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Abstract

Graph neural networks (GNNs) are commonly described as being permutation
equivariant with respect to node relabeling in the graph. This symmetry of GNNs
is often compared to the translation equivariance of Euclidean convolution neural
networks (CNNs). However, these two symmetries are fundamentally different: The
translation equivariance of CNNs corresponds to symmetries of the fixed domain
acting on the image signals (sometimes known as active symmetries), whereas
in GNNs any permutation acts on both the graph signals and the graph domain
(sometimes described as passive symmetries). In this work, we focus on the active
symmetries of GNNs, by considering a learning setting where signals are supported
on a fixed graph. In this case, the natural symmetries of GNNs are the automor-
phisms of the graph. Since real-world graphs tend to be asymmetric, we relax the
notion of symmetries by formalizing approximate symmetries via graph coarsening.
We present a bias-variance formula that quantifies the tradeoff between the loss in
expressivity and the gain in the regularity of the learned estimator, depending on
the chosen symmetry group. To illustrate our approach, we conduct extensive ex-
periments on image inpainting, traffic flow prediction, and human pose estimation
with different choices of symmetries. We show theoretically and empirically that
the best generalization performance can be achieved by choosing a suitably larger
group than the graph automorphism, but smaller than the permutation group.

1 Introduction

Graph Neural Networks (GNNs) are popular tools to learn functions on graphs. They are commonly
designed to be permutation equivariant since the node ordering can be arbitrary (in the matrix
representation of a graph). Permutation equivariance serves as a strong geometric prior and allows
GNNs to generalize well [1–3]. Yet in many applications, the node ordering across different graphs
is matched or fixed a priori, such as a time series of social networks where the nodes identify the
same users, or a set of skeleton graphs where the nodes represent the same joints. In such settings,
the natural symmetries arise from graph automorphisms, which effectively only act on the graph
signals; This is inherently different from the standard equivariance in GNNs that concerns all possible
permutations acting on both the signals and the graph domain. A permutation of both the graph
and the graph signal can be seen as a change of coordinates since it does not change the object it
represents, just the way to express it. This parallels the passive symmetries in physics, where physical
observables are independent of the coordinate system one uses to express them [4, 5]. In contrast, a
permutation of the graph signal on a fixed graph potentially transforms the object itself, not only its
representation. This parallels the active symmetries in physics, where the coordinate system (in this
case, the graph or domain) is fixed but a group transformation on the signal results in a predictable
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transformation of the outcome (e.g., permuting left and right joints in the human skeleton changes
a left-handed person to right-handed). The active symmetries on a fixed graph are similar to the
translation equivariance symmetries in Euclidean convolutional neural networks (CNNs), where the
domain is a fixed-size grid and the signals are images.

In this work, we focus on active symmetries in GNNs. Specifically, we consider a fixed graph domain
G with N nodes, an adjacency matrix A → RN→N , and input graph signals X → RN→d. We are
interested in learning equivariant functions f that satisfy (approximate) active symmetries

f(!X) ↑ !f(X) for permutations ! → G ↓ SN , (1)

where G is a subgroup of the permutation group SN that depends on G. For example, G can be the
graph automorphism group AG = {! : !A = A!}. Each choice of G induces a hypothesis class
HG for f : the smaller the group G, the larger the class HG . We aim to select G so that the learned
function f → HG generalizes well, also known as the model selection problem [6, Chp.4]. In contrast,
standard graph learning methods (GNNs, spectral methods) are defined to satisfy passive symmetries,
by treating A as input and requiring f(!A!↑,!X) = !f(A,X) for all permutations ! → SN and
all N . But for the fixed graph setting, we argue that active symmetries are more relevant. Thus we use
A to define the hypothesis class rather than treating it an input. By switching from passive symmetries
to active symmetries, we will show how to design GNNs for signals supported on a fixed graph with
different levels of expressivity and generalization properties.

While enforcing symmetries has been shown to improve generalization when the symmetry group is
known a priori [7–13], the problem of symmetry model selection is not completely solved, particularly
when the data lacks exact symmetries (see for instance [14–16] and references therein). Motivated
by this, we study the symmetry model selection problem for learning on a fixed graph domain.
This setting is particularly interesting since (1) the graph automorphism group serves as the natural
oracle symmetry; (2) real-world graphs tend to be asymmetric, but admit cluster structure or local
symmetries. Therefore, we define approximate symmetries of graphs using the cut distance between
graphs from graphon analysis. An approximate symmetry of a graph G is a symmetry of any other
graph G↓ that approximates G in the cut distance. In practice, we take G↓ as coarse-grainings (or
clusterings) of G, as these are typically guaranteed to be close in cut distance to G. We show how to
induce approximate symmetries for G via the automorphisms of G↓. Our main contributions include:

1. We formalize the notion of active symmetries and approximate symmetries of GNNs for
signals supported on a fixed graph domain, which allows us to study the symmetry group
model selection problem. (See Sections 2, 4)

2. We theoretically characterize the statistical risk depending on the hypothesis class induced
from the symmetry group, and show a bias-variance tradeoff between the reduction in
expressivity and the gain in regularity of the model. (See Sections 3, 4)

3. We illustrate our approach empirically for image inpainting, traffic flow prediction, and
human pose estimation. (See Section 5 for an overview, and Appendix D for the details on
how to implement equivariant graph networks with respect to different symmetry groups).

1.1 Related Work

Graph Neural Networks and Equivariant Networks. Graph Neural Networks (GNNs) [17–19] are
typically permutation-equivariant (with respect to node relabeling). These include message-passing
neural networks (MPNNs) [19–21], spectral GNNs [18, 22–24], and subgraph-based GNNs [25–
30]. Permutation equivariance in GNNs can extend to edge types [31] and higher-order tensors
representing the graph structure [32, 33]. Equivariant networks generalize symmetries on graphs
to other objects, such as sets [34], images [35], shapes [36, 37], point clouds [38–42], manifolds
[1, 43, 44], and physical systems [45, 46] among many others. Notably, many equivariant machine
learning problems concern the setting where the domain is fixed, e.g., learning functions on a fixed
sphere [47], and thus focus on active symmetries rather than passive symmetries such as the node
ordering in standard GNNs. Yet learning on a fixed graph domain arises naturally in many applications
such as molecular dynamics modeling [48]. This motivates us to consider active symmetries of GNNs
for learning functions on a fixed graph. Our work is closely related to Natural Graph Networks
(NGNs) in [49], which use global and local graph isomorphisms to design maximally expressive
GNNs for distinguishing different graphs. In contrast, we focus on generalization and thus consider
symmetry model selection on a fixed graph.
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Generalization of Graph Neural Networks and Equivariant Networks. Most existing works
focus on the graph-level tasks, where in-distribution generalization bounds of GNNs have been
derived using statistical learning-theoretic measures such as Rademacher complexity [50] and Vap-
nik–Chervonenkis (VC) dimension [51, 52], or uniform generalization analysis based on random
graph models [53]; Out-of-distribution generalization properties have been investigated using different
notions including transferability [54, 55] (also known as size generalization [56]), and extrapolation
[57]. In general, imposing symmetry constraints improves the sample complexity and the general-
ization error [7–13]. Recently, Petrache and Trivedi [58] investigated approximation-generalization
tradeoffs using approximate symmetries for general groups. Their results are based on uniform
convergence generalization bounds, which measure the worst-case performance of all functions in a
hypothesis class and differ from our non-uniform analysis.

Approximate Symmetries. For physical dynamical problems, Wang et al. [45] formalized ap-
proximate symmetries by relaxing exact equivariance to allow for a small equivariance error. For
reinforcement learning applications, Finzi et al. [59] proposed Residual Pathway Priors to expand
network layers into a sum of equivariant layers and non-equivariant layers, and thus relax strict
equivariance into approximate equivariance priors. In the context of self-supervised learning, Suau
et al. [60], Gupta et al. [61] proposed to learn structural latent representations that satisfy approximate
equivariance. Inspired by randomized algorithms, Cotta et al. [62] formalizes probabilistic notions of
invariances and universal approximation. In [63], scattering transforms (a specific realization of a
CNN) are shown to be approximately invariant to small deformations in the image domain, which
can be seen as a form of approximate symmetry. Scattering transforms on graphs are discussed in
[64–66]. Additional discussions on approximate symmetries can be found in [67, Section 6].

2 Problem Setup: Learning Equivariant Maps on a Fixed Graph

Notations. We let R,R+ denote the reals and the nonegative reals, I denote the identity matrix and
denote the all-ones matrix. For a matrix Y → RN→k, we write the Frobenious norm as ↔Y ↔F . We
denote by X ↗ Y the element-wise multiplication of matrices X and Y . We write [N ] = {1, . . . , N}

and SN as the permutation group on the set [N ]. Groups are typically noted by calligraphic letters.
Given H,K groups, we denote a semidirect product by H⊋K. For a group G with representation ω,
we denote by εω|G the corresponding character (see Definition 6 in Appendix A.1). Denoting H ↘ G

means that H is a subgroup of G.

Equivariance. We consider a compact group G with Haar measure ϑ (the unique G-invariant prob-
ability measure on G). Let G act on spaces X and Y by representations ω and ϖ, respectively. We
say that a map f : X ≃ Y is G-equivariant if for all g → G, x → X ,ϖ(g↔1)f(ω(g)x) = f(x). Given
any map f : X ≃ Y , a projection of f onto the space of G-equivariant maps can be computed by
averaging over orbits with respect to ϑ

(QGf)(x) =

∫

G
ϖ(g↔1) f (ω(g)x) dϑ(g). (2)

For u, v → Y , let ⇐u, v⇒ be a G-invariant inner product, i.e. ⇐ϖ(g)u,ϖ(g)v⇒ = ⇐u, v⇒, for all g →

G, for allu, v → Y. Given two maps f1, f2 : X ≃ Y , we define their inner product as ⇐f1, f2⇒µ =∫
X ⇐f1(x), f2(x)⇒ dµ(x), where µ is a G-invariant measure on X . Let V be the space of all (measur-

able) map f : X ≃ Y such that ↔f↔µ =
√

⇐f, f⇒µ < ⇑.

Graphs. We consider edge-node weighted graphs G = ([N ], A, b), where [N ] is a finite set of nodes,
A → [0, 1]N→N is the adjacency matrix describing the edge weights, and b = {b1, . . . , bN} ⇓ R are
the node weights. An edge weighted graph is a special case of G where all node weights are 1. A
simple graph is a special case of an edge weighted graph, where all edge weights are binary. Let AG

be the automorphism group of a graph defined as AG := {! → SN : !A!↑ = A,! b = b}, which
characterizes the symmetries of G. Hereinafter, G is assumed to be a subgroup of SN .

Graph Signals and Learning Task. We consider graph signals supported in the nodes of a fixed
graph G and maps between graphs signals. Let X = RN→d,Y = RN→k be the input and output
graph signal spaces. We denote by f a map between graph signals, f : X ≃ Y . Even though the
functions f depend on G, we don’t explicitly write G as part of the notation of f because G is fixed.
Our goal is to learn a target map between graph signals f↗ : X ≃ Y . To this end, we assume access
to a training set {(Xi, Yi)} where the Xi are i.i.d. sampled from an SN -invariant distribution µ on
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X where Sn acts on X by permuting the rows, and Yi = f↗(Xi) + ϱi for some noise ϱi. A natural
assumption is that f↗ is approximately equivariant with respect to AG in some sense. Our symmetry
model selection problem concerns a sequence of hypothesis class {HG} indexed by G, where we
choose the best class H↗

G such that the estimator f̂ → H
↗
G gives the best generalization performance.

Equivariant Graph Networks. We propose to learn the target function f↗ on the fixed graph using G-

equivariant graph networks (G-Net), which are equivariant to a chosen symmetry group G depending
on the graph domain. Using standard techniques from representation theory, such as Schur’s lemma
and projections to isotypic components [68], we can parameterize G-Net by interleaving G-equivariant
linear layers fG : RN→d

≃ RN→k with pointwise nonlinearity, where the weights in the linear map
fG are constrained in patterns depending on the group structure (also known as parameter sharing
or weight tying [69], see Appendix A.1 for technical details). In practice, we can make G-Net more
flexible by systematically breaking the symmetry, such as incorporating graph convolutions (i.e., AfG)
and locality constraints (i.e., A↗ fG). Compared to standard GNNs (described in Appendix D.1),
G-Net uses a more expressive linear map to gather global information (i.e., weights are not shared
among all nodes). Importantly, G-Net yields a suite of models that allows us to flexibly choose the
hypothesis class (and estimator) reflecting the active symmetries in the data, and subsumes standard
GNNs that are permutation-equivariant with respect to passive symmetries (but not necessarily
equivariant with respect to active symmetries).

