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Abstract

We give the first truly subquadratic time algorithm, with O(n®>'/!8) running time, for computing
the diameter of an n-vertex unit-disk graph, resolving a central open problem in the literature. Our
result is obtained as an instance of a general framework, applicable to different graph families
and distance problems. Surprisingly, our framework completely bypasses sublinear separators (or
r-divisions) which were used in all previous algorithms. Instead, we use low-diameter decompositions
in their most elementary form. We also exploit bounded VC-dimension of set systems associated with
the input graph, as well as new ideas on geometric data structures. Among the numerous applications
of the general framework, we obtain:

1. An O(mn'~"/CD) time algorithm for computing the diameter of m-edge sparse unweighted
graphs with constant VC-dimension d. The previously known algorithms by Ducoffe, Habib, and
Viennot [SODA 2019 ] and Duraj, Konieczny, and Potepa [ESA 2024 ] are truly subquadratic only
when the diameter is a small polynomial. Our result thus generalizes truly subquadratic time
algorithms known for planar and minor-free graphs (in fact, it slightly improves the previous
time bound for minor-free graphs).

2. An O(n®>V/12) time algorithm for computing the diameter of intersection graphs of axis-aligned
squares with arbitrary size. The best-known algorithm by Duraj, Konieczny, and Potepa [ESA
2024 ] only works for unit squares and is only truly subquadratic in the low-diameter regime.

3. The first algorithms with truly subquadratic complexity for other distance-related problems,
including all-vertex eccentricities, Wiener index, and exact distance oracles. In particular, we
obtain the first exact distance oracle with truly subquadratic space and O(1) query time for any
sparse graph with bounded VC-dimension, again generalizing previous results for planar and
minor-free graphs.
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1 Introduction

A simple algorithm for computing the diameter of an unweighted n-vertex graph is to run a BFS from
every vertex of the graph. For sparse graphs or intersection graphs of various classes of geometric objects
(such as unit disks), BFS can be implemented in O(n) time, leading to an algorithm to compute the
graph diameter in O(n?) time'. Can we beat this naive quadratic-time algorithm? More precisely, can we
compute the diameter in truly subquadratic time O(n?~¢) for some fixed constant & > 0 for these graphs?
This simple question has motivated the development of a broad range of techniques that have driven
algorithmic research for decades.

For general sparse graphs, even distinguishing the diameter between 2 and 3 in truly subquadratic
time is impossible, assuming the Strong Exponential Time Hypothesis (SETH) [ ]. (For dense
undirected graphs, one can exploit the matrix multiplication subroutine to compute the diameter in
O(n®) time [ 1, where w < 2.371339 is the matrix multiplication exponent [ 1.) Given the
negative result, it is natural to consider more structured classes of sparse graphs, such as planar and
minor-free graphs. For planar graphs, Cabello [ ] designed the first truly subquadratic algorithm
for the diameter problem by introducing a new technique based on abstract Voronoi diagrams. This
technique heavily exploits planarity and hence fails for minor-free graphs. Then Ducoffe, Habib, and
Viennot [ ] devised a new technique based on VC-dimension to compute the diameter of minor-
free graphs in truly subquadratic time. Both the Voronoi diagram and VC-dimension techniques are
major milestones in algorithm design for planar and minor-free graphs, opening the door for solving
other distance-related problems in truly subquadratic complexity (time or space), such as designing
compact (exact) distance oracles and computing eccentricities or Wiener index in planar and minor-free
graphs [ , , , s X 1.

For geometric intersection graphs of objects in the plane, designing a truly subquadratic time
algorithm for the diameter problem has been much more challenging. A geometric intersection graph is
a graph whose vertices are associated with objects in the plane, and edges correspond to object pairs
that intersect.? Unit-disk graphs—the intersection graphs of unit disks—are among the most basic
and well-studied graphs in the geometric setting; alternatively, this is equivalent to constructing an
unweighted graph based on a set of points in a metric space by connecting pairs of points whose distance
is below some fixed threshold.

While truly subquadratic algorithms have been ruled out for intersection graphs of unit segments, unit
equilateral triangles, or unit balls (in 3D) under standard fine-grained complexity assumptions [ 1,
the lower bound techniques for these objects fail for unit disks. Therefore, computing diameter for unit-
disk graphs in truly subquadratic time has become a central open problem raised by many authors [ ,

R X ]. Such an algorithm points to a larger landscape where truly subquadratic
results for basic geometric intersection graphs are possible. We note that even distinguishing the diameter
between 2 and 3 in truly subquadratic time for unit-disk graphs remains open.

Question 1.1. Can one compute the diameter of unit-disk graphs in truly-subquadratic time?

Unlike planar graphs which are sparse, unit-disk graphs (and intersection graphs in general) can be
dense: they can contain cliques of arbitrary size. Even computing the BFS tree in O(n) time becomes non-
trivial [ ]. Recently, Chang, Gao, and Le [ ] ported the VC-dimension technique for computing
diameter of minor-free graphs to unit-disk graphs; similar to planar graphs, on a unit-disk graph, the
radius-r balls for all integer values r also have bounded VC-dimension. A one-sentence summary of their
technique is that they treated a (possibly large) clique as a single vertex, and designed a clique-based

I'Throughout this paper, O(-) notation hides polylogarithmic factors, and 0*(-) hides n°® factors.
2We represent an intersection graph by the objects themselves, so the input size is O(n) even if the graph could be dense.
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separator hierarchy [ ]. As a result, they obtained a subquadratic (O(n?>~/!®)-time) algorithm
that could only compute an approximation of the diameter with an additive error at most 1 in unit-disk
graphs. While the additive error is very small, their algorithm falls short of distinguishing between
diameters 2 and 3. This suggests that computing the diameter exactly for unit-disk graphs requires a
very different approach. (There are many examples in the general graph literature where allowing a
small constant additive approximation can make the problem significantly easier to solve; for example,
see [ ].) For exact algorithms, Duraj, Konieczny, and Potepa [ ] adapted the technique by
Ducoffe, Habib, and Viennot [ ], which is also based on VC-dimension and a stabbing path data
structure, to the intersection graph of unit squares.> However, their technique only works when the true
diameter is small D = O(n'/47¢) [ ] and more importantly, their stabbing path data structure does
not work for unit disks, or even (non-unit) square graphs, as they heavily exploit the nice geometry of
unit squares. (In fact, they explicitly asked, even when the diameter is a constant, if the diameter of a
unit-disk graph can be computed in truly subquadratic time.)

1.1 Main Results on Diameter

In this paper, we give the first truly subquadratic algorithm for computing the diameter in unit-disk
graphs, resolving Question 1.1 affirmatively. Moreover, our framework has many other applications and
yields the first truly subquadratic algorithms for the intersection graph of axis-aligned (arbitrarily sized)
squares, as well as arbitrary sparse graphs with bounded VC-dimension.

Theorem 1.2. Let G be a graph on n vertices. We can compute the diameter of G by Las Vegas randomized
algorithms in:

« 0*(n?Y/18) time if G is the intersection graph of unit disks, and

 O(n*"Y12) time if G is the intersection graph of axis-aligned squares. For unit-square graphs, the
running time is 0*(n*~'/8).

« O(mn'~Y@D) time if G has m edges and VC-dimension d. For the special case of Kj,-minor-free
graphs for a fixed h, the running time becomes O(n?>~1/(2h=2)),

See Table 1 for the summary of our results on the diameter problem in comparison with previous work.
(Incidentally, our result even slightly improves previous time bounds in the special case of K;,-minor-free
graphs. The fact that the exponent of our algorithm for unit disks is the same as in Chang, Gao, and Le’s
+1-approximation algorithm [ ] is a complete coincidence—the algorithms are very different.)

1.2 Technical Overview

All previous subquadratic diameter algorithms for planar and minor-free graphs for arbitrary diame-
ters [ s s , , ] use sublinear separators (or r-divisions), which are not
available for geometric intersection graphs that could be dense. A key highlight of our framework is that
we completely bypass sublinear separators! Instead, we use low-diameter decompositions (LDD). LDDs
have been used in recent breakthrough results, such as negative-weight shortest paths [ ] and
(2 — ¢)-approximation for vertex cover on string graphs [ ] (see the references in [ ] for
more background). We stress that we only need the most elementary, non-probabilistic form of LDDs
(dating back to [ D, which are constructible simply by a number of “truncated” BFSes, and do
not require expanders or flows. In some ways, they are even simpler than planar-graph separators or
r-divisions.

3All squares are axis-aligned in this paper.
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graph class best previous new
planar on®/®) [ i ]

K;-minor-free O(n%1/(3h=1)y [ , ] O(n2-1/(2h-2))
VC-dim.-bounded | O(min{Dmn'""¢, mn}) [ , ] O(mn1—1/2D)
"""""""" unitsquare | O(min{Dn”%, )  [DKP24] i O %)
square o(n®) [ ] O(n2112)
unit-disk 0o(n? 105)1;5”) [ ] 0*(n2-1/18)

Table 1. Time bounds of exact diameter algorithms for different classes of unweighted graphs. Here, n is the number
of vertices, m is the number of edges, D is the diameter, and d is the (generalized distance) VC-dimension. Squares are
axis-aligned.

