
Truly Subquadratic Time Algorithms for Diameter and Related1

Problems in Graphs of Bounded VC-dimension2

Timothy M. Chan* Hsien-Chih Chang† Jie Gao‡ Sándor Kisfaludi-Bak§
3

Hung Le¶ Da Wei Zheng‖
4

January 4, 20265

Abstract6

We give the first truly subquadratic time algorithm, with eO(n2−1/18) running time, for computing7

the diameter of an n-vertex unit-disk graph, resolving a central open problem in the literature. Our8

result is obtained as an instance of a general framework, applicable to different graph families9

and distance problems. Surprisingly, our framework completely bypasses sublinear separators (or10

r-divisions) which were used in all previous algorithms. Instead, we use low-diameter decompositions11

in their most elementary form. We also exploit bounded VC-dimension of set systems associated with12

the input graph, as well as new ideas on geometric data structures. Among the numerous applications13

of the general framework, we obtain:14

1. An eO(mn1−1/(2d)) time algorithm for computing the diameter of m-edge sparse unweighted15

graphs with constant VC-dimension d. The previously known algorithms by Ducoffe, Habib, and16

Viennot [SODA 2019] and Duraj, Konieczny, and Potȩpa [ESA 2024] are truly subquadratic only17

when the diameter is a small polynomial. Our result thus generalizes truly subquadratic time18

algorithms known for planar and minor-free graphs (in fact, it slightly improves the previous19

time bound for minor-free graphs).20

2. An eO(n2−1/12) time algorithm for computing the diameter of intersection graphs of axis-aligned21

squares with arbitrary size. The best-known algorithm by Duraj, Konieczny, and Potȩpa [ESA22

2024] only works for unit squares and is only truly subquadratic in the low-diameter regime.23

3. The first algorithms with truly subquadratic complexity for other distance-related problems,24

including all-vertex eccentricities, Wiener index, and exact distance oracles. In particular, we25

obtain the first exact distance oracle with truly subquadratic space and eO(1) query time for any26

sparse graph with bounded VC-dimension, again generalizing previous results for planar and27

minor-free graphs.28

*Siebel School of Computing and Data Science, University of Illinois at Urbana-Champaign. Email: tmc@illinois.edu.
Supported by NSF grant CCF-2224271.

†Department of Computer Science, Dartmouth College. Email: hsien-chih.chang@dartmouth.edu.
‡Department of Computer Science, Rutgers University. Email: jg1555@rutgers.edu. Gao would like to acknowledge NSF

support through CNS-2515159, IIS-2229876, DMS-2220271, DMS-2311064, CCF-2208663, CCF-2118953.
§Department of Computer Science, Aalto University, Finland. Email: sandor.kisfaludi-bak@aalto.fi. Supported by the

Research Council of Finland, Grant 363444.
¶Manning CICS, UMass Amherst. Email: hungle@cs.umass.edu. Supported by NSF grants CCF-2517033 and CCF-2121952,

NSF CAREER Award CCF-2237288, and a Google Faculty Research Award.
‖Institute of Science and Technology Austria, Klosterneuburg, Austria. Work in this paper was done while at the Siebel

School of Computing and Data Science, University of Illinois at Urbana-Champaign.

Contents29

1 Introduction 130

1.1 Main Results on Diameter . 231

1.2 Technical Overview . 232

1.3 Other Distance-related Problems . 733

2 Preliminaries 934

2.1 Graphs and Low-diameter Decomposition . 935

2.2 VC-dimension . 1036

2.3 Stabbing Path and Interval Representation . 1237

2.4 Geometric Data Structures . 1238

2.5 Handling of Small Pieces . 1339

3 Framework for Diameter and Eccentricities 1440

4 Diameter/Eccentricities in Sparse Graphs of Bounded VC-dimension 1641

5 Diameter/Eccentricities in Square Graphs 1742

6 Diameter/Eccentricities in Unit-square Graphs 2043

7 Diameter/Eccentricities in Unit-disk Graphs 2044

7.1 Restriction to Fixed Types . 2145

7.2 Implementation of the Neighborhood Growing Step . 2246

7.3 Analysis for Eccentricities . 2647

7.4 Analysis for Diameter . 2748

8 Framework for Distance Oracles (and Wiener Index) 2849

9 Distance Oracles for Sparse Graphs of Bounded VC-dimension 3050

10 Distance Oracles for Square Graphs 3151

11 Distance Oracles for Unit-square Graphs 3252

12 Distance Oracles for Unit-disk Graphs 3353

13 Conclusion and Open Questions 3454

A Low-diameter Decompositions 3955

A.1 Sparse Graphs . 4056

A.2 Geometric Intersection Graphs . 4057

B VC-dimension Lemma 4258

B.1 Type-1 M -Walks . 4359

B.2 Type-2 M -Walks . 4560

C Geometric Data Structures 4561

C.1 Reductions Between Data Structure Problems . 4562

C.2 Data Structure for Square Graphs . 4863

C.3 Data Structure for Unit Disks . 5064

C.4 Data Structure for Unit Squares . 5265

D Switching Interval Representation between Different Stabbing Paths 5666

E Handling Small Pieces 5867

E.1 Patterns . 5868

E.2 Diameter and Eccentricities using Patterns . 5869

E.3 Boundary Weighted BFS in Geometric Intersection Graphs 5970

E.4 Exact Distance Oracles . 6071

1 Introduction72

A simple algorithm for computing the diameter of an unweighted n-vertex graph is to run a BFS from73

every vertex of the graph. For sparse graphs or intersection graphs of various classes of geometric objects74

(such as unit disks), BFS can be implemented in eO(n) time, leading to an algorithm to compute the75

graph diameter in eO(n2) time1. Can we beat this naïve quadratic-time algorithm? More precisely, can we76

compute the diameter in truly subquadratic time O(n2−ϵ) for some fixed constant ϵ > 0 for these graphs?77

This simple question has motivated the development of a broad range of techniques that have driven78

algorithmic research for decades.79

For general sparse graphs, even distinguishing the diameter between 2 and 3 in truly subquadratic80

time is impossible, assuming the Strong Exponential Time Hypothesis (SETH) [RW13]. (For dense81

undirected graphs, one can exploit the matrix multiplication subroutine to compute the diameter in82

O(nω) time [Sei95], where ω< 2.371339 is the matrix multiplication exponent [ADW+25].) Given the83

negative result, it is natural to consider more structured classes of sparse graphs, such as planar and84

minor-free graphs. For planar graphs, Cabello [Cab18] designed the first truly subquadratic algorithm85

for the diameter problem by introducing a new technique based on abstract Voronoi diagrams. This86

technique heavily exploits planarity and hence fails for minor-free graphs. Then Ducoffe, Habib, and87

Viennot [DHV22] devised a new technique based on VC-dimension to compute the diameter of minor-88

free graphs in truly subquadratic time. Both the Voronoi diagram and VC-dimension techniques are89

major milestones in algorithm design for planar and minor-free graphs, opening the door for solving90

other distance-related problems in truly subquadratic complexity (time or space), such as designing91

compact (exact) distance oracles and computing eccentricities or Wiener index in planar and minor-free92

graphs [Cab18, GKM+21, LP19, DHV22, LW24, KZ25].93

For geometric intersection graphs of objects in the plane, designing a truly subquadratic time94

algorithm for the diameter problem has been much more challenging. A geometric intersection graph is95

a graph whose vertices are associated with objects in the plane, and edges correspond to object pairs96

that intersect.2 Unit-disk graphs—the intersection graphs of unit disks—are among the most basic97

and well-studied graphs in the geometric setting; alternatively, this is equivalent to constructing an98

unweighted graph based on a set of points in a metric space by connecting pairs of points whose distance99

is below some fixed threshold.100

While truly subquadratic algorithms have been ruled out for intersection graphs of unit segments, unit101

equilateral triangles, or unit balls (in 3D) under standard fine-grained complexity assumptions [BKK+22],102

the lower bound techniques for these objects fail for unit disks. Therefore, computing diameter for unit-103

disk graphs in truly subquadratic time has become a central open problem raised by many authors [CS16,104

BKK+22, DKP24, CGL24]. Such an algorithm points to a larger landscape where truly subquadratic105

results for basic geometric intersection graphs are possible. We note that even distinguishing the diameter106

between 2 and 3 in truly subquadratic time for unit-disk graphs remains open.107

Question 1.1. Can one compute the diameter of unit-disk graphs in truly-subquadratic time?108

Unlike planar graphs which are sparse, unit-disk graphs (and intersection graphs in general) can be109

dense: they can contain cliques of arbitrary size. Even computing the BFS tree in eO(n) time becomes non-110

trivial [CJ15]. Recently, Chang, Gao, and Le [CGL24] ported the VC-dimension technique for computing111

diameter of minor-free graphs to unit-disk graphs; similar to planar graphs, on a unit-disk graph, the112

radius-r balls for all integer values r also have bounded VC-dimension. A one-sentence summary of their113

technique is that they treated a (possibly large) clique as a single vertex, and designed a clique-based114

1Throughout this paper, eO(·) notation hides polylogarithmic factors, and O∗(·) hides no(1) factors.
2We represent an intersection graph by the objects themselves, so the input size is O(n) even if the graph could be dense.

1

separator hierarchy [dKMT23]. As a result, they obtained a subquadratic (eO(n2−1/18)-time) algorithm115

that could only compute an approximation of the diameter with an additive error at most 1 in unit-disk116

graphs. While the additive error is very small, their algorithm falls short of distinguishing between117

diameters 2 and 3. This suggests that computing the diameter exactly for unit-disk graphs requires a118

very different approach. (There are many examples in the general graph literature where allowing a119

small constant additive approximation can make the problem significantly easier to solve; for example,120

see [ACIM99].) For exact algorithms, Duraj, Konieczny, and Potȩpa [DKP24] adapted the technique by121

Ducoffe, Habib, and Viennot [DHV22], which is also based on VC-dimension and a stabbing path data122

structure, to the intersection graph of unit squares.3 However, their technique only works when the true123

diameter is small D = O(n1/4−ϵ) [DKP24] and more importantly, their stabbing path data structure does124

not work for unit disks, or even (non-unit) square graphs, as they heavily exploit the nice geometry of125

unit squares. (In fact, they explicitly asked, even when the diameter is a constant, if the diameter of a126

unit-disk graph can be computed in truly subquadratic time.)127

1.1 Main Results on Diameter128

In this paper, we give the first truly subquadratic algorithm for computing the diameter in unit-disk129

graphs, resolving Question 1.1 affirmatively. Moreover, our framework has many other applications and130

yields the first truly subquadratic algorithms for the intersection graph of axis-aligned (arbitrarily sized)131

squares, as well as arbitrary sparse graphs with bounded VC-dimension.132

Theorem 1.2. Let G be a graph on n vertices. We can compute the diameter of G by Las Vegas randomized133

algorithms in:134

• O∗(n2−1/18) time if G is the intersection graph of unit disks, and135

• eO(n2−1/12) time if G is the intersection graph of axis-aligned squares. For unit-square graphs, the136

running time is O∗(n2−1/8).137

• eO(mn1−1/(2d)) time if G has m edges and VC-dimension d. For the special case of Kh-minor-free138

graphs for a fixed h, the running time becomes eO(n2−1/(2h−2)).139

See Table 1 for the summary of our results on the diameter problem in comparison with previous work.140

(Incidentally, our result even slightly improves previous time bounds in the special case of Kh-minor-free141

graphs. The fact that the exponent of our algorithm for unit disks is the same as in Chang, Gao, and Le’s142

+1-approximation algorithm [CGL24] is a complete coincidence—the algorithms are very different.)143

1.2 Technical Overview144

All previous subquadratic diameter algorithms for planar and minor-free graphs for arbitrary diame-145

ters [Cab18, GKM+21, LW24, DHV22, CGL24] use sublinear separators (or r-divisions), which are not146

available for geometric intersection graphs that could be dense. A key highlight of our framework is that147

we completely bypass sublinear separators! Instead, we use low-diameter decompositions (LDD). LDDs148

have been used in recent breakthrough results, such as negative-weight shortest paths [BNW22] and149

(2− ϵ)-approximation for vertex cover on string graphs [LPS+24] (see the references in [BNW22] for150

more background). We stress that we only need the most elementary, non-probabilistic form of LDDs151

(dating back to [Awe85]), which are constructible simply by a number of “truncated” BFSes, and do152

not require expanders or flows. In some ways, they are even simpler than planar-graph separators or153

r-divisions.154

3All squares are axis-aligned in this paper.

2

graph class best previous new

planar eO(n5/3) [Cab18, GKM+21]

Kh-minor-free eO(n2−1/(3h−1)) [DHV22, LW24] eO(n2−1/(2h−2))

VC-dim.-bounded eO(min{Dmn1−1/d , mn}) [DHV22, DKP24] eO(mn1−1/(2d))

unit-square eO(min{Dn7/4, n2}) [DKP24] O∗(n2−1/8)

square eO(n2) [CS19] eO(n2−1/12)

unit-disk O(n2
Ç

log log n
log n) [CS16] O∗(n2−1/18)

Table 1. Time bounds of exact diameter algorithms for different classes of unweighted graphs. Here, n is the number
of vertices, m is the number of edges, D is the diameter, and d is the (generalized distance) VC-dimension. Squares are
axis-aligned.

In addition to LDD, our framework incorporates many new ideas about the usage of bounded VC-155

dimension as well as the design of geometric data structures. We will describe all three components of our156

framework in a little more detail below.157

Component 1: Low-diameter decomposition. For a given parameter ∆> 0, a low-diameter decompo-158

sition (LDD) decomposes the input graph into pieces of diameter at most ∆ such that the total number of159

boundary vertices of all the pieces is eO(n/∆). (It is helpful to imagine choosing ∆= nδ for some small160

constant δ, and hence the number of boundary vertices is truly sublinear.) The ability to control the161

total number of boundary vertices is reminiscent of r-division [Fre87] used for diameter computation in162

planar [Cab18, GKM+21] and minor-free graphs [LW22], but an important difference is that a piece in163

an LDD could have up to Ω(n) vertices, while in an r-division, every piece has truly sublinear size (for a164

typical choice of r). LDDs can be computed in eO(m) time for general graphs and eO(n) time for many165

classes of intersection graphs, as we will show (in Appendix A).166

Component 2: Bounded VC-dimension and stabbing paths. Since any sparse graph has a good167

low-diameter decomposition, an LDD itself is not sufficient for constructing truly subquadratic algorithms168

due to the aforementioned conditional lower bound based on SETH [RW13]. A recent line of work on169

the diameter problem has hinted at bounded VC-dimension as an overarching property: planar graphs170

(more generally, minor-free graphs) [CEV07, BT15, LP19, DHV22, LW24] and intersection graphs of171

pseudo-disks [ACM+21, DKP24, CGL24] (in particular, disks and squares) have bounded VC-dimension.172

Thus, we also assume that the input graph has a bounded VC-dimension.173

Given a set system (U ,F) with a ground set U and a family F of subsets of U , its VC-dimension is174

the cardinality of the largest S ⊆ U such that S is shattered by F—for every S′ ⊆ S, there is some X ∈ F175

such that X ∩ S = S′. Given a graph G, there are several different ways to form a set system of bounded176

VC-dimension; see Section 2. The simplest one is the set system of neighborhood balls (VG , {N r[v]}r≥0):177

we say that a graph G has VC-dimension4 at most d if its system of neighborhood balls has VC-dimension178

at most d. (N r[v] is the set of all vertices that are at a distance at most r from v, including v itself.) It179

was known that planar graphs have VC-dimension at most 4; Kh-minor-free graphs have VC-dimension180

at most h− 1; and intersection graphs of pseudo-disks have VC-dimension at most 4 [CGL24].181

There are two main ways that VC-dimension was used in the diameter computation: (1) stabbing182

path: constructing a path that stabs each neighborhood ball N r[v] a sublinear number of times (in the183

worst case or on average), and (2) distance compression: showing that there are few different distance184

4A more precise terminology is distance VC-dimension at most d; see Section 2 for clarification.

3

vectors to a fixed set of important vertices (i.e., the boundary of a piece in an r-division). The first185

approach has been very successful in the low-diameter regime: computing the diameter in time eO(Dn2−ϵd)186

where ϵd is a constant depending on the VC-dimension d [DHV22, DKP24]. The second approach works187

for the arbitrary-diameter regime, but either requires sublinear separators [LW24] or allows distance188

approximation [CGL24]. We overcome the limitation and inherent obstacles from both approaches and189

devise a method in the presence of low-diameter decomposition to compute stabbing paths even when190

the graph diameter is large. (In certain applications, we also manage to perform distance compression191

exactly without the presence of separators.)192

The basic idea of the stabbing path approach is to order the vertices from 1 to n, in such a way that193

each neighborhood ball N r[v] of radius r can be represented as a union of eO(n1−1/d) many intervals on194

the stabbing path.5 The existence of a spanning path with O(n1−1/d) stabbing (or “crossing”) number195

was first shown in a seminal paper by Chazelle and Welzl [CW89], and had found numerous applications196

in computational geometry, for example, in geometric range searching. Constructing a good stabbing197

path may seem to require knowledge of the entire set system of balls N r[v] in the first place (which we198

do not have, since our problem is to compute all N r[v]!). Fortunately, it turns out that by known random199

sampling techniques6, we only need to evaluate a small subset of balls to compute a good stabbing path;200

for example, in the unit disk or square case, the construction time is eO(n1+1/d) (more generally, the201

construction time is eO(nρ) for stabbing number eO(n/ρ +ρd−1) for a trade-off parameter ρ).202

Figure 1. Stabbing path and interval representation of disks. The yellow disk is represented by three yellow intervals, and
the green disk is represented by two intervals. The intervals representing different disks could overlap.

Let’s say v is one vertex in a diametral pair, whose shortest path distance realizes the diameter D. Given203

the interval representation, we can check in time linear to the number of intervals (eO(n1−1/d)) whether204

the union of all the intervals (and hence N r[v]) covers [1 : n]. If the answer is yes, then r is at least205

the diameter D. By iterating through every vertex v as a potential endpoint of a diametral path, we can206

check if r is greater than the true diameter D in eO(n2−1/d) time. To compute the interval representations207

of N r[v] for all vertices in V , the pioneering work of Ducoffe, Habib, and Viennot [DHV22] introduced a208

ball growing process: For each r, one computes the interval representations of {N r[v] : v ∈ V} from the209

interval representations of {N r−1[v] : v ∈ V} via the identity N r[v] =
⋃︁

u∈N[v] N̂
r−1
[u]. (For the base210

case r = 0, N0[v] = {v}.) This approach leads to running time eO(Dmn1−1/d) for sparse graphs [DKP24].211

For geometric intersection graphs, we cannot afford to access the neighbors of every vertex as it would212

result in Ω(n2) time, and hence, different ideas are needed to avoid explicitly accessing neighbors.213

For the intersection graphs of unit squares, Duraj, Konieczny, and Potȩpa [DKP24] devised a certain214

“neighbor-set data structure” to achieve total running time eO(Dn2−1/4). The factor of D in the running215

time seems inherent to this approach, and D could be as big as Ω(n). Furthermore, their data structure216

does not work for arbitrary squares or unit disks.217

5For a simpler exposition, we assume the worst-case bound on eO(n1−1/d) on the number of intervals representing N r[v]. In
the detailed implementation, we work with an amortized bound which is faster to compute.

6This is where all our algorithms use Las Vegas randomization.

4

To handle possibly large D, our new approach is to combine with low-diameter decomposition. First,218

by computing BFS trees from the boundary vertices of the LDD with parameter ∆, we could compute an219

estimated value τ ∈ [D−∆ : D]. Note that there are only a truly sublinear number of boundary vertices,220

and hence, the total running time of this step remains truly subquadratic. (In the case of geometric221

intersection graphs, we can implement BFS in eO(n) time using known techniques such as bichromatic222

intersections [CS16, Klo23, CGL24]. See Appendix A.2 for details.) If we have {Nτ[v] : v ∈ V}, then223

we only need to grow balls for another ∆ iterations (here ∆≪ D). However, we do not have access to224

{Nτ[v] : v ∈ V} explicitly. Our key idea here is to define a modified neighborhood ball N̂
r
[v] in a way that225

we can initialize N̂
τ
[v] =∅ to kick-start the ball growing process, and at the same time the information226

computed is sufficient to answer the question about diameter D. Therefore, the precise definition of227

N̂
r
[v] is somewhat tricky, tying directly to the pieces in the LDD; see Section 3 for the details. For sparse228

graphs (with bounded VC-dimension), we can afford to access the neighbors of every vertex explicitly.229

Hence, we could simply grow the modified balls {N̂ r
[v]} in O(∆) rounds in eO(∆ ·mn1−1/d) time. By230

choosing ∆= n1/2d (to balance with the eO(mn/∆) running time of BFS computation), this leads to a231

relatively simple diameter algorithm running in eO(mn1−1/(2d)) time, which is truly subquadratic for the232

arbitrary-diameter regime.233

Component 3: Geometric data structures. For geometric intersection graphs that are not sparse, we234

cannot afford to access the neighbors directly even with the modified neighborhoods, so more ideas235

are needed. The data structure subproblem for the ball growing step we need to solve is the following:236

assume the interval representations of N̂
r−1
[v] for every vertex v are precomputed and stored; given a237

query object s, compute the union of intervals in N̂
r−1
[v] for all objects v that intersect s. We can reduce238

this problem to the following:239

Problem 1.3 (Interval Cover). Given a set of N objects O and each object o ∈ O is associated with an240

interval Io ⊆ [1 : n]. Design a data structure to answer the following query:241

• COVERS?(q, I): Given a query object q and a query interval I ⊆ [1 : n], decide whether the union242

of intervals associated with the objects intersecting7 q in O covers the whole I .243

Problem 1.3 can be viewed as a generalization of range searching [AE99]: given a query object q, find244

the objects intersecting q. In the computational geometry literature, colored variants of range searching245

have been studied [GJS95, KRSV08, GJRS18, CHN20]. The above problem is an even more challenging246

variant, where each object is equipped with not a color but an interval. This interesting generalization247

has not been considered before, to the best of our knowledge. (There have been some prior works on248

time-windowed geometric data structures [BDG+14, BCE15, CHP19], but typically queries are associated249

with a time interval but not the input objects; even more crucially, the queries in those works are mainly250

about whether a property is true for some time value in a query interval I , rather than for all time251

values in I .) One reason the problem is more challenging than standard range searching is that it is not252

decomposable (if the input set is divided into two subsets, knowing the answers of a query for the subsets253

does not necessarily help with the overall answer).254

We note that en route to their unit square result, Duraj, Konieczny, and Potȩpa [DKP24] also255

formulated a non-standard geometric “neighbor-set data structure” problem, but their formulation256

appears more complicated, as they (and Ducoffe, Habib, and Viennot [DHV22] earlier) worked with257

symmetric differences of neighborhood sets. Our approach using interval representations is in some258

sense “dual” to these previous approaches, and is more natural, leading to a geometric data structure259

problem that is simpler to state.260

7Here we mean the objects intersect, not their associated intervals.

5

For unit squares, we give a solution to Problem 1.3 with N1+o(1) preprocessing time and N o(1) query261

time. Our data structure is deterministic, in contrast to Duraj et al.’s, which uses hashing techniques262

and inherently requires Monte Carlo randomization. For arbitrary squares, Duraj et al.’s data structure263

approach does not work at all. Although we are not able to obtain N o(1) query time for Problem 1.3264

either, we propose a simple method which divides the range [1 : n] into blocks of size b, and builds265

a data structure for rainbow colored intersection searching (a version of colored range searching) for266

each block. (See Appendix C.1 for details.) This yields eO(N · b) preprocessing and eO(L/b) query time,267

where L is the length of the query interval. This trade-off turns out to be sufficient to obtain a truly268

subquadratic algorithm in the end, for an appropriate choice of the parameter b.269

For unit disks, Problem 1.3 is related to the well-known Hopcroft problem8, and hence a query time270

o(N1/3) appears unlikely [Eri96]; however, to obtain a truly subquadratic time for diameter, we need271

O(Nδ) query time for tiny δ > 0 (since the total number of input and query intervals is Ω(n2−1/4) or272

worse in our application). We circumvent this issue entirely by partitioning the given set of unit disks into273

constantly many modulo classes (i.e., we partition the plane into cells of constant side-length (say 1/2),274

and take modulo classes of the index pairs of the cells). This way, if we take one cell □, the collection275

of disks from the same modulo class intersecting □ forms a pseudoline arrangement. When input disks276

are restricted to one modulo class, we are able to solve Problem 1.3 with N1+o(1) preprocessing time277

and N o(1) query time.9 These data structure results may be of independent interest to computational278

geometers. They do not follow directly from existing techniques. Instead, we propose a clever recursion,279

repeatedly and alternately taking lower envelopes and upper envelopes of pseudo-segments [AS00, Pet15].280

(Experts in geometric data structure may find this part interesting, and are encouraged to read Section C.3281

for the details.)282

Additional complications for unit disks. The fact that we have efficient data structures for unit disks283

only when restricted to a fixed modulo class creates a number of extra technical challenges:284

• Because we can only take union over balls from a fixed modulo class, the intermediate sets are no285

longer neighborhood balls, i.e., we need to work with a new set system. Fortunately, we can still286

prove that the (dual) VC-dimension of the new set system is at most 4, but only when the balls287

have the same radius r.288

• This condition in turn forces us to change the stabbing path—and all of its associated interval289

representations—every time we increment r. Fortunately, we show that the interval representations290

can be updated efficiently using random sampling techniques (with slightly worse amortized291

stabbing number eO(n/ρ +ρd)).292

• At intermediate steps, we may now need to work with balls from two or three set systems across293

different types. Fortunately, the combined set systems still have bounded VC-dimension (at most 8).294

• The extra overhead in switching stabbing paths is too costly since each stabbing path computation295

costs O(nρ) time, and we have to compute for eO(n/∆) pieces and O(∆) rounds. To achieve overall296

subquadratic time, we only work with pieces larger than a certain threshold A; for small pieces,297

we need to switch to a different method (based on distance compression), which achieves running298

time eO(n · |∂P|+ |P| · (|P|+ (|∂P|∆)d)) for each piece P of size at most A with boundary ∂P.299

All these details are explained in Section 7, but to illustrate the intricacies of the overall algorithm to the300

curious readers, the time bound for diameter for unit-disk graphs has the following form, where the301

8The Hopcroft problem tests, for a given system of points and lines in the Euclidean plane, whether any point lies on any
line. The total number of points and lines is assumed to be n.

9We do not break the Hopcroft problem’s lower bound as we only solve the data structure problem for one modulo class.

6

graph class best previous new

planar O∗(n3/2), O∗(n) [CGL+23]

Kh-minor-free eO(n2−1/(3h−1)) [LW24]

VC-dim.-bounded O(mn), O(n2) folklore eO(mn1−1/(4d+1))

unit-square eO(n2) [CS19] O∗(n2−1/16)

square eO(n2) [CS19] eO(n2−1/20)

unit-disk O(n2
Ç

log log n
log n) [CS16] O∗(n2−1/20)

Table 2. Construction time and space bounds of exact distance oracles for different classes of unweighted undirected graphs,
with eO(1) query time. We write out both construction time and space bounds only when they are different.

sums are over all pieces P of the LDD (which satisfies
∑︁

P |P|= O(n) and
∑︁

P |∂P|= eO(n/∆)):302

O∗

∆ · nρ +
∑︂

P: |P|>A

�

|∂P| · n+∆ · (n+ |P| · (n/ρ +ρ8))
�

+
∑︂

P: |P|≤A

�

n · |∂P|+ |P| · (|P|+ (|∂P|∆)4)
�

!

