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Abstract

Most prior work on the convergence of gradient descent (GD) for overparameterized neural
networks relies on strong assumptions on the step size (infinitesimal), the hidden-layer
width (infinite), or the initialization (large, spectral, balanced). Recent efforts to relax these
assumptions focus on two-layer linear networks trained with the squared loss. In this work,
we derive a linear convergence rate for training two-layer linear neural networks with GD
for general losses and under relaxed assumptions on the step size, width, and initialization.
A key challenge in deriving this result is that classical ingredients for deriving convergence
rates for nonconvex problems, such as the Polyak-Y.ojasiewicz (PL) condition and Descent
Lemma, do not hold globally for overparameterized neural networks. Here, we prove that
these two conditions hold locally with local constants that depend on the weights. Then, we
provide bounds on these local constants, which depend on the initialization of the weights,
the current loss, and the global PL and smoothness constants of the non-overparameterized
model. Based on these bounds, we derive a linear convergence rate for GD. Our convergence
analysis not only improves upon prior results but also suggests a better choice for the step
size, as verified through our numerical experiments.
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1 Introduction

Neural networks have shown great empirical success in many real-world applications, such as computer vision
He et al.[(2016]) and natural language processing (Vaswani et al.,|2018]). However, our theoretical understanding
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of why neural networks work so well is still scarce. One unsolved question is why neural networks trained
via vanilla gradient descent (GD) enjoy fast convergence although their loss landscape is non-convex. This
question has motivated recent work which focuses on deriving convergence rates for overparameterized neural
networks. However, most prior work on the linear convergence of GD for overparametrized neural networks
requires strong assumptions on the step size (infinitesimal), width (infinitely large), initialization (large,
spectral), or restrictive choices of the loss function (squared loss) (See Table [1f for details).

Derivation of convergence of nonlinear networks requires restrictive assumptions. The work of
(Du et al., |2018b; [Lee et al., 2019; |Liu et al., 2022 studies the convergence of GD for neural networks in the
neural tangent kernel (NTK) regime, which requires the network to have large or infinite width and large
initialization. However, |Chizat et al. (2019); |Chen et al. (2022) show that the NTK regime limits feature
learning, and the generalization performance of neural networks in this regime degrades substantially. To go
beyond the NTK regime, [Mei et al.| (2018); |Chizat & Bach (2018); [Sirignano & Spiliopoulos (2020); Ding et al.
(2022)) study convergence of neural networks in the mean-field regime under the assumption of infinite width
and infinitesimal step sizes. However, while such analysis can guarantee convergence to a global optimum for
a wider range of initializations, it still imposes strong assumptions on the network width (infinite) and step
size (infinitesimal).

Suboptimal convergence rates of overparametrized linear networks. To relax the assumptions on
the width, step size, or initialization, some recent work focused on deriving convergence rates of GD for neural
networks with a linear activation function in the context of matrix factorization (Arora et al.,|2018; Du et al.,
2018b)) and linear regression (Du & Hul [2019; |Xu et al., [2023). In these settings, instead of learning a matrix
W directly, one learns an overparametrized version of W defined as the product of L matrices Wy --- Wr.
For example, in the case L = 2, which is the one we will analyze in this paper, this leads to the following
non-overparametrized and overparametrized problems defined, respectively, by

1
mwi/n lrs(W) = 3 [V - XW|%, (non-overparametrized)
and )
min Lys(Wy, Wa) = = ||Y = XW,Wa|%, (overparametrized)
W1, Wa 2

where X, Y are data matrices, W, Wy, W5 are weight matrices, and LS stands for least-square objective. Here,
overparametrized indicates that, although the function classes represented by XW and XW;W5 coincide
when the sizes of W7 and W5 are large enough, X W7 W5 introduces additional matrices to represent the same
function. Therefore, while the non-overparametrized loss above defines a standard linear regression problem,
the overparametrized loss can be seen as using a two-layer linear network to solve the regression problem.

A classical approach to derive a linear convergence rate for non-convex problems relies on the PL conditiorﬂ
and the smoothness inequality (see for details). While these two conditions hold globally for non-
overparametrized models, they do not hold globally for overparametrized linear networks (see for details).
This is because overparametrization skews the gradient through a weight-dependent linear operator 7 that
acts on Vg (derived based on chain rule)

VLLs(Wl, Wg) = VW1,W2W e} VKLS = T(VgLs) , W = W1W2 . (1)

To circumvent this challenge, existing studies (Arora et al., [2018; Du & Hu, [2019; Xu et al., 2023) use the
smoothness inequality of the non-overparametrized model, which holds globally, as a substitute for the one of
the overparametrized model. In addition, prior works use different methods and assumptions to derive (local)
PL conditions (See Appendix E for details). For example, |Arora et al.| (2018) impose unrealistic assumptions
on the initialization (large margz’ and small imbalanc, while \Du & Hu (2019) assume large initialization
and large width. |[Xu et al. (2023) show the overparametrized models satisfy local PL conditions and control

1PL condition has been widely used to derive convergence for non-convex problems (Karimi et al.,[2020} [Arora et al.,[2018}
Min et al.} 2021} |[Fridovich-Keil et al.| [2023; [ Xu et al.| [2023).

?The margin is a quantity that measure how close the initialization is to the global minimum.

3The imbalance is a quantity that measures the difference between the weights of two adjacent layers.
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Table 1: Comparison with prior work

Work Loss Step Size Width Initialization

(Du et al., |2018b; |Lee
et al., |2019; |Jacot Squared
et al.} 2018} |Liu et al.} lo(is Finite Large Large

Nonlinear 2022; [Nguyen & Mon+|

~||delli} [2020)

networks = ol 2018
Chizat & Bach) [2018; Squared
Sirignano & Spiliopou- locés Infinitesimal Large General
los} 12020; |Ding et al.|
2022))
(Saxe et al.| |2013; Squared
Gidel et al., |2019; |Tar- lo(is Infinitesimal Finite |Spectral

Linear moun et al.} |2021)

networks | (Arora et al.||2018;|Du| Squared o o Large margin and
et al., |2018a)) loss Finite Finite small imbalance
(Xu ot al| [2023) pauared | pinite Finite |General
This work General |Finite Finite |General

these constants using the weights at initialization through careful choices of the step sizes. However, how the
initialization scale and width of the network affect these constants is missing.

While the aforementioned analyses successfully derive linear convergence rates for overparametrized linear
networks, all of them only consider squared loss and do not generalize to other types of loss functions.
Moreover, the analysis techniques rely on the smoothness inequality of the non-overparametrized model.
Therefore, they lack insight into the optimization geometry of overparameterized problems. Numerically, the
actual convergence rate of the loss under the step sizes proposed in all the above work is slow (See for
details). Hence, an analysis is needed that establishes the convergence of neural networks trained using GD
with a general loss under more relaxed assumptions. Furthermore, this analysis should offer more accurate
predictions of the actual rates of convergence. This paper aims to bridge some of these gaps.

1.1 Main Contribution

In this work, we derive linear convergence rates for GD with possibly adaptive step sizes on overparameterized
two-layer linear networks with a general loss, finite width, finite step size, and general initialization. Specifically,
we make the following contributions:

e We analyze the Hessian of two-layer linear networks and show that the optimization problem satisfies
a local PL condition and local Descent Lemma, where we characterize the local PL constant and local
smoothness constant along the descent direction at GD iteratesﬂ by their corresponding loss values and the
singular values of the weight matrices (See Theorem [3.1)).

o We show that when the step size satisfies certain constraints (not infinitesimal), the imbalance remains
close to its initial value. Based on this property, we prove the local PL and smoothness constants can be
bounded along the trajectory of GD (See Theorem . Building on these results, we design an adaptive
step size scheduler that yields a linear convergence rate for GD. Moreover, our results cover GD with
decreasing, constant, and increasing step sizes while prior work (Arora et al., |2018; |Du & Hu, 2019; |Xu
et al., |2023)) only covers GD with decreasing and constant step sizes.

e We show that, under our step size scheduler, the local smoothness constant decreases along the GD
trajectory, indicating that the optimization landscape becomes more benign as training proceeds. Building
on this observation, we demonstrate that our step size scheduler accelerates convergence (see §4.2).

e Our analysis allows us to show that when GD iterates are around a global minimum, the difference between
the local rate of convergence of the overparametrized model and the rate of the non-overparametrized model
is up to one factor of the condition number of 7Ty (see for definitions) which can be made arbitrarily

4In the paper, we adopt the term local smoothness constant as a convenient shorthand to refer to the smoothness constant
along the descent direction at GD iterates.
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close to one by proper initialization. In contrast, the (asymptotic) convergence rates derived in prior work
(Arora et al., 2018; Du & Hul 2019} [Xu et al.| [2023)) are adversely affected by the square of the condition
number of 7g, leading to slower rates compared to our results.

1.2 Related work

We now provide a detailed description of prior work in addition to the discussion above.

One line of work (Du et al., [2018D} [Lee et al.| 2019; [Liu et al [2022; [Nguyen & Mondelli, [2020) studies
the convergence of GD with constant step size for squared loss under the assumption that the width and
initialization of neural networks are sufficiently large, which is also known as the neural tangent kernel (NTK)
regime. Under these assumptions, the training trajectories of a neural network are governed by a kernel
determined at initialization and the network weights stay close to their initial values. Such properties help
them derive a linear convergence rate of GD. However, the convergence rates derived in
let al., 2019; [Liu et al.| 2022} [Nguegnang et al., [2021)) are inversely proportional to the number of samples or
the initial loss and can be arbitrarily close to one when the number of samples or the initial loss is sufficiently
large. Moreover, |Chizat et al. (2019);|Chen et al.| (2022) show that the NTK regime prohibits feature learning,
and the performance of neural networks in this regime degrades substantially.

To relax assumptions on width, step size, and initialization, numerous studies have explored the convergence
rates of gradient-based algorithms for neural networks with linear activations. These studies are motivated by
observations that linear networks exhibit similar nonlinear learning phenomena to those seen in simulations
of nonlinear networks (Saxe et al. 2013). For instance, Du & Hu| (2019)); /Arora et al.| (2018); Xu et al.| (2023)
establish linear convergence rates for linear networks with squared loss optimized via GD. Their analyses rely
on the smoothness inequality of non-overparametrized models and do not provide an exact characterization
of the optimization landscape in overparametrized settings. In contrast, we deliver a tighter analysis by
characterizing the local PL condition and Descent Lemma in overparametrized models, allowing us to derive
faster convergence rates and design adaptive step sizes that adjust to the evolving local optimization landscape
along the GD trajectory (see Appendix [C|for details). Moreover, [Arora et al. (2018) and [Du & Hu (2019)
examine GD with constant step sizes; however, [Arora et al. (2018) requires unrealistic initialization conditions
(large margin and low imbalance), while [Du & Hu (2019) assumes large initialization and width. These
restrictive assumptions lead to convergence rates that substantially differ from those of non-overparametrized
models. To the best of our knowledge, is the only work deriving a linear convergence rate for
linear networks trained via adaptive step-size GD, but it imposes restrictive step-size constraints, resulting in
slow convergence when the initial loss is large.

Notation. We use lower case letters a to denote a scalar, and capital letters A and AT to denote a matrix
and its transpose. We use opax(A4) and omin(A4) to denote the largest and smallest singular values of A,
||Al|7 and ||A||2 to denote its Frobenius and spectral norms, and A, j] to denote its (4, j)-th element. For a

function f(Z), we use Vf(Z) := a%f(Z) to denote its gradient.