In addition to LDD, our framework incorporates many new ideas about the usage of bounded VC-
dimension as well as the design of geometric data structures. We will describe all three components of our
framework in a little more detail below.

Component 1: Low-diameter decomposition. For a given parameter A > 0, a low-diameter decompo-
sition (LDD) decomposes the input graph into pieces of diameter at most A such that the total number of
boundary vertices of all the pieces is O(n/A). (It is helpful to imagine choosing A = n® for some small
constant 6, and hence the number of boundary vertices is truly sublinear.) The ability to control the
total number of boundary vertices is reminiscent of r-division [ ] used for diameter computation in
planar [ , ] and minor-free graphs [ ], but an important difference is that a piece in
an LDD could have up to €2(n) vertices, while in an r-division, every piece has truly sublinear size (for a
typical choice of r). LDDs can be computed in O(m) time for general graphs and O(n) time for many
classes of intersection graphs, as we will show (in Appendix A).

Component 2: Bounded VC-dimension and stabbing paths. Since any sparse graph has a good
low-diameter decomposition, an LDD itself is not sufficient for constructing truly subquadratic algorithms
due to the aforementioned conditional lower bound based on SETH [ ]. A recent line of work on
the diameter problem has hinted at bounded VC-dimension as an overarching property: planar graphs
(more generally, minor-free graphs) [ , . . , ] and intersection graphs of
pseudo-disks [ , , ] (in particular, disks and squares) have bounded VC-dimension.
Thus, we also assume that the input graph has a bounded VC-dimension.

Given a set system (U, F) with a ground set U and a family F of subsets of U, its VC-dimension is
the cardinality of the largest S C U such that S is shattered by F—for every S’ C S, there is some X € F
such that X NS = S’. Given a graph G, there are several different ways to form a set system of bounded
VC-dimension; see Section 2. The simplest one is the set system of neighborhood balls (Vg, {N"[v]},>0):
we say that a graph G has VC-dimension* at most d if its system of neighborhood balls has VC-dimension
at most d. (N"[v] is the set of all vertices that are at a distance at most r from v, including v itself.) It
was known that planar graphs have VC-dimension at most 4; K;-minor-free graphs have VC-dimension
at most h — 1; and intersection graphs of pseudo-disks have VC-dimension at most 4 [ ].

There are two main ways that VC-dimension was used in the diameter computation: (1) stabbing
path: constructing a path that stabs each neighborhood ball N"[v] a sublinear number of times (in the
worst case or on average), and (2) distance compression: showing that there are few different distance

4A more precise terminology is distance VC-dimension at most d; see Section 2 for clarification.
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vectors to a fixed set of important vertices (i.e., the boundary of a piece in an r-division). The first
approach has been very successful in the low-diameter regime: computing the diameter in time O(Dn? %)
where ¢, is a constant depending on the VC-dimension d [ s ]. The second approach works
for the arbitrary-diameter regime, but either requires sublinear separators [ ] or allows distance
approximation [ ]. We overcome the limitation and inherent obstacles from both approaches and
devise a method in the presence of low-diameter decomposition to compute stabbing paths even when
the graph diameter is large. (In certain applications, we also manage to perform distance compression
exactly without the presence of separators.)

The basic idea of the stabbing path approach is to order the vertices from 1 to n, in such a way that
each neighborhood ball N'[v] of radius r can be represented as a union of O(n'~/¢) many intervals on
the stabbing path.® The existence of a spanning path with O(n'~/¢) stabbing (or “crossing”) number
was first shown in a seminal paper by Chazelle and Welzl [ ], and had found numerous applications
in computational geometry, for example, in geometric range searching. Constructing a good stabbing
path may seem to require knowledge of the entire set system of balls N"[v] in the first place (which we
do not have, since our problem is to compute all N"[v]!). Fortunately, it turns out that by known random
sampling techniques®, we only need to evaluate a small subset of balls to compute a good stabbing path;
for example, in the unit disk or square case, the construction time is O(n'*'/?) (more generally, the
construction time is O(np) for stabbing number O(n/p + p9~1) for a trade-off parameter p).

R I S I B R O L I S e e

Figure 1. Stabbing path and interval representation of disks. The yellow disk is represented by three yellow intervals, and
the green disk is represented by two intervals. The intervals representing different disks could overlap.

Let’s say v is one vertex in a diametral pair, whose shortest path distance realizes the diameter D. Given
the interval representation, we can check in time linear to the number of intervals (5(n1_1/ d )) whether
the union of all the intervals (and hence N"[v]) covers [1 : n]. If the answer is yes, then r is at least
the diameter D. By iterating through every vertex v as a potential endpoint of a diametral path, we can
check if r is greater than the true diameter D in O(n®>~/¢) time. To compute the interval representations
of N"[v] for all vertices in V, the pioneering work of Ducoffe, Habib, and Viennot [ ] introduced a
ball growing process: For each r, one computes the interval representations of {N"[v]: v € V} from the
interval representations of {N""![v]: v € V} via the identity N"[v] = UueN[v]Nr_l[u]. (For the base
case r = 0, N°[v] = {v}.) This approach leads to running time O(Dmn*~1/4) for sparse graphs [ ].
For geometric intersection graphs, we cannot afford to access the neighbors of every vertex as it would
result in Q(n?) time, and hence, different ideas are needed to avoid explicitly accessing neighbors.
For the intersection graphs of unit squares, Duraj, Konieczny, and Potepa [ ] devised a certain
“neighbor-set data structure” to achieve total running time O(Dn?~'/4). The factor of D in the running
time seems inherent to this approach, and D could be as big as Q(n). Furthermore, their data structure
does not work for arbitrary squares or unit disks.

SFor a simpler exposition, we assume the worst-case bound on O(n'~Y/4) on the number of intervals representing N'[v]. In
the detailed implementation, we work with an amortized bound which is faster to compute.
5This is where all our algorithms use Las Vegas randomization.
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To handle possibly large D, our new approach is to combine with low-diameter decomposition. First,
by computing BFS trees from the boundary vertices of the LDD with parameter A, we could compute an
estimated value T € [D — A : D]. Note that there are only a truly sublinear number of boundary vertices,
and hence, the total running time of this step remains truly subquadratic. (In the case of geometric
intersection graphs, we can implement BFS in O(n) time using known techniques such as bichromatic
intersections [ R , ]. See Appendix A.2 for details.) If we have {N*[v]: v € V}, then
we only need to grow balls for another A iterations (here A < D). However, we do not have access to
{N®[v]:v eV} explicitly. Our key idea here is to define a modified neighborhood ball N'[v] in a way that
we can initialize N " [v] = & to kick-start the ball growing process, and at the same time the information
computed is sufficient to answer the question about diameter D. Therefore, the precise definition of
N'[v] is somewhat tricky, tying directly to the pieces in the LDD; see Section 3 for the details. For sparse
graphs (with bounded VC-dimension), we can afford to access the neighbors of every vertex explicitly.
Hence, we could simply grow the modified balls {N"[v]} in O(A) rounds in O(A - mn*~1/?) time. By
choosing A = n'/?¢ (to balance with the O(mn/A) running time of BFS computation), this leads to a
relatively simple diameter algorithm running in O(mn'~/(?9)) time, which is truly subquadratic for the
arbitrary-diameter regime.

Component 3: Geometric data structures. For geometric intersection graphs that are not sparse, we
cannot afford to access the neighbors directly even with the modified neighborhoods, so more ideas
are needed. The data structure subproblem for the ball growing step we need to solve is the following:
assume the interval representations of N r_l[v] for every vertex v are precomputed and stored; given a
query object s, compute the union of intervals in N r_l[v] for all objects v that intersect s. We can reduce
this problem to the following:

Problem 1.3 (Interval Cover). Given a set of N objects O and each object o € O is associated with an
interval I, € [1: n]. Design a data structure to answer the following query:

* COVERS?(q,I): Given a query object q and a query interval I C [1 : n], decide whether the union
of intervals associated with the objects intersecting’ q in O covers the whole I.

Problem 1.3 can be viewed as a generalization of range searching [ ]: given a query object q, find
the objects intersecting g. In the computational geometry literature, colored variants of range searching
have been studied [ , , , ]. The above problem is an even more challenging
variant, where each object is equipped with not a color but an interval. This interesting generalization
has not been considered before, to the best of our knowledge. (There have been some prior works on
time-windowed geometric data structures [ X s 1, but typically queries are associated
with a time interval but not the input objects; even more crucially, the queries in those works are mainly
about whether a property is true for some time value in a query interval I, rather than for all time
values in I.) One reason the problem is more challenging than standard range searching is that it is not
decomposable (if the input set is divided into two subsets, knowing the answers of a query for the subsets
does not necessarily help with the overall answer).

