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Abstract

Despite the empirical success of Low-
Rank Adaptation (LoRA) in fine-tuning pre-
trained models, there is little theoretical un-
derstanding of how first-order methods with
carefully crafted initialization adapt models
to new tasks. In this work, we take the
first step towards bridging this gap by the-
oretically analyzing the learning dynamics of
LoRA for matrix factorization (MF) under
gradient flow (GF), emphasizing the crucial
role of initialization. For small initialization,
we theoretically show that GF converges to
a neighborhood of the optimal solution, with
smaller initialization leading to lower final er-
ror. Our analysis shows that the final error
is affected by the misalignment between the
singular spaces of the pre-trained model and
the target matrix, and reducing the initial-
ization scale improves alignment. To address
this misalignment, we propose a spectral ini-
tialization for LoRA in MF and theoretically
prove that GF with small spectral initializa-
tion converges to the fine-tuning task with
arbitrary precision. Numerical experiments
from MF and image classification validate our
findings.

1 INTRODUCTION

Low-Rank Adaptation (Hu et al., 2022) (LoRA) has
proven to be a highly effective and parameter-efficient
method for fine-tuning pre-trained models, showing
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significant empirical success in both natural language
processing (Meng et al.|2020; Liang et al.,|2022;|Zhang
et al., 2023 [Yang et al., |2024) and computer vision
tasks (Zhai et al.| [2022; |[Filatov and Kindulov, 2023|).
This method can be broadly described as follows:
given a pre-trained model f(xz;Wq,..., W) parame-
terized by Wi, ..., Wy, LoRA modifies it to f(z; W1+
Bi1A,..., W, —I-BLAL), where W, € RMi+1X"i B, €
Rmi+1xri A, € R™ %™ and r; < min(n;, n;4+1). In the
fine-tuning stage, A; and B; are the trainable param-
eters, while W; remains fixed, with B; initialized as
zero matrices and A; initialized randomly.

Despite LoRA’s empirical success, its theoretical un-
derpinnings remain poorly understood. A key question
is why pre-trained models can be efficiently fine-tuned
with LoRA using gradient-based methods, despite the
non-convex objective. Moreover, given LoRA’s fine-
tuning nature and specific initialization, it is essential
to explore how the pre-trained model and initialization
affect its learning dynamics. Existing theoretical work
primarily focuses on LoRA’s expressiveness (Zeng and
Lee, 2023) or characterizing the optimization land-
scape and generalization in the Neural Tangent Kernel
(NTK) regime (Malladi et al.|[2023} |Jang et al., 2024)).
Other studies (Hayou et al., 2024alb) suggest differ-
ent learning rate scales for A; and B;, and initializing
A; to zero while initializing B; randomly yields bet-
ter performance on average compared to the reverse.
However, to the best of our knowledge, no prior work
has provided a thorough theoretical analysis of LoRA’s
learning dynamics with explicit convergence rates or
guarantees on the accuracy of the solution.

Contributions. In this paper, we study LoRA for
fine-tuning a matrix factorization (MF) task via gra-
dient flow (GF). Our analysis represents an initial
step towards understanding the learning dynamics of
LoRA. Our contributions are as follows:
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1. We first theoretically analyze the learning dynam-
ics of LoRA under GF with LoRA-based small ini-
tialization, focusing on the case where the differ-
ence between the target matrices of the pre-training
and fine-tuning tasks is rank-one, and assuming
the pre-training MF task is perfectly solved by the
pre-trained weights. Our analysis reveals two key
phases: An alignment phase, where GF orients the
singular vectors of the LoRA weights to correct
the misalignment between the model and the fine-
tuning task, with smaller initialization scale imply-
ing greater alignment. A local convergence phase,
where the loss decreases linearly for a finite time un-
til reaching a threshold determined by the initializa-
tion scale, with smaller initialization scale implying
smaller final loss.

2. Motivated by the dependence of the final loss on
model misalignment, we propose a spectral initial-
ization that incorporates information from both the
fine-tuning task and the pre-trained model. We the-
oretically prove that GF with small spectral initial-
ization can converge to the target matrix with ar-
bitrary precision for general MF fine-tuning tasks.

3. We validate our theoretical findings through exten-
sive experiments on MF and several image classi-
fication tasks. In both settings, we observe that
smaller scales of LoRA-based initialization lead to
better alignment and lower final training error un-
der GD. Additionally, in certain computer vision
tasks, we observe improved test performance as the
initialization scale decreases. While our focus is
on LoRA’s optimization process, these results sug-
gest that the initialization scale may also impact
generalization performance. Finally, GF with small
spectral initialization in MF converges to the target
matrix with arbitrary precision.

1.1 Related Work

Theory of LoRA. |Zeng and Lee| (2023) analyze the
expressiveness of LoRA, and show that under certain
assumptions, LoRA can approximate any deep linear
network, multi-layer feed-forward network and trans-
former network. However, it is unclear whether LoRA,
optimized via gradient-based algorithms, can learn
these weights efficiently. Another line of work (Mal-
ladi et al.| 2023 \Jang et al., |2024) studies LoRA in
the NTK regime. Specifically, |Malladi et al. (2023)
characterize the conditions under which one can study
LoRA in the NTK regimes, and |Jang et al. (2024)
show that when the LoRA rank is ; > v/ N where N
is the number of samples, the optimization landscape
of LoRA has no spurious local minima, and GD can
find O(v/N)-rank solutions that generalize well. Addi-

tional research (Hayou et al.| |2024alb) experimentally
explores the effects of learning rates and initialization,
recommending different learning rates for A; and B;,
and showing that initializing B; as zero matrices and
A; randomly improves performance compared to the
reverse. However, none of these studies provide ex-
plicit convergence rates or consider the influence of
pre-trained models in the optimization process, leav-
ing gaps in the understanding of LoRA’s learning dy-
namics.

Learning Dynamics of Low-Rank MF with
Small Initialization. Our analysis of LoRA builds
upon techniques developed for low-rank MF with small
initialization, which falls outside the NTK regime.
Specifically, [Stoger and Soltanolkotabi| (2021); |Jin
et al. (2023); [Soltanolkotabi et al. (2023) analyze GD
under small initialization, demonstrating the conver-
gence and learning dynamics of GD. However, apply-
ing these techniques to LoRA in the context of MF in-
troduces several key differences, such as distinct learn-
ing dynamics and initialization methods. We refer
readers to for a detailed discussion of these dif-
ferences and the additional challenges they present.

Spectral Initialization for LoRA. Several spectral
initialization methods for LoRA (Batazy et al.l [2024;
Lin et al., |2024; Meng et al., |2024; [Wang et al., |2024)
have been proposed, based on the singular value de-
composition (SVD) of pre-trained weights. Specifi-
cally, Balazy et al.| (2024); Lin et al. (2024)); [Meng
et al| (2024) suggest initializing the left (and right)
singular spaces of LoRA weights B; (and A;) using
the top-r; singular spaces of the pre-trained weights,
ensuring that during training, B;A; aligns with the
principal components of W;. Conversely, [Wang et al.
(2024) initialize B; and A; using the bottom-r; singu-
lar spaces of the pre-trained weights. Despite their dif-
ferences, both approaches report better performance
than standard LoRA. However, these methods over-
look the fine-tuning task. In Appendix [G] we pro-
vide examples where previous methods fail to fine-tune
pre-trained models for MF, underscoring the impor-
tance of considering the fine-tuning data when design-
ing spectral initialization for LoRA. In this work, we
propose a spectral initialization that leverages both
the pre-trained weights and the fine-tuning target ma-
trix, demonstrating superior performance compared to
standard LoRA-based initialization (see §4for details).

1.2 Notation

We use lower case letters a to denote a scalar, and
capital letters A and AT to denote a matrix and its
transpose. We use || A||r and ||A]| to denote the Frobe-
nius and spectral norms of A, and A[i, j] to denote its
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(4,7)-th element. We use a to denote a vector. For a
function f(t), we use f(t) := 4 f(t) to denote its time
derivative.

2 PRELIMINARIES

In this section, we first introduce the problem of apply-
ing LoRA to fine-tune MF tasks. Then we outline the
key assumptions that underlie our analysis, addressing
their implications. Furthermore, we highlight the crit-
ical distinctions between LoRA and traditional MF,
and discuss the associated challenges in the analysis.

We consider applying LoRA to the classic MF. Specif-
ically, we assume that we have a solution (W7, W53) to
a pre-training task of factorizing a target matrix Yp.:

1
(W2, W) € argpin o [Vore ~ UVIE (1)

where Wy € R™ " W, € R are the pre-trained
weights. Problem (1| covers low-rank MF (Chi et al.
2019; Koren et al., [2009) (h < min(m,n)), and over-
parametrized MF (Li et al.,[2018;(Tarmoun et al.| [2021;
Min et al., |2021; (Geyer et al.; |2020; [Eftekhari, |2022;
Xu et al., 2023)) (h > min(m,n)).

We are interested in solving a fine-tuning task using

LoRA by minimizing the following objective

. 1
o i S |Yi= (Wat Bado)( Wi+ Bid) |7 (2)

:=L(A1,A2,B1,B2)

where Yy € R™*™ is the target data matrix for
this fine-tuning task, 4; € R™" By € R A, ¢
R™" B, € R™X" are LoRA weight matrices, and 7 is
the LoRA rank. In practice, the chosen LoRA rank
is typically much smaller than the dimensions of the
pre-trained weights, satisfying r < min(m, h, n).

Gradient Flow as Training Algorithm. We con-
sider solving Problem [2 using GF

OL(t)
T OA(t)

AL(t)

Ai(t)=

Li=12  (3)

where we use t to denote the time index in the
gradient flow, and use L(t) as a shorthand for
L(A1(t), Aa(t), B1(t), B2(t)). Throughout the paper,
we will use A;, B; to denote A;(t), B;(t) when no con-
fusion is caused by dropping t¢.

LoRA-based Initialization. We initialize
A1(0), A2(0), B1(0), B2(0) entry-wise iid. as fol-
lows: Al(o)[laj]7A2<O)[lv.7] ~ N(O7a2)731(0)[i’ﬂ =
B5(0)[i,j] = 0. We are particularly interested in the
training dynamics when « is small, or equivalently

when A; and A, are initialized near zero matrices.
The learning dynamics of GF/GD with weights ini-
tialized close to zero have been studied in the context
of MF (Stoger and Soltanolkotabi, [2021; |Jin et al.,
2023; [Soltanolkotabi et al., |2023)) and two-layer neural
networks (Bui Thi Mai and Lampert, 2021} [Min et al.|
2024]). Throughout this paper, we use the term small
initialization to refer to LoRA-based initialization
with a small «, unless otherwise specified.

We make the following assumptions in the paper:

Assumption 2.1. We assume that Wo, W1 factorize
Yire perfectly, i.e., Ypre = WoWi. Moreover, we as-
sume that Wy, W1 satisfy: Wo = UyZW2GT7W1 =
GYw, V3, where G is an orthogonal matriz.

Assumption 2.2. Consider the SVD of Yo =
UyEpreVJ. Then, we assume the SVD of AY :=

Yi—Ypre has the same left and right singular matrices
as Ypre; i.e., AY:UyszVJ

Assumption ensures that the pre-training task is
solved perfectly, and that the left and right singu-
lar matrices of W7 and Ws, respectively, are perfectly
aligned with the singular matrices of Y,... This as-
sumption is satisfied if the pre-trained task is solved
using GF with either spectral initialization (Li et al.,
2019; [Luo et al.; 2019; [Lu and Li, 2020) or balanced
initialization (Bui Thi Mai and Lampert, [2021; |Min
et al., 2024)).

Assumption ensures certain similarities between
pre-trained and fine-tuning tasks. Empirical evidence
from several studies (Yosinski et al., [2014; Peters et al.|
2019; [Matsoukas et al., |2022)) demonstrates that fine-
tuning yields optimal results when there exists a sub-
stantial correlation between the pre-training and fine-
tuning tasks. In the context of MF, we formally char-
acterize this similarity as a rank(AY") modification of
the pre-training target matrix to the fine-tuning target
matrix. Specifically, this modification occurs along the
subspace spanned by a subset of singular vectors of the
pre-trained target matrix, Y,e, and the magnitude of
this modification along the subspaces is quantified by
the parameter Yay.

2.1 Challenges in the Analysis of Learning
Dynamics of Problem [2] Optimized via
GF

In this section, we discuss the difference between Prob-
lem [2] and MF, and how this difference leads to addi-
tional challenges in analyzing the learning dynamics of
Problem [2] optimized via GF.

Initialization of LoRA Weights Near Saddle
Points. In LoRA, the weights A; and As are ran-
domly initialized from a Gaussian distribution, while
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By and Bs are initialized as zero matrices. This con-
trasts with MF, where both factor matrices are typi-
cally initialized randomly. Upon inspection, it is ev-
ident that when both A; and B; are zero matrices,
they correspond to a saddle point in the objective.
Thus, the LoRA weights are initialized near these sad-
dle points when the initialization scale « is small. Tt
remains unclear whether GF will converge to a global
optimum or become trapped in a local minimum or
saddle point for Problem

Complex Learning Dynamics. In low-rank MF,
the objective is to approximate a target matrix by the
product of two low-rank matrices. However, in LoRA,
the model adopts a distinct architecture due to the
influence of the pre-trained weights, as shown below:

(Wa+BoAg)(W1+B144)
:W2B1A1+B2A2W1 +BQA2B1A1 (4)

As one can see, the products of the low-rank matri-
ces are influenced by the pre-trained weights W5 and
W1, resulting in terms Wy B1 A1+ Bo AsW7. Moreover,
the fine-tuning model includes a fourth-order term,
ByA3B1A;. These adjustments create dependencies
between the low-rank factors and the fixed pre-trained
weights and introduce higher-order terms of the LoRA
weights, which complicates the learning dynamics and
poses new challenges for analyzing the optimization
process.

The aforementioned challenges indicate that Prob-
lem [2| is more complex than classical MF. In the fol-
lowing sections, we address these challenges and derive
convergence results for LoRA.

3 LEARNING DYNAMICS UNDER
SMALL INITIALIZATION

In this section, we present our main theorem on the
learning dynamics of Problem [2| trained via GF for
the case where rank(AY) = 1. In addition, we pro-
vide an overview of the proof strategy by formally
characterizing the alignment and local convergence
phases, and examine how key parameters—such as
pre-trained weights, initialization scale, and the tar-
get matrix—affect the learning behavior.

3.1 Main Theorem

In this section, we first introduce some notation that
will be used later. Then, we present our main results
in the context of rank(AY) = 1.
. B B
Notation. Let Z; = ( %) and Zs = ( %) denote
Ay Ay

the concatenation of the LoRA weights. We use U‘Zg1

and U i to represent the top left singular vectors of
Zy and Zs, respectively. When rank(AY) = 1, let
AY =cuv' where u and v are a pair of singular vec-
tors of Ypre (Assumption . From Assumption
we can infer that v and v are left and right singular
vectors of Wy and W1, respectively. Let (ow,, g, v) and
(ows,, u, g) be the pairs of singular values and their cor-
responding singular vectors for W7 and W5. Finally,

o
we define §,, = le
2

Theorem 3.1. Assume 6, #1; without loss of gener-
ality take 6, < 1. Then, for any LoRA rank r, there
exists constants c1,co :polylog(‘lTaﬂl, oWy, OW, )y and
cs, a® = polylog(|1 — 8y, ow,, ow, ) such that for any

c1 log(é) ) log(%)

O'O'm/2 O'O'VV2

0 < a<a*, after time T =
have L(T) < 2a°s.

