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Abstract

Most prior work on the convergence of gradient descent (GD) for overparameterized neural
networks relies on strong assumptions on the step size (infinitesimal), the hidden-layer
width (infinite), or the initialization (large, spectral, balanced). Recent e!orts to relax these
assumptions focus on two-layer linear networks trained with the squared loss. In this work,
we derive a linear convergence rate for training two-layer linear neural networks with GD
for general losses and under relaxed assumptions on the step size, width, and initialization.
A key challenge in deriving this result is that classical ingredients for deriving convergence
rates for nonconvex problems, such as the Polyak-"ojasiewicz (PL) condition and Descent
Lemma, do not hold globally for overparameterized neural networks. Here, we prove that
these two conditions hold locally with local constants that depend on the weights. Then, we
provide bounds on these local constants, which depend on the initialization of the weights,
the current loss, and the global PL and smoothness constants of the non-overparameterized
model. Based on these bounds, we derive a linear convergence rate for GD. Our convergence
analysis not only improves upon prior results but also suggests a better choice for the step
size, as verified through our numerical experiments.

1 Introduction

Neural networks have shown great empirical success in many real-world applications, such as computer vision
He et al. (2016) and natural language processing (Vaswani et al., 2018). However, our theoretical understanding
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of why neural networks work so well is still scarce. One unsolved question is why neural networks trained
via vanilla gradient descent (GD) enjoy fast convergence although their loss landscape is non-convex. This
question has motivated recent work which focuses on deriving convergence rates for overparameterized neural
networks. However, most prior work on the linear convergence of GD for overparametrized neural networks
requires strong assumptions on the step size (infinitesimal), width (infinitely large), initialization (large,
spectral), or restrictive choices of the loss function (squared loss) (See Table 1 for details).

Derivation of convergence of nonlinear networks requires restrictive assumptions. The work of
(Du et al., 2018b; Lee et al., 2019; Liu et al., 2022) studies the convergence of GD for neural networks in the
neural tangent kernel (NTK) regime, which requires the network to have large or infinite width and large
initialization. However, Chizat et al. (2019); Chen et al. (2022) show that the NTK regime limits feature
learning, and the generalization performance of neural networks in this regime degrades substantially. To go
beyond the NTK regime, Mei et al. (2018); Chizat & Bach (2018); Sirignano & Spiliopoulos (2020); Ding et al.
(2022) study convergence of neural networks in the mean-field regime under the assumption of infinite width
and infinitesimal step sizes. However, while such analysis can guarantee convergence to a global optimum for
a wider range of initializations, it still imposes strong assumptions on the network width (infinite) and step
size (infinitesimal).

Suboptimal convergence rates of overparametrized linear networks. To relax the assumptions on
the width, step size, or initialization, some recent work focused on deriving convergence rates of GD for neural
networks with a linear activation function in the context of matrix factorization (Arora et al., 2018; Du et al.,
2018b) and linear regression (Du & Hu, 2019; Xu et al., 2023). In these settings, instead of learning a matrix
W directly, one learns an overparametrized version of W defined as the product of L matrices W1 · · · WL.
For example, in the case L = 2, which is the one we will analyze in this paper, this leads to the following
non-overparametrized and overparametrized problems defined, respectively, by

min
W

ωLS(W ) := 1
2→Y ↑XW→

2
F , (non-overparametrized)

and
min

W1,W2
LLS(W1, W2) := 1

2→Y ↑XW1W2→
2
F , (overparametrized)

where X, Y are data matrices, W, W1, W2 are weight matrices, and LS stands for least-square objective. Here,
overparametrized indicates that, although the function classes represented by XW and XW1W2 coincide
when the sizes of W1 and W2 are large enough, XW1W2 introduces additional matrices to represent the same
function. Therefore, while the non-overparametrized loss above defines a standard linear regression problem,
the overparametrized loss can be seen as using a two-layer linear network to solve the regression problem.

A classical approach to derive a linear convergence rate for non-convex problems relies on the PL condition1

and the smoothness inequality (see §2.1 for details). While these two conditions hold globally for non-
overparametrized models, they do not hold globally for overparametrized linear networks (see §2.2 for details).
This is because overparametrization skews the gradient through a weight-dependent linear operator T that
acts on ↓ωLS (derived based on chain rule)

↓LLS(W1, W2) = ↓W1,W2W ↔ ↓ωLS := T (↓ωLS) , W = W1W2 . (1)

To circumvent this challenge, existing studies (Arora et al., 2018; Du & Hu, 2019; Xu et al., 2023) use the
smoothness inequality of the non-overparametrized model, which holds globally, as a substitute for the one of
the overparametrized model. In addition, prior works use di!erent methods and assumptions to derive (local)
PL conditions (See Appendix C for details). For example, Arora et al. (2018) impose unrealistic assumptions
on the initialization (large margin2 and small imbalance3), while Du & Hu (2019) assume large initialization
and large width. Xu et al. (2023) show the overparametrized models satisfy local PL conditions and control

1PL condition has been widely used to derive convergence for non-convex problems (Karimi et al., 2020; Arora et al., 2018;
Min et al., 2021; Fridovich-Keil et al., 2023; Xu et al., 2023).

2The margin is a quantity that measure how close the initialization is to the global minimum.
3The imbalance is a quantity that measures the di!erence between the weights of two adjacent layers.
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Table 1: Comparison with prior work
Work Loss Step Size Width Initialization

Nonlinear
networks

(Du et al., 2018b; Lee
et al., 2019; Jacot
et al., 2018; Liu et al.,
2022; Nguyen & Mon-
delli, 2020)

Squared
loss Finite Large Large

(Mei et al., 2018;
Chizat & Bach, 2018;
Sirignano & Spiliopou-
los, 2020; Ding et al.,
2022)

Squared
loss Infinitesimal Large General

Linear
networks

(Saxe et al., 2013;
Gidel et al., 2019; Tar-
moun et al., 2021)

Squared
loss Infinitesimal Finite Spectral

(Arora et al., 2018; Du
et al., 2018a)

Squared
loss Finite Finite Large margin and

small imbalance
(Xu et al., 2023) Squared

loss Finite Finite General
This work General Finite Finite General

these constants using the weights at initialization through careful choices of the step sizes. However, how the
initialization scale and width of the network a!ect these constants is missing.

While the aforementioned analyses successfully derive linear convergence rates for overparametrized linear
networks, all of them only consider squared loss and do not generalize to other types of loss functions.
Moreover, the analysis techniques rely on the smoothness inequality of the non-overparametrized model.
Therefore, they lack insight into the optimization geometry of overparameterized problems. Numerically, the
actual convergence rate of the loss under the step sizes proposed in all the above work is slow (See §4.2 for
details). Hence, an analysis is needed that establishes the convergence of neural networks trained using GD
with a general loss under more relaxed assumptions. Furthermore, this analysis should o!er more accurate
predictions of the actual rates of convergence. This paper aims to bridge some of these gaps.

1.1 Main Contribution

In this work, we derive linear convergence rates for GD with possibly adaptive step sizes on overparameterized
two-layer linear networks with a general loss, finite width, finite step size, and general initialization. Specifically,
we make the following contributions:

• We analyze the Hessian of two-layer linear networks and show that the optimization problem satisfies
a local PL condition and local Descent Lemma, where we characterize the local PL constant and local
smoothness constant along the descent direction at GD iterates4 by their corresponding loss values and the
singular values of the weight matrices (See Theorem 3.1).

• We show that when the step size satisfies certain constraints (not infinitesimal), the imbalance remains
close to its initial value. Based on this property, we prove the local PL and smoothness constants can be
bounded along the trajectory of GD (See Theorem 3.2). Building on these results, we design an adaptive
step size scheduler that yields a linear convergence rate for GD. Moreover, our results cover GD with
decreasing, constant, and increasing step sizes while prior work (Arora et al., 2018; Du & Hu, 2019; Xu
et al., 2023) only covers GD with decreasing and constant step sizes.

• We show that, under our step size scheduler, the local smoothness constant decreases along the GD
trajectory, indicating that the optimization landscape becomes more benign as training proceeds. Building
on this observation, we demonstrate that our step size scheduler accelerates convergence (see §4.2).

• Our analysis allows us to show that when GD iterates are around a global minimum, the di!erence between
the local rate of convergence of the overparametrized model and the rate of the non-overparametrized model
is up to one factor of the condition number of T0 (see §2.2 for definitions) which can be made arbitrarily
4In the paper, we adopt the term local smoothness constant as a convenient shorthand to refer to the smoothness constant

along the descent direction at GD iterates.
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close to one by proper initialization. In contrast, the (asymptotic) convergence rates derived in prior work
(Arora et al., 2018; Du & Hu, 2019; Xu et al., 2023) are adversely a!ected by the square of the condition
number of T0, leading to slower rates compared to our results.

1.2 Related work

We now provide a detailed description of prior work in addition to the discussion above.

One line of work (Du et al., 2018b; Lee et al., 2019; Liu et al., 2022; Nguyen & Mondelli, 2020) studies
the convergence of GD with constant step size for squared loss under the assumption that the width and
initialization of neural networks are su#ciently large, which is also known as the neural tangent kernel (NTK)
regime. Under these assumptions, the training trajectories of a neural network are governed by a kernel
determined at initialization and the network weights stay close to their initial values. Such properties help
them derive a linear convergence rate of GD. However, the convergence rates derived in (Du et al., 2018b; Lee
et al., 2019; Liu et al., 2022; Nguegnang et al., 2021) are inversely proportional to the number of samples or
the initial loss and can be arbitrarily close to one when the number of samples or the initial loss is su#ciently
large. Moreover, Chizat et al. (2019); Chen et al. (2022) show that the NTK regime prohibits feature learning,
and the performance of neural networks in this regime degrades substantially.

To relax assumptions on width, step size, and initialization, numerous studies have explored the convergence
rates of gradient-based algorithms for neural networks with linear activations. These studies are motivated by
observations that linear networks exhibit similar nonlinear learning phenomena to those seen in simulations
of nonlinear networks (Saxe et al., 2013). For instance, Du & Hu (2019); Arora et al. (2018); Xu et al. (2023)
establish linear convergence rates for linear networks with squared loss optimized via GD. Their analyses rely
on the smoothness inequality of non-overparametrized models and do not provide an exact characterization
of the optimization landscape in overparametrized settings. In contrast, we deliver a tighter analysis by
characterizing the local PL condition and Descent Lemma in overparametrized models, allowing us to derive
faster convergence rates and design adaptive step sizes that adjust to the evolving local optimization landscape
along the GD trajectory (see Appendix C for details). Moreover, Arora et al. (2018) and Du & Hu (2019)
examine GD with constant step sizes; however, Arora et al. (2018) requires unrealistic initialization conditions
(large margin and low imbalance), while Du & Hu (2019) assumes large initialization and width. These
restrictive assumptions lead to convergence rates that substantially di!er from those of non-overparametrized
models. To the best of our knowledge, Xu et al. (2023) is the only work deriving a linear convergence rate for
linear networks trained via adaptive step-size GD, but it imposes restrictive step-size constraints, resulting in
slow convergence when the initial loss is large.

Notation. We use lower case letters a to denote a scalar, and capital letters A and A
→ to denote a matrix

and its transpose. We use εmax(A) and εmin(A) to denote the largest and smallest singular values of A,
→A→F and →A→2 to denote its Frobenius and spectral norms, and A[i, j] to denote its (i, j)-th element. For a
function f(Z), we use ↓f(Z) := ω

ωZ f(Z) to denote its gradient.

2 Preliminaries

In this paper, we consider using the GD algorithm to solve the following optimization problem and its
overparametrized version

min
W ↑Rn→m

ω(W ) , (Problem 1)

min
W1↑Rn→h,W2↑Rm→h

L(W1,W2) = ω(W1W
→
2 ) . (Problem 2)

We are mostly interested in solving Problem 2, which covers many problems, such as matrix factorization (Koren
et al., 2009), matrix sensing (Chen & Chi, 2013), training linear neural networks (Arora et al., 2018; Du et al.,
2018a; Xu et al., 2023). In particular, when ω(W ) = 1

2 →Y ↑ XW→
2
F , where X, Y are data matrices, Problem

2 corresponds to training a two-layer linear neural network with n inputs, h hidden neurons, m outputs, and
weight matrices W1 and W2 using the squared loss.
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2.1 Convergence rate of GD for Problem 1

In this section, we review the analysis for deriving the convergence rate of GD for Problem 1.

We seek to derive the convergence rate of GD for Problem 1 with the following iterations,

W (t+1) = W (t) ↑ ϑt↓ω(W (t)), (2)

where we will use ω(t), ↓ω(t) as a shorthand for ω(W (t)), ↓ω(W (t)) respectively.

Throughout the paper, we make the following assumptions.
Assumption 2.1. The loss ω(W ) is twice di!erentiable, K-smooth, and µ-strongly convex .
Assumption 2.2. minW ω(W ) = 0 .

Assumption 2.1 ensures the solution to Problem 1 is unique. Moreover, commonly used loss functions such
as the squared loss and the logistic loss with ω2 regularization both satisfy Assumption 2.1. Assumption 2.2
is for the purpose of convenience and brevity of theorems in this work. This assumption can be relaxed (to
have arbitrary ω

↓) without a!ecting the significance of our results. Moreover, one can have the following
inequalities based on the above assumptions for arbitrary W, V ↗ Rn↔m

ω(V ) ↘ ω(W ) + ≃↓ω(W ), V ↑ W ⇐ + K

2 →V ↑ W→
2
F Smoothness inequality , (3)

1
2→↓ω(W )→2

F ⇒ µω(W ) PL inequality . (4)

Since strong convexity implies PL condition, equation 4 holds under Assumption 2.1. In §3, we derive the
convergence rate of Problem 2 based on the argument of the local PL condition. To be consistent, we
highlight the role of the PL condition here. Moreover, the analysis in §2.1 remains applicable when µ-strong
convexity is relaxed to µ-PL condition.

In (Polyak, 1963; Boyd & Vandenberghe, 2004), it was shown that whenever 0<ϑt <
2
K , the GD iteration

equation 2 achieves linear convergence. The derivation is based on two ingredients: Descent lemma and the
PL inequality where Descent lemma is derived from the smoothness inequality.

Descent lemma. Starting from the smoothness inequality in equation 3, one can substitute (V, W ) with the
GD iterates (W (t+1), W (t)) to derive Descent lemma, i.e.,

ω(t+1)↘ω(t)+≃↓ω(t), W (t+1)↑W (t)⇐+ K

2 →W (t+1)↑W (t)→2
F =ω(t)↑(ϑt↑

Kϑ
2
t

2 )→↓ω(t)→2
.