2 Preliminaries

In this paper, we consider using the GD algorithm to solve the following optimization problem and its
overparametrized version

min 4(W), (Problem 1)
WERTLXW‘L
min LW, Wa) = (W W, ). (Problem 2)

Wy eRn*h Wy eRmXh

We are mostly interested in solving[Problem 2, which covers many problems, such as matrix factorization (Koren
et al., [2009), matrix sensing (Chen & Chi, [2013), training linear neural networks (Arora et al., [2018} [Du et al.,
2018at Xu et al.L 2023). In particular, when £(W) = Z||Y — XW||%, where X,Y are data matrices, |Pr0blem
2

corresponds to training a two-layer linear neural network with n inputs, h hidden neurons, m outputs, and
weight matrices W7 and W5 using the squared loss.
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2.1 Convergence rate of GD for [Problem 1

In this section, we review the analysis for deriving the convergence rate of GD for

We seek to derive the convergence rate of GD for |Problem 1| with the following iterations,
W(t+1) = W(t) —n VLW (1)), (2)

where we will use £(t), V£(t) as a shorthand for £(W (t)), VL(W (t)) respectively.

Throughout the paper, we make the following assumptions.
Assumption 2.1. The loss {(W) is twice differentiable, K-smooth, and p-strongly convez .
Assumption 2.2. miny (W) =0.

Assumption [2.1] ensures the solution to is unique. Moreover, commonly used loss functions such
as the squared loss and the logistic loss with £s regularization both satisfy Assumption Assumption
is for the purpose of convenience and brevity of theorems in this work. This assumption can be relaxed (to
have arbitrary ¢*) without affecting the significance of our results. Moreover, one can have the following
inequalities based on the above assumptions for arbitrary W,V € R®»*™

K
V) <LW) 4+ (VLW),V —W) + EHV - W% Smoothness inequality , (3)
1
§||V€(W)||% > ub(W) PL inequality . (4)

Since strong convexity implies PL condition, equation [ holds under Assumption In §3, we derive the
convergence rate of based on the argument of the local PL condition. To be consistent, we
highlight the role of the PL condition here. Moreover, the analysis in remains applicable when p-strong
convexity is relaxed to p-PL condition.

In (Polyak, [1963; Boyd & Vandenberghe, 2004), it was shown that whenever 0 <n; < %, the GD iteration
equation [2| achieves linear convergence. The derivation is based on two ingredients: Descent lemma and the
PL inequality where Descent lemma is derived from the smoothness inequality.

Descent lemma. Starting from the smoothness inequality in equation (3| one can substitute (V, W) with the
GD iterates (W (t+1),W(t)) to derive Descent lemma, i.e.,

(1) )+, W (1) =W ()4 o [T (11) =W (0 =E0)— (o) [98(1)

Based on the PL inequality in equation [4| and Descent lemma above, one can see there is a strict decrease in
the loss at each GD step

Kn}
2

Ut+1) <L) — (e — —IVER)IP < (1= 2pme + pKn} )(2) ()
where the fact that 0 < n, < %, implies 0 < 1 — 2un; + uKn? < 1. Moreover, the minimum descent rate in
equation [5| is achieved when 7, = %, leading to the following linear convergence rate:

(i < (1- )y < (1- %)t” 00). (6)

Tightness of the analysis. The previous analysis guarantees a linear convergence rate for any arbitrary
non-convex function that is K-smooth and satisfies the u-PL condition. Moreover, one can show that the
rate in equation [6]is optimal in the sense that there exists a function that is K-smooth and satisfies the y-PL
condition for which the bound on equation [6] is met with equality. Therefore, one would be tempted to apply
such an analysis to [Problem 2| We will next show that overparameterization introduces several challenges
that prevent this analysis from being readily applied.
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2.2 Challenges in the Analysis of Convergence of [Problem 2 optimized via GD

In this section, we first introduce GD with adaptive step size to solve [Problem 2| Then, we discuss the main
challenges in deriving the convergence rate for based on the analysis in

Overparametrized GD. We consider using GD with adaptive step size 7, to solve

%iﬁg] = {%8} — i VL(Wi(t), Wa(t)) o

where VL(W7, Ws) is computed via the chain rule:

(8)

VL(Wy,Wa) = T (VLW ); Wy, Wa) = {VE(W)WQ ] .

VW) TW,

Here 7 : R™*™ s RMM)*h g 5 weight-dependent linear operator that acts on V/(W). Thus, the gradient
of L in equation E can be viewed as a "skewed/scaled gradient" of ¢ that depends on Wi, W5, It is this
dependence on the weights Wy, Ws that makes it impossible to globally guarantee that equation [3 and
equation [4] hold, as shown next.

Proposition 2.1 (Non-existence of global PL constant and smoothness constant). Under mild assumptions,
the PL inequality and smoothness inequality can only hold globally with constants pioyer = 0 and Kyyer = 00
for L(Wy, Ws).

The proof of the above proposition can be found in Appendix [B. Moreover, we present a simple example in
Appendix [B to help the readers visually understand Proposition

The non-existence of global PL and smoothness constants in the over-parametrized models prevents us from
using the same proof technique in to derive the linear convergence of GD. In we show that although
these constants do not exist globally, we can characterize them along iterates of GD. Moreover, under proper
choices of the step size of GD, the PL and smoothness constants can be controlled for all iterates of GD.
Thus, the linear convergence of GD can be derived.

3 Convergence of GD for

To deal with the challenges presented in in we propose a novel PL inequality and Descent Lemma
evaluated on the iterates of GD for and show that the local rate of decrease per iteration for
[Problem 2 is worsened by the condition number of 7 compared with the convergence rate of [Problem 1.
Next, based on the results in in we show that the condition number of 7~ during the training can
be controlled by its initial value, which helps us deriving a convergence rate for GD that depends on the
condition number of T at initialization, the step size, K, and u. Moreover, we present a sketch of the proof
of Theorem to highlight the technical novelty and implications of the theorem in Finally, in
and we discuss how initialization and width influence the convergence rates derived in Theorem

Throughout the paper, we assume that the width satisfies h>min{n, m}. This assumption ensures £* = L*
where L* = minw, w, L(W1,W>), and thus solving yields the solution to When
h<min{n,m}, enforces a rank constraint on the product. Thus, miny /(W) may not be equal to
minw, w, L(W1, Wa). We are therefore interested in studying [Problem 2 under the assumption A >min{n, m}
which is the same setting in (Arora et al., 2018 [Du et al.| [2018a; [ Xu et al.; [2023)).

3.1 Local PL Inequality and Descent Lemma for Over-parametrized GD

In we saw that there does not exist a global PL constant or a global smoothness constant for
However, to prove that GD converges linearly to a global minimum of |[Problem 2| it is sufficient for Descent
lemma and PL inequality to hold for iterates of GD. The following theorem formally characterizes the local

PL inequality and Descent lemma for
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Theorem 3.1 (Local Descent Lemma and PL condition for GD). At the t-th iteration of GD applied to the
Descent lemma and PL inequality hold with local smoothness constant K; and PL constant uy, i.e.,

K, t7lt

L(t+1) < L(t) — (ne — IVL@O)E %IIVL(t)II% > e L(t) . 9)

Moreover, if the step size n; satisfies n; > 0 and n: Ky < 2, then the following inequality holds

L(t41) < L(t)(1 = 2peme + pe Ken) := L(t)p(e, ) (10)
where
pe = 105 (Te) » (11)
Ky = Kop (T) V2K L(t) +6 K 0nase (W () L(£)07 43K 0 (T0) /2K L(E) 1 (12)
and we use L(t) and T; as shorthands for LW (1), Wa(t)) and T( - ;Wi (L), Wa(t)), resp.

The proof of the above theorem can be found in Appendix [D] Notice that u:, K; are not actually constants
since they vary w.r.t. the iteration index ¢. In this work, we adopt the convention to call them local PL and
smoothness constants to be consistent with the terminology in

In we showed that as long as one chooses 7, = 7, with 0 <7 < 3 GD in equation |: 2 for
achieves linear convergence, with an optimal rate (1 — %) given when 7; = <. However, we argue Theorem |3. 1
does not imply linear convergence of overparametrized GD even though there always exists sufficiently small
1 > 0 such that n, K; < 2. The difference is due to the fact that y; and K; are changing w.r.t. the iterations.
Specifically, if hm ‘“ = 0, one has tlggo info.,, < = p(ne,t) = 1. Thus, equationdoes not necessarily imply

that the product of the per-iterate descent II_,p(m,1) goes to zero.

Towards linear convergence. Nevertheless, if there exists n; > 0 that can simultaneously satisfy the
constraint 7; K; < 2 and the uniformly bound 1 — 241 + 1 K¢n? < p < 1, for all ¢, one can expect the linear
convergence

L(t+1) < p(ne, ) L(E) < pL(E) < 7 L(0) (13)

Guaranteeing a uniform bound as in equation [13, requires one to keep track and control the evolution of
W(t), T¢, ne and L(t). In the next section, we will address these issues. For the time being, we focus next on
how the p¢, Ky in Theorem depend on the u, K, L(t), n; and the current weights.

Characterization of p;, K;. Theorem |3.1| shows how overparametrization affects the local PL constant
and smoothness constant, i.e., us, Ky, via a tlme -varying linear operator 7;. Specifically, the PL constant in
equation [11 is the PL constant of £(W), i.e., u, scaled by o2, (7;). Moreover, the smoothness constant in
equation |12 consists of two parts. The first one is K2, (7;), which represents the smoothness constant of

(W), i.e., K, scaled by o2, (T;). The rest of the terms decrease to zero as the loss L(t) approaches zero.

max

Effect of overparametrization on optimization. Equation [10 in Theorenf3.1] characterizes the rate of
decrease per iteration of [Problem 2 trained via GD. Around global minimum, p(7,t) takes a simplified form,
ie., p(ne, 1) =120 min (T2) 1t + 1K Omin (T7) Omax (T¢)n?. By minimizing the p(n;,t) over n;, one can obtain the
optimal local rate decrease per iteration

I 1
min AN=1-=- — L =1— = ——,
ocmer” (e, %) K omax(T7) K w(Tp)

(14)
where we use x(7;) to denote the condition number of T;. Compared with the optimal convergence rate
of non-overparametrized model in i.e., 1— £ the local rate of decrease of overparametrized model is
worsened by £(7;). Moreover, the local rate of decrease becomes faster as 7T; is well-conditioned.

In the next section, we will show that proper choice of initialization and step sizes 7; does indeed lead to
linear convergence of overparametrized GD, and a sufficient condition for 7; to be well-conditioned.
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3.2 Linear Convergence of [Problem 2 with GD

In this section, we first state a theorem which shows that GD in equation [7 converges linearly to a global
minimum of (See Theorem [3.2)) under certain constraints on 7; and the initialization. Then, based
on the convergence rate in Theorem we propose an adaptive step size scheduler that accelerates the
convergence. We refer the reader to Table [2| for the definition of various quantities appearing in this section.

Table 2: Notation

Symbol Definition Description
D(t) W Wit) — Wy (1) Wa(t) Imbalance: (almost) training-invariant quantity
A max( Amax(—D(0)), 0)
Ay max()\max(D(O)), 0) Quantities are related to eigenvalues
of imbalance. They are used to define
A max(An (D(0)),0) + max(Am(—D(0)),0) a1, 02, B, Bo
Ap Ay — max(An(D(0)),0)
A_ A— — max(An(—D(0)),0)
_ _ 2 2 2 2
o Ay — A +/(Ay +A)2+487 + /(A +A)% + 452 Lower bound on o2 (77)
2
2 2 2 2
s A+ \/)\+ +45; + A+ \/)‘* +45; Upper bound on 02, (77)
2 2
B max (0, omin(W*) — /£ [W(0) - W*| ) Lower bound on omin(Wa(t) W1 (%))
52 Umax(W*) + /% ”Wl (O)WQT(O) _ W*IIF Upper bound on O'max(WQ (t)Wl (t))

We now present our main result on the linear convergence of GD for [Problem 2

Theorem 3.2 (Linear convergence of GD for [Problem 2). Suppose ¢ satisfies Assumptionlz and Assump-
tion and given h > min(m,n), we assume GD in equationlz is initialized so that ay > 0. Then there
€exists Nmax > 0 such that VYng, ny that satisfies 0 < 1y < Nmax and

no < e < min((1+n3) %o, f) ) (15)
t
one can derive the following bound for each iteration: i < p; < Ky < K, and
L(t+1) < L(t)p(ne, 1) < L(t)p(10,0) - (16)
Moreover, based on equation[16, GD algorithm in equation[7 converges linearly
L(t+1) < L(0)p(no, 0)**1, (17)

where

p(ne,t) =1 —2am, + aKym?, i = pfar +2a2(1 —exp(v/m0))] . A= (1+12)p(no,0),
Ky = /2K L(0)p(110,0)! +6 K> B L(0)1ig A"+ K exp(y/7l0) a2 [143 /2K L(0) At .