.303

Balancing cost by setting parameters ∆ = n1/18 and ρ = A=∆2 then yields O∗(n2−1/18). (Other variants304

of the algorithm for different graph classes and other related problems will have different expressions305

and different settings of parameters.)306

1.3 Other Distance-related Problems307

Our framework for computing diameter naturally opens up the possibility of solving other distance-related308

problems. Here, we focus on three well-studied problems: all-vertex eccentricities, exact distance oracles,309

and Wiener index.310

Eccentricities. To highlight the new challenges beyond diameter computation, let us begin with311

eccentricities. The eccentricity of a vertex v, denoted by ecc(v), is the maximum distance from v to any312

other vertex in G. Our goal is to compute ecc(v) for every v ∈ VG in truly subquadratic time. Observe313

that the diameter is the maximum eccentricity and hence, computing all eccentricities is often more314

difficult.315

For computing diameter, we kick-start the ball growing process with radius τ ∈ [D −∆ : D] and316

therefore we only need to grow in O(∆) interactions. The key challenge in computing eccentricities317

is that ecc(v) of some vertex v could be as small as D/2, and hence any ball growing process has to318

cover radii in the entire range [D/2 : D], which can be as large is Ω(n). Interestingly, our framework for319

the diameter problem also points us to a way to resolve this issue. Specifically, we grow the modified320

neighborhood ball N̂
r
[v] only for vertices in the same piece P of the low-diameter decomposition. The321

observation is that for any two vertices u and v in P, |ecc(u)− ecc(v)| = O(∆). Hence, to restrict to322

computing eccentricities of vertices in P, it suffices to grow modified neighborhood balls in O(∆) steps.323

(For different pieces, the ranges of radii could be vastly different.) As the range of radii is piece-specific,324

the stabbing path data structure also has to be piece-specific instead of being “global” as in the case of325

computing graph diameter. Our results are summarized in the following theorem.326

Theorem 1.4. Let G be a graph on n vertices. We can compute all-vertex eccentricities of G by Las Vegas327

randomized algorithms in:328

• O∗(n2−1/20) time if G is the intersection graph of unit disks, and329

7

• eO(n2−1/12) time if G is the intersection graph of axis-aligned squares. For unit-square graphs, the330

running time is O∗(n2−1/8).331

• eO(mn1−1/(2d)) time if G has m edges and (generalized distance) VC-dimension d.332

Exact distance oracle. An exact distance oracle is a data structure that, when given a pair of vertices,333

returns the shortest path distance of the vertices quickly. Our goal is to construct an oracle with a truly334

subquadratic space. For geometric intersection graphs, known oracles with a truly subquadratic space335

can answer a distance query approximately within an additive error of 1 [AdT24, CGL24]; for sparse336

graphs, the query time is close to linear (Ω(n1−ϵd)) for some small constant ϵd = 1/2O(d) depending on337

the VC-dimension d [DHV22].338

For square and unit-disk graphs and sparse graphs with bounded VC-dimension, we provide an exact339

oracle with a truly subquadratic space and polylogarithmic query time. Furthermore, our oracle can be340

constructed in truly subquadratic time; therefore, our result can be interpreted as solving the all-pairs341

shortest-path problem in truly subquadratic time. (Of course any such algorithm has to output an implicit342

representation of the shortest distances since the explicit output size is Ω(n2).)343

Constructing an exact distance oracle is more difficult than computing all-vertex eccentricities: the344

queried distance range is [0 : n]. In computing diameter and eccentricities, the modified ball N̂
r
[s] is a345

subset of the true neighborhood ball N r[s] and we compute N̂
r
[s] for all r ∈ [ecc(s)−O(∆) : ecc(s)+∆].346

However, if we query distance between s and t where dG(s, t)≪ ecc(s)−O(∆), then knowing the true347

neighborhood ball N r[s] for r ≥ ecc(s)− O(∆) (let alone its subset) does not tell us anything about348

dG(s, t). Our idea is to assign weights to vertices of G appropriately and incorporate vertex weight in the349

definition of N̂
r
[s], so that every vertex t belongs to N̂

r
[s] for some value of r ∈ [−∆ :∆]; the radius350

could be negative, which is somewhat counterintuitive. As the range of the (weighted) radii is now351

Θ(∆), the ideas we develop for computing the diameter and eccentricities now can be applied here. As352

distances with vertex weights are closely connected to the notion of generalized VC-dimension (formally353

defined in Section 2), we assume the input graph has a bounded generalized VC-dimension in the case354

of sparse graphs. All other graphs, such as geometric intersection graphs and minor-free graphs, have355

their generalized VC-dimension equal to the regular VC-dimension (of the neighborhood ball system).356

All of these ideas lead to our exact distance oracles for various types of graphs. See Table 2 for a357

comparison of existing results and ours.358

Theorem 1.5. Let G be a graph on n vertices. We can compute an exact distance oracles for G (by359

randomized Las Vegas algorithms) with the following guarantees:360

• O∗(n2−1/20) construction time and size and eO(1) query time if G is a unit-disk graph.361

• eO(n2−1/20) construction time and size and eO(1) query time if G is a square graph. For unit-square362

graphs, the construction time and size can be improved to eO(n2−1/16).363

• eO(mn1−1/(4d+1)) construction time, eO(n2−1/(4d+1)) size, and eO(1) query time if G has m edges and364

(generalized distance) VC-dimension d.365

Interestingly, if we ignore construction time, the above theorem implies the existence of subquadratic-366

size, eO(1)-time distance oracles for all (not necessarily sparse) graphs with bounded (generalized367

distance) VC-dimension, in particular, all pseudo-disk graphs.368

Wiener index. The Wiener index of a graph G is the sum of the distances between all pairs of vertices.369

Computing the Wiener index has been studied [CK97, CK09, WN09]; truly subquadratic algorithms are370

only known for planar and minor-free graphs [Cab18, GKM+21, LW24]. Here we provide the first such371

8

algorithms for graphs with bounded generalized VC-dimension and several geometric intersection graphs.372

Indeed, the algorithms for Wiener index are simple corollaries of our algorithms for exact distance oracles373

in Theorem 1.5 and therefore have the same running time guarantees.374

Theorem 1.6. Let G be a graph on n vertices. We can compute the Weiner index of G (by randomized375

Las Vegas algorithms) in:376

• O∗(n2−1/20) time if G is the intersection graph of unit disks.377

• eO(n2−1/20) time if G is the intersection graph of axis-aligned squares. For unit-square graphs, the378

running time is eO(n2−1/16).379

• eO(mn1−1/(4d+1)) time if G has m edges and (generalized distance) VC-dimension d.380

2 Preliminaries381

2.1 Graphs and Low-diameter Decomposition382

Graph notation. Let G = (VG , EG) be an unweighted undirected graph with n vertices and m edges.383

For two vertices u, v ∈ V , let dG(u, v) denote the distance between u and v in G. Often we will omit384

the subscript and simply write d(u, v) when the graph G is clear. The neighborhood of a vertex v ∈ VG385

is the set of vertices that are distance at most 1 to v, denoted by N[v] := {u ∈ VG : d(u, v) ≤ 1}. The386

k-neighborhood ball of a vertex v ∈ VG is the set of vertices with distance at most k from v, denoted by387

N k[v] := {u ∈ V : d(u, v)≤ k}. (Notice that N[v] = N1[v] and N k[v] = N[N k−1[v]].) Define the set of388

k-neighborhood balls as Nk
G := {N k[v] : v ∈ V}, and the set of all neighborhoods balls as BG :=

⋃︁

k N
k
G .389

Geometric intersection graphs. Consider a set S of n geometric objects in the plane. We define the390

geometric intersection graph G of S as the graph obtained by creating a vertex for every geometric object,391

and connecting two geometric objects if they intersect. When S consists of unit disks, i.e., disks of radius392

1, we refer to the geometric intersection graph G as a unit-disk graph. If S consists of axis-aligned unit393

squares, we refer to the geometric intersection graph G as a unit-square graph. We will also consider394

when S consists of axis-aligned squares (of arbitrary size). We refer to such graphs as square graphs. In395

Appendix A.2, we describe a near-linear time algorithm for computing a BFS tree for square graphs, as396

stated below; the algorithm for unit-disk graphs is known [Klo23].397

Lemma 2.1. Let G be the geometric intersection graph of squares or unit disks with n vertices. We can398

compute a BFS tree from any given vertex of G in eO(n) time.399

Low-diameter decomposition. Let G be a graph with n vertices and ∆> 0 be a diameter parameter.400

A low-diameter decomposition (LDD) of G with parameter ∆ is a decomposition of the vertex set V into401

disjoint sets V = V1 ∪ . . .∪ Vk and corresponding induced subgraphs Pi := G[Vi] called pieces, such that:402

• Low diameter: Piece Pi is a single connected component of (strong) diameter10 at most ∆.403

• Small boundary: Denote the boundary vertices of Pi as ∂Pi, that is, the subset of vertices of Pi404

that has an edge to a vertex in VG \ Vi . The decomposition satisfies
∑︁k

i=1 |∂Pi|= eO(n/∆).405

• No small pieces: Each piece has size at least eΩ(∆).406

We show in Appendix A that such a decomposition always exists. Furthermore, in Appendix A.1, we407

show an efficient algorithm for computing this decomposition.408

10By strong diameter we mean that the shortest path between any two vertices in Pi within the subgraph Pi is at most ∆.

9

Theorem 2.2. Let G be a graph with n vertices and m edges. For any parameter 24 log n<∆≤ n, we409

can compute a low-diameter decomposition for G in O(m+ n) time.410

For unit-disk graphs and square graphs, we prove in Appendix A.2 that the low-diameter decomposi-411

tion is efficiently computable in near-linear time.412

Theorem 2.3. Let G be an intersection graph of n unit disks or an intersection graph of n axis-aligned413

squares. For any parameter 24 log n<∆≤ n, we can compute a low-diameter decomposition for G in414

eO(n) time.415

2.2 VC-dimension416

A set system is a pair (X ,S), consisting of a ground set X and a collection of ranges that are subsets of X ;417

in notation, S ⊆ 2X . A subset Y ⊆ X is said to be shattered by S if the collection {Y ∩ S : S ∈ S} = 2Y ,418

that is, all possible subsets of Y can be obtained by S. The shatter function, denoted by π(X ,S)(k) is the419

largest number of sets that is created by the set system when restricted to Y ⊆ X of size k. Formally it is:420

π(X ,S)(k) = max
Y⊆X
|Y |=k

|{Y ∩ S : S ∈ S}| .421

The shatter dimension of a set system is the smallest value d such that π(X ,S)(k) = O(kd) for all k. The422

VC-dimension of a set system (X ,S) is the size of the largest subset of Y ⊆ X that can be shattered423

by S. The dual set system of (X ,S) is the set system (S∗, X ∗), where the ground set S∗ = {wS : S ∈ S}424

consists of elements indexed by S, and each s ∈ S induces a range s∗ = {wS ∈ S∗ : S ∋ s} in S∗. The dual425

VC-dimension of a (X ,S) is the VC-dimension of the dual set system, and analogously the dual shatter426

dimension is the shatter dimension of the dual set system. We state some well-known results [Har11].427

Lemma 2.4. Let (X ,S) be a set system of VC-dimension d. The following is true:428

1. The dual set system (S∗, X ∗) has VC-dimension at most 2d+1 − 1.429

2. For Y ⊆ X , the set system (Y,S) has VC-dimension at most d.430

3. (Sauer-Shelah Lemma [She72, Sau72].) If |X | ≤ n then |S| ≤ O(nd), so the shatter dimension of431

(X ,S) is at most d.432

VC-dimension in graphs. The k-distance VC-dimension of a graph G = (VG , EG) is the VC-dimension433

of the set system of k-neighborhood balls (VG ,Nk
G). (Sometimes in the literature, e.g., [DHV22], the434

VC-dimension of G is defined to be the 1-distance VC-dimension.) The distance VC-dimension of G is the435

VC-dimension of the set system of balls (VG ,BG). Observe that the k-neighborhood set system (VG ,Nk
G)436

is equivalent to its dual, so the dual VC-dimension is the same as the primal. This is not the case for the437

set system of arbitrary balls since the ground set and the set of ranges have different sizes.438

Karczmarz and Zheng [KZ25] introduced11 a natural generalization: a set system (U ,GBG) whose439

ground set is U = VG × Z = {(u, r) : u ∈ VG , r ∈ Z}, and the ranges GBG consists of generalized440

neighborhood balls for v ∈ VG and k ∈ Z of the form:441

Ñ k[v] :=
�

(u, r) ∈ VG ×Z : d(u, v)≤ r + k
	

.442

Note that values of r and k are allowed to be negative. We call the VC-dimension of (U ,GBG) the443

generalized distance VC-dimension of a graph. It can be observed that this set system is equivalent to its444

dual. Furthermore, we can observe the following relationship between these VC-dimensions.445

11[KZ25] consider what they call a multiball set system where the ground set is VG ×M for a set of real weights M ⊆ R.

10

Observation 2.5. k-distance VC-dimension of G ≤ distance VC-dimension of G ≤ generalized distance446

VC-dimension of G.447

Throughout this paper, when we refer to graphs of bounded VC-dimension, we will be referring to448

families of graphs whose generalized distance VC-dimension of the graph is bounded by an absolute449

constant. Many of our results can also be adapted with more work to graphs that have bounded k-distance450

VC-dimension for all k, or graphs with bounded distance VC-dimension. We will focus on generalized451

distance VC-dimension as it holds for minor-free graphs and the geometric intersection graphs we care452

about, and also leads to the simplest exposition of our ideas.453

Connection to distance encoding VC-dimension. Distance encodings were used by Li and Parter454

[LP19] to compute the diameter in a planar graph. This was later modified to a more general setting by455

Le and Wulff-Nilsen [LW24], whose definition we present below (restricted to unweighted graphs).456

Definition 2.6. Let G = (VG , EG) be an undirected unweighted graph. Let M ⊆ Z be a set of integers.457

Let S ⊆ VG be an ordered set of ℓ vertices S = {s0, s1, . . . , sℓ−1}. For every vertex v ∈ VG define the set:458

XS,M (v) :=
�

(si ,δ) : si ∈ S,δ ∈ M , d(v, si)− d(v, s0)≤ δ
	

.459

Let XS,M :=
�

XS,M (v) : v ∈ V
	

be the set of subsets of the ground set S × M . The distance encoding460

VC-dimension of G is the maximum VC-dimension of set systems of the form (S×M , XS,M) for all possible461

S and M .462

Observe that the set XS,M (v) is isomorphic to Ñ d(v,s0)[v]∩ (S ×M). Restricting the ground set of the463

set system (U ,GBG) to (S×M ,GBG) does not increase the VC-dimension by Lemma 2.4, so we conclude464

the following observation.465

Observation 2.7. Distance encoding VC-dimension of G ≤ generalized distance VC-dimension of G.466

Graphs of bounded generalized distance VC-dimension. It was shown by Chepoi, Estellon, and467

Vaxes [CEV07] that planar graphs have distance VC-dimension at most 4 by explicitly constructing a K5468

minor (by contradiction). This argument was extended by Bousquet and Thomassé [BT15] to show that469

Kh-minor-free graphs have distance VC-dimension at most h− 1. Le and Wulff-Nilsen [LW24] used a470

variation of this argument to show that Kh-minor-free graphs have distance encoding VC-dimension at471

most h− 1. This argument was adapted by Karczmarz and Zheng [KZ25] to show that Kh-minor-free472

graphs have generalized distance VC-dimension at most h− 1 as well.473

Theorem 2.8 ([KZ25]). Any Kh-minor-free graph has generalized distance VC-dimension at most h− 1.474

For unit-disk graphs, it was shown by Abu-Affash et al. [ACM+21] that the distance VC-dimension475

is 4. Later, by Chang, Gao, and Le [CGL24], the intersection graph of pseudo-disks has distance VC-476

dimension and distance encoding VC-dimension of 4 as well. The bound on distance VC-dimension was477

also independently shown by Duraj, Konieczny, and Potępa [DKP24] for intersection graphs of fixed478

translates of geometric objects in the plane. The proof in [CGL24] can be easily adapted to also bound479

the generalized distance VC-dimension.480

Theorem 2.9. Any geometric intersection graph of pseudo-disks in the plane has generalized distance481

VC-dimension at most 4.482

11

2.3 Stabbing Path and Interval Representation483

Let (X ,S) be a set system with |X | ≤ n and |S| ≤ m. Let λ be an ordering of the elements of X . Given a484

set S ∈ S, define the λ-interval representation Repλ(S) (λ-representation for short) as the collection of485

maximal contiguous subsequences of λ—called intervals—whose union is S. The size of the representation486

|Repλ(S)| refers to the number of such intervals. For a parameter 1≤ ρ ≤ m, a ρ-stabbing path λ of a set487

system (X ,S) of dual VC-dimension d is an ordering of X such that
∑︁

S∈S |Repλ(S)| = eO(mn/ρ+mρd−1).488

Observe that if n1/d ≤ m, this quantity is minimized when ρ = n1/d so
∑︁

S∈S |Repλ(S)| = eO(mn1−1/d).489

We will sometimes refer to an n1/d -stabbing path λ simply as a stabbing path. We assume the existence490

of an element reporting oracle that, given S ∈ S, can enumerate all elements of S in T0(n) time, where491

T0(n)≥ n.492

In Appendix D, we show the following lemma to construct ρ-stabbing paths with high probability12.493

Lemma 2.10. Let (X ,S) be a set system with |X | ≤ n and |S| ≤ m with dual shatter dimension at most494

d. For any parameter 1≤ ρ ≤ m, we can construct a stabbing path of (X ,S), that is, an ordering λ of X495

such that
∑︁

S∈S |Repλ(S)|= eO(mn/ρ +mρd−1) in eO(T0(n) ·ρ) time with high probability.496

2.4 Geometric Data Structures497

We consider three different geometric data structures in decreasing difficulty that we will use in our498

algorithms, and the reduction from difficult problems to easier problems. We provide the details of the499

reductions in Appendix C.1.500

Interval searching. The interval searching problem directly captures the ball growing process for501

various objects in the frameworks we study in Section 3 and Section 8.502

Problem 2.11 (Interval Searching). Let OIS be a given set of objects, where each object o ∈ OIS is503

associated with a set of intervals (of integer points) of [1 : n], denoted by Io. Design a data structure504

that answers the following query:505

• INTERVALSEARCH(q): Given an object q, return (the interval representation of) all the integer506

points in [1 : n] associated with objects in OIS that intersect q.507

For each query object q, let Iout(q) be the set of intervals representing all the integer points of508

the output. Ideally, we want to construct a data structure for the interval searching problem that has509

near-linear preprocessing time and poly-logarithmic query time. However, this is difficult even when the510

objects are unit-disk graphs.511

In our context, we will be querying interval searching for each object in OIS, and therefore, we512

will be solving the offline version of Problem 2.11. Let NIS :=
∑︁

o∈OIS
(|I(o)|+ |Iout(o)|) be the total513

number of input and output intervals. Let LIS :=
∑︁

o∈OIS

∑︁

I∈I(o)∪Iout (o)
|I | be the total length of the input514

and output intervals. We want to construct a data structure DIS for solving Problem 2.11 that has a515

small total run time as a function of NIS and LIS. Here, the total run time of the DIS includes: (1) the516

preprocessing time and (2) the total time to answer all the queries.13
517

12In this paper we say an event E happens with high probability if Pr[E]≥ 1− n−c for some big enough constant c.
13Alternatively, the offline version of Problem 2.11 is equivalent to computing a Boolean matrix product C = AB, where A is

the adjacency matrix of an intersection graph, and B and C are Boolean matrices whose 1 entries can be covered by a small
number of row intervals. We will not adopt this viewpoint here.

12

Interval cover. This is the data structure Problem 1.3. Recall that N is the number of input objects.518

Let NIC be the total number of input objects and query objects, and LIC be the total length of the input519

and query intervals. Similar to the interval searching problem, we want to construct a data structure DIC520

for solving Problem 1.3 with small total running time, as a function of NIC and LIC . We will show (in521

Appendix C.1) that if we can solve the interval cover problem efficiently, then we can solve the interval522

searching efficiently.523

Lemma 2.12. If one can construct a data structure DIC for solving Problem 1.3 with total run time524

T (NIC , n, LIC) (for some polynomial function T), then we can construct a data structure DIS for solving525

Problem 2.11 in total run time eO(T (NIS , n, LIS)). Furthermore, if DIC has preprocessing time P(N) and526

query time Q(N), then DIS has preprocessing time eO(P(Ñ IS)) and query time eO(Q(Ñ IS) · |Iout(q)|) where527

Ñ IS :=
∑︁

o∈OIS
|I(o)| is the total number of input intervals and Iout(q) is the set of output intervals from528

the interval search query of q to DIS .529

Rainbow colored intersection search. On the surface, the next problem we present seems to be a530

strict special case of Problem 1.3 by requiring the interval to be a singleton. However, we will show that531

a solution to this problem gives us solutions to the two other problems.532

Problem 2.13 (Rainbow Colored Intersection Searching). Given a set of objects ORC , each object533

o ∈ ORC is associated with a color. Design a data structure to answer the following query:534

• RAINBOWCOVER?(q): Given a query object q, decide whether all the colors appear in the set of535

objects intersecting q.536

In Appendix C.1, we show how to use a data structure DRC for solving Problem 2.13 to design a data537

structure DIC for solving Problem 1.3.538

Lemma 2.14. If we can construct in eO(|ORC |) time a data structure DRC with Õ(1) query time for solving539

Problem 2.13, then for any parameter b ∈ [1, n], we can construct a data structure DIC for solving540

Problem 1.3 that has total run time eO(NIC · b+ LIC/b).541

This together with Lemma 2.12 implies a solution to the interval searching problem, in particular, a542

data structure DIS for solving Problem 2.11 that has total run time eO(NIS · b+ LIS/b).543

2.5 Handling of Small Pieces544

While the low-diameter decomposition guarantees that all pieces have size at least eΩ(∆), sometimes this545

guarantee is not enough, and we will switch to a different algorithm.546

Diameter and eccentricities. For computing diameter and eccentricities, we use the notion of pat-547

terns [LP19], and present the following lemma implicit in the work of Le and Wulff-Nilsen [LW24].548

Lemma 2.15. Let G be a graph on n vertices with distance encoding VC-dimension d. Let P be a piece in549

G with boundary ∂P and diameter∆. If distances from ∂P to all vertices of G are known, the eccentricity550

of all vertices in P can be computed in O
�

n · |∂P|+ (|P|+ |∂P|d∆d) · T (P)
�

where T(P) is the time it551

takes to run boundary weighted BFS on P with weights at most ∆.552

We add one small optimization to the result of Le and Wulff-Nilsen [LW24] using the notion of553

boundary weighted BFS, a BFS where boundary vertex distances are initialized. This boundary weighted554

BFS can be performed in time linear in the number of edges of the piece for sparse graphs, and in time555

near-linear in the number of vertices of P for geometric intersection graphs. See Appendix E.2 for further556

details and a complete proof of Lemma 2.15.557

13

Distance oracles. Similarly, for distance oracles, we will use the following lemma, also implicit in the558

work of Le and Wulff-Nilsen [LW24].559

Lemma 2.16 (Section 4.3.1 of [LW24]). Let G = (VG , EG) be a graph with bounded distance VC-560

dimension d, and P be an induced subgraph of G with boundary ∂P and diameter ∆. There exists a561

distance oracle that answers distances from any vertex s ∈ P and any vertex t ∈ VG with O(n · |∂P|+ |P|d)562

space and O(log |∂P|) query time.563

Furthermore, if G also has bounded generalized distance VC-dimension d and distances from ∂P564

to all vertices of G, the distance oracle can be computed in O
�

n · |∂P|+ (|∂P|d∆d + |P|) · T (P)
�

time,565

where T (P) is the time it takes to run vertex weighted BFS on P with weights at most ∆.566

For completeness, we provide the proof of Lemma 2.16 in Appendix E.4.567

3 Framework for Diameter and Eccentricities568

In this section, we outline the algorithmic framework for computing the all-vertex eccentricity of different569

graph families in truly subquadratic time. (Recall that the eccentricity of a vertex u is defined to be570

ecc(u) :=maxv∈VG
d(u, v).) Note that as diameter is the maximum eccentricity of any vertex in the graph,571

we can also compute diameter in truly subquadratic time. Our framework can be tweaked for other572

problems, such as constructing distance oracles and Weiner index; we defer to Section 8.573

Now we formally set up the framework, which consists of a few high-level instructions, with the goal574

to compute for every vertex u, the r-neighborhood balls N r[u] iteratively for growing values of r. This is575

enough to answer the diameter problem exactly because a graph G has diameter at most D if and only if576

every radius-D neighborhood ball contains all vertices in G.577

Let G be the input graph, given either explicitly using adjacency lists or implicitly as the intersection578

graph of objects. Our framework has three steps.579

Step 1: Low-diameter decomposition (LDD). Compute a low-diameter decomposition L of G with580

a diameter parameter ∆> 0. L has eO(n/∆) pieces, each of strong diameter at most ∆. Furthermore,581
∑︁

P∈L |∂P|= eO(n/∆). The vertices in
⋃︁

P ∂P are called the boundary vertices.582

Step 2: Shortest-path computations. For each boundary vertex v in
⋃︁

P ∂P, compute a breadth-first583

search tree in G rooted at v. We obtain ecc(v) as a byproduct. Define584

∂ecc := max
boundary vertex v

ecc(v).585

Step 3: Growing neighborhood balls. Consider one piece P in the low-diameter decomposition L.586

Our goal is to compute some modified version of N r[s] for every vertex s in P and necessary values of r.587

Fix an arbitrary vertex sP in ∂P, and define eccP as the corresponding eccentricity ecc(sP). (Notice that588

ecc(sP) is known after the shortest-path computation in Step 2 because sP is a boundary vertex of P.)589

We set the modified neighborhood ball for each vertex s in P to be590

N̂
r
[s] := N r[s]∩ RP , with RP :=

�

t ∈ VG : dist(sP , t)≥ eccP − 2∆
	

,591

where ∆ was defined to be the strong diameter bound of the pieces in the LDD and RP is called the592

relevant region for the eccentricity computation for P. We will compute N̂
r
[s] for every s in P \ ∂P593

iteratively using the inductive formula594

N̂
r
[s] =

⋃︂

v∈N[s]

N̂
r−1
[v]. (1)595

14

We emphasize that while the notation seems to suggest otherwise, the definition of modified neigh-596

borhood balls N̂
r
[s] depends on the piece P. Define the set of relevant balls to be597

SP :=
�

N̂
r
[v] : v ∈ P, r ∈ [eccP − 3∆, eccP +∆]

	

.598

Let S :=
⋃︁

P∈L SP . The ball growing process consists the following substeps:599

3.1. For every s ∈ ∂P and every r ∈ [eccP − 3∆, eccP +∆], compute modified balls N̂
r
[s] using Step 2.600

3.2. As a base case, we initialize N̂
r
[s] =∅ for every s ∈ P \ ∂P when r = eccP − 3∆− 1.601

3.3. For other values of r ∈ [eccP − 3∆, eccP +∆], compute N̂
r
[s] using the inductive formula (1).602

Then ecc(s) is the smallest value r such that N̂
r
[s] is the whole relevant region Rp. Therefore, we can603

compute ecc(s) from
�

N̂
r
[s] : r ∈ [eccP − 3∆− 1, eccP +∆]

	

.604

Note that we will assume that the diameter of the graph is at least 4∆, otherwise the entire graph G605

is a low-diameter decomposition of parameter 4∆, and we can simply apply Step 3 with the relevant606

neighborhood balls being all balls, the relevant region RP being VG , and the modified neighborhood balls607

being normal neighborhood balls.608

Correctness. To show that our algorithmic framework is correct, we show that we correctly computed609

all (modified) neighborhood balls, assuming the ball growing process is correct. First note that for s ∈ ∂P,610

we have correctly computed the modified neighborhood balls in Step 3.1. If s ∈ P \ ∂P, given the pair611