, we

The proof of Theorem can be found in Appendix[B. In
Theorem 3.1} we assume without loss of generality that
6w < 1. This assumption introduces a dependency of
the training time 7" on ow,. Symmetrically, if one
assumes d,, > 1, the training time would instead be
given by:

log(L log (L)
z'v:C1 Og(a)+62 Og( [0 ) . (5)
oow, oow,

For consistency and ease of presentation, we will as-
sume 6, < 1 throughout the paper.

Theorem states that after training for time 7', the
training loss L(T') decreases to a value depending on
the initialization scale a. Notice that L(T") can be
made arbitrarily small by selecting a sufficiently small
«, and the dependence of T on « is logarithmic. Thus,
reducing « leads to only a mild increase in the required
training time to achieve a low training loss. Further-
more, in Figure |1} we numerically validate that, for
different initialization scales «, the final loss to which
GF converges decreases as « decreases.

q

Interpretation of Training Time 7. Recall in §I}
the learning dynamics can be decomposed into two
phases: alignment and local convergence. As will be-
come clear in §3.2] and the sum decomposition
of the training time 7" in Theorem in fact derives
from this two-phase structure:

1 Lo
r_ @ log(+) colog(=:7) ©)
ooW, 00w,

Phase I: alignment  Phase II: local convergence

As one can observe, the training time required for each
phase scales inversely with oow,. In the subsequent
sections ( and , we demonstrate that this is
because, during the alignment phase, Ugl (t) aligns
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Evolution of angle alignment
under different a with random init.

Evolution of L(t) under different a

—— Random init.: a=10"> 0
-=- Spectral init.: a =10~

—— Random init.: a=10"%

——- Spectral init.: a=10"*

I
N

Random init.: a= 1073
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Spectral init.:

logioL(t)

log10(1 —cos(y1, Uz,))
& A

-20 1w

-25 AN

2O ——

0 10000 20000 30000 40000 50000 0 2000 4000
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Alignment phase
under a = 10~° with random init.

—— Random init.: @=10"°
—— Random init.: a=10"*
Random init.: a=10"2

— logo(1 - cos(y1, U3))
-8 — |zl
— logaoL(t)
6000 8000 10000 0 2000 4000 6000 8000 10000
Steps

Steps

Figure 1: We simulate Problemin the context of §,, <1 using both small initialization (see §2)) and small spectral
initialization (see . Each simulation is repeated thirty times, with shaded regions representing one standard
deviation above and below the mean (see for details). The left panel shows the evolution of the loss for
different initialization scales o with small and spectral initialization. The middle panel tracks the alignment
quality between UZ and =1, measured by log;,(1 — cos(vl,Ug1 (t))), where smaller values indicate better
alignment. The right panel focuses on small initialization with o = 107, illustrating how the reconstruction
loss, alignment between UZ, and ~1, and || Z;| evolve during the alignment phase.

with v, = (g , and the speed of this alignment is

governed by oow,. Moreover, smaller initialization
leads to longer alignment phase and better quality of
the alignment as illustrated in the middle panel in Fig-
ure |1} In the local convergence phase, we demonstrate
that Problem [2| satisfies a local Polyak-Lojasiewicz
(PL) condition, with the PL constant being propor-
tional to ogow,. Consequently, the training time for
each phase is inversely proportional to oow,.

In the following sections, we present a proof sketch for
Theorem [3.1] by formally characterizing the alignment
phase and local convergence phase.

3.2 Proof Strategy of Alignment Phase

In this section, we argue that during the initial phase
of training, GF implicitly performs spectral initializa-
tion by aligning Ugl (t) with 1. Simultaneously, || Z1||
continues to grow, and the difference between oy, and
ow, leads to a progressive increase in the imbalance
between ||Z:|| and ||Z2]|. Moreover, the initialization
scale affects the quality of alignment, with smaller ini-
tialization leading to better alignment.

We now present the main intuition behind the align-
ment phase. Our starting point is the following obser-
vation that the learning dynamics can be decomposed

as follows

. 0 D
Z1:<O'UW2H1+<DI 01>>Z1a

. 0 D
Z2:<00'W1H2+<D;— 02>>Z2, (7)

where Hy, Hy, D1, Dy are defined as follows

(0 gv' (0 ug'
H1_<,ng 0 )7 H2_<gUT 0

F=WyB1 A1+ By AsW1+ByAsB1A;, E=AY—F
Di=A) By E-W, F, Dy=EA]B] —FW, . (8)

At initialization, the magnitude of oow, H1, 00w, Ho
are significantly larger than those of Di, Dy, since
| D1l 7, || D2l| 7 ~ O(a?). Therefore, when « is suffi-
ciently small, the learning dynamics shown in can
be approximated as follows
Z1 %OO'WZHlZl, ZQ%O’O’WIHQZQ. (9)
Our analysis of the alignment phase centers on inter-
preting as a perturbation of the approximate learn-
ing dynamics in @ To build intuition, we summarize
the simplified dynamics @D in the following claim, de-
ferring the perturbation analysis to Appendix [C.

Claim 3.1. Consider the following ODE system: Zi=
ocow,H1Z1, Zo=00ow, HaZy. Toking Z1 as an exam-
ple, one can first show that the eigenvalue decomposi-

g

tion of Hy is Hy =~y1v{ —J171 , where 1 = (—v

Based on this, the following conditions hold:
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1. Closed-form Solution for Z:

Z1(t) =exp(oow,t)y1v{ Z1(0)
+ exp(—aoWzt)'Sll:/;er(O) . (10)

2. Growth of |v1v{ Z1||: & logllviv{ Z1|*=200w, .

3. Imbalance Between ||y17y, Z1| and ||va7vs Z2|:

4. (IvalTZl(lf)l2
dt 722 Za(t)]?

u
h = .
where 2 (g)

Claim demonstrates that the simplified dynamics
of Z1 and Zs lead to the alignment of U*Zg1 with ~1,
the growth of the spectrum of Z; projected onto the
space spanned by 417, , and the increasing imbalance
between || Z1] and || Z3||. Moreover, as training pro-
gresses, Ugl will be sufficiently aligned with -1, lead-
ing to [|Z1]|~|lv1v{ Z1| (vespectively Z).

) =20(ow,—ow,), (11)

LoRA Weights Escape Saddle Points. In §2.1}
we discussed that at initialization, the LoRA weights
are close to a saddle point where both A; and B;, for
i= 1or 2, are zero matrices. Claim [3.1I] provides in-
sights into how the LoRA weights gradually escape this
saddle point during the alignment phase, through the
growth of | Z1]|. Consequently, GF will not be trapped
in this saddle point, which ensures convergence. The
right panel in Figure [If numerically demonstrates that
| Z1]] moves away from zero at the end of the alignment
phase, following the actual dynamics of LoRA.

The simplified dynamics summarized in Claim ac-
curately approximate the true LoRA dynamics only up
to a finite time 77, due to the growth of perturbation
terms D; and Dy (see again Appendix . The time
T: is the end of the alignment phase, at which point
the alignment and imbalance of the true dynamics are
characterized by the following claim.

Claim 3.2. Under the same setting in Theorem |3.1,
there exists constants c4,cs such that at Ty, one has

1. Good Alignment: cos® (UG (T1),v1)> 1—c4a§i§f§ .

IZ2(TOI5 ~, ..~ o
T2 > e5q Godw) |
1Z2(T1)|3 =5

2. Sufficient Imbalance:
The Proof of Claim can be found in Appendix [C

3.3 Proof Strategy of Local Convergence
Phase

At the end of the alignment phase, we established suf-
ficient alignment between U‘Zg1 (Ty) and 71, as well as a

significant imbalance between the norms of || Z1(Ty)||
and || Z2(T1)| (see Claim [3.2). However, it remains
unclear whether these properties persist into the local
convergence phase, or how the quality of alignment
and imbalance affect the convergence results.

In this section, we first demonstrate how the large
imbalance between || Z1|| and || Z2]| leads to simplified
learning dynamics for gradient flow (GF). Specifically,
with || Z1]] > || Z2]|, the objective function can be ap-
proximated as:

1
L(t) = §||AY — WA By — Ay BoWi — A3 By A1 By |3

Q

1
§||AY — Wa A By || (12)

This approximation reduces the objective to a form
similar to MF, where the factors are A; and By. Con-
sequently, we can leverage the techniques developed
in [Stoger and Soltanolkotabi (2021)); Jin et al.| (2023));
Soltanolkotabi et al.| (2023)) to derive the linear con-
vergence of GF in this setting.

The following theorem formally characterizes the per-
sistence of the alignment and the imbalance through-
out the local convergence phase, and establishes the
linear convergence rate of GF.

Theorem 3.2 (Local convergence). Under the same
V2L (0)

28\ ) loga(o =) . Then,
Wa

there exists constants cg, c7 such that for vVt € [Ty, T+

Ts], the following holds

setting as Theorem (3.1, let To =

1. Good Alignment of U‘Zg1 (t) with ~1:
cos® (UZ, (t),71) = cos® (Uz, (T1),71).  (13)

2. Imbalance Between || Z1(t)|| and ||Z2(t)|| Persists:

1)) _ (12T
||Zz(t)||2<||Z2(T1)||> ' (14)

3. Loss Converges Linearly:

L(t)
N Z2 (1)l o oo _
<2exp <_ <1 ||Zl(Tz)|)(1166w> wa (¢ Tl))L(Tl)
+cs(1—cos® (UZ, (T1), 1)) - (15)

Moreover, by substituting the alignment and imbalance
results from Claim |3.2 and assuming o < o, we can
simplify convergence rate in as follows:

—(1—5w)0'0'W2 (t—Tl)
32

L(t)gzexp< )L(T1)+2ac3.

(16)
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The proof of Theorem [3.2]can be found in Appendix[D]
Theorem establishes that the alignment and im-
balance achieved during the alignment phase persist
throughout the local convergence phase, and shows
how these properties influence the rate of convergence.
Specifically, demonstrates that the upper bound
on L(t) consists of two components: the first part con-
verges to zero at a linear rate, while the second part
is a constant that depends on the quality of the align-
ment between U*Zg1 (T1) and 1 at the end of the align-
ment phase, with better alignment leading to smaller
final loss. By applying the result from Claim we
conclude that the rate of convergence is determined
by the pre-trained weights and the difference between
the target matrices of the pre-trained and fine-tuning
tasks, i.e., oow,. Moreover, this rate is independent
of the initialization scale a.

In we analyzed GF with small initialization for
rank(AY) =1, showing that smaller initialization im-
proves alignment between U 291 and -1, leading to a
lower final loss. This raises the question: if U 31 is per-
fectly aligned with ~y; at initialization, can GF achieve
zero loss? The following section confirms this by care-
fully designing spectral initialization for LoRA in MF.

4 LEARNING DYNAMICS UNDER
SPECTRAL INITIALIZATION

In this section, we introduce the spectral initialization
for LoRA applied to Problem [2] when LoRA rank r >
rank(AY) > 1. Then, we present the main theorem
on its learning dynamics, and compare them to the
rank-one case analyzed in

Spectral Initialization. We initialize B;, By as
zero matrices. For A, Ay, we initialize them us-
ing the singular vector matrices of AY,Ws. In As-
sumptions and we assume the full SVD of
AY, W, are UyEAyV;7UyEW20T respectively. Let
U2,V be the singular matrices of AY correspond-
ing to the non-zero singular values. Then, we de-
fine G to be the left singular vectors of Wy corre-
sponding to the subcolumns Ug of Uy. Based on
the definition above, we initialize Ay, A> as follows:
Al = GllelGTQ,Ag = GglezGJQ, where EA17ZA2
are diagonal matrices and initialized entry-wise i.i.d.
as X, [i,i],2A2 [’L,Z] NN(O,OZZ), and G11,Ga1 € R™7
are arbitrary orthogonal matrices. The matrices G12=
[V{E,Vf,L],GQQ = [GS,G¥%] are constructed from the
orthogonal matrices V3%, € R™*("=") G € R (=)
where VgLVﬁl, G°LGY.

Remark 4.1. |Balazy et al. (2024); |Lin et al.| (2024);
Meng et al. (2024);| Wang et al. (2024) propose spectral
initialization for LoRA based solely on the pre-trained

weights. In contrast, our spectral initialization depends
on both the pre-trained weights and the fine-tuning tar-
get matriz. In Appendiz[G, we provide examples where
methods built purely on pre-trained weights fail to fine-
tune pre-trained models for MF, highlighting the im-
portance of incorporating the fine-tuning target matrix
when designing spectral initialization for LoRA.

Learning Dynamics of LoRA Under Spectral
Initialization. Under spectral initialization, the
learning dynamics of GF can be decoupled into several
scalar dynamics. Specifically, let By =G B,G{,, A1 =
G{1A1G12, By = Uy ByG3;, Ay = G4, A3G, then one
can write the learning dynamics of A;, B as follows

d _ _ _
=B = (Zw, +Bads)(Zay —F)A]
d - _ _ _
%Al = B;—(EWQwLBQAQ)T(EAY*F) .
where F = EW231A1+BQA22W1 +BQAQB:[A1. At
initialization, B;, A;,i = 1,2 are diagonal matrices

due to spectral initialization, then they remain di-
agonal during the training based on . Thus,
the learning dynamics of LoRA weights decouple
into the learning dynamics of the singular values of

LoRA weights. For ease of presentation in the fol-
lowing theorem, we will use osz to represent the

ith diagonal element of A; (similar definition for
() SO @ @) &) () (i)).

K3
UA270317 B Y AY YW YW Y R

, ORI )
Theorem 4.1. Let (51(5) = %,E(Z)(t) = %(Ux)y_
oW,

g%))Q,Zgi) =( X3)2+(agz)2 (respectively zgl)) In the

case where 53) £ 1, we assume 59 <1 WLOG, then

the learning dynamics has two phases which can be
(1)
IAY

2 _ __lo .
e )

separated by Tl(i) =

1. Growth of Norm and Imbalance: VtSTl(i)

d 53400 o

7 log z§ ) > —5 O'(A)YO'E/V)Q ,

log(;i)> > 7( 5 v )U(A)X/GI(A/)Q . (17)
2

dt

2. Local Convergence: for VtZTl(i), the loss converges
linearly

_s@)y (@) (@) oy
(1—0w )JAYUW2 (t Tl)>€(i) (T1).

(D)< -
(0 <exp .
The proof of Theorem [£.T]can be found in Appendix[F]

Comparison with Small Initialization. Theo-
rem [4.1]shows that the dynamics of each singular value
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Effect of Initialization Std
on Accuracy for ResNet

Effect of Initialization Std
on Loss for ResNet

Evolution of alignment and norm of LoRA weight
for ResNet applied to CIFAR10
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Figure 2: The left and middle panels report the loss and accuracy evaluated on the training and evaluation
datasets for ResNet on the CIFAR-10 dataset. The right panel shows the evolution of the alignment between
the singular matrices of the LoRA weights and the target directions (with smaller values indicating better
alignment), as well as the norm of the LoRA weights. We repeat the simulation thirty times, with the shaded
regions representing one standard deviation above and below the mean.

go through two distinct phases: a growth of norm and
imbalance phase, where the norm of the singular val-
ues increases from zero, and one pair of singular values
of the LoRA weights becomes dominant depending on
the singular values of the pre-trained weights along the
same direction, i.e., (59. A local convergence phase,
where the singular values of the model converge to
the singular values of the target matrix, with the loss
decreasing at a linear rate. The phenomena described
above can also be observed in Theorem 3.1l Due to the
spectral initialization of the LoRA weights, the model
is perfectly aligned with the singular spaces of AY
from the beginning. Thus, unlike Theorem The-
orem does not require an alignment phase. A key
difference of Theorem [4.1]is that the loss provably con-
verges to arbitrary precision, whereas in Theorem [3.1]
the final loss is constrained by the initialization scale
(see Figure [1] for numerical validation).

