This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

Why do networks have inhibitory/negative connections?

Qingyang Wang! Michael A. Powell} Ali Geisa, Eric Bridgeford, Carey E. Priebe, Joshua T. Vogelstein
Johns Hopkins University

Abstract

Why do brains have inhibitory connections? Why do
deep networks have negative weights? We propose an an-
swer from the perspective of representation capacity. We
believe representing functions is the primary role of both
(i) the brain in natural intelligence, and (ii) deep networks
in artificial intelligence. Our answer to why there are in-
hibitory/negative weights is: to learn more functions. We
prove that, in the absence of negative weights, neural net-
works with non-decreasing activation functions are not uni-
versal approximators. While this may be an intuitive result
to some, to the best of our knowledge, there is no formal
theory, in either machine learning or neuroscience, that
demonstrates why negative weights are crucial in the context
of representation capacity. Further, we provide insights on
the geometric properties of the representation space that
non-negative deep networks cannot represent. We expect
these insights will yield a deeper understanding of more so-
phisticated inductive priors imposed on the distribution of
weights that lead to more efficient biological and machine
learning.

1. Introduction

Are inhibitory connections necessary for a brain to func-
tion? Many studies on mammals answer yes: a balanced
excitatory/inhibitory (E/I) ratio is essential for memory [26],
unbalanced E/I lead to either impulsive or indecisive behav-
iors [22], such balance is closely tracked throughout learning
[33, 31], and imbalance is hypothesized to be the driving
force behind epilepsy [0, 18, 32]. These simulation results
and disease studies provide compelling evidence that E/I
balance is necessary for brains to function stably.

Intriguingly, when neurons first came into existence in
the long history of evolution, they were exclusively excita-
tory [20]. The Cnidarian jellyfish has a well-defined nervous
system that is made of sensory neurons, motor neurons,
and interneurons. Different from mammals, their synaptic
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connections are exclusively excitatory. Even though these
jellyfish are not equipped with inhibitory neurons, they are
perfectly capable of performing context-dependent behav-
iors: when they feed, they swim slowly through a weak,
rhythmic contraction of the whole bell; when they sense a
strong mechanical stimulus, they escape through a rapid,
much stronger contraction [20]. Cnidarian jellyfish behave
adaptively, not through sophisticated excitatory-inhibitory
circuits, but instead by modifying voltage-gated channel
properties (i.e., conductance). Cnidarian jellyfish prove to
us that without inhibitory connections the brain can still
function, albeit likely through alternative mechanisms. This
re-raises the fundamental question: are inhibitory connec-
tions necessary for brains to function?

In this paper, we explore the necessity of inhibitory con-
nections from the perspective of representation capacity. In-
stead of viewing the brain as a dynamical system to discuss
its functional stability, we think about the brain as a feed-
forward network capable of representing functions. For a
certain network structure, we are interested in characteriz-
ing the repertoire of functions such networks are capable of
representing. Specifically, to understand the importance of
inhibitory connections in networks’ representation capacity,
we ask what functions can non-negative networks represent?
We do so with the help of Deep Neural Networks (DNNs).
DNNs allow us to work at a level of abstraction where we
can stay focused on the connectivity between computation
units; they also allow us to completely take out inhibitory
connections by setting all weights to be non-negative. They
further allow us to build upon the well-celebrated DNN
theoretical result that DNNs are universal approximators
[16,9, 15] (Theorem 3.2). We prove in this paper that DNNs
with all non-negative weights are not universal approxima-
tors (sec 3). We further prove three geometric properties
of the representation space for non-negative DNNs (sec 4).
These results show that networks without negative connec-
tions not only lose universality; in fact, they have extremely
limited representation space. We further extend our results
to convolutional neural networks (CNNs) and other struc-
tural variants (sec 5). Such theoretical results serve as a
plausible explanation for why purely excitatory nervous sys-
tems, along the history of evolution, were largely overtaken



by brains containing both inhibitory and excitatory connec-
tions; the simpler systems may be able to perform interesting
functions, but they also have limited representation capac-
ity. Our work thus concludes that inhibitory connections are
necessary for a brain to represent more functions.