Based on the PL inequality in equation 4 and Descent lemma above, one can see there is a strict decrease in
the loss at each GD step

ω(t+1) ↘ ω(t) ↑ (ϑt ↑
Kϑ

2
t

2 )→↓ω(t)→2
↘ (1 ↑ 2µϑt + µKϑ

2
t )ω(t) , (5)

where the fact that 0 < ϑt <
2
K , implies 0 < 1 ↑ 2µϑt + µKϑ

2
t < 1. Moreover, the minimum descent rate in

equation 5 is achieved when ϑt = 1
K , leading to the following linear convergence rate:

ω(t+1) ↘

(
1 ↑

µ

K

)
ω(t) ↘

(
1 ↑

µ

K

)t+1
ω(0). (6)

Tightness of the analysis. The previous analysis guarantees a linear convergence rate for any arbitrary
non-convex function that is K-smooth and satisfies the µ-PL condition. Moreover, one can show that the
rate in equation 6 is optimal in the sense that there exists a function that is K-smooth and satisfies the µ-PL
condition for which the bound on equation 6 is met with equality. Therefore, one would be tempted to apply
such an analysis to Problem 2. We will next show that overparameterization introduces several challenges
that prevent this analysis from being readily applied.
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2.2 Challenges in the Analysis of Convergence of Problem 2 optimized via GD

In this section, we first introduce GD with adaptive step size to solve Problem 2. Then, we discuss the main
challenges in deriving the convergence rate for Problem 2 based on the analysis in §2.1.

Overparametrized GD. We consider using GD with adaptive step size ϑt to solve Problem 2
[
W1(t+1)
W2(t+1)

]
=

[
W1(t)
W2(t)

]
↑ ϑt↓L

(
W1(t), W2(t)

)
, (7)

where ↓L(W1, W2) is computed via the chain rule:

↓L(W1, W2) = T (↓ω(W ); W1, W2) :=
[

↓ω(W )W2
↓ω(W )→

W1

]
. (8)

Here T : Rn↔m
⇑⇓ R(n+m)↔h is a weight-dependent linear operator that acts on ↓ω(W ). Thus, the gradient

of L in equation 8 can be viewed as a "skewed/scaled gradient" of ω that depends on W1, W2. It is this
dependence on the weights W1, W2 that makes it impossible to globally guarantee that equation 3 and
equation 4 hold, as shown next.
Proposition 2.1 (Non-existence of global PL constant and smoothness constant). Under mild assumptions,
the PL inequality and smoothness inequality can only hold globally with constants µover = 0 and Kover = ⇔

for L(W1, W2).

The proof of the above proposition can be found in Appendix B. Moreover, we present a simple example in
Appendix B to help the readers visually understand Proposition 2.1.

The non-existence of global PL and smoothness constants in the over-parametrized models prevents us from
using the same proof technique in §2.1 to derive the linear convergence of GD. In §3, we show that although
these constants do not exist globally, we can characterize them along iterates of GD. Moreover, under proper
choices of the step size of GD, the PL and smoothness constants can be controlled for all iterates of GD.
Thus, the linear convergence of GD can be derived.

3 Convergence of GD for Problem 2

To deal with the challenges presented in §2.2, in §3.1 we propose a novel PL inequality and Descent Lemma
evaluated on the iterates of GD for Problem 2, and show that the local rate of decrease per iteration for
Problem 2 is worsened by the condition number of T compared with the convergence rate of Problem 1.
Next, based on the results in §3.1, in §3.2 we show that the condition number of T during the training can
be controlled by its initial value, which helps us deriving a convergence rate for GD that depends on the
condition number of T at initialization, the step size, K, and µ. Moreover, we present a sketch of the proof
of Theorem 3.2 to highlight the technical novelty and implications of the theorem in §3.3. Finally, in §3.4
and §3.5, we discuss how initialization and width influence the convergence rates derived in Theorem 3.2.

Throughout the paper, we assume that the width satisfies h⇒min{n, m}. This assumption ensures ω
↓ =L

↓

where L
↓ = minW1,W2 L(W1, W2), and thus solving Problem 2 yields the solution to Problem 1. When

h<min{n, m}, Problem 2 enforces a rank constraint on the product. Thus, minW ω(W ) may not be equal to
minW1,W2 L(W1, W2). We are therefore interested in studying Problem 2 under the assumption h⇒min{n, m}

which is the same setting in (Arora et al., 2018; Du et al., 2018a; Xu et al., 2023).

3.1 Local PL Inequality and Descent Lemma for Over-parametrized GD

In §2.2, we saw that there does not exist a global PL constant or a global smoothness constant for Problem 2.
However, to prove that GD converges linearly to a global minimum of Problem 2, it is su#cient for Descent
lemma and PL inequality to hold for iterates of GD. The following theorem formally characterizes the local
PL inequality and Descent lemma for Problem 2.

6
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Theorem 3.1 (Local Descent Lemma and PL condition for GD). At the t-th iteration of GD applied to the
Problem 2, Descent lemma and PL inequality hold with local smoothness constant Kt and PL constant µt, i.e.,

L(t+1) ↘ L(t) ↑
(
ϑt ↑

Ktϑ
2
t

2
)
→↓L(t)→2

F ,
1
2→↓L(t)→2

F ⇒ µtL(t) . (9)

Moreover, if the step size ϑt satisfies ϑt > 0 and ϑtKt < 2, then the following inequality holds

L(t+1) ↘ L(t)(1 ↑ 2µtϑt + µtKtϑ
2
t ) := L(t)ϖ(ϑt, t) , (10)

where

µt = µε
2
min(Tt) , (11)

Kt = Kε
2
max(Tt)+

√
2KL(t)+6K

2
εmax(W (t))L(t)ϑ2

t +3Kε
2
max(Tt)

√
2KL(t)ϑt , (12)

and we use L(t) and Tt as shorthands for L(W1(t), W2(t)) and T ( · ; W1(t), W2(t)), resp.

The proof of the above theorem can be found in Appendix D. Notice that µt, Kt are not actually constants
since they vary w.r.t. the iteration index t. In this work, we adopt the convention to call them local PL and
smoothness constants to be consistent with the terminology in §2.

In §2.1, we showed that as long as one chooses ϑt = ϑ̄, with 0 < ϑ̄ <
2
K , GD in equation 2 for Problem 1

achieves linear convergence, with an optimal rate (1↑
µ
K ) given when ϑt = 1

K . However, we argue Theorem 3.1
does not imply linear convergence of overparametrized GD even though there always exists su#ciently small
ϑt > 0 such that ϑtKt < 2. The di!erence is due to the fact that µt and Kt are changing w.r.t. the iterations.
Specifically, if lim

t↗↘
µt

Kt
= 0, one has lim

t↗↘
inf0<εt< 2

Kt
ϖ(ϑt, t) = 1. Thus, equation 10 does not necessarily imply

that the product of the per-iterate descent !t
l=0ϖ(ϑl, l) goes to zero.

Towards linear convergence. Nevertheless, if there exists ϑt > 0 that can simultaneously satisfy the
constraint ϑtKt < 2 and the uniformly bound 1 ↑ 2µtϑt + µtKtϑ

2
t ↘ ϖ̄ < 1, for all t, one can expect the linear

convergence

L(t+1) ↘ ϖ(ϑt, t)L(t) ↘ ϖ̄L(t) ↘ ϖ̄
t+1

L(0) . (13)

Guaranteeing a uniform bound as in equation 13, requires one to keep track and control the evolution of
W (t), Tt, ϑt and L(t). In the next section, we will address these issues. For the time being, we focus next on
how the µt, Kt in Theorem 3.1 depend on the µ, K, L(t), ϑt and the current weights.

Characterization of µt, Kt. Theorem 3.1 shows how overparametrization a!ects the local PL constant
and smoothness constant, i.e., µt, Kt, via a time-varying linear operator Tt. Specifically, the PL constant in
equation 11 is the PL constant of ω(W ), i.e., µ, scaled by ε

2
min(Tt). Moreover, the smoothness constant in

equation 12 consists of two parts. The first one is Kε
2
max(Tt), which represents the smoothness constant of

ω(W ), i.e., K, scaled by ε
2
max(Tt). The rest of the terms decrease to zero as the loss L(t) approaches zero.

E!ect of overparametrization on optimization. Equation 10 in Theorem3.1 characterizes the rate of
decrease per iteration of Problem 2 trained via GD. Around global minimum, ϖ(ϑt, t) takes a simplified form,
i.e., ϖ(ϑt, t)=1↑2µεmin(Tt)ϑt+µKεmin(Tt)εmax(Tt)ϑ2

t . By minimizing the ϖ(ϑt, t) over ϑt, one can obtain the
optimal local rate decrease per iteration

min
0<εt< 2

Kt

ϖ(ϑt, t) = 1 ↑
µ

K
·

εmin(Tt)
εmax(Tt)

:= 1 ↑
µ

K
·

1
ϱ(Tt)

, (14)

where we use ϱ(Tt) to denote the condition number of Tt. Compared with the optimal convergence rate
of non-overparametrized model in §2.1, i.e., 1↑

µ
K , the local rate of decrease of overparametrized model is

worsened by ϱ(Tt). Moreover, the local rate of decrease becomes faster as Tt is well-conditioned.

In the next section, we will show that proper choice of initialization and step sizes ϑt does indeed lead to
linear convergence of overparametrized GD, and a su#cient condition for Tt to be well-conditioned.

7
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3.2 Linear Convergence of Problem 2 with GD

In this section, we first state a theorem which shows that GD in equation 7 converges linearly to a global
minimum of Problem 2 (See Theorem 3.2) under certain constraints on ϑt and the initialization. Then, based
on the convergence rate in Theorem 3.2, we propose an adaptive step size scheduler that accelerates the
convergence. We refer the reader to Table 2 for the definition of various quantities appearing in this section.

Table 2: Notation
Symbol Definition Description

D(t) W →
1 (t) W1(t) → W →

2 (t) W2(t) Imbalance: (almost) training-invariant quantity
ω↑ max

(
ωmax(→D(0)), 0

)

Quantities are related to eigenvalues
of imbalance. They are used to define
ε1, ε2, ϑ1, ϑ2

ω+ max
(

ωmax(D(0)), 0
)

! max
(

ωn(D(0)), 0
)

+ max
(

ωm(→D(0)), 0
)

!+ ω+ → max
(

ωn(D(0)), 0
)

!↑ ω↑ → max
(

ωm(→D(0)), 0
)

ε1
→!+ → !↑ +

√
(!+ + !)2 + 4ϑ2

1 +
√

(!↑ + !)2 + 4ϑ2
1

2
Lower bound on ϖ2

min(Tt)

ε2
ω+ +

√
ω2

+ + 4ϑ2
2

2
+

ω↑ +
√

ω2
↑ + 4ϑ2

2
2

Upper bound on ϖ2
max(Tt)

ϑ1 max
(

0, ϖmin(W ↓) →
√

K
µ ↑W (0) → W ↓↑F

)
Lower bound on ϖmin

(
W2(t)W1(t)

)

ϑ2 ϖmax(W ↓) +
√

K
µ ↑W1(0)W →

2 (0) → W ↓↑F Upper bound on ϖmax
(

W2(t)W1(t)
)

We now present our main result on the linear convergence of GD for Problem 2.
Theorem 3.2 (Linear convergence of GD for Problem 2). Suppose ω satisfies Assumption 2.1 and Assump-
tion 2.2, and given h ⇒ min(m, n), we assume GD in equation 7 is initialized so that ς1 > 0. Then there
exists ϑmax > 0 such that ↖ϑ0, ϑt that satisfies 0 < ϑ0 < ϑmax and

ϑ0 ↘ ϑt ↘ min
(
(1 + ϑ

2
0) t

2 ϑ0,
1

Kt

)
, (15)

one can derive the following bound for each iteration: µ̄ ↘ µt ↘ Kt ↘ K̄t, and

L(t+1) ↘ L(t)ϖ(ϑt, t) ↘ L(t)ϖ̄(ϑ0, 0) . (16)

Moreover, based on equation 16, GD algorithm in equation 7 converges linearly

L(t+1) ↘ L(0)ϖ̄(ϑ0, 0)t+1
, (17)

where

ϖ̄(ϑt, t) = 1 ↑ 2µ̄ϑt + µ̄K̄tϑ
2
t , µ̄ = µ

[
ς1 + 2ς2

(
1 ↑ exp(↙ϑ0)

)]
, ” = (1 + ϑ

2
0)ϖ̄(ϑ0, 0) ,

K̄t =
√

2KL(0)ϖ̄(ϑ0, 0)t+6K
2
φ2L(0)ϑ2

0”t+K exp(↙ϑ0)ς2
[
1+3

√
2KL(0)”tϑ0

]
.

The proof of the above theorem is presented in Appendix E. The above theorem states GD enjoys linear
convergence for Problem 2 under the assumptions that ς1 > 0 and certain constraints on ϑt. We make the
following remarks:

Conditions on the initialization for linear convergence. From Theorem 3.2, we see that if the
initialization {W1(0), W2(0)} satisfies ς1 > 0, then GD converges linearly with an appropriate choice of
the step size. The constraints on ϑ0 ensure that µ̄ > 0 and 0 < ϖ̄(ϑ0, 0) < 1. The assumptions on ς1 has
been studied in Min et al. (2022) where the authors show that ς1 > 0 when there is either 1) su#cient
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imbalance ” > 0 or 2) su#cient margin φ1 > 0, where ”, φ1 is defined in Table 2. In §3.4, we present two
conditions that ensure ς1 > 0 which covers commonly used Gaussian initialization, Xavier initialization, and
He initialization. Please see §3.4 for a detailed proof and discussions.

Evolution of smoothness constant. One unique feature in our Theorem is the time-varying upper
bound K̄t on the local smoothness constant Kt along GD iterates. The constraints on ϑ0 ensures that
0 < ϖ̄(ϑ0, 0), ” < 1. Thus, K̄t monotonically decrease to K exp(↙ϑ0)ς2 w.r.t. t. The fact that K̄t is
monotonically decreasing w.r.t. t suggests that the local optimization landscape gets more benign as the
training proceeds. Thus in order to achieve a fast rate of convergence, there is a need for a time-varying
choice of step size that adapts to the changes in the local smoothness constant Kt (because theoretically, the
optimal choice is ϑt = 1

Kt
, based on equation 10).