We note that en route to their unit square result, Duraj, Konieczny, and Potepa [ ] also
formulated a non-standard geometric “neighbor-set data structure” problem, but their formulation
appears more complicated, as they (and Ducoffe, Habib, and Viennot [ ] earlier) worked with
symmetric differences of neighborhood sets. Our approach using interval representations is in some
sense “dual” to these previous approaches, and is more natural, leading to a geometric data structure
problem that is simpler to state.

"Here we mean the objects intersect, not their associated intervals.
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For unit squares, we give a solution to Problem 1.3 with N'+°(1) preprocessing time and N°(!) query
time. Our data structure is deterministic, in contrast to Duraj et al.’s, which uses hashing techniques
and inherently requires Monte Carlo randomization. For arbitrary squares, Duraj et al.’s data structure
approach does not work at all. Although we are not able to obtain N°() query time for Problem 1.3
either, we propose a simple method which divides the range [1 : n] into blocks of size b, and builds
a data structure for rainbow colored intersection searching (a version of colored range searching) for
each block. (See Appendix C.1 for details.) This yields O(N - b) preprocessing and O(L/b) query time,
where L is the length of the query interval. This trade-off turns out to be sufficient to obtain a truly
subquadratic algorithm in the end, for an appropriate choice of the parameter b.

For unit disks, Problem 1.3 is related to the well-known Hopcroft problem®, and hence a query time
o(N'/3) appears unlikely [ ]; however, to obtain a truly subquadratic time for diameter, we need
O(N?) query time for tiny 6 > 0 (since the total number of input and query intervals is Q(n?>~/4) or
worse in our application). We circumvent this issue entirely by partitioning the given set of unit disks into
constantly many modulo classes (i.e., we partition the plane into cells of constant side-length (say 1/2),
and take modulo classes of the index pairs of the cells). This way, if we take one cell O, the collection
of disks from the same modulo class intersecting [0 forms a pseudoline arrangement. When input disks
are restricted to one modulo class, we are able to solve Problem 1.3 with N'™°() preprocessing time
and N°) query time.? These data structure results may be of independent interest to computational
geometers. They do not follow directly from existing techniques. Instead, we propose a clever recursion,
repeatedly and alternately taking lower envelopes and upper envelopes of pseudo-segments [ s ].
(Experts in geometric data structure may find this part interesting, and are encouraged to read Section C.3
for the details.)

Additional complications for unit disks. The fact that we have efficient data structures for unit disks
only when restricted to a fixed modulo class creates a number of extra technical challenges:

* Because we can only take union over balls from a fixed modulo class, the intermediate sets are no
longer neighborhood balls, i.e., we need to work with a new set system. Fortunately, we can still
prove that the (dual) VC-dimension of the new set system is at most 4, but only when the balls
have the same radius r.

* This condition in turn forces us to change the stabbing path—and all of its associated interval
representations—every time we increment r. Fortunately, we show that the interval representations
can be updated efficiently using random sampling techniques (with slightly worse amortized
stabbing number O(n/p + p?)).

* At intermediate steps, we may now need to work with balls from two or three set systems across
different types. Fortunately, the combined set systems still have bounded VC-dimension (at most 8).

* The extra overhead in switching stabbing paths is too costly since each stabbing path computation
costs O(np) time, and we have to compute for O(n/A) pieces and O(A) rounds. To achieve overall
subquadratic time, we only work with pieces larger than a certain threshold A; for small pieces,
we need to switch to a different method (based on distance compression), which achieves running
time O(n - |8P| + |P| - (|P] + (|8P|A)Y)) for each piece P of size at most A with boundary JP.

All these details are explained in Section 7, but to illustrate the intricacies of the overall algorithm to the
curious readers, the time bound for diameter for unit-disk graphs has the following form, where the

8The Hopcroft problem tests, for a given system of points and lines in the Euclidean plane, whether any point lies on any
line. The total number of points and lines is assumed to be n.
“We do not break the Hopcroft problem’s lower bound as we only solve the data structure problem for one modulo class.
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graph class best previous new
planar | 0*(n®?), 0*(n) [ ]
Kj,-minor-free | O(n* Y/Gh=1y [ ] :

VC-dim.-bounded | O(mn), O(n?) folklore Zé(mnl_l/(“d“))

unit-square 0(n%) [ ] 0*(n%"1/16)
square 0(n?) [ ] O(n21/20)
unit-disk | O(n? loli 1;5“) [ ] 0*(n21/20)

Table 2. Construction time and space bounds of exact distance oracles for different classes of unweighted undirected graphs,
with O(1) query time. We write out both construction time and space bounds only when they are different.

sums are over all pieces P of the LDD (which satisfies Y., |P| = O(n) and Y., |0P| = O(n/A)):

ol anp+ > (16PI-n+A-(n+IP|-(n/p+p®))+ > (n-12P|+P|- (1P| +(18P|A)Y))

P:|P|>A P:|P|<A

Balancing cost by setting parameters A = n'/1® and p = A = A? then yields 0*(n?>1/18). (Other variants
of the algorithm for different graph classes and other related problems will have different expressions
and different settings of parameters.)

1.3 Other Distance-related Problems

Our framework for computing diameter naturally opens up the possibility of solving other distance-related
problems. Here, we focus on three well-studied problems: all-vertex eccentricities, exact distance oracles,
and Wiener index.

Eccentricities. To highlight the new challenges beyond diameter computation, let us begin with
eccentricities. The eccentricity of a vertex v, denoted by ecc(v), is the maximum distance from v to any
other vertex in G. Our goal is to compute ecc(v) for every v € V; in truly subquadratic time. Observe
that the diameter is the maximum eccentricity and hence, computing all eccentricities is often more
difficult.

For computing diameter, we kick-start the ball growing process with radius T € [D — A : D] and
therefore we only need to grow in O(A) interactions. The key challenge in computing eccentricities
is that ecc(v) of some vertex v could be as small as D/2, and hence any ball growing process has to
cover radii in the entire range [D/2 : D], which can be as large is Q(n). Interestingly, our framework for
the diameter problem also points us to a way to resolve this issue. Specifically, we grow the modified
neighborhood ball N/ vl only for vertices in the same piece P of the low-diameter decomposition. The
observation is that for any two vertices u and v in P, |ecc(u) —ecc(v)| = O(A). Hence, to restrict to
computing eccentricities of vertices in P, it suffices to grow modified neighborhood balls in O(A) steps.
(For different pieces, the ranges of radii could be vastly different.) As the range of radii is piece-specific,
the stabbing path data structure also has to be piece-specific instead of being “global” as in the case of
computing graph diameter. Our results are summarized in the following theorem.

Theorem 1.4. Let G be a graph on n vertices. We can compute all-vertex eccentricities of G by Las Vegas
randomized algorithms in:

« 0*(n?71/2%) time if G is the intersection graph of unit disks, and
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« O(n®>7Y/12) time if G is the intersection graph of axis-aligned squares. For unit-square graphs, the
running time is O*(n¥1/8),

« O(mn'~Y/CD) time if G has m edges and (generalized distance) VC-dimension d.

Exact distance oracle. An exact distance oracle is a data structure that, when given a pair of vertices,
returns the shortest path distance of the vertices quickly. Our goal is to construct an oracle with a truly
subquadratic space. For geometric intersection graphs, known oracles with a truly subquadratic space
can answer a distance query approximately within an additive error of 1 [ X ]; for sparse
graphs, the query time is close to linear (€(n'~%¢)) for some small constant £; = 1/2°4) depending on
the VC-dimension d [ 1.

For square and unit-disk graphs and sparse graphs with bounded VC-dimension, we provide an exact
oracle with a truly subquadratic space and polylogarithmic query time. Furthermore, our oracle can be
constructed in truly subquadratic time; therefore, our result can be interpreted as solving the all-pairs
shortest-path problem in truly subquadratic time. (Of course any such algorithm has to output an implicit
representation of the shortest distances since the explicit output size is Q(n?).)

Constructing an exact distance oracle is more difficult than computing all-vertex eccentricities: the
queried distance range is [0 : n]. In computing diameter and eccentricities, the modified ball N "[s]is a
subset of the true neighborhood ball N'[s] and we compute N' [s] for all r € [ecc(s)—O(A) : ecc(s)+ A].
However, if we query distance between s and t where d;(s, t) < ecc(s) — O(A), then knowing the true
neighborhood ball N"[s] for r > ecc(s) — O(A) (let alone its subset) does not tell us anything about
d;(s, t). Our idea is to assign weights to vertices of G appropriately and incorporate vertex weight in the
definition of N'[s], so that every vertex t belongs to N' [s] for some value of r € [—A : A]; the radius
could be negative, which is somewhat counterintuitive. As the range of the (weighted) radii is now
©(A), the ideas we develop for computing the diameter and eccentricities now can be applied here. As
distances with vertex weights are closely connected to the notion of generalized VC-dimension (formally
defined in Section 2), we assume the input graph has a bounded generalized VC-dimension in the case
of sparse graphs. All other graphs, such as geometric intersection graphs and minor-free graphs, have
their generalized VC-dimension equal to the regular VC-dimension (of the neighborhood ball system).