Graphons. A graphon is a symmetric measurable function W : [0, 1]2 ≃ [0, 1]. Graphons represent
(dense) graph limits where the number of nodes goes to infinity; they can also be viewed as random
graph models where the value W (x, y) represents the probability of having an edge between the
nodes x and y. Let W denote the space of all graphons and ς denote the Lebesgue measure. Lovász
and Szegedy [70] introduced the cut norm on W as

↔W↔↭ := sup
S,T↘[0,1]

S,Tmeasurable

∣∣∣∣
∫

S→T
W (u, v) dς(u) dς(v)

∣∣∣∣ . (3)

Based on the cut norm, Borgs et al. [71] defined the cut distance between two graphons W,U → W ,

φ↭(W,U) := inf
f≃S[0,1]

↔W ⇔ Uf
↔↭, (4)

where S[0,1] is the set of all measure-preserving bijective measurable maps between [0, 1] and itself,
and Uf (x, y) = U(f(x), f(y)). Note that the cut distance is “permutation-invariant,” where measure
preserving bijections are seen as the continuous counterparts of permutations.

3 Generalization with Exact Symmetry

In this section, we assume the target map f↗ is AG-equivariant and study the symmetry model
selection problem by comparing the (statistical) risk of different models. Concretely, the risk quantifies
how a given model performs on average on any potential input. The smaller the risk, the better the
model performs. Thus, we use the risk gap of two functions f, f ↓, defined as

”(f, f ↓) := E
[
↔Y ⇔ f(X)↔2F

]
⇔ E

[
↔Y ⇔ f ↓(X)↔2F

]
, (5)

as our model selection metric. Following ideas from Elesedy and Zaidi [8], we analyze the risk gap
between any function f → V and its G-equivariant version, for G ↓ SN .
Lemma 1 (Risk Gap). Let X = RN→d,Y = RN→k

be the input and output graph signal spaces on a

fixed graph G. Let X ↖ µ where µ is a SN -invariant distribution on X . Let Y = f↗(X) + ϱ, where

ϱ → RN→k
is random, independent of X with zero mean and finite variance and f↗ : X ≃ Y is

AG-equivariant. Then, for any f → V and for any compact group G ↓ SN , we can decompose f as

f = f̄G + f⇐
G ,

where f̄G = QGf, f⇐
G = f ⇔ f̄G . Moreover, the risk gap satisfies

”(f, f̄G) = E
[
↔Y ⇔ f(X)↔2F

]
⇔ E

[
↔Y ⇔ f̄G(X)↔2F

]
= ⇔2⇐f↗, f⇐

G ⇒µ︸ ︷︷ ︸
mismatch

+
∥∥f⇐

G
∥∥2
µ︸ ︷︷ ︸

constraint

.
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Lemma 1, proven in Appendix B.1, adapts ideas from [8] to equate the risk gap to the symmetry
“mismatch” between the chosen group G and the target group AG, plus the symmetry “constraint”
captured by the norm of the anti-symmetric part of f with respect to G. Our symmetry model selection
problem aims to find the group G ↓ SN such that the risk gap is maximized. Note that for G ↘ AG,
the mismatch term vanishes since f↗ is AG-equivariant, but the constraint term decreases with G;
When G = AG, we recover Lemma 6 in [8]. On the other hand, for G > AG, the mismatch term can
be positive, negative or zero (depending on f↗) whereas the constraint term increases with G.

3.1 Linear Regression

In this section, we focus on the linear regression setting and analyze the risk gap of using the
equivariant estimator versus the vanilla estimator. We consider linear estimator #̂ : RN→d

≃ RN→k

that predicts Ŷ = f!̂(X) = #̂↑X . Given a compact group G and any linear map #, we obtain its
G-equivariant version via projection to the G-equivariant space (also known as intertwiner average),

$G(#) =

∫

G
ω(g)#ϖ

(
g↔1

)
dϑ(g). (6)

We denote $⇐
G (#) = # ⇔ $G(#) as the projection of #̂ to the orthogonal complement of the

G-equivariant space. Here $G instantiates the orbit-average operator QG (eqn. 2) for linear functions.
Theorem 2 (Bias-Variance-Tradeoff). Let X = RN→d,Y = RN→k

be the graph signals spaces

on a fixed graph G. Let SN act on X and Y by permuting the rows with representations ω and

ϖ. Let G be a subgroup of SN acting with restricted representations ω|G on X and ϖ|G on Y .

Let X[i,j]
i.i.d.
↖ N

(
0,↼2

X

)
and Y = f↗(X) + ϱ where f↗(x) = #↑x is AG-equivariant and

# → RNd→Nk
. Assume ϱ[i,j] is random, independent of X , with mean 0 and E

[
ϱϱ↑

]
= ↼2

εI < ⇑.

Let #̂ be the least-squares estimate of # from n i.i.d. examples {(Xi, Yi) : i = 1, . . . , n}, $G(#̂) be

its equivariant version with respect to G. Let
(
εϑ|G | εω|G

)
=

∫
G εϑ|G (g)εω|G (g)dϑ(g) denote the

inner product of the characters. If n > Nd+ 1 the risk gap is

E
[
”
(
f!̂, f”G(!̂)


= ⇔↼2

X ↔$⇐
G (#)↔2F︸ ︷︷ ︸

bias

+ ↼2
ε

N2dk ⇔
(
εϑ|G | εω|G

)

n⇔Nd⇔ 1︸ ︷︷ ︸
variance

.

The bias term depends on the anti-symmetric part of # with respect to G, whereas the variance term
captures the difference of the dimension between the space of linear maps RNd

≃ RNk (measured
by N2dk), and the space of G-equivariant linear maps (measured by

(
εϑ|G | εω|G

)
; a proof can be

found in [72, Section 2.2]). The bias term reduces to zero for G ↘ AG and we recover Theorem 1
in [8] when G = AG. Notably, by using a larger group G, the dimension of the equivariant space
measured by

(
εϑ|G | εω|G

)
is smaller, and thus the variance term increases; meanwhile, the bias

term decreases due to extra (symmetry) constraints on the estimator. We remark that
(
εϑ|G | εω|G

)

depends on d, k as well: For d = k = 1, ω(g) = ϖ(g) → RN→N are standard permutation matrices;
For general d > 1, k > 1, ω(g) → RNd→Nd,ϖ(g) → RNk→Nk are block-diagonal matrices, where
each block is a permutation matrix.

To understand the significance of the risk gap, we note that (see Appendix B.1) when n > Nd+ 1,
the risk of the least square estimator is

E
[
↔Y ⇔ #̂↑X↔

2
F


= ↼2

ε
Nd

n⇔Nd⇔ 1
+ ↼2

ε . (7)

Thus, when n is small enough so that the risk gap in Theorem 2 is dominated by the variance term,

enforcing equivariance gives substantial generalization gain of order
N2dk↔(ϖω|G |ϖε|G )

n↔Nd↔1 .

Example 3.1. In Appendix C.1 we construct an example with X = R3,Y =
R3, and x ↖ N (0,↼2

XId). We consider a target linear function f↗ that is
S2-equivariant and approximately S3-equivariant, and compare the estimators
fϑS2 (!̂) versus fϑS3 (!̂). When the number of training samples n is small,
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blow-up

[Defn 1]

[Defn 2]

[Defn 3]

[Defn 4]

(1,1) (1,6) (1,1) (1,6)

(a) (b) (c)

(1,6)(1,1) (1,6)(1,1)

Figure 1: Overview of Definitions for Approximate Symmetries: (a) Graph G and its coarsened
graph G↓; (b) Induced graphons WG,WG→ with small cut distance φ↭ and their symmetries AG =
S2,AG→ = {e}. The induced symmetry group GG⇒G→ yields more symmetries for G; (c) Approximate
equivariant mapping f↗ that is close to f↗

GG↑G→ .

using a S3-equivariant least square estimator yields better test error than the S2-equivariant one, as
shown in figure inset. The dashed vertical line denotes the theoretical threshold n↗

↑ 35, before which
using S3 yields better generalization than S2. This is an example where enforcing more symmetries
than the target (symmetry) results on better generalization properties.

4 Generalization with Approximate Symmetries

Large graphs are typically asymmetric. Therefore, the assumption of f↗ being AG-equivariant
in Section 3 becomes trivial. Yet, graphon theory asserts that graphs can be seen as living in a
“continuous” metric space, with the cut distance (Definition 1). Since graphs are continuous entities,
the combinatorial notion of exact symmetry of graphs is not appropriate. We hence relax the notion
of exact symmetry to a property that is “continuous” in the cut distance. The regularity lemma [73,
Theorem 5.1] asserts that any large graph can be approximated by a coarser graph in the cut distance.
Since smaller graphs tend to exhibit more symmetries than larger ones, we are motivated to consider
the symmetries of coarse-grained versions of graphs as their approximate symmetries (Definition 2,
3). We then present the notion of approximately equivariant mappings (Definition 4), which allows
us to precisely characterize the bias-variance tradeoff (Corollary 3) in the approximate symmetry
setting based on Lemma 1. Effectively, we reduce selecting the symmetry group to choosing the
coarsened graph G↓. Moreover, our symmetry model selection perspective allows for exploring
different coarsening procedures and choosing the one that works best for the problem.
Definition 1 (Induced graphon). Let G be a (possibly edge weighted) graph with node set [N ] and

adjacency matrix A = {ai,j → [0, 1]}Ni,j=1. Let PN = {InN = (n↔1
N , n

N )}Nn=1 be the equipartition of

[0, 1] to N intervals (where formally the last interval is the closed interval [N↔1
N , 1]). We define the

graphon WG induced by G as

WG(x, y) =
N

i,j=1

ai,j Ii
N
(x) Ij

N
(y),

where Ii
N

is the indicator function of the set IiN ⇓ [0, 1], i = 1, . . . , N .

We induce a graphon from an edge-node weighted graph G↓ = ([M ], A, b), with rational node
weights bi, as follows. Let N → N be a value such that the node weights can be written in the form
b = {bm = qm

N }
M
m=1, for some qm → N⇑0, m = 1, . . . ,M . We blow-up G↓ to an edge weighted

graph GN of


qm nodes by splitting each node m of G↓ into qm nodes {nj
m}

qm
j=1 of weight 1, and

defining the adjacency matrix AN with entries a
nj
m,nj→

m→
= am,m→ . Note that for any two choices

N1, N2 → N in the above construction, φ↭(WGN1
,WGN2

) = 0, where the infimum in the definition
of φ↭ is realized on some permutation of intervals in [0, 1], as explained below. We hence define the
induced graphon of the edge-node weighted graph G↓ by WG→ := WGN

for some N , where, in fact,
each choice of N gives a representative of an equivalence class of piecewise constant graphons with
zero φ↭ distance.
Definition 2. Let G↓

be an edge-node weighted graph with M nodes and node weights b = {bm =
qm
N → }

M
m=1, satisfying {qm}m ⇓ N⇑0 and


qm = N , and let G be an edge weighted graph with N
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nodes. We say that G↓ coarsens G up to error ↽ if

φ↭(WG,WG→) < ↽.

Suppose that G↓ coarsens G. This implies the existence of an assignment of nodes of G to nodes of
G↓. Namely, the supremum underlying the definition of φ↭ over the measure preserving bijections
ω : [0, 1] ≃ [0, 1] is realized by a permutation ! : [N ] ≃ [N ] applied on the intervals {IiN}

N
i=1.

With this permutation, the assignment CG⇒G→ defined by [N ] ↙ !(nj
m) ∝≃ m → [M ], for every

m = 1, . . . ,M and j = 1, . . . , qm, is called a cluster assignment of G to G↓.

Let G↓, with M nodes, be a edge-node weighted graph that coarsens the simple graph G of N nodes.
Let CG⇒G→ be a cluster assignment of G to G↓. Let AG→ be the automorphism group of G↓. Note that
two nodes can belong to the same orbit of AG→ only if they have the same node weight. Hence, for
every two nodes m,m↓ in the same orbit of AG→ (i.e., equivalent clusters), there exists a bijection
ϖm,m→ : C↔1

G⇒G→{m} ≃ C↔1
G⇒G→{m↓

}. We choose a set of such bijections, such that for every m,m↓

on the same orbit of AG→

ϖm,m→ = ϖ↔1
m→,m.

We moreover choose ϖm,m as the identity mapping for each m = 1, . . . ,M . We identify each element
g of AG→ with an element g in a permutation group AG→ of [N ], called the blown-up symmetry group,
as follows. Given g → AG→ , for every m → [M ] and every n → C↔1

G⇒G→{m}, define

gn := ϖm,gmn.

Definition 3. Let G↓
, with M nodes, be a edge-node weighted graph that coarsen the (simple or

weighted) graph G of N nodes. Let CG⇒G→ be a cluster assignment of G to G↓
with cluster sizes

c1, . . . , cM . Let AG→ be the automorphism group of G↓
, and AG→ be the blown-up symmetry group of

[N ]. For every m = 1, . . .M , let Scm be the symmetry group of C↔1
G⇒G→{m}. We call the group of

permutations

GG⇒G→ :=
(
Sc1 ′ Sc2 . . .′ ScM


⊋AG→ ↓ SN

the symmetry group of G induced by the coarsening G↓
. We call any element of GG⇒G→ an approxi-

mate symmetry of G.

Specifically, every element s → GG⇒G→ can be written in coordinates by

s = s1s2 . . . sMa ↖ (s1, . . . , sM , a),

for a unique choice of sj → Scj , j = 1, . . . ,M , and a → AG→ (see Appendix B.2 for details).