Comparison with Incremental Learning in Low-
rank MF. Jin et al.| (2023); Pesme and Flammarion
theoretically establish the incremental learning
phenomenon in MF/matrix sensing problems. They
show that GD/GF with small initialization gradually
learns solutions with increasing ranks, with the order
of learned singular values determined by their magni-
tudes. In Theorem [4.1} we characterize the duration
of the growth of norm and imbalance phase and the
convergence rate in the local convergence phase, both
determined by the product of the singular values of
AY and Wy (or Wy, depending on 5,(,3)). Specifically,

larger values of JX)YJ‘(,% (or O’X)YO"(;,)I, depending on

51(5)) lead to a shorter growth of norm and imbalance
phase and faster convergence in the local convergence
phase, indicating that the singular values of the target

matrix along this direction are learned faster.

5 EXPERIMENTAL RESULTS

In this section, we run experiments on LoRA applied
to MF and image classification problems to validate
the theoretical findings in Specifically, we are inter-
ested in the following questions: First, does decreasing
the initialization scale lead to a smaller final training
error? Second, does the alignment phenomenon occur
in the early stages of training? In both experiments,
we provide affirmative answers to these questions.

5.1 Experiments for MF

In this section, we solve Problem 2] with rank(AY) =1,
LoRA rank r=4, and the factor matrix sizes are Wy €
R10%100 and W, € R199X10 We optimize the objective
using GD with a small step size of 107%. We gener-
ate the pre-trained and fine-tuning target matrices as
follows: Ypre € R10%10 where Ycli, j] ~ N(0,1), and
Yi = Ypre—l-Sule, where u; and vy are the top sin-
gular vectors of Yj.. For the pre-trained weights, we
generate them as follows: W5 =1.05 x UyEég GT, and

W= %%Gzééﬁ VJ, where G € R199%100 i5 an orthogo-
nal matrix. We initialize the LoRA weights using small
initialization and spectral initialization, with different

initialization scales o € {107°,107%4,1073}.

Figure [I| numerically validates our theoretical findings
from Theorem Theorem and Claim The
right panel shows that when the initialization scale
is small, the final loss converges to a value that de-
pends on initialization scale, with smaller scales lead-
ing to lower final loss, as predicted by Theorem [3.1
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Moreover, when using spectral initialization, GF con-
verges to machine-precision loss regardless of the ini-
tialization scale supporting Theorem The middle
panel illustrates that smaller initialization results in a
longer alignment phase and better alignment, consis-
tent with Claim Finally, the left panel demon-
strates that during the alignment phase, Ugl first
aligns with 1, followed by an increase in the norm
of the LoRA weights. By the end of the alignment
phase, sufficient alignment is achieved, and the LoRA
weights move away from saddle points, where A; and
B; are zero matrices.

5.2 Experiments for Image Classification

In this section, we fine-tune ResNet-50 (He et al.,
2016), pre-trained on ImageNet (Deng et al., [2009),
for CIFAR-10 classification by adjusting the final fully-
connected layer to 10 classes. LoRA is applied to
this layer with initialization standard deviations rang-
ing from 1.0 to 0.025, and training is conducted us-
ing the Adam optimizer with a learning rate of 0.01.
We measure the effect of initialization scales on LoRA
weights by evaluating training and validation losses
and accuracies, as shown in Figure Alignment
measures how well LoRA’s singular vectors align with
target directions, with smaller values indicating bet-
ter alignment. Appendix [H] details how target di-
rections are determined, and includes more experi-
ments on VGG (Simonyan and Zisserman, [2014) and
ViT-base-patchi16 (Dosovitskiy et al., 2021)).

The left and middle panel in Figure[2]demonstrate that
smaller initialization leads to lower training and eval-
uation losses for ResNet. The left panel shows that in
the first hundred steps of training, the singular vectors
of LoRA align with the target directions, and the norm
grows. The simulation results for ResNet match our
theoretical findings for Problem[2] Moreover, although
our theory focuses on training error of Problem 2| the
improved test performance as the initialization scale
decreases suggests that the initialization scale may also
affect generalization performance.

6 Conclusion

This paper studied the learning dynamics of LoRA for
MF under GF, highlighting the critical role of initial-
ization. We theoretically derive convergence results
for LoRA with both small initialization and spectral
initialization. Our analysis reveals different behaviors
under these two initializations: GF with small initial-
ization converges to a neighborhood around the tar-
get matrix, with smaller initialization scales leading
to more accurate convergence, while GF with spec-
tral initialization converges to the target matrix with
arbitrary precision. Numerical results from MF and

computer vision validate our theoretical findings.
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Supplementary Materials

A Preliminary Lemma

In this section, we present several preliminary lemma which will be used in the following sections.

Lemma A.1. For matriz A, B, we have

Tin (A BlE < [AB|[% < 050 (A) 1Bl 7

min max

Tmin(B)|AIE < [IABI[E < 0f0x(B) Al 7 (18)

min max
Proof.

|AB|% =tr (ABBTAT)
=tr (ATABBT) use cyclic property of trace
< Amax (ATA) | B|% use trace inequality
= Omax (A B[ (19)

max

For the other way

|AB||7 = tr (ABBTAT)
=tr (ATABBT)
< Amax (BBT) |A]1%
= Ormax(B) [ Al (20)

max

The lower bound is similar. O

Lemma A.2. For matrix A € R™*" B"™™ we have

1
1ABIL < [[AlL- 18I < 5 (1417 + 1BI7) < 5 (1411 + 1A11%) (21)

DN | =

The proof of Lemma [A.2] follows the basic property of norm and Cauchy-Swartz inequality.

Lemma A.3 (Singular Space Perturbation Bound). Let M* and M = M*+E be two matrices in R™*"™ (WLOG,
we assume m < n) whose SVDs are given respectively by

e (e g (2500 (V)T
w-w oo (T o) () g
B > 0 o0\/(WT
M= (U Uy) (0 ol 0) ((VL)T> : (23)
Here, 01 > -+ > 0y, (respectively of > --- > o7, ), and ¥, 5" € R™*". If |E|| < o) — 07,1, then one has
2 E
U™ — T < 2medEL 1)
oy =07 — Bl

We refer the readers to the proof of this lemma to Theorem2.9 in |Chen et al. (2021]).
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Lemma A.4 (Theorem 7.3.3 from Horn and Johnson| (2012)). Let A € R™*", let ¢ = min(m,n), let 01 > o9 >
- > 04 be the ordered singular values of A, and define the Hemitian matriz

A= (X ﬁ) . (25)

WLOG, assumen > m. Then, let the SVD of Ais A=VEW* ¥ = [%,,,0],V = [Vi, Vo], Vi = LV, W = LW,

vV -V W . . :
= ~ ~ . T
and U (W W O) hen, the eigenvalue decomposition of A is
Y 0 0
A=U| 0 =%, 0|U" (26)
0 0 0

We refer the readers to Horn and Johnson (2012) for detailed proof.

Lemma A.5 (Learning dynamics of LoRA). When applying GF in to Problem @, the learning dynamics of
LoRA weights satisfy the following ODEs

d (B _ 0 (W + BoAy)TE\ By
dt A;r - ET(WQ + BQAQ) 0 Air ’

% (ff) - <(W1 +£1A1)ET H +()BlAl)T> (ff) (27)

Proof. We take Ay, By as an example. Direct calculations based on yields the following
Ay = B] (Wy+ ByA2)TE, By = (Wy+ ByAy)TEA]. (28)
Then, one can combine the above equations to derive the result. O

Lemma A.6. Given matriz A € R™*" and use a; to denotes its i-th column. Let v € R™ be any unit vector.

If cos (’y, ||Zz|> > q holds for all i € [r], then the following holds

YTAATy > @ All% (29)

Proof.

™
YTAATy > =~ "aialy
=1

s
S e )
- ]
T
> ¢S jal?
=1

= ¢°[|All% - (30)

B Proof of Theorem [3.1

Our proof strategy for Theorem involves decomposing the learning dynamics into two distinct phases: the
alignment phase and the local convergence phase. Theorem builds on Claim and Theorem with
Theorem itself relying on Claim In this section, we assume Claim and Theorem hold, and prove
Theorem [3.1]based on this. Detailed proofs for Claim [3.2]and Theorem 3.2]are provided separately in Appendix[C
and Appendix [D] We state a detailed version of Theorem as follows.
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Theorem B.1. Assuming §,,#1, for any LoRA rank r, there exists constants ci,co :polylog(llT{‘, OWas OW, )s

¢y log( L o log (£
and c3, o =polylog(|1 — by, ow,, ow, ) such that for any 0 < a < «*, after time T = lt]mgvga) + 2lgga(wa ), we
2 2
have L(T) < 2a°s.
Proof. Under the assumption that Theorem [3.2] holds, the following holds (See (16])
1—06y t—T 1—0, t—T
L(t)<exp<—( >U§;/V2( 1)>L(T1)+OZC3 <exp(—( )U;;/Z( 1)>L(0)+a03 , (31)

where the last inequality holds because L under GF is non-increasing. Then, we choose t = Ty 4+ T such that

exp (_ W)W) L(0)=a‘, or equivalently

=2 1og(L(0)) , (32)

(1—6y)oow, acs

then we have L(T; + T») < 2a°. Finally, we choose ¢y in Theorem such that

32c3 log(&) 32c3
Co = aL(O) = ’ (33)
(1 — 6w) log(T) 1- 6111
which completes the proof. O

C Proof of Claim [3.2

In this section, we provide the proof of Claim Our proof strategy is to divide the alignment phase into two
distinct subphases: early alignment phase and escape saddle phase. In the early alignment, we will show that
U‘Zg1 (t) aligns with 71, and the norm of the LoRA weights stay small. In the escape saddle phase, we will show
that U 51 (t) continues to align with «; while the norm of the Z; move away from zero. Claim can be viewed
as a consequence of the escape saddle phase.

C.1 Proof of early alignment phase

In this section, we first provide a characterization of the early alignment phase, and its proof.

Theorem C.1 (early alignment phase). Under the same setting as Theorem|B.1, we define

. 2 1
T = log( ) . (34)
(5 = duw)oow, azZa (1B W2+ W[ [Wal| +[[Wa || 24/ (WA + [[W=]])

There exists constants B1, B2, B3 that is independent of the initialization scale a such that the following holds

12 (T)IF - By~ 25
1Z2(T)1I%
3405y

cos? ('yl, Ugl (T1)> >1— Boasow |

1Z2(T0) | | Z2(T) | F < Bsar. (35)

Proof. Our proof for Theorem is based on the following decomposition of the learning dynamics of LoRA
(which is also shown in (7)),

Zy=(oow,H; +1§1)Z1 )
Zy= (00w, Hy+Ds) Zs, (36)
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where Hy, Hy, D1, Dy are defined as follows

T

H1:<UOT gg ), H2:< OT ug ), F=W3B A1 +B AW 1+ By Ay B1 Ay, E=AY—F,
g gu

Di=( 2 PO by=( 9 P2), Di=AlBJE-WJF, Dy=EAB]-FW,. (37)
Dl 0 Dy 0

Our analysis is built on the observation that during the early stage of the training, || Dy ||, || Dz|| ~ O(a?), which
is extremely small compared with the magnitude of cow, H2, cow, H1. Claim characterizes

We first characterize the learning dynamics of the angle and norm of each column of Z; (or equivalently Zs) as
follows

d . A

%kuﬂ2 = 2(unj, wi;) = 2wy, (Gow, H1 + D1)wij)

d - W ;W1 wywys\ H . wiw:\ D -

a Wiy _ Wiy Wiy S 15 W1y = oow, <I 15 1;) 1W1; + ( et 1;) 1W1; . (38)
dt [lwysll  Jlwill Jwigll? o Jlwyl lwill? ) lwill w2 ) [Jwasl]

Based on the above equation, one can characterize the growth of ||ws,||, HZHZ and angle alignment between w-
with ~1, as is shown the following lemma

Lemma C.1. For any unit vector 41 L v1, the following conditions hold

d
Zlog(lw[*) < 2(00w, +1I1D1ll),  Zlog(12111F) < 2(00w, + [1D1])

dlog(”zl”f) > 2((1 - 8u)oow, — | Da]l — 1Da]).
RNAR
? <COS(71, )

—log| ———— | 2 oow, _2||D1||~
dt COS(’Yl’ |wij|)) :

(39)

We refer the readers to Appendix [E.I]for the proof of Lemma [C.1I} Based on Lemma[C.I] one can see that when

| D1]], || D2 is sufficiently small, one can control the growth of ||w;|], || Z1]|# (and ||we;|, || Z2||F respectively) and
[EA
1Z=]%

cos(7y1, H;ﬁ%\l) monotonically increase. The following lemma formally characterize these properties.
J

Lemma C.2. We first define the following quantities

1

1
e L L S S LA AT

. w1, (0)
cos (71’ ||w1§(o>|)
Cmin = min{ }

JEr] ~  wi;(0)
cos (71’ Twrs )T )

1Z1(0)]|# (m+h—1)
dy=22L0E g, S TR 40
! ||ZQ(O)||F 2 Cmin ( )

Assume until Ty(81,02), the following holds || D1(T1(61,82))|| < 01, ||D2(T1(01,02))|| < 2. Then, the following
holds for all 0 <t < Ty (61, 92)

sy ()2 < o2 exp <2(00W2 n mt) o

1Z:(8)]% < o2 exp (2(0’0% n &)t) 2,

Z1(0)]2
:Z;Et;:g >d; exp(?((l —dy)oow, — 01 — 52)1&) ,
F

i 1
c052< , 13 ) > . 41
" lwizll) = 1+ dyexp(—2(oow, — 201)t) )
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We refer the readers to Appendix for the proof of Lemma Since we initialize 4; = 0, B; ~ N(0,a?),
therefore the value of Wmax, Zmaxs Cmin, d1, d2 are all independent of «. Moreover, when T} (81, d2) is large, one can
show there will be sufficient imbalance and alignment at T} (d1,02). Next, we will show that when §; = §3 = «,
we can characterize a lower bound on T;(d1,d2) which depends on «, and it further leads to an characterization
of the alignment and imbalance between || Z1||r, || Z2||r evaluated at T1(d1,d2) depending on «.