All of these ideas lead to our exact distance oracles for various types of graphs. See Table 2 for a
comparison of existing results and ours.

Theorem 1.5. Let G be a graph on n vertices. We can compute an exact distance oracles for G (by
randomized Las Vegas algorithms) with the following guarantees:

« 0*(n*"1/29) construction time and size and O(1) query time if G is a unit-disk graph.

* 0(n*"1/2%) construction time and size and O(1) query time if G is a square graph. For unit-square
graphs, the construction time and size can be improved to O(n>~'/19).

o O(mn'~Y@4+D)y construction time, O(n*~/(44+1)Y size, and O(1) query time if G has m edges and
(generalized distance) VC-dimension d.

Interestingly, if we ignore construction time, the above theorem implies the existence of subquadratic-
size, O(1)-time distance oracles for all (not necessarily sparse) graphs with bounded (generalized
distance) VC-dimension, in particular, all pseudo-disk graphs.

Wiener index. The Wiener index of a graph G is the sum of the distances between all pairs of vertices.
Computing the Wiener index has been studied [ , , ]; truly subquadratic algorithms are
only known for planar and minor-free graphs [ , , ]. Here we provide the first such
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algorithms for graphs with bounded generalized VC-dimension and several geometric intersection graphs.
Indeed, the algorithms for Wiener index are simple corollaries of our algorithms for exact distance oracles
in Theorem 1.5 and therefore have the same running time guarantees.

Theorem 1.6. Let G be a graph on n vertices. We can compute the Weiner index of G (by randomized
Las Vegas algorithms) in:

« 0*(n?71/2%) time if G is the intersection graph of unit disks.

« O(n®>71/2%) time if G is the intersection graph of axis-aligned squares. For unit-square graphs, the
running time is O(n?1/16).

o O(mn'~V“d*+D)Y time if G has m edges and (generalized distance) VC-dimension d.

2 Preliminaries

2.1 Graphs and Low-diameter Decomposition

Graph notation. Let G = (V;, E;) be an unweighted undirected graph with n vertices and m edges.
For two vertices u,v € V, let d;(u, v) denote the distance between u and v in G. Often we will omit
the subscript and simply write d(u, v) when the graph G is clear. The neighborhood of a vertex v € V;
is the set of vertices that are distance at most 1 to v, denoted by N[v] :={u € V; : d(u,v) < 1}. The
k-neighborhood ball of a vertex v € V; is the set of vertices with distance at most k from v, denoted by
N¥[v]:={ueV :d(u,v) < k}. (Notice that N[v] = N![v] and N*[v] = N[N*"1[v]].) Define the set of
k-neighborhood balls as Nlé := {N*[v]: v € V}, and the set of all neighborhoods balls as B := Uk N’é.

Geometric intersection graphs. Consider a set S of n geometric objects in the plane. We define the
geometric intersection graph G of S as the graph obtained by creating a vertex for every geometric object,
and connecting two geometric objects if they intersect. When S consists of unit disks, i.e., disks of radius
1, we refer to the geometric intersection graph G as a unit-disk graph. If S consists of axis-aligned unit
squares, we refer to the geometric intersection graph G as a unit-square graph. We will also consider
when S consists of axis-aligned squares (of arbitrary size). We refer to such graphs as square graphs. In
Appendix A.2, we describe a near-linear time algorithm for computing a BFS tree for square graphs, as
stated below; the algorithm for unit-disk graphs is known [ B

Lemma 2.1. Let G be the geometric intersection graph of squares or unit disks with n vertices. We can
compute a BFS tree from any given vertex of G in O(n) time.

Low-diameter decomposition. Let G be a graph with n vertices and A > 0 be a diameter parameter.

A low-diameter decomposition (LDD) of G with parameter A is a decomposition of the vertex set V into

disjoint sets V = V; U... UV, and corresponding induced subgraphs P; := G[V;] called pieces, such that:
» Low diameter: Piece P, is a single connected component of (strong) diameter'? at most A.

* Small boundary: Denote the boundary vertices of P; as JP;, that is, the subset of vertices of P;
that has an edge to a vertex in V;; \ V;. The decomposition satisfies Zle |0P;| = O(n/A).

* No small pieces: Each piece has size at least Q(A).

We show in Appendix A that such a decomposition always exists. Furthermore, in Appendix A.1, we
show an efficient algorithm for computing this decomposition.

9By strong diameter we mean that the shortest path between any two vertices in P; within the subgraph P; is at most A.
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Theorem 2.2. Let G be a graph with n vertices and m edges. For any parameter 24logn < A < n, we
can compute a low-diameter decomposition for G in O(m + n) time.

For unit-disk graphs and square graphs, we prove in Appendix A.2 that the low-diameter decomposi-
tion is efficiently computable in near-linear time.

Theorem 2.3. Let G be an intersection graph of n unit disks or an intersection graph of n axis-aligned
squares. For any parameter 24logn < A < n, we can compute a low-diameter decomposition for G in
O(n) time.

2.2 VC-dimension

A set system is a pair (X, 8), consisting of a ground set X and a collection of ranges that are subsets of X;
in notation, § C 2X. A subset Y C X is said to be shattered by 8 if the collection {Y NS : S € 8§} = 2Y,
that is, all possible subsets of Y can be obtained by 8. The shatter function, denoted by 7(x s)(k) is the
largest number of sets that is created by the set system when restricted to Y C X of size k. Formally it is:

s (k) = max|{y NS : S €8}
[Y|=k

The shatter dimension of a set system is the smallest value d such that 7y y(k) = O(k9) for all k. The
VC-dimension of a set system (X,8) is the size of the largest subset of Y C X that can be shattered
by 8. The dual set system of (X, 8) is the set system (8*,X*), where the ground set 8* = {wg : S € §}
consists of elements indexed by S, and each s € S induces a range s* = {wg € 8" : S 3 s} in 8*. The dual
VC-dimension of a (X, 8) is the VC-dimension of the dual set system, and analogously the dual shatter
dimension is the shatter dimension of the dual set system. We state some well-known results [ 1.

Lemma 2.4. Let (X,8) be a set system of VC-dimension d. The following is true:

1. The dual set system (8*,X*) has VC-dimension at most 2¢+1 —1.
2. ForY C X, the set system (Y,8) has VC-dimension at most d.

3. (Sauer-Shelah Lemma [ 8 ].) If|X| < n then |S| < O(n?), so the shatter dimension of
(X,8) is at most d.

VC-dimension in graphs. The k-distance VC-dimension of a graph G = (Vg, E;) is the VC-dimension
of the set system of k-neighborhood balls (V;, N’é). (Sometimes in the literature, e.g., [ ], the
VC-dimension of G is defined to be the 1-distance VC-dimension.) The distance VC-dimension of G is the
VC-dimension of the set system of balls (V;, B;). Observe that the k-neighborhood set system (V, Nlé)
is equivalent to its dual, so the dual VC-dimension is the same as the primal. This is not the case for the
set system of arbitrary balls since the ground set and the set of ranges have different sizes.

Karczmarz and Zheng [ ] introduced'! a natural generalization: a set system (U, §B;) whose
ground set is U = Vg X Z = {(u,r) : u € Vg, r € Z}, and the ranges §B consists of generalized
neighborhood balls for v € V; and k € Z of the form:

N*v1={(u,r) e Vs xZ:d(w,v) < r +k}.

Note that values of r and k are allowed to be negative. We call the VC-dimension of (U, §B) the
generalized distance VC-dimension of a graph. It can be observed that this set system is equivalent to its
dual. Furthermore, we can observe the following relationship between these VC-dimensions.

Hr ] consider what they call a multiball set system where the ground set is V; x M for a set of real weights M C R.

10
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Observation 2.5. k-distance VC-dimension of G < distance VC-dimension of G < generalized distance
VC-dimension of G.

Throughout this paper, when we refer to graphs of bounded VC-dimension, we will be referring to
families of graphs whose generalized distance VC-dimension of the graph is bounded by an absolute
constant. Many of our results can also be adapted with more work to graphs that have bounded k-distance
VC-dimension for all k, or graphs with bounded distance VC-dimension. We will focus on generalized
distance VC-dimension as it holds for minor-free graphs and the geometric intersection graphs we care
about, and also leads to the simplest exposition of our ideas.

Connection to distance encoding VC-dimension. Distance encodings were used by Li and Parter
[ ] to compute the diameter in a planar graph. This was later modified to a more general setting by
Le and Wulff-Nilsen [ ], whose definition we present below (restricted to unweighted graphs).