(s, t) realizing ecc(s), we can guarantee that the vertex t must lie in the relevant region RP : Denote tP612

to be the vertex that has distance eccP to sP , then because dist(s, sP)≤∆, we have613

dist(sP , t)≥ dist(s, t)−∆≥ dist(s, tP)−∆≥ dist(sP , tP)− 2∆,614

and thus t can be found in N̂
r
[s] if N̂

r
[s] is a relevant ball in SP . Furthermore, again by triangle inequality,615

ecc(s) is at least eccP −∆ and at most eccP +∆. Thus it is sufficient to initialize r to be eccP −3∆−1 (in616

which case N r[s]∩RP =∅), so the initialization in Step 3.2 is correct. Thus, assuming the ball expansion617

step is correct, all modified neighborhood balls are computed correctly in Step 3.3.618

VC-dimension of neighborhood balls and stabbing paths. We cannot afford to store the (modified)619

neighborhood balls N̂
r
[v] ∈ SP explicitly. Instead, we will rely on a compact representation of a set system620

with bounded VC-dimension to store the neighborhood balls implicitly in a data structure. Given the621

(modified) neighborhood ball system (VG ,SP), we are responsible for bounding the (dual) VC-dimension622

of (VG ,SP) to be a constant d. Then we compute stabbing path λ for (VG ,SP), such that the interval623

representation Repλ(N̂
r
[v]) of set N̂

r
[v] has sublinear size. (See Section 2.3 for definition.)624

Implementing the ball growing process. To implement the ball growing process, we will use a625

stabbing path λ for the modified neighborhood balls to ensure we can compactly store all such balls. The626

exact details on how we implement the process will depend on the type of graph we are dealing with.627

In a sparse graph G, we will show how to implement the ball expansion data structure in G directly628

by explicitly considering the neighbors N[v] of each vertex v in the graph G.629

In a geometric intersection graph G, we instead implement the ball growing process for a piece P ∈ L630

with a data structure for the interval searching problem defined in Problem 2.11. Each vertex v in P is631

associated with a geometric object ov. Let OP denote the set of these geometric objects. Suppose we632

have computed compact interval representations Repλ(N̂
r−1
[v]) for every vertex v in P \ ∂P, so we can633

associate these intervals to ov. Using a data structure DIC for Problem 2.11, the union of intervals of634

15

objects in OP that intersect with ov is exactly N̂
r
[v] by Equation (1). Thus, we can implement the ball635

growing process in a geometric intersection graph if we have an offline data structure for Problem 2.11.636

The efficiency of the algorithm will depend on the number of intervals in the representation with respect637

to the stabbing path λ.638

Organization. In the next four sections, we will apply our framework to devise algorithms for diameter639

and eccentricities for different graph classes: sparse graphs of bounded VC-dimension (Section 4),640

arbitrary-square graphs (Section 5), unit-square graphs (Section 6), and unit-disk graphs (Section 7).641

Sections 4, 5–6, and 7 can be read independently, depending on the interest of the reader. The sparse642

graph case is perhaps the simplest, not requiring geometric data structures. The unit-disk case is the643

most involved and requires overcoming a number of (interesting) technical challenges.644

4 Diameter/Eccentricities in Sparse Graphs of Bounded VC-dimension645

We begin by applying the framework in Section 3 to sparse graphs of bounded VC-dimension. In646

this setting, the low-diameter decomposition could be constructed in O(m) time using Theorem 2.2.647

Computing the BFS tree for every boundary vertex takes eO(mn/∆) total time where ∆ is the diameter648

parameter in the low-diameter decomposition. Thus we focus on the third step of performing ball649

expansion.650

To begin, we construct a global ordering λ on all the vertices for our stabbing path data structure.651

The following is analogous to Corollary 15 in [DKP24] that we tailor to our setting.652

Lemma 4.1. We can compute in eO(mn1/d) time an ordering λ of the vertices in V such that for the653

system S=
⋃︁

P∈L SP such that
∑︁

P∈L
∑︁

s∈P

∑︁eccP+∆
r=eccP−3∆ deg(s) · |Repλ(N r[s])|= eO(∆mn1−1/d).654

Proof: Let Š be the set obtained by taking each set N r[s] in S and adding deg(s) copies of N r[s] to Š.655

Observe that:656

|Š|=
∑︂

P∈L

∑︂

s∈P

eccP+∆
∑︂

r=eccP−3∆

deg(s) = O(∆ ·m)657

We then apply Lemma 2.10 to X = V (G) and Š with ρ = n1/d . Since we can implement the element658

reporting oracle in O(m) time via BFS, the result follows. □659

Now for every relevant piece P in the low-diameter decomposition L, we will restrict our attention660

to only the relevant region RP for the eccentricity computation. To do so, we consider the ordering λP of661

RP obtained from λ by restricting to the vertices of RP . Observe that doing so does not increase the size662

of the interval representation of any sets.663

Observation 4.2. Let R be a subset of V . Let λ be an ordering of the vertices V , and λ′ be an ordering664

of R obtained by restricting λ to the vertices in R. Then for any set S ⊆ V , |Repλ′(S ∩ R)| ≤ |Repλ(S)|.665

Proof: For any interval I ∈ Repλ(S), I ∩ R is also an interval in λ′. □666

Ball expansion data structure. To implement the ball expansion data structure, we will store each667

neighborhood ball in interval form. For a boundary vertex s ∈ ∂P , we can compute N̂
r
[s] for all668

r ∈ [eccP−3∆, eccP +∆] in O(n) time using the BFS tree we have computed from step 2, and in addition669

represent these balls in interval form.670

16

Next we describe how to perform the ball expansion operation. For vertices s ∈ P \∂P, each neighbor671

v ∈ N[s] is also in P and we have a compact interval representation for N̂
r−1
[s]. We can take the union672

of the set of intervals by doing a line sweep in time eO
�

∑︁

v∈N[s] |Repλp
(N r−1[v])|

�

.673

Furthermore, it is easy to detect if N̂
r
[s] = RP if the interval representation is all of λP .674

Time analysis. The amount of time taken for computing the global ordering in Lemma 4.1 is eO(mn1/d).675

The runtime for ball expansion of the boundary vertices is:676

∑︂

P∈L

∑︂

s∈∂P

O(n) = eO(n2/∆) (2)677

By Observation 4.2, the ball expansion for a non-boundary vertex s ∈ P and s /∈ ∂P from radius r − 1 to678

r takes time679

eO

∑︂

v∈N[s]

|RepλP
(N̂

r−1
[v])|

!

≤ eO

∑︂

v∈N[s]

|Repλ(N
r−1[v])|

!

.680

The total time taken for all ball expansion steps for non-boundary vertices across all the pieces is at most:681

∑︂

P∈L

∑︂

s∈P

eccP+∆
∑︂

r=eccP−3∆

eO

∑︂

v∈N[s]

|Repλ(N
r−1[v])|

!

= eO

∑︂

P∈L

∑︂

s∈P

eccP+∆
∑︂

r=eccP−3∆

deg(s) · |Repλ(N
r[s])|

!

682

= eO(∆mn1−1/d).683

The last equality follows from Lemma 4.1.684

Recall that the first two steps of the framework can be implemented in eO(mn/∆) time. The total685

runtime for all three parts is:686

eO(mn/∆+mn1/d + n2/∆+∆mn1−1/d) = eO(mn/∆+∆mn1−1/d).687

Setting ∆= O(n1/(2d)) yields a that this algorithm runs in eO(mn1−1/(2d)) time.688

Theorem 4.3. The diameter problem in a sparse undirected graph G with n vertices and m edges and689

general distance VC-dimension at most d can be solved in eO(mn1−1/(2d)) time.690

Remark 4.4. We can also obtain similar results (albeit with possibly worse exponents) for other VC-691

dimension bounds. If the distance VC-dimension is bounded by d or even if the k-neighborhood692

VC-dimension is bounded by d for all k, we can follow an approach similar to what we have for unit-disk693

graphs (see Section 7). The main difference is an extra step to reorder the vertices when we transition694

from k− 1-neighborhoods to k-neighborhoods using Appendix D.695

5 Diameter/Eccentricities in Square Graphs696

Next, we apply the framework in Section 3 to intersection graphs of squares. In step 1, we apply697

Theorem 2.3 to obtain our low-diameter decomposition L of G in eO(n) time into pieces of size log n≤698

∆ ≤ n, where ∆ is a parameter we will choose later. In step 2, we compute BFS trees from each699

v ∈
⋃︁

P ∂P using Lemma 2.1. The algorithm takes eO(n) time per vertex, so this step takes eO(n2/∆) time.700

Note that we also explicitly store all distances from these vertices, which takes eO(n2/∆) space.701

Recall that when s ∈ ∂P then we can explicitly compute N̂
r
[s] for all values of r in O(n) time using702

the distances computed in step 2 of our framework.703

17

Stabbing path. We now compute a global stabbing path λ. We use the following lemma.704

Lemma 5.1. Let G be a graph with generalized distance VC-dimension d, and a single-source distance705

finding algorithm with running time T(n). Then the modified neighborhood ball system has a path λ706

such that we have707

∑︂

P∈L

∑︂

s∈P

eccP+∆
∑︂

r=eccP−3∆

|Repλ(N̂
r
[s])| = eO(∆ · n2−1/d)708

with high probability, i.e., λ is a stabbing path of the modified r-balls. Furthermore, λ can be computed709

with a randomized algorithm in eO(n1/d T (n)) time.710

Proof: We apply Lemma 2.10 with ρ = n1/d for the set system711

S :=
�

N r[s] : P ∈ L, s ∈ P \ ∂P, r ∈ [eccP − 3∆, eccP +∆]
	

.712

Notice that the system has size at most |S| = 3∆n, and we can use the BFS algorithm to report the713

squares in the modified ball. By Observation 4.2, as N̂
r
[s] = RP ∩ N r[s], we obtain the bound714

∑︂

P∈L

∑︂

s∈P

eccP+∆
∑︂

r=eccP−3∆

|Repλ(N̂
r
[s])| ≤

∑︂

P∈L

∑︂

s∈P

eccP+∆
∑︂

r=eccP−3∆

|Repλ(N
r[s])|= eO(∆ · n2−1/d)715

□716

In all of the intersection graphs studied in this paper, we have T(n) = eO(n) and d = 4. This leads717

to a stabbing path λ that is computed in eO(n5/4) time and has the property that the total size of the718

representation is eO(∆ · n7/4). Given that there are O(∆ · n) modified balls we consider, the amortized719

interval count to represent a single modified ball is O(n3/4).720

Growing balls. To grow the modified neighborhood balls, we will design a data structure for solving721

the interval searching problem (Problem 2.11) for squares, which we restate here: we are given a set722

of square S, where each square s ∈ S is associated with a set of intervals (of integer points) of [1 : n],723

denoted by Is. Design a data structure that answers the following query:724

• INTERVALSEARCH(q): Given a square q, return (the interval representation of) all the integer points725

in [1 : n] associated with squares in S that intersect q.726

We will be querying the data structure once for each square s ∈ S. Therefore, we are interested in727

minimizing the total query time. Let Iout(s) be the set of output intervals for a query square s. Let N :=728
∑︁

s∈S (|I(s)|+ |Iout(s)|) be the total number of input and output intervals. Let L :=
∑︁

s∈S

∑︁

I∈I(s)∪Iout (s)
|I |729

be the total length of the input and output intervals.730

Lemma 5.2. For any parameter b ∈ [1 : n], we can construct a data structure Ď for solving the interval731

searching problem for squares such that the total time to (i) construct Ď and (ii) answer |S| queries, one732

for each square s ∈ S, is eO(N · b+ L/b).733

Proof: By Lemma 2.14, it suffices to construct a data structure DRC for the rainbow colored intersection734

searching for squares that has nearly linear preprocessing time and poly-logarithmic query time. We735

provide such a data structure in Appendix C.2. □736

Next, we present a simpler (but slower) algorithm for computing all eccentricities. Then we show737

how to improve the running time.738

18

First version. To compute all eccentricities, for each piece P we restrict λ to RP in O(n) time, and739

denote the resulting ordering by λP . Next, we set r = eccP − 3∆ and compute the balls {N̂ r
[s]} for each740

s. In general, once the representations of N̂
r−1
[s] are known, the data structure to set up for computing741

modified balls of radius r will have
∑︁

s∈P |RepλP
(N̂

r−1
[s])| intervals in it.742

To compute the representations of {N̂ r
[s]}s∈P , we setup the data structure Ď that takes as input: (i) a743

set of squares corresponding to vertices of P and (ii) the interval representation {RepλP
(N̂

r−1
[s])}s∈P for744

radius r−1. Then we apply |P| queries {INTERVALSEARCH(s) : s ∈ P} to output the interval representations745

of {N̂ r
[s]}s∈P . Observe that the total length of all the intervals is at most 2|P| · |RP |= O(|P| · n). Thus,746

the total running time for each r is:747

eO

�

b ·
∑︂

s∈P

(|RepλP
(N̂

r−1
[s])|+ |RepλP

(N̂
r
[s])|) + |P|n/b

�

748

Therefore, the total running time of computing all-vertex eccentricities, including the running time749

of the first two steps in the framework, is:750

eO(n2/∆+ n5/4) +
∑︂

P∈L

eccP+∆
∑︂

r=eccP−3∆

eO

�

b ·
∑︂

s∈P

(|RepλP
(N̂

r−1
[s])|+ |RepλP

(N̂
r
[s])|) + |P|n/b

�

= eO(n2/∆+ n5/4) + eO(b)

∑︂

P∈L

eccP+∆
∑︂

r=eccP−3∆

|Repλ(N̂
r
[s])|

!

+ eO(n2∆/b)

= eO(n2/∆+ n5/4) + eO(b∆ · n7/4) + eO(n2∆/b) (by Lemma 5.1 and d = 4)

= eO(n2/∆+ b∆ · n7/4 + n2∆/b)

= eO(n2−1/16). (for optimal choices of b =∆2 and ∆= n1/16)

(3)751

Improved version. We improve the running time by reducing the eO(n2∆/b) in Equation (3), which752

is the total length of the intervals, to eO(n2/b) by keeping track of the sets N̂
r
[s] \ N̂

r−1
[s] instead of753

N̂
r
[s]. Notice that the eccentricity of s will be the largest r where N̂

r
[s] \ N̂

r−1
[s] is non-empty. Let754

N̂
=r
[s] := N̂

r
[s] \ N̂

r−1
[s]. Then |RepλP

(N̂
=r
[s])| ≤ |RepλP

(N̂
r
[s])|+ |RepλP

(N̂
r−1

r[s])| and therefore,755

{N̂=r
[s]}s∈P,P∈L has a compact representation:756

∑︂

P∈L

eccP+∆
∑︂

r=eccP−3∆

|Repλ(N̂
=r
[s])| ≤

∑︂

P∈L

eccP+∆
∑︂

r=eccP−3∆

(|RepλP
(N̂

r−1
[s])|+ |RepλP

(N̂
r
[s])|) = eO(∆ · n7/4).757

Observe that758

N̂
=r
[s] =

� ⋃︂

v∈N[s]

N̂
=r−1

[v]
�

\
�

N̂
=r−1

[s]∪ N̂
=r−2

[s]
�

.759

Thus, we could apply the same growing ball process for N̂
r
[s]. More precisely, we compute the760

interval representation of
⋃︁

v∈N[s] N̂
=r−1

[v] by querying the interval searching data structure, and then761

remove elements from N̂
=r−1

[s]∪ N̂
=r−2

[s] using the interval representations of N̂
=r−1

[s] and N̂
=r−2

[s]762

computed from the previous iterations. On the other hand, the intervals in this representation are763

disjoint, so we can bound the total length L over all 3∆ iterations as L ≤ O(|P|n) instead of O(∆|P|n).764

Therefore, by applying the same calculation in Equation (3), the final running time is:765

eO(n2/∆+ n5/4) + eO(b) · N + eO(n2/b) = eO
�

n2/∆+ b∆n7/4 + n2/b
�

= eO(n2−1/12)766

for b =∆= n1/12.767

Theorem 5.3. Computing the diameter and all-vertex eccentricities of square graphs with n vertices768

can be done in eO(n2−1/12) time.769

19

6 Diameter/Eccentricities in Unit-square Graphs770

For unit squares, we can obtain a slightly faster algorithm. The first two steps and the stabbing path771

computation are the same as the algorithm for square graphs. The total running time of these steps is772

eO(n2/∆+∆n5/4). The growing ball step is more efficient since we can develop a better geometric data773

structure for unit squares.774

Growing balls. For unit squares, we design a more efficient data structure for the interval cover problem775

(Problem 1.3), and as a result, we obtain a more efficient data structure for the interval searching problem.776

Let S be a given set of unit squares where each square q ∈ S is associated with a set of intervals of [1 : n].777

Each query INTERVALSEARCH(q) returns the intervals of integer points in [1 : n] associated with unit778

squares intersecting q. Let Ñ :=
∑︁

s∈S |I(s)| be the number if input intervals.779

Lemma 6.1. We can construct in Ñ1+o(1) time a data structure Ď for solving the interval searching780

problem for unit squares that can answer each query INTERVALSEARCH(q) in Ñ o(1) · |Iout(q)| time.781

Proof: In Appendix C.2 (and more specifically Theorem C.5), we construct a data structure for the782

interval cover problem (Problem 1.3) for unit square with Ñ1+o(1) preprocessing time and eO(1) query783

time. Then by Lemma 2.12, we obtain the preprocessing time and query time as in the lemma. □784

The algorithm. The algorithm is essentially the same for the square graphs in the previous section:785

restricting the ordering λ to Rp to get λP , and growing balls {N̂ r
[s]}s∈P for r = eccP −3∆ to eccP +∆ by786

applying a query INTERVALSEARCH(s) for each unit square s ∈ P to the interval searching data structure787

in Lemma 6.1 built for N̂
r−1
[s]. Let Ñ r−1 :=

∑︁

s∈P(|RepλP
(N̂

r−1
[s])| be the number of input intervals to788

the data structure; the total output size is Ñ n. Since Ñ o(1)
r−1 = no(1), the total running time to grow all the789

balls per piece is790

no(1) ·
eccP+∆
∑︂

r=eccP−3∆

|Repλ(N̂
r
[s])|.791

The total running time to compute all eccentricities is:792

eO(n2/∆+∆n5/4) + no(1)
∑︂

P∈L

eccP+∆
∑︂

r=eccP−3∆

|Repλ(N̂
r
[s])|

= O∗(n2/∆+∆n5/4 +∆n7/4) (by Lemma 5.1 and d = 4)

= O∗(n2−1/8) (for ∆= n1/8.)

793

Theorem 6.2. Computing the diameter and all-vertex eccentricities in unit square graphs with n vertices794

can be done in O∗(n2−1/8) time.795

7 Diameter/Eccentricities in Unit-disk Graphs796

We now describe how to adapt the framework in Section 3 to the more complicated setting of computing797

diameter and eccentricities for unit-disks. The computation of LDD and BFS remains unchanged because798

unit-disks are fat pseudo-disks; we follow Step 1 and Step 2 of the framework (Section 3). For LDD799

we use Theorem A.3; for BFS we use Lemma 2.1. However, Step 3 requires drastic changes in order to800

implement the ball expansion step.801

20

In this section we assume the unit-disk graphs are in center-disk intersection model: Unlike a typical802

geometric intersection graph where we create an edge between two objects if they intersect, here we add803

an edge between two unit-disks if the center of one disk lies in the other disk. It is straightforward to see804

that the two models are equivalent by doubling the radii of all unit disks. For the sake of simplicity, we805

will scale the disks so that the radius is still one unit.806

7.1 Restriction to Fixed Types807

Partition into modulo classes. We partition the plane into square cells: every unit-square is divided808

into 2× 2 many cells, each of side length 1/2. Each cell is indexed by the coordinates of its bottom-left809

corner modulo 3; notice that the coordinates are multiples of 1/2 and thus there are 6 modulo classes810

per coordinate. We collect all cells of the same index (i, j) into a set Celli, j; in other words,811

Celli, j :=
�

cell □ : square □ is located at (x , y) where x ≡ i and y ≡ j (mod 3)
	

.812

We then classify the set of unit-disks D based on the cell classes where the center of the unit-disk lies:813

Di, j :=
�

D ∈D : disk D has its center located in some cell in Celli, j
	

.814

Notice that {Di, j}i, j is a partition of D. We say a disk in Di, j has type (i, j). Denote the number of types815

to be σ; there are exactly σ = 36 types.816

The disks intersecting a query disk Dq whose center point q lies inside a cell □ come in two flavors:817

those disks that completely contain the cell □, and those that partially intersect the cell. We call the cells818

where the centers of these intersecting disks belong relevant to □; among them, we call those cells with819

disks partially intersecting □ perimetric. Observe that there are only constantly many cells relevant to820

any fixed cell □, because we set the side length of each cell to be 1/2.821

1

1

Figure 2. The 36 cells formed by partitioning a 3× 3 square. Cells of the same color are of the same type. The disks in D0,0

(in pink) intersects the blue cell as a pseudoline arrangement.

Fixed an arbitrary cell □. A pseudoline arrangement L inside □ is a collection of boundary-to-boundary822

simple curves in □, such that every pair of curves in L intersect each other at most once. We now establish823

the main combinatorial property for disks of the same type: while two unit-disks intersect up to two824

times in the plane, if we focus on a single cell □ and two disks whose centers are in some other cells of825

the same type, at most one intersection will appear in □. (Indeed, based on the way we partition cells826

into modulo classes, at most one cell of each type is relevant to □.)827

Lemma 7.1. Let D be any set of unit-disks, partitioned into types as described above. Given any cell □828

and a fixed type (i, j), the boundary of the disks in Di, j intersects inside □ as a pseudoline arrangement.829

21

Proof: Assume for contradiction that there are two intersecting unit-disks D and D′ with two intersection830

points inside □ simultaneously. As □ has side-length 1/2 and diameter at most
⎷

2/2≤ 0.71, the centers831

of D and D′ must be at least 2 ·
�

12 − (
⎷

2/4)2
�1/2
=
⎷

14/2 ≥ 1.87 units away. Thus the two centers832

cannot be in the same cell (which has diameter at most 0.71). On the other hand, we reach a contradiction833

as any two distinct cells of the same type must be at least 2.5 units away (because we index the cells by834

modulo 3), while the centers of the intersecting disks D and D′ can be at most 2 units away. □835

If we focus on one perimetric cell □′ of □ and rotate the plane so that □′ lie about vertically above □836

(the cells might not be parallel to the axis anymore), we can safely assume each pseudoline formed by837

the partial intersection by a disk in □′ with □ to be x-monotone, that is, any vertical line intersects the838

pseudoline at most once.839

7.2 Implementation of the Neighborhood Growing Step840

We first describe how to implement the ball growing process (Step 3.3) in the framework using the841

inductive formula (1), which we recall here:842

N̂
r
[s] =

⋃︂

v∈N[s]

N̂
r−1
[v]. (1)843

Fix a piece P from the LDD, and some vertex s in P \ ∂P. Each modified neighborhood ball N̂
r
[s] can844

be written as the union of a collection of r-balls with restrictions on the type of the second vertex in845

length-r paths. More precisely, recall that a disk D is of type (i, j) if the center of the disk D is located in846

some cell whose bottom-left corner has coordinates in the modulo class (i, j). We arbitrarily order the847

constantly many types and label them from 1 to σ. We say that a path in the intersection graph G from848

a vertex s to a vertex v is a τ-path if the disk corresponding to the vertex following s (the second vertex)849

in the path is of type τ ∈ [1 : σ]. For each vertex s and an arbitrary subset M ⊆ [1 : σ], define850

N̂
r
M [s] :=

�

v ∈ VP : there is a τ-path from s to v of length at most r, for some τ ∈ M
	

. (4)851

We often use the ≤T subscript to represent the subset [1 : T] below. Notice that by restricting to τ-paths852

from s to v in the definition, we can implement the inductive formula using853

N̂
r
T [s] =

⋃︂

v∈N[s]∩CellT

N̂
r−1
≤σ [v].854

We prove the following lemma in Appendix B (Lemma B.2).855

Lemma 7.2. For every r and every T ∈ [1 : σ], both set systems856

�

VG ,
�

N̂
r
T [s] : s ∈ VP

	�

and
�

VG ,
�

N̂
r
≤T [s] : s ∈ VP

	�

857

have dual VC-dimension at most 4.858

Notice that N̂
r
[s] = N̂

r
≤σ[s] and we can compute N̂

r
≤T [s] iteratively by859

N̂
r
≤T [s] = N̂

r
≤T−1[s] ∪ N̂

r
T [s] = N̂

r
≤T−1[s] ∪

⋃︂

v∈N[s]∩CellT

N̂
r−1
≤σ [v]. (5)860

Now the strategy should be clear: We will compute N̂
r
T [s] from the previously stored N̂

r−1
≤σ [v] for every861

1-neighbor v of s, then take the union with N̂
r
≤T−1[s]. The first operation is done with the help of the862

geometric data structure; to do so, one has to first switch the interval representation for the relevant863

22

neighborhood balls to be with respect to a unifying stabbing path over some combined set system that864

has a bounded VC-dimension. After N̂
r
T [s] is computed, we switch the interval representation back then865

proceed to compute N̂
r
T [s] = N̂

r
≤T−1[s]∪ N̂

r
T [s], this time switching the interval representations to be866

with respect to another unifying stabbing path over some auxiliary set system. Both set systems must867

have O(1) (dual) VC-dimension. This is the main technical hurdle which we will explain next.868

Geometric data structure. Fix a cell □ containing s and a perimetric cell □′ of □ which lies vertically869

above □ (after a rotation). By Lemma 7.1, the collection of disks whose center lies in □′ intersects □870

as a collection of N pseudolines L. Assume each pseudoline ℓv in L has an associated interval Iv in871

some given stabbing path λ. Our next goal is to describe how to build a stabbing path data structure Dλ872

that answers the COVERS?(s, I) query: whether the union of intervals Iv for every object v intersecting s873

covers the whole I . (This data structure would then be used to solve the interval searching problem,874

which gives us the interval representation of the modified neighborhood of s.) A disk Dv intersecting a875

query disk Ds with center s in □ corresponds to a pseudoline ℓv that lies below the center s of the query876

disk. Therefore it is equivalent if we can support the following query:877

• COVERS?(s, I): Given a query point s and an interval I , test whether
⋃︂

ℓv∈L
ℓv below s

Iv contains I .878

Lemma 7.3. Fix a radius r. Let λ♭ be a stabbing path defined for the union of set systems879

¦

N̂
r−1
≤σ [v] : v ∈ VP

©

∪
�

N̂
r
T [s] : s ∈ VP

	

.880

A stabbing path data structure Dr
T (with respect to λ♭) can be constructed in n1+o(1) time, and support881

each COVERS?(s, I) query in no(1) time for any s.882

A proof of Lemma 7.3 can be found in Appendix C.3. By the same argument in Lemma 6.1, we can883

augment Dr
T to construct the interval representation of N̂

r
T [s] with respect to λr

T for every s by calling an884

interval search query INTERVALSEARCH(s) to Dr
T . The readers might have noticed that the stabbing order885

maintained by the data structure Dr
T is not the same as the stabbing order we would like to represent886

the neighborhoods N̂
r
T [s] in. This discrepancy leads to the need for tool that allows the switch between887

different interval representations.888

Switching between interval representations. We gain the ability to switch between different interval889

representations by computing a special kind of stabbing paths that “respect” some common ρ-sampling of890

the set system (X ,S). This requires us to compute stabbing paths not using Lemma 2.10, but something891

more sophisticated. Ultimately we will be able to shrink from S to a subcollection S′ of S, and vice versa.892