The proof of the above theorem is presented in Appendix |[El The above theorem states GD enjoys linear
convergence for under the assumptions that a; > 0 and certain constraints on 7;. We make the
following remarks:

Conditions on the initialization for linear convergence. From Theorem we see that if the
initialization {W7(0), W2(0)} satisfies a; > 0, then GD converges linearly with an appropriate choice of
the step size. The constraints on 1y ensure that g >0 and 0 < p(19,0) < 1. The assumptions on «; has
been studied in Min et al.| (2022) where the authors show that «; > 0 when there is either 1) sufficient
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imbalance A > 0 or 2) sufficient margin $; > 0, where A, f; is defined in Table E In we present two
conditions that ensure vy > 0 which covers commonly used Gaussian initialization, Xavier initialization, and
He initialization. Please see for a detailed proof and discussions.

Evolution of smoothness constant. One unique feature in our Theorem is the time-varying upper
bound K; on the local smoothness constant K along GD iterates. The constraints on 7y ensures that
0 < p(1o,0),A < 1. Thus, K; monotonically decrease to K exp(y/no)ag w.r.t. t. The fact that K, is
monotonically decreasing w.r.t. ¢ suggests that the local optimization landscape gets more benign as the
training proceeds. Thus in order to achieve a fast rate of convergence, there is a need for a time-varying
choice of step size that adapts to the changes in the local smoothness constant K; (because theoretically, the
optimal choice is n, = K%, based on equation .

Requirement on the step size. We have mentioned in the previous remark that a time-varying step
size could be beneficial for convergence. However, prior analyses (Arora et al.l 2018; Du & Hu| 2019; Xu
et al., 2023) are all restricted to a constant or decaying step size. The main reason is that one requires a
uniform spectral bound on 7; and W (¢) throughout the entire GD trajectory to establish linear convergence
and such a uniform bound has only been shown under a constant or decaying step size. In our analysis, we
show a similar spectral bound can be obtained even with a growing step size (See Appendix , as long as
ne < (14 77(2))%770, but not too much n; < K% (ensures a sufficient decrease in the loss at every iteration). The

first bound diverges to infinity exponentially fast, and the second bound has a growing lower bound f(% which

monotonically increases to Kol . Thus, initially, the step size is restricted to [, (1 4+ n8)2no]. As the

1
V/Mo) a2
training goes on, the binding constraint becomes 7; < K%, suggesting that GD can take a step that achieves

the theoretically largest descent in the loss. In Davis et al. (2024), the authors study GD with carefully
designed adaptive step sizes (GDPolyak) applied to loss functions that exhibit quartic growth away from
the solution set. Their analysis covers rank-overparameterized matrix sensing problems and student-teacher
setups involving a single neuron. GDPolyak differs from our method in how the step sizes are determined. In
our approach, the step size at each iteration follows a classic optimization strategy: we estimate the next
iterate’s loss based on the current loss and weights (see equation , then choose the step size by minimizing
this upper bound (see equation . As a result, our adaptive schedule requires accurate characterization of
the local PL constant and local smoothness constant. By contrast, GDPolyak alternates between constant
step sizes and Polyak step sizes, relying on the latter to adapt to local features of the loss landscape.

Local rate of convergence . In Theorem we show L(t+1) < L(t)p(n:,t) and < py < Ky < K; when
7, satisfies certain constraints. When ¢ is sufficiently large, or equivalently around any global minimum of
Problem 2| the optimal rate of convergence is achieved as (via a proper choice of 7;)

min p(n, t) = B <1_ﬂ . 041—|-2042(1—exp(\/%))
Mt ts K Kt - K eXp(m)QQ .

Notice the optimal local rate of convergence can be arbitrarily close to 1 — £ - Z—; as 7y decreases. Moreover,
compared with the optimal convergence rate of the non-overparametrized model, the optimal local rate of
convergence of the overparametrized model is worsened by g—;, which is an upper bound on (7;). In we
provide a sufficient condition for 7y to be well-conditioned, i.e. g—; to be close to one, and numerically verfity
this condition in AppendiqG]

Comparison in local rate of convergence with SOTA. We compare our results with prior works
studying the same problem |Arora et al. (2018); Du et al.| (2018a)); Xu et al.| (2023)) (See Table . Moreover,
we present a detailed discussion on the difference between proof techniques used in this work and prior work,
and how it leads to different convergence rates. Please see Appendix [C for details.

Choices of the step size.  Recall that for non-overparamterized GD, we have £(t+1) < (1-2un+uKn?)0(t),
there exists an optimal choice of 5 = % that minimize the theoretical upper bound on ¢(t+1). In
Theorem and Theorem we show L(t+1) < h(n:,t)L(t) under certain conditions on 7; where
h(ne,t) € {p(nt,t), p(ne, t)}. Tt is natural to use a similar approach to select step size at each iteration. To
achieve the optimal step size, it suffices to minimize the upper bound on L(¢+1) to achieve the most decrease
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Table 3: Comparison of convergence rates between prior work and our work.

local rate of

loss step size initialization convergence

:Arora et al. (2018) | squared loss | constant | D(0)=0,3; >0 1— Q(;?fg)
Du et al.|(2018a) | squared loss | decreasing | D(0) ~ 0,51 >0 no explicit rate

B Xu et al.W(2023) squared loss | constant a; >0 1— Q(f((;%)

our work general adaptive a; >0 1-Q(£5)

at each iteration. The difference is that we have a time-varying upper bound on L(¢+1) thus the minimizer
n; depends on time, and our choice of n; must respect our constraint on step size in equation This leads
to the following choice for n;:

Ny = arg min h(ne,t) - (18)
mgmin{(1+n§)t/2no’%t}

Since p(ne,t), p(n:, t) are quadratic in terms of 7, so 0y takes the following closed-form solutions depending
on which upper bound to use:

b min(( A+ 53) 00, ) 3 h(ne) = p(nest) -

The above choices of the adaptive step sizes satisfy the constraints in Theorem so they both guarantee
linear convergence for over-parametrized GD. Moreover, such choices of 7; give us the following theoretical
bound on L(t+1), i.e.,

L(t+1) < L0) [ ] h(ni. k) - (20)
k=1

In we provide numerical verification of the close alignment between the theoretical bounds stated above
and the actual convergence rate. We also observe an accelerated convergence when employing the step sizes
specified in equation @ compared with the one proposed in Xu et al.| (2023) and Backtracking line search.
We refer the readers to §4| for simulation results.

3.3 Proof Sketch

In this section, we present a proof sketch of Theorem that highlights the key technical contributions. In
Theorem [3.1] we established a local PL inequality and a local Descent Lemma. Moreover, one can show the
upper bound

L(t4+1) S L(8) (1=2 g e K n2) = L(E) pline, 1) (21)

As discussed in * this inequality alone does not guarantee linear convergence. For instance, if lim;_, o f(—tt =
0, then lim; o p(n:,t) = 1. To show there exists a 0 < p < 1 such that p(n:,t) < p holds for all ¢, we use the
following two-step approach in a similar way as it was done in |Xu et al. (2023).

Step one: uniform spectral bounds for 7; and W; . First, we show when 7); is controlled, one can have
the uniform spectral bounds on 7; and W (t). The following lemma characterizes this property formally.

Lemma 3.1 (Uniform spectral bounds on T, W(t).). Under the same assumption and constraints in
Theorem @, one has the following uniform spectral bounds on T¢, W (t)

oy + 20[2(1 - exp(\/%)) § O—r2nin(7;) < lenax(’];) < ag eXp(\/%) ) (22)
ﬂl S Umin(W(t)) S O'max(W(t)) S 52 . (23)

10
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The above lemma shows the uniform spectral bounds on 7; and W; depending on a;, as, f1, B2 and 7.
Moreover, the bounds on the singular values of 7; can be arbitrarily close to oy, @y as 1y approaches zero.

Similar results have been derived in Xu et al.| (2023) where the authors show uniform spectral bounds of
T, Wy for constant step size GD. Our proof strategy is similar to | Xu et al. (2023) which relies on the fact
that when the GD enjoys linear convergence, the change of imbalance during the training is small. For
constant step size GD, we can characterize the change using the step size n and the convergence rate p

|D(t) — D(0)||r < (9(17’?2&). In this work, we discover when we allow step size to grow but not too

fast, i.e. 7, < (14 52)21n0, we still can control the change of imbalance, i.e. ||D(t) — D(0)|r < (9(17_7‘2’A)
where A = (1 +n3)p(10,0). This observation helps us derive the uniform spectral bounds for T;, W (¢) while
allowing the step size to grow. The bound on the change of imbalance is not restricted to scenarios when loss
converges linearly. In|Ghosh et al. (2025), the authors demonstrate that the imbalance gap decreases at a
linear rate, even in the edge-of-stability regime. We mention this work here as an additional reference for
readers interested in such phenomena.

Step two. Second, we employ an induction-based argument to show that based on Lemma one can
show p > i, Ky < K and L(t) converges linearly with the rate po.

Lemma 3.2 (Induction step to show p;, K; is bounded and L(t) converges linearly.). Under the same
assumption and constraints in Theorem assume L(t) enjoys linear convergence with rate p(ng,0) until
iteration k, then the following holds for iteration k+1

e > fi,  Kpp < Kip (24)
with i, Ky defined in Theorem Moreover, one can show
P, k+1) < p(iea, k+1) < p(no,0) - (25)

Equation [24|is a direct consequence of Lemma and the induction that L(t) enjoys linear convergence until
iteration k. We can lower bound py by subsituting omin(7%) with the bound in equation [22| and upper bound
K by subsituting omax(7x), Omax(W(k)), L(k) with the bound in equation equatlon and L(0)p(no,0)*
respectively. Based on these results, one can derive the following upper bound on L(k+1) under the same
constraints on 7; in Theorem

(ﬁk Kx nk

L(k+1) < L(k) — JIVL(K)|7 Local Descent lemma in Theorem [3.1]  (26)

Kwk

< L(k) — 2(ng — )L (k) Local PL inequality with [

< (1 — 2y + aKoni)L(k Use constraints on 79 and equation
< p(no0,0)L(k) . (30

In summary, we show GD in equation achieves linear convergence with the rate p(no,0) under the constraints
on 1y and the assumption a; > 0 in this section. Moreover, we show the local rate of convergence depends on
L. In the next section, we theoretically show that commonly used random initialization leads to oy > 0,
and large width and large initialization scale leads to faster local rate of convergence, i.e., z—; — 1.

(27)

= (1= 2fm + K gn ) (k) Use K, < Kj, < Ko (28)
) (29)

)

3.4 Proper initialization ensures o7 > 0

In we see that under the assumption oy > 0, [Problem 2 trained via GD in equation [7] converges linearly
to a global minimum under certain constraints on the step sizes. In this section, we present two conditions
on the initialization that ensure ayq > 0.

We first show two conditions on the initialization that ensure aq > 0.