2. Related works
2.1. Optical neural network

The optical neural network literature [12, 11] has some
discussion on the representation capacity of non-negative
DNNSs; however, the existing discussion is restricted to only
non-negative functions, i.e. f(z) > 0, Vx € X. Our work
does not impose any requirement on the network output since
we allow the bias terms to take any value and the output of
the network may be negative (dependent on the activation
function choice).

2.2. Partially monotone networks

Partially monotone networks exploited the monotone na-
ture of non-negative sub-networks to solve problems where
certain input features are known to stay monotone. One no-
table application is in stock prediction [10]. An independent
stream of research that falls into the category of partially
monotone networks is input-convex networks, which are
built for fast inference [1]. Our work is the first one using
the fact that non-negative DNNs are order-preserving mono-
tone functions to explicitly prove that they are not universal
approximators; we are also the first pointing out its geomet-
ric consequences and their implications in neuroscience, as
well as the first to extend these theoretical results to CNNG.

3. DNNTs are not universal approximators

DNNs are universal approximators [16, 9, 15] (para-
phrased in Theorem 3.2): given a large enough network,
it can learn (represent) a continuous function arbitrarily
well. Throughout this paper, we are not concerned about
the learning process per se, but more about its performance
upper bound. Given unlimited resources (e.g., time, en-
ergy, compute units), can networks of a certain structure
learn a function at all? If it can, we say such networks can
represent such a class of functions. We show below that
non-negative DNNs (all weights non-negative, abbreviated
as DNN™) are not universal approximators (Theorem 3.3);
thus, having both positive and negative weights is necessary
for universal approximation. We start by defining the prob-
lem and then follow with our key observation: DNN*s are
composed of order-preserving monotone functions (Defini-
tion 3.4, Lemma 3.1); therefore, non-negative DNNs are all
order-preserving monotone functions (Theorem 3.1). With
this key property of DNN™ in mind, we can then show that
DNNs cannot solve XOR and are therefore not universal
approximators.
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3.1.DNN™

Definition 3.1 (DNN). A feedforward fully-connected
(FC) neural network architecture is given by the tuple
(®,n0,n1,n2,...,n7), where L € NT is the number of
layers, n; € N is the number of units of layer I, | € [L];
® : R™ — R™ is a point-wise nonlinear non-decreasing
function, and it defines the non-linear component of layer
l. We call ® the activation function. The linear compo-
nent of the transformation from layer | — 1 to | is given
by the weight matrix W) € R™*"t-1 and bias vector
b € R™. Collectively, the function given by a DNN with
the above architecture tuple (®,n9,n1,na,...,ny) takes
input x € R™ and is defined as following:

F:R™ R, F(x)=®WHewL-1
L B(WWx bWy pED) LB x e R,
ey

Non-negative DNNs (DNN*s) are DNNs with all weights
non-negative (without any constraint on the bias terms).

Definition 3.2 (DNN™T). DNNT is a DNN with all non-
negative weights. F* : R — R"z,

Frx)=®(W® . dWO _ x...+bl)... b))
vielr], wW® >0 bdecRr™

Remark 1 (Activation function ®). We only impose one
constraint to the activation function ® in addition to it being
non-linear: it must be non-decreasing. Popular choices of
activation function fall into this category (e.g., ReLU, leaky
Rel.U, sigmoid, tanh, etc.).

Throughout the paper, we boldface ® to emphasize it is a
point-wise function on the vector space and to distinguish
it from its base form ¢ : R — R. By point-wise, we mean
o(x) = (¢(I1)a ¢($2)’ e ¢($nz))

Two examples of ¢ are given below:

0 <0
r x>0

1

e—<T

ReLU : ¢(x) = {

Remark 2 (Extensions). Definition 3.1 presents the most
classical form of DNN as defined in the original universal
approximator papers [ 16, 9, 15]. Such DNNs are also called
multi-layer perceptrons (MLPs). Since the 1990s, variants
of the basic operations have evolved. We will discuss some
of these extensions in section 5 and then prove that all of our
results in sections 3 and 4 generalize to these extended DNN
architectures.