Lemma C.3. Under the same setting as Theorem @, we define Ty = Ty (a, @) as follows

. 2 1
T = 10g< > . (42)
(5= dw)oow, 7\ a2 (| Bl + || W2+ Wi [Wall++/TWal])

There exists constants B1, B2, B3 that is independent of the initialization scale a such that the following holds

2(1—-dw)

T 2
w > didy” ™" o R
||Zz( 1)||F
) a 345w w
0082(717 ;) )21 dody % a 353
l[ws5(T1)]

1
2 (| EIHIW [2H W [ W /T W2 )

where d3 =

We refer the readers to Appendix [E.3] for details. Then, in the remaining of the proof of Theorem we will

348w g

show that cos (’Yl, %) >1 d2d3 =5w 8252 ensures sufficiently alignment between v; and U3 2 (Tl) O
w141

Our starting point is the observation that

2
I Zo(T)F =D Iy wi (1))
j=1
2
:Zcosz<71, _wy(h) )u RUNE
> s, (F)]
3408w
(1—d2d R aw)nZl(Tl)nF (44)

N _% 3460 ~
and [|(I = 117" ) Z1(Th) I < dady " a5 | 20 (Th) |3
Then, we can apply Lemma@ (singular space perturbation bound) with M = Z;(T}), M* = v, Z1(11) and
r=1:
I — 7171T)21(T1)||
vl Zu(@)| = (2 = ) Za(T)

3+6w 346
dady °~" o5 0w

. LT
||717;——U§1(T1)(U§1(T1)) | <

IN

340w 345,

1-— 2d2d3 5—%w a5—%w

340w 345,

< 2dydy ° 5o (45)

340w 345,
where the last inequality holds due to the assumption that dzd 50w y5=buw

IN
o

C.2 Proof of escape saddle phase

At the end of the early alignment phase, we have shown sufficient alignment between each column of Z; (Ty) (and
UZ, (T1)) with 71, along with a significant imbalance between || Z1(T1)||r and || Z2(1})||r. Moreover, the norm
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of the LoRA weights remains small at this stage. In the escape saddle phase, we show that this alignment and
imbalance persist, while the norm of the LoRA weights gradually increases until reaching a certain threshold.

The following theorem characterizes these properties formally.

Theorem C.2 (escape saddle phase). Under the same setting as Theorem|B.1, when « is sufficiently small, let

2oo (1 + (=8u)a”
ogl| 1+ 452

max

46
! (14 6y)oow, (46)
Then, there exists a time T € [Tl,Tl + Tl] such that the following holds
1—06y)o
g Bi(Ty)Ay(Ty)v > (4711})7
OW,y
IZu(TOIF o, —20=pw
el ﬂ o 5w )
1Z2(T1) 1%
082 (WU;I (T1)> >1 - Boatti . (47)

Proof. In this regime, we first show that when || D], | D2l < M, each column of Z; continues to align

with 7, and Hg;“i continues to grow. This is because in Lemma and Lemma we have shown that

dhg('zmi):>2«1—5waw¢—|Du+—nDz>
RN VAT

d (COS(%’ Twrl)

4 DTOsl’ > 5oy — 2Dy (48)
COS("Yl, |w1j|)> ’

ar 08
When || Dy |, | Daf| < E=24)772 e have

d ||212F)
log( >0,
dt o\ || 2] %

d co8(V1, Toiiy)
= log(llj) > oow, — 2| D1 = doow, > 0. (49)
dt cos(H1, Tor H)

Then, we characterize speed of growth of g" B Ajv.

Lemma C.4. One can characterize the growing speed of g" BiAjv as follows

d g7 . Wi
BiAjv > — D1 D11 21113 2 ). 50
S0 BiAw > (o, — D) 41 mincos® (s, 20 (50
The detailed proof of Lemma can be found in Appendix
Based on Lemma we can show that for all ¢ > T}, we have
d 14 dy)o0 346w
= TB A > %H%H%(l — Bras=ow)
> o222, eXp((1 - 6w)mw2t) L+ dw)oow, (1— Bra®is)
2 2
(14+8w)oow,t _1
9 o (14 6y)oow, 340y exp( 2 )

— g ' BiAiv>a zmdxf(l — Boa=5u) AFom)oow, . (51)
2
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Thus, for the time for g " B1A1v to reach W is upper bounded by
2

5262
210g<1 + (el )
T =

(1+0w)oow,

(52)

Notice the above T} is derived under the assumption that || Dy ||, || Da]|| < % for all T} < t < Ty. However,

it is possible for || D], ||D2|| to reach M during this time. In the following section, we assume ||D1]|

reaches % first at time t] where Tl <t < Tl. Then, we show how to derive a lower bound on gTBl Av

based on this condition.

We first provide a lemma that will be used in the remaining of the proof.

Lemma C.5. Let A; =
condition holds for all t >

L (B1(0)"B1(0) — A1(0)A1(0) 7). Then, when o is sufficiently small, the following
0

1Z1]|F — 20272 || Ay |
2r

1
<[Bidill < 5l121% - (53)

Remark C.1. Notice when LoRA weights are trained via GF, Dy is constant during the training. Similar
arqgument has been shown in |Saze et al| (2013); | Tarmoun et al.| (2021). Moreover, since B1(0) is initialized as
a zero matriz, and Ay (0) is initialized entry-wise i.i.d. using N'(0,a?), Dy defined as above is determined by a
random matriz whose entry are N'(0,1). Thus, when « is chosen to be small, it does not affect the magnitude of
Dl'

We refer the readers to Appendix for detailed proof of Lemma
Now, we show an lower bound on ¢ By Ajv as follows
|D1|| =||A3 By E — Wy (WaB1Ay + BoAs Wy + BaAs B A ||
<||Wy WyoBy Ay + || B2As|| (EH + [[Wa[[[Well + ||W2||B1A1||)
=|lun" Wy WoBy Ayvo T || 4 |Juu" Wy WaBy Ayvy v || + [lusu] Wy WoBi Ay ||
+ [[B2 Az | <||E|| + [[Wall[[Well + ||W2|||B1A1||>
:”O"%VQUQTBlAl”UUTH + ||0‘2,V2ugTBlAlvle|| + lusu] Wy WaB1 A4
+ || B2 Az | (IIEII + [WallW2] + ||W2||B1A1||>
<o%y,9" BiArv + oy, || BiAropv ] || + |[Wal[*[lupu] B |

+ || B2 Az | (IIEII + (WA l[[Wal + ”WZ”BlAl”) : (54)

The first term on the RHS is our target quantity, we will show that the rest of the terms on the RHS is small.

For || ByAjviv] ||, we can use the alignment between each column of Z; with 1 to lower bound it. Specifically,
in the early alignment phase, we have proved that each column of Z; aligns with 7, i.e., cos(yi, T=ir) >

llwsl
3464
1 — Baa5-%» . Moreover, in the previous discussion, we can see that this alignment persist in the escape saddle
phase. This property ensures that each column of Z; aligns well with ;. The following lemma characterizes this
property ensures [|g,g| B1A1|?, ||[Bi1Ajv v] ||? are small.

“)1]‘

Lemma C.6. Under the assumption that cos®(v1, m) > 1 — Baa?, then one can show that
J

lgLg] BiAill, |BiAww o] || < /B0l Z1 % (55)
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We refer the readers to Appendix for the proof. Based on Lemma we can show that
1B Arvosv] |12, L] Brdu]|? < Baor=5u || Zu]l%. (56)
Based on these, we can further show that
IDL < 8,97 BiAww + o | BiAro o] | + [ Wall?lusul BiAd |
+ B2l (14 W7l + 92l 040

Z1||%

< 029" ByA + 2||Wa|*/Baa T 2a
1 1
A (I UATA RS EIEA Y

3464
< opy,9' BiAw 4 2|Wa| 2/ Bea ™2 || Z1 |13

1 20-sw) 9 1 2
+ Tﬁla 5w || Z1 R 1B + [[Wal[[[Well + HW2||§HZl||F (57)

If one can show that || Z1]|% is upper bounded, i.e., ||Z1||% < d4, then we can show

2|WWl[2 /B8t % 4 L5 d2(||E||+||W1||W2||+|W2|| d?)

1—
g BiAw > L0 .
20, Ty,
1-9)o
> %7 (58)

where the last inequality holds when « is sufficiently small, and the absolute value of all the negative term are

less or equal than (i V‘ZU

Finally, we show at t], || Z1|| is upper bounded. By the assumption that || D1 || reaches M before g " By Ajv
(1=6,)0

T . We start with the following observation
W2

reaches

I Zil% = Zl\vm wij|®

J=1
—Zcos <71, ||)|w13||2
(1—d2d RN aw)nzlnF. (59)

Thus, if one can show that ||y17{ Z1||% is upper bounded, then when « is small, it directly implies || Z % is
bounded.

—dy)o

||'y171 ZIHF = g—'—BlB1 g+ UTATAlv +2¢"BiAjv < g—'—BlB1 g+ UTATAlv + (1 (60)

20w,

Due to the property that Ay A] — B By = a?A; is small, one can connect g' B1 By g+g' B1B{ g with ¢" B; Ay v.
The following Lemma characterizes this formally.

Lemma C.7.

3464
(9" B1B) g)* < (v" A] Bl g)* + o®||D1lg" B1B{ g + 2B205=5u || Z1|| -
3464
(’UTAlTAlv)2 < (vTBTAng)2 + oz2||D1||vTA1TAlv + 28205 5w ||Z1||31; . (61)
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We refer the readers to Appendix for detailed proof of Lemma Based on Lemma one has

2
(vTAIAw +9' BB/ g) <2(v'A{ Ajv)®> +2(g" B1By g)*

346w
<2(w"A] B} g)? + o?||Dy|| (vTAlTAlv + gTBlBng) +4Bra5w | Z1||3 . (62)

And it leads to the following upper bound on g" B1B{ g +v Al Ajv

ull +\/O/‘D 2 4 8(g7 BiAyv)? + 168505 54 || 2,4
g BiB g+ v AT Ayw < D1 | DAl (9T B1A1v) Bs A

2
3484
< @®||D1|| + V29" BiAw + 2/B| Zi |[pato2te (63)
Then, we plug in the above equation to .
1—6y)o
It 2113 < g7 BB g + o7 AT Ay + L 00)C
20’1}[/2
e (242)(1 =6,
< 02|y + 2v/Bl 21 ottty 4 CEVDUZdu)o (61
4UW2
Combine this result with (59)), we can derive the following upper bound on || Z1||
2+v2)(1=dw)o
o2 | Dy | + B
”ZIH < _ 340w 345, 3484,
1 —dady ° % a5=5w — 2¢/B|| Z1||a 02w
24+ v2)(1 —dy
<opy)  BHYDUZbu)r (65)

20’W

2

where the last inequality holds when « is sufficiently small.

The second case is when || Dsl| = % happens first. We argue that if one lets the training goes on, one of

the following happens: either ||D;| = % or g BiAw = (41;;‘;5‘,)0. Let us use time 7} to denote the time
2

that the above event happens. If one can show that there exists constant d such that | Z1(¢)||2a? > || Z2(t)]|%

holds for all Ty < t < T}, then | D;| = M implies g" By Ajv = %. Moreover, it is obvious that
2

T < Ty +1T5. In the rest of the proof, we will show that one can actually find the constant d which is independent
of a.

Our starting point is that

ptou([21E ) 21 = auoow, ~ 104 = 1Dal).
1Z,(1)]|7 12:(11)|2 - ‘
:>1og(Z2(t)§)—log(”ZQ(Tl)”£)2 (1= 6.)00w, (t — 1) — /TlD2(5)||ds
1Z:(0))% _ 1 Z:(T)]2 !
HZz(t)Hg > ||Z2(T1)||£ exp(— T1||D2(8)||d3) (66)

Therefore, it suffices to show that | it |D2(s)||ds is upper bounded by a constant independent of «. To show

T
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this, we first bound sz;ﬁT{ |D2(s)||ds as follows

D)% = EA] B — FW/" ||
=l (uu" +uiul)(BA] B — FW") (99" +g19])II%
<|luu"(BA] B — FW")gg"||%
+ |luru] (BA B — FW)|[%
+luu (BA] B — FW,")g.g] |7
<Juu" (EvoT A B — FW,")gg" |} + [luv" Bviv] A{ B gg" |3
+llurul FA] B |% + lusu FW |3 + |EA] Bl g1g [ |F + [|IFW) 9191 |7
<Jluu" ((AY = WaB1 Ay )vo " A B — WaB1 AW, )gg " |7 + |luu” Evi o] A B gg" ||%
+ || B2AosWi + B2 Ao Bi A4 |3
+lurul FA] B |% + lusu FW |3 + |EA] Bl g1g [ |F + [IFW 9191 |7
<|(¢ — ow,g" B1A1v)g  BiAiv — ow,ow,g' BiAw|* + |uu' Eviv] Al B} gg"||%
+ || B2 AWy + By Ay B1 A+ || %

+ luru] FA B % + lluru] FW, |7 + |EA] B g1g] |7 + |FW, g1g] %
2
<|(c — ow,g BiA1v)g' BiA1v — ow,ow,g' BiAw| +|uu' Fviv] A B gg"|%

+ || B2 A2 || 2(|IWi |7 + | B1A1]|7)
+ [lusu] FA] By |5 + lluru] FWY |5+ |EA B g1g ] |7+ |FWy g1g] 1% - (67)

Notice since g " By Ajv < %, we can show that
2

<(o— 0W2gTBlAlv)gTBlAlv + O’WQUWIQTBlAﬂ)

< <(3 +45w)0

(U — O'W2gTBlA1’U)gTBlA1’U — O'W2O'W19TBlA1’U

+ a%am) g BiAw. (68)

Thus, we derive the following upper bound on || D4 ||

3+0y)0
D11 < 11l < (527 4 oo, o7 B
+ T Fo o] AT Bl g [ + [ Bo Aol (W + [ Bule)
sl FAT B e + s FW I+ 1EAT B g gLl + WY guglle . (69)

Notice except for the first term, the rest of the term either depends on By A, or ngIB1A1 or B1A; ULUI. Based
on Lemma and the conditon that ||Z1(t)||%a? > || Za(t)||%, we can conclude that the rest of the term is
extremely small compared with the first term when « is sufficiently small which is formally characterized by the
following lemma.

Lemma C.8. Under the following conditions
1Z (@)l Fa? 2 | Z2 (1)
. _ 346w w
cos? (’yl, s > >1—dadg o555

[l
(1=10y)o

OW,

g BiAw <
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we can show that

luu" Fviv] Al By gg" | + | B2Az| r(|WillF + || BiA1 || F)
+ luru] FA B |p + lluru] FWy ||p + |EA{ B g1g] |lr + IFW, g19] |Ir

B ((3+5w)0

1 +UW20W1>9T31A1U- (71)

We refer the readers to Appendix for the proof of Lemma[C.8] Thus, based on Lemma [C.8|one can conclude
that

3+ 0y)0
[D2]lF < <(2) + 20W20W1>9T31A10- (72)
Thus, f£1+T1|\D2(S)||dS < (W + 20W2UW1>f;;1+T1 g" Bi(s)A;(s)vds.