First we set up the terminologies.893

We are given a set system (X ,S) with at most n = |X | elements and m = |S| sets with dual shatter894

dimension of (X ,S) is d. We fix a unique ρ-sampling R of S, where each set in S chosen with probability895

ρ/m. (Later on we will restrict R to subcollection S′ of S and obtain R′; we can still think of R′ as896

obtained from S′ by sampling each element with probability ρ/m, even though we do not explicitly897

sample from S′. Notice that the parameter m does not change even if S′ gets smaller.)898

Let λ be an ordering of X . We say that a set S crosses a pair (x , y) if x ∈ S and y ̸∈ S, or vice versa.899

The number of consecutive pairs in λ crossed by S is at most twice the size |Repλ(S)|. For any collection900

R, define the equivalence relation ≡R over X , where x ≡R y if and only if no set in R crosses (x , y). (In901

other words, {S ∈ R : x ∈ S} = {S ∈ R : y ∈ S}.) Then ≡R has O(|R|d) equivalence classes since the902

dual shatter dimension is at most d.903

23

Let S′ be an arbitrary subcollection of S. Denote the restriction of the unique ρ-sampling R of S in904

S′ as R′; in notation, R′ := S′ ∩R. Notice that R′ is also a ρ-sampling. Given any set system (X ,S), a905

stabbing path λ of (X ,S) is R′-respecting if each equivalence class of ≡R′ appears contiguously in λ for906

the restriction R′. (The equivalence classes of ≡R′ are defined with respect to the restriction R′, not R.)907

We compute specialized stabbing paths using the following lemma.908

Lemma 7.4. Assume the existence of an element reporting oracle that, given S ∈ S, can enumerate909

all elements of S in T0(n) time. Consider a fixed ρ-sampling R of S. We can compute the equivalence910

classes of ≡R and construct an R-respecting stabbing path λ of (X ,S) such that
∑︁

S∈S |Repλ(S)| =911

eO(mn/ρ+mρd−1) in eO(T0(n) ·ρ) time with high probability. In other words, one can compute a sampled912

ρ-stabbing path λ of (X ,S) and the equivalence classes of ≡R as byproducts.913

For the case of unit-disks, we have the element reporting oracle with query time T0(n) = eO(n) by914

computing a BFS tree using Lemma 2.1. Once both stabbing paths (and their corresponding equivalence915

classes) were computed, respecting a common ρ-sampling (and its restriction), we can convert one916

interval representation to the other efficiently.917

Lemma 7.5. [Conversion of interval representations.] Let (X ,S) be a set system with |X | ≤ n and |S| ≤ m.918

Let S′ be a subcollection of S and T be a subcollection of S′. Let R be the unique ρ-sampling of S, and919

R′ be its restriction in S′. We are given an R-respecting stabbing path λ of (X ,S), and an R′-respecting920

ordering λ′ of (X ,S′) (along with the equivalence classes of ≡R and ≡R′).921

(1) [Shrinking from S to S′.] Given Repλ(S) for all S ∈ T, we can compute Repλ′(S) for all S ∈ T in922

eO(mn/ρ +mρd) total time with high probability.923

(2) [Expanding from S′ to S.] Given Repλ′(S) for all S ∈ T, we can compute Repλ(S) for all S ∈ T in924

eO(mn/ρ +mρd) total time with high probability.925

The proof of the two lemmas can be found in Appendix D.926

Neighborhood growing algorithm. Assuming we are equipped with the geometric data structure927

(Lemma 7.3) and the ability to switch between interval representations with respect to different stabbing928

paths (Lemma 7.5), we can now formally describe the algorithm.929

Fix a piece P. For simplicity of the proof, we use Sr to denote the collection
�

N̂
r
[v] : v ∈ VP

	

and930

Sr
M to denote

�

N̂
r
M [v] : v ∈ VP

	

for any subset M ⊆ [1 : σ]. (Recall that the modified balls are defined931

by intersecting with the relevant region RP , and thus are dependent on P.) Similarly, we define λr be a932

stabbing path for the (VG ,Sr), and λr
M be a stabbing path for (VG ,Sr

M) for any subset M ⊆ [1 : σ]. Since933

all the set systems we need here are with respect to the same ground set VG , we will slightly abuse the934

notation and use the shorthand S to denote the set system (VG ,S), and use S1 ∪ S2 to denote the union935

of the two set systems (VG ,S1 ∪ S2).936

The algorithm has an outer-loop and an inner-loop. The outer-loop has 4∆ + 1 rounds, iterating937

over every relevant radii r ∈ [eccP − 3∆ : eccP +∆]; at the start of round r, we maintain the following938

invariants that we have computed,939

(1) an Rr−1
≤σ -respecting ρ-stabbing path λr−1

≤σ for the set system Sr−1
≤σ and its ρ-sampling Rr−1

≤σ ; and940

(2) λr−1
≤σ -representation of the modified neighborhood balls N̂

r−1
≤σ [v] for every vertex v in P.941

For each round with radius r, our algorithm now performs an inner-loop by repeating the following942

steps for σ iterations, where T ranges from 1 to σ; in iteration T we take into account type-T shortest943

paths using Eq. (5), until we include all σ types and thus finish computing the λr -representation of Sr .944

At the start of iteration T , we maintain the following invariants that we have computed, for each type T ,945

24

(i) an Rr
≤T−1-respecting ρ-stabbing path λr

≤T−1 for the set system Sr
≤T−1 and its ρ-sampling Rr

≤T−1;946

(ii) λr
≤T−1-representation of the modified neighborhood balls N̂

r
≤T−1[s] for every vertex s in P \ ∂P.947

At every iteration T , we perform the following steps in order. For the base case when T = 1, objects with948

the ≤T−1 subscript are considered to be null, which we omit from the algorithm.949

1. Consider the combined set system Sr−1
≤σ ∪S

r
T . Compute a ρ-sampling Rr

T of Sr
T , and take union with950

the ρ-sampling Rr−1
≤σ of Sr−1

≤σ from invariant (1) to form a 2ρ-sampling R♭ of Sr−1
≤σ ∪ S

r
T .951

2. Compute an R♭-respecting 2ρ-stabbing path λ♭ along with the equivalence classes of ≡λ♭ for the952

combined set system using Lemma 7.4.953

3. Convert the λr−1
≤σ -representation of N̂

r−1
≤σ [v] for every v in P given by invariant (2) into λ♭-954

representation, using Lemma 7.5(2) and the fact that Sr−1
≤σ is a subcollection of the combined955

set system.956

4. Compute the geometric data structure Dr
T with respect to the ρ-stabbing path λ♭ using Lemma 7.3.957

5. Compute the λ♭-representation of958

N̂
r
T [s] =

⋃︂

v∈N[s]∩CellT

N̂
r−1
≤σ [v]959

for every vertex s in P \ ∂P with the help of geometric data structure Dr
T .960

6. Convert the λ♭-representation of N̂
r
T [s] for every s in P \ ∂P back into λr

T -representation, using961

Lemma 7.5(1).962

(At this point, we have successfully computed the spanning path λr
T for Sr

T and its interval representation963

with respect to λr
T . We now proceed to take union with Sr

≤T−1, currently in λr
≤T−1-representation.)964

7. Define the auxiliary set system:965

Sr
≤T−1 ∪ S

r
T ∪ S

r
≤T =

�

VG ,
�

N̂
r
≤T−1[v] : v ∈ VP

	

∪
�

N̂
r
T [v] : v ∈ VP

	

∪
�

N̂
r
≤T [v] : v ∈ VP

	�

. (6)966

Compute a ρ-sampling Rr
≤T of Sr

≤T , and take union with the ρ-sampling Rr
≤T−1 of Sr

≤T−1 from967

invariant (i) and ρ-sampling Rr
T of Sr

T computed in Step 1 to form a 3ρ-sampling R♯ of the auxiliary968

set system Sr
≤T−1 ∪ S

r
T ∪ S

r
≤T .969

8. Compute a R♯-respecting 3ρ-stabbing path λ♯ along with the equivalence classes of ≡λ♯ for the970

auxiliary set system, using Lemma 7.4.971

9. Convert λr
≤T−1-representation of N̂

r
≤T−1[s] for every s in P \ ∂P given by invariant (ii) to λ♯-972

representations, using Lemma 7.5(2).973

10. Convert λr
T -representation of N̂

r
T [s] for every s in P \ ∂P given by Step 6 to λ♯-representations,974

using Lemma 7.5(2).975

11. Compute N̂
r
≤T [s] by taking the union of N̂

r
≤T−1[s] and N̂

r
T [s] as λ♯-representations for every s in976

P \ ∂P. The output N̂
r
≤T [s] is again in the auxiliary set system and thus have λ♯-representation.977

12. Compute an Rr
≤T -respecting ρ-stabbing path λr

≤T for set system Sr
≤T , by restricting λ♭ to Sr

≤T .978

Convert the λ♯-representation of N̂
r
≤T [s] for every s in P \ ∂P into λr

≤T -representation, using979

Lemma 7.5(1) and the fact that Sr
≤T is a subcollection of the auxiliary set system.980

Notice that Step 12 of the algorithm maintains invariants (i) and (ii). After σ iterations, the inner-loop981

ends. We perform one extra step:982

25

13. Convert theλ♭-representation of N̂
r−1
≤σ [s] for every s in ∂P computed in Step 3 intoλr

≤σ-representation,983

using Lemma 7.5(1). Insert elements in the difference N̂
r
≤σ[s]\N̂

r−1
≤σ [s] to createλr

≤σ-representation984

of N̂
r
≤σ[s] for every s in ∂P.985

We then proceed to the next round of the outer-loop. Notice that invariant (1) follows directly from986

invariant (i), and invariant (2) follows from invariants (ii) together with Step 13 from the previous987

round.988

Handling small pieces. The most time-consuming part of our algorithm is to compute the ρ-stabbing989

paths; each computation takes eO(nρ) time. But we have to compute O(1) many stabbing paths for990

each piece and each round of the outer-loop; there are eO(n/∆) many pieces (remember the modified991

neighborhood balls were defined differently for each piece P), but also for O(∆)many rounds. Therefore992

the computation of stabbing paths alone already takes eO(nρ · (n/∆) ·∆) = O(n2ρ) time.993

To handle the issue, we only apply the above algorithm to large pieces whose size is above certain994

threshold A ≥ ∆. This way, the number of such pieces is at most eO(n/A) instead of eO(n/∆). (We995

eventually set A=∆O(1).) To compute diameter or eccentricities for small pieces, we use Lemma 2.15.996

7.3 Analysis for Eccentricities997

We make the following observations about the shatter dimension of unions of set systems.998

Observation 7.6. Let X be a ground set and let S1 and S2 be two set systems on X . Let us denote the999

set of ranges obtained by taking unions of ranges from S1 and S2 by bS := {S1 ∪ S2 : S1 ∈ S1, S2 ∈ S2}.1000

Suppose that the shatter dimension of S1 is d1 and the shatter dimension of S2 is d2. Then the shatter1001

dimension of S1 ∪ S2 is at most d1 + d2, and the shatter dimension of S1 ∪ S2 ∪ bS is also at most d1 + d2.1002

The observation shows that the combined set system Sr−1
T ∪ S

r
T has dual shatter dimension 8, because1003

both Sr−1
T and Sr

T individually has dual VC-dimension (and thus dual shatter dimension) at most 4 by1004

Lemma 7.2. It also shows that the dual shatter dimension of the auxiliary set system Sr
≤T−1 ∪S

r
T ∪S

r
≤T is1005

also 8 again as the individual dual VC-dimensions are at most 4 Lemma 7.2. Thus we set d = 8 for the1006

time analysis that follows.1007

Lemma 7.7. Fix a piece P, a radius r, and some arbitrary parameter ρ. We can maintain invariants (1)1008

and (2) between iterations T − 1 and T , in time O∗(n ·ρ+ |P| · (n/ρ +ρ8)), by computing (1) an Rr -1009

respecting ρ-stabbing path λr
T for the set system Sr

T for some ρ-sampling Rr ; and (2) λr
T -representation1010

of the modified neighborhood balls N̂
r
T [v] for every vertex v.1011

Proof: Steps 1 and 7 take O(n) time to compute ρ-samplings. Steps 2 and 8 take eO(n · ρ) time to1012

compute O(ρ)-stabbing paths. Steps 3, 6 and 13 take eO(|P| · (n/ρ + ρ8)) time to convert interval1013

representations, because the combined set system Sr−1
≤σ ∪ S

r
T has size 2|P|. Step 4 takes O(n1+o(1)) time1014

to compute the geometric data structure Dr
T . Step 5 takes O(n · no(1)) time to compute the union using1015

Dr
T . Steps 9, 10, 12 take eO(|P| · (n/ρ + ρ8)) time to convert interval representations, because the1016

auxiliary set system Sr
≤T−1 ∪ S

r
T ∪ S

r
≤T has size 3|P|. Step 11 takes O(n) time to compute the union of1017

two sets with the same λ♯-representation. Overall the neighborhood growing step can be implemented1018

in O∗(n ·ρ + |P| · (n/ρ +ρ8)) time per piece per radius. □1019

To analyze the total running time, we separate the pieces of LDD into large and small, based on1020

whether the size of the piece is at least A or not for some parameter A. For large piece P of size1021

at least A, we run the ball growing algorithm in Section 7.2. The outer-loop is executed for O(∆)1022

26

rounds, each taking O∗(n ·ρ + |P| · (n/ρ +ρ8)) time by Lemma 7.7, followed by Step 13, which takes1023

eO(
∑︁

s∈∂P

|︁

|︁

|︁N̂
r
≤σ[s] \ N̂

r−1
≤σ [s]

|︁

|︁

|︁) time to compute N̂
r
≤σ[s] for every s in ∂P using binary search in the1024

λr
≤σ-representation. There are O(n/A) large pieces. Overall, for each large piece, this takes time1025

eO

�

∑︂

r

∑︂

s∈∂P

|︁

|︁

|︁N̂
r
≤σ[s] \ N̂

r−1
≤σ [s]

|︁

|︁

|︁

�

+O(∆) ·O∗(n ·ρ + |P| · (n/ρ +ρ8))1026

= O∗
�

|∂P| · n+∆
�

n ·ρ + |P| · (n/ρ +ρ8)
��

.1027

By Lemma 2.15, for each small piece P of size less than A, it takes eO(n · |∂P|+ |P| · (|P|+(|∂P|∆)4)) time1028

to compute eccentricity of all vertices in P. There are at most eO(n/∆) small pieces.1029

The final running time of the all-vertex eccentricities algorithm for unit-disk graphs is:1030

O∗

∑︂

P: |P|>A

�

|∂P| · n+∆ · (n ·ρ + |P| · (n/ρ +ρ8))
�

+
∑︂

P: |P|≤A

�

n · |∂P|+ |P| · (|P|+ (|∂P|∆)4)
�

!

1031

≤ O∗

n2/∆+
�n

A
·∆ · nρ

�

+
∑︂

P: |P|>A

�

|P| · (n/ρ +ρ8)
�

+
∑︂

P: |P|≤A

(n · |∂P|+ |P|2) +
∑︂

P: |P|≤A

�

|∂P| · A4∆4
�

!

1032

= O∗
�

n2/∆+∆n2ρ/A+∆n2/ρ +∆nρ8 + n2/∆+ nA2/∆+∆3A4n
�

.1033

Balancing cost by setting parameters ∆= n1/20, ρ =∆2 and A=∆4 then yields O∗(n2−1/20).1034

Theorem 7.8. Computing eccentricities of an n-node unit-disk graph can be done in O∗(n2−1/20) time.1035

7.4 Analysis for Diameter1036

For the special case of computing the diameter of unit-disk graphs, we can get a slight improvement in1037

running time by making the following observation:1038

In the analysis for the all-vertex eccentricities algorithm, computing ρ-stabbing paths in Step1039

2 and Step 8 using Lemma 7.4 takes eO(n ·ρ) time per piece per r, which is the bottleneck.1040

We can instead compute a global ρ-stabbing path per type for both the combined set system1041

and the auxiliary set system at the start of each iteration of the inner-loop, then restrict these1042

stabbing paths to each piece P.1043

More specifically, at the start of iteration T :1044

0.1. Consider the global combined set system
�

VG ,
�

N r−1
≤σ [v] : v ∈ VG

	

∪
�

N r
T [v] : v ∈ VG

	�

. This set1045

system differs from Sr−1
≤σ ∪ S

r
T in two places: the neighborhood balls are not modified, and the ball1046

centers range over all vertices in G, not just in P.1047

Compute a ρ-sampling Ř
r
T of

�

VG ,
�

N r
T [v] : v ∈ VG

	�

, then take union with the ρ-sampling of1048

�

VG ,
�

N r−1
≤σ [v] : v ∈ VG

	�

computed from the previous round r − 1 to form a ρ-sampling Ř
♭

of the1049

global combined set system.1050

0.2. Compute an Ř
♭
-respecting ρ-stabbing path λ̌

♭
along with the equivalence classes of ≡

λ̌
♭ for the1051

global combined set system using Lemma 7.4.1052

0.3. Consider the global auxiliary set system1053

�

VG ,
�

N r
≤T−1[v] : v ∈ VG

	

∪
�

N r
T [v] : v ∈ VG

	

∪
�

N r
≤T [v] : v ∈ VG

	�

.1054

27

Compute a ρ-sampling Ř
r
≤T of

�

VG ,
�

N r
≤T [v] : v ∈ VG

	�

, then take union with the ρ-sampling1055

of
�

VG ,
�

N r
≤T−1[v] : v ∈ VG

	�

computed from the previous iteration T − 1 and ρ-sampling of1056

�

VG ,
�

N r
T [v] : v ∈ VG

	�

from Step 0.1 to form a ρ-sampling Ř
♯

of the global auxiliary set system.1057

0.4. Compute an Ř
♯
-respecting ρ-stabbing path λ̌

♯
along with the equivalence classes of ≡

λ̌
♯ for the1058

global auxiliary set system using Lemma 7.4.1059

Then, for each piece P, we modify the following steps in iteration T :1060

2. Restrict the Ř
♭
-respecting ρ-stabbing path λ̌

♭
to another stabbing path λ♭ for the combined set1061

system Sr−1
≤σ ∪ S

r
T for piece P. This is done by first removing every neighborhood ball N r

T [v] not1062

centered in P, then taking intersection between N r
T [v] and the relevant region RP to form N̂

r
T [v].1063

8. Restrict the Ř
♯
-respecting ρ-stabbing path λ̌

♯
to another stabbing path λ♯ for the auxiliary set1064

system Sr−1
≤σ ∪ S

r
T for piece P.1065

Analysis. We only count for the new changes in the diameter case; for the remaining steps, see the1066

time analysis for computing eccentricities.1067

In the new Step 2, the removal of balls not centered in P does not increase the stabbing number1068

of λ̌
♭
. Taking intersection with RP does not change the stabbing number, because this is equivalent to1069

restricting the stabbing path range from [1 : n] to RP (in the same order), and what was one interval in1070

[1 : n] remains one interval in RP . So λ♭ is still a ρ-stabbing path. The ρ-sampling R♭ can be obtained1071

by restricting Ř
♭

to Sr−1
≤σ ∪ S

r
T . The removal of balls not centered in P only decreases the number of sets1072

in consideration and thus makes ≡λ♭ coarser than ≡
λ̌
♭ . Taking intersection with RP does not change the1073

status of N̂
r
T [v] being chosen in the sample or not. Thus λ♭ remains R♭-respecting. As a result, λ♭ is an1074

R♭-respecting ρ-stabbing path.1075

For the new Step 8, using similar reasoning, λ♯ is an R♯-respecting ρ-stabbing path.1076

Steps 0.2 and 0.4 take eO(n ·ρ) time. Steps 2 and 8 now take O(n) time to carry out the restriction.1077

(Only the part about restricting [1 : n] to RP needs to be implemented, not the removal of balls centered1078

outside P.) Overall the neighborhood growing step can be implemented in O∗(n+ |P| · (n/ρ +ρ8)) time1079

per piece, plus another eO(nρ) time across all pieces.1080

The final running time of the diameter algorithm for unit-disk graphs is:1081

O∗

∆ · nρ +
∑︂

P: |P|>A

�

|∂P| · n+∆ · (n+ |P| · (n/ρ +ρ8))
�

+
∑︂

P: |P|≤A

�

n · |∂P|+ |P| · (|P|+ (|∂P|∆)4)
�

!

1082

= O∗
�

n2/∆+∆nρ +∆n2/A+∆n2/ρ +∆nρ8 + n2/∆+ nA2/∆+∆3A4n
�

.1083

Balancing cost by setting parameters ∆= n1/18 and ρ = A=∆2 then yields O∗(n2−1/18).1084

Theorem 7.9. Computing diameter of an n-node unit-disk graph can be done in O∗(n2−1/18) time.1085

8 Framework for Distance Oracles (and Wiener Index)1086

Our algorithm for computing the Wiener index is a simple extension of our algorithm for computing the1087

exact distance oracle. Therefore, in the following, we focus exclusively on describing the framework for1088

computing an exact distance oracle. Then we give more details on how to compute the Wiener index1089

with the same running time.1090

28

For distance oracles, the first two steps are the same as in the framework for eccentricities described1091

in Section 3. Nonetheless, we present a full description of the framework since there are significant1092

differences in step 3. The key difference is that instead of a specific set of relevant vertices RP for piece1093

P, we need to consider all vertices VG. The distances we need to consider will vary depending on the1094

vertex t ∈ VG , and therefore, we could not use the same definition of N̂
r
[s] in the diameter computation1095

for distance oracles. However, we observe that since we have a good additive estimate d̂ that is within1096

±∆ of the true distance between t ∈ VG and a vertex s ∈ P, we only need to consider distances in an1097

O(∆) range around d̂. Our idea is to add a weight to each vertex t and use vertex weights to define1098

N̂
r
[s] (Equation (7)).1099

In our oracle construction, it is important to distinguish between large and small pieces (determined1100

by some size threshold) in the LDD L. For large pieces, we will use the interval representation. For small1101

pieces, we use the oracle construction of Lemma 2.16.1102

Oracle construction. Let A be the parameter chosen later. For each piece P in an LDD L.1103

1. Compute a low-diameter decomposition L of G with a diameter parameter ∆> 0.1104

2. For each vertex v ∈
⋃︁

P∈L ∂P compute a breath-first search tree in G rooted at v.1105

3. For each piece P ∈ L where |P| > A, let sP be an arbitrary vertex of ∂P. For every vertex v ∈ VG,1106

we compute and store a weight wP(v) = dG(v, sP). Observe by the triangle inequality that for any1107

vertex s ∈ P:1108

wP(v)−∆≤ dG(s, v)≤ wP(v) +∆1109

Now we define an adjusted neighborhood ball as follows:1110

N̂
r
[s] := {v ∈ V : dG(v, s)≤ r +wP(v)} ∀r ∈ [−∆,∆] (7)1111

Then we compute N̂
r
[s] with the ball expansion data structure D and store all intermediate balls1112

in the following procedure:1113

3.1 For every s ∈ ∂P, we can explicitly compute the modified balls N̂
r
[s] for all r ∈ [−∆,∆] as1114

well as compute and store a compact interval representation with respect to an ordering λ.1115

3.2 As a base case, we initialize N̂
r
[s] =∅ for every s ∈ P when r = −∆− 1.1116

3.3 For other values of r ∈ [−∆,∆], compute Repλ(N̂
r
[s]) using the inductive formula1117

N̂
r
[s] =

⋃︂

v∈N[s]

N̂
r−1
[v] (8)1118

by taking the union of the intervals.1119

4. For each piece P ∈ L with |P|< A, construct the distance oracle of Lemma 2.16.1120

Correctness of ball expansion initialization. Since dG(sP , t)−∆≤ dG(s, t)≤ dG(sP , t) +∆ for every1121

t ∈ V , t /∈ N̂
−∆−1

[s] and t ∈ N̂
∆
[s]. Thus, the initialization is correct, and we have correctly computed1122

the desired modified neighborhood balls.1123

29

Answering queries. Suppose we get a distance query between a vertex s that is in a piece P ∈ L, and1124

any other vertex t ∈ G. If |P|< A, we query the distance oracle for small pieces, and by Lemma 2.16 the1125

query time is O(log n). Otherwise, for any r ∈ [−∆,∆], we can detect if t ∈ N̂
r
[s] by checking if t lies in1126

an interval of Repλ(N̂
r
[s]) by binary search in O(log n) time14. Thus, we can binary search for the first1127

radius rt such that t ∈ N̂
rt [s] and t /∈ N̂

rt−1
[s]. By the definition of N̂ of Equation (7), we can conclude:1128

dG(s, t) = dG(t, sp) + rt .1129

In either case, we spend eO(1) time.1130

Computing the Wiener index. In the oracle construction, we compute and store N̂
r
[s] for every s1131

in a large piece P. For every vertex t ∈ N̂
r
[s] \ N̂

r−1
[s], the exact distance from s to t is dG(t, sp) + r,1132

and hence
∑︁

t∈N̂
r [s]\N̂ r−1[s] dG(s, t) =

∑︁

t∈N̂
r [s]\N̂ r−1[s] dG(t, sp) + |N̂

r
[s] \ N̂

r−1
[s]| · r. This allows us to1133

compute
∑︁

v∈V dG(s, v) in the same running time as it takes to construct the interval representation1134

of {N̂ r
[s]}∆r=−∆. For small pieces, Le and Wulff-Nilsen [LW24] provided an algorithm for computing1135

∑︁

v∈V dG(s, v) that has the same running time as the construction time for exact oracles of small pieces.1136

Therefore, the time to compute the Wiener index is the same as the time to construct an exact distance1137

oracle.1138

Organization. In the next four sections, we will apply our framework to devise algorithms for exact1139

distance oracles (and thus Wiener index) for different graph classes: sparse graphs of bounded VC-1140

dimension (Section 9), arbitrary-square graphs (Section 10), unit-square graphs (Section 11), and1141

unit-disk graphs (Section 12). There will be similarities with earlier sections on diameter (Sections 4–7).1142

9 Distance Oracles for Sparse Graphs of Bounded VC-dimension1143

We begin by considering sparse graphs of bounded VC-dimension.1144

Stabbing path construction. For a piece P ∈ L, let vol(P) =
∑︁

s∈P deg(s) be the total degree of1145

vertices in P, i.e., the volume of P. We will construct a stabbing path λP for each piece P ∈ L satisfying1146

eO(1) ·
∑︁∆

r=−∆
∑︁

s∈P deg(s) · |RepλP
(N̂

r
[s])| = eO(∆vol(P)(n/ρ+ρd−1)) for a parameter ρ to be specified1147

later using Lemma 7.4.1148

Construction time. Computing the low diameter decomposition and the boundary distances stored in1149

step 2 takes eO(mn/∆) time. For large pieces, the total construction time involves computing the ordering1150

λ in eO(mρ) time (by Lemma 7.4) and the ball expansion procedure which takes O(∆vol(P)·(n/ρ+ρd−1))1151

time per piece. Thus, the total running time is:1152

∑︂

P∈L
|Vp|≥A

eO(mρ +∆vol(P) · (n/ρ +ρd−1)) = eO(nmρ/A+∆mn/ρ +∆mρd−1).1153

For small pieces, we observe that we can compute a vertex weighted BFS on P with weights at most1154

∆ in time eO(vol(P)). Therefore, in Lemma 2.16, T (P) = eO(vol(P)), giving the total running time for all1155

the small pieces:1156

∑︂

P∈L
|VP |≤|A|

O(n|∂P|+ (|∂P|d∆d + |P|) · T (P)) = eO(n2/∆) + eO(Ad∆d + A) ·
∑︂

P∈L
vol(P)

= eO(n2/∆+mAd∆d).
1157

14We can reduce this running time to O(1) by using the fractional cascading technique; this would complicate the details.