Wi € [ni—1],5 € [ni], wi; >0

W
W
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3.2. DNN's are order-preserving monotone func-
tions

We are particularly interested in a concise description of
the class of functions representable by DNN ™. Intuitively,
by constraining all weights to be non-negative, the possible
transformation operations of the linear components of the
functions are limited, which cannot be overcome by trans-
lations given by the bias terms, even though the bias terms
can change within the full range of R. This means that ro-
tations or reflections that result in a change of orthant are
impossible. One important consequence of these limitations
is that the composite function becomes a non-decreasing
monotone function in high-dimensional space. Below, we
formally prove these ideas by first defining a partial order-
ing in the high-dimensional vector space (Definition 3.3),
and then by proving DNN*s are order-preserving functions
(Theorem 3.1).

Definition 3.3 (=, partial ordering on R™). For any pair of
X,y € R", we define a partial ordering”

x=<y = <y VkE|[n]

Definition 3.4 (order-preserving monotone function,
R™ — R™). For a function T : R™ — R", we say T
is a order-preserving monotone function when for any
x,y € R™

x 2y = T(x) 2T(y).

Lemma 3.1 (closure of order-preserving monotone functions
under sum, positive scaling, and translation). Given an affine
transformation T' : R™ — R™ with a weight matrix W of
all non-negative entries:

T(x)=Wx+b, xeR" W € Rgém,b e R".

We observe such T is a monotone function (Def 3.4). That is,
Vx,y € R™,

x 2y = T(x) 2 T(y).

See proof on page 10.

Since the activation function of DNN™ is also a non-
decreasing monotone function, we immediately have F'T is
also an order-preserving function because it is the composite
of order-preserving functions.

Theorem 3.1 (DNN™ is order-preserving monotone func-
tion). A DNNT FT : R™ — R"™ is an order-preserving
monotone function (Defn 3.4). That is, any X,y € R"°,

x=xy = F(x) 2 F*(y).

See proof on page 10.

2This is a standard order induced by the positive cone R ™.

3.3. DNN*s are not universal approximators

Intuitively, DNN™ being an order-preserving monotone
function means it cannot solve any classification problems
where order reversal is required. We will use this idea to
prove DNN™T cannot solve XOR, and thus they are not uni-
versal approximators (Theorem 3.3). Below we paraphrase
the universal approximator theorem from Hornik’s 1989 pa-
per.

Theorem 3.2 (Multilayer feedforward networks are universal
approximators (paraphrased from Hornik 1989 [15])). Let
C(K,R™) denotes the set of continuous functions from a
compact domain K C R™ to R™. Then for every m &€
N,n € N, forall K C R™, f € C(K,R"), and for all
€ > 0, there exists a DNN F' (Definition 3.1) such that

sup [f(x) — F(x)| <€
xeK

One may notice, in the original universal approximator
proofs [16, 9, 15], activation functions were required to be
continuous, bounded, and non-constant. Thus for DNNs
with non-decreasing monotone activation functions, they are
all universal approximators. However, this is no longer true
when all weights are constrained to be non-negative, as we
will prove below by showing a counter example: DNNT
cannot solve XOR.

Definition 3.5 (XOR-continuous). Let x € [0,1]% f :
0,12 5 R
2)

f(x1,22) = 21 + 22 — 22122
Note: f(0,0)=f(1,1)=0; f(1,0)=f(0,1)=1.

Remark 3 (XOR-discontinuous). We also define a discon-
tinuous version of XOR for the readers’ convenience. Such a
definition variation does not alter our result (Theorem 3.3)
in any way.