Therefore, it suffices to show that fTT11+T{ g" Bi1(s)A;(s)vds is bounded.

d . .
%QTBlAlv =g ' BiAiw+ g BiAw

= g—r (00W2g’UT —+ Dl)AIAl’U + gTBlB;r (O'O'WQQ”UT + Dl)U
= oow, (gTBlBIg + UTAIAlv) + gTDlAIAlv + gTBlBIDIU

S (14 6y)oow,
- 2

(9" B1B] g+v Al A v)
> (1+ 6y)oow,g ' BiAv (73)
where in the last inequality, we use Cauchy Swartz. One directly has

T +11

g AL (T))By(T))v > g" Ay (Ty) By (Ty)v > (1 + 6y)oow, / g  Bi(s)A1(s)vds
T
T+ 1-6
= [ T B A (s)vds < g7 AT By (o = L0007 )
T OW,
which completes the proof. O

D Proof of Theorem [3.2

In this section, we provide proof of Theorem In Appendix [B, we have shown that at the end of alignment
phase, there is sufficient alignment and imbalance, and g " B; A;v has reached a constant order which is indepen-
dent of . In this section, we will show that how these properties lead to linear convergence of the loss until it
reaches a neighourhood around the global minimum. We first present a detailed version of Theorem

[ log( v 2:(0))

0’0‘VV2

Theorem D.1. Under the same setting as Theorem E, let Ty = Then, there exists constants

cg, c7 such that for ¥t € [Ty, Th +T5), the following holds
1. Good Alignment of Ugl (t) with v :
cos? (Ug1 (t),v1) > cos®“ (Ug1 (Th),m) - (75)

2. Imbalance Between || Z1(t)|| and || Z2(t)|| Persists:

120 (12N
||Zz(t)||2<||Zz(T1)||> ' (76)
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3. Loss Converges Linearly:

2
(1= 2 ) (1=du)oow, (t=T1)

L(t) <2exp (— T )L(Tl)

+cs(1—cos* (UZ, (Th), 7)) - (77)

Moreover, by substituting the alignment and imbalance results from Claim [3.2 and assuming o < a*, we can
simplify convergence rate in as follows:

—(1=by)oow,(t—T1)
32

L(t) < 2€Xp< >L(T1)+2ac3. (78)

Proof. We start with a decomposition of the loss into signal and noise part.

1
L:§||th—(W2+BgA2)(W1 +BlA1)||2F

1
= (wu” +upu])(Yie— (Wat BoAo)(Wi+BiAy)) (vo " +oi0])||7

1 1
=3 ||auvT —UWngBlAl’U—0'W2UTBQAQQ—UUTBQAQBlAlv’UT ||% ,—&—5 ||UJ_UIF+UUTFUJ_’UI ||% (79)

Signal loss: Lg Noise loss: Ly

where F' = WoB1 Ay + BaAsWy + By Aa B Ay Our proof strategy it to show that Lg converges linearly until it
reaches a small value depending on « while Ly remains small. Moreover, we will show that the alignment and
imbalance we achieve in the alignment phase remains good in the local convergence phase.

Bounds on several key quantities. We first assume that for any 77 < ¢ < T5, there is sufficient alignment
between each column of Z; with q, and sufficient imbalance between || Z1]|, || Z2||. Moreover, the norm of Z; is
bounded.

_ . W14
1Zilr < ds, | Z0)% > 0= Zul%, mlncos2<717 1 )>1—ada (80)
j€lr] [|w1]]

where ds, dg, d7 are constants only depending on Wy, Ws, AY and independent of o. We will derive convergence
results based on these constants. In the end of this section, we will provide expressions for ds, dg, d7.

Bound on the noise loss Ly .
1
Ly =§HULUIF + uuTFleD@

1 1

SEHULUIFH% + §||WTFMUIH%
1 1 1

SiHULUIW@BlAlH% + §||ULUIB2A2W1||% + §||ULUIB2A231A1||%

1 1 1

+ §||UUTWQBlA1ULUIH% + §||UUTBQA2W1'UL'UIH% + §||uuTB2AgBlA1vaI||%
1 1

<glaeIWamil + Gl Wb v ol I+ (1012 + 1B al ) 1B2el
1 1 1

<5IalP (ool BrArl + B dvosoT 3 )+ 3122 (199312 + 5112112 )

2

dz? 1
< WalPVaTad+ (Wl + F ) x ot (1)

The above upper bound on Ly demonstrates that the noise loss is small if the initialization scale « is small.
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Convergence on the signal loss Lg. For the convergence of Lg, we study Lg first.

: 2 Ls . Ls -
Ls =) (= A)+(55 Bi)
i=1 ¢ *

2

- Z<8A 8A> <aB 8LB>

=1

B Ls Ly, ,Ls Ly

Ls L Ls L
s Gl - I35 5l - Z<—8j_,aj,>+<a§,,ag_>. (82)
-1 (2 7 K3 K3

+ g% and

In the following section, we provide lemmas that provide bounds for || 74
2
S (34 2 )+(55, 54 ) separately.

Lemma D.1. Under the condition that | Zi||r < ds, ||Z1||% > a=9%|Z3||%, one has

o a®di
e I+ g i 20l (o, = 2 ows ) s (53)

Lemma D.2. At the end of alignment phase, one can show that the error satisfies

1Bl < (1- 55 )0 (59

Then, since the loss under GF is non-increasing, we have |E(t)||r < |E(T1)||r. Based on this, one can show
that for all Ty <t < T,

(1=6y)o
Z - 85
H% 1||F Sow, (85)
Remark D.1. In Lemma[D.d], we the following is implied in the intermediate step
12213
|| HF H ||F Tl Z1||F< E)Ls. (86)
O‘VV2
To bound || Z2||%, we use || Z2||% = ”?”5 1Z1||%, and we highlight the role of ”?H% in the theorem.
1 LilF

We refer the readers to Appendix and Appendix for the proof of Lemma [D.1 and Lemma By
combining these results together, we can show that

Lg 1—96y)o ads 2 1—dy)oow.
I+ e = S22 (o, - % ) 1 » G Powe (57)

Then, we show that Z?:1<8L—ji, é//];;>+<8LBS . yin &) is small.
Lemma D.3. One can derive the following upper bound

<8LS OLn >
OBy’ 0Bs

GLS 8LN> OLg (’)LN <8LS aLN
3A1 0A, 831’ 8B1 0As’ 8A2

1 d?
<2VBLs QIWall + 20% ) x (W2l Ve + o x (W] + D)

1 ) 1 d?
+4\/2LS<||W1||%+2d§>adﬁd§(||W2||vad7d§+2ad6d§ < (Wl +3 )) (88)
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We refer the readers to Appendix for the proof of Lemma [D.3] For convenience, we use f; to denote
1 d?
fr =2(2|[Wa |3 + 2a%d2) xd3 x (||Wz|\/ad7d§ + aods x (W] + 25)>
d2
F AW [+ o (IWallVa i 3ot x (W3 1+) ) (50)

Remark D.2. We are particular interested in the dependence of fi on «.. One can see that f7 ~ O(a™in(d7:2ds)),

Then, based on and Lemma we can conclude

. 1—dy
Ls< —%L + fiv/2Ls . (90)
For this ODE system, we can show that

(1= 6y)oow,(t—T1) 32f4
VLs < exp (— 3;4/ ) L(Ty) + 0= su)oom,’ (91)

which leads to

2

We choose Ty such that

eXp((l 5w)mw2(tTl))L<T1> = <(1_32f )

16 Ow)TOW,

(1—0,)%0 0W2L(T1)
102472 )

16
— Ty = I
2 (1—4y)oow, og(

(93)

In the remaining of the proof, we show the existence of ds, dg, d7. First, for convenience, we use fo to denote the
upper bound on L.

d
%||Z1||§; = 2(By,(Wa + By Ay) "EA]) 4+ 2(Ay, B] (W + ByAy) " E)
< 4[| Ay||F || Bl F|[W2 +BzAzHF||EHF

<2/ ZFNE(Wallr + 5 Ld2a). (94)

Thus, one can show that
T +T>
ox(|ZilE) < [ @IWalle + ated)| B s
1

n — 0y)00 -
S/T ' (2||W2||F+ad6d§)<exp((1 Suw)aow, (t T1)> L(Tl)JFngl)ds

32 (1="6y)oow,
1— 32f1
(1=0w)oow,
(1_6117)‘7‘7W2

=log(| Z1(T)|%) + 2IIW2llF + a®d3)/L(T1)

32
32f1L(T1) 16 (1 - 5 ) g O-WQL(TI)
" ((1 - 6w)UUW2 f2) (1 - 6w>UUW2 10g< 1024f1 > . (95)

We set log(ds) larger or equal to the RHS of the above inequality, denoted by R;(«). Notice when « goes to
64| Wa||

zero, Ry converges to log(||Z1(Th)||%) + =3, )o0w; "

Moreover, one can show that when « is sufficiently small,

1Z1(T1)||% < 49" B1A1v = (1 — 0y)oow,. We set di = exp|( 2log((1 — dy)oow,) + m‘/) Thus, when «
)T,

is small enough, R;(a) < log(df), which verifies || Z1(t)||r < df for all Ty <t < Ty + T5.
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For dg, we have

dlog(Zl”?)w(l — 8u)ows — 21Da - 2| Da]
RN TA

>2(1 — by )ow, — 2| A3 By E| = 2|W2||F|| - 2[|EA] B || - 2(|WA ||| ||
>2(1 = dw)ow, — (1Z111F + 1 Z2E) N Ellp = 2([Will + W) (IAY || + | E(Ty)])
22(1 = dw)ow, = 2([Wi] + [[Wa[))[[AY]]

—2((d5)*(1 + ) + W] + || W) <exp<_

(1= 6u)oow, (t — Tl)) L(Ty) + 32fl>

32 (1 =dy)oow,
(96)
Thus, we have
1213 16 (1= 8u)20%0%, L(TY)
g (1215 )= (200 = Budow, = 2013+ IW2DAY ) oo tom (7 o
* " 32f1 16 (1 - (5 ) O' O'W L(Tl)
~AEPO ) W ) G o, T oo, 10g< 10247 )
, do 32/1 1Z2(T1)17

We use Ry(a) to denote the RHS of the above inequality. Then, when « goes to zero, the LHS is of the following
order

39 min(2ds, dv) (2(1 ~Su)ows — 2| W + ||W2||>AY||)
1\ /2(1 - 6,)
Ro(ar) ~ log<a> ( 5 o, + (1= 6000w, ) (98)

For d7, for all j € [r], for any 47 L +;we have

d 1 <COS(%’ Ilziﬁu)

— - . >oow, — 2||D1||
w””|>> :

dt
>o0w, — 2| A3 By Bl| - 2||We|||F|
>oaw, —2a%(d5)*|| E||r — 2| Wa|(JAY ]| + | E]) - (99)

Thus, one can show that

cos(V1, Tor’T)
log Aiwlj)
COS\TL Ty, T

(
(
( Cwi(Th)
(

)
€os(Y1s Twr (7 )
>log< - lejEn;H )+(UUW2_2||W2|HAYH)
cos(31; e
324, L(T}) (1 —3y)%02 O'W L(Ty)
— (2a%(d 2/ Wa Ty [ —=L2 1 1
(20%(d5)° + 2 W2 ) 2((1 Suyoows T ) T bu)oow 8 10247
R Y
— (20 (d2)? + 2| Wa ) B(Ty) — oo (100)

(1_5w)0"7W2
32

Let the RHS of the above inequality be R3(a). We can show that when « goes to zero, R is of the following
order

1 (3 + (5 32 min(?dﬁ, d7)>

Ri(0) ~Tog( ) F5" — o (2IWall = ow,) Fog 0 (101)
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Following the same argument of providing lower bound on ds, one only needs to ensure

32 min(2d6,d7) (2(1 — (511,)0'1/1/2 — 2(HW1|| + |W2||)AY||>

2(1 — 6y) n > ld
5— b4 (1—bu)oow, =20
3+ 0w 32min(2dg,d7) _ 1
—o(2||Wa| — — 2 > —dy. 102
S oUWl o) T ST > S (102)
It is obvious that there exists dg, d7 such that the above inequality holds. O

E Proof of Several Lemmas Used in Appendix [C|and Appendix D]

E.1 Proof of Lemma [C.T

Proof. We start with characterizing each column of Z; align with ;. Let Wy; = Ze;,Vj € [r] where e; is the
standard basis. Then, we have

W = oow, Hiw; + Dywy, . (103)
Then, based on (103]), we can characterize the growth of ||ws;|| as follows

d .
@HMUH2 = 2(wsj, 1)

< 2(0ow, + D1 llwi; |
2(0ow, + || D1l llwyll* Apply Lemma[A 4 (104)

Moreover, one can use a similar argument to derive the lower bound on the growth of |lws ;||

d
@HMUH2

2w, )

> 2(0ow, — D1 llwi; |

= 2(oow, — || D1l wi;?, Apply Lemma [A.4] (105)
Since || Z1]|% = z;zlﬂwleQ, therefore one has

T

d d -
§\|Z1II% = Z &kull2 < 2(oow, + || D1]]) lewull2 =2(cow, + [|ID1) 121117 .

j=1 j=1
d 2 —~ d 2 - 2 2
1 2ille = > Splwiill” = 2(oow, —[1D1l) D lwigll? = 2(oow, — [ID1DIZ1 17, (106)
j=1 j=1
The above equations yield the following
d
200w, — |ID1l) < 2 log(1Z111F) < 2(00w, + [|1Di])- (107)

A similar results hold for ||Z3]|% respectively. Thus, one can show the following characterization of the growth

of 123117 as follows

1Z21%
d Z1 |2
10g<” 1||F

dt =\ || Z2||%

)2 2(0ow, — | Dill — oow, — [ID2)) = 2((1 = dw)oow, — | Dill — [|D=])) - (108)

Now, we move on to the study of the angular dynamics of w;.

i wlj _ ’li]lj . ’Ll}lj ) wirjwlj
dt lwill  Nlwigll  wigll? o [Jwagll
T TN F
wi1jw: \ H ; wi;w: \ D ;
= cow, <I— “1;) 1 4 (I — 1;) 10 (109)
w12 ) llwil] wi;l? ) lwisll
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For ~1, we have

d ( wyy ) < ( wlawu)leu ( wljwu Dlwl_]
- 1, =(y,00w | I =75 |7 + |1 ———3
dt [Jwal ’ w12 ) [lwsy]| w11/ [lws]

T _ A T A
N (I B w1jw1§> ((Wl - 717?)w11>+71TD1w1j s (71, wi; )wljDW;U
[[wijl [wil w1l lwi;ll ) llwyll
=oow, COS(%, A ){1 - (71, 2 )}-I—UOWQ COS(Vh%) (71, A )
[Jwijl llwijll llwijll [[wil
T T .
D ) N\ w!.Dyw
+ N 21ty — cos (71, itV ) 11 21] (110)
[|will |wijll ) wiyl

For 71, we have

d (7 wiy ><f_y vow < wljw1j> lelg < wljwlj> Dlwlj >
i L —{ 7, et V)
dt ¢ " Jwiy o w12/ [lwill w12 ) llwsy]|

Wr AW A . 5T D1y s -\ wlDywy
JGW271T< L 1;)( M — NN )wly>+’)’1 1W1 COS(%’ wij > 11 211
[|w; ] [Jwij | [Jwa; ] wisll ) [lwl
— oow, coS (”/17 ) {1 — cos? <71, U )] —oow, CoS <71, 1 ) <71, U )
1]” [Jwij | [Jwij | [Jwajl
T A T A
n 'leDlwlj — cos (,?1 W1 >’LUUD1UJ1j (111)
[Jwijl wigll ) (w2

For any unit vector 41 L v1,%1, we have

d cos <’y ’lUlj )_<’7 — < w1jw1]> lelj ( wlij) D1w1J >
N 1 - 1 NPT
dt " lwal o lwi 1 /] [lwa | llwi]* /) Jws; ]

oo 5T< wlﬂ“lg) < NN~ )w1j>+ﬂrb1w1j ~ cos <% wi; )wlTlewlj
2 w2 (w1 [Jw ] wgll ) w2
w14 Wiy
— 00w, COS <’713 ) |: <’713 ) - <717 >:|
1]” [Jw ] [Jw ]
+ M Ccos (’Yl 1j )wl,]Dlle (112)
)
[[w1s]] wisll ) llw?