In words, we consider the symmetry of the graph G of N nodes not by its own automorphism group,
but via the symmetry of its coarsened graph G↓. The nodes in the same orbit in G are either in the
same cluster of G↓ (i.e., from the same coarsened node), or in the equivalent clusters of G↓ (i.e., they
belong to the same orbit of the coarsened graph and share the same cluster size). See Figure 1 (and
Figure 9 in Appendix A.2) for examples.
Definition 4. Let G be a graph with N nodes, and X = RN→d

be the space of graph signals. Let

X ↖ µ where µ is a SN -invariant measure on RN→d
. We call f↗ : RN→d

≃ RN→k
an approximately

equivariant mapping if there exists a function ⇀ : R+ ≃ R+ satisfying limϱ⇒0 ⇀(↽) = 0 (called the

equivariance rate), such that for every ↽ > 0 and every edge-node weigted graph G↓
that coarsen G

up to error ↽,
↔f↗

⇔ f↗
GG↑G→ ↔µ ↘ ⇀(↽),

where f↗
GG↑G→ = QGG↑G→ (f) is the intertwining projection of f↗

with respect to GG⇒G→ .

Example 4.1. Here we give an example of an approximately equivariant mapping in a natural
setting. Suppose that G is a random geometric graph, namely, a graph that was sampled from a
metric-probability space M by randomly and independently sampling nodes {xn}

N
n=1 ⇓ M. Hence,

G can be viewed as a discretization of M, and the graphs that coarsen G can be seen as coarser
discretizations of M. Therefore, the approximate symmetries are local deformations of G, namely,
permutations that swap nodes if they are close in the metric of M. This now gives an interpretation
for approximately equivariance mappings of geometric graphs: these are mappings that are stable to
local deformations. In Appendix C.2 we develop this example in detail.
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We are ready to present the bias-variance tradeoff in the setting with approximate symmetries. The
proofs are deferred to Appendix B.2.
Corollary 3 (Risk Gap via Graph Coarsening). Let X = RN→d,Y = RN→k

be the input and output

graph signal spaces on a fixed graph G. Let X ↖ µ where µ is a SN -invariant distribution on X . Let

Y = f↗(X) + ϱ, where ϱ → RN→k
is random, independent of X with zero mean and finite variance,

and f↗ : RN→d
≃ RN→k

be an approximately equivariant mapping with equivariance rate ⇀. Then,

for any G↓
that coarsens G up to error ↽, for any f → V , we have

”(f, f̄GG↑G→ ) = ⇔2⇐f↗, f⇐
GG↑G→ ⇒µ︸ ︷︷ ︸

mismatch

+
∥∥∥f⇐

GG↑G→

∥∥∥
2

µ︸ ︷︷ ︸
constraint

∞ ⇔2⇀(↽)
∥∥∥f⇐

GG↑G→

∥∥∥
µ
+

∥∥∥f⇐
GG↑G→

∥∥∥
2

µ

Notably, Corollary 3 illustrates the tradeoff explicitly in the form of choosing the coarsened graph
G↓: If we choose G↓ close to G such that the coarsening error ↽ and ↔f⇐

GG↑G→ ↔µ are small, then the
mismatch term is close to zero; meanwhile the constraint term is also small since AG is typically
trivial. On the other hand, if we choose G↓ far from G that yields large coarsening error ↽, then the
constraint term ↔f⇐

GG↑G→ ↔
2
µ also increases.

Corollary 4 (Bias-Variance-Tradeoff via Graph Coarsening). Consider the same linear regression

setting in Theorem 2, except now f↗
is an approximately equivariant mapping with equivariance

rate ⇀, and G = GG⇒G→ is controlled by G↓
that coarsens G up to error ↽. Denote the canon-

ical permutation representations of GG⇒G→ on X ,Y as ω↓,ϖ↓
, respectively. Let (εϑ→ | εω→) =∫

GG↑G→
εϑ→(g)εω→(g)dϑ(g) denote the inner product of the characters. If n > Nd + 1 the risk

gap is bounded by

E
[
”
(
f!̂, f”GG↑G→ (!̂)


∞ ⇔2⇀(↽)


↼2
ε

N2dk ⇔ (εϑ→ | εϑ→)

n⇔Nd⇔ 1
+ ↼2

ε
N2dk ⇔ (εϑ→ | εϑ→)

n⇔Nd⇔ 1
.

5 Experiments

We illustrate our theory in three real-world tasks for learning on a fixed graph: image inpainting,
traffic flow prediction, and human pose estimation1. For image inpainting, we demonstrate the bias-
variance tradeoff via graph coarsening using G-Net; For the other two applications, we show that the
tradeoff not only emerges from G-Net that enforces strict equivariance, but also G-Net augmented
with symmetry-breaking modules, allowing us to recover standard GNN architectures as a special
case. Concretely, we consider the following variants (more details in Appendix D.4.2):

1. G-Net with strict equivariance using equivariant linear map fG .
2. G-Net augmented with graph convolution AfG(x), denoted as G-Net(gc).
3. G-Net augmented with graph convolution and learnable edge weights: G-Net(gc+ew).
4. G-Net augmented with graph locality constraints (A↗ fG)(x) and learnable edge weights,

denoted as G-Net(pt+ew).

G-Net serves as a baseline to validate our generalization analysis for equivariant estimators (see
Section 3). Yet in practice, we observe that augmenting G-Net with symmetry breaking can further
improve performance, thereby justifying the analysis for approximate symmetries (see Section 4). In
particular, G-Net(gc) and G-Net(gc+ew) are motivated by graph convolutions used in standard GNNs;
G-Net(pt+ew) is inspired by the concept of locality in CNNs, where A↗ fG effectively restricts the
receptive field to the 1-hop neighrborhood induced by the graph A.

5.1 Application: Image Inpainting

We consider a 28′ 28 grid graph as the fixed domain, with grey-scale images as the graph signals.
The learning task is to reconstruct the original images given masked images as inputs (i.e., image
inpainting). We use subsets of MNIST [74] and FashionMNIST [75], each comprising 100 training
samples and 1000 test samples. The input and output graph signals are (mi ↗ xi, xi), where xi →

R28→28
∈ R784 denotes the image signals and mi denotes a random mask (size 14′ 14 for MNIST

and 20′ 20 for FashionMNIST). We investigate the symmetry model selection problem by clustering
1The source code is available at https://github.com/nhuang37/Approx_Equivariant_Graph_Nets.
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the grid into M patches with size d ′ d, where d → {28, 14, 7, 4, 2, 1}. Here d = 28 means one
cluster (with SN symmetry); d = 1 is 784 singleton clusters with no symmetry (trivial).

We consider GG⇒G→ -equivariant networks G-Net with ReLU nonlinearity. We parameterize the equiv-
ariant linear layer f : RN

≃ RN with respect to GG⇒G→ = (Sc1 ′ . . .′ ScM ) ⊋ AG→ using the
following block-matrix form (assuming the nodes are ordered by their cluster assignment), with fkl
denoting block matrices, and ak, bk, ekl representing scalars:

f =


f11 · · · f1M

· · ·

fM1 · · · fMM


, fkk = akI + bk11

↑, fkl = ekl11
↑ for k ∋= l. (8)

The coarsened graph symmetry AG→ induces constraints on
ak, bk, ekl. If AG→ is trivial, then these scalars are unconstrained.
In the experiment, we consider a reflection symmetry on the coars-
ened grid graph, i.e., AG→ = S2 which acts by reflecting the
left (coarsened) patches to the right (coarsened) patches. Suppose
the reflected patch pairs are ordered consecutively, then ak =
ak+1, bk = bk+1 for k → {1, 3, . . . ,M ⇔ 1}, and ekl = ek+1,l↔1

for k → {1, 3, . . . ,M ⇔ 1}, l → {2, 4, . . . ,M} (see Figure inset for an illustration). In practice, we
extend the parameterization to f : RN→d

≃ RN→k. More details can be found in Appendix D.2.

Figure 2 shows the empirical risk first decreases and then increases as the group decreases, illustrating
the bias-variance tradeoff from our theory. Figure 2 (left) compares a 2-layer G-Net with a 1-layer
linear G-Net, demonstrating that the tradeoff occurs in both linear and nonlinear models. Figure 2
(right) shows that using reflection symmetry of the coarsened graph outperforms the trivial symmetry
baseline, highlighting the utility of modeling coarsened graph symmetries.

Figure 2: Bias-variance tradeoff via graph coarsening. Left:2-layer G-Net(blue) and 1-layer linear
G-equivariant functions (orange), assuming the coarsened graph is asymmetric; Right: 2-layer G-Net
with both trivial and non-trivial coarsened graph symmetry. See Table 7 for more numerical details.

5.2 Application: Traffic Flow Prediction

The traffic flow prediction problem can be formulated as follows: Let X(t)
→ Rn→d represent the

traffic graph signal (e.g., speed or volume) observed at time t. The goal is to learn a function h(·) that
maps T ↓ historical traffic signals to T future graph signals, assuming the fixed graph domain G:

[
X(t↔T →+1), . . . , X(t);G


h(·)
⇔≃

[
X(t+1), . . . , X(t+T )


.

The traffic graph is typically large and asymmetric. Therefore we leverage
our approximate symmetries to study the symmetry model selection problem
(Section 4). We use the METR-LA dataset which represents traffic volume
of highways in Los Angeles (see figure inset). We use both the original graph
G from [76], and its sparsified version Gs which is more faithful to the road
geometry. In Gs, the (i, j)-edge exists if and only if nodes i, j lie on the
same highway. We first validate our Definition 4 in such dataset (see Appendix D.3.1). In terms of
the models, we consider a simplified version of DCRNN model proposed in [76], where the spatial
module is modelled by a standard GNN, and the temporal module is modelled via an encoder-decoder
architecture for sequence-to-sequence modelling. We follow the same temporal module and extending
its GNN module using G-Net(gc), which recovers DCRNN when choosing SN . We then consider
different choices of the coarsened graph G↓ (to induce approximate symmetries). As shown in Table
3, using 2 clusters as approximate symmetries yields better generalization error than using 9 clusters,
or the full permutation group SN .
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G-Net(gc) SN Sc1 → Sc2 Sc1 → . . .→ Sc9

Graph Gs 3.173± 0.013 3.150± 0.008 3.204± 0.006
Graph G 3.106± 0.013 3.092± 0.008 3.174± 0.013

Table 3: Traffic forecasting with different
choices of graph clustering. Table shows
Mean Absolute Error (MAE) across 3 runs.

G-Net(gc+ew) S16 Relax-S16 AG = (S2)
2 Trivial

MPJPE ↑ 42.55± 0.88 39.87± 0.46 42.18± 0.49 41.60± 0.32
P-MPJPE ↑ 34.48± 0.44 31.38± 0.14 32.08± 0.20 31.69± 0.17

Table 4: Human pose estimation with different
choices of symmetries. Table shows mean per-joint
position error (MPJPE) and MPJPE after alignment
(P-MPJPE) across 3 runs.

5.3 Application: Human Pose Estimation

We consider the simple (loopy) graph G with adjacency matrix A → {0, 1}16→16 rep-
resenting 16 human joints, illustrated on the right. The input graph signals X → R16→2

describe the joint 2D spatial location. The goal is to learn a map to reconstruct the 3D
pose Y → R16→3. We use the standard benchmark dataset Human3.6M [77] and follow
the evaluation protocol in [78]. The generalization performance is measured by mean per
joint position error (MPJPE) and MPJPE after aligntment (P-MPJPE). We implement a
4-Layer G-Net(gc+ew), which recovers the same model architecture in SemGCN [78] when choosing
G = S16 (further details are provided in Appendix D.4.1).

We consider the following symmetry groups: the permutation group S16, the graph automorphism
AG, and the trivial symmetry. Note that the human skeleton graph has AG = (S2)2 (corresponding
to the arm flip and leg flip). Additionally, we investigate an approximate symmetry called Relax-S16;
This relaxes the global weight sharing in S16 (that only learns 2 scalars per equivariant linear layer
fS16 : RN

≃ RN , where fS16 [i, i] = a, fS16 [i, j] = b for i ∋= j) to local weight sharing (that learns
2 ′ 16 = 32 scalars, where fRelax-S16 [i, i] = ai, fRelax-S16 [i, j] = bi for i ∋= j). Table 4 shows that
the best performance is achieved at the hypothesis class induced from Relax-S16, which is smaller
than S16 but differs from AG. Furthermore, using G-Net(gc+ew) with Relax-S16 gives a substantial
improvement over S16 (representing SemGCN in [78]). This demonstrates the utility of enforcing
active symmetries in GNNs that results in more expressive models. More details and additional
ablation studies can be found in Appendix D.4.

6 Discussion

In this paper, we focus on learning tasks where the graph is fixed, and the dataset consists of different
signals on the graph. We developed an approach for designing GNNs based on active symmetries
and approximate symmetries induced by the symmetries of the graph and its coarse-grained versions.
A layer of an approximately equivariant graph network uses a linear map that is equivariant to the
chosen symmetry group; the graph is not used as an input but rather induces a hypothesis class. In
practice, we further break the symmetry by incorporating the graph in the model computation, thus
combining symmetric and asymmetric components.