Let x € [0,1]? and ty,t2 € (0,1), f:[0,1]* — {0,1}

flz) = 0,[x1 > t1 and 2o > ta] or [21 < t1 and 25 < 9]
N 1,[z1 > t; and za < to] or [x1 < t1 and 22 > to].
3)

Theorem 3.3 (DNNT is not a universal approximator).
DNN™s are not universal approximators. That is, there
exists a combination of (m,n, K, ) where m € Nyn € N,
K CR™, f e C(K,R"™), and exists an € > 0 such that for
all DNNT F* (Definition 3.2),

Ix € K, suchthat |f(x) — FT(x)| > €

Proof. 1t suffices to find one combination (m,n, K, f) such
that no F'™ could approximate f arbitrarily well. XOR,
(m = 2,n =1,K = [0,1],f = Defn3.5), is such a
combination, as we will prove below in Corollary 3.3.1.



Corollary 3.3.1 (DNN™ cannot approximate XOR). For
f as defined in Definition 3.5, 3 ¢ > 0 such that ¥V F~T
(Definition 3.2), 3 x € R? such that |f(x) — F*(x)| > €

Proof. We will prove by contradiction. Assume DNNT F+
can approximate XOR f well, only with an error term of
e > 0 for all x € R,

Now lets consider three points (0,0), (1,0), (1,1), we
must have

|[F*(0,0) — f(0,0)] <, 4)
|[F*(1,0) = f(1,0)] <, (5)
|F+(171)_f(171)| <e€ (6)

From XOR definition 3.5, we also have f(0,0)=f(1,1)=0,
£(1,0)=£(0,1)=1, therefore,

[F(0,0)] <e,
|FT(1,0) — 1] <e = 1—-e< FT(1,0) < 1+e¢
|[FT(1,1)] <e.

We can pick any € < 0.5 and have
F*(0,0) < F*(1,0) 7
F*(1,1) < F*(1,0)

This is obviously contradictory to the fact that F'* is is order-
preserving monotone function, that is:

F7(0,0) < F7(1,0) < F7(1,1) )
The same logic applies to € > (.5, and for our proof we only
need to find one such €. Therefore, 3¢ > 0, such that for all
F* we cannot approximate XOR f e-well. O

Therefore, there does not exist an F'* that can approxi-
mate XOR f arbitrarily well. Thus F'* is not a universal
approximator. O

From Theorem 3.3, we have that DNNs with non-negative
weights are not universal approximators — they cannot even
solve XOR. This is because they are order-preserving mono-
tone functions. Can we overcome this limitation by flip-
ping the sign of a single weight to make the network XOR-
capable? The answer is yes, and we illustrate this result in
Figure 1, panel C: in a 3-unit single hidden layer network,
flipping one output edge of one hidden unit negates the first
quadrant, thus sculpting it out of the pink class region and
joining it with the third quadrant.

3.4. Implication in neuroscience

How does our discussion on XOR pertain to the brain?
Let’s think about a simple discrimination task where the
animal has to make a decision based on an input stimuli that

has two features = € {0,1}2. For example, a deer has to
tell toxic leaves apart from edible leaves. Due to seasonal
changes, toxic leaves could be either green straight ((0, 0)) or
red curves ((1, 1)); edible leaves could be either green curved
((0,1)) or red straight ((1,0)). To survive, the deer must be
able to discriminate between toxic and edible leaves where
the decision boundary follows exactly the XOR pattern. In
fact, any discrimination task taking stimuli of the form x €
{0, 1}? where the decision is dependent on both features is
an XOR task [2]. Only after inhibitory connections evolved
could organisms survive in more complex environments and
perform more complex tasks.