Requirement on the step size. We have mentioned in the previous remark that a time-varying step
size could be beneficial for convergence. However, prior analyses (Arora et al., 2018; Du & Hu, 2019; Xu
et al., 2023) are all restricted to a constant or decaying step size. The main reason is that one requires a
uniform spectral bound on Tt and W (t) throughout the entire GD trajectory to establish linear convergence
and such a uniform bound has only been shown under a constant or decaying step size. In our analysis, we
show a similar spectral bound can be obtained even with a growing step size (See Appendix E), as long as
ϑt ↘ (1 + ϑ

2
0) t

2 ϑ0, but not too much ϑt ↘
1

Kt
(ensures a su#cient decrease in the loss at every iteration). The

first bound diverges to infinity exponentially fast, and the second bound has a growing lower bound 1
K̄t

which
monotonically increases to 1

K exp(≃
ε0)ϑ2

. Thus, initially, the step size is restricted to [ϑ0, (1 + ϑ
2
0) t

2 ϑ0]. As the
training goes on, the binding constraint becomes ϑt ↘

1
Kt

, suggesting that GD can take a step that achieves
the theoretically largest descent in the loss. In Davis et al. (2024), the authors study GD with carefully
designed adaptive step sizes (GDPolyak) applied to loss functions that exhibit quartic growth away from
the solution set. Their analysis covers rank-overparameterized matrix sensing problems and student-teacher
setups involving a single neuron. GDPolyak di!ers from our method in how the step sizes are determined. In
our approach, the step size at each iteration follows a classic optimization strategy: we estimate the next
iterate’s loss based on the current loss and weights (see equation 16), then choose the step size by minimizing
this upper bound (see equation 18). As a result, our adaptive schedule requires accurate characterization of
the local PL constant and local smoothness constant. By contrast, GDPolyak alternates between constant
step sizes and Polyak step sizes, relying on the latter to adapt to local features of the loss landscape.

Local rate of convergence . In Theorem 3.2, we show L(t+1)↘L(t)ϖ(ϑt, t) and µ̄↘µt ↘Kt ↘K̄t when
ϑt satisfies certain constraints. When t is su#ciently large, or equivalently around any global minimum of
Problem 2, the optimal rate of convergence is achieved as (via a proper choice of ϑt)

min
εt

ϖ(ϑt, t) = 1↑
µ

K
·

µt

Kt
↘1↑

µ

K
·

ς1+2ς2
(
1↑exp(↙ϑ0)

)

exp(↙ϑ0)ς2
.

Notice the optimal local rate of convergence can be arbitrarily close to 1 ↑
µ
K ·

ϑ1
ϑ2

as ϑ0 decreases. Moreover,
compared with the optimal convergence rate of the non-overparametrized model, the optimal local rate of
convergence of the overparametrized model is worsened by ϑ1

ϑ2
, which is an upper bound on ϱ(Tt). In §3.5, we

provide a su#cient condition for T0 to be well-conditioned, i.e. ϑ1
ϑ2

to be close to one, and numerically verfity
this condition in AppendixG.

Comparison in local rate of convergence with SOTA. We compare our results with prior works
studying the same problem Arora et al. (2018); Du et al. (2018a); Xu et al. (2023) (See Table 3). Moreover,
we present a detailed discussion on the di!erence between proof techniques used in this work and prior work,
and how it leads to di!erent convergence rates. Please see Appendix C for details.

Choices of the step size. Recall that for non-overparamterized GD, we have ω(t+1) ↘ (1↑2µϑt+µKϑ
2
t )ω(t),

there exists an optimal choice of ϑ
↓
t = 1

K that minimize the theoretical upper bound on ω(t + 1). In
Theorem 3.1 and Theorem 3.2, we show L(t + 1) ↘ h(ϑt, t)L(t) under certain conditions on ϑt where
h(ϑt, t) ↗ {ϖ(ϑt, t), ϖ̄(ϑt, t)}. It is natural to use a similar approach to select step size at each iteration. To
achieve the optimal step size, it su#ces to minimize the upper bound on L(t+1) to achieve the most decrease

9
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Table 3: Comparison of convergence rates between prior work and our work.

loss step size initialization local rate of
convergence

Arora et al. (2018) squared loss constant D(0) ∝ 0, φ1 > 0 1 ↑ #( µϑ2
1

Kϑ2
2
)

Du et al. (2018a) squared loss decreasing D(0) ∝ 0, φ1 > 0 no explicit rate

Xu et al. (2023) squared loss constant ς1 > 0 1 ↑ #( µϑ2
1

Kϑ2
2
)

our work general adaptive ς1 > 0 1 ↑ #( µϑ1
Kϑ2

)

at each iteration. The di!erence is that we have a time-varying upper bound on L(t+1) thus the minimizer
ϑ

↓
t depends on time, and our choice of ϑ

↓
t must respect our constraint on step size in equation 15. This leads

to the following choice for ϑ
↓
t :

ϑ
↓
t = arg min

εt⇐min{(1+ε2
0)t/2ε0, 1

Kt
}

h(ϑt, t) . (18)

Since ϖ(ϑt, t), ϖ̄(ϑt, t) are quadratic in terms of ϑt, so ϑ
↓
t takes the following closed-form solutions depending

on which upper bound to use:

ϑ
↓
t =

{
min

(
(1 + ϑ

2
0)t/2

ϑ0,
1

Kt

)
if h(ϑt) = ϖ(ϑt, t) ,

min
(
(1 + ϑ

2
0)t/2

ϑ0,
1

K̄t

)
if h(ϑt) = ϖ̄(ϑt, t) .

(19)

The above choices of the adaptive step sizes satisfy the constraints in Theorem 3.2, so they both guarantee
linear convergence for over-parametrized GD. Moreover, such choices of ϑt give us the following theoretical
bound on L(t+1), i.e.,

L(t+1) ↘ L(0)
t∏

k=1
h(ϑ↓

k, k) . (20)

In §4.1, we provide numerical verification of the close alignment between the theoretical bounds stated above
and the actual convergence rate. We also observe an accelerated convergence when employing the step sizes
specified in equation 18 compared with the one proposed in Xu et al. (2023) and Backtracking line search.
We refer the readers to §4 for simulation results.

3.3 Proof Sketch

In this section, we present a proof sketch of Theorem 3.2 that highlights the key technical contributions. In
Theorem 3.1, we established a local PL inequality and a local Descent Lemma. Moreover, one can show the
upper bound

L(t+1)↘L(t)
(
1↑2 µt ϑt+µt Kt ϑ

2
t

)
=L(t) ϖ(ϑt, t) . (21)

As discussed in §3.1, this inequality alone does not guarantee linear convergence. For instance, if limt↗↘
µt

Kt
=

0, then limt↗↘ ϖ(ϑt, t) = 1. To show there exists a 0 < ϖ̄ < 1 such that ϖ(ϑt, t) ↘ ϖ̄ holds for all t, we use the
following two-step approach in a similar way as it was done in Xu et al. (2023).

Step one: uniform spectral bounds for Tt and Wt . First, we show when ϑt is controlled, one can have
the uniform spectral bounds on Tt and W (t). The following lemma characterizes this property formally.
Lemma 3.1 (Uniform spectral bounds on Tt, W (t).). Under the same assumption and constraints in
Theorem 3.2, one has the following uniform spectral bounds on Tt, W (t)

ς1 + 2ς2
(
1 ↑ exp(↙ϑ0)

)
↘ ε

2
min(Tt) ↘ ε

2
max(Tt) ↘ ς2 exp(↙ϑ0) , (22)

φ1 ↘ εmin(W (t)) ↘ εmax(W (t)) ↘ φ2 . (23)

10
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The above lemma shows the uniform spectral bounds on Tt and Wt depending on ς1, ς2, φ1, φ2 and ϑ0.
Moreover, the bounds on the singular values of Tt can be arbitrarily close to ς1, ς2 as ϑ0 approaches zero.

Similar results have been derived in Xu et al. (2023) where the authors show uniform spectral bounds of
Tt, Wt for constant step size GD. Our proof strategy is similar to Xu et al. (2023) which relies on the fact
that when the GD enjoys linear convergence, the change of imbalance during the training is small. For
constant step size GD, we can characterize the change using the step size ϑ and the convergence rate ϖ̄

i.e. →D(t) ↑ D(0)→F ↘ O( ε2

1⇒ϖ̄ ). In this work, we discover when we allow step size to grow but not too
fast, i.e. ϑt ↘ (1 + ϑ

2
0) t

2 ϑ0, we still can control the change of imbalance, i.e. →D(t) ↑ D(0)→F ↘ O( ε2
0

1⇒! )
where ” = (1 + ϑ

2
0)ϖ̄(ϑ0, 0). This observation helps us derive the uniform spectral bounds for Tt, W (t) while

allowing the step size to grow. The bound on the change of imbalance is not restricted to scenarios when loss
converges linearly. In Ghosh et al. (2025), the authors demonstrate that the imbalance gap decreases at a
linear rate, even in the edge-of-stability regime. We mention this work here as an additional reference for
readers interested in such phenomena.

Step two. Second, we employ an induction-based argument to show that based on Lemma 3.1, one can
show µ ⇒ µ̄, Kt ↘ K̄t and L(t) converges linearly with the rate ϖ̄0.
Lemma 3.2 (Induction step to show µt, Kt is bounded and L(t) converges linearly.). Under the same
assumption and constraints in Theorem 3.2, assume L(t) enjoys linear convergence with rate ϖ̄(ϑ0, 0) until
iteration k, then the following holds for iteration k+1

µk+1 ⇒ µ̄ , Kk+1 ↘ K̄k+1 , (24)

with µ̄, K̄k+1 defined in Theorem 3.2. Moreover, one can show

ϖ(ϑk+1, k+1) ↘ ϖ̄(ϑk+1, k+1) ↘ ϖ̄(ϑ0, 0) . (25)

Equation 24 is a direct consequence of Lemma 3.1 and the induction that L(t) enjoys linear convergence until
iteration k. We can lower bound µk by subsituting εmin(Tk) with the bound in equation 22 and upper bound
Kt by subsituting εmax(Tk), εmax(W (k)), L(k) with the bound in equation 22, equation 23 and L(0)ϖ̄(ϑ0, 0)t

respectively. Based on these results, one can derive the following upper bound on L(k+1) under the same
constraints on ϑt in Theorem 3.2

L(k+1) ↘ L(k) ↑
(
ϑk ↑

Kkϑ
2
k

2
)
→↓L(k)→2

F Local Descent lemma in Theorem 3.1 (26)

↘ L(k) ↑ 2µ̄
(
ϑk ↑

Kkϑ
2
k

2
)
L(k) Local PL inequality with µ̄ (27)

= (1 ↑ 2µ̄ϑk + µ̄Kkϑ
2
k)L(k) Use Kk ↘ K̄k ↘ K̄0 (28)

↘ (1 ↑ 2µ̄ϑk + µ̄K̄0ϑ
2
k)L(k) Use constraints on ϑ0 and equation 15 (29)

↘ ϖ̄(ϑ0, 0)L(k) . (30)

In summary, we show GD in equation 7 achieves linear convergence with the rate ϖ̄(ϑ0, 0) under the constraints
on ϑt and the assumption ς1 > 0 in this section. Moreover, we show the local rate of convergence depends on
ϑ1
ϑ2

. In the next section, we theoretically show that commonly used random initialization leads to ς1 > 0,
and large width and large initialization scale leads to faster local rate of convergence, i.e., ϑ1

ϑ2
⇓ 1.

3.4 Proper initialization ensures ς1 > 0

In §3.2, we see that under the assumption ς1 > 0, Problem 2 trained via GD in equation 7 converges linearly
to a global minimum under certain constraints on the step sizes. In this section, we present two conditions
on the initialization that ensure ς1 > 0.

We first show two conditions on the initialization that ensure ς1 > 0.
Lemma 3.3 (Mild overparametrization ensures ς1 > 0). Let W1(0), W2(0) are initialized entry-wise i.i.d.
from a continuous distribution P. When h ⇒ m + n, ς1 > 0 holds almost surely over random initialization
with W1(0), W2(0).

11
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Lemma 3.4 (Lemma 1 in (Min et al., 2021)). Let W1(0), W2(0) are initialized entry-wise i.i.d. from N (0,
1

h2p )
with 1

4 ↘ p ↘
1
2 . For ↖↼ > 0 and h ⇒ poly(n, m,

1
ϱ ), with probability 1 ↑ ↼ over random initialization with

W1(0), W2(0), the following holds ς1 ⇒ h
1⇒2p

.

We refer the readers to Appendix F for detailed proof. Both lemmas presented above ensure ς1 > 0 under
di!erent conditions on the width. Compared with Lemma 3.4, Lemma 3.3 considers a wider range of
distributions that include Gaussian distribution and uniform distribution. Thus, commonly used random
initialization schemes, such as Xavier initialization (Glorot & Bengio, 2010) and He initialization (He et al.,
2015), lead to ς1 > 0. Moreover, the requirement of overparametrization in Lemma 3.3 is mild compared with
the one in Lemma 3.4, i.e., h ⇒ m + n versus h ⇒ poly(n, m,

1
ϱ ). As a result, Lemma 3.3 can be applied to

more general overparametrization. On the other hand, the conclusion of Lemma 3.3 is weaker than Lemma 3.4
in the sense that Lemma 3.3 only proves ς1 > 0 but does not characterize its magnitude while Lemma 3.4
characterizes the lower bound on ς1 will increase as h increases.

3.5 Large width and proper choices of the variance lead to well-conditioned T0

In this section, we show that a proper choice of initialization and width can lead to well-conditioned T0, i.e.,
ϑ1
ϑ2

⇓ 1. Based on the results in §3.2, we show that the local convergence rate of overparametrized model
trained via GD can match the rate of the non-overparametrized model.
Theorem 3.3. Let W1(0), W2(0) are initialized entry-wise i.i.d. from N (0,

1
h2p ) with 1

4 < p <
1
2 . ↖↼ ↗

(0, 1), h ⇒ poly(m, n,
1
ϱ ), with probability 1 ↑ ↼ over random initialization W1(0), W2(0), the following holds

εmin(T0)
εmax(T0) ⇒

ς1
ς2

⇒ 1 ↑ #(h2p⇒1) . (31)

We refer the readers to Appendix F.1 for detailed proof. The above theorem states the condition number of
T0 approaches one when the width increases to infinity under suitable choices of the variance of Gaussian
initialization. Therefore, increasing the width can lead to a fast convergence rate.

In Appendix G, we will numerically show that with proper choices of the variance of the initialization and
the adaptive step size proposed in §3.2, a large width will lead to well-conditioned Tt and the convergence
rate of the overparametrized model can asymptotically match the rate of the non-overparametrized model.