We theoretically show a bias-variance tradeoff between the loss of expressivity due to imposing sym-
metries, and the gain in regularity, for settings where the target map is assumed to be (approximately)
equivariant. For simplicity, the theoretical analysis focuses on the equivariant models without symme-
try breaking; Theoretically analyzing the combination of symmetric and asymmetric components in
machine learning models is an interesting open problem. The bias-variance formula is computed only
for a simple linear regression model with white noise and in the underparamterized setting; Extending
it to more realistic models and overparameterized settings is a promising direction.

As a proof of concept, our approximately equivariant graph networks only consider symmetries of the
fixed graph. An interesting future direction is to extend our approach to also account for (approximate)
symmetries in node features and labels, using suitably generalized cut distance (e.g., graphon-signal
cut distance in [79]; see Appendix C.2 for an overview). Our network architecture consists only of
linear layers and pointwise nonlinearity. Another promising direction is to incorporate pooling layers
(e.g., [22, 80]) and investigate them through the lens of approximate symmetries. Finally, extending
our analysis to general groups is a natural next step. Our techniques are based on compact groups
with orthogonal representation. While we believe that the orthogonality requirement can be lifted
straightforwardly, relaxing the compactness requirement appears to be more challenging (see related
discussion in [46]).
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A Parameterization of equivariant linear Maps

We consider a group G acting on spaces X and Y via representations ω and ϖ, respectively. Our goal
is to find the equivariant linear maps f : X ≃ Y such that f(ω(g)x) = ϖ(g)f(x) for all g → G and
x → X . The standard way to do this, used extensively in the equivariant machine learning literature
(e.g. [40, 43]), is to decompose ω and ϖ in irreducibles and use Schur’s lemma.

In a nutshell, a group representation ⇁ is an homomorphism G ≃ GL(V ), where GL(V ) denotes the
General Linear group of the vector space V (sometimes mathematicians say that V is a representation
of G, but we need to know the homomorphism ⇁ too). One way to interpret the group homomorphism
(i.e. ⇁(gh) = ⇁(g) △ ⇁(h)) is that the group multiplication corresponds to the composition of linear
invertible maps (i.e. matrix multiplication). A linear subspace W of V is said to be a subrepresentation
of ⇁ if ⇁(G)(W ) ⇓ W . An irreducible representation is one that only has itself and the trivial subspace
as subrepresentations.

Schur’s lemma states that if V , W are vector spaces over C and ⇁V , ⇁W are irreducible represen-
tations, then either (1) ⇁V and ⇁W are not isomorphic as representations (and the only equivariant
linear map between V , W is the zero map), or (2) ⇁V and ⇁W are isomorphic and the only non-trivial
equivariant maps are of the form ϑ I where ϑ → C and I is the identity (See Chapter 1 of [68]).

Given G acting on spaces X and Y via representations ω and ϖ, respectively, one can decompose ω
and ϖ in irreducibles over C

ω = ▽
ς
k=1akTk ϖ = ▽

ς
k=1bkTk

(this notation assumes the same irreducibles appear in both decompositions, which can be done if we
allow some of the ak and bk to be zero). Then one can parameterize the equivariant linear maps by
having one complex parameter per irreducible that appears in both decompositions.

These ideas can be applied to real spaces too. By Maschke’s theorem we can decompose the
representation in irreducibles over R. Then we can check further how to decompose these irreducibles
over C, and apply Schur’s lemma. We have 3 cases for the decomposition:

1. The irreducible over R is also irreducible over C. In this case we directly apply Schur’s
lemma.

2. The irreducible over R decomposes in two different irreducibles over C. In this case we can
send each C-irreducible to their isomorphic counterpart.

3. The irreducibles over R decompose in two copies of the same irreducible over C. In this
case we can send each irreducible to any isomorphic copy independently.

Therefore, finding the equivariant linear maps reduces to decomposing the corresponding representa-
tions in irreducibles. In the next sections we explain in detail how to do this for the specific problems
described in this paper. The appendix is organized as follows: We first show how to parameterize
equivariant linear layers for abelian group using isotypical decomposition (Section A.1), and then
discuss the case for the symmetry group induced by graph coarsening, which further considers
parameterizing permutation-equivariant linear maps to model the within-cluster symmetries (Section
A.2).

A.1 Equivariant Linear Maps via Isotypical Decomposition

In this section, we assume that the graph adjacency matrix A has distinct eigenvalues ϑ1 > ϑ2 >
. . . > ϑn. Then AG is an abelian group [81, Lemma 3.8.1]. Under this assumption, we present
the construction of AG-equivariant linear maps using isotypical decomposition (i.e. decomposition
into isomorphism classes of irreducible representations) and group characters. We remark that such
construction extends to non-abelian groups and refer the interested reader to [82], but we omit it here
for the ease of exposition.

We consider the simplest setting where f : RN
≃ RN is a linear function that maps graph signals.

Let x → RN be the node features, then AG-equivariance requires

f(g x) = g f(x) for all g → AG. (9)

To construct equivariant linear functions f , our roadmap is outlined as follows:
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1. Decompose the vector space X = RN into a sum of components such that different
components cannot be mapped to each other equivariantly (also known as the isotypic
decomposition);

2. Given X = ▽iXi an isotypic representation, we then parameterize f by linear maps at each
Xi such that for all i, f(Xi) ↓ Xi.

To this end, we need the following definitions.
Definition 5. (G-module, [82, Defn 1.3.1]) Let X be a vector space and G be a group. We say the

vector space X is a G-module or X carries a representation of G if there is a group homomorphism

ρ : G ≃ GL(X ), where GL denotes the General Linear group. Equivalently, if the following holds:

1. gv → X ,

2. g(cv + dw) = c(gv) + d(gw),

3. (gh)v = g(hv),

4. ev = v

for all g, h → G; v, w → X and scalars c, d → C (e → G denotes the identity element).

In what follows, we consider X = RN carries a representation of G.
Definition 6. (Group characters) Given a group G and a representation ω : G ≃ GL(V ), the group

character is a function ε : G ≃ R (or C) defined as ε(g) := trω(g).

Definition 7. (Group orbits) Let X be a vector space and G be a group. The group orbit of an element

x → X is O(x) := {gx : g → G}.

Let g1, . . . , gs be the generators of AG ⇓ (S2)n, or simply AG ∈ (S2)k for some k ↘ n. Since AG

is abelian, any irreducible representation is 1-dimensional [68, p.8]. In other words, the irreducible
representations of an abelian group are homomorphisms

ρ : AG ≃ C. (10)
Since all the elements of the group AG = (S2)k is of order 1 or 2, the homomorphisms are
ρ : AG ≃ {±1} ⇓ R. By Definition 6, the irreducible characters (i.e., characters of irreducible matrix
representation) are also homomorphisms ρ : AG ≃ {±1}. In other words, ε(g) → {±1} for all g →

AG. Then we can write down the 2k ′ 2k character table, where the rows are the characters ε, and
the columns are the group elements g → AG (see Table 1 as an example). Now, define the projection
onto the isotypic component of the representation X as

Pϖ :=
deg(X)

|AG|



g≃AG

ε(g) g =
1

|AG|



g≃AG

ε(g) g, (11)

where the second equality uses the fact that AG is abelian.

Intuitively, applying Pϖ on X = span({e1, . . . , eN}) picks out all v → X that stays in the same
subspace defined by the group character ε. (Note that for the (S2)k case ε↔1(g) = ε(g) since
ε(g) → {±1}).

Algorithm 1 presents the construction of equivariant linear map f with respect to an abelian group.
Such construction can parameterize all abelian AG-equivariant linear maps, as shown in Lemma 5.
Lemma 5. f is linear, equivariant with respect to the abelian group AG if and only if f can be

written as (13) in Algorithm 1.

Proof. By construction in Algorithm 1, f is linear and equivariant. To show the converse, we first
recall some useful facts and notations. Since AG is abelian with all irreducible representations being
one-dimensional, for isotypic components Xϖ1 ⫅̸ Xϖ2 , we have

g v1 = ϑ1(g) v1, for all g → G, v1 → Xϖ1 , (14)
g v2 = ϑ2(g) v2, for all g → G, v2 → Xϖ2 , (15)

where there exists some g → G such that ϑ1(g) ∋= ϑ2(g). To show f being linear and equivariant
implies for all v → Xϖ, f(v) → Xϖ, we prove by contradiction. Without loss of generality, suppose

f(vϖ1) = α1vϖ1 + α2vϖ2 , (16)
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Algorithm 1 Parameterizing equivariant linear functions f : RN
≃ RN for abelian group

Require: Abelian group AG = (S2)k

1. Construct the character table of εirreps for AG, i.e. εi : AG ≃ {±1} i = 1, . . . ▷;
2. For each character εi in the character table, compute the projection matrix

Pϖi(X ) = [Pϖi(e1); . . . ;Pϖi(eN )] → RN→N ; (12)

followed by computing the basis from Pϖi(X ) and call it Xϖi = [b(1)ϖi , . . . , b
(Ki)
ϖi ].

3. X = ▽
ς
i=1Xϖi where Xϖi are the isotypic component. Then f is any linear function satisfying

that f(Xϖi) ↓ Xϖi for all i = 1, . . . , ▷. In particular, in the basis [b(s)ϖi ]1⇓i⇓ς,1⇓s⇓Ki f can
be written as a block diagonal matrix Rn→n with each block Mϖi being the linear map from
Xϖi ≃ Xϖi ,

f =





Mϖ1

Mϖ2

. . .
Mϖϑ



 . (13)

return f

e ↼

εe 1 1
ε2 1 ⇔1

Table 1: Character table for aut(P4) ↖= Z2

for some scalars α1,α2 and vϖ1 → Xϖ1 , vϖ2 → Xϖ2 . Then by (14), for all g → G,
f(g vϖ1) = f(ϑ1(g) vϖ1) = ϑ1(g)f(vϖ1) = ϑ1(g)α1vϖ1 + ϑ1(g)α2vϖ2 . (17)

Now, since f is equivariant, for all g → G,
f(g vϖ1) = gf(vϖ1) = g(α1vϖ1 + α2vϖ2) = ϑ1(g)α1vϖ1 + ϑ2(g)α2vϖ2 . (18)

But there exists some g↓ → G such that ϑ1(g↓) ∋= ϑ2(g↓), which leads to f(g↓vϖ1) ∋= f(g↓vϖ1), a
contradiction. One can easily extend the proof strategy to the general case for f(vϖ1) =

l
i=1 vϖi .

Example A.1. Consider the path graph on 4 nodes (i.e., P4). We have aut(P4) = {e, (14)(23)} ↖=
Z2.

Steps 1: Note that Z2 is abelian and thus all irreducible characters ε(g) → {±1}, for all g → Z2. The
character table is shown in Table 1.

Step 2: using (11) we have

Pϖe [e1; e2; e3; e4] =
1

2





1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1



 which yields basis B(Pϖe) = [e1 + e4; e2 + e3].

Pϖ2 [e1; e2; e3; e4] =
1

2





1 0 0 ⇔1
0 1 ⇔1 0
0 ⇔1 1 0
⇔1 0 0 1



 which yields basis B(Pϖ2) = [e1 ⇔ e4; e2 ⇔ e3].

Step 3: Parameterize f : R4
≃ R4 by f : B(Pϖe) ≃ B(Pϖe) and f : B(Pϖ2) ≃ B(Pϖ2). For all

v → R4, write v = c1(e1 + e4) + c2(e2 + e3) + c3(e1 ⇔ e4) + c4(e2 ⇔ e3), then

f(v) =


α1 α2

α3 α4

 
c1
c2


+


α5 α6

α7 α8

 
c3
c4


, (19)

where α1, . . . ,α8 are (learnable) real scalars. Now f is linear, equivariant by construction.
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A.2 Equivariant Linear Map for Symmetries Induced by Graph Coarsening

In this section, we provide additional details of constructing equivariant linear maps for using the
symmetry group induced by graph coarsening (Definition 3). Recall the symmetry group with M
clusters of G (with the associated coarsened graph G↓) is given by

GG⇒G→ :=
(
S1 ′ S2 . . .′ SM


⊋AG→ ⇓ SN .

We first assume that AG→ is trivial and show how to parameterize equivariant functions with respect
to products of permutations. Then we discuss more general cases, for instance if AG→ is abelian. For
the ease of exposition, we consider X → RN , Y → RN .

Suppose AG→ is trivial, we claim that a linear function f : RN
≃ RN is equivariant with respect to

GG⇒G→ if and only if it admits the following block-matrix form:

f =





f11 f12 · · · f1M
f21 f22 · · · f2M

. . .
fM1 fM2 · · · fMM



 , fkk = akIck + bk1ck1
↑
ck , fkl = ekl1ck1

↑
cl for k ∋= l, (20)

where fkl are block matrices, Ik is a size-k identity matrix, 1k is a length-k vector of all ones, and
ak, bk, ekl are scalars. The subscript ck denotes the size of the k-th cluster. Figure 5 illustrates the
block structure of f .

We provide a proof sketch of our claim. Since AG→ is trivial by assumption, it remains to show any
function that is equivariant to the product of permutations

(
S1 ′ S2 . . .′ SM


admits the form in

eqn. 20. We justify as follows:

1. (within-cluster) fkk is a linear permutation-equivariant function if and only if its diagonal
elements are the same and its off-diagonal elements are the same ([34, Lemma 3.]);

2. (across-cluster) fkl for k ∋= l is a constant matrix since nodes within a cluster are in-
distinguishable; moreover, ekl are unconstrained since the coarsened symmetry AG→ is
trivial.