Lemma 3.3 (Mild overparametrization ensures a; > 0). Let W1(0), W5(0) are initialized entry-wise i.i.d.

from a continuous distribution P. When h > m +n, ay > 0 holds almost surely over random initialization
with W1 (0), W2 (O)

11
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Lemma 3.4 (Lemma 1 in (Min et al., 2021)). Let W1(0), W (0) are initialized entry-wise i.i.d. from N'(0, 15 )
with % <p< % For Y6 > 0 and h > poly(n, m, %), with probability 1 — § over random initialization with
W1(0), W(0), the following holds oy > h'=2P.

We refer the readers to Appendix |[F]for detailed proof. Both lemmas presented above ensure a3 > 0 under
different conditions on the width. Compared with Lemma Lemma |3.3| considers a wider range of
distributions that include Gaussian distribution and uniform distribution. Thus, commonly used random
initialization schemes, such as Xavier initialization (Glorot & Bengio, |2010)) and He initialization (He et al.,
2015), lead to ar; > 0. Moreover, the requirement of overparametrization in Lemma is mild compared with
the one in Lemma i.e., h > m+ n versus h > poly(n,m, %) As a result, Lemma can be applied to
more general overparametrization. On the other hand, the conclusion of Lemma is weaker than Lemma |3.4
in the sense that Lemma [3.3| only proves a; > 0 but does not characterize its magnitude while Lemma (3.4
characterizes the lower bound on «; will increase as h increases.

3.5 Large width and proper choices of the variance lead to well-conditioned 7

In this section, we show that a proper choice of initialization and width can lead to well-conditioned 7y, i.e.,
&L — 1. Based on the results in we show that the local convergence rate of overparametrized model
trained via GD can match the rate of the non-overparametrized model.

Theorem 3.3. Let Wi(0),W2(0) are initialized entry-wise i.i.d. from N(0, 13) with 3 <p< 3. V6 €
(0,1), h > poly(m,n, %), with probability 1 — & over random initialization W1(0), W5(0), the following holds

Omin (76)

aq 2p—1
> 2>y, 1
TuTo) = 0z =T By

[

We refer the readers to Appendix [F.1] for detailed proof. The above theorem states the condition number of
To approaches one when the width increases to infinity under suitable choices of the variance of Gaussian
initialization. Therefore, increasing the width can lead to a fast convergence rate.

In Appendix [G] we will numerically show that with proper choices of the variance of the initialization and
the adaptive step size proposed in a large width will lead to well-conditioned 7; and the convergence
rate of the overparametrized model can asymptotically match the rate of the non-overparametrized model.

4 Experiments

In this section, we first present empirical evidence that Theorem provides a good characterization of the
actual convergence rate under different initialization in Then, in we compare the convergence
rate of GD using the adaptive step size proposed in equation @7 in Section 3.3 of Xu et al.| (2023), and
backtracking line search. Throughout the experiments, we consider with squared loss

1
LWy, W) = S [IY = XWAWy |, (32)

where X,Y € R!°%10 are data matrices and Wy, Wy € R®*" are the weights. This can be viewed as a
two-layer linear network with input and output dimensions 10 and the width of the hidden layer to be h.
Throughout the simulations, we choose h € {500,1000,4000}. We choose ¢ = 0.5,d = 1.01 in Theorem
The initialization of the weights and generation of data matrices are as follows: Wy (0), W2(0) € R10*" and
have entry-wise i.i.d. samples drawn from N'(0,1). We generate X as a random orthogonal matrix, and
Y = XW1(0)W2(0) + o€ where € € R19%19 and are entry-wise i.i.d. samples drawn from A (0,1). When o2
is large, the initial loss is large, thus the margin is small. Moreover, we experimentally observe that the initial
imbalance grows w.r.t. h. The choices of h and o allow us to test our results in different regimes.

4.1 Evaluation of the Tightness of the Theoretical Bound on the Convergence Rate

Figure [1| compares the actual convergence rate of L(t) versus the theoretical upper bound in for different
choices of ¢ and h, and dissimilar 3—; In all cases, the theoretical upper bound follows the actual loss well.

12
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—— GD with Constant Step Size —— GD with n¢ in Equation(19) with h(n¢) = p(n:, t) ~ —— GD with ne in Equation(19) with h(ne) = p(ne, t)
—— Equation(16) —— Equation(20) with h(ne) = p(e, t) —— Equation(20) with h(ne) = p(ne, t)
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Figure 1: Tightness of the theoretical upper bound versus reconstruction error L(t) for different choices of
step size in shown in different colors. We run the simulations for nine different settings of initialization
and data generation. For each setting, we repeat the simulation thirty times. The triangle lines represent the
theoretical upper bound on the training loss in equation [I7 and equation [20. The solid lines represent the
mean of the log;, of the reconstruction error L(t). The shaded area is the mean of log;y L(¢) plus and minus
one standard deviation.

Moreover, we observe for each adaptive step size scheme, the theoretical bounds and the actual rate of
convergence become slower as ¢t decreases. This is because our bounds on the local rate of convergence
a1 a1

depend on g and the smaller o the slower the convergence rate.

4.2 Comparison with Prior Work and Backtracking Line Search

In this subsection, we compare the adaptive step sizes proposed in (2023), backtracking line
search with the step sizes proposed in equation [19| with h(n:) = p(n:,t). We set the hyperparameters of the
adaptive step size scheme proposed in (2023) to be ¢; = 0.5, ¢co = 1.5, which is the same setting in
their simulations. We refer the readers to Appendix [G] for detailed descriptions of backtracking line search.
Figure |2| shows that the step size choice proposed in equation 19| achieves the fastest convergence compared
with and backtracking line search in different settings. This is because for the adaptive
step size scheduler in this work, the step size at each iteration has closed form (See equation , thus the
time for picking the optimal step size per iteration is negligible. The only time-consuming part is to find
7o since one needs to solve equation and equation to get Mmax. For the step size proposed in [Xu

13 |




Published in Transactions on Machine Learning Research (04/2025)

—— Step size by backtracking line search —— Step size by Xu et. al. —— GD with n¢ in Equation(19) with h(ne) = p(ne, t)
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Figure 2: Evolution of the loss and of the step size for different choices of the step size schedule under different
initialization and data generation. We run the simulations thirty times. For each setting, we repeat the
simulation thirty times. The solid lines represent the mean of log;, of the reconstruction error L(t). The
shaded area is the mean of log,, L(t) plus and minus one standard deviation.

et al. , the algorithm consists of solving a third-order polynomial at each iteration, which results
in larger computational time. Moreover, the adaptive scheduler proposed in our work follows a sharper
characterization of the local convergence rate than (2023), and the adaptive step size scheduler
in this work theoretically converges of order 21 faster than the one proposed in |Xu et al.| (2023)). For the
backtracking line search ilgorithn%, since the ailg?orithm iteratively searches for the a iteration.
Therefore, the time cost for each iteration is high as well.

5 Conclusion

This paper studies the convergence of GD for optimizing two-layer linear networks with general loss functions.
Specifically, we derive a linear convergence rate for finite-width networks initialized outside the NTK regime.
We use a common framework for studying the convergence of GD for the non-convex optimization problem,
i.e. PL condition and Descent lemma. Although the loss landscape of neural networks does not satisfy
the PL condition and Descent lemma with global constants, we show that when the step size is small,
both conditions satisfy locally with constants depending on the singular value of the weights, the current
loss, and the singular value of the products. Furthermore, we prove that the local PL and smoothness
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constants can be uniformly bounded by the initial imbalance, margin, PL constant, and smoothness constant
of the non-overparameterized model. Finally, we provide an explicit convergence rate dependent on margin,
imbalance, and the condition number of the non-overparameterized model. Based on this rate, we propose an
adaptive step size scheme that accelerates convergence compared to a constant step size.
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A Preliminary lemmas

In this section, we present a preliminary lemma which will be used in the following sections.

Lemma A.1 (Inequality on the Frobenius norm). For matriz A, B,C, D, we have

(A4, B) < |[Allr - IBllr, (33)
2| AB|r < ||AIE + 1 BII% (34)
IAB + CD|% < [ohax(A) + 0o (O - [ BIIE + |1 DI, (35)
1A% + I1BII% < 2[4 + Bl (36)
Tmin(A)1BIIF < |[AB% < o (A)IBE (37)
Tmin (B[ Al < [ ABI3 < o7, (B)I|All% - (38)

Lemma [A.T has been derived and used multiple times in prior work. We refer the readers to Appendix C in
Xu et al.| (2023) for detailed proof.

Lemma A.2 (Singular values of T). The largest and smallest singular values of T are given as
U?‘ﬂin(T) = o—Ignin(Wl) + Jr2nin(W2> ’
Tmax(T) = Tmax(W1) + T (W2) - (39)
Proof. First, one can see
T o T(U; Wy, Wy) = UWL W, + WW, U, (40)
where 7* is the adjoint of 7. Then, we use Min-max theorem to show
Amin(T* o T) = Urgnin(Wl) + Jrzrlin(WQ) ) AmaX(T* o T) = 012nax(W1) + Urznax(WQ) . (41)
Let the singular value decompositions of Wy, W5 be
T1 T2
Wy =U %,V = Z Ul,iul,iUI“ Wy = UpSoV, = ZUQ,iUQ,iU;ia (42)
i=1 i=1

where 71 = rank(Wi),ro = rank(Ws), and {o1,;};2,,{02,};2, are of descending order. Then, one has the
following

Amin(T* 0 T) = min (U, UW,W," + W1 W,"U)

Ul F=1
= min (U, UW.W,") + min (U, W,W, U)
U] =1 U] p=1
> 0pin(W1) + 0 (Wo) - (43)

On the other hand, if one choose U = vlmlu;m,the following equation holds

(U, UW.W, + W W, U)
T T T T T
=<v1}T1u2)T2,v17T1u27T2W2W2 + Wi, Ul,r1“2,r2>
() T1
_ T T 2 T T 2 T T
*<Ul,r1u2,r2avl,muz,r2 E U2,iu2,z”2,i>+<”1,r1U2,r2v E 01,¢U1,z"’1,¢”1,r1u2,r2>
i=1 i=1
792 72

_ 2 T T T 2 T T T
= § Uz,itr(ulrg”1,r1U1,r1U2,r2U2¢02,i) + E Ul,itr(“ZrvarlUl,z”1,z‘”1,rlu2,r2)
i=1 i=1

oty + T (a4
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where the last line is based on the fact that invml =0, u;—’jug’,«2 =0 holds for all i#1rq, j #ry. Therefore,
based on equation [43] and equation [#4] one has

Amin (T 0 T) = 0pin (W1) + 000 (W) . (45)

Similarly, we can show
Amax(T* 0 T) = 020 (W) + 071 (W) . (46)
O

Lemma A.3 (Singular values of random matrix). Given m,n € N with m <n. Let A € R™™™ be a random
matriz with i.i.d. standard normal entries. For any § > 0, with probability at least 1 — 2 exp(52), one has

Vi —/m =0 < omin(A) < omax(A) < Vn+vVm+6. (47)

The proof of this lemma can be found in [Vershynin (2018).

B Non-existence of Global PL Constant and Smoothness Constant for [Problem 2|
In this section, we show that under mild assumptions, the PL inequality and smoothness inequality can only
hold with constants poyer = 0 and Ky = 00 for

We then make the following assumption on [Problem 2
Assumption B.1. (W, W) = (0,0) is not a global minimizer of |Problem 2.

Based on the above assumption, one has the following proposition.

Proposition B.1 (Non-existence of global PL constant and smoothness constant). Under Assumption|B.1,
the PL inequality and smoothness inequality can only hold with constants poyer = 0 and Kyyer = 00 for

L(Wy, Wa).