30

The total running time for the algorithm is:1158

eO(mn/∆+ nmρ/A+∆mn/ρ +∆mρd−1 +mAd∆d) = O(mn1−1/(4d+1))1159

for ∆= n1/(4d+1), ρ =∆2, and A=∆3.1160

Space usage. The boundary distances that we store in step 2 take eO(n2/∆) space. For large pieces, in1161

step 3, we use eO(∆vol(P)(n/ρ +ρd−1)) space to store compact representations of the neighborhood1162

balls and O(n) space to store distances from each vertex to sP . We also use O(n) space per boundary1163

vertex to store N̂
r
[s] for all r ∈ [−∆,∆] in step 3(0) by storing {N̂ r

[s] \ N̂
r−1
[s]} for every r. Thus, the1164

total space is:1165

∑︂

P∈L
|VP |≥|A|

eO(n · |∂P|+∆vol(P)(n/ρ +ρd−1)) = eO(n2/∆+∆m(n/ρ +ρd−1))1166

= eO(n2/∆+mn/∆+m∆2d−1) (since ρ =∆2).1167

For each small piece, step 4 requires O(n|∂P|+ |VP |d) space by Lemma 2.16. The total space required for1168

all small pieces is1169

∑︂

P∈L
|VP |≤|A|

O(n|∂P|+ |VP |d) = eO(n2/∆+ nAd−1) = eO(n2/∆+ n∆3d−3) space as A=∆3.1170

Therefore, the total space of our oracle is:1171

eO
�

n2/∆+mn/∆+m∆2d−1 + n∆3d−3
�

= eO(mn1−1/(4d+1))1172

for ∆= n1/(4d+1).1173

Theorem 9.1. Given undirected graph G with n vertices and m edges that has generalized distance VC-1174

dimension at most d, we can construct in eO(mn1−1/(4d+1)) time an exact distance oracle of eO(mn1−1/(4d+1))1175

space and eO(1) query time.1176

Remark 9.2. We chose our parameters to minimize the construction time. We can trade off between1177

space and query time. In the extreme, if construction time does not matter, we can apply the large piece1178

solution to all pieces to obtain a distance oracle using eO(mn1−1/(2d)) space.1179

Remark 9.3. In this section, we assumed the graph has a bounded distance VC-dimension. The exponent1180

can be slightly optimized when the time it takes to perform BFS in a piece P is O(|P|) instead of O(vol(P)).1181

This is the case for minor-free graphs, where the space can be improved to eO(mn1−1/(4d)). We can also1182

obtain similar results (albeit with worse exponents) if we make other bounds on VC-dimension, such1183

as the distance VC-dimension, and even if we only assume that the k-neighborhood VC-dimension is1184

bounded by d for all k.1185

10 Distance Oracles for Square Graphs1186

For square graphs, we follow the construction of the oracle in Section 8. We note that the VC-dimension1187

d = 4 in this case. We only analyze the construction time since space is bounded by it.1188

31

Stabbing path construction. For a piece P ∈ L. We will construct a stabbing path λP for each piece1189

P ∈ L satisfying:1190

eO(1) ·
∆
∑︂

r=−∆

∑︂

s∈P

|RepλP
(N̂

r
[s])|= eO(∆|P|(n/ρ +ρ3)) (9)1191

for a parameter ρ to be specified later using Lemma 7.4. The running time is eO(ρn) as we show in1192

Appendix A that we can find a BFS tree in square graphs in eO(n) time.1193

Given the interval representation {N̂ r−1
[s]}s∈P for radius r−1, we compute the interval representation1194

of {N̂ r
[s]}s∈P using the data structure Ď for the interval search problem for squares (Lemma 5.2) in1195

the eccentricities computation with the same setup: the input contains a set of squares corresponding1196

to vertices of P and the interval representation {RepλP
(N̂

r−1
[s])}s∈P for radius r − 1. The queries are1197

{INTERVALSEARCH(s) : s ∈ P} whose outputs are the interval representations of {N̂ r
[s]}s∈P . The total1198

time to grow balls for all radii, using the same efficient encoding as in the improved algorithm for1199

computing eccentricities in Section 5, is:1200

∆
∑︂

r=−∆

eO(b ·
∑︂

s∈P

(|RepλP
(N̂

r−1
[s])|+ |RepλP

(N̂
r
[s])|)) + eO(|P|n/b)

= eO(b∆|P|(n/ρ +ρ3) + |P|n/b) (by Equation (9)).

(10)1201

Construction time. For small pieces, we show (in Lemma E.3 in the appendix) that we can compute a1202

vertex weighted BFS on P with weights at most ∆ in time eO(|P|). Therefore, in Lemma 2.16, T(P) =1203

eO(|P|), giving the total running time for all the small pieces:1204

∑︂

P∈L
|VP |≤|A|

eO(n|∂P|+ (|∂P|4∆4 + |P|) · |P|) =
∑︂

P∈L

eO(n|∂P|+ A4∆4 · |∂P|)

= eO(n2/∆+ nA4∆3).
1205

For large pieces, the running time to grow balls (Equation (10)) plus the running time of eO(nρ) to1206

compute λP for each piece P is:1207

∑︂

P∈L
|VP |≥|A|

eO(nρ + b∆|P|(n/ρ +ρ3) + |P|n/b) = eO(n2ρ/A+ b∆n(n/ρ +ρ3) + n2/ρ).1208

Therefore, the total running time to construct the oracle is:1209

eO(n2/∆+ nA4∆3 + n2ρ/A+ b∆n(n/ρ +ρ3) + n2/ρ) = eO(n2−1/20)1210

by setting b =∆= n1/20, ρ =∆3, A=∆4.1211

Theorem 10.1. Given a square graph with n vertices, we can construct in eO(n2−1/20) time an exact1212

distance oracle of eO(n2−1/20) space and eO(1) query time.1213

11 Distance Oracles for Unit-square Graphs1214

For unit square graphs, we follow the oracle construction for square graphs above. The only difference1215

is that we use Lemma 6.1 for solving the interval searching problem for unit squares. Therefore, the1216

running time to construct all the intervals is within an no(1) factor of the total number of intervals. Since1217

the stabbing path λP for each piece P still satisfies Equation (9), the total running time to grow all1218

32

the balls for each large piece is O∗(∆|P|(n/ρ +ρ3)). Therefore, the construction time for large pieces1219

becomes:1220

∑︂

P∈L
|Vp|≥A

O∗(nρ +∆|P|(n/ρ +ρ3)) = O∗(n2ρ/A+∆n2/ρ +∆nρ3).
1221

The construction time for small pieces is the same: eO(n2/∆+ nA4∆3). Thus, the total construction time1222

of the oracle is:1223

O∗(n2/∆+ nA4∆3 + n2ρ/A+∆n2/ρ +∆nρ3) = O∗(n2−1/16)1224

for ∆= n1/16, A=∆3,ρ =∆2.1225

Theorem 11.1. Given a unit square with n vertices, we can construct in eO(n2−1/16) time an exact1226

distance oracle of eO(n2−1/16) space and eO(1) query time.1227

12 Distance Oracles for Unit-disk Graphs1228

For unit-disk graphs, we follow the same strategy in Section 7, adapted to the distance oracle framework1229

Section 8.1230

• We partition the neighborhood balls into types, so that within any cell, balls of a fixed type intersect1231

the cell as a pseudoline arrangement.1232

• We use the same geometric data structure (Appendix C.3) and interval representation switching1233

technique (Appendix D), to implement the ball growing step (Step 3.3) in the framework using1234

the inductive formula (1).1235

• We switch to a different distance oracle construction using Lemma 2.16 when the piece has size at1236

most A.1237

We only analyze the construction time since space is bounded by it.1238

Ball expansion step. We now need to deal with modified balls of a fixed radius r for different types1239

with vertex weights on their endpoints. To be precise:1240

N̂
r
M [s] := {(v, w(v)) : v ∈ V where the τ-walk from s to v is at most r +w(v) for τ ∈ M}1241

We bound the dual VC-dimension of the set system ((v, w(v))v∈V , {N r
M [s]}s∈P) in Lemma B.3.1242

For each type T , given the λr−1
T -representation for every modified balls in the set system Sr−1

T , we1243

compute the λr
T -representation for every modified balls in the set system Sr

T , using the same interval1244

representation switching strategy and the data structure Dr
T for the interval cover problem for unit-disks,1245

similar to Section 7.2. The total time to grow balls for all radii is n ·ρ + |P| · (n/ρ +ρ8).1246

Construction time. For small pieces, we show (in Observation E.2 in the appendix) that we can1247

compute a vertex weighted BFS on P with weights at most ∆ in time eO(|P|). Therefore, in Lemma 2.16,1248

T (P) = eO(|P|), giving the total running time for each small piece to be n · |∂P|+ |P| · (|P|+ (|∂P|∆)4).1249

For large pieces, we grow the balls for O(∆) rounds, each taking time n·ρ+|P|·(n/ρ+ρ8). Therefore,1250

the total running time to construct the oracle is:1251

O∗

n2/∆+
∑︂

P: |P|>A

∆(n ·ρ + |P| · (n/ρ +ρ8)) +
∑︂

P: |P|≤A

�

n · |∂P|+ |P| · (|P|+ (|∂P|∆)4)
�

!

1252

33

= O∗
�

n2/∆+∆n2ρ/A+∆n2/ρ +∆nρ8 + n2/∆+ nA2/∆+∆3A4n
�

.1253

Balancing cost by setting parameters ∆= n1/20, ρ =∆2 and A=∆4 then yields eO(n2−1/20).1254

Theorem 12.1. Given a unit-disk graph with n vertices, we can construct in eO(n2−1/20) time an exact1255

distance oracle of eO(n2−1/20) space and eO(1) query time.1256

13 Conclusion and Open Questions1257

In this paper, we have presented the first truly subquadratic algorithms for diameter and related problems1258

for many classes of geometric intersection graphs. Naturally, many open questions follow, for example,1259

improving the exponents of the time bounds of any of our algorithms. More intriguingly:1260

• Is there a truly subquadratic algorithm for computing the diameter of arbitrary disk graphs? Our1261

algorithm can be extended to the case when the number of different radii is no(1), but the general1262

case appears more difficult.1263

• Could we prove any conditional lower bound on the running time of the formΩ(n1+δ) for computing1264

the diameter of unit-disk graphs? Bringmann et al. [BKK+22] proved a near-quadratic conditional1265

lower bound for 3D unit-ball graphs under the orthogonal vector (OV) hypothesis.1266

If one considers more difficult problems than diameter, e.g., counting the number of pairs with1267

shortest-pair distance at most r (which can be solved by our algorithms in subquadratic time),1268

an Ω(n4/3) conditional lower bound follows for unit-disk graphs if one believes certain offline1269

range searching problems similar to Hopcroft’s problem require Ω(n4/3) time (namely, counting1270

the number of pairs of points with Euclidean distance at most 1 in R2).1271

• Is there a near-linear-time algorithm for distinguishing between diameter 2 vs. 3 for unit-disk1272

graphs? Bringmann et al. [BKK+22] proved a near-quadratic conditional lower bound for 12D unit-1273

hypercube graphs under the hyperclique hypothesis, and obtained an O(n log n)-time algorithm1274

for unit-square graphs.1275

There are a few specific open questions related to our algorithms. For example:1276

• Is the VC-dimension of the set system in Lemma 7.2 bounded when we do not restrict to a fixed r1277

and T? If so, this might simplify our algorithms for unit disks.1278

• Could we solve the interval cover data structure problem (Problem 1.3) for arbitrary squares with1279

N1+o(1) preprocessing time and N o(1) query time? If so, this would improve the exponent for our1280

algorithms for arbitrary squares. This appears difficult.1281

• Less importantly, on the interval cover problem data structure problem for unit disks from a fixed1282

modulo class, could the extra 2O(
⎷

log N logα(N)) ≤ N o(1) factors be reduced to polylogarithmic? A1283

related question is to determine tight bounds on the combinatorial complexity of the “generalized1284

envelopes” from Appendix C.3.1285

Besides unit squares, Duraj, Konieczny, and Potȩpa [DKP24] also considered translates of a convex1286

polygon with constant complexity. It is not difficult to similarly extend our algorithms for unit/arbitrary1287

squares to translates/homothets of other convex polygonal shapes with constant complexity (and our1288

algorithms for unit disks to translations of fat convex non-polygonal shapes with constant complexity).1289

34

References1290

[ACIM99] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of diameter1291

and shortest paths (without matrix multiplication). SIAM Journal On Computing, 28(4):1167–1181,1292

1999. doi:10.1137/S0097539796303421.1293

[ACM+21] A. Karim Abu-Affash, Paz Carmi, Anil Maheshwari, Pat Morin, Michiel Smid, and Shakhar Smorodin-1294

sky. Approximating maximum diameter-bounded subgraph in unit disk graphs. Discrete & Computa-1295

tional Geometry, 66(4):1401–1414, 2021. doi:10.1007/s00454-021-00327-y.1296

[AdT24] Boris Aronov, Mark de Berg, and Leonidas Theocharous. A clique-based separator for intersection1297

graphs of geodesic disks in R2. In 40th International Symposium on Computational Geometry (SoCG),1298

volume 293, pages 9:1–9:15, 2024. doi:10.4230/LIPIcs.SoCG.2024.9.1299

[ADW+25] Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. More1300

asymmetry yields faster matrix multiplication. In 36th Annual ACM-SIAM Symposium on Discrete1301

Algorithms (SODA), pages 2005–2039, 2025. doi:10.1137/1.9781611978322.63.1302

[AE99] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. In B. Chazelle,1303

J. E. Goodman, and R. Pollack, editors, Advances in Discrete and Computational Geometry, pages1304

1–56. AMS Press, 1999.1305

[AKPW95] Noga Alon, Richard M. Karp, David Peleg, and Douglas West. A graph-theoretic game and its1306

application to the k-server problem. SIAM Journal on Computing, 24(1):78–100, 1995. doi:1307

10.1137/s0097539792224474.1308

[AS00] Pankaj K. Agarwal and Micha Sharir. Davenport-Schinzel sequences and their geometric applications.1309

In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 1–47. North-1310

Holland, Amsterdam, 2000. doi:10.1016/B978-044482537-7/50002-4.1311

[Awe85] Baruch Awerbuch. Complexity of network synchronization. Journal of The ACM, 32(4):804–823,1312

1985. doi:10.1145/4221.4227.1313

[BCE15] Drago Bokal, Sergio Cabello, and David Eppstein. Finding all maximal subsequences with hereditary1314

properties. In 31st International Symposium on Computational Geometry (SoCG), volume 34 of LIPIcs,1315

pages 240–254, 2015. doi:10.4230/LIPICS.SOCG.2015.240.1316

[BDG+14] Michael J. Bannister, William E. Devanny, Michael T. Goodrich, Joseph A. Simons, and Lowell1317

Trott. Windows into geometric events: Data structures for time-windowed querying of temporal1318

point sets. In 26th Canadian Conference on Computational Geometry (CCCG), 2014. URL: http:1319

//www.cccg.ca/proceedings/2014/papers/paper02.pdf.1320

[BKK+22] Karl Bringmann, Sándor Kisfaludi-Bak, Marvin Künnemann, André Nusser, and Zahra Parsaeian.1321

Towards sub-quadratic diameter computation in geometric intersection graphs. In 38th International1322

Symposium on Computational Geometry (SoCG), pages 21:1–21:16, 2022.1323

[BKK+24] Alexander Baumann, Haim Kaplan, Katharina Klost, Kristin Knorr, Wolfgang Mulzer, Liam Roditty,1324

and Paul Seiferth. Dynamic connectivity in disk graphs. Discrete & Computational Geometry,1325

71(1):214–277, 2024. doi:10.1007/s00454-023-00621-x.1326

[BNW22] Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-weight single-source1327

shortest paths in near-linear time. In 63rd Annual Symposium on Foundations of Computer Science1328

(FOCS), pages 600–611, 2022. doi:10.1109/focs54457.2022.00063.1329

[BT15] Nicolas Bousquet and Stéphan Thomassé. VC-dimension and Erdős–Pósa property. Discrete Mathe-1330

matics, 338(12):2302–2317, 2015. doi:10.1016/j.disc.2015.05.026.1331

[Cab18] Sergio Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances in1332

planar graphs. ACM Transactions on Algorithms, 15(2):1–38, December 2018.1333

[CEV07] Victor Chepoi, Bertrand Estellon, and Yann Vaxes. Covering planar graphs with a fixed number of balls.1334

Discrete & Computational Geometry, 37(2):237–244, 2007. doi:10.1007/s00454-006-1260-0.1335

35

https://doi.org/10.1137/S0097539796303421
https://doi.org/10.1007/s00454-021-00327-y
https://doi.org/10.4230/LIPIcs.SoCG.2024.9
https://doi.org/10.1137/1.9781611978322.63
https://doi.org/10.1137/s0097539792224474
https://doi.org/10.1137/s0097539792224474
https://doi.org/10.1137/s0097539792224474
https://doi.org/10.1016/B978-044482537-7/50002-4
https://doi.org/10.1145/4221.4227
https://doi.org/10.4230/LIPICS.SOCG.2015.240
http://www.cccg.ca/proceedings/2014/papers/paper02.pdf
http://www.cccg.ca/proceedings/2014/papers/paper02.pdf
http://www.cccg.ca/proceedings/2014/papers/paper02.pdf
https://doi.org/10.1007/s00454-023-00621-x
https://doi.org/10.1109/focs54457.2022.00063
https://doi.org/10.1016/j.disc.2015.05.026
https://doi.org/10.1007/s00454-006-1260-0

[CG86a] Bernard Chazelle and Leonidas J Guibas. Fractional cascading: I. A data structuring technique.1336

Algorithmica, 1(1-4):133–162, 1986.1337

[CG86b] Bernard Chazelle and Leonidas J Guibas. Fractional cascading: II. Applications. Algorithmica,1338

1(1-4):163–191, November 1986.1339

[CGL+23] Panagiotis Charalampopoulos, Paweł Gawrychowski, Yaowei Long, Shay Mozes, Seth Pettie, Oren1340

Weimann, and Christian Wulff-Nilsen. Almost optimal exact distance oracles for planar graphs.1341

Journal of the ACM, 70(2):1–50, 2023. doi:10.1145/3580474.1342

[CGL24] Hsien-Chih Chang, Jie Gao, and Hung Le. Computing diameter+2 in truly-subquadratic time for unit-1343

disk graphs. In 40th International Symposium on Computational Geometry (SoCG), pages 38:1–38:14,1344

2024. doi:10.4230/LIPIcs.SoCG.2024.38.1345

[Cha86] Bernard Chazelle. Filtering search: A new approach to query-answering. SIAM J. Comput., 15(3):703–1346

724, 1986. doi:10.1137/0215051.1347

[CHN20] Timothy M. Chan, Qizheng He, and Yakov Nekrich. Further results on colored range searching.1348

In 36th International Symposium on Computational Geometry (SoCG), volume 164 of LIPIcs, pages1349

28:1–28:15, 2020. doi:10.4230/LIPICS.SOCG.2020.28.1350

[CHP19] Timothy M. Chan, John Hershberger, and Simon Pratt. Two approaches to building time-1351

windowed geometric data structures. Algorithmica, 81(9):3519–3533, 2019. doi:10.1007/1352

S00453-019-00588-3.1353

[CJ15] Sergio Cabello and Miha Jejčič. Shortest paths in intersection graphs of unit disks. Computational1354

Geometry, 48(4):360–367, 2015. doi:10.1016/j.comgeo.2014.12.003.1355

[CK97] V. Chepoi and S. Klavžar. The Wiener index and the Szeged index of benzenoid systems in linear1356

time. Journal of Chemical Information and Computer Sciences, 37(4):752–755, 1997. doi:10.1021/1357

ci9700079.1358

[CK09] Sergio Cabello and Christian Knauer. Algorithms for graphs of bounded treewidth via orthogonal1359

range searching. Computational Geometry, 42(9):815–824, 2009. doi:10.1016/j.comgeo.2009.1360

02.001.1361

[CS16] Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in unit-disk graphs in slightly1362

subquadratic time. In 27th International Symposium on Algorithms and Computation (ISAAC),1363

volume 64, pages 24:1–24:13, 2016.1364

[CS19] Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in geometric intersection graphs.1365

J. Comput. Geom., 10(1):27–41, 2019. doi:10.20382/JOCG.V10I1A2.1366

[CW89] Bernard Chazelle and Emo Welzl. Quasi-optimal range searching in spaces of finite VC-dimension.1367

Discrete & Computational Geometry, 4(5):467–489, 1989. doi:10.1007/BF02187743.1368

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational Geometry:1369

Algorithms and Applications. Springer, 3rd edition, 2008. doi:10.1007/978-3-540-77974-2.1370

[DHV22] Guillaume Ducoffe, Michel Habib, and Laurent Viennot. Diameter, eccentricities and distance oracle1371

computations on h-minor free graphs and graphs of bounded (distance) Vapnik–Chervonenkis1372

dimension. SIAM Journal on Computing, 51(5):1506–1534, 2022. doi:10.1137/20M136551X.1373

[dKMT23] Mark de Berg, Sándor Kisfaludi-Bak, Morteza Monemizadeh, and Leonidas Theocharous. Clique-1374

based separators for geometric intersection graphs. Algorithmica. An International Journal in1375

Computer Science, 85(6):1652–1678, 2023.1376

[DKP24] Lech Duraj, Filip Konieczny, and Krzysztof Potępa. Better diameter algorithms for bounded VC-1377

dimension graphs and geometric intersection graphs. In 32nd Annual European Symposium on1378

Algorithms (ESA), volume 308, pages 51:1–51:18, 2024.1379

[EIK01] Alon Efrat, Alon Itai, and Matthew J Katz. Geometry helps in bottleneck matching and related1380

problems. Algorithmica, 31(1):1–28, 2001.1381

36

https://doi.org/10.1145/3580474
https://doi.org/10.4230/LIPIcs.SoCG.2024.38
https://doi.org/10.1137/0215051
https://doi.org/10.4230/LIPICS.SOCG.2020.28
https://doi.org/10.1007/S00453-019-00588-3
https://doi.org/10.1007/S00453-019-00588-3
https://doi.org/10.1007/S00453-019-00588-3
https://doi.org/10.1016/j.comgeo.2014.12.003
https://doi.org/10.1021/ci9700079
https://doi.org/10.1021/ci9700079
https://doi.org/10.1021/ci9700079
https://doi.org/10.1016/j.comgeo.2009.02.001
https://doi.org/10.1016/j.comgeo.2009.02.001
https://doi.org/10.1016/j.comgeo.2009.02.001
https://doi.org/10.20382/JOCG.V10I1A2
https://doi.org/10.1007/BF02187743
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1137/20M136551X

[Eri96] Jeff Erickson. New lower bounds for Hopcroft’s problem. Discrete & Computational Geometry,1382

16(4):389–418, 1996. doi:10.1007/bf02712875.1383

[For87] Steven Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174, 1987.1384

doi:10.1007/BF01840357.1385

[Fre87] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications. SIAM1386

Journal on Computing, 16(6):1004–1022, 1987. doi:10.1137/0216064.1387

[GJRS18] Prosenjit Gupta, Ravi Janardan, Saladi Rahul, and Michiel H. M. Smid. Computational geometry:1388

Generalized (or colored) intersection searching. In Handbook of Data Structures and Applications,1389

chapter 67, pages 1042–1057. CRC Press, 2nd edition, 2018. URL: https://www-users.cs.umn.1390

edu/~sala0198/Papers/ds2-handbook.pdf.1391

[GJS95] Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Further results on generalized intersection1392

searching problems: Counting, reporting, and dynamization. Journal of Algorithms, 19(2):282–317,1393

1995. doi:10.1006/jagm.1995.1038.1394

[GKM+21] Paweł Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann. Voronoi diagrams1395

on planar graphs, and computing the diameter in deterministic Õ(n5/3) time. SIAM Journal on1396

Computing, 50(2):509–554, 2021. doi:10.1137/18M1193402.1397

[Har11] Sariel Har-Peled. Geometric Approximation Algorithms. Number 173. American Mathematical Soc.,1398

2011.1399

[Kle89] Rolf Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of Lecture Notes in Computer Science.1400

Springer, 1989. doi:10.1007/3-540-52055-4.1401

[Klo23] Katharina Klost. An algorithmic framework for the single source shortest path problem with1402

applications to disk graphs. Computational Geometry, 111:101979, 2023.1403

[KRSV08] Haim Kaplan, Natan Rubin, Micha Sharir, and Elad Verbin. Efficient colored orthogonal range1404

counting. SIAM Journal on Computing, 38(3):982–1011, 2008. doi:10.1137/070684483.1405

[KZ25] Adam Karczmarz and Da Wei Zheng. Subquadratic algorithms in minor-free digraphs: (Weighted)1406

distance oracles, decrementai reachability, and more. In 36th Annual ACM-SIAM Symposium on1407

Discrete Algorithms (SODA), pages 4338–4351, 2025. doi:10.1137/1.9781611978322.147.1408

[LP19] Jason Li and Merav Parter. Planar diameter via metric compression. In 51st Annual ACM Symposium1409

on Theory of Computing (STOC), pages 152–163, Phoenix, AZ, USA and New York, NY, USA, 2019.1410

[LPS+24] Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. A 1.9999-1411

approximation algorithm for vertex cover on string graphs. In 40th International Symposium1412

on Computational Geometry (SoCG), volume 293, pages 72:1–72:11, 2024. doi:10.4230/LIPIcs.1413

SoCG.2024.72.1414

[LW22] Hung Le and Christian Wulff-Nilsen. Optimal approximate distance oracle for planar graphs. In1415

62nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 363–374, 2022.1416

[LW24] Hung Le and Christian Wulff-Nilsen. VC set systems in minor-free (di)graphs and applications.1417

In 35th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 5332–5360, 2024.1418

doi:10.1137/1.9781611977912.192.1419

[Pet15] Seth Pettie. Sharp bounds on Davenport-Schinzel sequences of every order. Journal of The ACM,1420

62(5), 2015. doi:10.1145/2794075.1421

[RW13] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter and1422

radius of sparse graphs. In 45th Annual ACM Symposium on Theory of Computing (STOC), pages1423

515–524, 2013.1424

[Sau72] N. Sauer. On the density of families of sets. J. Comb. Theory Ser. A., 13(1):145–147, 1972. doi:1425

10.1016/0097-3165(72)90019-2.1426

37

https://doi.org/10.1007/bf02712875
https://doi.org/10.1007/BF01840357
https://doi.org/10.1137/0216064
https://www-users.cs.umn.edu/~sala0198/Papers/ds2-handbook.pdf
https://www-users.cs.umn.edu/~sala0198/Papers/ds2-handbook.pdf
https://www-users.cs.umn.edu/~sala0198/Papers/ds2-handbook.pdf
https://doi.org/10.1006/jagm.1995.1038
https://doi.org/10.1137/18M1193402
https://doi.org/10.1007/3-540-52055-4
https://doi.org/10.1137/070684483
https://doi.org/10.1137/1.9781611978322.147
https://doi.org/10.4230/LIPIcs.SoCG.2024.72
https://doi.org/10.4230/LIPIcs.SoCG.2024.72
https://doi.org/10.4230/LIPIcs.SoCG.2024.72
https://doi.org/10.1137/1.9781611977912.192
https://doi.org/10.1145/2794075
https://doi.org/10.1016/0097-3165(72)90019-2
https://doi.org/10.1016/0097-3165(72)90019-2
https://doi.org/10.1016/0097-3165(72)90019-2

[Sei95] Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal1427

of Computer and System Sciences, 51(3):400–403, 1995. doi:10.1006/jcss.1995.1078.1428