Figure 5: The block structure of equivariant linear function f : Rn
≃ Rn with respect to GG⇒G→

(where G,G↓ are asymmetric): Each diagonal block fkk is diagonally constant and off-diagonally
constant; Each off-diagonal block fkl is a constant matrix.

As an example, we illustrate the equivariant linear layer for two-cluster graph coarsening. Without
loss of generality, assume that the node signals X are ordered according to the cluster assignment
(e.g., X[1:|V1|] are node features for the first cluster, etc). Let X(1), X(2) denote the node features for
the first and second cluster, W s

(1),W
s
(2) denote the weights on the block diagonal for self-feature

transformation, Wn
(1),W

n
(2) denote the weights on the block diagonal for within-cluster neighbors,

and Wn
(12),W

n
(21) denote the weights off the block diagonal for across-cluster neighbors. Let I denote

the identity matrix, 1(1),1(2) denote the all-ones matrices with the same size as the corresponding
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cluster, and 1(12),1(21) denote the all-ones matrices mapping across clusters. Recall ↗ denotes the
element-wise multiplication of two matrices. Then the equivariant linear layer is parameterized as

I ↗


X(1)W

s
(1)

X(2)W
s
(2)


+
(

1(1) 0
0 1(2)


⇔ I


↗


X(1)W

n
(1)

X(2)W
n
(2)


+


0 1(12)

1(21) 0


↗


X(1)W

n
(12)

X(2)W
n
(21)


. (21)

For cases where AG→ is nontrivial, if AG→ is abelian, we can use a construction by Serre ([83] Section
8.2). Observe that the symmetry of AG→ effectively constrains the patterns of ekl in equation 20. We
provide an example where AG→ = S2 in our image inpainting experiment (see Section 5.1), and defer
the investigation of general cases for future work.

B Proofs of Our Theoretical Results

B.1 Proofs of Generalization with Exact Symmetries

Lemma 1 (Risk Gap). Let X = RN→d,Y = RN→k
be the input and output graph signal spaces on a

fixed graph G. Let X ↖ µ where µ is a SN -invariant distribution on X . Let Y = f↗(X) + ϱ, where

ϱ → RN→k
is random, independent of X with zero mean and finite variance and f↗ : X ≃ Y is

AG-equivariant. Then, for any f → V and for any compact group G ↓ SN , we can decompose f as

f = f̄G + f⇐
G ,

where f̄G = QGf, f⇐
G = f ⇔ f̄G . Moreover, the risk gap satisfies

”(f, f̄G) = E
[
↔Y ⇔ f(X)↔2F

]
⇔ E

[
↔Y ⇔ f̄G(X)↔2F

]
= ⇔2⇐f↗, f⇐

G ⇒µ︸ ︷︷ ︸
mismatch

+
∥∥f⇐

G
∥∥2
µ︸ ︷︷ ︸

constraint

.

Lemma 1 is a straightforward extension of Lemma 6 in [8], which makes use of Lemma 1 in [8].
Lemma 1 in [8]. Let U be any subspace of V that is closed under Q. Define the subspaces S and

A of, respectively, the G-symmetric and G-anti-symmetric functions in U : S = {f → U : f is

G-equivariant } and A = {f → U : Qf = 0}. Then U admits admits an orthogonal decomposition

into symmetric and anti-symmetric parts

U = S ▽A

Proof of Lemma 1. The first part of Lemma 1 f = f̄G + f⇐
G follows from Lemma 1 in [8]. For

the second part, by the assumption that the noise ϱ is independent of X with zero mean and finite
variance, we can simplify the risk gap as

”(f, f̄G) := E
[
↔Y ⇔ f(X)↔2F

]
⇔ E

[
↔Y ⇔ f̄G(X)↔2F

]

= E
[
↔f↗(X)⇔ f(X)↔2F

]
⇔ E

[
↔f↗(X)⇔ f̄G(X)↔2F

]
. (22)

Substituting f = f̄G + f⇐
G yields

E
[
↔f↗(X)⇔ f̄G(X)⇔ f⇐

G (X)↔2F
]
⇔ E

[
↔f↗(X)⇔ f̄G(X)↔2F

]

= ⇔ 2⇐f↗(X)⇔ f̄G(X), f⇐
G (X)⇒µ + E

[
↔f⇐

G (X)↔2F
]

= ⇔ 2⇐f↗, f⇐
G ⇒µ +

∥∥f⇐
G
∥∥2
µ
. (23)

We remark that Lemma 6 in [8] assumes that f↗ is G-equivariant, so the first term in (23) vanishes.
We are motivated from the symmetry model selection problem, and thereby relax the assumption of
the chosen symmetry group G can differ from the target symmetry group AG .

Theorem 2 (Bias-Variance-Tradeoff). Let X = RN→d,Y = RN→k
be the graph signals spaces

on a fixed graph G. Let SN act on X and Y by permuting the rows with representations ω and

ϖ. Let G be a subgroup of SN acting with restricted representations ω|G on X and ϖ|G on Y .
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Let X[i,j]
i.i.d.
↖ N

(
0,↼2

X

)
and Y = f↗(X) + ϱ where f↗(x) = #↑x is AG-equivariant and

# → RNd→Nk
. Assume ϱ[i,j] is random, independent of X , with mean 0 and E

[
ϱϱ↑

]
= ↼2

εI < ⇑.

Let #̂ be the least-squares estimate of # from n i.i.d. examples {(Xi, Yi) : i = 1, . . . , n}, $G(#̂) be

its equivariant version with respect to G. Let
(
εϑ|G | εω|G

)
=

∫
G εϑ|G (g)εω|G (g)dϑ(g) denote the

inner product of the characters. If n > Nd+ 1 the risk gap is

E
[
”
(
f!̂, f”G(!̂)


= ⇔↼2

X ↔$⇐
G (#)↔2F︸ ︷︷ ︸

bias

+ ↼2
ε

N2dk ⇔
(
εϑ|G | εω|G

)

n⇔Nd⇔ 1︸ ︷︷ ︸
variance

.

Theorem 2 presents the risk gap in expectation, which follows from Lemma 1, by taking f as
the least-squares estimator and using assumptions in the linear regression setting. To this end, we
denote X → Rn→Nd,Y → Rn→Nk, ω → Rn→Nk as the training data arranged in matrix form, where
Y = f↗(X) + ω. Recall that the least-squares estimator of # in the classic regime (n > Nd) is
given by

#̂ := (X↑X)†X↑Y
a.e.
= #+ (X↑X)↔1X↑ω, (24)

while its equivariant map is

$G(#̂) =

∫

G
ω(g) #̂ϖ

(
g↔1

)
dϑ(g). (25)

Our proof makes use of the following results in [8], which we restate adapted versions here for our
setting.
Proposition 11 in [8]. Let V = {fW : fW (x) = W↑x,W → Rd→k, x → Rd

} denote the space of

linear functions. Let X ↖ µ with E[XX↑] = %. For any linear functions fW1 , fW2 → V , the inner

product on V satisfies

⇐fW1 , fW2⇒µ = Tr(W↑
1 %W2). (26)

Theorem 13 in [8] (Simplified, Adapted). Consider the same setting as Theorem 2. For n > Nd+1,

↼2
XE

∥∥∥$⇐
G

((
X↑X

)+
X↑ω

∥∥∥
2

F


= ↼2

ε

N2dk ⇔
(
εϑ|G | εω|G

)

n⇔Nd⇔ 1
.

Proof of Theorem 2. We first plug in the least-squares expressions #̂,$G(#̂) to Lemma 1 and treat
the mismatch term and constraint term separately; We complete the proof by collecting common
terms together.

For the mismatch term, our goal is to compute

⇔2E [⇐#, #̂⇔$G(#̂)⇒µ], (27)

where the expectation is taken over the test point X and the training data X, ω.

To that end, we write
(
#̂⇔$G(#̂)


x

a.e.
= #↑x+ω↑X(X↑X)↔1x⇔

∫

G
ϖ(g↔1)

(
#↑ + ω↑X(X↑X)↔1

)
ω(g)x dϑ(g).

(28)

Taking expectation yields

EX,X,ω [⇐#, #̂⇔$G(#̂)⇒µ] = ↔#↔
2
µ + EX,X,ω

[
⇐#↑X, ω↑X(X↑X)↔1x⇒

]

⇔ EX,X,ω


⇐#↑x,

∫

G
ϖ(g↔1)

(
#↑ + ω↑X(X↑X)↔1

)
ω(g)x dϑ(g)⇒


.

(29)

Note that ω is independent with X and mean 0, so the second term in (29) vanishes. Similarly, the
part EX,X,ω

∫
G ϖ(g↔1)

(
ω↑X(X↑X)↔1

)
ω(g)x dϑ(g) also vanishes (by first taking conditional
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expectation of ω conditioned on X). Thus, we arrive at

E [⇐#, #̂⇔$G(#̂)⇒µ] = ↔#↔
2
µ ⇔ Ex


⇐#↑x,

∫

G
ϖ(g↔1)#↑ ω(g)x dϑ(g)⇒



= ↔#↔
2
µ ⇔ ⇐#,$G(#)⇒µ

= ↔$⇐
G (#)↔2µ

= ⇔2↼2
X↔$⇐

G (#)↔2F , (30)

where the last equality follows from Proposition 11 in [8] with the assumption that % = ↼2
X . This

finishes the computation for the mismatch term.

Now for the constraint term, we have

↔f⇐
G ↔

2
µ = ↔$⇐

G (#̂)↔2µ (31)

= ↼2
X EX,ω↔$

⇐
G
(
#+ (X↑X)↔1X↑ω

)
↔
2 (32)

= ↼2
X↔$⇐

G (#)↔2F + ↼2
X EX,ω↔$

⇐
G
(
(X↑X)↔1X↑ω

)
↔
2, (33)

where the last equality follows from linearity of expectation, E[ω] = 0 and ω independent of x.

Combining the mismatch term in (30) with the constraint term in (33), the risk gap becomes

E
[
”
(
f!̂, f”G(!̂)


= ⇔↼2

X↔$⇐
GL

(#)↔2 + ↼2
X EX,ω↔$

⇐
GL

(
(X↑X)↔1X↑ω

)
↔
2, (34)

Applying Theorem 13 in [8], the second term in (34) reduces to

↼2
X EX,ω↔$

⇐
GL

(
(X↑X)↔1X↑ω

)
↔
2 = ↼2

ε

N2dk ⇔
(
εϑ|G | εω|G

)

n⇔Nd⇔ 1
, (35)

from which the theorem follows immediately.

Finally, we state a well-known result for the risk of (Ordinary) Least-Squares Estimator (see [84, 85]
and references therein).
Lemma 6 (Risk of Least-Squares Estimator). Consider the same set-up as Theorem 2. For n >
Nd+ 1,

E
[
↔Y ⇔ #̂↑X↔

2
F


= ↼2

ε
Nd

n⇔Nd⇔ 1
+ ↼2

ε .

Proof of Lemma 6. Recall X,Y denote the test sample. We denote the risk of the least-squares
estimator conditional on the training data X → Rn→Nd as R(#̂ | X), which has the following
bias-variance decomposition:

R(#̂ | X) = E
[
↔Y ⇔ #̂↑X↔

2
F | X


(36)

= E
[
↔#↑X + ϱ ⇔ #̂↑X↔

2
F | X


(37)

= E
[
↔(#⇔ #̂)↑X↔

2
F | X


+ ↼2

ε , (38)

where the last equality follows from ϱ being zero mean and independent with X . The second term ↼2
ε

is also known as irreducible error. We decompose the first term into

E
[
↔(#⇔ #̂)↑X↔

2
F | X


= E

[
↔(#⇔ E[#̂])↑X↔

2
F + ↔(E[#̂]⇔ #̂)↑X↔

2
F | X


. (39)

Recall that #̂ a.e.
= (X↑X)↔1X↑Y = (X↑X)↔1X↑(X# + ϱ) = # + (X↑X)↔1X↑ϱ. Thus

E[#̂] = # and (39) simplifies to E
[
↔(E[#̂]⇔ #̂)↑X↔

2
F | X


.
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We finish computing the risk by taking expectation over X , and using E[#̂]⇔ #̂ = (X↑X)↔1X↑ϱ,

E
[
↔Y ⇔ #̂↑X↔

2
F


= E

[
R(#̂ | X)


(40)

= EX

[
EX,ε

[
↔(E[#̂]⇔ #̂)↑X↔

2
F | X


+ ↼2

ε (41)

= E
[
↔
(
(X↑X)↔1X↑ϱ

)↑
X↔

2
F


+ ↼2

ε (42)

= ↼2
ε tr

(
E[(X↑X)↔1]↼2

XI
)
+ ↼2

ε . (43)

By [86, Lemma 2.3], for n > Nd+ 1, E[(X↑X)↔1] = Nd
n↔Nd↔1I . Putting this in (43) completes

the proof.

B.2 Proofs of Generalization with Approximate Symmetries

In Definition 3, we construct the symmetry group of G induced by the coarsening G↓ via a semidirect
product,

GG⇒G→ =
(
Sc1 ′ Sc2 . . .′ ScM


⊋AG→ .