Proof. We first show piover = 0. The gradient of L is given as follows
VLW, Wa)|[3 = [VEW)Wa |7 + IVEW) T WA |7 (48)

Notice when Wi, W5 are zero matrices, the RHS of the above equation is zero. Therefore, we have
|[VL(W1,W2)||% =0. On the other hand, under Assumption E, since (W1, W3) = (0,0) is not a min-
imizer of [Problem 2| we have L(W7, W5)#0. Thus, the PL inequality can only hold globally with figyer = 0,

IVL(W1, Wo) |15 = VW) Wa|5 + [|[VEW) T W15 > 2p0vec L(W1, W2) . (49)

Then, we show Kgyer = 00 for [Problem 2] We consider the smoothness inequality evaluated on arbitrary
(W1, Ws) and the minimizer (W;, W) of [Problem 2}

Kovcr *
L(Wh, Wa) < L(WT, W3) + (VLV}, W5), 2 = Z) + =55 112° = Z|[% (50)

where we use Z, Z* in short for (Wy, Wa), (W, W5). Since (W{, W) minimizes [Problem 2, we have
VLW, W5) = 0min)xn and LW}, W5) = 0. Thus, equation |50|is equivalent to the following

K 2L(Wi, Wa)  20(Wh W)
M Zw = Zw- I3 12w — Zw- I3

(51)

On the other hand, since ¢(W) is u-strongly convex w.r.t. W, the following inequality holds for arbitrary U,V

UU) = (V) + (VUV),U = V) + ZU = VI3 (52)
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Figure 3: Plot of a toy example illustrating the loss function ¢(x) and its overparametrized version L(x1,x2),
along with the corresponding local PL constant piover(1,z2) and smoothness constant Koyer(z1,z2). The
definitions of ¢(x), L(x1,x2), pover(1,x2), and Koyer(1,22) are given in equation equation and
equation

We substitute U, V with W, W,", W7 (W5)T in equation [52] we have

awawy ) = BIwawy —wi (W) T (53)
Finally, we combine equation [5I] and equation [53] and derive the following lower bound on Kyyer
20(W W)
T 2w~ Zw-|%
pl WA W, W (W) Tl
— W= W+ W2 = WE I
Pl WA Wy — Wi Wy + Wi Wy — Wi (W3) T3
W = W[5 + W2 — W3[5
_ (W = W)W+ W (We — W5) I3
a W1 = Wi % + W2 — W33

K Based on equation

Apply equation |53| to £(W1W5)

o lWs — WY WT 12+ (W — W) T2
> Apply L A.1]
=3 2A[Wy — W% + [[Ws — Wi 1% pply Lemma [A.T
2 * |2 2 * * |2
B Omin (W) [Wy — Wi G40, (W[ Wa — W3[5
> L, _min i Apply L A.1. 54
=3 W0 — W e — W pply Lemma [A.T (54

Similarly, one can also derive the following lower bound on Kyer

o O (WHIWh = Wi IE 408, (W) [ W2 — Wi 5

Kover Z P * ¥ (55)
2 ||W1—W1H%+||W2_W2 ||2F
We take the average of the lower bound on Ky, in equation and equation [55]
oSk (020 (W) + 02, (W) [[Wh = W[5+ (000 (Wh) + 0 (W) [We — W33
T W = W% + W2 = W3[5
> 5 min (24, (V1) + 24, (0F7). 7200 (W2) + 020, (5) )
> 4 nin (21, (W) 20,02 ) (56)

Due to the arbitrary choices of Wy, W, we can let omin(W1) and omin(W2) to be arbitrarily large, thus the
smoothness inequality for can only hold globally with Kover = 00.

To illustrate Proposition we examine how the PL constant and smoothness constant evolve in a simple
one-dimensional setting. Specifically, we compare the non-overparametrized loss

la)=} (2-1)° (57)
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with the overparametrized loss

2
L(zy,z2) =1 (z122—1)". (58)
In this simple example, one can exactly compute local smoothness constants and PL constants as follows

(VL(21,9))

.2 2
2L(£C1,"E2) —h “!‘-’Ifg,

Mover(xla x2) =

22422 4+ /(22 422)2 —4a222+ (2z120 — 1)2
Kover(xlax2):)\max<v2L($lyx2)): 1 2 \/( 1 2) 5 142 ( 142 ) ) (59)

Since the local smoothness constants and PL constants of L(x1,23) now depend on the input, we use
tover(Z1, 22), Kover (1, 2) to denote them.

In Figure [3, we plot the loss landscapes for both ¢(z) and L(z). We observe that while ¢(z) is strongly
convex and smooth, with global PL and smoothness constants u=K =1, the overparameterized loss L(z) is
non-convex. Moreover, its local PL constant piover(#1,x2) vanishes when z7 =x2 =0, and its local smoothness
constant Koyer(71,22) diverges as ||x1]|2+||z2||* — oco. Consequently, if one attempts to enforce the PL
inequality and Descent Lemma with global constants in the overparameterized setting, the only possibilities
are

Hover = min Mover(x17x2>:0 and Kover:max Kover(xlymZ):oo~ (60)
T1,T2 T1,%2

O

C A Detailed Comparison with Prior Work

In this section, we present a detailed comparison to |Arora et al.| (2018); Du et al.| (2018a); Xu et al.| (2023) to
highlight the difference in technical details and improvement on the convergence rate.

Summary of the strategy of proof in (Arora et al., |2018; [Du et al., |2018a; (Xu et al., 2023).
Based on GD update in equation [7} one can derive the following update on the product W (t)

W(t+1) = W(t) = mTy" o Te(VEE)) + iy VIO W (1) V) (61)

where 7;* is the adjoint of 7;. Then, substituting equation [61 into the smoothness inequality of the non-
overparametrized model in equation [3] we can derive the following upper bound on the loss at iteration ¢+1
using the loss at iteration ¢ (Also see Lemma3.1 in [Xu et al. (2023)).

Lemma C.1. If at the t-th iteration of GD applied to the over-parametrized loss L, the step size 1, satisfies

K 2
O2anlTe) = IFED W (O)lp = = (2,0 (T + 0l VO P W ()] ]*2 0, (62)
then the following inequality holds
L(t+1) < p(n, t)L(¢) , (63)

where

p(n,t) =1 = 200075, (Te) + Kuni 0oy (Te) + 207 10max (W () [V A(E) || 7
+ 20} WK 02 (T2) Tmax (W () VL) | + mf K 02 (W () | VL) |- (64)

Improvement of the local rate of decrease. First, one can see the local rates of decrease in both work
are polynomials of degree four and depend on 7, V£(t) and singular values of 7;, W;. Moreover, around any
global minimum, i.e., L(t) ~ 0, ||[VL(t)||r =~ 0, we have the following local rate of decrease per iteration

L —2nuo2 i (Te) + P K pos. (T7) local rate of decrease in prior work,
1—2nuo2, (T2) + n? Kuol,, (Tonio? .. (T7) local rate of decrease in this work , (65)

21



Published in Transactions on Machine Learning Research (04/2025)

and the optimal local rates of decrease regardless of the constraints on the 7, are

4
1- % . M optimal local rate of decrease in prior work,
2
1- 2. Tonin (Tt) optimal local rate of decrease in this work . (66)

K 0fax(Th)

Thus, one can see our characterization of local Descent lemma and PL inuality leads to faster local rates of

2
decrease compared with prior results by (‘:27((%)) Nevertheless, equation

max

does not imply linear convergence

2
since if thm 35“"7((7.1)) = 0, one would not expect sufficient decrease per iteration. In order to show linear
— 00 max

2
convergence, one needs to provide a uniform lower bound on Z;“‘“ig.i)),w.

max

Improvement of the local rate of convergence. In this work, we show when the step sizes satisfy

certain constraints (See Theorem [3.2)), there exist uniform spectral bounds for the condition number of Tz, i.e.,
2
g?mx((?f)) < c(no)g—;,Vt where a, ay only depend on the initial weights and ¢(7g) is a constant approaching

one as 19 decreases. Thus, the optimal final rate of convergence derived in this work is

— % R optimal local rate of convergence in this work . (67)
Q2

In prior work, the rates in (Du et al., 2018a; |Arora et al., 2018) are extremely slow in practice (See Section 4

in (Xu et al.; [2023)). In (Xu et al., [2023), the authors introduce two auxiliary constants 0<e¢y <1,c9 > 1,
2

and show that one can uniformly bound the condition number of 7; during training, i.e., (‘:;“7((%)) < iég; , Vt.

Moreover, they enforce problem-dependent assumptions on the choices of ¢1,ca. According to Claim E.1 in

(Xu et al., 2023), (% is at most % and can be arbitrarily small when the initial loss is large. Thus, the local

rate of convergence in (Xu et al.| [2023) is at most, in our notation,

2.2
B c;aé optimal local rate of convergence in (Xu et al., [2023) . (68)
K c3035

When comparing equation [67|and equation one can directly conclude the local rate of convergence derived
in this work is much faster than the rate derived in (Xu et al., 2023). Moreover, the optimal local rate of
convergence of the overparametrized model in this work is different from the optimal rate of convergence of
the non-overparametrized model up to a factor of =%, which shows overparametrization has a benign effect if
one can control 2% through properly initialization of the weights. However, such results are not shown in the
work of (Arora et al.| 2018 [Du et al.| [2018a; | Xu et al., [2023)).

D Proof of Theorem [3.1]

In this section, we present the proof of Theorem

Theorem D.1 (Restate of Theorem . At the t-th iteration of GD applied to the |Problem 2, the Descent
lemma and PL inequality hold with local smoothness constant K; and PL constant s, i.e.,

L+1) < L) — (e~ SO OLOE . SIVLOIE 2 pL). (69)
Moreover, if the step size n; satisfies ny > 0 and n: K, < 2, then the following inequality holds
L(t+1) < L)1 = 2pme + pe Ko7 ) = L(6)p(mes t) (70)
where
pe = 10min(Te) (71)
Ky = K02 (To) 4 V2K L) + 6K (W () L)1 43K 020 (T)) V2K L (D) (72)

and we use L(t), Ty as a shorthand for L(W1(t), Wa(t)), T ( - ; Wi(t), Wa(t)) resp.
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Proof. We first show that the local PL inequality holds.

VL Wa(t) | |12
V() TWA(t)
= [leOW2()1F + 166) T Wi (#) |

Tin W2 () [VEDF + i W) VD)7 Apply Lemma [A.T
> 2002 (W (1)) L(t) + 2u0? . (W1 (t))L(t) Apply PL inequality of ¢
= 2p’tL(t) s

vz - |

F

where the last equality uses the fact that o2, (7;) = 02,,(W1(t)) +02,;,(Wa(t)). Then, we show that Descent
lemma holds with local smoothness constant K;. We can view L(¢+1) using the following second Taylor
approximation,

1
L(t+1) = L(t) + (VL(t), Zi 11— Z4) +/0 (1= 7)(Zy1— 24, H(T)(Z131 — Z4) )d

1
= L(t) = nelIVL®)IIE + 77t2||VL(75)||fw/0 (1= 7)(ge, H(T)gr)dr, (73)
where we use Z;y1, Z; in short for (Wy(t+1), Wa(t+1)), (Wi(t), Wa(t)) respectively, and g, = % to
denote the unit vector of the gradient direction. Moreover, the H(7) is defined as follows,
H(t) = V2L((1 — 7)Wi () +7Wi(t+1), (1 — ) Wa(t) +T7Wa(t+1))
= V2L(Wy(t)—merVw, L(t), Wa(t) =7V, L(t)) . (74)

Notice the integral in the equation [73 does not have a closed-form solution. We use the following two-step
approach to derive an upper bound on the RHS of equation

Step one. We first show that one can upper bound (g;, H(0)g;) using the singular values of T;, K and L(t).
The following lemma characterizes it formally.

Lemma D.1 (Upper bound on {g¢, H(0)g:)). We have the following upper bound
<gta H(O)gt> S Ko}gnax(,];) + \% 2KL(t) . (75)

The proof of Lemma is presented at the end of this section.