4 Experiments

In this section, we first present empirical evidence that Theorem 3.2 provides a good characterization of the
actual convergence rate under di!erent initialization in §4.1. Then, in §4.2, we compare the convergence
rate of GD using the adaptive step size proposed in equation 19, in Section 3.3 of Xu et al. (2023), and
backtracking line search. Throughout the experiments, we consider Problem 2 with squared loss

L(W1, W2) = 1
2→Y ↑ XW1W

→
2 →

2
F , (32)

where X, Y ↗ R10↔10 are data matrices and W1, W2 ↗ R10↔h are the weights. This can be viewed as a
two-layer linear network with input and output dimensions 10 and the width of the hidden layer to be h.
Throughout the simulations, we choose h ↗ {500, 1000, 4000}. We choose c = 0.5, d = 1.01 in Theorem E.1.
The initialization of the weights and generation of data matrices are as follows: W1(0), W2(0) ↗ R10↔h, and
have entry-wise i.i.d. samples drawn from N (0, 1). We generate X as a random orthogonal matrix, and
Y = XW1(0)W2(0) + ε

2
↽ where ↽ ↗ R10↔10 and are entry-wise i.i.d. samples drawn from N (0, 1). When ε

2

is large, the initial loss is large, thus the margin is small. Moreover, we experimentally observe that the initial
imbalance grows w.r.t. h. The choices of h and ε allow us to test our results in di!erent regimes.

4.1 Evaluation of the Tightness of the Theoretical Bound on the Convergence Rate

Figure 1 compares the actual convergence rate of L(t) versus the theoretical upper bound in §3.2 for di!erent
choices of ε and h, and dissimilar ϑ1

ϑ2
. In all cases, the theoretical upper bound follows the actual loss well.
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Figure 1: Tightness of the theoretical upper bound versus reconstruction error L(t) for di!erent choices of
step size in §3.2, shown in di!erent colors. We run the simulations for nine di!erent settings of initialization
and data generation. For each setting, we repeat the simulation thirty times. The triangle lines represent the
theoretical upper bound on the training loss in equation 17 and equation 20. The solid lines represent the
mean of the log10 of the reconstruction error L(t). The shaded area is the mean of log10 L(t) plus and minus
one standard deviation.

Moreover, we observe for each adaptive step size scheme, the theoretical bounds and the actual rate of
convergence become slower as ϑ1

ϑ2
decreases. This is because our bounds on the local rate of convergence

depend on ϑ1
ϑ2

, and the smaller ϑ1
ϑ2

, the slower the convergence rate.

4.2 Comparison with Prior Work and Backtracking Line Search

In this subsection, we compare the adaptive step sizes proposed in Xu et al. (2023), backtracking line
search with the step sizes proposed in equation 19 with h(ϑt) = ϖ(ϑt, t). We set the hyperparameters of the
adaptive step size scheme proposed in Xu et al. (2023) to be c1 = 0.5, c2 = 1.5, which is the same setting in
their simulations. We refer the readers to Appendix G for detailed descriptions of backtracking line search.
Figure 2 shows that the step size choice proposed in equation 19 achieves the fastest convergence compared
with Xu et al. (2023) and backtracking line search in di!erent settings. This is because for the adaptive
step size scheduler in this work, the step size at each iteration has closed form (See equation 19), thus the
time for picking the optimal step size per iteration is negligible. The only time-consuming part is to find
ϑ0 since one needs to solve equation 101 and equation 102 to get ϑmax. For the step size proposed in Xu
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Figure 2: Evolution of the loss and of the step size for di!erent choices of the step size schedule under di!erent
initialization and data generation. We run the simulations thirty times. For each setting, we repeat the
simulation thirty times. The solid lines represent the mean of log10 of the reconstruction error L(t). The
shaded area is the mean of log10 L(t) plus and minus one standard deviation.

et al. (2023), the algorithm consists of solving a third-order polynomial at each iteration, which results
in larger computational time. Moreover, the adaptive scheduler proposed in our work follows a sharper
characterization of the local convergence rate than Xu et al. (2023), and the adaptive step size scheduler
in this work theoretically converges of order ϑ1

ϑ2
faster than the one proposed in Xu et al. (2023). For the

backtracking line search algorithm, since the algorithm iteratively searches for the step size at each iteration.
Therefore, the time cost for each iteration is high as well.

5 Conclusion

This paper studies the convergence of GD for optimizing two-layer linear networks with general loss functions.
Specifically, we derive a linear convergence rate for finite-width networks initialized outside the NTK regime.
We use a common framework for studying the convergence of GD for the non-convex optimization problem,
i.e. PL condition and Descent lemma. Although the loss landscape of neural networks does not satisfy
the PL condition and Descent lemma with global constants, we show that when the step size is small,
both conditions satisfy locally with constants depending on the singular value of the weights, the current
loss, and the singular value of the products. Furthermore, we prove that the local PL and smoothness
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constants can be uniformly bounded by the initial imbalance, margin, PL constant, and smoothness constant
of the non-overparameterized model. Finally, we provide an explicit convergence rate dependent on margin,
imbalance, and the condition number of the non-overparameterized model. Based on this rate, we propose an
adaptive step size scheme that accelerates convergence compared to a constant step size.
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A Preliminary lemmas

In this section, we present a preliminary lemma which will be used in the following sections.
Lemma A.1 (Inequality on the Frobenius norm). For matrix A, B, C, D, we have

≃A, B⇐ ↘ →A→F · →B→F , (33)
2→AB→F ↘ →A→

2
F + →B→

2
F , (34)

→AB + CD→
2
F ↘ [ε2

max(A) + ε
2
max(C)]2 · [→B→

2
F + →D→

2
F ] , (35)

→A→
2
F + →B→

2
F ↘ 2→A + B→

2
F , (36)

ε
2
min(A)→B→

2
F ↘ →AB→

2
F ↘ ε

2
max(A)→B→

2
F , (37)

ε
2
min(B)→A→

2
F ↘ →AB→

2
F ↘ ε

2
max(B)→A→

2
F . (38)

Lemma A.1 has been derived and used multiple times in prior work. We refer the readers to Appendix C in
Xu et al. (2023) for detailed proof.
Lemma A.2 (Singular values of T ). The largest and smallest singular values of T are given as

ε
2
min(T ) = ε

2
min(W1) + ε

2
min(W2) ,

ε
2
max(T ) = ε

2
max(W1) + ε

2
max(W2) . (39)

Proof. First, one can see

T
↓

↔ T (U ; W1, W2) = UW2W
→
2 + W1W

→
1 U , (40)

where T
↓ is the adjoint of T . Then, we use Min-max theorem to show

⇀min(T ↓
↔ T ) = ε

2
min(W1) + ε

2
min(W2) , ⇀max(T ↓

↔ T ) = ε
2
max(W1) + ε

2
max(W2) . (41)

Let the singular value decompositions of W1, W2 be

W1 = U1$1V
→

1 =
r1∑

i=1
ε1,iu1,iv

→
1,i , W2 = U2$2V

→
2 =

r2∑

i=1
ε2,iu2,iv

→
2,i , (42)

where r1 = rank(W1), r2 = rank(W2), and {ε1,i}
r1
i=1, {ε2,i}

r2
i=1 are of descending order. Then, one has the

following

⇀min(T ↓
↔ T ) = min

⇑U⇑F =1
≃U, UW2W

→
2 + W1W

→
1 U⇐

= min
⇑U⇑F =1

≃U, UW2W
→
2 ⇐ + min

⇑U⇑F =1
≃U, W1W

→
1 U⇐

⇒ ε
2
min(W1) + ε

2
min(W2) . (43)

On the other hand, if one choose U = v1,r1u
→
2,r2 ,the following equation holds

≃U, UW2W
→
2 + W1W

→
1 U⇐

=
〈
v1,r1u

→
2,r2 , v1,r1u

→
2,r2W2W

→
2 + W1W

→
1 v1,r1u

→
2,r2

〉

=
〈
v1,r1u

→
2,r2 , v1,r1u

→
2,r2

r2∑

i=1
ε

2
2,iu2,iv

→
2,i

〉
+

〈
v1,r1u

→
2,r2 ,

r1∑

i=1
ε

2
1,iu1,iv

→
1,iv1,r1u

→
2,r2

〉

=
r2∑

i=1
ε

2
2,itr(u2,r2v

→
1,r1v1,r1u

→
2,r2u2,iv

→
2,i) +

r2∑

i=1
ε

2
1,itr(u2,r2v

→
1,r1u1,iv

→
1,iv1,r1u

→
2,r2)

=ε
2
1,r1 + ε

2
2,r2 , (44)
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where the last line is based on the fact that v
→
1,ivi,r1 = 0, u

→
2,ju2,r2 = 0 holds for all i ′= r1, j ′= r2. Therefore,

based on equation 43 and equation 44, one has

⇀min(T ↓
↔ T ) = ε

2
min(W1) + ε

2
min(W2) . (45)

Similarly, we can show

⇀max(T ↓
↔ T ) = ε

2
max(W1) + ε

2
max(W2) . (46)

Lemma A.3 (Singular values of random matrix). Given m, n ↗ N with m ↘ n. Let A ↗ Rn↔m be a random
matrix with i.i.d. standard normal entries. For any ↼ > 0, with probability at least 1 ↑ 2 exp(↼2), one has

↙
n ↑

↙
m ↑ ↼ ↘ εmin(A) ↘ εmax(A) ↘

↙
n +

↙
m + ↼ . (47)

The proof of this lemma can be found in Vershynin (2018).

B Non-existence of Global PL Constant and Smoothness Constant for Problem 2

In this section, we show that under mild assumptions, the PL inequality and smoothness inequality can only
hold with constants µover = 0 and Kover = ⇔ for Problem 2.

We then make the following assumption on Problem 2.
Assumption B.1. (W1, W2) = (0, 0) is not a global minimizer of Problem 2.

Based on the above assumption, one has the following proposition.
Proposition B.1 (Non-existence of global PL constant and smoothness constant). Under Assumption B.1,
the PL inequality and smoothness inequality can only hold with constants µover = 0 and Kover = ⇔ for
L(W1, W2).

Proof. We first show µover = 0. The gradient of L is given as follows

→↓L(W1, W2)→2
F = →↓ω(W )W2→

2
F + →↓ω(W )→

W1→
2
F . (48)

Notice when W1, W2 are zero matrices, the RHS of the above equation is zero. Therefore, we have
→↓L(W1, W2)→2

F = 0. On the other hand, under Assumption B.1, since (W1, W2) = (0, 0) is not a min-
imizer of Problem 2, we have L(W1, W2) ′=0. Thus, the PL inequality can only hold globally with µover = 0,

→↓L(W1, W2)→2
F = →↓ω(W )W2→

2
F + →↓ω(W )→

W1→
2
F ⇒ 2µoverL(W1, W2) . (49)

Then, we show Kover = ⇔ for Problem 2. We consider the smoothness inequality evaluated on arbitrary
(W1, W2) and the minimizer (W ↓

1 , W
↓
2 ) of Problem 2:

L(W1, W2) ↘ L(W ↓
1 , W

↓
2 ) + ≃↓L(W ↓

1 , W
↓
2 ), Z

↓
↑ Z⇐ + Kover

2 →Z
↓

↑ Z→
2
F , (50)

where we use Z, Z
↓ in short for (W1, W2), (W ↓

1 , W
↓
2 ). Since (W ↓

1 , W
↓
2 ) minimizes Problem 2, we have

↓L(W ↓
1 , W

↓
2 ) = 0(m+n)↔h and L(W ↓

1 , W
↓
2 ) = 0. Thus, equation 50 is equivalent to the following

Kover ⇒
2L(W1, W2)

→ZW ↑ ZW ↑→2
F

= 2ω(W1W
→
2 )

→ZW ↑ ZW ↑→2
F

. (51)

On the other hand, since ω(W ) is µ-strongly convex w.r.t. W , the following inequality holds for arbitrary U, V

ω(U) ⇒ ω(V ) + ≃↓ω(V ), U ↑ V ⇐ + µ

2 →U ↑ V →
2
F . (52)
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Figure 3: Plot of a toy example illustrating the loss function ω(x) and its overparametrized version L(x1, x2),
along with the corresponding local PL constant µover(x1, x2) and smoothness constant Kover(x1, x2). The
definitions of ω(x), L(x1, x2), µover(x1, x2), and Kover(x1, x2) are given in equation 57, equation 58, and
equation 59.

We substitute U, V with W1W
→
2 , W

↓
1 (W ↓

2 )→ in equation 52, we have

ω(W1W
→
2 ) ⇒

µ

2 →W1W
→
2 ↑W

↓
1 (W ↓

2 )→
→

2
F . (53)

Finally, we combine equation 51 and equation 53, and derive the following lower bound on Kover

Kover ⇒
2ω(W1W

→
2 )

→ZW ↑ ZW ↑→2
F

Based on equation 51

⇒
µ→W1W

→
2 ↑W

↓
1 (W ↓

2 )→
→

2
F

→W1 ↑ W
↓
1 →2

F + →W2 ↑ W
↓
2 →2

F

Apply equation 53 to ω(W1W
↓
2 )

= µ→W1W
→
2 ↑W

↓
1 W

→
2 +W

↓
1 W

→
2 ↑W

↓
1 (W ↓

2 )→
→

2
F

→W1 ↑ W
↓
1 →2

F + →W2 ↑ W
↓
2 →2

F

= µ→(W1 ↑ W
↓
1 )W →

2 +W
↓
1 (W2 ↑ W

↓
2 )→)→2

F

→W1 ↑ W
↓
1 →2

F + →W2 ↑ W
↓
2 →2

F

⇒
µ

2 ·
→(W1 ↑ W

↓
1 )W →

2 →
2
F +→W

↓
1 (W2 ↑ W

↓
2 )→)→2

F

2→W1 ↑ W
↓
1 →2

F + →W2 ↑ W
↓
2 →2

F

Apply Lemma A.1

⇒
µ

2 ·
ε

2
min(W2)→W1 ↑ W

↓
1 →

2
F +ε

2
min(W ↓

1 )→W2 ↑ W
↓
2 →

2
F

→W1 ↑ W
↓
1 →2

F + →W2 ↑ W
↓
2 →2

F

Apply Lemma A.1 . (54)

Similarly, one can also derive the following lower bound on Kover

Kover ⇒
µ

2 ·
ε

2
min(W ↓

2 )→W1 ↑ W
↓
1 →

2
F +ε

2
min(W1)→W2 ↑ W

↓
2 →

2
F

→W1 ↑ W
↓
1 →2

F + →W2 ↑ W
↓
2 →2

F

(55)

We take the average of the lower bound on Kover in equation 54 and equation 55,

Kover ⇒
µ

4 ·

(
ε

2
min(W2) + ε

2
min(W ↓

2 )
)
→W1 ↑ W

↓
1 →

2
F +

(
ε

2
min(W1) + ε

2
min(W ↓

1 )
)
→W2 ↑ W

↓
2 →

2
F

→W1 ↑ W
↓
1 →2

F + →W2 ↑ W
↓
2 →2

F

⇒
µ

4 · min


ε
2
min(W1) + ε

2
min(W ↓

1 ), ε
2
min(W2) + ε

2
min(W ↓

2 )


⇒
µ

4 · min


ε
2
min(W1), ε

2
min(W2)


. (56)

Due to the arbitrary choices of W1, W2, we can let εmin(W1) and εmin(W2) to be arbitrarily large, thus the
smoothness inequality for Problem 2 can only hold globally with Kover = ⇔.