[She72] Saharon Shelah. A combinatorial problem; stability and order for models and theories in infinitary1429

languages. Pacific Journal of Mathematics, 41(1):247–261, 1972. doi:10.2140/pjm.1972.41.247.1430

[SJ05] Qingmin Shi and Joseph JaJa. Novel transformation techniques using q-heaps with applications1431

to computational geometry. SIAM Journal On Computing, 34(6):1474–1492, 2005. doi:10.1137/1432

S0097539703435728.1433

[ST86] Neil Sarnak and Robert E. Tarjan. Planar point location using persistent search trees. Communications1434

of The ACM, 29(7):669–679, July 1986. doi:10.1145/6138.6151.1435

[WN09] Christian Wulff-Nilsen. Wiener index and diameter of a planar graph in subquadratic time. In1436

Proceedings of the 25th European Workshop on Computational Geometry, pages 25–28, 2009.1437

38

https://doi.org/10.1006/jcss.1995.1078
https://doi.org/10.2140/pjm.1972.41.247
https://doi.org/10.1137/S0097539703435728
https://doi.org/10.1137/S0097539703435728
https://doi.org/10.1137/S0097539703435728
https://doi.org/10.1145/6138.6151

A Low-diameter Decompositions1438

In this section, we construct the low-diameter decomposition of sparse graphs and geometric intersection1439

graphs. Recall that we use N r[v] = {u : dG(u, v)≤ r} to denote the set of vertices in the neighborhood1440

ball of radius r centered at v.1441

We give an algorithm for computing a low-diameter decomposition as claimed in Section 2.1. Our1442

low-diameter decomposition for graphs is perhaps most similar to the low-diameter decomposition1443

in [AKPW95]; we are not aware of any work stating the exact guarantees with our definition of LDD.1444

We first present the general algorithm and the properties of the LDD. We will discuss the detailed1445

implementation and running time for sparse graphs and geometric intersection graphs separately.1446

Basic algorithm. Let φ be a parameter with 0< φ < 1. We will choose φ := 24 log n/∆. Start with1447

the entire graph G1 = G. Pick an arbitrary vertex u ∈ V , perform a BFS to compute neighborhood balls1448

centered at v: N1[v], N2[v], . . . , N ℓ[v]. Stop when |N ℓ[v]|/|N ℓ−2[v]| ≤ 1+φ, and set V1 = N ℓ−1[v]1449

as one piece in the decomposition. Note that this is guaranteed to eventually happen because when1450

N ℓ−2[v] is the entire connected component of v, then N ℓ[v] = N ℓ−1[v] = N ℓ−2[v]. We mark the vertices1451

in N ℓ[v] \ N ℓ−2[v] as boundary vertices15. Repeat this procedure on G2 = G1 \ V1 to find V2, then on1452

G3 = G2 \ V2, and so on.1453

Low diameter property. First we bound the strong diameter of one such ball N ℓ−1[v] that we included1454

in our low diameter decomposition. Observe that for all 2 ≤ i < ℓ, the ball N i[v] of radius i satisfies1455

|N i[v]|> (1+φ)|N i−2[v]|. Since the size of the largest ball is at most n, if ℓ is odd, we have that:1456

n≥ |N ℓ(v)| ≥ |N ℓ−1(v)|> (1+φ) · |N ℓ−3(v)|> (1+φ)(ℓ−1)/2 · |N0(v)|= (1+φ)(ℓ−1)/2
1457

Taking logarithms on both sides, and using the fact that φ < 1, we obtain:1458

log n>
ℓ− 1

2
· log(1+φ)≥

ℓ− 1
2
· (φ −φ2/2)>

(ℓ− 1) ·φ
4

=
6(ℓ− 1) · log n

∆
1459

Rearranging the inequality yields ℓ≤∆/6. The diameter is at most 2ℓ≤∆/3.1460

Small boundary property. Let N r1
G1
[v1] be the ball of largest radii we compute in G1, N r2

G2
[v2] the1461

ball in G2, . . . , N rk
Gk
[vk] the ball in Gk. Observe that when we choose Pi = G[N ri−1

Gi
[vi]], the vertices1462

of N ri−1
Gi
[vi] \ N ri−2

Gi
[vi] are potentially boundary vertices ∂Pi, and a vertex in N ri

Gi
[vi] \ N ri−1

Gi
[vi] is a1463

boundary vertex in ∂Pj for some piece Pj with j > i. Assume we have a total of k pieces in the LDD.1464

Thus it can be seen that:1465

k
∑︂

i=1

|∂Pi| ≤
k
∑︂

i=1

|N ri
Gi
[vi] \ N ri−2

Gi
[v]|1466

≤
k
∑︂

i=1

φ · |N ri−2
Gi
[vi]| (since |N ri

Gi
[vi]| ≤ (1+φ)|N

ri−2
Gi
[vi]|)1467

≤
k
∑︂

i=1

φ · |N ri−1
Gi
[vi]| (since N ri−2

Gi
[vi] ⊆ N ri−1

Gi
[vi])1468

≤ φ · n= 24n log n/∆.1469

15The vertices in N ℓ[v] \ N ℓ−1[v] are boundary vertices of later pieces constructed in the process. The vertices in N ℓ−1[v] \
N ℓ−2[v] are boundary vertices of V1, although there may be other boundary vertices in N ℓ−2(v) that we accounted for earlier in
the process.

39

No small pieces. To ensure that no piece is small, we will do some post-processing of the pieces1470

obtained from the basic algorithm. We use the following claim.1471

Lemma A.1. Let Pi be a piece found in the basic LDD algorithm found by taking the vertices N r−1[v] in1472

Gi . Either Pi has at least Ω(∆/ log n) vertices, or Pi is an entire connected component of Gi .1473

Proof: Suppose that |N r(v)| > |N r−2(v)|. Then as (1+φ) · |N r−2(v)| ≥ |N r(v)| ≥ |N r−2(v)|+ 1, we1474

conclude that |N r−2(v)| ≥ 1/φ = O(∆/ log n), so P has size at least O(∆/ log n). Otherwise |N r(v)|=1475

|N r−1(v)|= |N r−2(v)| and thus Pi is an entire connected component of Gi . □1476

In our post-processing, we will merge Pi with an arbitrary neighboring component. Observe that since Pi1477

is an entire connected component of Gi , no later piece Pj with j > i will merge into Pi . Now consider a1478

piece Pj with multiple pieces Pi1 , Pi2 , · · · , Pit
merging into it in the post-processing step, j < i1, · · · , j < it .1479

Since all pieces have diameter at most ∆/3, the resulting merged Pj has diameter at most ∆.1480

A.1 Sparse Graphs1481

Consider the standard BFS algorithm that computes N r[v] by adding all neighbors incident to N r−1[v]1482

into a queue. For every vertex v, the basic algorithm will add all its neighbors into a queue at most1483

once, so the basic algorithm can be implemented in O(m+ n) time. The post-processing step involving1484

merging components can also be done in O(m+ n) time.1485

Theorem 2.2. Let G be a graph with n vertices and m edges. For any parameter 24 log n<∆≤ n, we1486

can compute a low-diameter decomposition for G in O(m+ n) time.1487

A.2 Geometric Intersection Graphs1488

Here we consider geometric intersection graphs of fat pseudo-disks of similar size and squares of varying1489

sizes. A family of objects are called pseudo-disks if each one is the interior of a simple closed Jordan1490

curve and two objects are either disjoint, have one object fully inside the other, or properly intersect1491

each other at two boundary points. Disks are by definition pseudo-disks. The geometric intersection1492

graph of a family of pseudo-disks can be considered, combinatorially, as a set of vertices V representing1493

the pseudo disks and two vertices are connected if their corresponding pseudo-disks have non-empty1494

intersection. For the algorithm below, we consider fat pseudo-disks that are of roughly the same size and1495

have constant complexity. Specifically, a fat pseudo-disk is sandwiched between two disks of the same1496

center p of radius r and R with two fixed constants r, R and r ≤ R and the boundary can be described by1497

a constant number of algebraic curves. We call this pseudo-disk centered at p as Cp. The input to our1498

algorithm consists of the description of a family of n fat pseudo-disks with input size O(n). We assume1499

that one can compute in O(1) time whether two pseudo-disks have an edge or not. The geometric1500

intersection graph of such pseudo-disks can be dense (i.e., having edges of size Θ(n2)). We show that1501

the low diameter decomposition can still be computed in near linear time, similar to the running time1502

for sparse graphs (Appendix A.1).1503

Recall that the basic idea is to perform BFS from a vertex v to compute balls centered at v: N0[v] = {v},1504

N1[v], N2[v], . . . , N ℓ[v], and stop when |N ℓ[v]|/|N ℓ−2[v]| ≤ 1+φ. Let V1 = N ℓ−1[v]. Then repeat this1505

procedure on G2 = G1 \ V1 to find V2, then on G3 = G2 \ V2, and so on.1506

We have to be careful in implementing the basic idea: we do not want to spend eO(n) time per1507

iteration as the number of iterations could be Ω(n). This is achievable by not explicitly constructing1508

all the edges, an idea that is generally adopted for computing a breadth-first search tree for geometric1509

intersection graphs (for fat objects of similar sizes) [EIK01, CJ15, CS16]. We use the same algorithm1510

40

as in [CGL24] for pseudo-disks of similar sizes. The core step in the BFS is to find the vertices that are1511

exactly j-hops away from v, denoted by Yj – from the vertices that are exactly j − 1 hops away from1512

v, Yj−1. Put a grid of size r
⎷

2. Two pseudo-disks with centers in the same grid cell are connected1513

by an edge for sure. Thus, if a pseudo disk centered at p in one cell appears in Yj−1, all pseudo-disks1514

centered in the same cell will be included in Yj if they are not yet covered in B j−1(v). In addition, the1515

other vertices to be included in Yj will come from cells that have distance at most 2R away from cells1516

touched by Yj−1. Since R2/r2 is a constant, we only need to check for each cell touched by Yj−1, at most a1517

constant number of nearby cells. This step can be implemented by using an operation called the red-blue1518

intersection problem, which finds all the blue pseudo-disks that intersect at least one red pseudo-disks,1519

where all red pseudo-disks and blue pseudo-disks are separated by a horizontal (or a vertical) line. We1520

use the following lemma from [CGL24].1521

Lemma A.2 ([CGL24]). In time O(nb log nb + nrα(nr) log nr + nr2
α(nr)), we can solve the red-blue1522

intersection problem of nr pseudo-disks and nb blue pseudo-disks. Here α(n) is the inverse Ackermann1523

function.1524

With this Lemma we can conclude the following theorem.1525

Theorem A.3. Let G be the intersection graphs of n fat pseudo-disks of similar size. For any parameter1526

24 log n<∆≤ n, we can compute a low-diameter decomposition for G in eO(n) time.1527

Proof: We argue that for the entire algorithm, a non-empty cell in the grid of size r
⎷

2 is only visited a1528

constant number of times. First, if cell c has a vertex p ∈ Vi and p is not on the boundary of this piece1529

Vi , then all pseudo-disks centered in the cell will be included in Vi . After Vi is removed, cell c becomes1530

empty and will not be visited again in later iterations. Therefore, a cell c visited by Vi is only visited1531

again by pieces Vj with j > i if c has only vertices that are at the boundary of Vi. That says, the cell c1532

has a neighboring cell c′ (within distance 2R from c), such that c′ contains a vertex p of Vi and p is not1533

on the boundary of Vi . In this case all vertices in c′ are entirely in Vi (or earlier pieces). Thus, after the1534

i-th iteration, at least one of the neighboring cells of c is wiped out. Since c has only a constant of such1535

neighboring cells, c is only visited a constant number of times. This finishes the argument. □1536

As a corollary, since unit squares and unit disks are fat pseudo-disks of similar size, we conclude that1537

a low diameter decomposition can be computed for these classes of intersection graphs in eO(n) time.1538

Axis-aligned squares. We will need a similar theorem for axis-aligned squares (which might not1539

be of similar size.) A BFS on the intersection graph of axis-parallel squares can be done in time1540

O(n log n) [Klo23], by using data structures developed in [BKK+24]. Again we focus on how to find the1541

objects of j-hops away from a starting vertex v from the objects of j − 1 hops away. When the squares1542

have different sizes, instead of a grid of a single size, one can use a hierarchical structure such as the1543

(compressed) quadtree. Each square is associated with a quad whose size is comparable with its size.1544

Further the compressed quadtree can be decomposed into O(n) canonical paths such that each root to1545

leaf path can be represented by O(log n) disjoint canonical paths. A canonical path has a smallest cell σ1546

and largest cell τ, and is associated with a constant number of regions, classified as inner, middle and1547

outer regions. The inner region is a disk centered at the smallest cell σ of the canonical path. Further,1548

each region A is associated with two sets, the first type S1(A) contains a collection of objects centered1549

inside A that form a clique, and the second type S2(A) contains objects that intersect with at least one site1550

in S1(A). A similar red-blue intersection problem can be solved in linear time for axis-parallel squares,1551

assuming sorting along x and Y coordinates is performed already, as shown in [Klo23]. In summary,1552

to implement a BFS step, for each region A touched by the vertices in Yi−1, include all objects that are1553

41

in S1(A) and then perform red-blue intersection modules with A against a constant number of other1554

regions. Since each object stays in at most O(log n) sets of the first type and at most O(log n) sets of the1555

second type, the total running time carries an extra O(log n) factor. We can use this algorithm for the1556

low-diameter decomposition and obtain the following.1557

Theorem A.4. Let G be the intersection graphs of n axis-aligned squares. For any parameter 24 log n<1558

∆≤ n, we can compute a low-diameter decomposition for G in eO(n) time.1559

Proof: The same argument as in Theorem A.3 applies here: for each region A, either the type one objects1560

S1(A) are completely included in a piece Vi and this region disappears; or, one of the (constantly many)1561

nearby regions are completely included in Vi and disappears. By a charging argument, each region is1562

only touched a constant number of times. Thus the total running time is in the order of eO(n). □1563

B VC-dimension Lemma1564

In this section, we prove a lemma bounding the VC-dimension of certain set systems (Lemma 7.2) from1565

Section 7, which is needed in our algorithms for unit-disk graphs.1566

Let G be the geometric intersection graphs of unit-disk graphs. Let M be a subset of vertices, called a1567

type. We say that a walk W from a vertex v to a vertex u is a Type-1 M-walk if the vertex preceding u1568

(the second to last vertex) in the walk is in M . We say that the walk is a Type-2 M-walk if the vertex1569

following v (the second to first vertex) in the walk is in M .1570

For a technical reason explained later, we assume that every vertex in G has a self-loop attached to it.1571

For every vertex v, define:1572

B(1)M (v, r) = {u ∈ V | there is a Type-1 M -walk from v to u of length exactly r}

B(2)M (v, r) = {u ∈ V | there is a Type-2 M -walk from v to u of length exactly r}
(11)1573

The reason for attaching a self-loop to every vertex is that if dG(v, x)≤ r − 1 for some vertex x in M ,1574

then x ∈ B(1)M (v, r) since we can make a Type-1 M -walk of length r by traversing from v to x along the1575

shortest path (of length at most r −1) and then along the self-loop to get a walk of length at most r. The1576

second to last vertex of the walk is x itself, which is in M . Furthermore, if there is a Type-1 M -walk from1577

v to u of length less than r, then there is a Type-1 M -walk from v to u of length exactly r by traveling1578

the self-loop attached to the vertex in M preceding u. The same holds for Type-2 M -walk. The main1579

result of this section is to show that the system of balls deriving from Type-1 M -walk has a bounded1580

VC-dimension.1581

Lemma B.1. (V, {B(1)M (v, r)}r∈R,v∈V) has VC-dimension at most 4.1582

Observe that Type-1 and Type-2 M -walks are dual to each other: a Type-1 M -walk from v to u of1583

length r is a Type-2 M -walk from u to v of length r. Therefore, for a given r, (V, {B(2)M (v, r)}v∈V) is the1584

dual set system of (V, {B(1)M (v, r)}v∈V), and therefore, has VC-dimension at most 24 = 16. By modifying1585

the proof of Lemma B.1, get an improved bound for balls from Type-2 M -walk:1586

Lemma B.2. For any r ∈ N, (V, {B(2)M (v, r)}v∈V) has VC-dimension at most 4.1587

The set system in Lemma B.2 only includes balls of fixed radius. It is possible that the more general set1588

system (V, {B(2)M (v, r)}r∈R,v∈V), which includes all balls of all radii, has VC-dimension at most 4. However,1589

for a technical reason, our proof of Lemma B.1 does not extend to this general case. See Remark B.5 for1590

more details.1591

42

For the distance oracle application, we will need to handle vertices with weights. So we define the1592

following set system for weighted vertices. Suppose each vertex u has a weight w(u), and the ground set1593

is {(u, w(u))}u∈V . Recall for the distance oracle, we maintain the adjusted neighborhood ball as follows1594

(see Section 8 Equation (7), copied below):1595

N̂
r
[s] := {v ∈ V : dG(v, s)≤ r +wP(v)} ∀r ∈ [−∆,∆]1596

Further, the path connecting s (the center of the neighborhood ball) to v has the second vertex (adjacent1597

to s) of a special type. Thus, we consider a Type-2 walk from s to v. Therefore the set system we work1598

with will be ({(u, w(u))}u∈V , {B(2)M ,w(v, r)}v∈V) where1599

B(2)M ,w(s, r) = {v ∈ V | there is a Type-2 M -walk from s to v of length exactly r +w(v)} (12)1600

Take this set system as the primal system, we can define the dual system as follows. Specifically,1601

v ∈ B(2)M ,w(s, r) if and only if s ∈ B(1)M ,w(v, r) where1602

B(1)M ,w(v, r) = {s ∈ V | there is a Type-1 M -walk from v to s of length exactly r +w(v)} (13)1603

Notice that B(1)M ,w(v, r) = B(1)M (v, r + w(v)). Therefore, the VC-dimension bound we need is provided1604

precisely by Lemma B.1 for Type-1 walks, which fortunately works for neighborhood balls of varying1605

radii. With this we immediately have the following.1606

Lemma B.3. For any r ∈ N, ({(u, w(u))}u∈V , {B(2)M ,w(v, r)}v∈V) has dual VC-dimension at most 4.1607

B.1 Type-1 M -Walks1608

In this section, we prove Lemma B.1. As all M -walks in this section are of Type-1, we will drop the prefix1609

Type-1, and only refer to Type-1 M -walks as M -walk. We also call the last edge of an M -walk to u as an1610

M-edge.1611

Proof (Sketch Proof of Lemma B.1): The strategy is basically the same as [CGL24]16. We only show1612

the steps needed for adapting the proof here. Consider four vertices a, b, c, d representing four disks1613

Da, Db, Dc , Dd and assume that there are two (Type 1) M -walks P(b, a) from b to a and P(c, d) from c1614

to d. (The vertices preceding a and d in the walks are in M .) We define a local crossing pattern to be1615

four distinct vertices a′, b′, c′, d ′ with a′, b′ on P(a, b) (with a′ closer to a than b′) and c′, d ′ on P(c, d)1616

(with c′ closer to c than d ′) such that one of the four vertices a′, b′, c′, d ′ has edges to all the other three1617

vertices; see Figure 3. The central claim is the following; if the claim holds, then the rest of the argument1618

is standard.1619

Claim B.4. Either there is an M -walk P ′(c, a) whose hop length is at most |P(c, d)| or there is an M -walk1620

P ′(b, d) whose hop length is at most |P(b, a)|.1621

We consider a case study depending on whether the local crossing pattern involves an M -edge. In1622

the first case when the local crossing pattern does not involve the last edge (from a vertex in M to the1623

endpoint of the walk) of the two M-walks (see Figure 3 (a) for an example), the proof follows exactly the1624

same as that of [CGL24]. The second case, which is also easy, is when the local crossing pattern involves1625

two M -edges. In this case, both c′, b′ ∈ M . Either we have the edge c′a′ or the edge b′d ′. In both cases1626

the claim is true. Figure 3 (b) shows the case with edge c′a present. In this case, we can find an M -walk1627

16We refer to https://arxiv.org/pdf/2401.12881.

43

https://arxiv.org/pdf/2401.12881

c′
c

d

b′
b

a a′ d′

c

d

c′
b′

b

a

c

d

c′ b′
b

a a′

c

d

c′ b′
b

a a′

(a) (b) (c) (d)

Figure 3. If two M -walk P(b, a) and P(c, d) intersect with a local crossing pattern a′, b′, c′, d ′, then there is an M -walk from c
to a that are no longer than |P(c, d)| or there is an M -walk from b to d that is no longer than P(b, a). The vertices in M are
highlighted red.

P ′(c, a) through P(c, c′) and then take edge c′a, which is not longer than path P(c, d). If b′d is present,1628

then the path that follows P(b, b′) and then edge b′d is an M -walk and not longer than P(b, a).1629

The difficult case for the proof of the claim is when the local crossing pattern happens at an M-edge of1630

one path with the non M-edge part of the other path. Without loss of generality, assume that the M -edge1631

involved in a local crossing pattern is the edge c′d. See case (c) and (d) in Figure 3 for an example.1632

We first consider the case when c′a′ and a′d are present. We prove by contradiction. Consider an1633

M -path from b to d:1634

P ′(b, d) = P(b, b′) ◦ (b′a′) ◦ (a′c′) ◦ (c′d ′).1635

Since the claim does not hold, the following holds:1636

|P ′(b, d)|> |P(b, a)|⇔ |P(b, b′)|+ 3> |P(b, b′)|+ 1+ |P(a, a′)|⇔ |P(a′, a)|< 2.1637

If |P(a′, a)| = 0, then a = a′ and b′ must be a vertex in M . This is a contradiction, as the crossing1638

occurs between two M -edges.1639

If |P(a, a′)|= 1, then a′ ∈ M . This means a′a is an M -edge. Now we define another walk Q(b, d) =1640

P(b, b′)◦(b′a′)◦(a′d). Since a′ ∈ M , Q(b, d) is an M -walk and, furthermore, |Q(b, d)| = |P(b, a)|. Thus,1641

Q(b, d) is the M -walk that satisfies the claim. Now, if Q(b, d) is still longer than P(b, a), by the same1642

analysis we have |P(a′, a)|< 1. This leads to a contradiction.1643

The next case we consider is where the edges a′d, b′d are present. See Figure 3 (d). Consider an1644

M -path from b to d:1645

P ′(b, d) = P(b, b′) ◦ (b′d) ◦ (dc′) ◦ (c′d).1646

Notice that this is an M -walk. If it is longer than |P(b, a)|, we have1647

|P ′(b, d)|> |P(b, a)|⇔ |P(b, b′)|+ 3> |P(b, b′)|+ 1+ |P(a, a′)|⇔ |P(a′, a)|< 2.1648

For the same reason as explained earlier, |P(a′, a)| = 0 is not possible and |P(a′, a)| = 1 means that1649

a′ ∈ M and we now find an M -walk Q(b, d) by following P(b, b′) and then edges b′a′ and a′d. This1650

path is one shorter than P ′(b, d) and this again gives a contradiction.1651

The other two cases, when either edges c′b′, c′a′ or edges c′b′, b′d are present, are easy. Basically1652

the edge b′c′ provides an M -walk from b to d which is not longer than P(b, a). □1653

Remark B.5. If we apply the same proof to Type-2 M -walks, Claim B.4 remains true. However, what we1654

need is a slightly different version: Either there is a Type-2 M -walk P ′(a, c) whose hop length is at most1655

|P(a, b)| or there is a Type-2 M -walk P ′(d, b) whose hop length is at most |P(d, c)|. The proof does not1656

extend to show this version. On the other hand, if we fix a radius r, then everything goes through; see1657

the next section.1658

44

B.2 Type-2 M -Walks1659

M -walks in this section are referred to Type-2 M -walks.1660

Proof (Proof of Lemma B.2): We follow the same setup in the proof of Lemma B.1. Assume that there1661

are two (Type 2) M -walks P(a, b) from a to b and P(d, c) from d to c. (We switch the roles of a and b,1662

and of c and d, so that we can reuse Figure 3.) The following claim implies the lemma:1663

Claim B.6. Either there is an M -walk P ′(a, c) whose hop length is at most |P(a, b)| or there is an M -walk1664

P ′(d, b) whose hop length is at most |P(d, c)|.1665

Observe that |P(a, b)| and |P(d, c)| have length exactly r each since they are from balls of radius1666

exactly r. Therefore, |P(a, b)|= |P(d, c)|, and hence Claim B.6 follows directly from Claim B.4. □1667

C Geometric Data Structures1668

In this section, we describe how to solve the interval searching problem (Problem 2.11), the main1669

geometric data structure problem used by our diameter algorithms and distance oracles, for different1670

types of geometric objects. In Appendix C.1, we first describe how to reduce the interval cover to the1671

rainbow colored intersection searching (Problem 2.13) and then describe how to reduce the interval1672

searching problem to the interval cover problem (Problem 1.3), though with some loss of efficiency.1673

For squares, we solve the rainbow colored intersection searching problem in Appendix C.2. For unit1674

disks of a fixed modulo class and for unit disks, we solve the interval cover problem directly (without1675

going through rainbow colored searching), and thus more efficiently, in Appendix C.3 and Appendix C.41676

respectively, using an interesting recursive approach.1677

C.1 Reductions Between Data Structure Problems1678

In this subsection, we provide the reductions between the data structure problems in Section 2.4, and in1679

particular, proving Lemma 2.12 and Lemma 2.14.1680

Interval cover to rainbow colored intersection searching. We reduce the interval cover problem1681

(Problem 1.3) to the rainbow colored intersection searching problem (Problem 2.13).1682

Lemma 2.14. If we can construct in eO(|ORC |) time a data structure DRC with Õ(1) query time for solving1683

Problem 2.13, then for any parameter b ∈ [1, n], we can construct a data structure DIC for solving1684

Problem 1.3 that has total run time eO(NIC · b+ LIC/b).1685

Proof: Consider an instance of Problem 1.3. Divide the range [1, n] into n/b blocks of length b, denoted1686

by intervals B1, . . . , Bn/b, with [1, n] =
⋃︁n/b

k=1 Bk. Denote by S the set of all intervals associated with1687

objects in O and S(q) the set of intervals associated with objects intersecting q. Consider the query1688

interval I . It intersects with a set of blocks Bi , . . . , B j such that I overlaps with at most two of the1689

blocks partially, namely, the two blocks at the end (Bi or B j), and fully contains all the middle chunks1690

Bi+1, . . . , B j−1. To verify if the union of the intervals of S(q) covers the query interval I , we need to check1691

for each of the blocks, Bk, i ≤ k ≤ j, if Bk ∩ I is covered by the union of the intervals of S(q), limited1692

within block Bk. If for each Bk the answer is true, we answer Yes. Otherwise, we answer No. In the1693

following we focus on answering the coverage query for a fixed block B and check if the union of the1694

intervals {Is ∩ B | Is ∈ S(q)} covers I ∩ B.1695

45

Now fix a block B. Take I ′ = I ∩ B. Similarly, for each object s we restrict the interval Is within B1696

and take I ′s = Is ∩ B and take S′ = {I ′s | Is ∈ S}. Each interval Is fully covers a set of middle chunks and1697

only partially covers at most two extreme blocks at the end of Is. Thus we can write S′ = S′1 ∪ S
′
2, with1698

the first category S′1 containing the intervals I ′s = B (i.e., Is fully covers B) and the second category S′21699

containing the intervals I ′s ̸= B (i.e., Is partially covers B). We perform two queries for I ′ against S′1 and1700