Step two. Then, for any 7 € [0,1), we can show |{g;, (H(0) — H(7))g;)| is bounded, which leads to an upper
bound on (g;, H(7)g:). The following lemma characterizes the upper bound on {(g;, H(7)gy).

Lemma D.2 (Uniform upper bound on (g:, H(7)g:)). For any 7 € [0,1), we have
(g6, H (7)) < K 0o (Te) + /2K L(8) + 6K > 0 (W (£)) L(£)107 + 3K 070 (Te) v/ 2K L(t)1e := Ky .
The proof of Lemma is presented at the end of this section.
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Based on equation [73] and Lemma [D.2, one can derive Descent lemma

1
L(t+1) = L(t) = ne VL7 + nZ [V L(¢ )||fw/O (L=7)(ge, H(7)ge)dr Equation [73]

1
< L(t) = mel[ VLI + 77t2||VL(t)||2F/0 (1 = 7) max (g;, H(7)g:)|dT

1
< L(t) = mel[VL@)F + 77?||VL(?5)II%/ (1 —7)Kdr Lemma [D.2]
0
K
= L(t) = | VL@)IIF + =5 VL@
2
K
= L(t) = (m — t)||VL(t)||fw- (76)
Therefore, Descent lemma is proved. O

Now we present the proof of Lemma and Lemma [D.2. We first define the following quantity which will
be used in the proof

M(s) = LWy(t) — smVw, L(t), Wa(t) — sn:Vw, L(t)) , (77)
A(s) = W(t)—sne (Vw, LIOW2 (1) T+ Wi () Vv, L(8) ")+ Vi, L) Vi, L(1) T (78)

where A(s) is the product of Wy (t)—sn:Vw, L(t) and Wa(t)—sn:Vw, L(t). Moreover, we have M (0)=L(t),
M () =L(t+1) and M(s)=0(A(s)).

Then, we present several lemmas that will be used in the proof of Lemma and Lemma
Lemma D.3. Given Wi (t) € R™" Wy(t) € R™*" at t-th iteration, the following holds
2|V, L&)V, LE) T < [V, LO[7 + [V, L 17 (79)
Vv, L) Vi, L(t) T 7 < 2K 0max (W () L(1) - (80)
Proof. Based on Lemma[A.1, one has 2||AB||r <||A||%+|B||%. Thus, let A=V, L(t), B = V,L(t), and
we complete the proof of equation
For equation one has the following

IVw, L) Vw, L(t) e = [VEOW (1) TVEE) |

< Tmax (W ()| VL) || % equation [37 in Lemma [A.T
< 2K 0max(W(t))L(t) K-smooth of £, (81)
which completes the proof. O

Lemma D.4. Given Wi (t) € R™" Wy(t) € R™*" at t-th iteration, the following holds
IVw, L)W () T+ Wi () Vi, L) TP < 0o (Te) V2K L(2) - (82)

Proof. We prove this lemma using the results from Lemma [A.T and Lemma [A:2
IVw LW () T+ Wi () Vi, L) |

<V, LOWa(t) T || 2+ Wi () Vi, L) T || Property of norm
=V WoWa (t) T ||r+ WL ()W (t) TV T || 7 See definition of T;

<Ot Wa(O)IVEWD)[F + o WL (D) IVED)][5 equation 37 in Lemma [A.T

=0max (T VD) || Lemma A2

<0max (Te)V/ 2K L(t) K-smooth of £. (83)
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Lemma D.5. Given Wy(t) € R™" Wy(t) € R™*" at t-th iteration, for any s € (0,1], the following holds

IVE(A(s) = VE(AO) I F < 0 /2K L(1)0 3,05 (Te) + 2077 K 0nas (W (1)) L(2) (84)

Proof. Based on Lemma [A.T and the assumption that ¢ is K-smooth, one has the following

IV(A($)) - VL(AO)]|»
<K|[A(s) = A(O)||r
=K||—sne(Vw, LE)Wa(t) "+ W1(t) Vi, L(t) ") +° 7 Vi, L(E) Vi, L(t) T
s K[|V, L(O)Wa(t) "+ Wi (6) Vi, L) | 7 + s°nf K| Vw, L(HVw, L(t) ||
<K ||V, LE)Wa (8) T+ Wi () Vi, L) Tl 7 + 0} K|V, LE) Vi, L) T 7 (85)

where the last line is due to the fact that s € (0,1].
Then, based on Lemma and Lemma [D.4] one has the following,

IVE(A(s)) =V L(A(0)]|
<K|A(s) — A(0)|I
< K[|V, LW (8) "+ Wi () Vi, L) | 7 + 17 K|V, L)V, LE) |
K02 (TO) V2K L(E) + 17 K - 2K 0 (W (1)) L(2) , (86)

which completes the proof. O
Lemma D.1 (Upper bound on {g:, H(0)g:)). We have the following upper bound

(96, H(0)ge) < Koo (Te) + V2K L(1) - (87)

Proof. First, we notice (g, H(0)g:) is the second-order directional derivative of L(t) w.r.t. the gradient
direction,

(g0 HO)gi) = T+ 2 (s) (53)
S PO A N
Moreover, we can compute %M (s) e ™ follows
d2
s (s) -
— 2270 -57w L0) (70 -5%.200) )
s=0
- %g(,q(s)) Definition of A(s)
s=0
d d
= %<V€(A(s))7 d—A(s)> .
= (VU(AG)), 53 A()+ (5 AGs) T2AG) 5 AG) (59)
s=0
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Under the assumption that ¢ is K-smooth and Lemma one can derive the following upper bound on

%M(S) s=0
d2
@M(s) .
= (VI(A(s)), %A@)>+<%A(s), V2f(A(S))%A(S)>
s=0

< (VE(A()). 5 As))+ K L A3

s=0
=2(VL(t), Vv, L(t) Vi, L(8) " K[| Vo, L)W () T+ Wi () Vi, L) T |13
<2(|Ve)lF - [V LOVw, L) T | e
+ K[opax (Wi (1)) + oo (W2 ()] - [IVw, LOF + [V, L) [17]
<IVED)| - IV, LOE + [V, L[]
+ K[0ax (Wi (1)) + 0o (W ()] - [V, LOF + [V, L(E)[[7]
<V2ELQ) - [IVw, L F + Vi, L) |1 7]
+ K[0ax (Wi (1)) + 0 (W2 ()] - [IVw, LOIF + [V, L[] -
Finally, we derive the the upper bound on (g:, H(0)g:) based on equation
IVL@®)[%  ds? -0

S

(9t, H(0)gt) =

{ is K-smooth

Lemma [AT]

Lemma [AT]
K-smooth of ¢

Tmax (W2 (1))

< UIVwi LN + Vs LOIE] - (V2EL(E) + ofa (Wi (1) +

IVw, LI + [V w, L)1
2K L(t) + 0ax Wi (1)) + 0 (Wa(1))
2KL(t) + 0ax(To)
where the last line is based on Lemma [A.2]
Lemma D.2 (Upper bound on {g:, H(7)g:)). For any T € [0,1), we have
(g6, H(T)ge) < Ko,
where

K =

max + \% 2KL +6K20mdx W( ))L( )nt +3Ko'ma,x(7;) QKL(t)Ut

Proof. First, we use the same method to compute (g;, H(7)g;) as it was done in Lemma

1 d?
(g¢, H(T)ge) = NZOR Zez M(s+7) L
Based on similar calculations in equation one has
2
@M(s—ﬂ') i
2
= @E(A(s—iﬂ')) .
= i<V€(A(s—|—7)), iA(S+T)>
ds ds U
d? d d
= (VL(A(s+T7)), @A(s+7)>+<£/l(s+7),V2€(A(S+T))%A(S+T)>
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Under the assumption that ¢ is K-smooth, Lemma [AT and Lemma one can show

2

@M(S-i—T)
s=0
= (VL(A(s+71)), %A(S+T)>+<§A(S+T)’ V%(A(s+7’))d%A(s+T)>

s=0
2

Al )KL Als )
=2(VL(A(T)), Vi, L(t) Vi, L(1) )

+ K|V, LIOWa() "+ W1 () Vi, () T = 270V, L)V, L(1) 7|7
=2(V{(A(7))=VL(A(0)), Vi, L(t)Vw, L(t) " Y+2(VE(A(0)), Vi, L)V, L) ")
+ K|V, L)Wo (t) "+ W1 () Vi, L(t) |2 + 47202 K | Vw, L(H) Vi, L(t) | %

— AT Ene(Vw, LE)Wa(t) T+ W1 () Vi, L(t) T, Vi, L) Vw, L(t) )
<2(VE(A0)), Vv, L)V, L) )+ K ||V, LEWa () T+ Wi (8) Vi, L) 7|3

+2||VL(A(7))=VE(AO) | - Vi, L)V, L) T

+ 47 K|V, L) Vw, L) T |

+ 40, K ||V, LEOWo () T+ Wi () Vi, L) T || 7 - |V, L) Vi, L) || ¢
<2VL(A(0)), Vir, L) Vi, L() ")+ K ||V, L) Wa () T+ W1 (6) Vi, L) T |15

+2|[VL(A(T)=VL(AO) | 7 - [V, L)V, L) || 7

+4n K| Vw, L(H) Vi, L(t) |7

+ 4 K|V, LW (t) T+ Wi () Vi, LE) |7 - [V, LE Vi, L) T e

<(VL(A(s+T)),

s=0

where the last line is derived based on the fact that 7 € (0, 1].

Notice in equation [90} we have shown

2(VL(A(0)), Vv, L)V, L(#) )+ K[V, LEOWa(8) T+ Wi () Vi, L) T 17
<V LONE + IV LOIE] - (V2EL(E) + 03,0 (T0)) -

Moreover, in Lemma [D.3, Lemma and Lemma, we have shown

2V, LOVw, L) |7 < [V L E + [V w, L) 7
IV, L Vi, L) Tl 7 < 2K omax (W (1)) L(2)
IV w, LW () T+ Wi () Vi, L) T 7 < 0 (Te) V2K L(E)
IVL(A(s))=VE(A0)|p < mK/2KL(t)07 . (Te) + 207 K 0max (W (t)) L(2) .
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Thus, one can further upper bound equation [96] as follows
;lzzM(S—FT) -
<2(VL(A(0)), Viw, L(t) Vi, L(t) " Y+ K|V, L) Wa(t) T+ Wi (8) Vi, L(t) T ||%
+2[|Ve(A() = VE(AO)lp - IV, LEVw, LB |1
+ 4 K|V, L)V, L) |7
+ 4, K|V, LW () T+ Wi (OVw, L) |7 - [V, LOVw, L) T 7
<[IVw LOIE + IV LONF] - (V2ZEL(E) + 07 (T2))

(mK\ﬂKL Tmax (Te) + 207 K2 Jmax(W(t))L(t)>'[”leL(t)”%‘ + [V, L(0)17]
+ 407 K2 Omax (W () L(E) - [V, L E + [V, L) |I7]
+ 20 K 0 (To) V2K L(E) - [V, L7 + [V, L)1) - (100)
As a result, we can show

g HE)g) = L . L
96 H(T)gt) =t -
e HO90) = [TL@E a2 o

< Komax t)+ \% QKL(t)+6K20maX(W(t))L( )nt +3K0-max(7—> QKL(t)nt .

M(s+7)

E Proof of Theorem [3.2

In this section, we first introduce the generalized form of Theorem Then, we provide a detailed proof.