4. Geometric intuitions of DNN™ in R"

So far we have proven feed-forward, fully connected neu-
ral networks without any negative weights are not universal
approximators (Theorem 3.3) due to their order-preserving
nature (Theorem 3.1). Next we will hone in on the concept
of limited representation capacity by delineating three types
of classification problems that DNN¥s fail to solve (Fig-
ure | left column). These will also provide some geometric
intuition on order-preserving functions. We summarize all
theoretical results in R? in Figure 1 for intuitive comprehen-
sion. We prove all cases in finite dimensions R, n € Z% in
the three corollaries below.

1. Corollary 3.1.1 notes that DNN*s cannot solve a clas-
sification problem that requires the decision boundaries
to have segments with a positive slope (R?), or a sec-
tion of its decision hyperplane having a normal with
all positive elements (R™). This is illustrated in Fig-
ure | panel A). This follows from the fact that positive
weights can only form decision boundaries that have
negative slopes.

2. Corollary 3.1.2 notes that DNN s cannot solve classifi-
cation problems where there exists a class whose deci-
sion boundary forms a closed shape (R?), or a closed
region (R™). Order-preserving means that for all units
in the non-negative DNNSs, their activation gradients
point towards the positive directions of all dimensions
(top and/or right in R?). However, for a closed-shape
decision boundary, it requires the gradient to point in
opposite directions (both towards and away from the
partition), which is not doable with non-negative DNNs.

3. Corollary 3.1.3 notes that DNN™Ts cannot solve classifi-
cation problems where the partition formed by the de-
cision boundaries results in a disconnected set for one
class (path-disconnected regions in the input feature
space). This is a generalized topological explanation of
why DNN*s cannot solve XOR.
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Figure 1. DNNs with only non-negative weights (DNN*s) are NOT universal approximators. Three problems not solvable by DNN™
are presented here. All red colors in the plots indicate changes brought by flipping some weights’ polarities to negative such that the binary
classification problems on the left can be solved by the DNN. A) DNN*s cannot solve problems where the decision boundaries contain any
segment of positive slope (Corollary 3.1.1). Take the 2-hidden-unit network as an example: by flipping a single input weight to negative
(notice red decision boundaries), the problem on the left becomes solvable. B) DNN*s cannot solve binary classification problems where
there exists a decision boundary that forms a closed shape (Corollary 3.1.2). Take the 4-hidden-unit network as an example: flipping a single
input weight for each of the two middle units allows decision boundaries of positive slopes to form, and further, flipping both input weights
of the bottom unit allows the activation gradient to flow in the opposite direction (opposite to the order-preserving gradient, which is always
to the top and/or right). These changes collectively make the closed-shape problem solvable. C) DNN™s cannot solve binary classification
problems where the partition formed by the decision boundaries results in a disconnected set for one class (Corollary 3.1.3), e.g., XOR
(Theorem 3.3). By flipping a single output weight of a single hidden unit, the top right quadrant can be sculpted out of the pink class, making
the network XOR-solvable.

4.1. A formal setup of decision boundary and par-
tition of set

In section 4, we focus on binary classification problems
with n input features. This means our target function is in
the form f : K — {0, 1}, where K is a compact domain and
K C R"™. The three corollaries can be easily extended into
multi-class scenarios: whenever there exist two classes that
satisfy the corollary statements, then the entire classification
problem cannot be solved by DNN ™.

Instead of taking the angle of function approximation, in
this section we set up classification problem f : K — {0,1}
as a partition P of compact domain K.

Definition 4.1 (Regions). P is a partition of the compact
domain K, where P = {R : R C K C R"}. We call the
elements of P regions. A single class in the classification
problem can be the union of one or multiple regions. Further,
for P to be a partition of K, it satisfies these properties:

1. The family P does not contain the empty set, that is

0¢ P,
2. The union of the regions is K, that is U{R} = K;

3. All regions are pair-wise disjoint, that is VR, Ry €
P, R175R2 — RlﬂRQZ(Z),'



4. Within each region f is constant, i.e., VR € P,Vx €
R, f(x) = c where cis a constant. For example, in our
binary classification case, ¢ € {0,1};

5. Two adjacent regions belong to different classes.

Definition 4.2 (Decision boundary). For each region R in
the partition P = {R : R C K}, the boundary of region R
is given by

OR = {x € R : for every neighborhood O of x,
ONR#Dand ON(K\R) #0}. (9)

The collection of the boundaries of all regions form the
decision boundaries of the classification problem f, and is
denoted by {OR}.

