization with ε = 10↔5, illustrating how the reconstruction loss, alignment between US

Z1

and ϱ1, and ↔Z1↔ evolve during the alignment phase.

U(t)$(t)V (t)↓, then we measure the following quantities, which is a classic metric to measure the alignment of
two orthogonal matrices Chen and Chi (2013)

1
↓
2r

↔U(t)U(t)↓ ↗ UtargetU
↓
target↔F , (215)

where 1↘
2r

is a normalizing constant that ensuring the above metric for alignment lies between zero and one.

The smaller this number is, the better alignment is.
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Figure 4: We simulate Problem 2 in the context of ϖw<1 using both small initialization (see §2) and small spectral
initialization (see §4). We generate the data Yft = Ypre + 5uv↓ where u, v is the bottom principle component of
Ypre. Each simulation is repeated thirty times, with shaded regions representing one standard deviation above and
below the mean (see §5.1 for details). The left column shows the evolution of the loss for di!erent initialization
scales ε with small and spectral initialization. The middle column tracks the alignment quality between US

Z1
and

ϱ1, measured by log10(1 ↗ cos(ϱ1,US
Z1

(t))), where smaller values indicate better alignment. The right column
focuses on small initialization with ε = 10↔5, illustrating how the reconstruction loss, alignment between US

Z1

and ϱ1, and ↔Z1↔ evolve during the alignment phase.

Figure 5 shows that, in the early stages of training, all models trained on both datasets exhibit strong alignment.
However, the approximation in (213) is only valid when the LoRA weights remain close to zero. As training pro-
gresses, the LoRA weights deviate from zero, causing the approximation in (213) to lose accuracy. Consequently,
the alignment between U(t) and Utarget ceases to improve.

H.2.2 E!ect of Initial Std on Loss and Accuracy

In this section, we focus on the impact of initialization scale on the final training/test loss and accuracy.
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Figure 5: We run the experiments on fine-tuning ResNet, VIT and VGG pre-trained on ImageNet to MNIST
and CIFAR10. We monitor the evolution of the alignment and norm of the LoRA weights in the early stage of
training.

Figure 6 and Figure 7 show that for all models and dataset, smaller initialization leads to a lower final loss on
both the training and test datasets. Moreover, it also results in higher accuracy on both the training and test
datasets.
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Figure 6: We run the experiments on fine-tuning ResNet, VIT and VGG pre-trained on ImageNet to MNIST.
We monitor the how the scale of initialization a!ects the final training/test loss and accuracy.

Figure 7: We run the experiments on fine-tuning ResNet, VIT and VGG pre-trained on ImageNet to CIFAR10.
We monitor the how the scale of initialization a!ects the final training/test loss and accuracy.