Theorem E.1 (Linear convergence of GD for [Problem 2)). Assume the GD algorithm equationl] is initialized
such that oy > 0. Pick any 0 < c<1,d > 1. Let 1701) be the unique positive solution of the following equation

10 (V2K L(0)+6K2B> L(0)1¢ + K exp(+/no) 2 [1+3+/2KL(0)m0] )= 1, (101)
and ng ) be the smallest positive solution of the following equatw
AKL(0)5 = (1 — exp(—15)) x (1 — A). (102)

1
Then, we define Nymax = min(nél), néQ),log(l + 2%2) ¢). For any ny and n; such that 0 < 19 < Nmax and 0

satisfies

. 1
no < mp < mln((l + 770) M0 77 ) (103)
t
one can derive the following linear convergence rate for GD
L(t+1) < L(t)p(ne, t) < L(t)p(10,0) < L(0)p(mo, 0) (104)

where

ﬁ(nt, )=1—2ﬂm+ﬂf(m?7 ﬁ=u[a1+2a2(1—exr>(778))]7 A = (14 n§)p(10,0),
= /2K L(0)p(no, 0)! +6 K>S L(0)ng A’ + K exp(y/no) a2 [1+3v/2K L(0)Atnp] .

5In the case when equation does not have positive solution, we set 77( ) =
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Notice Theorem in can be viewed as a special case of Theorem with ¢ = %7 d=2.

Before presenting the proof Theorem we first show that the constraints on 7y do not induce an empty
set, or equivalently 7y, > 0. Alongside, we provide several inequalities that are implied by the constraints
on 1, which the proof Theorem is relied on.

Existence of 79 . To show the existence of 7, it is equivalent to show that nmnax > 0. First, since ay, as are

1 1
positive, we have log(l + 2%2) ¢> 0. Moreover, one can see when 7y < log(l + 2%2) ¢, we have g > 0.

Second, we show 1761) > 0. The LHS of equation |[101 increases as 7 increases, and it equals zero as 1y = 0.

Thus, there exists a unique positive solution of equation , which is equivalent to 77(()1) > 0. Notice

Ko = /2K L(0)+6K°B,L(0)ni + K exp(y/10) 2 [1+3+/2K L(0)mo] - (105)

Therefore, 0 < ng < 17(()1) implies 0 < 79Ky < 1 which is equivalent to 79 < %0 This constraint further leads

to 0 < p(10,0) <1 and A > 0.

Finally, we show néQ) > 0. Notice when 719 = 0, the RHS and LHS of equation I@ both equal zero. Moreover,
when 79 > 0, one can rewrite equation as follows

4KL(0)ng = (1 — exp(—n§)) x (1 — A)
= AKL(0)ng = (1 — exp(—n§)) x (2ino — iKong — 0§ p(no, 0))
_ 1 — exp(—75) S d—1-
AKL(0)pl—¢ = 2% — iKong — . 1
— (0)mo exp(—1E) x (2 — pKono — g p(10,0)) (106)

Then, we study the order of both sides of equation 106 in terms of 7y in the regime where 0 < 1y <

2&2 ? ?0
monotonically to zero as 7y approaches zero. The RHS of equation [106 is the product of two terms, i.e.,

1
min (1og(1 + ﬁ) °, = > Since 0 < ¢ < 1, and the LHS of equation |106 is of order @(néfc), it decreases

%_(;f)g) and 21 — iKono — n3 ' p(10,0). We notice 7§ approaches zero as 7y decreases to zero. Thus,
0

1—exp(=n;) . . ‘ : : 1

W—ng)o converges to one as 1y decreases to zero. Moreover, when 79 < min <log(1 + 2%2) ; Ko)’ we have

>0 and 0 < p(no,0) < 1. Therefore, the RHS of equation is of order ©(1). As a result, when 79 > 0 is
sufficiently small, one has

4K L(0)na < (1 —exp(—n5)) x (1 —A). (107)

Moreover, if equation has positive roots, and we use 77(()2) to denote its smallest positive root. The following

holds for all 0 < ng < 1702)
AKL(0)5 < (1 —exp(—15)) x (1 — A) (108)

If equation does not have positive root, then equation holds for all positive 7.

To summarize, we have shown that ny,.x > 0, and the 7y always exists. Moreover, when 7, satisfies
0 < 19 < Mmax, the following holds

ll7/>0’ O<ﬁ(77070)’A<1a
AKL(0)ng < (1 —exp(—75)) x (1= A). (109)

Now we present the proof of Theorem [E.1

Proof. We employ an induction-based approach to prove Theorem by iteratively showing the following
properties hold for all iteration ¢ when 79 and 7; satisfy the constraints in Theorem [E.1
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o Ay(t) : L(t) < L(t=1)p(n—1,t—1) < L(t=1)p(m0, 0).

o Aa(t): B1 < Oumin(W(t)) < Oumax(W (1)) < Ba-

2 ex ¢
e A3(t) : |D(t) = D(O) p < 2nao2(Q exp(i) L(0)
o Ag(t): ar + 200 (1 — exp(§)) < 02 (Tr) < 02 (T7) < a2 exp(nG).

Assume A (k), Aa(k), As(k), A4(k) hold at iteration k = 1,2,--- , ¢, then we show they all hold for iteration
t+1.

Prove A;(t+1) hold.

We first show that under the constraints in Theorem [E.T and the induction assumption, one can lower bound
and upper bound u; and K; using g and K; respectively, which is characterized by the following lemma.

Lemma E.1. The following lower bound and upper bound on s and K; hold respectively
p<p, K <Kg. (110)

The proof of the above lemma can be found at the end of Appendix

In Theorem we have shown that the local PL inequality and Descent lemma hold with local PL constant
e+ and local smoothness constant K

Lt+1) < L0 — (o~ 00 [V L@) 3. HIVLOIE = mL(). (1)
Therefore, one has
Lit+1) < 20) — (n — 22 9203
< L(t) — 2pe (e — K;nf JL(t) Under the constraints 0 < n; < Kit
< L) — 20 — X2y Lemma [T
= (1= 2fam, + K n7 ) L(t)
< (1 —2mn; + pKm?)L(t) :== p(ne, t)L(t) Lemma [ET]. (112)
Finally, we show p(n:,t) < p(n0,0).
p(nest) < 1= 2jun; + iKon;
<1 — 2fmo + iKyng Use o < < K%
<1 —2jmo + iKona == p(no,0) Use K; < Ky. (113)

Therefore, A;(t+1) holds.
Prove As(t+1) hold.

Since we have shown A;(t+1) holds, one has L(t+1) < L(0). Moreover, based on the assumption that ¢(TV)
is p-strongly convex and K-smooth, one has the following inequality

K
IW (e+1) = W3 < 6(t+1) = L(t+1) < T IW(E+1) - W7 (114)
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Then we can show opmax (W (t+1)) < f2 as follows

Omax(W (t+1)) = omax(W(t+1) — W* + W)
< Tmax(W *) +[W(t+1) — W2 Weyl’s inequality
< Omax (W +||W(t+1 — W
< Omax (W) L(t+1
< Omax(WF) + ;L(O) : Use L(t+1) < L(0) (115)

For 81 < omin(W (t+1)), same result has been derived in Min et al.| (2023). We refer the readers to Appendix
B in |Min et al.|(2023) for details.

Prove A3(t+1) hold.
We first present the following lemma that bounds ||D(k+1) — D(k)||r for all k.
Lemma E.2. One has the following upper bound on ||D(k+1)—D(k)||r

ID(k+1)=D(k)|[F < 2K 17050 (Th) (k) - (116)

The proof of the above lemma can be found at the end of this section.

Based on Lemma one can show that As(¢t+1) holds

ID(t+1)=D(0)|r < D |ID(k+1)=D(k)| r

k=0
t
< 2K o2 (TR LK) Lemma 2
k=0
< Z2Knk0max(77€) ( ) (77070) Use Al(k):Vk =1,---,t
k=0
t
< 3" 2Knan exp(n§)L(0)a(n0, 0)* Use Ag(k). ¥k =1, .t
k=0
i k
<Y " 2K(1 + i) niaz exp(ng) L(0)p(no, 0)* Use n < (14n8)%no
k=0
t
= 2K L(0) exp()mgoz Y _ A" A = (1+18)p(no,0)
k=0
2 c
< 2Ky explig) () 0<A<1 (117)

- 1-A
Prove A,(t+1) hold.
We first present the following two lemmas which will be used to prove that A4(¢t+1) hold.
Lemma E.3. One can use ay,as to lower and upper bound the singular values of Ty
a; < Umm(T) < O—max(%) <as. (118)

Lemma E.4. One can bound the deviation of the singular values of Ty, using the deviation of the imbalance

ID(k) = D(0)[|»
Tin(Th) = a1 = 4[|D(k) = D(0)|| := T;". (119)
Tmax(Ti) < a2 +2||D(k) = D(O)||r == T;” . (120)
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The proof of Lemma and Lemma can be in [Xu et al. (2023), Appendix C.

Notice T,k 42T;{; =a1+2as. Therefore, if one can show

TV, < exp(nd)as . (121)

Then, the following holds directly
max(Ti+1) < Ty < exp()az (122)
Tonin(Te1) = Tty = a1 4202 = 2T > an + 202 (1 — exp(75)) - (123)

Therefore, it suffices to show equation holds. We start from Lemma

Ty = az+2|D(k) — D(0)| r
4K L(0)n¢az(0) exp(ng)

<as+ 1A Use A3(t+1)
< s+ (1~ exp(-n) x (1 - 4) - 2P Equation [[07]
= exp(nj)az - (124)

O

Now, we present the proof of lemmas used in the proof of Theorem [E.I. All lemmas presented below are based
on the assumption that A;(k), As(k), As(k), A4(k) hold for all iterations k = 1,2,--- ,¢ and the constraints
presented in Theorem For convenience, we do not state these assumptions and constraints repetitively.

Lemma E.1. The following lower bound and upper bound on s and K; hold respectively

p<p, K <K. (125)

Proof. We start with the lower bound on p;. Due to the assumption that A4(¢) hold, one has the following
lower bound

pir = poin(Te) > pan . (126)
For the upper bound on K;, we first show that based on the assumption that A; (k) hold for all k¥ < ¢, one has

Then, based on equation @, A4(t) and the constraint that 7, < (14 1¢)2no, we can derive the following
upper bound on K

Kt max + \% 2KL +6K20max W( ))L( )nt2+3KUr21'1ax(T) 2KL(t)77t

<Kasexp(n§) + /2K L(0)p(no, 0)t + 6K>B2L(0)p(no, 0)'n;

+ 3K ag exp(n5) 2KL(0) (no,O) Tt
<Ko exp(n§) + /2K L(0)p(no, 0)* + 6K B> L(0) (10, 0)* (1 + ni) ng

+3KazeXP(no) 2KL(O) (no,O) (14 18) %m0 Use 70 < (1+116) 1o
=\/2K L(0)p(no, 0)! +6 KB L(0)g A*+ K exp(y/1o) vz [1+3+/2K L(0) Atn] (128)
where the last line follows the definition of A = (1 4 1g)p(no,0). O

Lemma E.2. One has the following upper bound on ||D(k+1)—D(k)||F

[D(k+1)=D(k)||r < 2K7;0 50 (Ti) LK) - (129)
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Proof. In equation [7] and equation [8] we have
Wi (k+1) = Wi (k) — ne VE(k)Wa(k),  Wa(k+1) = Wa(k) — i VE(K) T Wi (k). (130)
There, we can compute D(k+1) — D(k) as follows
D(k+1)—D(k) =Wy (k+1) "Wy (k+1) — Wa(k+1) T Wo(k+1)
— Wi (k) "Wy (k) + Wa(k) T Wa(k)
= (Wa(k) = VLR W2 (k) (W1 (k) = eV (k) Wa (k)
— (Wa(k) = VEGk) Wi (k)" (Wa(k) — nVEGR) T W3 (k)
— Wi(k) "Wy (k) + Wa(k) " Wa(k)
=0 (Wa (k) T VL(k) TV E(R)Wa (k) = Wi (k) TVE(R) T VE(R)W(R)) - (131)
Based on the above equation, one can bound ||D(k+1)— D(k)||r as follows
ID(k+1)=D(k) | = nl|Wa(k) T VE(k) "V (k) Wa(k) — Wi(k) T VE(k) TV E(k) Wi (k)| r
Property of norm < ni||W2( )T VUR) VUKW k)| + il |Wa (k) TV E(R) TV (k)W (k)| P
equation 37 < 107, (W2 (k) [ VE(K) |5 + niomax (W1 (k) [ VE() |17

= i mas (T [ VER) | T
K-smooth of ¢ < 2Knio?.. (Th)L(k). (132)

+

F Verification of the assumption a; > 0

In this section, we provide two conditions that ensure o > 0.