We explain the construction in more details here. We first recall the definition of semidirect product.
Given two groups G1,G2 and a group homomorphism ⇁ : G2 ≃ aut(G1), we can construct a new
group G1 ⊋φ G2, called the semidirect product of G1,G2 with respect to ⇁ as follows:

1. The underlying set is the Cartesian product G1 ′ G2;

2. The group operation △ is determined by the homomorphism ⇁, such that

△ : (G1 ⊋φ G2)′ (G1 ⊋φ G2) ≃ (G1 ⊋φ G2)

(g1, g2) △ (g
↓
1, g

↓
2) = (g1 ⇁g2(g

↓
1), g2g

↓
2), g1, g

↓
1 → G1; g2, g

↓
2 → G2,

Take G1 =
(
Sc1 ′Sc2 . . .′ScM


,G2 = AG→ . Note that G1 is a normal subgroup in GG⇒G→ ; Namely,

for all s → GG⇒G→ , g1 → G1, we have sg1s↔1
→ G1. Thus, the map g1 ∝≃ sg1s↔1 is an automorphism

of G1. In particular, the homomorphism ⇁g2(g1) = g2 g1 g
↔1
2 for g2 → G2 describes the action of G2

on G1 by conjugation 2. In the context of a graph G with N nodes and its coarsening G↓ with M
clusters, the homomorphism ⇁ describes how across-cluster permutations in G↓ act on the original
graph G. Note that in the special case where AG→ acts transitively on the coarsened nodes, we recover
the wreath product — a special kind of semidirect product. Our construction of GG⇒G→ can be seen
as a natural generalization of the wreath product.

Corollary 3 (Risk Gap via Graph Coarsening). Let X = RN→d,Y = RN→k
be the input and output

graph signal spaces on a fixed graph G. Let X ↖ µ where µ is a SN -invariant distribution on X . Let

Y = f↗(X) + ϱ, where ϱ → RN→k
is random, independent of X with zero mean and finite variance,

and f↗ : RN→d
≃ RN→k

be an approximately equivariant mapping with equivariance rate ⇀. Then,

for any G↓
that coarsens G up to error ↽, for any f → V , we have

”(f, f̄GG↑G→ ) = ⇔2⇐f↗, f⇐
GG↑G→ ⇒µ︸ ︷︷ ︸

mismatch

+
∥∥∥f⇐

GG↑G→

∥∥∥
2

µ︸ ︷︷ ︸
constraint

∞ ⇔2⇀(↽)
∥∥∥f⇐

GG↑G→

∥∥∥
µ
+

∥∥∥f⇐
GG↑G→

∥∥∥
2

µ

2In our context, it is sensible to write ωg2(g1) = g2 g1 g
→1
2 given that G1,G2 are originally inside a common

group SN . Yet semidirect product applies to two arbitrary groups — not necessarily inside a common group
initially, where ωg2(g1) is an abstraction of g2 g1 g→1

2 .
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Proof of Corollary 3. We start by simplifying the mismatch term in Lemma 1,

⇔2E
[
⇐f↗(x), f⇐

GG↑G→ (x)⇒

= ⇔2E

[
⇐f↗(x)⇔ f↗

GG↑G→ (x) + f↗
GG↑G→ (x), f

⇐
GG↑G→ (x)⇒



= ⇔2E



⇐ f↗(x)⇔ f↗
GG↑G→ (x)︸ ︷︷ ︸

GL-anti-symmetric part of f↓

, f⇐
GG↑G→ (x)︸ ︷︷ ︸

GL-anti-symmetric part of f

⇒





∞ ⇔2 ↔f↗
⇔ f↗

GG↑G→ ↔µ ↔f
⇐
GG↑G→ ↔µ (By Cauchy Schwarz Ineq.)

∞ ⇔2⇀(↽) ↔f⇐
GG↑G→ ↔µ. (By Definition 4 Approx. Equiv. Map)

Putting this together with the constraint term completes the proof.

Corollary 4 (Bias-Variance-Tradeoff via Graph Coarsening). Consider the same linear regression

setting in Theorem 2, except now f↗
is an approximately equivariant mapping with equivariance

rate ⇀, and G = GG⇒G→ is controlled by G↓
that coarsens G up to error ↽. Denote the canon-

ical permutation representations of GG⇒G→ on X ,Y as ω↓,ϖ↓
, respectively. Let (εϑ→ | εω→) =∫

GG↑G→
εϑ→(g)εω→(g)dϑ(g) denote the inner product of the characters. If n > Nd + 1 the risk

gap is bounded by

E
[
”
(
f!̂, f”GG↑G→ (!̂)


∞ ⇔2⇀(↽)


↼2
ε

N2dk ⇔ (εϑ→ | εϑ→)

n⇔Nd⇔ 1
+ ↼2

ε
N2dk ⇔ (εϑ→ | εϑ→)

n⇔Nd⇔ 1
.

Proof of Corollary 4. It follows immediately from applying Theorem 13 in [8] to Corollary 3 with
G = GG⇒G→ .

C Examples

C.1 Example: Gaussian data model with approximate symmetries

Example 3.1 considers G = S3,G = S2,X = R3,Y = R3, and x ↖ N (0,↼2
XId). The target

function is linear, i.e., f↗(x) = #↑x for some # → R3→3. In other words, we are learning linear
functions on a fixed graph domain with 3 nodes. Suppose the target function is S2-equivariant such
that it has the form

# =


a b c
b a c
d d e


, a, b, c, d, e → R. (44)

Now, we project # in (44) to S3-equivariant space using the intertwined average 6 with the canonical
permutation representation of S3. A direct calculation yields

$S3(#) =




1
3 (2a+ e) 1

3 (b+ c+ d) 1
3 (b+ c+ d)

1
3 (b+ c+ d) 1

3 (2a+ e) 1
3 (b+ c+ d)

1
3 (b+ c+ d) 1

3 (b+ c+ d) 1
3 (2a+ e)



 (45)

$⇐
S3
(#) = #⇔$S3(#) =




1
3 (a⇔ e) 1

3 (2b⇔ c⇔ d) 1
3 (⇔b+ 2c⇔ d)

1
3 (2b⇔ c⇔ d) 1

3 (a⇔ e) 1
3 (⇔b+ 2c⇔ d)

1
3 (⇔b⇔ c+ 2d) 1

3 (⇔b⇔ c+ 2d) 1
3 (⇔2a+ 2e).



 (46)

Therefore, the bias term evaluates to

⇔↼2
X ↔$⇐

S3
(#)↔2 = ⇔↼2

X


2(a⇔ e)2

3
+

2(⇔2b+ c+ d)2

9
+

2(b⇔ 2c+ d)2

9
+

2(b+ c⇔ 2d)2

9


.

(47)

For the variance term, recall εϑS3
,εωS3

are both the canonical permutation representations of S3,
we have

(
εϑS3

| εωS3

)
=

1

6
(32 + 12 + 12 + 12 + 02 + 02) = 2. (48)
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Figure 6: Choosing the symmetry group corresponding to the target function usually yields the best
generalization ((a), (b), (d)), but not always: when the number of training data n is small and the
target function f is approximately equivariant with respect to a larger group, choosing the larger
symmetry group could yield further generalization gain, as shown in (c) empirically. The dashed
gray vertical line highlights the theoretical threshold n↗

↑ 35, before which using S3 yields better
generalization than S2, validating our theoretical analysis. We set ↼2

X = 1,↼2
ε = 1

64 , conduct 10
random runs and compute the generalization error based on 300 test points. We obtain the estimators
via stochastic gradient descent, and enforce the symmetry via tying weights. The titles of each subplot
indicate the symmetry of the target function, and display the target function values.

Therefore, the variance term evaluates to

↼2
ε

N2
⇔
(
εϑ|G | εϑ|G

)

n⇔N ⇔ 1
= ↼2

ε
7

n⇔ 4
. (49)

Putting (47) and (49) together yields the generalization gap of for the least square estimator f!̂
compared to its S3-equivariant version f”S3 (!̂).

As a comparison, when choosing the symmetry group of the target function G = S2, the bias vanishes
and note that

(
εϑS2

| εωS2

)
= 1

2 (3
2 + 12) = 5, so generalization gap is

E
[
”
(
f!̂, f”S2 (!̂)


= ↼2

ε
4

n⇔ 4
. (50)

We see that choosing G = S3 is better if a ↑ e, b ↑ c ↑ d (i.e., f↗ is approximately S3-invariant)
and the training sample size n small, whereas S2 is better vice versa. This analysis illustrates the
advantage of choosing a (suitably) larger symmetry group to induce a smaller hypothesis class
when learning with limited data, and introduce useful inductive bias when the target function is
approximately symmetric with respect to a larger group. We further illustrate our theoretical analysis
via simulations, with details and results shown in Figure 6.

C.2 Example: Approximately Equivariant Mapping on a Geometric Graph

In this section, we illustrate a construction of an approximately equivariant mapping. We focus on a
version of Definition 3 that does not take to account the symmetries of G↓. Namely, we consider a
definition of the approximate symmetries as

GG⇒G→ := Sc1 ′ Sc2 . . .′ ScM ⇓ SN .

Equivalently, we restrict the analysis to coarsening graphs G↓ that are asymmetric.

Background from graphon-signal analysis. To support our construction, we cite some definitions
and results from [79].
Definition 8. Let r > 0. The graphon-signal space with signals bounded by r is WLr := W ′

L⇔
r [0, 1], where L⇔

r [0, 1] is the ball of radius r in L⇔[0, 1]. The distance in WLr is defined for

(W, s), (V, g) → WLr by

d↭
(
(W, s), (V, g)

)
:= ↔(W, s)⇔ (V, g)↔↭ := ↔W ⇔ V ↔↭ + ↔s⇔ g↔1.
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Moreover,

φ↭
(
(W, s), (V, g)

)
= inf

ω
d↭

(
(W, s), (V ω, gω)

)
,

where gω(x) = g(ω(x)) and ω is a measure preserving bijection.

Any graph-signal induces a graphon signal in the natural way, as in Definition 1. The cut norm and
distance between two graph-signals is defined to be the cut norm and distance between the two
induced graphon-siganl respectively. Similarly, the L1 distance between a signal q on a graph and
a signal s on [0, 1] is defined to be the L1 distance between the induced signal from q and s. The
supremum in the definition of cut distance between two induced graphon-signals is realized by some
measure preserving bijection.

Sampling graphon-signals. The following construction is from [79, Section 3.4]. Let & =
(ϑ1, . . .ϑN ) → [0, 1]N be N independent uniform random samples from [0, 1], and (W, s) → WLr.
We define the random weighted graph W (&) as the weighted graph with N nodes and edge weight
wi,j = W (ϑi,ϑj) between node i and node j. We similarly define the random sampled signal s(&)
with value si = s(ϑi) at each node i. Note that W (&) and s(&) share the sample points &. We then
define a random simple graph as follows. We treat each wi,j = W (ϑi,ϑj) as the parameter of a
Bernoulli variable ei,j , where P(ei,j = 1) = wi,j and P(ei,j = 0) = 1⇔wi,j . We define the random

simple graph G(W,&) as the simple graph with an edge between each node i and node j if and only
if ei,j = 1. The following theorem is [79, Theorem 3.6]
Theorem 3.6 from [79] (Sampling lemma for graphon-signals). Let r > 1. There exists a constant

N0 > 0 that depends on r, such that for every N ∞ N0, every (W, s) → WLr, and for & =
(ϑ1, . . .ϑN ) → [0, 1]N independent uniform random samples from [0, 1], we have

E

φ↭

((
W, s

)
,
(
G(W,&), s(&)

)
<

15√
log(N)

. (51)

By Markov’s inequality and (51), for any 0 < p < 1, there is an event of probability 1⇔ p (regarding
the choice of &) in which

φ↭
((

W, s
)
,
(
G(W,&), s(&)

)
<

15

p
√

log(N)
. (52)

Stability to deformations of mappings on geometric graphs. Let M be a metric space with an
atomless standard probability measure defined over the Borel sets (up to completion of the measure).
Such a probability space is equivalent to the standard probabiltiy space [0, 1] with Lebesgue measure.
Namely, there are co-null sets A ⇓ M and B ⇓ [0, 1], and a measure preserving bijection ω : A ≃ B.
Hence, graphon analysis applied as-is when replacing the domain [0, 1] with M. Suppose that we are
interested in a target function fM : L1(M) ≃ L1(M) that is stable to deformations in the following
sense.
Definition 9. Let ↽ > 0. A measurable bijection ◁ : M ≃ M is called a deformation up to ↽, if

there exists an event Bϱ ⇓ M with probability greater than 1⇔ ↽ such that for every x → Bϱ

dM
(
◁(x), x

)
< ↽.

The mapping fM : L1(M) ≃ L1(M) is called stable to deformations with stability constant C, if

for any deformation ◁ up to ↽, and every s → L1(M), we have

↔fM(s)⇔ fM(s △ ◁) △ ◁↔1
↔1 < C↽.