To illustrate Proposition B.1, we examine how the PL constant and smoothness constant evolve in a simple
one-dimensional setting. Specifically, we compare the non-overparametrized loss

ω(x)= 1
2

(
x↑1

)2 (57)
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with the overparametrized loss

L(x1, x2)= 1
2

(
x1x2↑1

)2
. (58)

In this simple example, one can exactly compute local smoothness constants and PL constants as follows

µover(x1, x2)= (↓L(x1, x2))2

2L(x1, x2) =x
2
1 + x

2
2,

Kover(x1, x2)=⇀max(↓2
L(x1, x2))= x

2
1+x

2
2 +

√
(x2

1+x
2
2)2↑4x

2
1x

2
2+(2x1x2 ↑ 1)2

2 . (59)

Since the local smoothness constants and PL constants of L(x1, x2) now depend on the input, we use
µover(x1, x2), Kover(x1, x2) to denote them.

In Figure 3, we plot the loss landscapes for both ω(x) and L(x). We observe that while ω(x) is strongly
convex and smooth, with global PL and smoothness constants µ=K =1, the overparameterized loss L(x) is
non-convex. Moreover, its local PL constant µover(x1, x2) vanishes when x1 =x2 =0, and its local smoothness
constant Kover(x1, x2) diverges as →x1→

2 +→x2→
2

⇓ ⇔. Consequently, if one attempts to enforce the PL
inequality and Descent Lemma with global constants in the overparameterized setting, the only possibilities
are

µover = min
x1,x2

µover(x1, x2)=0 and Kover =max
x1,x2

Kover(x1, x2)=⇔. (60)

C A Detailed Comparison with Prior Work

In this section, we present a detailed comparison to Arora et al. (2018); Du et al. (2018a); Xu et al. (2023) to
highlight the di!erence in technical details and improvement on the convergence rate.

Summary of the strategy of proof in (Arora et al., 2018; Du et al., 2018a; Xu et al., 2023).
Based on GD update in equation 7, one can derive the following update on the product W (t)

W (t+1) = W (t) ↑ ϑtT
↓

t ↔ Tt(↓ω(t)) + ϑ
2
t ↓ω(t)W (t)→

↓ω(t) , (61)

where T
↓

t is the adjoint of Tt. Then, substituting equation 61 into the smoothness inequality of the non-
overparametrized model in equation 3, we can derive the following upper bound on the loss at iteration t+1
using the loss at iteration t (Also see Lemma3.1 in Xu et al. (2023)).
Lemma C.1. If at the t-th iteration of GD applied to the over-parametrized loss L, the step size ϑt satisfies

ε
2
min(Tt) ↑ ϑt→↓ω(t)→F →W (t)→F ↑

Kϑt

2
[
ε

2
max(Tt) + ϑt→↓ω(t)→F →W (t)→F

]2
⇒ 0 , (62)

then the following inequality holds
L(t+1) ↘ ϖ(ϑ, t)L(t) , (63)

where

ϖ(ϑ, t) = 1 ↑ 2ϑtµε
2
min(Tt) + Kµϑ

2
t ε

4
max(Tt) + 2ϑ

2
t µεmax(W (t))→↓ω(t)→F

+ 2ϑ
3
t µKε

2
max(Tt)εmax(W (t))→↓ω(t)→F + ϑ

4
t µKε

2
max(W (t))→↓ω(t)→2

F . (64)

Improvement of the local rate of decrease. First, one can see the local rates of decrease in both work
are polynomials of degree four and depend on ϑt, ↓ω(t) and singular values of Tt, Wt. Moreover, around any
global minimum, i.e., L(t) ∝ 0, →↓ω(t)→F ∝ 0, we have the following local rate of decrease per iteration

1 ↑ 2ϑtµε
2
min(Tt) + ϑ

2
t Kµε

4
max(Tt) local rate of decrease in prior work ,

1 ↑ 2ϑtµε
2
min(Tt) + ϑ

2
t Kµε

2
min(Tt)ϑ2

t ε
2
max(Tt) local rate of decrease in this work , (65)
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and the optimal local rates of decrease regardless of the constraints on the ϑt are

1 ↑
µ

K
·

ε
4
min(Tt)

ε4
max(Tt)

optimal local rate of decrease in prior work ,

1 ↑
µ

K
·

ε
2
min(Tt)

ε2
max(Tt)

optimal local rate of decrease in this work . (66)

Thus, one can see our characterization of local Descent lemma and PL inequality leads to faster local rates of
decrease compared with prior results by ς2

min(Tt)
ς2

max(Tt) . Nevertheless, equation 66 does not imply linear convergence

since if lim
t↗↘

ς2
min(Tt)

ς2
max(Tt) = 0, one would not expect su#cient decrease per iteration. In order to show linear

convergence, one needs to provide a uniform lower bound on ς2
min(Tt)

ς2
max(Tt) , ↖t.

Improvement of the local rate of convergence. In this work, we show when the step sizes satisfy
certain constraints (See Theorem 3.2), there exist uniform spectral bounds for the condition number of Tt, i.e.,
ς2

min(Tt)
ς2

max(Tt) ↘ c(ϑ0)ϑ1
ϑ2

, ↖t where ς1, ς2 only depend on the initial weights and c(ϑ0) is a constant approaching
one as ϑ0 decreases. Thus, the optimal final rate of convergence derived in this work is

1 ↑
µ

K
·

ς1
ς2

optimal local rate of convergence in this work . (67)

In prior work, the rates in (Du et al., 2018a; Arora et al., 2018) are extremely slow in practice (See Section 4
in (Xu et al., 2023)). In (Xu et al., 2023), the authors introduce two auxiliary constants 0< c1 <1, c2 >1,
and show that one can uniformly bound the condition number of Tt during training, i.e., ς2

min(Tt)
ς2

max(Tt) ↘
c1ϑ1
c2ϑ2

, ↖t.
Moreover, they enforce problem-dependent assumptions on the choices of c1, c2. According to Claim E.1 in
(Xu et al., 2023), c1

c2
is at most 1

3 and can be arbitrarily small when the initial loss is large. Thus, the local
rate of convergence in (Xu et al., 2023) is at most, in our notation,

1 ↑
µ

K
·

c
2
1ς

2
1

c
2
2ς

2
2

optimal local rate of convergence in (Xu et al., 2023) . (68)

When comparing equation 67 and equation 68, one can directly conclude the local rate of convergence derived
in this work is much faster than the rate derived in (Xu et al., 2023). Moreover, the optimal local rate of
convergence of the overparametrized model in this work is di!erent from the optimal rate of convergence of
the non-overparametrized model up to a factor of ϑ1

ϑ2
, which shows overparametrization has a benign e!ect if

one can control ϑ1
ϑ2

through properly initialization of the weights. However, such results are not shown in the
work of (Arora et al., 2018; Du et al., 2018a; Xu et al., 2023).

D Proof of Theorem 3.1

In this section, we present the proof of Theorem 3.1.
Theorem D.1 (Restate of Theorem 3.1). At the t-th iteration of GD applied to the Problem 2, the Descent
lemma and PL inequality hold with local smoothness constant Kt and PL constant µt, i.e.,

L(t+1) ↘ L(t) ↑
(
ϑt ↑

Ktϑ
2
t

2
)
→↓L(t)→2

F ,
1
2→↓L(t)→2

F ⇒ µtL(t) . (69)

Moreover, if the step size ϑt satisfies ϑt > 0 and ϑtKt < 2, then the following inequality holds

L(t+1) ↘ L(t)(1 ↑ 2µtϑt + µtKtϑ
2
t ) := L(t)ϖ(ϑt, t) , (70)

where

µt = µε
2
min(Tt) , (71)

Kt = Kε
2
max(Tt)+

√
2KL(t)+6K

2
εmax(W (t))L(t)ϑ2

t +3Kε
2
max(Tt)

√
2KL(t)ϑt , (72)

and we use L(t), Tt as a shorthand for L(W1(t), W2(t)), T ( · ; W1(t), W2(t)) resp.
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Proof. We first show that the local PL inequality holds.

→↓L(t)→2
F =





 ↓ω(t)W2(t)

↓ω(t)→
W1(t)






2

F

= →ω(t)W2(t)→2
F + →ω(t)→

W1(t)→2
F

⇒ ε
2
min(W2(t))→↓ω(t)→2

F + ε
2
min(W1(t))→↓ω(t)→2

F Apply Lemma A.1
⇒ 2µε

2
min(W2(t))L(t) + 2µε

2
min(W1(t))L(t) Apply PL inequality of ω

= 2µtL(t) ,

where the last equality uses the fact that ε
2
min(Tt) = ε

2
min(W1(t)) + ε

2
min(W2(t)). Then, we show that Descent

lemma holds with local smoothness constant Kt. We can view L(t+1) using the following second Taylor
approximation,

L(t+1) = L(t) + ≃↓L(t), Zt+1↑Zt⇐ +
 1

0
(1 ↑ ⇁)

〈
Zt+1↑Zt, H(⇁)(Zt+1↑Zt)

〉
d⇁ ,

= L(t) ↑ ϑt→↓L(t)→2
F + ϑ

2
t →↓L(t)→2

F

 1

0
(1 ↑ ⇁)≃gt, H(⇁)gt⇐d⇁ , (73)

where we use Zt+1, Zt in short for (W1(t+1), W2(t+1)), (W1(t), W2(t)) respectively, and gt = ⇓L(t)
⇑⇓L(t)⇑F

to
denote the unit vector of the gradient direction. Moreover, the H(⇁) is defined as follows,

H(⇁) = ↓
2
L

(
(1 ↑ ⇁)W1(t)+⇁W1(t+1), (1 ↑ ⇁)W2(t)+⇁W2(t+1)

)

= ↓
2
L

(
W1(t)↑ϑt⇁↓W1L(t), W2(t)↑ϑt⇁↓W2L(t)

)
. (74)

Notice the integral in the equation 73 does not have a closed-form solution. We use the following two-step
approach to derive an upper bound on the RHS of equation 73.

Step one. We first show that one can upper bound ≃gt, H(0)gt⇐ using the singular values of Tt, K and L(t).
The following lemma characterizes it formally.

Lemma D.1 (Upper bound on ≃gt, H(0)gt⇐). We have the following upper bound

≃gt, H(0)gt⇐ ↘ Kε
2
max(Tt) +

√
2KL(t) . (75)

The proof of Lemma D.1 is presented at the end of this section.

Step two. Then, for any ⇁ ↗ [0, 1), we can show |≃gt,
(
H(0) ↑ H(⇁)

)
gt⇐| is bounded, which leads to an upper

bound on ≃gt, H(⇁)gt⇐. The following lemma characterizes the upper bound on ≃gt, H(⇁)gt⇐.

Lemma D.2 (Uniform upper bound on ≃gt, H(⇁)gt⇐). For any ⇁ ↗ [0, 1), we have

|≃gt, H(⇁)gt⇐|↘Kε
2
max(Tt)+

√
2KL(t)+6K

2
εmax(W (t))L(t)ϑ2

t +3Kε
2
max(Tt)

√
2KL(t)ϑt := Kt .

The proof of Lemma D.2 is presented at the end of this section.
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Based on equation 73 and Lemma D.2, one can derive Descent lemma

L(t+1) = L(t) ↑ ϑt→↓L(t)→2
F + ϑ

2
t →↓L(t)→2

F

 1

0
(1 ↑ ⇁)≃gt, H(⇁)gt⇐d⇁ Equation 73

↘ L(t) ↑ ϑt→↓L(t)→2
F + ϑ

2
t →↓L(t)→2

F

 1

0
(1 ↑ ⇁) max

φ
|≃gt, H(⇁)gt⇐|d⇁

↘ L(t) ↑ ϑt→↓L(t)→2
F + ϑ

2
t →↓L(t)→2

F

 1

0
(1 ↑ ⇁)Ktd⇁ Lemma D.2

= L(t) ↑ ϑt→↓L(t)→2
F + ϑ

2
t Kt

2 →↓L(t)→2
F

= L(t) ↑ (ϑt ↑
ϑ

2
t Kt

2 )→↓L(t)→2
F . (76)

Therefore, Descent lemma is proved.

Now we present the proof of Lemma D.1 and Lemma D.2. We first define the following quantity which will
be used in the proof

M(s) = L(W1(t) ↑ sϑt↓W1L(t), W2(t) ↑ sϑt↓W2L(t)) , (77)
A(s) = W (t)↑sϑt

(
↓W2L(t)W2(t)→+W1(t)↓W1L(t)→)

+s
2
ϑ

2
t ↓W1L(t)↓W2L(t)→

, (78)

where A(s) is the product of W1(t)↑sϑt↓W1L(t) and W2(t)↑sϑt↓W2L(t). Moreover, we have M(0)=L(t),
M(ϑt)=L(t+1) and M(s)=ω

(
A(s)

)
.

Then, we present several lemmas that will be used in the proof of Lemma D.1 and Lemma D.2.
Lemma D.3. Given W1(t) ↗ Rn↔h

, W2(t) ↗ Rm↔h at t-th iteration, the following holds

2→↓W1L(t)↓W2L(t)→
→F ↘ →↓W1L(t)→2

F + →↓W2L(t)→2
F (79)

→↓W1L(t)↓W2L(t)→
→F ↘ 2Kεmax(W (t))L(t) . (80)

Proof. Based on Lemma A.1, one has 2→AB→F ↘→A→
2
F +→B→

2
F . Thus, let A = ↓W1L(t), B = ↓W2L(t), and

we complete the proof of equation 79.

For equation 80, one has the following

→↓W1L(t)↓W2L(t)→
→F = →↓ω(t)W (t)→

↓ω(t)→
→F

↘ εmax(W (t))→↓ω(t)→2
F equation 37 in Lemma A.1

↘ 2Kεmax(W (t))L(t) K-smooth of ω , (81)

which completes the proof.