In Min et al.| (2021), the authors show the following lemma which guarantees a; > 0.

Lemma F.1 (Lemma 1 in (Min et al.,[2021)). Let W1(0), W2(0) are initialized entry-wise i.i.d. from N'(0, 1)
with, i <p< % For V6 > 0 and h > poly(n, m, %), with probability 1 — § over random initialization with
W1(0), W5(0), the following holds

ap > b7, (133)

The above theorem states when |Problem 2|is sufficiently overparametrized, i.e., h > poly(n, m, %),
Gaussian initialization with proper variance ensures o has a positive lower bound h'~2P. Moreover, the
lower bound increases as h increases.

Next, we are going to show with mild overparametrization, one can ensure a; > 0.

Lemma F.2 (Mild overparametrization ensures a; > 0). Let W1(0), W2(0) are initialized entry-wise i.i.d.
from a continuous distribution P. When h > m+n, the following holds almost surely over random initialization
with W1 (0), Wa(0)

a; > 0. (134)

Compared with Lemma Lemma considers a wider range of distributions that include Gaussian
distribution and uniform distribution. Thus, commonly used random initialization schemes, such as Xavier
initialization (Glorot & Bengiol 2010) and He initialization (He et al., |2015)), lead to ay > 0. Moreover, the
requirement of overparametrization in Lemma[F.2]is mild compared with the one in Lemma[F.1] i.e., h > m+n
versus h > poly(n,m, 5) As a result, Lemma can be applied to more general overparametrlzatlon On
the other hand, the conclusion of Lemma is Weaker than Lemma [F.1]in the sense that Lemma [F.2 only
proves a > 0 but do not characterize its magnitude.

Before presenting the proof of Lemma [F.2] we first present two lemmas that will be used in the proof.
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Lemma F.3. Let A € R"*™ h > n be a random matriz with entry-wise drawn i.i.d. from a continuous
distribution P. Then A is of full column rank almost surely.

We refer the readers to (Vershynin, |2018) for detailed proof.

Lemma F.4. A sufficient condition for c; > 0 is opyn(D(0)) > 0.

The proof of this lemma can be found in (Min et al., [2021)).

Now we present the proof of Lemma [F.2

Proof. Based on Lemma it suffices to show that one almost surely has ¢,,,(D(0)) > 0 over random

initialization with W7(0), W2(0). We use proof by contradiction. Assume 0,,1,(D(0)) = 0, then one has
dim(ker D(0)) > h—n—m + 1.

On the other hand, Lemma E implies with probability one, [W," (0), Wy (0)] € R"*("+™) s of full column
rank. Our next step is to show dim(ker D(0)) < h —n — m. If this is true, then there is a contradiction.
Thus, one directly has .1, (D(0)) > 0.

For any v € R" that satisfies D(0)v = 0, we can write this equation as follows

D(0)v = 0 & [W, (0), W, (0)] M0, g (135)
—W5(0)

Since [W,"(0), W5 (0)] is of full column rank, the above equation is equivalent to

W1(0)

) v=0, (136)

and dim(ker D(0)) < h —n —m. O

F.1 Large width and proper choices of the variance lead to well-conditioned 7

In this section, we provide proof for Theorem We first restate Theorem [3.3] here.

Theorem F.1 (Restate of Theorem [3.3). Let W1(0), W2(0) are initialized entry-wise i.i.d. from N(0, 1)
with $<p<3. .V € (0,1),Vh > poly(m,n, }), with probability 1 — & over random initialization W1(0), W2(0),
the following condition holds

Umin(%) >
Umax(’ﬁ)) e

(67

L>1-Qm*> . (137)

[N~}

Proof. Since a1, as are the lower and upper bounds for the singular values of 7y, it is straightforward to see

O—min(%) %

Umax(%) o aQ . (138)

Thus, it suffices to show gt > 1 — Q(hp’%). We provide upper bounds and lower bounds of a1, as separately
to prove Theorem [3.3] In[Min et al.| (2022)), the authors provide the following lower bound on «; under the
same setting as Theorem |3.3

Lemma F.5 (Lemma 11 in [Min et al.| (2022)). Under the same setting as Theorem [3.3, with probability
over 1 — & over random initialization over W1(0), W5(0), the following holds

oy > 2h1"2 4 9B2p 2 _ ABRE TP
Wi(O)W (0)| | < 2v/mBh=~*, (139)

where B = +y/m +n + %log%.
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We refer the readers to Min et al.| (2022) for detailed proof.

Then, we derive an upper bound on «y where the definition is given as (See also Table

A+ /A2 +482 0 A+ /A2 +4p2 (140

Qg = 9 + 2 5
where A_, Ay, B2 is defined as follows
A :max()\m“ O , )\+ max max D(O))a 0) ’

BQ—Umax “ HWl W2 W*”F (141)

Based on Lemma [F.5, one can upper bound S as follows

B2 = Omax(W") + \/fllWl(O)W;(O) - Wlr

| K
< Omax (W) + ;(||W*||F +2y/mBhz =) | (142)

Then, we provide an upper bound for Apax(D(0)). Similar analysis can be used to derive an upper bound for
Amax(—D(0)).

First, based on Lemma [A.3] the following holds with probability at least 1 — 4§
1 2
Tmax (RP[W1(0), Wa(0)]) < VA + vVm +n + Slog 5. (143)

Therefore, omax([W1, Wa]) < hz=P + Bh~P. Then, based on this upper bound, one can derive the following

)
upper bound on o (D(0))

Omax(D(0)) 0max<|:W1(O)7W2(O)] MI;I/TT(?;) >
<l [0 0] (| 1110 1)
= T ([1200), W20)))
< i +2h§—2pB + B2p 2 (144)

Similarly, one can show opmax(—D(0)) <h'~2P + 2h2-2P B + B2h~2P. By combining all the results, one can
show the following upper bound on as

Ay +4/A2 + 453 +)\_+\//\2_ + 442
2 2

<A+ A +28,
S UmaX(D(O)) + Umax(_D(O)) + 262

Qo =

1 K 1
<20+ 4h2 B + 2B 0T + 20 0max (W) + 24| = ([W* || + 2¢/mBh= =) .
o
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Imin(70)

With the bounds on ay, «, one can derive the following bound on 7o)

Umin(%) > ﬂ

O—max(%) - a2
on1=2p L 9B2h=2P _ ABR3 2P

2012 4+ ARE TP B 4 2B2h %P 4 20max (W) + 24/ £ (|W* || p + 2y/mBhz %)

\%

81772 B 4 201max (W) + 24/ £ (|[W*[|  + 2¢/mBhz =)
2012 4+ 4h3 ™ B + 2B2h % + 20max (W*) + 2,/ 5 (|W*| p + 2/mBh2—2P) ’
=1-Q(h? 1, (145)

=1

where the last line holds because the dominating term in the numerator and denominator is of order O(1)
and O(h'~=?P) separately. O

G Simulation

In this section, we first numerically verify that with proper initialization (See Theorem , a larger width will
lead to a well-conditioned 7y. Then, we present experiments showing that the overparametrized model trained
with GD following the adaptive step size proposed in can almost match the rate of non-overparametrized
model. Throughout the experiments, we consider with squared loss

1
LWy, W3) = §||Y - XWiW, ||%. (146)

G.1 Large width leads to well-conditioned 7

In this section, we compare the k(7g) under different scales of the variance of the initialization, i.e., p, and
difference width of the networks, i.e., h. We choose p € {0.275,0.375,0.475} and h from [500,2000]. We
generate the data matrix X as a 10 x 10 orthogonal matrix and Y = X© + N(0,0.1) where © € R!0x10 ig
entry-wise i.i.d. sampled from N(0,0.1). The weight matrices W1, Wy are initialized following Theorem

p=0.275 p=0.375 p=0.475
0.22

0.55 ¢ . 021 . 0.054

0.20
0.50 0.052

0.19

e 1,0.050
‘;“;0.45 &g 0.18 . sl

0.17
0.048

0.15 0.046
.

600 800 1000 1200 1400 1600 1800 2000 600 800 1000 1200 1400 1600 1800 2000 600 800 1000 1200 1400 1600 1800 2000
Width Width Width

Figure 4: k(7p) under different choices of p and h. We repeat the simulation thirty times and plot the average
value of (7p).

Figureg shows that for fixed p, larger width leads to well-conditioned x(7p). Moreover, for a fixed width,
1
smaller p will lead to smaller % In Theorem We show %; 2 1— Q(hp_§). One can see if we decrease
decreases. Therefore, the simulation results support Theorem

either h or p, the lower bound on z—;
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G.2 Overparametrized GD can almost match the rate of the non-overparametrized GD

In this section, we compare the rate of overparametrized GD following the adaptive step size in §3.2] with the

non-overparametrized GD. We initialize weight matrices Wy, Wo € R>*" as entry-wise N(0, ) The data

matrices are generated as X =UXV,Y = XW; W, +N(0,0.1) where U,V € R>*® are random orthogonal

matrices and ¥ € R%*5 is a diagonal matrix where the diagonal entry is uniformly i.i.d. drawn from [1.8,2.3].

The step size for the non-overparametrized GD is ;= m, and the step size for the overparametrized GD

follows equation (19| with h(n,t) =p(n,t). Figure [5|shows that as one increases the width of the networks, the
#=0.5978, h=500 . 2 =0.6620, h=1000 #=0.7284, h=3000

—— GD with n; in Equation(32) for Overparametrized Model —— GD with ncin Equation(32) for Overparametrized Model —— GD with . in Equation(32) for Overparametrized Model
—— GD for Non-overparametrized Model —— GD for Non-overparametrized Model —— GD for Non-overparametrized Model

logio L(t)
logio L(t)
logio L(t)

Iterations Iterations Iterations

Figure 5: Comparison of convergence rate of GD for the non-overparametrized model and overparametrized
model. We run the simulations thrity times. The red line represents log;, £(t) and the blue line represents
logy L(t). The shaded area represents plus and minus one standard deviation of the reported loss.

overparametrized GD can almost match the rate of the non-overparametrized GD asymptotically. Moreover,
as the width increases, % increases and the rate of the overparametrized GD is more close to the one of the
non-overparametrized GD Thls is because, in we show that the optimal local rate of convergence can be
arbitrarily close to 1 — % - 1. Therefore, as one increases the width, z; approaches one, and this leads to
the rate of overparametrized GD approaches 1 — £.

G.2.1 Detailed description of backtracking line search

For backtracking line search, the algorithm is described as follows: In the simulation in we chooser = 0.1

Algorithm 1 Backtracking Line Search.

Given Data matrices X,Y, initialization Wi(0), W2(0), and hyperparameters ny, T, .
Result Wy, Wy that minimize L(Wy, W) = 3||Y — XW W, ||%.
fort=0,1,---,7T do

Mt = 1ot

while L(W1(t) — mVw, L(t), Wa(t) — n:Vw, L(t)) > L(t) — v||VL(t)||% do

Ne =Tt

end while

Wit +1) = Wi(t) — eV, L(t)

Wa(t+ 1) = Wa(t) — 0.V, L(t)
end for

and v = 0.9.

Figurdd shows that for fixed p, larger width leads to well-conditioned n(%) Moreover, for a fixed width,
smaller p will lead to smaller 1. In Theorem We show &1 >1 — Q(hP~ 2) One can see if we decrease
either h or p, the lower bound on o L decreases. erefore, the simulation results support Theorem
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