Remark 4 (Neighborhood of the decision boundary). Since
two adjacent regions belong to different classes, then we
must have points within the neighborhood of the decision
boundary that belong to two different classes.

Consider the e-neighborhood of a point d on the deci-
sion boundary, i.e., for a point d € OR, consider its e-
neighborhood O = {x € K : |x — d| < €,€ > 0}. Per the
definition of boundary and the last property of region defini-
tion, we must have 3A, B € O, such that f(A) # f(B).

Remark 5 (Piecewise linear approximation of the decision
boundary). Since we can approximate any function with
piecewise linear functions up to some arbitrary accuracy
[17], here we approximate the decision boundaries {OR}
with a family of linear functions L = {L}, where L = {x €
K'CK:ax+b=0,acR"beR}. {L}are connected
line segments in R? or connected hyperplane sections in
higher dimensions R". We always have L C R™~!, and a is
the normal to the hyperplane L. Within the € region of the
boundary, based on the last property of the partition { R},
we have the following:

f@)=c,Vee{re K:0<ax+b<e¢€}
flx)=cy,Vze{r e K:—e<ax+b<0}

c1 # co, e > 0is small  (10)

On a side note, decision boundaries are essentially the
discontinuities of f where the outputs of f switch between
0 and 1. Although the original universal approximator the-
orem proofs require f to be continuous, readers should not
be too concerned on the continuity of f for the following

2¢ should be small such that z is within the immediately adjacent classes
c1 & c2; it should also be larger than the linear approximation error region
|£ — OR|. We assume in our paper the classification problems are well-
behaved enough that they can be reasonably well approximated by piecewise
linear functions and we can always find such e.

reason. We could easily relax the decision boundaries from
line into a band where f gradually switches between 0 and
1 in this band. Such relaxation does not alter any of our
conclusions in the following 3 corollaries as we can always
limit the bandwidth to be smaller than € so that all of the
above definitions still hold.

4.2. Geometric intuitions of DNN™

Corollary 3.1.1. (Boundary orientation, in R™). DNNs
with only non-negative weights cannot solve classification
problems where the decision boundaries { L} have any seg-
ment L with a normal a = (ay,...,a,) where 31 # j €
[n], aia; <0, ie., positive slope in R?.

See proof on page 10.

Corollary 3.1.2. (Closed shape, in R™) DNNs with only non-
negative weights cannot solve binary classification problems
where there exists a regions R that is a closed set, i.e., the
decision boundaries form a closed shape in R2.

See proof on page 10.

Definition 4.3 (path-disconnected point pair). Suppose that
X is a topological space. For a pair of points x1,x2 € X,
x1 and x4 are path-disconnected if there does not exists a
continuous function (path) f : [0,1] — X where f(0) =
z1, f(1) = z2.

Definition 4.4 (disconnected space in R?). A space X C R?
is path-disconnected if there exists x1,xo € X such that xq
and x5 are path-disconnected. 3

Corollary 3.1.3. (Disconnected space, in R™.) DNNs with
non-negative weights cannot solve a binary classification
problem where there exists a class that is a disconnected
space.

See proof on page 10.

These three corollaries point to the fundamental flaw of
DNNs: however many layers they have, each penultimate
layer unit can only form a single continuous decision bound-
ary that is composed of segments having negative slopes
(or composed of hyperplanes having all-positive normal).
Adding more layers or adding more nodes to each layer of
such a network can produce more complex-shaped decision
boundaries (Figure 1, panel B, middle column), but cannot
form boundaries of more orientations, or form a closed re-
gion, or sculpt the input space such that disconnected regions
can be joined. Therefore, taking negative weights away from
DNNss drastically shrinks their repertoire of representable
functions. For real-world problem solving, it is crucial to
have both positive and negative weights in the network.