Lemma D.4. Given W1(t) ↗ Rn↔h
, W2(t) ↗ Rm↔h at t-th iteration, the following holds

→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
→F ↘ ε

2
max(Tt)

√
2KL(t) . (82)

Proof. We prove this lemma using the results from Lemma A.1 and Lemma A.2

→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
→F

↘→↓W2L(t)W2(t)→
→F +→W1(t)↓W1L(t)→

→F Property of norm
=→↓ω(t)W2W2(t)→

→F +→W1(t)W1(t)→
↓ω(t)→

→F See definition of Tt

↘ε
2
max(W2(t))→↓ω(t)→2

F + ε
2
max(W1(t))→↓ω(t)→2

F equation 37 in Lemma A.1
=ε

2
max(Tt)→↓ω(t)→2

F Lemma A.2

↘ε
2
max(Tt)

√
2KL(t) K-smooth of ω . (83)
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Lemma D.5. Given W1(t) ↗ Rn↔h
, W2(t) ↗ Rm↔h at t-th iteration, for any s ↗ (0, 1], the following holds

→↓ω
(
A(s)

)
↑↓ω

(
A(0)→F ↘ ϑtK

√
2KL(t)ε2

max(Tt) + 2ϑ
2
t K

2
εmax(W (t))L(t) (84)

Proof. Based on Lemma A.1 and the assumption that ω is K-smooth, one has the following

→↓ω
(
A(s)

)
↑↓ω

(
A(0)→F

↘K→A(s) ↑ A(0)→F

=K→↑sϑt

(
↓W2L(t)W2(t)→+W1(t)↓W1L(t)→)

+s
2
ϑ

2
t ↓W1L(t)↓W2L(t)→

→F

↘sϑtK→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
→F + s

2
ϑ

2
t K→↓W1L(t)↓W2L(t)→

→F

↘ϑtK→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
→F + ϑ

2
t K→↓W1L(t)↓W2L(t)→

→F , (85)

where the last line is due to the fact that s ↗ (0, 1].

Then, based on Lemma D.3 and Lemma D.4, one has the following,

→↓ω
(
A(s)

)
↑↓ω

(
A(0)→F

↘K→A(s) ↑ A(0)→F

↘ϑtK→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
→F + ϑ

2
t K→↓W1L(t)↓W2L(t)→

→F

↘ϑtKε
2
max(Tt)

√
2KL(t) + ϑ

2
t K · 2Kεmax(W (t))L(t) , (86)

which completes the proof.

Lemma D.1 (Upper bound on ≃gt, H(0)gt⇐). We have the following upper bound

≃gt, H(0)gt⇐ ↘ Kε
2
max(Tt) +

√
2KL(t) . (87)

Proof. First, we notice ≃gt, H(0)gt⇐ is the second-order directional derivative of L(t) w.r.t. the gradient
direction,

≃gt, H(0)gt⇐ = 1
→↓L(t)→2

F

·
d

2

ds2 M(s)

s=0

. (88)

Moreover, we can compute d2

ds2 M(s)

s=0

as follows

d
2

ds2 M(s)

s=0

= d
2

ds2 L

(
W1(t)↑s↓W1L(t)

)(
W2(t)↑s↓W2L(t)

)→


s=0

= d
2

ds2 ω
(
A(s)

)
s=0

Definition of A(s)

= d

ds

〈
↓ω

(
A(s)

)
,

d

ds
A(s)

〉
s=0

=
〈
↓ω

(
A(s)

)
,

d
2

ds2 A(s)
〉
+

〈 d

ds
A(s), ↓

2
ω(A(s)) d

ds
A(s)

〉
s=0

. (89)
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Under the assumption that ω is K-smooth and Lemma A.1, one can derive the following upper bound on
d2

ds2 M(s)

s=0

d
2

ds2 M(s)

s=0

=
〈
↓ω

(
A(s)

)
,

d
2

ds2 A(s)
〉
+

〈 d

ds
A(s), ↓

2
ω(A(s)) d

ds
A(s)

〉
s=0

↘ ≃↓ω
(
A(s)

)
,

d
2

ds2 A(s)
〉
+K→

d

ds
A(s)→2

F


s=0

ω is K-smooth

=2≃↓ω(t), ↓W1L(t)↓W2L(t)→〉
+K→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→

→
2
F

↘2→↓ω(t)→F · →↓W1L(t)↓W2L(t)→
→F

+ K[ε2
max(W1(t)) + ε

2
max(W2(t))] · [→↓W1L(t)→2

F + →↓W2L(t)→2
F ] Lemma A.1

↘→↓ω(t)→F · [→↓W1L(t)→2
F + →↓W2L(t)→2

F ]
+ K[ε2

max(W1(t)) + ε
2
max(W2(t))] · [→↓W1L(t)→2

F + →↓W2L(t)→2
F ] Lemma A.1

↘

√
2KL(t) · [→↓W1L(t)→2

F + →↓W2L(t)→2
F ] K-smooth of ω

+ K[ε2
max(W1(t)) + ε

2
max(W2(t))] · [→↓W1L(t)→2

F + →↓W2L(t)→2
F ] . (90)

Finally, we derive the the upper bound on ≃gt, H(0)gt⇐ based on equation 90

≃gt, H(0)gt⇐ = 1
→↓L(t)→2

F

·
d

2

ds2 M(s)

s=0

↘
[→↓W1L(t)→2

F + →↓W2L(t)→2
F ] ·

(√
2KL(t) + ε

2
max(W1(t)) + ε

2
max(W2(t))

)

→↓W1L(t)→2
F + →↓W2L(t)→2

F

=
√

2KL(t) + ε
2
max(W1(t)) + ε

2
max(W2(t))

=
√

2KL(t) + ε
2
max(Tt) , (91)

where the last line is based on Lemma A.2.

Lemma D.2 (Upper bound on ≃gt, H(⇁)gt⇐). For any ⇁ ↗ [0, 1), we have

≃gt, H(⇁)gt⇐ ↘ Kt , (92)

where

Kt = Kε
2
max(Tt)+

√
2KL(t)+6K

2
εmax(W (t))L(t)ϑ2

t +3Kε
2
max(Tt)

√
2KL(t)ϑt . (93)

Proof. First, we use the same method to compute ≃gt, H(⇁)gt⇐ as it was done in Lemma D.1

≃gt, H(⇁)gt⇐ = 1
→↓L(t)→2

F

·
d

2

ds2 M(s+⇁)

s=0

. (94)

Based on similar calculations in equation 89, one has

d
2

ds2 M(s+⇁)

s=0

= d
2

ds2 ω
(
A(s+⇁)

)
s=0

= d

ds

〈
↓ω

(
A(s+⇁)

)
,

d

ds
A(s+⇁)

〉
s=0

=
〈
↓ω

(
A(s+⇁)

)
,

d
2

ds2 A(s+⇁)
〉
+

〈 d

ds
A(s+⇁), ↓

2
ω(A(s+⇁)) d

ds
A(s+⇁)

〉
s=0

. (95)
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Under the assumption that ω is K-smooth, Lemma A.1 and Lemma D.1, one can show

d
2

ds2 M(s+⇁)

s=0

=
〈
↓ω

(
A(s+⇁)

)
,

d
2

ds2 A(s+⇁)
〉
+

〈 d

ds
A(s+⇁), ↓

2
ω(A(s+⇁)) d

ds
A(s+⇁)

〉
s=0

↘
〈
↓ω

(
A(s+⇁)

)
,

d
2

ds2 A(s+⇁)
〉
+K→

d

ds
A(s+⇁)→2

F


s=0

=2
〈
↓ω

(
A(⇁)

)
, ↓W1L(t)↓W2L(t)→〉

+ K→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
↑ 2⇁ϑt↓W1L(t)↓W2L(t)→

→
2
F

=2
〈
↓ω

(
A(⇁)

)
↑↓ω

(
A(0)

)
, ↓W1L(t)↓W2L(t)→〉

+2
〈
↓ω

(
A(0)

)
, ↓W1L(t)↓W2L(t)→〉

+ K→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
→

2
F + 4⇁

2
ϑ

2
t K→↓W1L(t)↓W2L(t)→

→
2
F

↑ 4⇁Kϑt

〈
↓W2L(t)W2(t)→+W1(t)↓W1L(t)→

, ↓W1L(t)↓W2L(t)→〉

↘2
〈
↓ω

(
A(0)

)
, ↓W1L(t)↓W2L(t)→〉

+K→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
→

2
F

+ 2→↓ω
(
A(⇁)

)
↑↓ω

(
A(0)→F · →↓W1L(t)↓W2L(t)→

→F

+ 4⇁
2
ϑ

2
t K→↓W1L(t)↓W2L(t)→

→
2
F

+ 4⇁ϑtK→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
→F · →↓W1L(t)↓W2L(t)→

→F

↘2
〈
↓ω

(
A(0)

)
, ↓W1L(t)↓W2L(t)→〉

+K→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
→

2
F

+ 2→↓ω
(
A(⇁)

)
↑↓ω

(
A(0)→F · →↓W1L(t)↓W2L(t)→

→F

+ 4ϑ
2
t K→↓W1L(t)↓W2L(t)→

→
2
F

+ 4ϑtK→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
→F · →↓W1L(t)↓W2L(t)→

→F , (96)

where the last line is derived based on the fact that ⇁ ↗ (0, 1].

Notice in equation 90, we have shown

2
〈
↓ω

(
A(0)

)
, ↓W1L(t)↓W2L(t)→〉

+K→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
→

2
F

↘ [→↓W1L(t)→2
F + →↓W2L(t)→2

F ] ·
(√

2KL(t) + ε
2
max(Tt)

)
. (97)

Moreover, in Lemma D.3, Lemma D.4 and Lemma D.5, we have shown

2→↓W1L(t)↓W2L(t)→
→F ↘ →↓W1L(t)→2

F + →↓W2L(t)→2
F

→↓W1L(t)↓W2L(t)→
→F ↘ 2Kεmax(W (t))L(t) (98)

→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
→F ↘ ε

2
max(Tt)

√
2KL(t)

→↓ω
(
A(s)

)
↑↓ω

(
A(0)→F ↘ ϑtK

√
2KL(t)ε2

max(Tt) + 2ϑ
2
t K

2
εmax(W (t))L(t) . (99)
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Thus, one can further upper bound equation 96 as follows

d
2

ds2 M(s+⇁)

s=0

↘2
〈
↓ω

(
A(0)

)
, ↓W1L(t)↓W2L(t)→〉

+K→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
→

2
F

+ 2→↓ω
(
A(⇁)

)
↑↓ω

(
A(0)→F · →↓W1L(t)↓W2L(t)→

→F

+ 4ϑ
2
t K→↓W1L(t)↓W2L(t)→

→
2
F

+ 4ϑtK→↓W2L(t)W2(t)→+W1(t)↓W1L(t)→
→F · →↓W1L(t)↓W2L(t)→

→F

↘[→↓W1L(t)→2
F + →↓W2L(t)→2

F ] ·
(√

2KL(t) + ε
2
max(Tt)

)

+


ϑtK
√

2KL(t)ε2
max(Tt) + 2ϑ

2
t K

2
εmax(W (t))L(t)


·[→↓W1L(t)→2

F + →↓W2L(t)→2
F ]

+ 4ϑ
2
t K

2
εmax(W (t))L(t) · [→↓W1L(t)→2

F + →↓W2L(t)→2
F ]

+ 2ϑtKε
2
max(Tt)

√
2KL(t) · [→↓W1L(t)→2

F + →↓W2L(t)→2
F ] . (100)

As a result, we can show

≃gt, H(⇁)gt⇐ = 1
→↓L(t)→2

F

·
d

2

ds2 M(s+⇁)

s=0

↘ Kε
2
max(Tt)+

√
2KL(t)+6K

2
εmax(W (t))L(t)ϑ2

t +3Kε
2
max(Tt)

√
2KL(t)ϑt .

E Proof of Theorem 3.2

In this section, we first introduce the generalized form of Theorem 3.2. Then, we provide a detailed proof.
Theorem E.1 (Linear convergence of GD for Problem 2). Assume the GD algorithm equation 7 is initialized
such that ς1 > 0. Pick any 0 < c < 1, d > 1. Let ϑ

(1)
0 be the unique positive solution of the following equation

ϑ0
(√

2KL(0)+6K
2
φ2L(0)ϑ2

0 +K exp(↙ϑ0)ς2
[
1+3

√
2KL(0)ϑ0

])
= 1 , (101)

and ϑ
(2)
0 be the smallest positive solution of the following equation5

4KL(0)ϑ2
0 = (1 ↑ exp(↑ϑ

c
0)) ∞ (1 ↑ ”) . (102)

Then, we define ϑmax = min(ϑ(1)
0 , ϑ

(2)
0 , log

(
1 + ϑ1

2ϑ2

) 1
c ). For any ϑ0 and ϑt such that 0 < ϑ0 ↘ ϑmax and ϑt

satisfies

ϑ0 ↘ ϑt ↘ min
(
(1 + ϑ

d
0) t

2 ϑ0,
1

Kt

)
, (103)

one can derive the following linear convergence rate for GD

L(t+1) ↘ L(t)ϖ̄(ϑt, t) ↘ L(t)ϖ̄(ϑ0, 0) ↘ L(0)ϖ̄(ϑ0, 0)t+1
, (104)

where

ϖ̄(ϑt, t) = 1 ↑ 2µ̄ϑt + µ̄K̄tϑ
2
t , µ̄ = µ

[
ς1 + 2ς2

(
1 ↑ exp(ϑc

0)
)]

, ” = (1 + ϑ
d
0)ϖ̄(ϑ0, 0) ,

K̄t =
√

2KL(0)ϖ̄(ϑ0, 0)t+6K
2
φ2L(0)ϑ2

0”t+K exp(↙ϑ0)ς2
[
1+3

√
2KL(0)”tϑ0

]
.

5In the case when equation 102 does not have positive solution, we set ϱ
(2)
0 = ↓.

28



Published in Transactions on Machine Learning Research (04/2025)

Notice Theorem 3.2 in §3.2 can be viewed as a special case of Theorem E.1 with c = 1
2 , d = 2.

Before presenting the proof Theorem E.1, we first show that the constraints on ϑ0 do not induce an empty
set, or equivalently ϑmax > 0. Alongside, we provide several inequalities that are implied by the constraints
on ϑ0, which the proof Theorem E.1 is relied on.

Existence of ϑ0 . To show the existence of ϑ0, it is equivalent to show that ϑmax > 0. First, since ς1, ς2 are
positive, we have log

(
1 + ϑ1

2ϑ2

) 1
c
> 0. Moreover, one can see when ϑ0 < log

(
1 + ϑ1

2ϑ2

) 1
c , we have µ̄ > 0.

Second, we show ϑ
(1)
0 > 0. The LHS of equation 101 increases as ϑ0 increases, and it equals zero as ϑ0 = 0.