Based on (110]), (111)) and (112), we can show

d cos(71, TTw: H) d cos(v1, HZ%H)
i’ (COS(71’|Z1]|) oows = 2| Dl at 8 cos(3r, tr) > oow, — 2||D1| (113)

Thus, for any unit vector 4; that is orthogonal to =1, we have

W14
d cos(71, ||u,1j\|)
—lo WL

- > oow, — 2||D1]| - 114
dt cos(1, ||w1j|)> e 12 (114
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E.2 Proof of Lemma [C.2

Proof. Since for all 0 < ¢ < Ty(d1,02), we have ||D1(T1(1,02))| < 01, [|[D2(T1 (01, 62))|| < d2, then one can further

derive the following based on Lemma

d d
E toglw ) < 2Aoow, +61), S log(121]3) < 200w, + 1)

), (”ZlHQ ) > 2((1 = 8,)o0w, — 61 —d2) >0,
dt IIZzIIF

d (COS('Yla Twis H)

cos(Y1, Tar7)

i >>JJW2—251>0.

Therefore, we can show that for all 0 < ¢ < T(d1,02)

Juss )17 < exp (2o, + 60t [, 0
12001 < exp (200w, + 301 ) 121001

:'F > exp (2((1 — dw)oow, — 01 — 52)75) 7”Zl(0)‘|%

| Z2(0)]|2
wi (¢ ©)
cos (71’ uwfj >|> cos (717 ||w1§<o>|)

" > exp((ao'w2 —251)t ) o
cos (717 T > cos <717 Ty O )

We select 41 2,91.3,"** ,91,n+h that forms an orthogonal basis for R"*" since the following holds

w i w

17 17

C()SZ (717 ||’lU ] > § COS2<H7Z" lej >_
=

1j || J ||
One can lower bound cos <71, Tt 22”) as follows

m-+h ]
1=COS2<'717 )-i— ZC (W’lulj)
sl )T 2 |
w1<
< cos” (717 ||)+(m ) cos <71, o] )GXP(—2(00W2 - 261)t)cmax
Wi 15

OS2 (I}/h ||>X<1+cmax m+h_1) eXp( 2(0'0'W2 —2(51)t)>
wig

1
<— COs , >
(71 [|w1; ||> 1+ dy exp(—2(cow, — 261)t)

(115)

(116)

(117)

(118)

where in the above equation, szu%” is its value evaluated at t. We omit the time dependency for simplicity. O
J
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E.3 Proof of Lemma [C.3
Proof. Under the assumption that §; =y =05:=a, we first derive an upper bound on ||D1]|.

| D1|| =||Ag By E — W, (WoB1 Ay + BoAsWy 4+ By Ay BiA)||
<[|A; By || - | E|l + |Wal| - (|IWal| - [| B2Aa|| + WAl - | BiAr |l + | Bi A1l - [| B2Aa]|)
<IE|| + [Wa|®)|| B2 A2l + WAl - [[Wal| - | BiAx|| + |Wall - || B1A1]| - | B2As||

<N+ IWlPZal + Il 1wl -1+ 2z Lemma (2
<0+ IV exp(2loonms +82)0) + 22l Wall - Wl exp(2(oons, +61)0)

0" 2 [ Wall exp(2((1 + bu)oow, +61+82)t) Lemma [C2]
<o IR+ [WA - [Wol) exp(2oow, +9)0) 0 2 IWoll expld(oow, +0)0). (119

where in the last inequality, we use the property that ow, > ow,. Similarly, we can show that
ID2]| < @230 (1N + Wil + Wl - [[Wal]) exp(2(oow, +6)t) +a* 2nan [Wil| exp(d(oow, + 8)t) . (120)
Furthermore, one can derive the following union upper bound on || D], || D2||

max(|| Dul, | D2ll) <o?zga (1BI+IWi? + [WallIWall +[W2|?) exp(2(cow, +0)t)
+ 0" 2 (Wi [+ [Wall) exp(4(oow, + 0)t) . (121)

Then, under the assumption that o < %

following inequality

, we will derive a lower bound on Tj(d,d) by studying the

§ 22z (1] + WAL + WA [[[[ Wl +[W2?) exp(2(cow, +)t)
o 2 (Wil +[Wal]) exp(4(oow, + 6)t) (122)

Since we assume § = « < 1, then both terms in the RHS are smaller than 1, therefore, we can further lower
bound 7'(4,9) as

t(5 — dw)oow,
o 20 (B AP+ [ W]+ [ ) exp 12—
5—0w)o0
AT T e 107 )

Ow)oow.
B (B4 [P+ I Wl + Wl TR+ T e (10— )
t(5 — dw)oow, 1

2 > a2 (|1 + W2+ W[ [Wa ] + W2+ /WAl + [W2])
2 1

10g< ) .
(5= duw)oow, a2 (I B[+ W2+ W [[Wa ]| + [ Well2+ /WAl + [[W2]])

For convenience, we define d3 =

— exp(

= t=

(123)

Thus, we set Ti(a,a) =

max(||E||+HW1\|2+\|W1|\|\W2\|+\|W2||%/HW1u+nw2 )

= 6w2)oaw2 log<0(zr2nlax - ) Furthermore, based on Lemma |C.2| we can further characterize the following proper-

ties

g:ggz; > dy exp (2((1 — by)oow, — 01 — (52)15) ,
=d; exp((l — 5“,)15)

2(1=6w) 2(1—54)

=dydy" " a” (124)
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Moreover, the alignment can be described as

cos2 y Wi > 1
Ylwill) T 1+ daexp(—2(cow, — 201)t)

S 1
T 1+ dyexp(—2(cow, — 201)t)
1
>
T 14 daexp(—(1—by)oow,t)
1

_2(0=6w) 2(1—684)

L4 dady ™ o 575w

_20=0w)  a(1-4y,)

>1—dydy % a su . (125)

Y

Finally, we show that until T} (a, ), the norm of LoRA weights stay small. In Lemma we have shown that

12| < oxp (2(00% n cmt) 1Z2(0)]3

< a?2?, exp (t(5 ~ Ou)oow, )
2
e
= —. 126
- (126)
A similar argument holds for Z5 as well. O
E.4 Proof of Lemma [C4
Proof.
d . .
%QTBlAl’U = gTBlAl’U + gTBlAlv
= gT (aawzgv—r + Dl)AIAlv + g—'—BlB;r (UUWzgvT + Dl)v
= oow,(g' BiB} g+ v Al Ayv) + ¢ " D1A] Ajv+¢" BB D] v
> (oow, — [ D1l)(¢" BiB{ g + v A Ayv)
> (gow, — | Dil)I|Za]% min cos? (m, w) | Apply Lemma[K5  (127)
jelr] [[wy; |
O

E.5 Proof of Lemma [C.5

Proof. We first introduce the imbalance quantity: A] A; — By B . This quantity is constant when LoRA weights
are trained via GF. To highlight its dependcy on the «, we let A; A — B By := o?A; where A; is independent
of a and purely determined at initialization. Then, one can first show that

1
|B1A1]| < ||B1A1L|lr < ||A1||rl|BillF < 5”21”2% (128)

On the other hand,
AlAir — BIBl = 012A1
=B AA] B] = BiB] BiB] +a*B;A\B]
=||B1A1A] B || > || B1B{ B1BY || — o®|| BiA1 B ||

— ||BiAL|? > | Bi||* = 2| A ||| B

v

1
=[BiAl* = Bl — o[ Aall]| Bl (129)
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Similarly, one can show || By A1[|> > %[ A1[|} — || A1]|][A1]|%. Combine these results together, one has

1
2|BiA])* > (141l + [ BilF) = e[ Aallll 2117

| \/

Y S T [P TS (130)

By solving the above inequality, one has

4
120l < el 4 78y fotln 2 + 1B
< %72 || Ay || + 72| AL 4 2r|| BL Ay we use vVa+ b < va+ Vb. (131)
Thus, we have ||B1A;]| > w O
E.6 Proof of Lemma [C.6

Proof. We prove ||g.g| B1A1]|? here. The same analysis can be applied to derive upper bound on || By Ajv  v] ||2.

Notice 1 = 0 gL is orthogonal to ;. Therefore, one can show that for each index j, we have
nx(h—1)
2 Z wl j
COS (’)/17 H + COb 7117 || ) 1 k) (132)
w1 W1

where we use 71; to denote the i-th column of 4;. This implies Z?:_ll COSQ(’yH, Hiﬁ) Boaf. Now, we consider

Y11 21

15239 213 = levm wi?

j=1
r h—1 )
S5 9) B CHT e [
j=11i=1
< B || 24|17 (133)
Moreover, we can show that
133% Zillr = 13 ZillF = g1 Billr - (134)
Thus, we can show that
lgrgl Bidil|l < g BilllArll < v/ B20]| Z1 ][5 - (135)

E.7 Proof of Lemma [C.7
Proof. We start with
AA] — B By := o®M\
=B A1A] B] = BiB BB + a?BAB]
=g ' BiAi(vo" +viv])A Bl g=g"BiB{ (99" +9191)B1B{ g+ o’y  BIMB/ g
=(9"Bi1B{ 9)* < (v'A] B 9)° + (v A B{ g1)* + (9" B1B] g1)* + o’ Ai|lg"BiB g (136)
Based on Lemma we have shown that

lgro] Bl [ Br Aol ||? < Bra™50 || Zu | (137)
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Therefore, one has

(WTAT B g1)? < llgrgl Biu|® < Baa™=5u | Zu]l%.. (138)
Moreover, using the same technique, one can show
(9" BiB{ 91)* < gL Billrl|Bi]
< Baar 58 | By |1 B |
< Brat | ZuF (139)
Combine all the equations together, we have
(9"BiB 9)* < (v A B g)* + (v" A] B{ g1)* + (9" B1B{ g1)* + a*|A1]lg" B1By g
< W AT Bl )+ a®|AllgT BB] g + 2820575 | 234 (140)

E.8 Proof of Lemma [C.8

Proof. We first show that based on these assumptions, one can use g' B; Ajv to upper bound ||Z;||%. Based on

Lemma and , we can show that

_340w 344
(1 aat; ¥ B ) 2103 < T 2002
< gTBlBng + UTAITAlv + 2gTBlA11)
< (2+V2)g" BiAyv + 02| Dy + 2v/B) 2|t 54s
< (2+x/§)gTBlA1y+a2%+2\/B\|Zl||2Fa%. (141)
Thus, when « is sufficently small, one has

12003 < 22+ V3)g  Bidwo < 2(2 + v2) L)

Tow, (142)
Then, we move the objective of interest.
luu Foiv] AT Bl gg"||r + | B2 Aol (|Willr + || B1Ai || )
+lluru] FAT B |p + luiul FW) |[p + |EA] By 9191 |lr + [|IFWy 9191 |Ir
<|Foro]|lrlBiAwvio] ||r + *||Z2H2F(||W1HF + *|\Zl||%)
+ luru] Fllpl|BiAr]|r + Willlluru] Flle + |1 Ellellgrg ] BiAille + [WallllFoiv] ||e (143)
Based on Lemma we have
lg.gT BiAll3, [ BiArwio] |3 < Bor®a™5e || Zy 4. (144)
One can use the above bound to show that
[Foivf||r < [WeBiAwiv] ||F + HB2A2W1MUIHF +[BaAsBiArv o] ||
< | Wall|BrAvor o] ||r + [Whll5 ||Z2||F + = HZzHFHZlHF
<V Bor2ad5i |z, 2wy + LD ”Wl” R PATSS T PAT (145)
and similarly
fusulFlle < v/ Bar2ad 3 23 Wl + 18 a2, 2 4 otz (116



Xu, Min, MacDonald, Tarmoun, Luo, Mallada, Vidal

Therefore, based on ([144)), m ) and (146)), we can show

Juw" Fopv] A] B gg"||r + || B2As|| p(||[Willp + || BiA1||F)
+lluru] FA] B |p + llurul FW{ g + |EA B gig] ||r + IFW{ 9191 lr

1 1
SIIFUMIIIFIIBlAvaHF + 301 Z Rl e + 51 2001%)

+ HUJ-UJ_FHF I1Z1% + IWillllurul Flle + 1Bl plgrgl BiAslr + [WillllFooo] |
HW1||

1
<||21|F{W32r2a5 e PA AU PATS I PAD

1
S (IWalle + 5112017

L1 ||W1||

1
+5( Bor2a™ 0 | Zi 3 Wall + 15 ad)| 1|3 + 121201%)

w W
2 W[ ( Barat5 (W) + | ;”

+ |E<o>|m/52r2a?+fﬂi}
(2“!‘\/») TBlAlv{\/ﬂgrzoﬂ 5w \/527“2045 S

5 (HW1||F + *||Z1HF)
1

|1% 1
2 (Waratie 2wl + ot 2,2 4 Loz

W, 1
+2||W1||( 27“ ao 5w ||W ” 4 2L H 1” ZadHZl”2)

+ | EO)][\/ Bar2a s } (147)

Notice all the terms in the big bracket goes to zero as a goes to zero. Thus, when « is sufficiently small, one can

1
4 0t 21)?)