Definition 2.6. Let G = (V;;, E;) be an undirected unweighted graph. Let M C Z be a set of integers.
Let S C V; be an ordered set of £ vertices S = {sg,s1,...,5,_1}. For every vertex v € V;; define the set:

Xsm(v) = {(si,5) 1s5;€8,6 e M,d(v,s;)—d(v,sy) < 5}.

Let Xg py = {XS’M(V) 1V E V} be the set of subsets of the ground set S x M. The distance encoding
VC-dimension of G is the maximum VC-dimension of set systems of the form (S x M, X ,) for all possible
S and M.

Observe that the set X 5,(v) is isomorphic to N d(V’SO)[v] N (S x M). Restricting the ground set of the
set system (U, §Bg) to (S x M, §B) does not increase the VC-dimension by Lemma 2.4, so we conclude
the following observation.

Observation 2.7. Distance encoding VC-dimension of G < generalized distance VC-dimension of G.

Graphs of bounded generalized distance VC-dimension. It was shown by Chepoi, Estellon, and
Vaxes [ ] that planar graphs have distance VC-dimension at most 4 by explicitly constructing a K5
minor (by contradiction). This argument was extended by Bousquet and Thomassé [ ] to show that
Kj-minor-free graphs have distance VC-dimension at most h — 1. Le and Wulff-Nilsen [ ] used a
variation of this argument to show that K;-minor-free graphs have distance encoding VC-dimension at
most h — 1. This argument was adapted by Karczmarz and Zheng [ ] to show that K;-minor-free
graphs have generalized distance VC-dimension at most h — 1 as well.

Theorem 2.8 ([ D. Any Ky -minor-free graph has generalized distance VC-dimension at most h — 1.

For unit-disk graphs, it was shown by Abu-Affash et al. [ ] that the distance VC-dimension
is 4. Later, by Chang, Gao, and Le [ ], the intersection graph of pseudo-disks has distance VC-
dimension and distance encoding VC-dimension of 4 as well. The bound on distance VC-dimension was
also independently shown by Duraj, Konieczny, and Potepa [ ] for intersection graphs of fixed
translates of geometric objects in the plane. The proof in [ ] can be easily adapted to also bound
the generalized distance VC-dimension.

Theorem 2.9. Any geometric intersection graph of pseudo-disks in the plane has generalized distance
VC-dimension at most 4.

11
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2.3 Stabbing Path and Interval Representation

Let (X, 8) be a set system with |[X| < n and |§] < m. Let A be an ordering of the elements of X. Given a
set S € 8, define the A-interval representation Rep;(S) (A-representation for short) as the collection of
maximal contiguous subsequences of A—called intervals—whose union is S. The size of the representation
|Rep, (S)] refers to the number of such intervals. For a parameter 1 < p < m, a p-stabbing path A of a set
system (X, 8) of dual VC-dimension d is an ordering of X such that Y ¢ ¢ [Rep,(S)| = O(mn/p +mpd™).
Observe that if n'/¢ < m, this quantity is minimized when p = n/¢ so0 3¢ ¢ |Rep,(S)| = O(mn'~1/4).
We will sometimes refer to an n'/¢-stabbing path A simply as a stabbing path. We assume the existence
of an element reporting oracle that, given S € §, can enumerate all elements of S in T,(n) time, where
To(n) = n.

In Appendix D, we show the following lemma to construct p-stabbing paths with high probability'2.

Lemma 2.10. Let (X,8) be a set system with |X| < n and |8| < m with dual shatter dimension at most
d. For any parameter 1 < p < m, we can construct a stabbing path of (X,8), that is, an ordering A of X
such that ) s |Rep; (S)| = O(mn/p + mpd=1) in O(Ty(n) - p) time with high probability:

2.4 Geometric Data Structures

We consider three different geometric data structures in decreasing difficulty that we will use in our
algorithms, and the reduction from difficult problems to easier problems. We provide the details of the
reductions in Appendix C.1.

Interval searching. The interval searching problem directly captures the ball growing process for
various objects in the frameworks we study in Section 3 and Section 8.

Problem 2.11 (Interval Searching). Let O;5 be a given set of objects, where each object o € O;g is
associated with a set of intervals (of integer points) of [1 : n], denoted by J,. Design a data structure
that answers the following query:

* INTERVALSEARCH(q): Given an object q, return (the interval representation of) all the integer
points in [1 : n] associated with objects in O;g that intersect q.

For each query object g, let J,,.(q) be the set of intervals representing all the integer points of
the output. Ideally, we want to construct a data structure for the interval searching problem that has
near-linear preprocessing time and poly-logarithmic query time. However, this is difficult even when the
objects are unit-disk graphs.

In our context, we will be querying interval searching for each object in O;g, and therefore, we
will be solving the offline version of Problem 2.11. Let N;g = Zoeo,s (19Co)| + |7, (0)]) be the total
number of input and output intervals. Let L;g := . 0€0; > 1€9(0)UT, e (0) |I| be the total length of the input
and output intervals. We want to construct a data structure D¢ for solving Problem 2.11 that has a
small total run time as a function of N;g and L;s. Here, the total run time of the D; includes: (1) the
preprocessing time and (2) the total time to answer all the queries.!®

12In this paper we say an event E happens with high probability if Pr{[E] = 1 —n™* for some big enough constant c.

13Alternatively, the offline version of Problem 2.11 is equivalent to computing a Boolean matrix product C = AB, where A is
the adjacency matrix of an intersection graph, and B and C are Boolean matrices whose 1 entries can be covered by a small
number of row intervals. We will not adopt this viewpoint here.

12
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Interval cover. This is the data structure Problem 1.3. Recall that N is the number of input objects.
Let Nj¢ be the total number of input objects and query objects, and L, be the total length of the input
and query intervals. Similar to the interval searching problem, we want to construct a data structure D
for solving Problem 1.3 with small total running time, as a function of N;- and L;-. We will show (in
Appendix C.1) that if we can solve the interval cover problem efficiently, then we can solve the interval
searching efficiently.

Lemma 2.12. If one can construct a data structure D;. for solving Problem 1.3 with total run time
T(N;c,n, L) (for some polynomial function T), then we can construct a data structure D, for solving
Problem 2.11 in total run time O(T (Nys,n, L;s)). Furthermore, if D;. has preprocessing time P(N) and
query time Q(N), then D¢ has preprocessing time O(P(Ns)) and query time O(Q(Ns) -7, (q)|) where
Nig = 206015 |J(0)| is the total number of input intervals and J,,,(q) is the set of output intervals from
the interval search query of q to Dyg.

Rainbow colored intersection search. On the surface, the next problem we present seems to be a
strict special case of Problem 1.3 by requiring the interval to be a singleton. However, we will show that
a solution to this problem gives us solutions to the two other problems.

Problem 2.13 (Rainbow Colored Intersection Searching). Given a set of objects Og., each object
o € Ogc is associated with a color. Design a data structure to answer the following query:

* RAINBOWCOVER?(q): Given a query object q, decide whether all the colors appear in the set of
objects intersecting q.

In Appendix C.1, we show how to use a data structure Dy for solving Problem 2.13 to design a data
structure D; for solving Problem 1.3.

Lemma 2.14. If we can construct in O(|Ogc|) time a data structure Dy with O(1) query time for solving
Problem 2.13, then for any parameter b € [1,n], we can construct a data structure D, for solving
Problem 1.3 that has total run time O(N;¢ - b+ L;¢/b).

This together with Lemma 2.12 implies a solution to the interval searching problem, in particular, a
data structure D, for solving Problem 2.11 that has total run time O(N;g - b + L;5/Db).

2.5 Handling of Small Pieces

While the low-diameter decomposition guarantees that all pieces have size at least {(A), sometimes this
guarantee is not enough, and we will switch to a different algorithm.

Diameter and eccentricities. For computing diameter and eccentricities, we use the notion of pat-
terns [ ], and present the following lemma implicit in the work of Le and Wulff-Nilsen [ 1.

Lemma 2.15. Let G be a graph on n vertices with distance encoding VC-dimension d. Let P be a piece in
G with boundary 0P and diameter A. If distances from P to all vertices of G are known, the eccentricity
of all vertices in P can be computed in O (n- |6P| + (|P| +|oP|?A%) - T(P)) where T(P) is the time it
takes to run boundary weighted BFS on P with weights at most A.

We add one small optimization to the result of Le and Wulff-Nilsen [ ] using the notion of
boundary weighted BFS, a BFS where boundary vertex distances are initialized. This boundary weighted
BFS can be performed in time linear in the number of edges of the piece for sparse graphs, and in time
near-linear in the number of vertices of P for geometric intersection graphs. See Appendix E.2 for further
details and a complete proof of Lemma 2.15.
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Distance oracles. Similarly, for distance oracles, we will use the following lemma, also implicit in the
work of Le and Wulff-Nilsen [ 1.