Thus, there exists a unique positive solution of equation 101, which is equivalent to ϑ
(1)
0 > 0. Notice

K̄0 =
√

2KL(0)+6K
2
φ2L(0)ϑ2

0 +K exp(↙ϑ0)ς2
[
1+3

√
2KL(0)ϑ0

]
. (105)

Therefore, 0 < ϑ0 ↘ ϑ
(1)
0 implies 0 < ϑ0K̄0 ↘ 1 which is equivalent to ϑ0 ↘

1
K̄0

. This constraint further leads
to 0 < ϖ̄(ϑ0, 0) < 1 and ” > 0.

Finally, we show ϑ
(2)
0 > 0. Notice when ϑ0 = 0, the RHS and LHS of equation 102 both equal zero. Moreover,

when ϑ0 > 0, one can rewrite equation 102 as follows

4KL(0)ϑ2
0 = (1 ↑ exp(↑ϑ

c
0)) ∞ (1 ↑ ”)

∈∋ 4KL(0)ϑ2
0 = (1 ↑ exp(↑ϑ

c
0)) ∞ (2µ̄ϑ0 ↑ µ̄K̄0ϑ

2
0 ↑ ϑ

d
0 ϖ̄(ϑ0, 0))

∈∋ 4KL(0)ϑ1⇒c
0 = 1 ↑ exp(↑ϑ

c
0)

exp(↑ϑ
c
0) ∞ (2µ̄ ↑ µ̄K̄0ϑ0 ↑ ϑ

d⇒1
0 ϖ̄(ϑ0, 0)) . (106)

Then, we study the order of both sides of equation 106 in terms of ϑ0 in the regime where 0 < ϑ0 ↘

min


log
(
1 + ϑ1

2ϑ2

) 1
c
,

1
K̄0


. Since 0 < c < 1, and the LHS of equation 106 is of order %(ϑ1⇒c

0 ), it decreases

monotonically to zero as ϑ0 approaches zero. The RHS of equation 106 is the product of two terms, i.e.,
1⇒exp(⇒εc

0)
exp(⇒εc

0) and 2µ̄ ↑ µ̄K̄0ϑ0 ↑ ϑ
d⇒1
0 ϖ̄(ϑ0, 0). We notice ϑ

c
0 approaches zero as ϑ0 decreases to zero. Thus,

1⇒exp(⇒εc
0)

exp(⇒εc
0) converges to one as ϑ0 decreases to zero. Moreover, when ϑ0 ↘ min


log

(
1 + ϑ1

2ϑ2

) 1
c
,

1
K̄0


, we have

µ̄ > 0 and 0 < ϖ̄(ϑ0, 0) < 1. Therefore, the RHS of equation 106 is of order %(1). As a result, when ϑ0 > 0 is
su#ciently small, one has

4KL(0)ϑ2
0 < (1 ↑ exp(↑ϑ

c
0)) ∞ (1 ↑ ”) . (107)

Moreover, if equation 102 has positive roots, and we use ϑ
(2)
0 to denote its smallest positive root. The following

holds for all 0 < ϑ0 ↘ ϑ
(2)
0

4KL(0)ϑ2
0 ↘ (1 ↑ exp(↑ϑ

c
0)) ∞ (1 ↑ ”) (108)

If equation 102 does not have positive root, then equation 107 holds for all positive ϑ0.

To summarize, we have shown that ϑmax > 0, and the ϑ0 always exists. Moreover, when ϑ0 satisfies
0 < ϑ0 < ϑmax, the following holds

µ̄ > 0 , 0 < ϖ̄(ϑ0, 0), ” < 1 ,

4KL(0)ϑ2
0 ↘ (1 ↑ exp(↑ϑ

c
0)) ∞ (1 ↑ ”) . (109)

Now we present the proof of Theorem E.1.

Proof. We employ an induction-based approach to prove Theorem E.1 by iteratively showing the following
properties hold for all iteration t when ϑ0 and ϑt satisfy the constraints in Theorem E.1.
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• A1(t) : L(t) ↘ L(t↑1)ϖ(ϑt⇒1, t↑1) ↘ L(t↑1)ϖ̄(ϑ0, 0).

• A2(t) : φ1 ↘ εmin(W (t)) ↘ εmax(W (t)) ↘ φ2.

• A3(t) : →D(t) ↑ D(0)→F ↘
2Kε2

0ϑ2(0) exp(εc
0)L(0)

1⇒! .

• A4(t) : ς1 + 2ς2
(
1 ↑ exp(ϑc

0)
)
↘ ε

2
min(Tt) ↘ ε

2
max(Tt) ↘ ς2 exp(ϑc

0).

Assume A1(k), A2(k), A3(k), A4(k) hold at iteration k = 1, 2, · · · , t, then we show they all hold for iteration
t+1.

Prove A1(t+1) hold.

We first show that under the constraints in Theorem E.1 and the induction assumption, one can lower bound
and upper bound µt and Kt using µ̄ and K̄t respectively, which is characterized by the following lemma.

Lemma E.1. The following lower bound and upper bound on µt and Kt hold respectively

µ̄ ↘ µt , Kt ↘ K̄t . (110)

The proof of the above lemma can be found at the end of Appendix E.

In Theorem 3.1, we have shown that the local PL inequality and Descent lemma hold with local PL constant
µt and local smoothness constant Kt

L(t+1) ↘ L(t) ↑
(
ϑt ↑

Ktϑ
2
t

2
)
→↓L(t)→2

F ,
1
2→↓L(t)→2

F ⇒ µtL(t) . (111)

Therefore, one has

L(t+1) ↘ L(t) ↑
(
ϑt ↑

Ktϑ
2
t

2
)
→↓L(t)→2

F

↘ L(t) ↑ 2µt

(
ϑt ↑

Ktϑ
2
t

2
)
L(t) Under the constraints 0 < ϑt <

1
Kt

↘ L(t) ↑ 2µ̄
(
ϑt ↑

Ktϑ
2
t

2
)
L(t) Lemma E.1

= (1 ↑ 2µ̄ϑt + µ̄Ktϑ
2
t )L(t)

↘ (1 ↑ 2µ̄ϑt + µ̄K̄tϑ
2
t )L(t) := ϖ̄(ϑt, t)L(t) Lemma E.1 . (112)

Finally, we show ϖ(ϑt, t) ↘ ϖ̄(ϑ0, 0).

ϖ(ϑt, t) ↘ 1 ↑ 2µ̄ϑt + µ̄Ktϑ
2
t

↘ 1 ↑ 2µ̄ϑ0 + µ̄Ktϑ
2
0 Use ϑ0 ↘ ϑt ↘

1
Kt

↘ 1 ↑ 2µ̄ϑ0 + µ̄K̄0ϑ
2
0 := ϖ̄(ϑ0, 0) Use Kt ↘ K̄0 . (113)

Therefore, A1(t+1) holds.

Prove A2(t+1) hold.

Since we have shown A1(t+1) holds, one has L(t+1) ↘ L(0). Moreover, based on the assumption that ω(W )
is µ-strongly convex and K-smooth, one has the following inequality

µ

2 →W (t+1) ↑ W
↓
→

2
F ↘ ω(t+1) = L(t+1) ↘

K

2 →W (t+1) ↑ W
↓
→

2
F . (114)
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Then we can show εmax(W (t+1)) ↘ φ2 as follows

εmax(W (t+1)) = εmax(W (t+1) ↑ W
↓ + W

↓)
↘ εmax(W ↓) + →W (t+1) ↑ W

↓
→2 Weyl’s inequality

↘ εmax(W ↓) + →W (t+1) ↑ W
↓
→F

↘ εmax(W ↓) +


2
µ

L(t+1)

↘ εmax(W ↓) +


2
µ

L(0) . Use L(t+1) ↘ L(0) (115)

For φ1 ↘ εmin(W (t+1)), same result has been derived in Min et al. (2023). We refer the readers to Appendix
B in Min et al. (2023) for details.

Prove A3(t+1) hold.

We first present the following lemma that bounds →D(k+1) ↑ D(k)→F for all k.

Lemma E.2. One has the following upper bound on →D(k+1)↑D(k)→F

→D(k+1)↑D(k)→F ↘ 2Kϑ
2
kε

2
max(Tk)L(k) . (116)

The proof of the above lemma can be found at the end of this section.

Based on Lemma E.2, one can show that A3(t+1) holds

→D(t+1)↑D(0)→F ↘

t∑

k=0
→D(k+1)↑D(k)→F

↘

t∑

k=0
2Kϑ

2
kε

2
max(Tk)L(k) Lemma E.2

↘

t∑

k=0
2Kϑ

2
kε

2
max(Tk)L(0)ϖ̄(ϑ0, 0)k Use A1(k), ↖k = 1, · · · , t

↘

t∑

k=0
2Kϑ

2
kς2 exp(ϑc

0)L(0)ϖ̄(ϑ0, 0)k Use A4(k), ↖k = 1, · · · , t

↘

t∑

k=0
2K(1 + ϑ

d
0)k

ϑ
2
0ς2 exp(ϑc

0)L(0)ϖ̄(ϑ0, 0)k Use ϑk ↘ (1 + ϑ
d
0) k

2 ϑ0

= 2KL(0) exp(ϑc
0)ϑ2

0ς2

t∑

k=0
”k ” = (1 + ϑ

d
0)ϖ̄(ϑ0, 0)

↘
2Kϑ

2
0ς2 exp(ϑc

0)L(0)
1 ↑ ” . 0 < ” < 1 (117)

Prove A4(t+1) hold.

We first present the following two lemmas which will be used to prove that A4(t+1) hold.

Lemma E.3. One can use ς1, ς2 to lower and upper bound the singular values of T0

ς1 ↘ ε
2
min(T0) ↘ ε

2
max(T0) ↘ ς2 . (118)

Lemma E.4. One can bound the deviation of the singular values of Tk using the deviation of the imbalance
→D(k) ↑ D(0)→F

ε
2
min(Tk) ⇒ ς1 ↑ 4→D(k) ↑ D(0)→F := T

L
k . (119)

ε
2
max(Tk) ↘ ς2 + 2→D(k) ↑ D(0)→F := T

U
k . (120)
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The proof of Lemma E.3 and Lemma E.4 can be in Xu et al. (2023), Appendix C.

Notice T
L

t+1+2T
U

t+1 =ς1+2ς2. Therefore, if one can show

T
U

t+1 ↘ exp(ϑc
0)ς2 . (121)

Then, the following holds directly

ε
2
max(Tt+1) ↘ T

U
t+1 ↘ exp(ϑc

0)ς2 , (122)
ε

2
min(Tt+1) ⇒ T

L
t+1 = ς1+2ς2 ↑ 2T

U
t+1 ⇒ ς1 + 2ς2

(
1 ↑ exp(ϑc

0)
)

. (123)

Therefore, it su#ces to show equation 121 holds. We start from Lemma E.4

T
U

k = ς2 + 2→D(k) ↑ D(0)→F

↘ ς2 + 4KL(0)ϑ2
0ς2(0) exp(ϑc

0)
1 ↑ ” Use A3(t+1)

↘ ς2 + (1 ↑ exp(↑ϑ
c
0)) ∞ (1 ↑ ”) ·

ς2 exp(ϑc
0)

1 ↑ ” Equation 107

= exp(ϑc
0)ς2 . (124)

Now, we present the proof of lemmas used in the proof of Theorem E.1. All lemmas presented below are based
on the assumption that A1(k), A2(k), A3(k), A4(k) hold for all iterations k = 1, 2, · · · , t and the constraints
presented in Theorem E.1. For convenience, we do not state these assumptions and constraints repetitively.
Lemma E.1. The following lower bound and upper bound on µt and Kt hold respectively

µ̄ ↘ µt , Kt ↘ K̄t . (125)

Proof. We start with the lower bound on µt. Due to the assumption that A4(t) hold, one has the following
lower bound µt

µt = µε
2
min(Tt) ⇒ µς1 . (126)

For the upper bound on Kt, we first show that based on the assumption that A1(k) hold for all k ↘ t, one has

L(t) ↘ L(t↑1)ϖ̄(ϑ0, 0) ↘ L(0)ϖ̄(ϑ0, 0)t
. (127)

Then, based on equation 127, A4(t) and the constraint that ϑt ↘ (1 + ϑ
d
0) t

2 ϑ0, we can derive the following
upper bound on Kt

Kt =Kε
2
max(Tt)+

√
2KL(t)+6K

2
εmax(W (t))L(t)ϑ2

t +3Kε
2
max(Tt)

√
2KL(t)ϑt

↘Kς2 exp(ϑc
0) +

√
2KL(0)ϖ̄(ϑ0, 0)t + 6K

2
φ2L(0)ϖ̄(ϑ0, 0)t

ϑ
2
t

+ 3Kς2 exp(ϑc
0)

√
2KL(0)ϖ̄(ϑ0, 0)tϑt

↘Kς2 exp(ϑc
0) +

√
2KL(0)ϖ̄(ϑ0, 0)t + 6K

2
φ2L(0)ϖ̄(ϑ0, 0)t(1 + ϑ

d
0)t

ϑ
2
0

+ 3Kς2 exp(ϑc
0)

√
2KL(0)ϖ̄(ϑ0, 0)t(1 + ϑ

d
0) t

2 ϑ0 Use ϑt ↘ (1 + ϑ
d
0) t

2 ϑ0

=
√

2KL(0)ϖ̄(ϑ0, 0)t+6K
2
φ2L(0)ϑ2

0”t+K exp(↙ϑ0)ς2
[
1+3

√
2KL(0)”tϑ0

]
, (128)

where the last line follows the definition of ” = (1 + ϑ
d
0)ϖ̄(ϑ0, 0).