3An example of disconnected space in R? is the second and fourth
quadrant that form class 0 in XOR.
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5. Extension to convolutional neural networks

In this section, we will discuss and prove that our theoreti-
cal results in section 3 and 4 are generalizable to many forms
of DNN that are variants of the MLP definition (Def 3.1).
We are particularly interested in the family of convolutional
neural networks (CNNs) since their activity space closely
resembles those observed in the visual cortex and auditory
cortex in the brain, as shown by various correlation stud-
ies [4, 19].

Essentially, substituting matrix multiplication with convo-
lution (Definition 5.1) and adding additional max-pooling
layers (Definition 5.2) makes a CNN [23, 24, 21]. The uni-
versality of CNNs has been explicitly proven [34, 7, 30, 14].
Additionally, one can further add skip connections (Defini-
tion 5.3) to make a residual network [13].

We will discuss how having convolution layers and
adding skip connections make DNNs equivalent to our orig-
inal MLP definition and thus subject to the same limited
representation power when all weights are non-negative; we
will also show our results are generalizable to DNNs with
additional max-pooling layers since the order-preserving
property of DNN™T holds in general.

5.1. Convolution layer

The convolution operation between an input (normally
an image) and a single filter is defined below. For the con-
volutional layers in CNN, instead of matrix multiplication,
multiple filters convolve the input, and the values in the filters
are the weights in CNN. It can be shown that all convolution
operations can be converted into matrix multiplications [5],
where all the filters are converted into the form of Toeplitz
type matrices and all images are vectorized. For more details,
we refer readers to the universality proofs of CNN [34]. Ther-
fore, a convolutional neural network can be converted into a
MLP (Definition 3.1). Therefore, for a convolutional neural
network with all non-negative weights, all of our results in
this paper hold.

Definition 5.1 (Convolution 2D). The convolution O :
RM*N s Rrmxn _y RIM=m+D)x(N=n+1) pbonyween an input
(image) I € RM*N and a kernel (feature map) K € R™*™
is given by

n

0(i, 7) :zm:ZI(i+k—1,j+l—1)K(k,l),
k

=11=
ieM—-m+1],je[N—-n+1]

—

1D
5.2. Max pooling layer

Since max pooling functions are order-preserving mono-
tone functions as well, by the closure of monotone functions
under compositionality, we further have DNNs with max
pooling layers follow all the results in the previous sections.

Definition 5.2 (Max-pooling). Max-pooling functions are
pool : R" — R, pool(x) = max(z;), where x =
(.131,.. .7371‘7...,7,‘»”).

Lemma 5.1 (Max pooling are order preserving). Max-
pooling functions are order-preserving monotonone func-
tions. Equivalently,

x Xy = pool(x) < pool(y) (12)

Proof. Without loss of generality, for any pair of points
X = (xlv"'axiw"yxn)ay = (ylv"‘ayia"'ayn) € R™
that follow the order x =< y, assume their max pooling
output is given by the p" and q'" dimensions, respectively.
Then we have

Vi€ [n],z; <zp

Vi€ [n]ﬂyj X Yq-

Also by the ordering x <y, we have y,, > x,,, which means

pool(x) = Tp S Yp S Yg = pool(y). (13)

Thus max pooling functions are order-preserving monotone
functions. O

5.3. SKip connections

A skip connection connects two non-adjacent layers, e.g.,
layers ({—2) and I, through identity mapping (Definition 5.3).

Definition 5.3 (Skip connections). Each layer with an in-
coming skip connection is given by f : R"-1 — R™ :

FO) = 2(WOx+b) 411 (x),

I"e{o,...,1-2}

We can always convert a DNN with skip connections
into a classical MLP (Definition 3.1) by adding dummy
units in the intermediate layers (in (I — 1) and [) and setting
their incoming and outgoing weights to match the identity
mapping of the skip connection, i.e., weights of each unit
only having a single 1 entry where the skip connection is and
0 elsewhere. Therefore, for a DNN with skip connections,
all of our results in this paper hold.