Lemma 2.16 (Section 4.3.1 of [ D. Let G = (V;,E;) be a graph with bounded distance VC-
dimension d, and P be an induced subgraph of G with boundary 0P and diameter A. There exists a
distance oracle that answers distances from any vertex s € P and any vertex t € V; with O(n-|0P|+|P|%)
space and O(log|0P|) query time.

Furthermore, if G also has bounded generalized distance VC-dimension d and distances from JP
to all vertices of G, the distance oracle can be computed in O (n 18P+ (|oP|4AL + |P]) - T(P)) time,
where T(P) is the time it takes to run vertex weighted BFS on P with weights at most A.

For completeness, we provide the proof of Lemma 2.16 in Appendix E.4.

3 Framework for Diameter and Eccentricities

In this section, we outline the algorithmic framework for computing the all-vertex eccentricity of different
graph families in truly subquadratic time. (Recall that the eccentricity of a vertex u is defined to be
ecc(u) = max,ey, d(u,v).) Note that as diameter is the maximum eccentricity of any vertex in the graph,
we can also compute diameter in truly subquadratic time. Our framework can be tweaked for other
problems, such as constructing distance oracles and Weiner index; we defer to Section 8.

Now we formally set up the framework, which consists of a few high-level instructions, with the goal
to compute for every vertex u, the r-neighborhood balls N™[u] iteratively for growing values of r. This is
enough to answer the diameter problem exactly because a graph G has diameter at most D if and only if
every radius-D neighborhood ball contains all vertices in G.

Let G be the input graph, given either explicitly using adjacency lists or implicitly as the intersection
graph of objects. Our framework has three steps.

Step 1: Low-diameter decomposition (LDD). Compute a low-diameter decomposition £ of G with
a diameter parameter A > 0. £ has O(n/A) pieces, each of strong diameter at most A. Furthermore,
D per |0P| = 0(n/A). The vertices in | J, OP are called the boundary vertices.

Step 2: Shortest-path computations. For each boundary vertex v in | J, 0P, compute a breadth-first
search tree in G rooted at v. We obtain ecc(v) as a byproduct. Define

decc := max ecc(v).
boundary vertex v

Step 3: Growing neighborhood balls. Consider one piece P in the low-diameter decomposition £.
Our goal is to compute some modified version of N"[s] for every vertex s in P and necessary values of r.
Fix an arbitrary vertex sp in dP, and define eccp as the corresponding eccentricity ecc(sp). (Notice that
ecc(sp) is known after the shortest-path computation in Step 2 because s is a boundary vertex of P.)
We set the modified neighborhood ball for each vertex s in P to be

N'[s]:=N"[s]NRp, with Rp := {t € Vg : dist(sp, t) = eccp —ZA} s

where A was defined to be the strong diameter bound of the pieces in the LDD and R is called the
relevant region for the eccentricity computation for P. We will compute N'[s] for every s in P \ P
iteratively using the inductive formula

Nis1= |J &l )
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We emphasize that while the notation seems to suggest otherwise, the definition of modified neigh-
borhood balls N r[s] depends on the piece P. Define the set of relevant balls to be

Sp == {Nr[v] :vEP,r eleccp —3A,eccp +A]}.
Let 8 := | Jpe, Sp. The ball growing process consists the following substeps:

3.1. For every s € 9P and every r € [eccp —3A, eccp + A], compute modified balls N' [s] using Step 2.
3.2. As a base case, we initialize N'[s] = & for every s € P \ P when r = eccp —3A —1.

3.3. For other values of r € [eccp —3A, eccp + A], compute N' [s] using the inductive formula (1).

Then ecc(s) is the smallest value r such that N' [s] is the whole relevant region R,. Therefore, we can
compute ecc(s) from {Nr[s] :r €leccp —3A —1,eccp + A]}.

Note that we will assume that the diameter of the graph is at least 4A, otherwise the entire graph G
is a low-diameter decomposition of parameter 4A, and we can simply apply Step 3 with the relevant
neighborhood balls being all balls, the relevant region Rp being V;;, and the modified neighborhood balls
being normal neighborhood balls.

Correctness. To show that our algorithmic framework is correct, we show that we correctly computed
all (modified) neighborhood balls, assuming the ball growing process is correct. First note that for s € dP,
we have correctly computed the modified neighborhood balls in Step 3.1. If s € P \ 9P, given the pair
(s, t) realizing ecc(s), we can guarantee that the vertex t must lie in the relevant region Rp: Denote tp
to be the vertex that has distance eccp to sp, then because dist(s,sp) < A, we have

dist(sp, t) = dist(s, t) — A = dist(s, tp) — A > dist(sp, tp) — 24,

and thus t can be found in ' [s]if N [s] is a relevant ball in 8. Furthermore, again by triangle inequality,
ecc(s) is at least eccp — A and at most eccp + A. Thus it is sufficient to initialize r to be eccp —3A—1 (in
which case N"[s]NRp = @), so the initialization in Step 3.2 is correct. Thus, assuming the ball expansion
step is correct, all modified neighborhood balls are computed correctly in Step 3.3.

VC-dimension of neighborhood balls and stabbing paths. We cannot afford to store the (modified)
neighborhood balls N'[v] € 8, explicitly. Instead, we will rely on a compact representation of a set system
with bounded VC-dimension to store the neighborhood balls implicitly in a data structure. Given the
(modified) neighborhood ball system (V;;, Sp), we are responsible for bounding the (dual) VC-dimension
of (Vi,8p) to be a constant d. Then we compute stabbing path A for (V, 8p), such that the interval
representation Rep, (N "[v]) of set N r[v] has sublinear size. (See Section 2.3 for definition.)

Implementing the ball growing process. To implement the ball growing process, we will use a
stabbing path A for the modified neighborhood balls to ensure we can compactly store all such balls. The
exact details on how we implement the process will depend on the type of graph we are dealing with.

In a sparse graph G, we will show how to implement the ball expansion data structure in G directly
by explicitly considering the neighbors N[v] of each vertex v in the graph G.

In a geometric intersection graph G, we instead implement the ball growing process for a piece P € £
with a data structure for the interval searching problem defined in Problem 2.11. Each vertex v in P is
associated with a geometric object 0,. Let Op denote the set of these geometric objects. Suppose we
have computed compact interval representations Rep; (N r_l[v]) for every vertex v in P \ 9P, so we can
associate these intervals to o,. Using a data structure D, for Problem 2.11, the union of intervals of
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objects in Op that intersect with o, is exactly N "[v] by Equation (1). Thus, we can implement the ball
growing process in a geometric intersection graph if we have an offline data structure for Problem 2.11.
The efficiency of the algorithm will depend on the number of intervals in the representation with respect
to the stabbing path A.

Organization. In the next four sections, we will apply our framework to devise algorithms for diameter
and eccentricities for different graph classes: sparse graphs of bounded VC-dimension (Section 4),
arbitrary-square graphs (Section 5), unit-square graphs (Section 6), and unit-disk graphs (Section 7).
Sections 4, 5-6, and 7 can be read independently, depending on the interest of the reader. The sparse
graph case is perhaps the simplest, not requiring geometric data structures. The unit-disk case is the
most involved and requires overcoming a number of (interesting) technical challenges.

4 Diameter/Eccentricities in Sparse Graphs of Bounded VC-dimension

We begin by applying the framework in Section 3 to sparse graphs of bounded VC-dimension. In
this setting, the low-diameter decomposition could be constructed in O(m) time using Theorem 2.2.
Computing the BFS tree for every boundary vertex takes O(mn/A) total time where A is the diameter
parameter in the low-diameter decomposition. Thus we focus on the third step of performing ball
expansion.

To begin, we construct a global ordering A on all the vertices for our stabbing path data structure.
The following is analogous to Corollary 15 in [ ] that we tailor to our setting.

Lemma 4.1. We can compute in O(mn'/?) time an ordering A of the vertices in V such that for the
A ~ _
system 8 = Jpe, 8p such that Yipe ¢ Xiiep 3 Zcc, 3 deg(5) - [Repz (N"[s])] = O(Amn~1/4),

Proof: Let $ be the set obtained by taking each set N'[s] in 8 and adding deg(s) copies of N"[s] to S.

Observe that:
eccp+A

81=>>7 > degls)=0(a-m)

Pel s€P r=eccp—3A

We then apply Lemma 2.10 to X = V(G) and $ with p =n'?. Since we can implement the element
reporting oracle in O(m) time via BFS, the result follows. O

Now for every relevant piece P in the low-diameter decomposition £, we will restrict our attention
to only the relevant region R for the eccentricity computation. To do so, we consider the ordering Ap of
Rp obtained from A by restricting to the vertices of Rp. Observe that doing so does not increase the size
of the interval representation of any sets.

Observation 4.2. Let R be a subset of V. Let A be an ordering of the vertices V, and A" be an ordering
of R obtained by restricting A to the vertices in R. Then for any set S C V, |Rep,,(S NR)| < |Rep;(S)].