WAl
20 IWall + o | 2l + adlllel)

show that the RHS of the above inequality is upper bounded by <(3+i”)” +ow,ow, ) g B1Ayv, which completes
the proof. 0

E.9 Proof of Lemma [D.1]

Proof. We study || £ ||F as an example.
Ls
HTAl”% = |B) (W2 + BoAz) Tuu" Evv" |7

( TEU) < (W2 + BQAQ)BlBl (W2 + BQAQ) u)

= 2u'" (Wy + ByAy)B1B] (Wy + BaAs)Tu x Lg . (148)
Similarly, one can show
|| ||F =2 TATAlv X Uu (W2 + BQAZ)(WQ + BQAQ) u X LS . (149)
Notice first
VA 2
u' (Wa + BaAs)(Wa + BaAs) "u=0%y, +u' BoAsAj By u+ow,g' BaAsu > oy, — ” ;HFa% : (150)
Under the condition that ||Z: | r < ds, | Z2||% < a?6||Z1||%, we can show that
T T o  a’ds
U (W2 + BQAQ)(WQ + BQAQ) U=0yy, ———F—O0W, - (151)

2
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On the other hand, we can show that

1
9" BB g+ v Al Ay =g  Bi|* + [Awl® = Sllg" By + v AL = Sl Zallf (152)

N |

Therefore, one can conclude that

d5d2
O‘f’a%)LS. (153)

Ls 2 Ls 2 T 2 2
||87141||F+||8731||F2||71 Zil|w ow, — 3

E.10 Proof of Lemma [D.2]

Proof. We first show that at the end of alignment phase, loss has decreased by a constant order.

|EllF =AY — WaB1 Ay 4 BoAsWi + BaAs B Al e
=|luu" (AY — WaBy Ay + BoAsWi + BaAsBiAy)wo! || p
+ lurul (AY — WaB1 Ay + BaAsWi + BaAs BiA)v! || v
+ |uu" (AY — WaBy Ay + BaAoWy + BaAaBiAy)viv] ||r
<Jlu(o — ow,g" BiArw)v " [|p + Wi || BeAsz|lp + || BaAs| || BiAs ||
+ [WallllgL BiAil[r + [Willl[ B2Azl|F + || B2 A2 F || B1 A1 || F
+ [Wall[| BiArv | + [Wal| B2Azllp + || B2Az|| p||[ B A1 | F

1—46y,
= <1 - w>0+3||W1||32A2||F+3||32A2||F||31A1||F+||W2||9LBlA1||F+||W2||BlA1M||F

1 — 6y 3 3
< (1- B2 o Simla® 4 Saat+ Walllas 51 As -+ Vel B Avos | (154

Moreover, by Lemma we can show that

gL B1A1l|p < VrllgLBiA| < Vradr|Zy| 3,
|BiAvL |r < VP BiAyoL|| < Vradn|| Zy |7 (155)

Therefore, one can show that there exists o*(||W1]|,||W2l,ds,ds,d7) such that when 0 < o <
o*(||[W4]], |W2]], ds, dg, d7), we have

1— 6y, 3 3
181 < (1= S0 ot Siwalart 2+ St IWal o B e+ Welll 1 Avov

1— 6, 3 3
< (1= U)o B+ St at42pwal Vit

(-0, 50

Moreover, since the loss in non-increasing when trained under GF, we can see that |E(t)||r < (1 - (1;‘5"”))0

for all t > Ty . In the remaining of the proof, we show that ||E(t)||r < <1 - (1_86“’)>0' induces an lower bound



Xu, Min, MacDonald, Tarmoun, Luo, Mallada, Vidal

on ||B1A1||F-
IE| 7 =||AY — WoB1 Ay + BoAsWi + BoAaB1 A ||
=|luu" (AY — WaB Ay + Ba AW, + By Ay By Ay )ov || g
+lurul (AY = WyBy Ay + BoAsWi + By AsBi Ay |
+ luuT (AY — WaBy Ay + By AsWy + BaAsBiAy)v o] || ¢
>|u(o — ow,g" BiAiv)v " ||p — Wi ||| BeAzllp — || BaAs| | BiAs || r
= [WallllgBiArllr — WA ll|B2Az|lp — [[B2Az|| p||[Bi A1 F
— [Wall[|BiArvellr = WAl B2Azllp — [[B2Az| p||[Bi A1
>0 — ||uow,g" BiAiww " [|p — Wi ||| B2 Azl r — [| B2 Az | p|| Bi A1 »
— [WallllgLBiAillp — Wil B2A2llp — [ B2Az|| p|| Bi A1 F
— [[Wall[[BiArvo |[F = [Will| B2 A2l p — (| B2 Azl p[| BiAd | F - (157)
Therefore,

ow,g' BiA1v > o — || E||p — Wil B2AsllF — || B2Az | p|| B Al F
— IWa|lllgL B1Asllr — [Wil[|| B2 Azl F — | Be A2 || r|| Bi Ax ||
— [[Wal[| BiArvL || — [[Wil|| B2 Azl r — || BeAz||p || B1A1 || F

> L2073yt - Sated 2wl Vratrat
5 @ *121”7)“, (158)
where the last line follows when « is sufficiently small, one can have
%||W1||ad6d§+Zadﬁdgwnmnmdg < % (159)
Finally,
I Zul% = llg" By + v AL 2 [lg" Bull* + llg " AT I* > 2l|g " BiAvv] - (160)
Thus, ||v{ Z1||% > 29" B1Ajv > (1_%. O

E.11 Proof of Lemma [D.3]

Proof. We first study <g%f’ %%I;I .

6LS 6LN

<3731’ TBl>=<(Wg + BoAy) Tuu Evv T A] (Wo + BQAQ)TUUTEUJ_'UIAI>

+ <(W2 + BQAQ)TU’UJTE'U’UTAI, (W2 + BQAQ)TULUIEAI>
=Tr((W2 + BoAy) Tuu" Bvv T AT Ajv v Fluu™ (Wy + By Ay))
+ Tr((Wg + BQAQ)T’U/UTE/U’UTAIAlFULUI(W2 + BQAQ))

:uTEU{Tr((WQ + BoAs) Tuv T A Ayw v Fluu’ (Wa + BaAy))

+ Tr((Wa + BaAs) "uv" A AyF Tu i ul (Wa + BQAQ))} (161)
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Therefore, one has

<8ﬁ OLy )
0B, 9B

uTEv{Tr((Wg + BQAQ)TU'UTAIAle_'UIFTUUT(W2 + BQAQ))

+ Tr((Wa + BaAs) "uv " A] AjF "uj ul (W + BaAs)) H

< 2L5{HUT(W2 + B Ag)(Wy + BQAQ)TULHFX ||uTFUL||F X ||1}TAIA1’ULHF

+ [|u" (Wa + BaAs)(Wa + BaAg) u ||, x[lul Fl|p X ||UTA1TA1||F} (162)

Then, we provide bounds for each term on the RHS of the above equation.

First, we can upper bound

H’LLT(WQ + BQAQ)(WQ + BQAQ)T'U/J_HF < H(W2 + BQAQ)(WQ + BQAQ)T ||F
= [Wa + B2 As |3
<2(|[Wal% + (|1 B2A2 %)
< 2|[WalF +2(| Z2 |7
< 2| W% + 2a%d; . (163)
Second,
lo" Al Ayvy e, 0T AL Asl|F < || Al - (164)
Last,
Ju" Foy|lp < ||Foylr
= |[|(WaB1 A1 + B2AsW1 + BaAaB1Ay)v, ||r
< |Welll|BiAvvL|lr + | B2 Azo|lr x (Wil + | BiA1llr)

1 1
< Wl Vo | ZillE + 112207 x (1wl + 5 12101%)

1 d3
< |[Ws|[Vatrds + Satods x ([Wall + 2. (165)
Similarly, one can show [[u] F||p < |[Wa|Vadrd? + Laded2 x (|[Wq| + %) Combine these results together, one
can show

OLs OLn

‘<c’9&’ 8Bl>‘

<v/ 2Ls{ HUT(WQ + BQAQ)(WQ + BQAQ)TUJ_HFXHUTFUJ_HF X HUTAIAﬂ}J_HF

+ ||UT(W2 + BQAQ)(WQ + BQAQ)T’LLJ_HFX”UIF”F X ||UTAIA1|F}

1 d?
<2V/2Ls (2]|Ws % + 20%d3) x || A |7 X (||W2\/ad7d§ + gaods x (| + 25)> : (166)
Similarly, we can also show
<8Ls 8LN>
0A,’ OBy

1 d?
<2VELS@IWall + 20 ) < Bulle x (IWlVaal + o x (Wl + ). o
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Thus, we conclude

OLs OLy OLs Ly 1 d?
(G TG S| 2VELS @Il + 20 ) xa8 x (IWallVarTi + et x (Wil + F)

(168)
Next, we study <8LBS , %%Z
Ls 0L

<a—s, OLy >:<uuTEva(W1 +B1ANTA) Juu Evyv] (W + B1A1)TA;>
OBy’ OB,
+ (uu" Bvv" (Wi + B1 A1) " Ay ,uiu] E(Wy + BiA1) T AJ)
:uTEv{Tr (UT(W1 + B1A)) T Ay Ay (W + BlAl)vMIFTuuT>
+ Tr<vT(W1 + B1A)TA) Ay (W + BlAl)FTuLuI> } : (169)

Thus, one can show that

OLg BLN

‘(aB OB, ‘ \/2Ls{||W1 + B A2 x|[uT oL |lp x | Asl% + Wi+ BiAax|fu] Flle x ||A2%}, (170)

We apply (165) to the above inequality

\<§?Z§V>\ < JE{HWl # B[ Fou e |Aal + [Ws + Bua|[ox T Pl 421}
Es(IWl3 + 51201 4al (19l Vamd + St x <W1||+d2>) ()
Similarly, we can also show that
(G5 S0 < B (IWAIG + G120 Bl (Wl Ve + Jaeax (il + S)). am

Add them together, and one has

6‘LS 8LN aLS aLN 1 L %
‘ B )| < VRS (W5 +5 121 ) d [ Wal| VadrdZ + Ga%df x (1WA +5) ).

0As’ 0A; 0By’
(173)
Based on (168 and (173]), we conclude
5‘LS 5‘LN> OLg 8LN <8L5 8LN <8LS 8LN>
8A1 0A, aBl’ 831 0As’ 8A2 OBy’ 0Bs
1 d?
<2 2LS(2||W2||2F+2ad6d§)xd§x(||W2|x/ad7d§+2ad6d§x(||W1||+ )>
1 1 d2
+4\/2Ls<||wl||%+2||zl%)adﬁdé(nwz|¢ad7d§+2ad6d§ (w1 + % >) (174)
O

F Proof of Theorem 4.1

Theorem F.1. Let 5 = ?/)2 O () = (O'(A)Y (—i))2,z§i) = (0X3)2+(Ug3)2 (respectively zél)) In the case

where &S) #1, we assume 58) < 1 WLOG, then the learning dynamics has two phases which can be separated by

. 175(1') (i)
sz): o log ( Op <)i[>fAy
(340w )o'aW2 8oy, 21 (0)
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1. Growth of Norm and Imbalance: VtSTl(i)

d 53409
%bgz%)Zi? O'(A)YO"(/[)Q,

d (27N 30=0) @

2. Local Convergence: for Vtle(i), the loss converges linearly

1_51(;') @) ;O 41 _
)

() (t) <exp (—

Proof. Under spectral initialization, the learning dynamics of LoRA weights can be decoupled to several scalar

dynamics. WLOG, we prove the learning dynamics when ¢ = 1 as an example, and assume 55? < 1. In the rest
of the proof, we will omit the superscript (i) for convenience. Throughout the paper, we will use e = ooy — o5
to denote the residual.

We first argue that op,04,,0p,04, Will be always positive during the training. We show this is true for 05,04,
as an example. Similar argument holds for op,04,.

d
aUBlUAl = (01241 + J%I)O'WZ(Z. (176)

Notice €(0) = oay and op, (0)oa,(0) = 0, thus, 40,04, > 0 during the training until e = 0 which is a
stationary point.

Growth of Norm and Imbalance phase. We first can see that

d (o5, _ 0 (ow, +0op04,)e (o
dt \oa, (ow, + 0B,04,)€ 0 oA,

_ 0 OW,OAY oA, " 0 —OW,0f + €004, 0B, (177)
OW,OAY 0 0B, —Ow,0f +€e0p,04, 0 TA, ’

Dy

Similarly, one can show that

d OB, 0 OW,0AY oB, 0 —Oow,0f +€e0p,04, OB,
& - - (178)
dt \oa, OW,0AY 0 oA, —Oow,0f5 +€0B,04, 0 OA,

D»

For convenience, we define the following notation hy = —ow,os + eop,04,,ha = —ow,05 + eop,04,. It is
obvious that |hy| = || D1]],|h2| = || D2]|-

Notice at initialization, || Dy[| + || Dz|| ~ O(a?). We first cut off the time when ||Dy[| 4 || Dz|| = 2c, denoted by
T1, then we can show that the imbalance between z; and 29 grows monotonically for all 0 < ¢ < T7.

%bg(?) > 2(1 — 8u)oayow, + 2(h — ha) > (1 — 8o )oayow, , (179)
2

where the last inequality holds under the assumption that o < (1 — §,,)oayow,. We then characterize the time
it takes for || D1 || + || D2]| to reach 2a.

”Dl” = ‘_UW20f + 60320A2|

1
< ow,lof| + 5\6(0)| X z2

1
< owa(awalomon, | + 0w lomol +lomon] % om0l ) +51e0)] x 2

)

<
- 2

1
0"24/22:1 +ow,0w,22 + —ow,2122 + (180)

4

N



Xu, Min, MacDonald, Tarmoun, Luo, Mallada, Vidal

Similarly, one can show that

)l

1 1
HDQH < 50'{2/Vlz2+0'W20'W131+10W12122+ 9 (181)
For 0 <t < Tl, we can show that the growth of z1, 29 is
d
% logzl § (20'W2O'Ay + 2||D1||) S 2(2 — (Sw)(TAyO'VV2 , (182)
d
7 log z2 < (20w, 0ay +2||D2]]) <2(2 = 6y)oayow, . (183)

Let 2max = - max(21(0), 22(0)). Therefore, one can show that

a422
D11+ 102l < (30, + 600 ) 0 expl@(2 — 8u)oay e, ) + T2 exp(2 — du)oarowst). (180

We let the RHS of the above equation equal to a, and derive a lower bound on T1. Notice in this case, we can
further upper bound the RHS as

4,2
(%%+w®)&mmmmwuwamm+“§mmmw%wﬂma>

< 2(3012,(/2 + |e(0)|) a?exp(2(2 — 0u) oAy OW,t) Zmax - (185)

Let 2(30‘2,[,2 + |e(0)> a?exp(2(2 — 0u)oAY OW,t) Zmax = @, we can show that

1
2(303% + |e(0)|)a |

exp (2(2 - (5w)aAyUW2T1> = (186)

16y
Based on these, one can show that there exists constants 34 such that z; > 25650 25w .

After ||Dy]| + || D2]|| has reached 2a, we then study when ||D;|| or \|D2||reachw.

(176w)

If | D1]| and || D2]|| never reaches 272 for all t < Tj, then one can show that z; grows exponentially fast

3+ dw)oow,

d
%1 2 (QO—WzO—AY - 2||D1||)Z1 Z 2

o 2, (187)

and it leads to the following lower bound on z;

(834 bw)oow, y
2
(34 dw)oow, t)
2

log 21(t) > log 21 (0) +

<~ 21(t) > z1(0) exp( (188)

(1-0w)oay

3 , one needs at most time
0'W2

Therefore, in order for z;(t) to reach

Ow 1— 6y,
21(0) exp < B+ Z)JJWQ t> ( SUV‘BUAY

<— 1T =

(1- 5“’)UAY> . (189)

2
lo
(34 bw)oow, g( 8w, z1(0)
On the other hand, when || Dy|| or |\D2||reachw happens before 21 reaches %. This must happen
between 77 and T;. We consider the following two cases.
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First, || D1|| reaches % before || Ds|| reaches %, denoted by T7. Notice for all Ty < ¢ < T},
d z
Hiog(2) 201~ du)oavows, ~2(IDa] + IDal) 0, (190

Thus, the imbalance between z; and z5 persists.