S′2 respectively.1701

For S′1, all the intervals are given the same color and we just check if at least one of them is associated1702

with an object intersecting q. We solve this problem by issuing RAINBOWCOVER?(q) against the objects1703

whose intervals appear in S′1. If this rainbow query returns a positive answer, I ′ is covered and we are1704

done. Otherwise, we check for I ′ against S′2. This query is more complicated since the intervals I ′s ∈ S
′
21705

only partially cover B. We give each of the elements in B a unique color. There are at most b colors. Also,1706

for each object s with I ′s ∈ S
′
2, we make a colored copy of the object s for each element in I ′s; the color1707

of the copy is equal to the color of the corresponding element. Now we discuss the case when I ′ = B1708

and when I ′ ⊂ B separately. When I ′ = B, i.e., B is an ‘internal’ block, we build a rainbow colored query1709

structure for all color/elements in B and issue a query RAINBOWCOVER?(q) to see if all colors show up.1710

If the query returns no, we return negative to the interval cover query. In the case when I ′ is a boundary1711

block (I ′ ⊂ B), we build the rainbow colored query structure for each color/element in B. To answer the1712

query for I ′, we issue RAINBOWCOVER?(q) for each color in I ′ against the corresponding data structure to1713

see if this color appears among objects that intersect q. The total number of such queries is the number1714

of elements in I ′ and is at most b. If all the rainbow queries return True – that all colors in I ′ appear –1715

then all elements in I ′ are covered by the union of intervals in S′2 for those objects intersecting q. If any1716

rainbow query returns a no, we return a negative answer for the interval cover query.1717

To analyze the total running time, we need to account for the preprocessing time and the total query1718

time for all the n/b blocks. Recall that we solve the interval cover problem in an ‘off-line’ version and1719

assume all input intervals and query intervals are given. NIC is the total number of input objects and1720

query objects, and LIC is the total length of the input and query intervals. We issue a total of O(LIC/b)1721

rainbow queries in the first category since for each query (q, I) we only consider the blocks that overlap1722

with I . For the second category we issue a total of O(LIC/b) rainbow queries for the blocks that are1723

internal to the interval queries and O(NIC b) rainbow queries for the boundary blocks. Thus the total1724

query time is eO(NIC b+ LIC/b).1725

For the preprocessing time, we consider the time spent to prepare for the rainbow query in the first1726

and second category separately. For the second category, we have a total of 2NIC intervals since each1727

interval Is of an input object s only contributes at most two boundary intervals. Each interval generates1728

at most b colored objects so we have a total of O(NIC b) objects, over all the n/b blocks. We build the1729

rainbow colored query data structure for each block separately. The total preprocessing time for rainbow1730

query in the second category is thus eO(NIC b). For the rainbow query in the first category, we perform a1731

linear scan of the blocks and only update the rainbow query data structure DRC when needed – an input1732

object appears (starts to fully cover a new block) or disappears (stops covering the current block). Each1733

input object only triggers two updates. In fact, for each update, we simply rebuild the rainbow query1734

data structure from scratch. For each input interval Is, the amortized run time attributed to Is in these1735

preprocessing and rebuilding efforts is eO(|Is|/b) and therefore the total running time remains eO(LIC/b),1736

where LIC is the total length of the input and query intervals. Therefore, the total run time is bounded1737

by eO(NIC b+ LIC/b). This finishes the proof. □1738

We also need a data structure that can answer interval avoidance queries. Specifically,1739

Problem C.1 (Interval Avoidance Problem). Given a set of N objects O and each object o ∈ O is1740

associated with an interval Io ⊆ [1 : n]. Design a data structure to answer the following query:1741

46

• AVOIDS?(q, I): Given a query object q and a query interval I ⊆ [1 : n], decide whether the union of1742

intervals associated with the objects intersecting17 q in O is disjoint from the interval I .1743

The interval avoidance problem is easier than the interval cover problem, as it is decomposible – we1744

can partition the input objects into two sets and check the query (q, I) against each set for avoidance1745

separately.1746

Lemma C.2. If we can construct in eO(|ORC |) time a data structure DRC with Õ(1) query time for solving1747

Problem 2.13, then we can construct a data structure DIA for solving Problem C.1 that has a preprocesing1748

time of eO(NIC) such that each interval avoidance query takes time eO(1).1749

Proof: An interval Io intersects I if either at least one endpoint of Io is inside I or one endpoint of I is1750

inside Io. Therefore, to answer the interval avoidance query, we run two types of queries. In the first1751

type we verify if I includes any endpoints of intervals whose associated objects intersect q. If yes, we1752

immediately return no to the interval avoidance query. If not, we proceed to the second type of queries1753

where we check if an endpoint of I stabs any intervals whose associated objects intersect q. The first1754

type is a range query, and the second type is an interval stabbing query. We explain the two operations1755

separately.1756

For the range query, we take the set S of all intervals associated with objects in O and build a binary1757

tree T on all the 2|S| endpoints of the intervals. Further, for each node v on the tree T we build a rainbow1758

colored query structure on the objects in O whose associated intervals have at least one endpoint in1759

the subtree of v. In particular, the data structure at the root of T includes all objects in O. The total1760

preprocessing time for these query data structures is Õ(NIC), since each object in O only appears in1761

O(log NIC) of the rainbow colored query structures. Next we run a standard range query with I on tree1762

T to find a set Q(I) of O(log |S|) vertices of T such that each vertex v ∈Q(I) has the entire subtree fully1763

inside I , but its parent does not meet this condition. We issue a query of q on the rainbow colored1764

structure at each vertex in Q(I). If any query returns a positive answer (indicating intersection), then I1765

does not avoid the objects intersecting q. We issue at most O(log NIC) rainbow colored range queries1766

with a total cost of Õ(1).1767

For the interval stabbing query, we build an interval tree on the intervals S. Specifically, we have a1768

binary tree Y where the root r is associated with value ℓ(r) = ⌊n/2⌋ (the median of [1, n]) as well as a1769

subset of intervals S(r) – all the intervals in S that are stabbed by ℓ(r). Recursively, we build the left1770

(right) subtree by using all the intervals to the left (right) of ℓ(r) respectively. Further, for each node v1771

in the interval tree, we build two binary trees, Z1(v) on the left endpoints of the intervals in S(v) (that1772

are all smaller than or equal to ℓ(v)), and Z2(v) on the right endpoints of the intervals in S(v) (that are1773

all greater than or equal to ℓ(v)). For each node u on a tree Zi(v), i = 1, 2, we build a rainbow colored1774

query structure for all the intervals in the subtree of u. Again, these objects are given the same color.1775

The total preprocessing time for these query data structures is Õ(NIC), since each interval in S only1776

appears in the set S(v) of one vertex v on tree Y and then at most O(log NIC) vertices in the secondary1777

level trees Zi(v).1778

Next we take one endpoint p of I and issue a stabbing query on Y. We first issue stabbing query1779

against the root vertex r of Y and depending on whether p is less than or greater than ℓ(r), recursively1780

query either the left subtree or the right subtree of Y. We just explain how to query p against a node v1781

of Y. The total query cost is just an extra log factor more. Specifically, if p ≤ ℓ(v), we issue a query to1782

Z1(v); if p ≥ ℓ(v), we issue a query to Z2(v). Suppose we query p on Z1(v). The other case is symmetric.1783

We take all the vertices Z1(p) of Z1(v): u ∈ Z1(p) if all vertices in the subtree of u are completely to1784

the left of p but u’s parent fails to meet this condition. |Z1(p)|= O(log NIC). Now we query q again the1785

17Here we mean the objects intersect, not their associated intervals.

47

rainbow colored range query structure for all vertices in Z1(p). If any of these queries return a Yes, the1786

interval avoidance query is negative. In total the query cost adds a total factor of O(log2 NIC) on top of1787

the cost of a single rainbow colored range query.1788

In summary, we only add extra poly-logarithmic factors on top of the rainbow colored range query1789

structure. Thus, we can implement the interval avoidance query with a preprocesing time of eO(NIC)1790

such that each interval avoidance query takes time eO(1). □1791

Interval searching to interval cover. We reduce the interval searching problem (Problem 2.11) to the1792

interval cover problem (Problem 1.3) with polylogarithmic loss.1793

Lemma 2.12. If one can construct a data structure DIC for solving Problem 1.3 with total run time1794

T (NIC , n, LIC) (for some polynomial function T), then we can construct a data structure DIS for solving1795

Problem 2.11 in total run time eO(T (NIS , n, LIS)). Furthermore, if DIC has preprocessing time P(N) and1796

query time Q(N), then DIS has preprocessing time eO(P(Ñ IS)) and query time eO(Q(Ñ IS) · |Iout(q)|) where1797

Ñ IS :=
∑︁

o∈OIS
|I(o)| is the total number of input intervals and Iout(q) is the set of output intervals from1798

the interval search query of q to DIS .1799

Proof: We take an instance of Problem 2.11. For each object s ∈ OIS we duplicate it to k copies if s1800

is associated with k intervals. Each copy is now associated with a single interval of Io. This creates a1801

total of Ñ IS =
∑︁

o∈OIS
|I(o)| objects. Now we build a data structure DIC to solve Problem 1.3 on this1802

set of objects with preprocessing time eO(P(Ñ IS)). For each query INTERVALSEARCH(q), we recursively1803

issue queries to DIC . Specifically, we start with I = [1, n]. If I is completely covered by the union of the1804

intervals associated with objects in OIS that intersect q (which is checked by a query to DIC with q and1805

I), we output I and we are done. Otherwise, if I is completely avoided, we output ∅ and we are also1806

done. For the other case, we will recurse. We divide I into two intervals of equal length, I1 and I2, and1807

issue queries (q, I1) and (q, I2) with DIC . In the end, we will output the union of all the intervals that1808

are fully covered by the intervals associated with objects in OIS that intersect q.1809

The running time for a query q is dependent on the total number of queries issued to DIC recursively.1810

Notice that all query intervals are dyadic intervals. In addition, recursion stops when an interval I is1811

completely covered by the union of intervals S(q) or completely avoided. Thus only the dyadic intervals1812

whose parent partially overlaps with a query output interval will ever trigger a query. The total number1813

of such intervals is in the order of O(|Iout(q)| · log n). Recall that each query to DIC takes time Q(Ñ IS).1814

Summing up everything, we have the claim in the Lemma. □1815

C.2 Data Structure for Square Graphs1816

We now solve the rainbow colored intersection searching problem (Problem 2.13) for a set of axis-parallel1817

squares of possibly different size. We use an approach that can be commonly found in previous work on1818

colored range searching [GJS95, GJRS18]: for each color class, we build a set of new objects, so that1819

colored range searching reduces to standard range searching on all the new objects.1820

Consider the input squares as being in the plane z = 0 in 3D. For each square s of center (x , y, 0)1821

and side length 2r (or ℓ∞-radius r) consider the point as = (x , y,−r) ∈ R3 and the cone Cs with apex1822

as whose intersection with the plane z = 0 is the square s. (If we imagine the z axis pointing vertically1823

up, then this cone opens upward.) See Figure 4 for an example. For a collection S of squares and the1824

corresponding cones, consider a new square q with center (xq, yq, 0) and side length 2rq. Notice that1825

the normals of the planes bounding any cone Cs is the intersection of four upper half-spaces, and the1826

normals of these upper-half-spaces are (1, 0,1), (0, 1,1), (0,−1, 1) and (−1,0, 1).1827

Observation C.3. The square q intersects s if and only if q̇ := (xq, yq, rq) ∈ Cs.1828

48

(xs, ys)

2rs

(xq, yq)

2rq

as = (xs, ys,−rs)

x

y

z

q̇ = (xq, yq, rq)

Figure 4. Left: a square centered at (xs, ys) with side length 2rs and a query square centered at (xq, yq) with side length 2rq.
Right: the cone Cs and point q̇ = (xq, yq, rq).

Proof: For a point (xq, yq, 0) outside s we have that its ℓ∞ distance to the square ∂s is min(|xs− xq|, |ys−1829

yq|)− rs. On the other hand, the vertical line through (xq, yq, 0) intersects the cone at exactly1830

(xq, yq,max(|xs − xq|, |ys − yq|)− rq),1831

that is, the signed vertical distance from (xq, yq, 0) to ∂Cs is equal to the ℓ∞ distance from (xq, yq, 0) to1832

s. In particular, the square of ℓ∞ radius rq centered at (xq, yq, 0) intersects s if and only if (xq, yq, rq) is1833

above ∂Cs, i.e., if and only if (xq, yq, rq) ∈ Cs. □1834

As a consequence of the above observation, the square q intersects some square among some set S1835

of squares if and only if q̇ ∈
⋃︁

s∈S Cs. In particular, if we have a convenient data structure to represent1836
⋃︁

s∈S Cs, then we can quickly answer the query: given an axis-aligned square q, does it intersect at least1837

one square from S?1838

Detecting intersection with some square from S. We will now work on representing US :=
⋃︁

s∈S Cs.1839

Observe that US is the union of translates of a fixed convex cone of constant complexity, thus it has linear1840

union complexity. Indeed, each face f of ∂US is bounded from below, and the bottommost vertex (i.e.,1841

the vertex of minimum z-coordinate) on f cannot be the intersection of a cone edge and a cone face1842

nor the intersection of three cone faces, as a simple case distinction shows that all such vertices have an1843

incident edge in f where this vertex is strictly above the other endpoint. Thus the bottommost vertex of1844

f is the apex of some cone. On the other hand, each cone apex can be assigned to at most 4 faces (as1845

there cannot be two faces f , f ′ of ∂US within the same cone face). We conclude that there are at most1846

4|S| faces in ∂US . By Euler’s formula we have that ∂US has complexity O(|S|).1847

Consider the vertical projection U0
S of ∂US into the plane z = 0. Notice that this is exactly an1848

additively weighted ℓ∞ Voronoi diagram (where weights are the radii of the squares). Using standard1849

techniques [For87, Kle89] this diagram and ∂US itself can be computed in eO(|S|) time.1850

We obtain a planar subdivision where edges are either axis-aligned or they are aligned with a 451851

degree rotation of the axes. We decompose this subdivision into O(|S|) trapezoids with two vertical sides1852

(or right-angle isoceles triangles with axis-aligned legs, as well as some unbounded polygons with at most1853

two non-vertical sides) using the standard trapezoidation used for point location data structures [ST86]1854

in O(|S| log |S|) time; let TS denote the resulting subdivision of size O(|S|). More precisely, in order1855

to get a partition of the plane into faces, on boundary edges with normals (0,1), (1,0), (1,1), (−1,1)1856

49

we require weak inequalities, while we require strong inequalities for boundary edges with normals1857

(0,−1), (−1,0), (−1,−1), (1,−1).1858

We project TS vertically to get a 3-dimensional subdivision T of US into convex vertical slabs: here1859

each region is a vertical slab bounded by one face of US from below and ∂ f ×R on the sides, where f is1860

a face of TS .1861

Note that the complexity of T is O(|S|) and it was computed in O(|S| log |S|) time. Moreover, each1862

slab T ∈ T is bounded by faces whose normals can have 12 possible directions: there are 4 possible1863

normals for faces coming from ∂US , and 4 · 2 for the vertical faces, as each of these are parallel to one of1864

four directions in the plane z = 0.1865

To check whether a point q̇ lies in some region T ∈ T, we need to verify if it is contained in each1866

half-space given by ∂T . Each such condition is of the form 〈q̇,ν j〉 ≤ c j
T (or < c j

T) where ν j is one of 121867

possible normals and c j
T is a constant that depends only on T . (We define c j

T =∞ if T does not have a1868

face with normal direction ν j .) For a fixed region T all of these linear conditions can be written as1869

Ṫ := (c1
T , c2

T , . . . , c12
T) ∈ ortq := ((−∞, 〈q̇,ν1〉]× (−∞, 〈q̇,ν2〉]× (−∞, 〈q̇,ν3〉) · · · × (−∞, 〈q̇,ν12〉)).1870

Thus, our problem of deciding if q intersects at least one square from S is reduced to the following:1871

given a query square q, we compute a 12-dimensional orthogonal range that contains exactly one point1872

among {Ṫ |T ∈ T} if and only if q intersects at least one square from S. This problem can be solved with1873

12-dimensional orthogonal range searching [dBCvKO08], which requires eO(|T|) = eO(|S|) pre-processing1874

time and space and eO(1) query time, to decide if the query range ortq contains some point Ṫ .1875

Solving rainbow colored intersection searching. Suppose now that we are given a set of objects O,1876

each associated with some color; let S be the partition of O into its color classes. For each color class1877

S ∈ S we set up the subdivision TS and compute the corresponding points {Ṫ | T ∈ TS}. Then we set up1878

a standard orthogonal range counting data structure on the 12-dimensional point set TS :=
⋃︁

S∈S{Ṫ |1879

T ∈ TS}. This takes
∑︁

S∈S
eO(|S|) = eO(|O|) preprocessing time and space, and for any orthogonal query1880

we can return the number of points in the range in eO(1) time.1881

Given a query square q̇ we can compute the orthant query ortq and observe that the number of points1882

in ortq is equal to the number of classes S ∈ S such that q intersects at least one square from S. Thus, q1883

intersects all color classes if and only if ortq contains exactly |S| points from TS.1884

C.3 Data Structure for Unit Disks1885

In this subsection, we directly solve the interval cover problem for unit disks restricted to a fixed modulo1886

class, as needed in our diameter algorithm and distance oracle for unit-disk graphs. (We do so without1887

going through rainbow colored intersection searching, to get better time bounds.) As noted in Section 7,1888

this problem reduces to a corresponding interval cover problem about pseudolines:1889

Problem C.4. We are given an input set S of N pseudolines18 in the plane, where each pseudoline s ∈ S1890

has an associated interval Is. We want to build a data structure to answer the following type of queries:1891

given a query point q and interval I , test whether
⋃︂

s∈S
s below q

Is contains I . 19
1892

18We assume O(1) time oracle access to deciding if a point is above/on/below a pseudoline, as well as to find the intersection
of a pair of pseudolines (or determine that no itnersection exists).

19One way to interpret the problem is to think of each pseudoline s as being “active” for a time window Is; a query is to
determine whether a given point q stays above the upper envelope of the active pseudolines for the entire duration of the time
window I . We will not need this viewpoint for our algorithm.

50

The rest of this subsection is dedicated to showing that Problem C.4 can be constructed in N ·1893

2O(
⎷

log N logα(N)) preprocessing time and answering a query takes 2O(
⎷

log N logα(N)) time, where α(·) is1894

the slow-growing inverse Ackermann function. This is sufficient to prove Lemma 7.3.1895

To appreciate the difficulty of the problem, the reader may first consider the special case when I = R,1896

which is already nontrivial. Our idea is to explicitly construct the region of all query points q for which1897

the answer is yes. Interestingly, we are able to prove that this region has near-linear combinatorial1898

complexity. After constructing the region, answering queries in the case when I = R would become easy.1899

To prove this combinatorial fact and at the same time design a data structure for general I , we will1900

use a divide-and-conquer strategy.1901

Decomposing intervals into canonical intervals. Assume that the endpoints of all intervals Is, as1902

well as I , are integers bounded by O(N) (by replacing numbers by their ranks). Fix a parameter b. A1903

canonical interval refers to an interval of the form [j · bi , (j + 1) · bi) for some i and j. Any interval can1904

be expressed as a union of O(b logb N) canonical intervals. This is a well-known fact (e.g., in analyzing1905

a b-ary range tree [AE99, dBCvKO08]). For completeness, we include a quick proof in the following1906

paragraph:1907

Let J = [x , y] be an original interval, and suppose that the largest canonical interval covered by J1908

has size bk ≤ N . Remove the maximum number of such intervals. Notice that this operation removes1909

some middle part M of J consisting of at most b intervals of size bk1 , and leaves an interval J1 on the left1910

of M and J2 to the right of M , both having size less than bk and one endpoint that is an integer power1911

of bk. Now if J1 = [x ,ℓx · bk], then we can shift it to the interval J1 = [x − ℓx · bk, 0]. If (−zk . . . z1z0)b is1912

the base-b representation of the left endpoint of this interval, then it naturally decomposes this interval1913

into
∑︁

i zi ≤ 1+ b logb N intervals. All of these intervals can be shifted by ℓy · bk to get a decomposition1914

of J1. Similarly, we can decompose J2 = [ℓy · bk, y] by considering the base-b representation of1915

J ′2 = [0, y − ℓy · bk]. The resulting representation has at most b+ 2+ 2b logb N = O(b logb N) intervals,1916

and it can be found in O(b logb N) time.1917

We replace each interval in the input and queries by canonical intervals. If we do this procedure for1918

all of our N intervals then We end up with O(N · b logb N) canonical input intervals. For each pseudoline1919

s whose original interval Js has been decomposed into ks canonical intervals, we will have ks copies of s1920

instead, each associated with one such canonical interval. Thus, we have N ′ = O(N b logb N) pseudolines,1921

each associated with a single canonical interval. With slight abuse of notation, we will keep using S for1922

this set of pseudolines (where a single pseudoline may appear several times as long as their associated1923

canonical intervals are different). Similarly, when a query interval is decomposed into canonical intervals,1924

the query cost goes up by at most an O(b logb N) factor.1925

Preprocessing. Let LE(X) and UE(X) denote the lower and upper envelope of a set X of x-monotone1926

pseudolines, respectively.1927

For each canonical interval I , let S⊆I := {s ∈ S : Is ⊆ I} and SI := {s ∈ S : Is = I}. Let E⊆I be the1928

boundary of the region of all points q ∈ R2 such that1929

⋃︂

s∈S⊆I
s below q

Is = I .1930

Then E⊆I is an x-monotone chain in the arrangement of S—we can view this as a kind of “generalized1931

envelope”. We will show that this generalized envelope has near-linear combinatorial complexity and1932

can be computed in near-linear time for a sufficiently large choice of b.1933

51

[0, 16]

[0, 16]

E⊆I

LE(S[0,16])

UE(E⊆I1 , E⊆I2 , E⊆I3 , E⊆I4)

[0, 16]

I1 I2 I3 I4

Figure 5. The region E⊆I of points q such that the intervals associated with the pseudolines under them covers I = [0,16]
(red shaded region). The boundary of this region is below all pseudolines associated with [0, 16] (blue envelope) and below
the upper envelope of the regions associated with the canonical child intervals (green envelope).

Decompose I into b “child” canonical intervals I1, . . . , Ib. Note that S⊆I = SI ∪ S⊆I1
∪ · · · ∪ S⊆Ib

. Then1934

we have the following recursive formula for the generalized envelope E⊆I (see Figure 5):1935

E⊆I = LE
��

LE(SI), UE({E⊆I1
, . . . ,E⊆Ib

})
	�

.1936

Let |E⊆I | denote the combinatorial complexity (number of arcs) of E⊆I . The upper envelope of f1937

pseudo-segments is known to have combinatorial complexity O(f ·α(f)), through Davenport-Schinzel1938

sequences [AS00, Pet15]. Thus, UE({E⊆I1
, . . . ,E⊆Ib

}) has combinatorial complexity O((|E⊆I1
| + · · · +1939

|E⊆Ib
|) ·α(N)). Now, LE(SI) has combinatorial complexity O(|SI |). Thus, |E⊆I | ≤ O(|SI |+ (|E⊆I1

|+ · · ·+1940

|E⊆Ib
|) · α(N)). The maximum combinatorial complexity, E(n), of E⊆I among those with |S⊆I | = n,1941

satisfies the recurrence1942

E(n) ≤ max
n0,...,nb: n0+···+nb=n

�

O(α(N)) ·
�

E(n1) + · · ·+ E(nb)) +O(n0)
�

,1943

which solves to E(n) = n ·α(N)O(logb N).1944

For the data structure, we store E⊆I as well as LE(SI) for each canonical interval I . The preprocessing1945

time satisfies the recurrence1946

T (n) ≤ max
n0,...,nb: n0+···+nb=n

�

T (n1) + · · ·+ T (nb) + eO(E(n1) + · · ·+ E(nb) + n0)
�

,1947

which solves to T (n) = eO(n ·α(N)O(logb N)).1948

Querying. Given a query point q and a canonical interval I , we check that q is above E⊆I by binary1949

search in the generalized envelope, or that q is above LE(SI ′) for some “ancestor” canonical interval1950

I ′ ⊃ I (there are O(logb N) such intervals I ′). The query time is eO(1).1951

Conclusion. After including the O(b logb N) factor, the overall preprocessing time is eO(bN ·α(N)O(logb N))1952

and query time is eO(b). Setting b := 2
⎷

log N logα(N), we get N2O(
⎷

log N logα(N)) ≤ N1+o(1) preprocessing1953

time and 2O(
⎷

log N logα(N)) ≤ N o(1) query time. This concludes the proof.1954

C.4 Data Structure for Unit Squares1955

In this subsection, we directly solve the interval cover problem for unit squares. (Again, we do so without1956

going through rainbow colored intersection searching, to get better time bounds.)1957

52

Theorem C.5. There is a data structure Dsquare that solves the inteval cover problem (Problem 1.3)1958

for axis-aligned unit square objects, each associated with a single interval with N · 2O(
⎷

log N) = N1+o(1)
1959

preprocessing time and 2O(
⎷

log N) = N o(1) query time.1960

Observe that for the geometric intersection graph of unit side-length squares, we can replace each of1961

the squares with squares of side-length 2 with the same center such that a pair s, t of original squares1962

intersect if and only if the center of s is contained in the scaled square t ′. As a result, the data structure1963

problem is modified as follows: given a set S of squares, where each s ∈ S is associated with an interval1964

Is, we need a data structure to decide if the intervals of the squares containing the query point q will1965

cover the query interval I .1966

Instead of the above variant, we overlay a grid of side length 2 (such that no grid line is collinear1967

with any square of S); let Γ denote the set of grid cells. Notice that if q is in a given grid cell □ ∈ Γ , then1968

for each square s ∈ S we have that s ∩□ appears as an orthant, i.e., a rectangle20 containing exactly one1969

vertex of □. Thus, in each cell □ we have the following data structure problem. See Figure 6 for an1970

example.1971

2

s

Figure 6. A square s of side length of 2 intersecting cell □ and the intersection (shaded) is an orthant containing exactly one
vertex of □.

Problem C.6. We are given an input set S of N orthants in a cell □ where each orthant covers exactly1972

one vertex of □ in R2, where each orthant s ∈ S has an associated interval Is. We want to build a data1973

structure to answer the following type of queries: given a query point q and interval I , test whether1974
⋃︂

s∈S: q∈s
Is contains I . 21

1975

The rest of this subsection is dedicated to showing that Problem C.6 can be constructed in N ·2O(
⎷

log N)
1976

preprocessing time and answering a query takes 2O(
⎷

log N) time. This is sufficient to prove Theorem C.5,1977

as we can use this data structure in each cell: the preprocessing time is
∑︁

□∈Γ N□·2O(
⎷

log N□) = N2O(
⎷

log N)
1978

where N□ is the number of orthants in cell□ and
∑︁

□ N□ = 4N . To answer queries, we switch to the cell□q1979

containing q in O(1) time and answer the query using the data structure of □q in 2O(
⎷

log N□) ≤ 2O(
⎷

log N)
1980

time.1981

20We use the term orthant to distinguish these rectangles from other rectangles in the proof.
21Alternatively, if we think of intervals as living in a third dimension, the problem is equivalent to the following: given a set

of axis-aligned boxes in R3 where the x y-projection of each box is an orthant, determine whether a query line segment parallel
to the z-axis is completely contained in the union of the boxes. We will not need this viewpoint for our algorithm (though
this type of 3-dimensional data structure problem seems interesting in its own right). As mentioned, unlike traditional range
searching, this problem is not decomposable.