Proof: For any interval I € Rep,(S), I NR is also an interval in A’. O

Ball expansion data structure. To implement the ball expansion data structure, we will store each
neighborhood ball in interval form. For a boundary vertex s € 8P , we can compute N "[s] for all
r € [eccp —3A,eccp + Al in O(n) time using the BFS tree we have computed from step 2, and in addition
represent these balls in interval form.
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Next we describe how to perform the ball expansion operation. For vertices s € P \ 9P, each neighbor
v € N[s] is also in P and we have a compact interval representation for N 1 [s]. We can take the union
. . . . . = _1
of the set of intervals by doing a line sv:rsep in time O (ZVGNM |Rep;tp (NT [v])l)-
Furthermore, it is easy to detect if N [s] = Rp if the interval representation is all of Ap.

Time analysis. The amount of time taken for computing the global ordering in Lemma 4.1 is O(mn'/4).
The runtime for ball expansion of the boundary vertices is:

Z Z 0(n) = 0(n%/A) (2)
Pel sedP

By Observation 4.2, the ball expansion for a non-boundary vertex s € P and s ¢ JP from radius r — 1 to

r takes time
6( > |RepAP(Nr‘1[v])|) < 6( >, |Repx(Nr_1[V])|)~

veNT[s] VEN[s]

The total time taken for all ball expansion steps for non-boundary vertices across all the pieces is at most:

eccp+A eccp+A
>0 D] 5(Z|Repx(zvf—l[v])|) 6(22 >, deg(s)-|Rem(N"[s])|)

Pel s€P r=eccp—3A veN([s] Pel s€P r=eccp—3A

= O(Amn'~V9),

The last equality follows from Lemma 4.1.
Recall that the first two steps of the framework can be implemented in O(mn/A) time. The total
runtime for all three parts is:

O(mn/A +mn'? +n?/A+ Amn*~V4) = O(mn/A + Amn'~V/4),
Setting A = O(n'/?) yields a that this algorithm runs in O(mn'~"/2d) time.

Theorem 4.3. The diameter problem in a sparse undirected graph G with n vertices and m edges and
general distance VC-dimension at most d can be solved in O(mn*~'/(9) time.

Remark 4.4. We can also obtain similar results (albeit with possibly worse exponents) for other VC-
dimension bounds. If the distance VC-dimension is bounded by d or even if the k-neighborhood
VC-dimension is bounded by d for all k, we can follow an approach similar to what we have for unit-disk
graphs (see Section 7). The main difference is an extra step to reorder the vertices when we transition
from k — 1-neighborhoods to k-neighborhoods using Appendix D.

5 Diameter/Eccentricities in Square Graphs

Next, we apply the framework in Section 3 to intersection graphs of squares. In step 1, we apply
Theorem 2.3 to obtain our low-diameter decomposition £ of G in O(n) time into pieces of size logn <
A < n, where A is a parameter we will choose later. In step 2, we compute BFS trees from each
v € | Jp OP using Lemma 2.1. The algorithm takes O(n) time per vertex, so this step takes O(n?/A) time.
Note that we also explicitly store all distances from these vertices, which takes 5(n2 /A) space.

Recall that when s € 8P then we can explicitly compute N' [s] for all values of r in O(n) time using
the distances computed in step 2 of our framework.
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Stabbing path. We now compute a global stabbing path A. We use the following lemma.

Lemma 5.1. Let G be a graph with generalized distance VC-dimension d, and a single-source distance
finding algorithm with running time T (n). Then the modified neighborhood ball system has a path A

such that we have
eccp+A

ZZ Z IRep (N [s])| = O(A - n?d)

Pel s€P r=eccp—3A

with high probability; i.e., A is a sﬁabbing path of the modified r-balls. Furthermore, A can be computed
with a randomized algorithm in O(nY/2T(n)) time.

/4 for the set system

Proof: We apply Lemma 2.10 with p =n
§:= {Nr[s] :Pel,seP\JP, re[eccp —3A,eccp +A]}.

Notice that the system has size at most |§| = 3An, and we can use the BFS algorithm to report the
squares in the modified ball. By Observation 4.2, as N' [s] =Rp N N'[s], we obtain the bound

eccp+A eccp+A
DT DT Rem DI < D20 D0 [Repp(N'[s]) = 0(A - n?7VY) -
Pel s€P r=eccp—3A Pel s€P r=eccp—3A

In all of the intersection graphs studied in this paper, we have T(n) = O(n) and d = 4. This leads
to a stabbing path A that is computed in O(n°/4) time and has the property that the total size of the
representation is O(A -n”/%). Given that there are O(A - n) modified balls we consider, the amortized
interval count to represent a single modified ball is O(n/4).

Growing balls. To grow the modified neighborhood balls, we will design a data structure for solving
the interval searching problem (Problem 2.11) for squares, which we restate here: we are given a set
of square S, where each square s € S is associated with a set of intervals (of integer points) of [1 : n],
denoted by J,. Design a data structure that answers the following query:

* INTERVALSEARCH(q): Given a square g, return (the interval representation of) all the integer points
in [1: n] associated with squares in S that intersect q.

We will be querying the data structure once for each square s € S. Therefore, we are interested in
minimizing the total query time. Let J,,.(s) be the set of output intervals for a query square s. Let N :=
Dees (1T + 19,4 (s)]) be the total number of input and output intervals. Let L := > ZIEJ(s)UJOut(s) ||
be the total length of the input and output intervals.

Lemma 5.2. For any parameter b € [1: n], we can construct a data structure D for solving the interval
searching problem for squares such that the total time to (i) construct D and (ii) answer |S| queries, one
for each squares €S, is O(N - b+ L/b).

Proof: By Lemma 2.14, it suffices to construct a data structure Dy for the rainbow colored intersection
searching for squares that has nearly linear preprocessing time and poly-logarithmic query time. We
provide such a data structure in Appendix C.2. O

Next, we present a simpler (but slower) algorithm for computing all eccentricities. Then we show
how to improve the running time.
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First version. To compute all eccentricities, for each piece P we restrict A to Rp in O(n) time, and
denote the resulting ordering by Ap. Next, we set r = eccp —3A and compute the balls {K "[s]} for each
s. In general, once the representations of N r_l[s] are known, the data structure to set up for computing
modified balls of radius r will have >, _, [Rep;, (N 1 [s])| intervals in it.

To compute the representations of {N' [s]},cp, we setup the data structure D that takes as input: (i) a
set of squares corresponding to vertices of P and (ii) the interval representation {Repj, (N 1 [s]D}sep for
radius r—1. Then we apply |P| queries {INTERVALSEARCH(s) : s € P} to output the interval representations
of {Nr[s]}sep. Observe that the total length of all the intervals is at most 2|P| - |[Rp| = O(|P| - n). Thus,
the total running time for each r is:

0 (b - (IRepy, (N [s]I + [Repy, (R [sD) + |P|n/b)
SEP

Therefore, the total running time of computing all-vertex eccentricities, including the running time
of the first two steps in the framework, is:

eccp+A
Om*/A+n)+> > 0 (b - (IRepy, (V" [sD] + Repy, (N [s D) + |P|n/b)
Pel r=eccp—3A sEP
eccp+A

:5(n2/A+n5/4)+5(b)(Z >, |RepA(Nr[s])|>+5(n2A/b)

Pel r=eccp—3A
O(n?/A+n°*)+0(bA-n"*)+0(n?A/b) (by Lemma 5.1 and d = 4)
= O(n?/A+bA-n"*+n%A/b)
= 5(n2_1/16). (for optimal choices of b = A2 and A = nl/16y

(3

Improved version. We improve the running time by reducing the O(n?A/b) in Equation (3), which
is the total length of the intervals, to O(n?/b) by keeping track of the sets N'[s]\ N r_l[s] instead of
N'[s]. Notice that the eccentricity of s will be the largest r where N "[s]\N" "[s]is non-empty. Let
R~ [s]:=K"[s]\N""'[s]. Then |Rep,, (N~ [s]I < [Rep,, (V" [s])| + [Rep;, (K"~ r[s])| and therefore,
(N7"[s s]}seppes has a compact representation:
eccp+A eccp+A
D D RepBTIDISD] DT (Repy, (8 [sDI+[Reps, (W' [sD) = O(a - n7/4).
Pel r=eccp—3A Pel r=eccp—3A
Observe that oy

Fs1=( | 8 )\ T IR T ).

vEN([s]

Thus, we could apply the same growing ball process for N' [s]. More precisely, we compute the
interval representation of UveN[s] N _r_l[v] by querying the interval searching data structure, and then

remove elements from N~ [s]UR :r_z[s] using the interval representations of N ~s]and N =2 [s]
computed from the previous iterations. On the other hand, the intervals in this representation are
disjoint, so we can bound the total length L over all 3A iterations as L < O(|P|n) instead of O(A|P|n).
Therefore, by applying the same calculation in Equation (3), the final running time is:

O(n?/A+n°*)+0(b)-N +0(n?/b) = O(n?/A+bAn"*+n?/b) = O(n*"1/12)
for b= A =n'/12,

Theorem 5.3. Computing the diameter and all-vertex eccentricities of square graphs with n vertices
can be done in O(n>~1/12) time.
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6 Diameter/Eccentricities in Unit-square Graphs

For unit squares, we can obtain a slightly faster algorithm. The first two steps and the stabbing path
computation are the same as the algorithm for square graphs. The total running time of these steps is
O(n?/A + An®/%). The growing ball step is more efficient since we can develop a better geometric data
structure for unit squares.