Then, one can show that

— dw)oow,

1
Iy > =2

1—0y)o0
<= |—ow,0f5 +eop,04,| > M

8
(1—6y)oow. 1 22 z1
wobomoa, > C 0T L) - o, 2 (o + 2
(1 —dy)oow, 1 15w (1 —dy)oay (1 —6w)oay
=07,08,04, > # - 2754&4’2‘”” 60w, le(0)] + ow,ow, — 33 ) (191)
Notice 21 = \/(01241 — 0%, )2 +40% 0%, therefore
i 2 (1= dy)oow,)?
i A
+ o’éVg (01241 - 0-231>2
15 (1 (1= 64)0ay (1-6.)0ay )’
Ao2=w -~ 7 = 7 =~
e {254 oy, \ Ol omow 32
8 1-sw (1 —0y)oay (1 =9du)oay (1 =dy)oow,
— 0 2y ~— 7 = — 192
-t #5008 (1) 4 oy, oy, — 0080 ), L0 (192)

Notice 0'?41 — 01291 is preserved during GF, and its initial value is of order o?. Thus, when « is sufficiently, one

can show that
(1=6y)o
80’1/1/2 '

Y

21 (193)

M before ||Dy]|, denoted by T1”. We first assume that 2o < z;a"* in this case

(1=0y)oow.
< Ubwjoowy

Second, ||Dz]| reaches
before T} where d3 > 0 is independent of «. Notice when || Dy || , 21 continues to grow exponentially
fast % log z1 > M. Moreover, whenever || D;]| reaches % before T}, we can both show that 2;

will reach W before T7. Then, the only thing that needs to show is the imbalance between z; and zy persists
2

before z; reaches % We will show that in this case, when « is sufficiently, the imbalance between z;
2
and 2o persists. For convenience, let p1 = op,04,,02 = 0B,04,.
d z
“log(Z) =201 = 84)o0w, — 2hy + 2hsy
dt Z9

< 7(1 = dy)oow,

—2h
2 1 2

7(1—6y)o0

= % —2(oay + 20w, 0w, )p1 + 20w, p7 + 2p2 (U%Vl + 2p1ow, + P%)
7(1 —dy)o0

= % —2(oay + 20w, 0w,)p1

t

1 —2(oay + 20w, 0w,) / p1(s)ds (194)
Ty

o)

zZ9 (T1)

Thus, as long as one can show that f;/ p1(8)ds is bounded by a constant hy (independent of o). One can conclude
1
that

> exp (2h4(0AY I QUWIJWQ)) <2$3>ex13(7(1 - 5w)O'ZW2 (t— Tl))

(195)
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It suffices to show that f;l p1(s)ds is bounded. We first give a detailed characterization of the growth speed of
2z

d
prici 2e(ow, + p2)p1
=2(oay — ow,p1 — ow, P2 — P1p2) (oW, + P2)p1

= 2p1ow,0ny — 207,07 — 2p2(0ayP1L + owapi + P1ow,ow, + P1p20wW, + Piow, + Pip2)

9 2 2129 22 2 .
> 2p10W,0AY — 2109y,P1 — Zz(UAypl + W + o IWLTW, + 4 M + AL + ga 3)
22 2 212 22 23
> 2p1ow,0ay — 210,01 — o 21 (oayp1 + Uwzzl + 5101/1/10W2 + 1TQO'W1 + ZlUWQ + §1ah3) . (196)
Notice we have z; < M. Thus, we can show
1—0u,)oA 15+ 0, )oay o
2p1ow,0Ay — 210‘2,[/2]91 > 2p10wW,0Ay — 012/[/2171( S Joay = ( Joay ow, ) (197)
TW, 8
Moreover, when « is sufficiently small, one can show that there exists a constant such that
N 2 Z122 Gl 2o h
o2 (oaypr + oW, + oW oW, + oW, + row, + 3 $)< hsa”*s (198)
Therefore, one can show that
d (15 + §w)UAyUW2 h
> — h=als
dtzl = 3 Y4 500
t
. 15+ dyp)oayo .
=z(t) > 21 (Ty) + / ( ; AYTWo b1 (s)ds — hsal (t — T1)
T
t
8 (1—(5w)O'Ay h 2 (1—(5w)UAy
= s)ds < + hsa'? lo . 199
7 pi(s)ds < (15 + 0w)oay ow, < S8ow, g B3+ 0w)oow, & 8ow,21(0) (199)
where in the last inequality we use
2 (1 — 5w)0'AY
z1(t) < lo
1( ) - (3+§M)UUW2 g( 80W221(0)
A 2 (1 - 5w)UAY
t—T) < lo . 200
t= (34 dw)oow, g< 8ow,21(0) (200)
Therefore, one can see that if « is sufficiently small, we have
t
16 1 — 0y
[ s < (( )(’M> . (201)
T (15 + dw)oayow, 8o,

Local convergence phase. To follow the standard technique to prove local convergence for GF. We first assume

that throughout the training, we have z1a” > 29, 21 < hy where hg, h7 are positive constants and independent
of a. In the end, we will provide expression for hg, h7.

2 2 2
: dat dl
(=— = @
;(dUAi> +(d03i>
o (AN (dN
- do g, dop,

= _62(0W2 + O'Bzo-Az)Z(O'il + 0231)

< —20124,25(01241 + 0%1)
< —40’310',410'{2/1/2@. (202)



Understanding the Learning Dynamics of LoRA in Matrix Factorization

Therefore, it suffices to show that op, 04, has a uniform lower bound for all ¢ > T3. Recall in the end of Growth
of Norm and Imbalance phase, we have proved that z; has reached %. Thus, we can show that

le| = |oay — ow,p1 — ow, P2 — p1pa|
<loay — ow,p1|+p2(p1 + ow,)
< (T+0w)oay 1 B

= 8 325
7+ 0w)o 1 h

S % + iah6h7(?7 + UW1)
1

< %7 (203)

+ JWI)

where the last inequality holds when « is small enough. Since in GF, the loss is non-increasing, we have
le(®)| < % for all ¢ > Ty. Then, we show that one can show that

15 + 9y
o < E2Eomoay
16
15+ 6,)0
= |oay — OW,P1 — Ow, P2 —pip2| < %
1—0y)0
=|ow,p1 + ow,p2 + p1p2| > %
(1—-Ydw)oay 2 21
=0W,P1 = 16 E(sz + 5)
(1 — 5w)0'AY ah6h7 hr
= > _ o7
TwzP1 = 16 5 (w5
(1 — 6w)UAY
= > Tw/TAY
oOw,P1 = 39
(1 — 5w)O'Ay
<= > 204
P s, (204)

where the last inequality holds when « is sufficiently small. We apply the above lower bound on p; to (202)

(1 —0w)oayow, ’

(< —dop,oa,0%,0 < — < (205)
Thus, we concluded £(t) < exp(— (1_5“’)%‘/80% (t_Tl))L(Tl).
Finally, we provide expressions for hg, h7.
le| < le(0)] = oay
< ow,P1 T ow, P2 + p1p2 < 20Ay
=ow,p1 < 20Ay
2
=p1 < Ay
O'VV2
2 2
1603
=22 = (01241 — 0%1> +4p? < (O’il — 0231) —|—72AY
o,
8
= < 2L =y, (206)
OW,

2
where in the second to last line, we use the fact that (01241 — 01231> is of order a* and one can choose « sufficently

small to reach the last line. The same argument can prove ps < 2;’%
2
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For hg,

d
Pt 2e(ow, +p2)p1 >0

On the other hand

d 2 + 2
D g 2y = 2elOma F PP e(ow, +p1) < fze(m + "AY>
dt 29 TW,

2 ¢ 1-— - T
:>10g22(t) _ IOgZQ(Tl) S @(UWZ + UAY)/ exp(—( 6w)0AYUW2(t 1)>dt
OW, T 16
ZO'Ay> 16
(1 —0w)oayow,

=log z2(t) —log 22(Th) < \/27<UW2 +
TW,

= 20(t) < 20(T1) exp (\/ﬂ (0W2 + 25”) = 51016 ) . (208)

W JoAY OW,
Thus,
t T 2 1
2l)  20) exp<m(”% + JAY) 6 >
z1(t) 7 2 (1Y) ow, ) (1 =duw)oayow,
1 1—84 20Ay 16
< —af—2w ex \/ﬂ(o + > )
B p< V2 o, ) (U= bw)oayow,
< aFR (209)
where the last inequality holds when « is sufficiently small, and one can set hg = +=2x O

2_6w
G Example of spectral initialization

In this section, we provide examples where methods built purely on pre-trained weights fail to fine-tune pre-
trained models for MF, highlighting the importance of incorporating the fine-tuning target matrix when designing
spectral initialization for LoRA. Assume that we have found a solution W, = Wy = 00 (1)) to a pretaining
100 0
0 1
rank r = 1. The following theorem shows that either initializing LoRA weights using the top-1 or the bottom-1
singular space of Wy, Wy, there exists a Yy such that the model cannot converge to the target matrix of the
fine-tuning task through minimizing Problem [2| using GF.

task of factorizing a target matrix Y. = ) Then, we are interested in solving Problem with LoRA

Theorem G.1. WLOG, assume one initializes LoRA weights using the top-1 singular space of W1, W1, then let

Yi = <180 (1)> One can show that L(t) =1 for Vt > 0.

Proof. As one initializes LoORA weights using the top-1 singular space of Wy, W7, therefore one can assume at
initialization, we have A; = a;e] , B; = b;e; where by (0)=b2(0) = 0. Thus, one has
i) 21 H <b1<0>a1(0> + b2(0)a3(0) + b2(0)as(0)b1 (0)ax (0) 0) ’

T dt2 0 0 (210)

F

Since by (0) =bo(0) =0, one can see that the initialization of LoORA weights is at an stationary point and L(0)=0.
Thus, L(t)=L(0)=1 for V¢>0. O

H Experiments on Image Classification Tasks

H.1 Experiments on Matrix Factorization

In this section, we conduct additional experiments on LoRA applied to matrix factorization (MF) with varying

imbalance levels, specifically §,, € {1.352 , %, 1(1)—0}. We also explore scenarios where Yy, = Yo + Suv ', where
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(u,v) are the top and bottom singular vectors of Y,,e, respectively. Figures |3| and 4] illustrate that, across
different imbalance levels and varying singular components of Y}, that AY aligns with, smaller LoRA-based
initialization leads to initial alignment, followed by growth in the norm of LoRA weights. Furthermore, smaller
initialization scales consistently result in lower final loss. In contrast, for spectral initialization, the loss invariably
converges to machine precision. Finally, although the Frobenius norm of AY = 5uv ' is the same in both cases,
we observe that GF converges overall faster when (u,v) are the top singular components of Y, compared to
when (u,v) are the bottom singular components. This is because the convergence rate shown in Theorem

is inversely proportional to Ml When (u,v) are the top singular components of Y., the corresponding oy,

Wy
values are larger than in the other case, resulting in faster convergence. Thus, our theory effectively captures
this phenomenon.

H.2 Experiments on Image Classification

In this section, we present additional experiments on fine-tuning ResNet, VIT, and VGG models pre-trained
on ImageNet for MNIST and CIFAR10. For all models, we apply LoRA to the final layer, initializing B as
zero matrices and A with entries drawn from A/(0,107%). All models are trained using SGD with a step size
of 0.1. To approximate gradient GF, it is common practice to choose a very small step size for SGD, typically
10~%. However, for large-scale models, such small step sizes would result in prohibitively long training times.
Therefore, we choose a relatively larger step size to accelerate training. Our goal is two-folded

e The evolution of LoRA weight alignment and norm during the early stages of training.

e The impact of initialization scale on the final training/test loss and accuracy.

H.2.1 Alignment in Early Stage of Training

In this section, we focus on the evolution of the alignment and the norm of the LoRA weights during the early
stages of training.

We first introduce how we measure the alignments in this case. We consider the model as f(A, B) where A, B
are the LoRA weights. We use W to denote the pre-trained weights of the final layer, and use ¢ = W + AB. Let
£(-) be the loss function, and we can write the optimization problem of training these models as follows

min /(4. B)) (211)

We consider solving the above problem using GF

Q) (1) = — oL(t)
0A "’ 0B

For simplicity, we use A(t), B(t) to denote the LoRA weights at time ¢, and £(¢) as a shorthand for ¢(A(t), B(t)).

Moreover, we use ¢(t) as a shorthand for W + B(t)A(t). Then, we approximate the gradients of LoRA weights
as below

A(t) = (212)

o0(t) ou(t) o0(0)  oU(t)  DU(t)
4 =B 5 B0 H5 G = s

Notice that at initialization, A(0)B(0) = 0. Therefore, %&f) = ‘9;—‘(/8), which represents the gradient of the loss

of the pre-trained model evaluated on the fine-tuning dataset with respect to the last layer of the pre-trained
model. Consequently, the initial learning dynamics can be simplified as

d (B®)\ _ 0 2O\ /B
dt(A(t)T)“‘(MOV ) () 2

ow

A@t)" (213)

Let SVD of é:f—‘(,g) be UWEWVV;, then we say the left singular matrices of <f|—> align with Ugarget = < Uw >

—Viv
B(t)

To measure the alignment of the left singular spaces of Z(t) = (A(t)T> W.I.t.Uparget- Let SVD of Z(t) be
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Figure 3: We simulate Problemin the context of d,, <1 using both small initialization (see §2)) and small spectral
initialization (see @ We generate the data Yg = Yre + 5uv ! where u, v is the top principle component of Yore-
Each simulation is repeated thirty times, with shaded regions representing one standard deviation above and
below the mean (see for details). The left column shows the evolution of the loss for different initialization
scales o with small and spectral initialization. The middle column tracks the alignment quality between U‘Zg1 and
~1, measured by log;,(1 — cos(v, Ugl (t))), where smaller values indicate better alignment. The right column
focuses on small initialization with ov = 10~°, illustrating how the reconstruction loss, alignment between Ugl
and 71, and ||Z;|| evolve during the alignment phase.

U®)S(t)V ()T, then we measure the following quantities, which is a classic metric to measure the alignment of
two orthogonal matrices Chen and Chi| (2013)

1

@HU(t)U(t)T - UtargetUt—lz—Lrget”F’ (215)

where % is a normalizing constant that ensuring the above metric for alignment lies between zero and one.

i
The smaller this number is, the better alignment is.
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Figure 4: We simulate Problemin the context of d,, <1 using both small initialization (see §2)) and small spectral
initialization (see @ We generate the data Yy, = Ve + S5uv’ where u,v is the bottom principle component of
Ypre- Bach simulation is repeated thirty times, with shaded regions representing one standard deviation above and
below the mean (see for details). The left column shows the evolution of the loss for different initialization
scales o with small and spectral initialization. The middle column tracks the alignment quality between U‘Zg1 and
~1, measured by log;,(1 — cos(v, Ugl (t))), where smaller values indicate better alignment. The right column

focuses on small initialization with ov = 10~°, illustrating how the reconstruction loss, alignment between Ugl
and 71, and ||Z;|| evolve during the alignment phase.

Figure [b|shows that, in the early stages of training, all models trained on both datasets exhibit strong alignment.
However, the approximation in (213)) is only valid when the LoRA weights remain close to zero. As training pro-

gresses, the LoRA weights deviate from zero, causing the approximation in (213)) to lose accuracy. Consequently,
the alignment between U(t) and Usarget Ceases to improve.

H.2.2 Effect of Initial Std on Loss and Accuracy

In this section, we focus on the impact of initialization scale on the final training/test loss and accuracy.
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Figure 5: We run the experiments on fine-tuning ResNet, VIT and VGG pre-trained on ImageNet to MNIST
and CIFAR10. We monitor the evolution of the alignment and norm of the LoRA weights in the early stage of
training.

Figure [6] and Figure [7] show that for all models and dataset, smaller initialization leads to a lower final loss on

both the training and test datasets. Moreover, it also results in higher accuracy on both the training and test
datasets.
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Model Performance vs Initialization Standard Deviation on MNIST
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Figure 6: We run the experiments on fine-tuning ResNet, VIT and VGG pre-trained on ImageNet to MNIST.
We monitor the how the scale of initialization affects the final training/test loss and accuracy.
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Model Performance vs Initialization Standard Deviation on CIFAR10
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Figure 7: We run the experiments on fine-tuning ResNet, VIT and VGG pre-trained on ImageNet to CIFARI10.
We monitor the how the scale of initialization affects the final training/test loss and accuracy.