6. Conclusion and Discussion

We proved that DNNs with all non-negative weights (i.e.,
without inhibitory connections) are not universal approxi-
mators (Theorem 3.1). This is because non-negative DNNs
are exclusively order-preserving monotone functions (Theo-
rem 3.1). Some geometric implications of this property in
the finite euclidean space R" are proved in Corollaries 3.1.1-
3.1.3. Specifically, each output unit in a network without
inhibitory connections can only form a single continuous
decision boundary that is composed of hyperplane sections



having a very particular orientation (hyperplane with all-
positive normal). Intuitively in R? input space, this means
only forming a continuous line composed of segments hav-
ing negative slopes. The addition of inhibitory connections
to the networks allows more complex boundaries to form
(e.g., boundaries of positive orientations (Corollary 3.1.1)
and of closed shapes (Corollary 3.1.2)); the addition of inhi-
bition also allows for sculpting/folding of the representation
space (Corollary 3.1.3). Together, these results prove that
both DNNs and brains, which can be abstracted as networks
with non-decreasing monotone activation functions, need
inhibitory connections to learn more functions.

How translatable are our theoretical results on DNNs to
brains? Under the assumption that the activation functions
of all neurons are non-decreasing, our theoretical results
directly shed light onto the long-standing question of why
brains have inhibitory connections. We recognize there are
types of questions that cannot be answered by DNN theory.
For example, the learning process of DNNs differs from
biological systems [25], DNNs do not follow Dale’s prin-
ciple [8], units in DNNs do not spike, etc. We emphasize
our proof does not rely on any assumption that involves the
above discrepancies between DNNs and brains; instead, our
proof only relies on the non-decreasing activation function
assumption. The simplicity of our assumption is the sole rea-
son behind why our results in general hold for many forms
of DNN that have been experimentally shown to resemble
the brain 5. Our answer from a representation-capacity point
of view supplements the dynamic system story of E/I bal-
ance and provides new perspectives to these long-standing
neuroscience questions.

Our current work is just a first step in understanding the
representation space of networks from the lens of connection
polarity. What we have proven is a first-order property of
the network concerning the existence of negative connec-
tions. The next step is to look at the second-order property
that concerns the configuration of connection polarities. For
this second-order property, a strict non-negativity constraint
is no longer imposed on the network weights; instead, we
constrain the connections to follow a specific polarity config-
uration, or in the neuroscience language - a circuit rule. We
will illustrate the feasibility of this idea and its significance
with an example: in the cortex, excitatory and inhibitory
neurons connect / synapse in very different manners, and
they follow a very stereotypical pattern: local excitation,
broad inhibition. Such a configuration principle has been
suggested to be the underlying mechanism of surround inhi-
bition [3, 29], an important computation process that allows
for context-dependent activation and redundancy reduction.
Based on our Corollaries 3.1.1-3.1.3, it is very likely that
in a local subspace, the largely excitatory sub-network is
order-preserving monotone and only forms continuous deci-
sion boundaries of negative slopes; on a global level, such

communities of subspaces are connected through inhibitory
connections and collectively form complex decision bound-
aries. It is an exciting future direction to connect these
geometric properties with the relatively better-understood
functional significance of neural circuits. Similar ideas can
be explored in the canonical circuits in decision making [28]
(e.g., winner take all). How circuit rules translate into the
geometric constraints on the representation space has been
largely unexplored. It was a route more regularly taken in
the earliest era of DNNs (perceptrons, specifically) [27]
and became increasingly more challenging as the size of the
network grew; we look forward to building on top of the
theoretical work presented in this paper and bridging the
gap between network topology (E-I configuration) and the
associated representation space.
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