Suppose that we observe a discretized version of the domain M, defined as follows. There is a
graphon W : M2

≃ [0, 1] defined as

W (x, y) = r
(
d(x, y)

)
, (53)

where r : R+ ≃ [0, 1] is a decreasing function with support [0, ρ]. Instead of observing W , we
observe a graph G = G(W,&) with node set [N ], sampled from W on the random independent points
& = {ϑn}

N
n=1 ⇓ M as above. Suppose moreover that any graph signal is sampled from a signal

in L1(M), on the same random points &, as above. Suppose that the target fM on the continuous
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domain is well approximated by some mapping f↗ : L1[N ] ≃ L1[N ] on the discrete domain in the
following sense. For every s → L1(M), let sG be the graph signal sampled on the random samples
{ϑn}n. Then there is an event of high probability such that

↔f↗sG ⇔ {
(
fM(s)

)
(xn)}n↔1 < e

for some small e. We hence consider f↗ as the target mapping of the learning problem. One example
of such a scenario is when there exists some Lipschitz continuous mapping # : WLr ≃ WLr with
Lipschitz constant L, such that fM = #(W, ·) and f↗ = #(G, ·). Indeed, by (52), for some p as
small as we like, there is an event of probability 1⇔ p in which, up to a measure preserving bijection,

↔fMs⇔ f↗sG↔1 ↘ φ↭
((

W, fMs
)
,
(
G, f↗sG

)

↘ Lφ↭
((

W, s
)
,
(
G, sG

)
<

15L

p
√

log(N)
= e. (54)

A concrete example is when # is a message passing neural network (MPNN) with Lipschitz continu-
ous message and update functions, and normalized sum aggregation [79, Theorem 4.1].

Let G↓ be a graph that coarsens G up to error ↽. In the same event as above, by (52), up to a measure
preserving bijection,

φ↭(WG→ ,W ) ↘ φ↭(WG→ ,WG) + φ↭(WG,W ) ↘ ↽+ e = u. (55)

We next show an approximation property that we state here informally: Since W (x, y) ↑ 0 for x
away from y, we must have WG→(x, y) ↑ 0 as well for a set of high measure. Otherwise, φ↭(WG→ ,W )
cannot be small. By this, any approximate symmetry of G is a small deformation, and, hence, f↗ is
an approximately equivariant mapping.

Equivariant mappings on geometric graphs. In the following, we construct a scenario in which
f↗ can be shown to be approximately equivariant in a restricted sense. For simplicity, we assume
f↗(sG) → L2[0, 1], and restrict to the case r = [0,↼] in the geometric graphon W of (53). Denote
the induced graphon WG→ = T . Given h > 0, define the h-diagonal

dh = {(x, y) → M
2
| dM(x, y) ↘ h}.

In the following, all distances are assumed to be up to the best measure preserving bijection.

If there is a domain S↓
′ T ↓

→ M
2 outside the ρ-diagonal in which T (x, y) > c for some c > 0, by

reverse triangle inequality, we must have

↔W ⇔ T↔↭ ∞

∫

S→

∫

T →
T (x, y)dydx = cµ(S↓)µ(T ↓).

Hence, since by (55), ↔W ⇔ T↔↭ < u, for every S↓
′ T ↓ that does not intersect d↼, we must have

∫

S→

∫

T →
T (x, y)dydx ↘ u.

In other words, for any two sets S, T with distance more than ρ (infs≃S,t≃T dµ(s, t) > ρ), we have
∫

S

∫

T
T (x, y)dydx ↘ u.

This formalizes the statement “WG→(x, y) ↑ 0 for x away from y” from above.

Next, we develop the analysis for the special case M = [0, 1] with the standard metric and Lebesgue
probability measure. We note that the analysis can be extended to M = [0, 1]D for a general
dimension D → N. For every z → [0, 1], we have

∫

[z+↼/
↖
2,1]

∫

[0,z↔↼/
↖
2]
T (x, y)dydx ↘ u,

and ∫

[0,z↔↼/
↖
2]

∫

[z+↼/
↖
2,1]

T (x, y)dydx ↘ u.
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Let ◁ > 0. We take a grid {xj} → [0, 1] of spacing
̸
2◁. The sets



j

[xj + ρ/
̸

2, 1]′ [0, xj ⇔ ρ/
̸

2] ,


j

[0, xj ⇔ ρ/
̸

2]′ [xj + ρ/
̸

2, 1]

cover dc↽ (where dc↽ is the complement of d↽). Hence,

∫∫

dc
ϖ

T (x, y)dydx ↘

1/
↖
2↽

j=1

∫

[xj+↼/
↖
2,1]

∫

[0,xj↔↼/
↖
2]
T (x, y)dydx

+

1/
↖
2↽

j=1

∫

[0,xj↔↼/
↖
2]

∫

[xj+↼/
↖
2,1]

T (x, y)dydx

↘
2

̸
2◁

u.

We take 2↖
2↽
u = t, for u 7 t 7 1, namely, ◁ =

̸
2u

t . For example, we may take t =
̸
2u1/3, and

◁ = u2/3, assuming that ρ < u1/3. Hence, we have
∫∫

dc

u2/3

T (x, y) ↘
̸

2u1/3.

To conclude, the probability of having an edge between nodes ϑi and ϑj in G↓
N which are further

away than u2/3, namely, dM(ϑi,ϑj) > u2/3, is less than
̸
2u1/3.

Suppose that G↓ is asymmetric. This means that symmetries of GG⇒G→ can only permute between
nodes that have an edge between them in the blown-up graph G↓

N . The probability of having an edge
between nodes further away than u2/3 is less than

̸
2u1/3. Hence, a symmetry in GG⇒G→ can be seen

as a small deformation, where for each node ϑi and a random uniform g → GG⇒G→ , the probability
that ϑi it is mapped by g to a node of distance less than u2/3 is more than 1⇔

̸
2u1/3.

Any symmetry g in GG⇒G→ induces a measure preserving bijection ◁ in M = [0, 1], by permuting
the intervals of the partition PN of Definition 1. As a result, the set of points that are mapped further
away than u2/3 under ◁ has probability upper bounded by

̸
2u1/3, and symmetries in GG⇒G→ can be

seen as a small deformation ◁ according to Definition 9 (in high probability). This means that, for
any g → GG⇒G→ ,

↔fM(s)⇔ fM(s △ g) △ g↔1
↔1 < C

̸

2u1/3,

so by the triangle inequality, combining with equation 54, we have

↔f↗(sG)⇔ g↔1f↗(gsG)↔1 < 2e+ C
̸

2u1/3 = ↽↓. (56)

Equation (56) leads to

↔f↗(sG)⇔QGG↑G→ (f
↗)(sG)↔1 = ↔f↗(sG)⇔

1

|GG⇒G→ |



g≃GG↑G→

g↔1f↗(gsG)↔1 (57)

↘
1

|GG⇒G→ |



g≃GG↑G→

↔f↗(sG)⇔ g↔1f↗(gsG)↔1 < ↽↓. (58)

Since for any q → L2[0, 1] ∀ L⇔[0, 1] we have ↔q↔22 ↘ ↔q↔⇔↔q↔1, we can bound

↔f↗(sG)⇔QGG↑G→ (f
↗)(sG)↔2 <


↔f↗(sG)⇔QGG↑G→ (f↗)(sG)↔⇔

̸

↽↓

<

↔f↗(sG)↔⇔ + ↔QGG↑G→ (f↗)(sG)↔⇔

̸

↽↓

<

2↔f↗(sG)↔⇔

̸

↽↓, (59)

where the last inequality follows from ↔QGG↑G→ (f
↗)(sG)↔⇔ ↘ ↔f↗(sG)↔⇔.
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Denote ↔f↗
↔⇔ :=

∫
↔f↗(sG)↔⇔dµ(sG), and suppose that ↔f↗

↔⇔ is finite. Hence, if µ is a probabil-
ity measure, we have

∥∥f↗
⇔QGG↑G→ (f

↗)
∥∥
µ
<


2↔f↗↔⇔

̸

↽↓.

This shows an example of approximately equivariant mapping based on random geometric graph,
where the approximation rate is also a function of the size of the graph N , and goes to zero as
N ≃ ⇑ and ↽ ≃ 0.

In future work, we will extend this example to more general metric space M and to non-trivial
symmetry groups AG→ . Intuitively, most random geometric graphs are “close to asymmetric”. This
means that for “most” G↓, the symmetries of AG→ can only permute between nodes connected by an
edge, and so are the symmetries of GG⇒G→ . For this, we need to extend Definition 9 by treating G↓

probabilistically.

D Experiment Details

In this section, we provide additional details of our experiments. We first give a brief introduction of
standard graph neural networks (Section D.1), followed by in-depth explanations of our applications
in image inpainting (Section D.2), traffic flow prediction (Section D.3), and human pose estimation
(Section D.4). All experiments were conducted on a server with 256 GB RAM and 4 NVIDIA RTX
A5000 GPU cards.

D.1 Graph Neural Networks (GNNs)

We consider standard message-passing graph neural networks (MPNNs) [19–21] defined as follows.
A L-layer MPNN maps input X → RN→d to output Y → RN→k following an iterative scheme: At
initialization, h(0) = X; At each iteration l, the embedding for node i is updated to

h(l)
i = ω



h(l↔1)
i ,



j≃N (i)

ϖ
(
h(l↔1)
i ,h(l↔1)

j , A[i,j]




 , (60)

where ω,ϖ are the update and message functions, N (i) denotes the neighbors of node i, and A[i,j]

represents the (i, j)-edge weight. MPNNs typically have two key design features: (1) ω,ϖ are shared

across all nodes in the graph, typically chosen to be a linear transformation or a multi-layer perceptions
(MLPs), known as global weight sharing; (2) the graph A is used for (spatial) convolution.

D.2 Application: Image Inpainting

We provide additional details of the data, model, and optimization procedure used in the experiment.

Data. We consider the datasets MNIST [74] and FashionMNIST [75]. For each dataset, we take 100
training samples and 1000 test samples via stratified random sampling. The input and output graph
signals are (mi↗xi, xi) (↗ is entrywise multiplication). Here xi → R28→28

∈ R784 denotes the image
signals and mi denotes a random mask (size 14′ 14 for MNIST and 20′ 20 for FashionMNIST).
For experiments with reflection symmetry on the coarsened graph, we further transform each image
in the FashionMNIST subset using horizontal flip with probability 0.5 (FashionMNIST+hflip). We
remark that it is possible to model the dihedral group D4 on the square as the coarsened graph
symmetry, yet we only consider the reflection symmetry S2 to simplify the parameterization (since it
is Abelien while D4 is not) while capturing the most relevant symmetries.

Model. We consider a 2-layer GG⇒G→-equivariant networks G-Net, a composition of fout △ ReLU △
fin, where fin, fout denote the input/output equivariant linear layers. The input and output feature
dimension is 1 (since the signals are grayscale images), and the hidden dimension is set as 28. For
comparison, we also consider a simple 1-layer GG⇒G→ -equivariant networks G-Net.

We train the models with ADAM (learning rate 0.01, no weight decay, at most 1000 epochs). We
report the best test accuracy at the model checkpoint selected by the best validation accuracy (with a
80/20 training-validation split).

We supplement Figure 2 with Table 7 for further numerical details.
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MSE (′1e↔2) ∃ S282 = Sn (S142)
4 = (Sn/4)

4 (S72)
16 = (Sn/16)

16 (S42)
49 = (Sn/49)

49 (S22)
196 = (Sn/196)

196 Trivial = (Sn/784)
784

MNIST 41.56± 0.16 40.53± 0.26 36.06± 0.24 34.68± 0.5 33.67± 0.07 33.92± 0.04
Fashion 23.48± 0.14 22.26± 0.02 16.94± 0.08 15.16± 0.1 14.47± 0.11 14.75± 0.11

Table 7: Image inpainting using G-Net with different levels of coarsening. Table shows mean squared
error (MSE) across 3 runs on the test set, supplementing Figure 2 (Left, blue curves).

D.3 Application: Traffic Flow Prediction

Data. The METR-LA traffic dataset, [76], contains traffic information collected from 207 sensors in
the highway of Los Angeles County from Mar 1st 2012 to Jun 30th 2012 [87]. We use the same traffic
data normalization and 70/10/20 train/validation/test data split as [76]. We consider two different
traffic graphs constructed from the pairwise road network distance matrix: (1) the sensor graph G
introduced in [76] based on applying a thresholded Gaussian kernel (degree distribution in Figure
8e); (2) the sparser graph Gs based on applying the binary mask where the (i, j) entry is nonzero if
and only if nodes i, j lie on the same highway (degree distribution in Figure 8d). We construct the
second variant to more faithfully model the geometry of the highway, illustrated in Figure 8a.

Graph coarsening. We choose 2 clusters based on highway intersection and flow direction, indicated
by colors (Figure 8b (b)), and 9 clusters based on highway labels (Figure 8c (c)).