Lemma E.2. One has the following upper bound on →D(k+1)↑D(k)→F

→D(k+1)↑D(k)→F ↘ 2Kϑ
2
kε

2
max(Tk)L(k) . (129)
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Proof. In equation 7 and equation 8, we have

W1(k+1) = W1(k) ↑ ϑk↓ω(k)W2(k) , W2(k+1) = W2(k) ↑ ϑk↓ω(k)→
W1(k) . (130)

There, we can compute D(k+1) ↑ D(k) as follows

D(k+1)↑D(k) =W1(k+1)→
W1(k+1) ↑ W2(k+1)→

W2(k+1)
↑ W1(k)→

W1(k) + W2(k)→
W2(k)

=
(
W1(k) ↑ ϑk↓ω(k)W2(k)

)→(
W1(k) ↑ ϑk↓ω(k)W2(k)

)

↑
(
W2(k) ↑ ϑk↓ω(k)→

W1(k)
)→(

W2(k) ↑ ϑk↓ω(k)→
W1(k)

)

↑ W1(k)→
W1(k) + W2(k)→

W2(k)
=ϑ

2
k

(
W2(k)→

↓ω(k)→
↓ω(k)W2(k) ↑ W1(k)→

↓ω(k)→
↓ω(k)W1(k)

)
. (131)

Based on the above equation, one can bound →D(k+1)↑D(k)→F as follows

→D(k+1)↑D(k)→F = ϑ
2
k→W2(k)→

↓ω(k)→
↓ω(k)W2(k) ↑ W1(k)→

↓ω(k)→
↓ω(k)W1(k)→F

Property of norm ↘ ϑ
2
k→W2(k)→

↓ω(k)→
↓ω(k)W2(k)→F + ϑ

2
k→W1(k)→

↓ω(k)→
↓ω(k)W1(k)→F

equation 37 ↘ ϑ
2
kε

2
max(W2(k))→↓ω(k)→2

F + ϑ
2
kε

2
max(W1(k))→↓ω(k)→2

F

= ϑ
2
kε

2
max(Tk)→↓ω(k)→2

F

K-smooth of ω ↘ 2Kϑ
2
kε

2
max(Tk)L(k) . (132)

F Verification of the assumption ω1 > 0

In this section, we provide two conditions that ensure ς1 > 0.

In Min et al. (2021), the authors show the following lemma which guarantees ς1 > 0.
Lemma F.1 (Lemma 1 in (Min et al., 2021)). Let W1(0), W2(0) are initialized entry-wise i.i.d. from N (0,

1
h2p )

with 1
4 ↘ p ↘

1
2 . For ↖↼ > 0 and h ⇒ poly(n, m,

1
ϱ ), with probability 1 ↑ ↼ over random initialization with

W1(0), W2(0), the following holds

ς1 ⇒ h
1⇒2p

. (133)

The above theorem states when Problem 2 is su"ciently overparametrized, i.e., h ⇒ poly(n, m,
1
ϱ ),

Gaussian initialization with proper variance ensures ς1 has a positive lower bound h
1⇒2p. Moreover, the

lower bound increases as h increases.

Next, we are going to show with mild overparametrization, one can ensure ς1 > 0.
Lemma F.2 (Mild overparametrization ensures ς1 > 0). Let W1(0), W2(0) are initialized entry-wise i.i.d.
from a continuous distribution P. When h ⇒ m+n, the following holds almost surely over random initialization
with W1(0), W2(0)

ς1 > 0 . (134)

Compared with Lemma F.1, Lemma F.2 considers a wider range of distributions that include Gaussian
distribution and uniform distribution. Thus, commonly used random initialization schemes, such as Xavier
initialization (Glorot & Bengio, 2010) and He initialization (He et al., 2015), lead to ς1 > 0. Moreover, the
requirement of overparametrization in Lemma F.2 is mild compared with the one in Lemma F.1, i.e., h ⇒ m+n

versus h ⇒ poly(n, m,
1
ϱ ). As a result, Lemma F.2 can be applied to more general overparametrization. On

the other hand, the conclusion of Lemma F.2 is weaker than Lemma F.1 in the sense that Lemma F.2 only
proves ς1 > 0 but do not characterize its magnitude.

Before presenting the proof of Lemma F.2, we first present two lemmas that will be used in the proof.
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Lemma F.3. Let A ↗ Rh↔n
, h ⇒ n be a random matrix with entry-wise drawn i.i.d. from a continuous

distribution P. Then A is of full column rank almost surely.

We refer the readers to (Vershynin, 2018) for detailed proof.
Lemma F.4. A su"cient condition for ς1 > 0 is εm+n(D(0)) > 0.

The proof of this lemma can be found in (Min et al., 2021).

Now we present the proof of Lemma F.2

Proof. Based on Lemma F.4, it su#ces to show that one almost surely has εm+n(D(0)) > 0 over random
initialization with W1(0), W2(0). We use proof by contradiction. Assume εm+n(D(0)) = 0, then one has
dim(ker D(0)) ⇒ h ↑ n ↑ m + 1.

On the other hand, Lemma F.3 implies with probability one, [W →
1 (0), W

→
2 (0)] ↗ Rh↔(n+m) is of full column

rank. Our next step is to show dim(ker D(0)) ↘ h ↑ n ↑ m. If this is true, then there is a contradiction.
Thus, one directly has εm+n(D(0)) > 0.

For any v ↗ Rh that satisfies D(0)v = 0, we can write this equation as follows

D(0)v = 0 △ [W →
1 (0), W

→
2 (0)]



 W1(0)

↑W2(0)



 v = 0 (135)

Since [W →
1 (0), W

→
2 (0)] is of full column rank, the above equation is equivalent to



 W1(0)

↑W2(0)



 v = 0 , (136)

and dim(ker D(0)) ↘ h ↑ n ↑ m.

F.1 Large width and proper choices of the variance lead to well-conditioned T0

In this section, we provide proof for Theorem 3.3. We first restate Theorem 3.3 here.
Theorem F.1 (Restate of Theorem 3.3). Let W1(0), W2(0) are initialized entry-wise i.i.d. from N (0,

1
h2p )

with 1
4 <p<

1
2 . . ↖↼ ↗ (0, 1), ↖h ⇒ poly(m, n,

1
ϱ ), with probability 1↑↼ over random initialization W1(0), W2(0),

the following condition holds

εmin(T0)
εmax(T0) ⇒

ς1
ς2

⇒ 1 ↑ #(h2p⇒1) . (137)

Proof. Since ς1, ς2 are the lower and upper bounds for the singular values of T0, it is straightforward to see

εmin(T0)
εmax(T0) ⇒

ς1
ς2

. (138)

Thus, it su#ces to show ϑ1
ϑ2

⇒ 1 ↑ #(hp⇒ 1
2 ). We provide upper bounds and lower bounds of ς1, ς2 separately

to prove Theorem 3.3. In Min et al. (2022), the authors provide the following lower bound on ς1 under the
same setting as Theorem 3.3.

Lemma F.5 (Lemma 11 in Min et al. (2022)). Under the same setting as Theorem 3.3, with probability
over 1 ↑ ↼ over random initialization over W1(0), W2(0), the following holds

ς1 ⇒ 2h
1⇒2p + 2B

2
h

⇒2p
↑ 4Bh

1
2 ⇒2p

,
W1(0)W →

2 (0)

F

↘ 2
↙

mBh
1
2 ⇒2p

, (139)

where B =
↙

m + n + 1
2 log 2

ϱ .
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We refer the readers to Min et al. (2022) for detailed proof.

Then, we derive an upper bound on ς2 where the definition is given as (See also Table 2)

ς2 =
⇀+ +

√
⇀

2
+ + 4φ

2
2

2 +
⇀⇒ +

√
⇀

2
⇒ + 4φ

2
2

2 , (140)

where ⇀⇒, ⇀+, φ2 is defined as follows

⇀⇒ =max(⇀max(↑D(0)), 0), ⇀+ =max(⇀max(D(0)), 0) ,

φ2 =εmax(W ↓)+


K

µ
→W1(0)W →

2 (0)↑W
↓
→F . (141)

Based on Lemma F.5, one can upper bound φ2 as follows

φ2 = εmax(W ↓) +


K

µ
→W1(0)W →

2 (0) ↑ W
↓
→F

↘ εmax(W ↓) +


K

µ

(
→W

↓
→F + 2

↙
mBh

1
2 ⇒2p

)
, (142)

Then, we provide an upper bound for ⇀max(D(0)). Similar analysis can be used to derive an upper bound for
⇀max(↑D(0)).

First, based on Lemma A.3, the following holds with probability at least 1 ↑ ↼

εmax(hp[W1(0), W2(0)]) ↘

↙

h +
↙

m + n + 1
2 log 2

↼
. (143)

Therefore, εmax([W1, W2]) ↘ h
1
2 ⇒p + Bh

⇒p. Then, based on this upper bound, one can derive the following
upper bound on εmax(D(0))

εmax(D(0)) = εmax


W1(0), W2(0)




 W
→
1 (0)

↑W
→
2 (0)






↘ εmax
(

W1(0), W2(0)
 )

∞εmax



 W
→
1 (0)

↑W
→
2 (0)






= ε
2
max

(
W1(0), W2(0)

 )

↘ h
1⇒2p + 2h

1
2 ⇒2p

B + B
2
h

⇒2p
. (144)

Similarly, one can show εmax(↑D(0))↘h
1⇒2p + 2h

1
2 ⇒2p

B + B
2
h

⇒2p. By combining all the results, one can
show the following upper bound on ς2

ς2 =
⇀+ +

√
⇀

2
+ + 4φ

2
2

2 +
⇀⇒ +

√
⇀

2
⇒ + 4φ

2
2

2
↘ ⇀+ + ⇀⇒ + 2φ2

↘ εmax(D(0)) + εmax(↑D(0)) + 2φ2

↘ 2h
1⇒2p + 4h

1
2 ⇒2p

B + 2B
2
h

⇒2p + 2εmax(W ↓) + 2


K

µ

(
→W

↓
→F + 2

↙
mBh

1
2 ⇒2p

)
.
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With the bounds on ς1, ς, one can derive the following bound on ςmin(T0)
ςmax(T0)

εmin(T0)
εmax(T0) ⇒

ς1
ς2

⇒
2h

1⇒2p + 2B
2
h

⇒2p
↑ 4Bh

1
2 ⇒2p

2h1⇒2p + 4h
1
2 ⇒2p

B + 2B2h⇒2p + 2εmax(W ↓) + 2
√

K
µ

(
→W ↓→F + 2

↙
mBh

1
2 ⇒2p

)

= 1 ↑

8h
1
2 ⇒2p

B + 2εmax(W ↓) + 2
√

K
µ

(
→W

↓
→F + 2

↙
mBh

1
2 ⇒2p

)

2h1⇒2p + 4h
1
2 ⇒2p

B + 2B2h⇒2p + 2εmax(W ↓) + 2
√

K
µ

(
→W ↓→F + 2

↙
mBh

1
2 ⇒2p

) ,

= 1 ↑ #(h2p⇒1) , (145)

where the last line holds because the dominating term in the numerator and denominator is of order O(1)
and O(h1⇒2p) separately.

G Simulation

In this section, we first numerically verify that with proper initialization (See Theorem 3.3), a larger width will
lead to a well-conditioned T0. Then, we present experiments showing that the overparametrized model trained
with GD following the adaptive step size proposed in §3.2 can almost match the rate of non-overparametrized
model. Throughout the experiments, we consider Problem 2 with squared loss

L(W1, W2) = 1
2→Y ↑ XW1W

→
2 →

2
F . (146)

G.1 Large width leads to well-conditioned T0

In this section, we compare the ϱ(T0) under di!erent scales of the variance of the initialization, i.e., p, and
di!erence width of the networks, i.e., h. We choose p ↗ {0.275, 0.375, 0.475} and h from [500, 2000]. We
generate the data matrix X as a 10 ∞ 10 orthogonal matrix and Y = X% + N (0, 0.1) where % ↗ R10↔10 is
entry-wise i.i.d. sampled from N (0, 0.1). The weight matrices W1, W2 are initialized following Theorem 3.3.

Figure 4: ϱ(T0) under di!erent choices of p and h. We repeat the simulation thirty times and plot the average
value of ϱ(T0).

Figure4 shows that for fixed p, larger width leads to well-conditioned ϱ(T0). Moreover, for a fixed width,
smaller p will lead to smaller ϑ1

ϑ2
. In Theorem 3.3, we show ϑ1

ϑ2
⇒ 1 ↑ #(hp⇒ 1

2 ). One can see if we decrease
either h or p, the lower bound on ϑ1

ϑ2
decreases. Therefore, the simulation results support Theorem 3.3.
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G.2 Overparametrized GD can almost match the rate of the non-overparametrized GD

In this section, we compare the rate of overparametrized GD following the adaptive step size in §3.2 with the
non-overparametrized GD. We initialize weight matrices W1, W2 ↗ R5↔h as entry-wise N (0,

1
h ). The data

matrices are generated as X = U$V, Y = XW1W
→
2 +N (0, 0.1) where U, V ↗ R5↔5 are random orthogonal

matrices and $ ↗ R5↔5 is a diagonal matrix where the diagonal entry is uniformly i.i.d. drawn from [1.8, 2.3].
The step size for the non-overparametrized GD is ϑt = 1

ς2
max(X) , and the step size for the overparametrized GD

follows equation 19 with h(ϑt, t)=ϖ(ϑt, t). Figure 5 shows that as one increases the width of the networks, the

Figure 5: Comparison of convergence rate of GD for the non-overparametrized model and overparametrized
model. We run the simulations thrity times. The red line represents log10 ω(t) and the blue line represents
log10 L(t). The shaded area represents plus and minus one standard deviation of the reported loss.

overparametrized GD can almost match the rate of the non-overparametrized GD asymptotically. Moreover,
as the width increases, ϑ1

ϑ2
increases and the rate of the overparametrized GD is more close to the one of the

non-overparametrized GD. This is because, in §3, we show that the optimal local rate of convergence can be
arbitrarily close to 1 ↑

µ
K ·

ϑ1
ϑ2

. Therefore, as one increases the width, ϑ1
ϑ2

approaches one, and this leads to
the rate of overparametrized GD approaches 1 ↑

µ
K .

G.2.1 Detailed description of backtracking line search

For backtracking line search, the algorithm is described as follows: In the simulation in §4.2, we choose⇁ = 0.1

Algorithm 1 Backtracking Line Search.
Given Data matrices X, Y , initialization W1(0), W2(0), and hyperparameters ϑbt, ⇁, γ.
Result W

↓
1 , W

↓
2 that minimize L(W1, W2) = 1

2 →Y ↑ XW1W
→
2 →

2
F .

for t = 0, 1, · · · , T do
ϑt = ϑbt
while L

(
W1(t) ↑ ϑt↓W1L(t), W2(t) ↑ ϑt↓W2L(t)

)
> L(t) ↑ γ→↓L(t)→2

F do
ϑt = ⇁ϑt

end while
W1(t + 1) = W1(t) ↑ ϑt↓W1L(t)
W2(t + 1) = W2(t) ↑ ϑt↓W2L(t)

end for

and γ = 0.9.

Figure4 shows that for fixed p, larger width leads to well-conditioned ϱ(T0). Moreover, for a fixed width,
smaller p will lead to smaller ϑ1

ϑ2
. In Theorem 3.3, we show ϑ1

ϑ2
⇒ 1 ↑ #(hp⇒ 1

2 ). One can see if we decrease
either h or p, the lower bound on ϑ1

ϑ2
decreases. Therefore, the simulation results support Theorem 3.3.
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