53

We will use a divide-and-conquer strategy like in Appendix C.3, but the combinatorial complexity of1982

the regions we want may no longer have near linear complexity (because we do not restrict orthants to a1983

fixed type), so extra ideas are needed.1984

Let UNION(X) denote the union of a set X of rectangles. As seen in Appendix C.3, we will later set1985

some number b and use canonical intervals of the form [j · bi , (j + 1) · bi) for some i and j. As seen1986

in Appendix C.3, for each orthant s whose interval Is has been decomposed to ks canonical intervals,1987

we will have ks copies of s instead, each associated with one such canonical interval. Thus, we have1988

N ′ = O(N b logb N) objects, each associated with a single canonical interval. With slight abuse of notation,1989

we will keep using S for this set of objects. For an interval I we again denote by S⊆I and SI the set of1990

orthants whose intervals are subsets of I or equal to I , respectively.1991

Preprocessing.1992

Let Z⊆I be the region of all points q ∈ R2 such that
⋃︁

s∈S⊆I : q∈s Is ̸= I .1993

Unfortunately, the combinatorial complexity of Z⊆I may be quadratic. Instead, we will maintain a set of1994

rectangles Z⊆I with UNION(Z⊆I) = Z⊆I . In other words, instead of maintaining the region Z⊆I explicitly,1995

we implicitly represent Z⊆I as a union of (possibly overlapping) rectangles. We will show that a near1996

linear number of rectangles suffices (for a sufficiently large b).1997

With this representation scheme, we can union two regions trivially. However, intersection is a1998

trickier operation. In the lemma below, we show how to perform intersection with UNION(S)c for a set1999

S of orthants, which is sufficient for our purposes. Here, for a region U , we let U c:= □ \ U denote the2000

complement of U in □.2001

Lemma C.7. Given a set S of orthants and a set Z of rectangles in □ we can construct a set Z ′ of2002

O(|S|+ |Z |) rectangles in eO(|S|+ |Z |) time, such that UNION(S)c ∩ UNION(Z) = UNION(Z ′).2003

Proof: A tallest-edge data structure solves the following problem. We are given a set Z of axis-aligned2004

rectangles in the plane. Then, given a query segment e, we want to find the rectangle z∗ ∈ Z where2005

the top side of z∗ has the maximal y coordinate (i.e., z∗ is the tallest) among the rectangles z ∈ Z2006

covering e. We also allow queries in the other three axis directions, i.e., instead of the tallest reaching2007

rectangle covering e, we also want to be able to find the leftmost, rightmost, or bottommost reaching2008

rectangle covering e. Such queries can be answered using range trees in poly(log |Z |) query time and2009

eO(|Z |) preprocessing [dBCvKO08]. We start our construction by making a tallest-edge data structure2010

Dtall for Z .2011

Let S1 ∪ S2 ∪ S3 ∪ S4 be the partition of S according to the vertex of □ covered by the orthants. The2012

staircase i for i = 1, 2,3, 4 is the polygonal path
�

∂
⋃︁

s∈Si
s
�

∩□.2013

Set Z0 := Z and D0
tall :=Dtall. For each set Si we will do the following computation in the order of2014

their indices (i = 1, . . . , 4). Suppose without loss of generality that Si covers the bottom left corner of □;2015

the other cases will be obtained from this via rotation. Observe that UNION(Si)c is the region above a2016

staircase. The staircase has O(|Si|) edges. Intersect the staircase with the boundaries of the rectangles of2017

Z . Subdivide the edges of the staircase at those intersection points. Note that the edge of the staircase2018

intersected by a given edge of a rectangle z can be found with a simple binary search. The staircase now2019

has O(|Si|+ |Zi−1|) edges, and it has been constructed in eO(|Si|+ |Zi−1|) time.2020

For each edge e of the staircase, we query Di
tall to find the rectangle ze ∈ Zi−1 containing e with the2021

highest top side in poly(log |Zi−1|) time. Define z′e to be the rectangle with bottom side e and top side2022

touching the top side of ze. Add ze to Zi .2023

For each rectangle z ∈ Zi−1, if the bottom side of z intersects the staircase at a point pz , define z′ to2024

be the part of z to the right of pz . Add this rectangle z′ to Zi . If z is completely above the staircase, add2025

z to Zi .2026

54

S1

Z

e

ze

z′e

pz

z

z′

Figure 7. S1 is the set of squares that cover the bottom left vertex of □. The staircase of S1 is shown in a solid polygonal
path. The figure shows the rectangles z′e and z′ added to Zi .

Then Zi has O(|Si|+|Zi−1|) rectangles and satisfies the stated property. Finally, we set up a tallest-cover2027

data structure for Zi in eO(|Zi|) time. The total time for step i is therefore eO(|Si|+ |Zi−1|).2028

We can handle each of the sets Si one after another, and we set Z ′ := Z4. The resulting number of2029

rectangles is2030

|Z4|= O(|S4|+ |Z3|) = O(|S4|+O(|S3|+ |Z2|)) = · · ·= O(
∑︂

i

|Si|+ |Z0|) = O(|S|+ |Z |).2031

The total running time is
∑︁

i
eO(|Si|+ |Zi−1|) = eO(|S|+ |Z |). □2032

Recall that the canonical interval I can be decomposed into b “child” canonical intervals I1, . . . , Ib.2033

Suppose that there are n j orthants in S⊆I j
and n0 orthants in SI . We can compute Z⊆I using the following2034

recursive formula:2035

Z⊆I = UNION(SI)
c ∩ (Z⊆I1

∪ · · · ∪Z⊆Ib
).2036

We can apply the lemma to find a set Z⊆I of O(|SI |+ |Z⊆I1
∪· · ·∪Z⊆Ib

|) rectangles with UNION(Z⊆I) = Z⊆I .2037

The number of rectangles in Z⊆I , assuming |S⊆I |= n, satisfies the recurrence2038

E(n) ≤ max
n0,...,nb: n0+···+nb=n

(O(1) ·
�

E(n1) + · · ·+ E(nb)) +O(n0)
�

,2039

which solves to E(n) = O(n · 2O(logb N)).2040

To construct the data structure Dsquare, we store Z⊆I and SI in individual rectangle stabbing data2041

structures [Cha86, SJ05], for each canonical interval I . The data structure for a given canonical interval2042

I can therefore be made in eO(E(n)) time.2043

Consequently, the preprocessing time satisfies the recurrence2044

T (n) ≤ max
n0,...,nb: n0+···+nb=n

�

T (n1) + · · ·+ T (nb) + eO(E(n1) + · · ·+ E(nb) + n0)
�

,2045

which solves to T (n) = eO(n · 2O(logb N)).2046

Querying. Given a query point q and a canonical interval I , we check that q is not stabbing any2047

rectangle in Z⊆I , or that q stabs some orthant in SI ′ for some “ancestor” canonical interval I ′ ⊃ I . Since2048

there are O(logb N) = O(log N) ancestor canonical intervals, the query time is eO(1).2049

To answer the query about the original interval J , we make individual queries on each of the2050

O(b logb N) canonical intervals in its decomposition, and answer “yes” if and only if each canonical2051

interval was covered.2052

55

Conclusion. After including the O(b logb N) factor, the overall preprocessing time is eO(bN · 2O(logb N))2053

and the query time is eO(b). Setting b = 2
⎷

log N , we get N2O(
⎷

log N) ≤ N1+o(1) preprocessing time and2054

2O(
⎷

log N) ≤ N o(1) query time, and conclude the proof of Theorem C.5.2055

D Switching Interval Representation between Different Stabbing Paths2056

We are given a set system (X ,S) with at most n = |X | elements and m = |S| sets with dual shatter2057

dimension of (X ,S) is d. Throughout the rest of the section we assume the existence of an element2058

reporting oracle that, given S ∈ S, can enumerate all elements of S in T0(n) time, where T0(n)≥ n.2059

Let λ be an ordering of X . We say that a set S crosses a pair (x , y) if x ∈ S and y ̸∈ S, or vice versa.2060

The number of consecutive pairs in λ crossed by S is at most twice the size |Repλ(S)|. For any collection2061

R, define the equivalence relation ≡R over X , where x ≡R y if and only if no set in R crosses (x , y). (In2062

other words, {S ∈ R : x ∈ S} = {S ∈ R : y ∈ S}.) Then ≡R has O(|R|d) equivalence classes since the2063

dual shatter dimension is at most d. For every x and y in X , the crossing number cS(x , y) is the number2064

of sets in S crossing (x , y). (Notice that cS(·, ·) forms a pseudometric.)2065

For the purpose of the remaining section, we will fix a ρ-sampling R of S, where each set in S chosen2066

with probability ρ/m. (Later on we will restrict R to subcollection S′ of S and obtain R′; we can still2067

think of R′ as obtained from S′ by sampling each element with probability ρ/m, even though we do not2068

explicit sample from S′. Notice that the parameter m does not change even if S′ gets smaller.)2069

Our first goal is to prove that any ρ-sampling of S has low crossing number and thus can be used to2070

construct a stabbing path for (X ,S).2071

Lemma D.1. Let R be ρ-sampling of S. Then for every x , y ∈ X with x ≡R y , crossing number cS(x , y)2072

is at most O((m/ρ) log n) with high probability.2073

Proof: This follows by a standard hitting set argument. Consider any two elements x , y ∈ X with2074

crossing number cS(x , y). By standard Chernoff bounds, if cS(x , y) = Ω((m/ρ) log n), we would have2075

sampled one of the sets in R that cross (x , y) with high probability, i.e., probability 1− 1/nc for a large2076

constant c, but x ≡R y which is a contradiction. The conclusion follows after taking a union bound over2077

the n2 pairs of elements. □2078

Let S′ be an arbitrary subcollection of S. Denote the restriction of the fixed ρ-sampling R of S in2079

S′ as R′; in notation, R′ := S′ ∩R. Notice that R′ is also a ρ-sampling. Given any set system (X ,S), a2080

stabbing path λ of (X ,S) is R′-respecting if each equivalence class of ≡R′ appears contiguously in λ for2081

the restriction R′. (The equivalent classes of ≡R′ is with respect to the restriction R′, not R.) The above2082

proof can be adapted so that the resulting stabbing path is R-respecting (by choosing S′ = S):2083

Lemma 7.4. Assume the existence of an element reporting oracle that, given S ∈ S, can enumerate2084

all elements of S in T0(n) time. Consider a fixed ρ-sampling R of S. We can compute the equivalence2085

classes of ≡R and construct an R-respecting stabbing path λ of (X ,S) such that
∑︁

S∈S |Repλ(S)| =2086

eO(mn/ρ+mρd−1) in eO(T0(n) ·ρ) time with high probability. In other words, one can compute a sampled2087

ρ-stabbing path λ of (X ,S) and the equivalence classes of ≡R as byproducts.2088

Proof: Let R be a ρ-sampling of S; then |R| = eO(ρ) with high probability. We first enumerate the2089

elements in all R ∈ R in eO(T0(n) ·ρ) time, and compute the O(ρd) equivalence classes of ≡R in eO(nρ)2090

time. (Each class will appear contiguously in the stabbing path λ to be constructed.) Within each2091

equivalence class Ci , we order its elements x (Ci)
1 , . . . , x (Ci)

|Ci |
arbitrarily. We recursively compute an ordering2092

56

of
¦

x (Ci)
1 : i ∈ [1 : ρd]

©

by invoking the main statement of the lemma itself (which is inductively R-2093

respecting), with run time eO(T0(n) · (ρd)1/d) = eO(T0(n) ·ρ). We then order the classes Ci (as intervals2094

of elements) according to the order of
¦

x (Ci)
1 : i ∈ [1 : ρd]

©

.2095

Since 2 · |Repλ(S)| is equal to the number of consecutive pairs in λ crossed by S, with high probability2096

∑︂

S∈S
2 · |Repλ(S)|2097

=
∑︂

Ci

�

cS(x
(Ci)
1 , x (Ci)

2) + · · ·+ cS(x
(Ci)
|Ci |

, x (Ci+1)
1)

�

2098

≤
∑︂

Ci

�

2cS(x
(Ci)
1 , x (Ci)

2) + · · ·+ cS(x
(Ci)
1 , x (Ci+1)

1)
�

2099

≤ eO(mn/ρ) +
∑︂

Ci

cS(x
(Ci)
1 , x (Ci+1)

1),2100

where the first inequality follows from applying the triangle inequality of cS(·, ·) (because cS(·, ·) forms a2101

pseudometric) on the last term cS(x
(Ci)
|Ci |

, x (Ci+1)
1), and the second inequality is from Lemma D.1. Since we2102

recurse on the first element of every equivalence class, by recursion we have2103

∑︂

S∈S
|Repλ(S)| ≤ eO(mn/ρ +m(ρd)1−1/d) = eO(mn/ρ +mρd−1).2104

The ordering is clearly R-respecting. The total running time is eO(T0(n) ·ρ). □2105

Lemma D.2. Consider a fixed ρ-sampling R of S. We are given two R-respecting stabbing paths λ and2106

λ′ of (X ,S) (along with the equivalence classes of ≡R). Let T be an arbitrary subcollection of S. Given2107

Repλ(S) for all S ∈ T, we can compute Repλ′(S) for all S ∈ T in eO(mn/ρ +mρd) total time with high2108

probability.2109

Proof: Given S ∈ T and an equivalent class C of ≡R, we compute the part of Repλ′(S) within C as2110

follows. Fix one representative element xC ∈ C .2111

• Case 1: xC ̸∈ S. We enumerate all x ∈ C in S, by examining the union of intervals of Repλ(S). We2112

then concatenate 〈x〉 (singletons) over all such x in the order determined by λ′.2113

• Case 2: xC ∈ S. We enumerate all x ∈ C not in S, by examining the complement of the union of2114

intervals of Repλ(S). We then concatenate 〈x〉 (singletons) over all such x in the order determined2115

by λ′, and take the complement of the resulting union of intervals.2116

In both cases, the run time is linear in the number of x ∈ C such that S crosses (xC , x). So, the total2117

run time over all S ∈ T is upper-bounded by
∑︁

C

∑︁

x∈C cS(xC , x) = eO(mn/ρ) with high probability by2118

Lemma D.1.2119

Finally, we concatenate the different parts of Repλ′(S) over all the classes, in the order determined2120

by λ′. This takes additional O(mρd) total time. □2121

Lemma 7.5. [Conversion of interval representations.] Let (X ,S) be a set system with |X | ≤ n and |S| ≤ m.2122

Let S′ be a subcollection of S and T be a subcollection of S′. Let R be the unique ρ-sampling of S, and2123

R′ be its restriction in S′. We are given an R-respecting stabbing path λ of (X ,S), and an R′-respecting2124

ordering λ′ of (X ,S′) (along with the equivalence classes of ≡R and ≡R′).2125

(1) [Shrinking from S to S′.] Given Repλ(S) for all S ∈ T, we can compute Repλ′(S) for all S ∈ T in2126

eO(mn/ρ +mρd) total time with high probability.2127

57

(2) [Expanding from S′ to S.] Given Repλ′(S) for all S ∈ T, we can compute Repλ(S) for all S ∈ T in2128

eO(mn/ρ +mρd) total time with high probability.2129

Proof: For (1), notice that the equivalence classes for ≡R are refinements of the equivalence classes for2130

≡R′ . Let λ′′ be an ordering obtained by taking λ, and re-ordering the classes for ≡R so that classes inside2131

a common class of ≡R′ appear contiguously, which takes O(mρd) time. This way, λ′′ is both R-respecting2132

and R′-respecting. Now, we can apply Lemma D.2 twice, to convert from Repλ(S) to Repλ′′(S) and from2133

Repλ′′(S) to Repλ′(S) for all S ∈ T. This takes eO(mn/ρ +mρd) time.2134

Similarly for (2), Let λ′′ be an ordering obtained by taking λ, and re-ordering the classes for ≡R so2135

that classes inside a common class of ≡R′ appear contiguously. This way, λ′′ is both R-respecting and2136

R′-respecting. Now, we can apply Lemma D.2 twice, to convert from Repλ′(S) to Repλ′′(S) and from2137

Repλ′′(S) to Repλ(S). □2138

E Handling Small Pieces2139

E.1 Patterns2140

Let P be a piece in some LDD of G with diameter ∆. Recall that the set of boundary vertices of P is2141

denoted by ∂P. Fix an arbitrary sequence of vertices σP = 〈s1, s2, . . . , s|∂P|〉. For each vertex v ∈ V (G),2142

let d(v, P) denote the distance between v and any vertex of P. We denote a pattern of v with respect to2143

the ordering σP , denoted by pv to be the following |∂P| dimensional vector:2144

pv[i] = d(v, si)− d(v, P) for every 1≤ i ≤ |∂P|.2145

We remark that instead of subtracting by an offset of d(v, P), we could have subtracted by any other2146

offset. For example, [LW24] instead use the offset of d(v, s1).2147

Le and Wulff-Nilsen [LW24] showed a bound on the total number of patterns with respect to σP2148

if the distance encoding VC-dimension is bounded. The proof also works for generalized distance2149

VC-dimension.2150

Lemma E.1. Let P be a piece in a graph G with general distance VC-dimension d and σP an arbitrary2151

ordering on ∂P. Let P = {pv | v ∈ V (G)} be the set of patterns with respect to σP . Then |P| = O(|∂P|d∆d).2152

Proof: Consider the set system (VG × Z,GB) of generalized neighborhood balls, and the set system2153

where we restrict the ground set (∂P × [∆],GB). This restriction of the ground set does not increase2154

the VC-dimension of the set system. There is a clear bijection between pv ∈ P and the generalized2155

neighborhood ball: Ñ d(v,P)[v] ∩ (∂P × [∆]) = {(u, r) : u ∈ ∂P, r ∈ [∆], d(u, v) ≤ d(u, P) + r}. So the2156

number of patterns is bounded by the number of unique sets of (∂P × [∆],GB). By the Sauer-Shelah2157

Lemma (see Lemma 2.4), this is at most O(|∂P|d |∆|d). □2158

E.2 Diameter and Eccentricities using Patterns2159

The following algorithm computes the eccentricities of all vertices in a piece P of the graph G.2160

1. Compute the pairwise distance between pairs of vertices in P. Let d ′v denote the distance to the2161

farthest vertex from v that is within P.2162

2. Compute all patterns P for P, and for each pattern p ∈ P find the farthest vertex u ∈ V (G) that2163

attains that pattern. Let dp be d(u, s0), the base distance for the pattern.2164

58

3. For each pattern p ∈ P, compute the distance d(p, v) from the pattern to each v ∈ P by doing2165

a boundary weighted BFS, i.e., a BFS where the boundary vertex distances are initialized to the2166

values of the pattern p, and for each vertex v ∈ P compute dv =maxp∈P d(p, v) + dp.2167

4. Return max{dv , d ′v}.2168

Step 1 can be implemented by running a BFS within P from each vertex. By Lemma E.1 the number2169

of patterns computed in step 2 is at most O(|∂P|d∆d), and it takes O(n|∂P|) time to consider all distances2170

to compute the pattern. Running a BFS for each pattern in step 3 takes time T(P) per pattern where2171

T (P) is the time it takes to run a boundary weighted BFS in P.2172

Lemma 2.15. Let G be a graph on n vertices with distance encoding VC-dimension d. Let P be a piece in2173

G with boundary ∂P and diameter∆. If distances from ∂P to all vertices of G are known, the eccentricity2174

of all vertices in P can be computed in O
�

n · |∂P|+ (|P|+ |∂P|d∆d) · T (P)
�

where T(P) is the time it2175

takes to run boundary weighted BFS on P with weights at most ∆.2176

E.3 Boundary Weighted BFS in Geometric Intersection Graphs2177

One approach to compute a shortest path tree in a unit disk graph of n disks uses a semi-dynamic data2178

structure, developed in [EIK01], that in O(log n) amortized time finds a disk containing a query point2179

and deletes it from the set. Thus one can repeatedly apply the data structure to find the disks at the2180

(i + 1)-hop frontier in a BFS tree from the ith hop frontier– for each disk at i-hop away from the root,2181

repeated query the center of the disk to look for disks that intersect with it until such disks are exhausted.2182

This gives a running time of O(n log n) to compute a BFS tree, since each disk is only deleted once. The2183

semi-dynamic data structure uses a grid of side length 1/2. For each cell Q of the grid, maintain the set2184

of disks whose center lies in Q. Furthermore, maintain the upper envelope S1 of the disks that intersect2185

Q with centers below the line through the lower boundary of Q, and similarly maintain the envelopes2186

S2, S3, S4 for the other three boundaries. Therefore, if a query point q lies in a cell Q, all the disks that2187

are centered inside Q would contain q and can be returned. Further, query q against the upper envelope2188

S1 (check if q is below S1) to look for additional candidates. And repeat the same procedure for the2189

other three envelopes. The upper envelope is maintained by a binary tree similar to a segment tree.2190

The boundary weighted BFS problem in a unit disk graph can be solved by a slight modification of2191

this procedure: vertices on the boundary appear as query points when the shortest path tree has reached2192

a sufficient depth. Therefore we have the following observation.2193

Observation E.2. The boundary weighted BFS problem in a unit disk graph can be implemented in2194

O(|P| log |P|) time.2195

For boundary weighted BFS in the intersection graph of axis aligned squares (of varying sizes), we2196

can use the same idea above. We need the following semi-dynamic data structure for a set of axis-parallel2197

squares: given a query square q return a square r that intersects q, and then delete r. If q and r intersect,2198

either some corners of q is inside r or some corners of r are inside q. Thus, the above query can be2199

implemented by running an orthogonal range query of q on the set of corner points of current set of2200

squares, as well as a point enclosure query [Cha86] (also called a rectangle stabbing query [SJ05])2201

of each of the corners of q against the set of current squares. These queries can be answered by 2D2202

orthogonal range trees or 2D segment trees. By using dynamic fractional cascading with deletion only,2203

both query and deletion can be handled in O(log s) amortized time if we have s squares [CG86b, CG86a].2204

Therefore, we have the following lemma.2205

Lemma E.3. The boundary weighted BFS problem in the intersection graph of axis-aligned squares can2206

be implemented in O(|P| log |P|) time.2207

59

E.4 Exact Distance Oracles2208

The lemmas in this section are implicit in the distance oracles of [LW24], but we present their proofs in2209

full to keep our exposition self-contained.2210

Lemma E.4 (Section 3.2.3 of [LW24]). Let G be a graph on n vertices with bounded generalized dis-2211

tance VC-dimension d and P be a piece in G with boundary ∂P and diameter ∆. There exists an exact2212

distance oracle for queries in which at least one end point lies within P with O(n+ |∂P|d∆d |P|+ |P|2)2213

space and O(1) query time.2214

Furthermore if distances from ∂P to all vertices of G are known, the distance oracle can be computed2215

in O(n|∂P|+ (|∂P|d∆d + |P|) · T (P)) precomputation time, where T (P) is the time it takes to run vertex2216

weighted BFS on P with weights at most ∆.2217

Proof: For each vertex v ∈ P, store the distances to all other vertices in P. Every other vertex of the2218

graph u ∈ G \ P stores a pointer to their respective pattern pu, and the distance d(u, P). Also store the2219

distance d(p, v) for each pattern p ∈ P to each v ∈ P.2220

To handle a query between two vertices of P, we can look up the distance between the vertices in2221

constant time. For one vertex v ∈ P, and another vertex u ∈ G \ P, we know that:2222

d(u, v) = d(u, P) + d(pu, v).2223

and we can look up d(u, P), pu, and d(pu, v) in constant time.2224

The total space needed for the oracle is O(|P|2) for the distances between pairs of vertices in P, O(n)2225

for the pointers from vertices u ∈ G \ P to their respective patterns, and O(|∂P|d∆d |P|) to store the2226

pattern to P distances.2227

The precomputation time is the same as in Lemma 2.15 for eccentricities. □2228

Lemma 2.16 (Section 4.3.1 of [LW24]). Let G = (VG , EG) be a graph with bounded distance VC-2229

dimension d, and P be an induced subgraph of G with boundary ∂P and diameter ∆. There exists a2230

distance oracle that answers distances from any vertex s ∈ P and any vertex t ∈ VG with O(n · |∂P|+ |P|d)2231

space and O(log |∂P|) query time.2232

Furthermore, if G also has bounded generalized distance VC-dimension d and distances from ∂P2233

to all vertices of G, the distance oracle can be computed in O
�

n · |∂P|+ (|∂P|d∆d + |P|) · T (P)
�

time,2234

where T (P) is the time it takes to run vertex weighted BFS on P with weights at most ∆.2235

Proof: Store the distances between pairs of vertices in P. For every other vertex u ∈ G \ P, consider the2236

sequence of balls B(u, r1), . . . , B(u, rk) such that B(u, r1) is the smallest ball that contains at least one2237

vertex of ∂P, and B(u, ri) is the smallest ball containing at least one vertex of ∂P \ B(u, ri) (note that2238

k ≤ |∂P|). Store a pointer to each of these balls, and the set of vertices Yi = B(u, ri)∩ P (and Y0 =∅) in2239

a data structure that allows for O(1) time membership lookup. For each relevant Yi , store the distance2240

d(Yi , v) :=mins∈Yi
d(s, v).2241

If two vertices u and v are within P, we can look up their distance in O(1) time. Otherwise, if v ∈ P2242

and u ∈ G \ P, then we can binary search over Y0, Y1..., Yk to find the first Yi where v ̸∈ Yi and v ∈ Yi+1 in2243

O(log k) = O(log |∂P|) time. Then, we can look up the distance d(Yi , v) in constant time and return the2244

distance:2245

d(u, v) = d(u, ri) + d(Yi , v).2246

The space required to store distances between pairs of vertices in P is at most O(|P|2). The space2247

required is O(n|∂P|) to store the pointers between u ∈ G \ P and their respective Y0, Y1, . . . , Yk since2248

k ≤ |∂P|. The total number of balls is at most O(|P|d) by Lemma 2.4 (Sauer’s lemma).2249

60

To compute this distance oracle, we need to compute Y1, . . . , Yk for each vertex u ∈ G \ P. To do so,2250

we can cluster these vertices into vertices with the same pattern pu, and consider Y1, . . . , Yk with respect2251

to each pattern. This can be done as the BFS to compute d(pu, v) for every vertex v ∈ P also implicitly2252

computes the balls Y1, . . . Yk, as well as the distances d(Yi , v). To compute a pointer from u to Yi , we can2253

look up the balls we computed by storing all Yis in a data structure that supports O(1) lookup for sets2254

(e.g. a hashing based data structure). The precomputation time analysis is the same as in Lemma 2.152255

for eccentricities. □2256

61

	Introduction
	Main Results on Diameter
	Technical Overview
	Other Distance-related Problems

	Preliminaries
	Graphs and Low-diameter Decomposition
	VC-dimension
	Stabbing Path and Interval Representation
	Geometric Data Structures
	Handling of Small Pieces

	Framework for Diameter and Eccentricities
	Diameter/Eccentricities in Sparse Graphs of Bounded VC-dimension
	Diameter/Eccentricities in Square Graphs
	Diameter/Eccentricities in Unit-square Graphs
	Diameter/Eccentricities in Unit-disk Graphs
	Restriction to Fixed Types
	Implementation of the Neighborhood Growing Step
	Analysis for Eccentricities
	Analysis for Diameter

	Framework for Distance Oracles (and Wiener Index)
	Distance Oracles for Sparse Graphs of Bounded VC-dimension
	Distance Oracles for Square Graphs
	Distance Oracles for Unit-square Graphs
	Distance Oracles for Unit-disk Graphs
	Conclusion and Open Questions
	Low-diameter Decompositions
	Sparse Graphs
	Geometric Intersection Graphs

	VC-dimension Lemma
	Type-1 M-Walks
	Type-2 M-Walks

	Geometric Data Structures
	Reductions Between Data Structure Problems
	Data Structure for Square Graphs
	Data Structure for Unit Disks
	Data Structure for Unit Squares

	Switching Interval Representation between Different Stabbing Paths
	Handling Small Pieces
	Patterns
	Diameter and Eccentricities using Patterns
	Boundary Weighted BFS in Geometric Intersection Graphs
	Exact Distance Oracles