(a) Our faithful traffic graph (b) Graph clustering (2 clusters) (c) Graph clustering (9 clusters)

(d) Our faithful graph degree dis-
tribution

(e) Original sensor graph degree
distribution

Figure 8: METR-LA traffic graph: visualization, clustering, and degree distribution

Model. We use a standard baseline, DCRNN proposed in [76]. DCRNN is built on a core recurrent
module, DCGRU cell, which iterates as follows: Let xi,t, hi,t denote the i-th node feature and hidden
state vector at time t; Let Xt, Rt, Ht↔1 be the matrices of stacking feature vectors xi,t, ri,t, hi,t↔1 as
rows.

zi,t = ↼g (Wz xi,t + Uz hi,t↔1 + bz) (61)
ri,t = ↼g (Wr xt + Ur ht↔1 + br) (62)

ĥi,t = ωh

(
[AXWh]

↑
[i,:] + [A (Rt ↗Ht↔1)Uh]

↑
[i,:] + bh


(63)

hi,t = zt ↗ ht↔1 + (1⇔ zt)↗ ĥt, (64)

where Wz, Uz, bz, Ur,Wr, br,Wh, Uh, bh are learnable weights and biases, ↼g is the sigmoid func-
tion, ωg is the hyperbolic tangent, and hi,0 = 0 for all i at initialization. The crucial different from a
vanilla GRU lies in eqn (63) where graph convolution replaces matrix multiplication.

We then modify the graph convolution in (63) from global weight sharing to tying weights among
clusters of nodes, similar to the implementation in Appendix D.4 for Relax-S16. For example, in the
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case of two clusters (orbits), we change XWh to

swap (concat[Xc1Wh,c1 ;Xc2Wh,c2 ]) , (65)

where Xci denotes the submatrix of X including the rows of nodes from cluster i only, and
Wh,c1 ,Wh,c2 are two learnable matrices. In words, we perform cluster-specific linear transformation,
combine the transformed features, and reorder the rows (i.e., swap) to ensure compatibility with the
graph convolution.

Experiment Set-up. For our experiments, we use DCRNN model with 1 RNN layer and 1 diffusion
step. We choose T ↓ = 3 (i.e., 3 historical graph signals) and T = 3 (i.e., predict the next 3 period
graph signals). We train all variants for 30 epochs using ADAM optimizer with learning rate 0.01.
We report the test set performance selected by the best validation set performance.

D.3.1 Assumption Validation: Approximate Equivariant Map

Before applying our construction of approximate symmetries, we validate the assumption of the
target function f↗ being an approximately equivariant mapping using a trained DCRNN model as a
proxy. We proceed as follows:

Data. We use the validation set of METR-LA (traffic graph signals in LA), which has 207 nodes and
consists of 14, 040 input and output signals. Each input X → R207→2 represents the traffic volume
and speed in the past at the 207 stations, and output Y → R207 representing future traffic volume.

Model. We use a trained DCRNN model on our faithful graph, with input being 3 historical signals
X = (XT↔3, XT↔2, XT↔1) → R3→207→2 to predict the future signals Y = (XT , XT+1, XT+2) →
R3→207. We denote this model as f . It gives reasonable performance with Mean Absolute Error ↑ 3,
and serves as a good proxy for the target (unknown) function f↗.

Neighbors. We take our faithful traffic graph that originally has 397 non-loop edges, and only consider
a subset of 260 edges by thresholding the distance values to eliminate geometrically far-away nodes.
This defines our 260 neighboring node pairs.

Equivariance error. For each node pair (i, j), we swap their input signals by interchanging the
(i, j)-th slices in the node dimension of the tensor X , denoted as X(i,j), and check if the swapped
output Ŷ(i,j) = f(X(i,j)) is close to the original output Ŷ = f(X) with (i, j)-th slices swapped.
We measure “closeness” via the relative equivariant error at the node pair. Concretely, let X[i, j]
denote the tensor slices at the (i, j) node pair, and X[j, i] being the swapped version by interchanging
(i, j)-th slices. The relative different is computed as

∣∣Ŷ(i,j)[j, i]⇔ Ŷ [i, j]
∣∣/Ŷ [i, j],

where / denotes element-wise division. We then compute the mean relative equivariance error over
all instances in the validation set, which equals to 5.17%. This gives concrete justification to enforce
approximate equivariance in the traffic flow prediction problems.

D.4 Application: Human Pose Estimation

D.4.1 Equivariant Layer for Human Skeleton Graph

We apply the constructions in Section A.1 to our human skeleton graph. We first show how to
parameterize all linear AG-equivariant functions. Observe that AG

↖= (S2)2 = {e, a, l, al}, where
the nontrivial actions correspond to the arm flip with respect to the spine, the leg flip with respect to
the spine, and their composition. To fix ideas, we first treat both input and output graph signals as
vectors, and construct AG-equivariant linear maps f : R16

≃ R16.

Step 1: Obtain the character table for (S2)2
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e a l al

εe 1 1 1 1
ε2 1 1 ⇔1 ⇔1
ε3 1 ⇔1 1 ⇔1
ε4 1 ⇔1 ⇔1 1

Table 2: Character table for (S2)2

Step 2: Construct the basis for isotypic decomposition. Here we choose to index the leg joint pairs as
(1, 4), (2, 5), (3, 6), arm joint pairs as (10, 13), (11, 14), (12, 15), and spline joints 0, 7, 8, 9.

B = [B(Pϖe);B(Pϖ2);B(Pϖ3);B(Pϖ4)] where

B(Pϖe) = [(e1 + e4)/
̸

2; . . . ; (e12 + e15)/
̸

2; e0; e7; e8; e9] → R16→10.

B(Pϖ2) = [(e1 ⇔ e4)/
̸

2; (e2 ⇔ e5)/
̸

2; (e3 ⇔ e6)/
̸

2] → R16→3;

B(Pϖ3) = [(e10 ⇔ e13)/
̸

2; (e11 ⇔ e14)/
̸

2; (e12 ⇔ e15)/
̸

2] → R16→3;

B(Pϖ4) = ¬ (66)

Step 3: Parameterize f : R16
≃ R16 by f : B(Pϖe) ≃ B(Pϖe) and f : B(Pϖ2) ≃ B(Pϖ2), i.e. for

all v → R16, let v = B(Pϖe) ce + B(Pϖ2) c2 + B(Pϖ3) c3, then

f(v) = We ce +W2 c2 +W3 c3, (67)

where We → R10→10,W2 → R3→3,W3 → R3→3 are (learnable) weight matrices. Now f expresses all
linear, equivariant maps w.r.t (S2)2.

The following calculation based on f : R16
≃ R16 shows how much degree of freedom (measured by

learnable parameters) is gained by relaxing the symmetry from global (group S16), exact AG
↖= (S2)2,

to trivial group (i.e., no symmetry).

fS16 = w I16 + w↓(1⇔ I16), (2 parameters); (68)
fAG = We ▽W2 ▽W3, (118 parameters on the isotypic components); (69)
ftriv. = W, (256 parameters). (70)

To parameterize equivariant linear function f : R16→d
≃ R16→d→

, we proceed by decoupling the input
space into R10→d,R3→d,R3→d and the output space into R10→d→

,R3→d→
,R3→d→

. Now the learnable
weight matrices for multidimensional input/output become We → R10d→10d→

,W2 → R3d→3d→
,W3 →

R3d→3d→
. The construction is summarized in Algorithm 2.

Algorithm 2 Equivariant layer fAG : R16→d
≃ R16→d→

for AG
↖= (S2)2

Require: The basis B → R16→16 in (66) for isotypic decomposition of AG = (S2)2, input h(l)
→

R16→d.
Initialize: The learnable weights W (l)

e → R10d→→10d;W (l)
2 ,W (l)

3 → R3d→→3d;M (l)
→ R16→16.

1. Project h(l) to the isotypic component: z(l) = B↑h(l);
2. Perform block-wise linear transformation:

• ze = We flatten(z(l)[:,:10])

• z2 = W2 flatten(z(l)[:,10:13])

• z3 = W3 flatten(z(l)[:,13:])

• z(l+1) = concat[ze; z2; z3] → R16→d→

3. Project back to the standard basis: h̄(l+1) = B z(l+1).
4. Perform pointwise nonlinearity: h(l+1) = ↼(h̄(l+1)).

return h(l+1)
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Figure 9: Human skeleton graph G, its coarsened graph G↓ (clustering leg joints), and blow-up of G↓

D.4.2 Experiment Details

Data. We use the standard benchmark dataset, Human3.6M [77], with the same protocol as in [78]:
We train the models on 1.56M poses (from human subjects S1, S5, S6, S7, S8) and evaluate them
on 0.54M poses (from human subjects S9, S11). We use the method described in [88] to normalize
the inputs (2D joint poses) to [⇔1, 1] and align the targets (3d joint poses) with the root joint.

Model. We give a detailed description of G-Net and its variants used in the experiments. Figure inset
illustrates the architecture of G-Net.

 Linear Map 

 Nonlinearity

 Linear Map 

 Nonlinearity

 Linear Map 

For the human skeleton graph with N = 16, we have fG : R16→d
≃ R16→k,

where d, k represent the input dimension and output dimension (for each layer). Let
fG [i, j] : R16

≃ R16 denote its (i, j)-th slice.

1. G-Net with strict equivariance using equivariant linear map fG (see Table 3):

• S16: fS16 [i, j] → R16→16 is a diagonal matrix, with one learnable scalar a
on diagonal and another learnable scalar b off diagonal.

• Relax-S16: We relax fS16 [i, j] by having 16 different pairs of scalars
(ai, bi), i → [16], such that each node i can map to itself and communicate
to its neighbors in a different way (controlled by (ai, bi)), while still treat
all neighbors equally (by using the same bi for nodes j ∋= i).

• AG = S2
2: We use Algorithm 2.

• Trivial: We allow f [i, j] → R16→16 to be arbitrary, i.e., it has 16 ′ 16
learnable scalars.

We remark that for S16 and Relax-S16, we implement them by tying weights; for AG, we implement
them by projecting to isotypic component as shown in Algorithm 2.

2. G-Net augmented with graph convolution AfG(x), denoted as G-Net(gc) (see Table 3): We apply
the equivariant linear map fG in 1. and obtain the output fG(x) → R16→k; We then apply graph
convolution by multiplication from the left, i.e., AfG(x) → R16→k.

3. G-Net augmented with graph convolution and learnable edge weights, denoted as G-Net(gc+ew)
(see Table 4): We further learn the edge weights for the adjacency matrix A, by softmax(M ↗A)
where M → R16 represents the learnable edge weights, and Mi,j is nonzero when Ai,j ∋= 0 and
0 elsewhere. This is inspired from SemGCN [78]. Besides the groups discussed above, we also
implemented Relax-(S6)2 which corresponds to tying weights among the coarsened graph orbits,
consists of 4 spline nodes (singleton orbits) and 2 orbits for the left/right arm and leg nodes.

4. G-Net augmented with graph locality constraints (A↗ fG)(x) and learnable edge weights, denoted
as G-Net(pt+ew) (see Table 3): We perform pointwise multiplication A ↗ fG [i, j] at each (i, j)-th
slice of fG . In practice, we also allow learnable edge weights as done in 3.

Experimental Set-up. We design G-Net to have 4 layers (with batch normalization and residual
connections in between the hidden layers), 128 hidden units, and use ReLU nonlinearity. This allows
G-Net(gc+ew) to recover SemGCN [78] when choosing G = S16. We train our models for at most 30
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epochs with early stopping. For comparison purpose, we use the same optimization routines as in
SemGCN [78] and perform the hyper-parameter search of learning rates {0.001, 0.002}.

Evaluation. Table 3 shows results of G-Net and its variants when varying the choice of G. We observe
that using the automorphism group AG does not give the best performance, while imposing no
symmetries (Trivial) or a relaxed version of S16 yields better results. Here, enforcing no symmetry
achieves better performance since the human skeleton graph is very small with 16 nodes only. As
shown in other experiments with larger graphs (e.g. image inpainting), enforcing symmetries indeed
yields better performance.

Table 3: 3D human pose prediction using G-Net and its variants. Error (± std) measured by Mean
Per-Joint Position Error (MPJPE) and MPJPE after rigid alignment (P-MPJPE) across 3 runs. All
methods use the same hidden dimension d = 128. Bold type indicates the top-2 performance among
each variant. “NA” indicates the loss fails to converge.

MPJPE ↑ S16 Relax-S16 AG = (S2)
2 Trivial

G-Net NA 47.97± 0.47 48.30± 0.69 42.86± 0.64
G-Net(gc) NA 54.50± 4.33 49.40± 1.37 43.24± 0.82
G-Net(pt+ew) 41.54± 0.47 40.44± 0.61 40.63± 0.26 38.41± 0.31

P-MPJPE ↑ S16 Relax-S16 AG = (S2)
2 Trivial

G-Net NA 36.45± 0.56 37.17± 0.59 32.59± 0.62
G-Net(gc) NA 40.61± 0.99 37.62± 1.32 33.05± 0.81
G-Net(pt+ew) 32.31± 0.03 31.11± 0.68 31.35± 0.14 29.68± 0.22

Additional Evaluation. Table 4 shows the experiments when we keep the number of parameters
roughly the same across different choices of G.

Table 4: 3D human pose prediction using G-Net(gc+ew), where the models induced from each choice
of G are set to have roughly the same number of parameters. d denotes the number of hidden units.

G-Net Number of Parameters Number of Epochs MPJPE P-MPJPE

S16 0.27M (d = 128) 50 43.48 34.96
Relax-S16 0.27M (d = 32) 20 40.08 32.08

AG = (S2)
2 0.22M (d = 16) 30 44.10 34.12

Trivial 0.22M (d = 10) 30 45.05 34.79
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