Growing balls. For unit squares, we design a more efficient data structure for the interval cover problem
(Problem 1.3), and as a result, we obtain a more efficient data structure for the interval searching problem.
Let S be a given set of unit squares where each square q € S is associated with a set of intervals of [1 : n].
Each query INTERVALSEARCH(q) returns the intervals of integer points in [1 : n] associated with unit
squares intersecting q. Let N := > _¢|J(s)| be the number if input intervals.

.~ 14o(1) . « . . .
Lemma 6.1. We can construct in N*"°Y time a data structure D for solving the interval searching

problem for unit squares that can answer each query INTERVALSEARCH(q) in fe. |Joue (@] time.

Proof: In Appendix C.2 (and more specifically Theorem C.5), we construct a data structure for the
interval cover problem (Problem 1.3) for unit square with N T+oD) preprocessing time and O(1) query

time. Then by Lemma 2.12, we obtain the preprocessing time and query time as in the lemma. O

The algorithm. The algorithm is essentially the same for the square graphs in the previous section:
restricting the ordering A to R,, to get Ap, and growing balls (N r[s]}se p for r = eccp —3A to eccp + A by
applying a query INTERVALSEARGH(s) for each unit square s € P to the interval searching data structure
in Lemma 6.1 built for N r_l[s]. Let N, ;= > cp(IRep; (N r_l[s])l be the number of input intervals to

1

4= n°M, the total running time to grow all the

the data structure; the total output size is N,,. Since N ‘r)

balls per piece is
eccp+A

W ST Repu (W [s])).

r=eccp—3A
The total running time to compute all eccentricities is:

eccp+A

O?/A+Ar ) +n°M > > |Rep, (N [s])]

Pel r=eccp—3A
0*(n®/A+ An®* + An”/*) (by Lemma 5.1 and d = 4)
= O*(nz_l/s) (for A = nl/s.)

Theorem 6.2. Computing the diameter and all-vertex eccentricities in unit square graphs with n vertices
can be done in O*(n?1/8) time.

7 Diameter/Eccentricities in Unit-disk Graphs

We now describe how to adapt the framework in Section 3 to the more complicated setting of computing
diameter and eccentricities for unit-disks. The computation of LDD and BFS remains unchanged because
unit-disks are fat pseudo-disks; we follow Step 1 and Step 2 of the framework (Section 3). For LDD
we use Theorem A.3; for BFS we use Lemma 2.1. However, Step 3 requires drastic changes in order to
implement the ball expansion step.
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In this section we assume the unit-disk graphs are in center-disk intersection model: Unlike a typical
geometric intersection graph where we create an edge between two objects if they intersect, here we add
an edge between two unit-disks if the center of one disk lies in the other disk. It is straightforward to see
that the two models are equivalent by doubling the radii of all unit disks. For the sake of simplicity, we
will scale the disks so that the radius is still one unit.

7.1 Restriction to Fixed Types

Partition into modulo classes. We partition the plane into square cells: every unit-square is divided
into 2 x 2 many cells, each of side length 1/2. Each cell is indexed by the coordinates of its bottom-left
corner modulo 3; notice that the coordinates are multiples of 1/2 and thus there are 6 modulo classes
per coordinate. We collect all cells of the same index (i, j) into a set Cell; ;; in other words,
Cell; j = {cell O : square O is located at (x, y) where x =i and y = j (mod 3)} .
We then classify the set of unit-disks D based on the cell classes where the center of the unit-disk lies:
D, ;= {D € D : disk D has its center located in some cell in Celli’j} .

Notice that {D; ;}; ; is a partition of D. We say a disk in D; ; has type (i, j). Denote the number of types
to be o; there are exactly o = 36 types.

The disks intersecting a query disk D, whose center point q lies inside a cell O come in two flavors:
those disks that completely contain the cell O, and those that partially intersect the cell. We call the cells
where the centers of these intersecting disks belong relevant to O; among them, we call those cells with
disks partially intersecting O perimetric. Observe that there are only constantly many cells relevant to
any fixed cell O, because we set the side length of each cell to be 1/2.

Figure 2. The 36 cells formed by partitioning a 3 x 3 square. Cells of the same color are of the same type. The disks in D,
(in pink) intersects the blue cell as a pseudoline arrangement.

Fixed an arbitrary cell 0. A pseudoline arrangement £ inside O is a collection of boundary-to-boundary
simple curves in O, such that every pair of curves in £ intersect each other at most once. We now establish
the main combinatorial property for disks of the same type: while two unit-disks intersect up to two
times in the plane, if we focus on a single cell O and two disks whose centers are in some other cells of
the same type, at most one intersection will appear in 0. (Indeed, based on the way we partition cells
into modulo classes, at most one cell of each type is relevant to OI.)

Lemma 7.1. Let D be any set of unit-disks, partitioned into types as described above. Given any cell O
and a fixed type (i, j), the boundary of the disks in D; ; intersects inside O as a pseudoline arrangement.
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Proof: Assume for contradiction that there are two intersecting unit-disks D and D’ with two intersection
points inside O simultaneously. As O has side-length 1/2 and diameter at most +/2/2 < 0.71, the centers
of D and D’ must be at least 2 - (12 — (1/2/4)2)1/2 = +/14/2 > 1.87 units away. Thus the two centers
cannot be in the same cell (which has diameter at most 0.71). On the other hand, we reach a contradiction
as any two distinct cells of the same type must be at least 2.5 units away (because we index the cells by
modulo 3), while the centers of the intersecting disks D and D’ can be at most 2 units away. O

If we focus on one perimetric cell O’ of O and rotate the plane so that O’ lie about vertically above O
(the cells might not be parallel to the axis anymore), we can safely assume each pseudoline formed by
the partial intersection by a disk in O’ with O to be x-monotone, that is, any vertical line intersects the
pseudoline at most once.

7.2 Implementation of the Neighborhood Growing Step

We first describe how to implement the ball growing process (Step 3.3) in the framework using the
inductive formula (1), which we recall here:

Ns1= vl (1)

VEN[s]

Fix a piece P from the LDD, and some vertex s in P \ 8P. Each modified neighborhood ball N' [s] can
be written as the union of a collection of r-balls with restrictions on the type of the second vertex in
length-r paths. More precisely, recall that a disk D is of type (i, j) if the center of the disk D is located in
some cell whose bottom-left corner has coordinates in the modulo class (i, j). We arbitrarily order the
constantly many types and label them from 1 to o. We say that a path in the intersection graph G from
a vertex s to a vertex v is a T-path if the disk corresponding to the vertex following s (the second vertex)
in the path is of type T € [1 : o ]. For each vertex s and an arbitrary subset M C [1 : o], define

AT

N, [s]:= {v € Vp : there is a T-path from s to v of length at most r, for some T € M} . 4)

We often use the - subscript to represent the subset [1: T'] below. Notice that by restricting to T-paths
from s to v in the definition, we can implement the inductive formula using

Nisl= | R Dl

veN[s]nCelly

We prove the following lemma in Appendix B (Lemma B.2).
Lemma 7.2. Foreveryr and every T € [1: o], both set systems

(VG, {N;[s] is€ Vp}) and (VG, {N;T[s] is€e Vp})
have dual VC-dimension at most 4.

Notice that N'[s]= N ; »[s] and we can compute N ;T[s] iteratively by

N, [s1=N_,  [sJuRs] =R, slu | N Dv). ©)
veN[s]NCelly

. AT . ~r—1
Now the strategy should be clear: We will corAnrpute N [s] from the previously stored N__ [v] for every
1-neighbor v of s, then take the union with N_,._,[s]. The first operation is done with the help of the
geometric data structure; to do so, one has to first switch the interval representation for the relevant
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neighborhood balls to be with respect to a unifying stabbing path over some combined set system that
has a bounded VC-dimension. After N rT[s] is computed, we switch the interval representation back then
proceed to compute N rT[s] =N ;T_l [sJUN rT[s], this time switching the interval representations to be
with respect to another unifying stabbing path over some auxiliary set system. Both set systems must
have O(1) (dual) VC-dimension. This is the main technical hurdle which we will explain next.

Geometric data structure. Fix a cell O containing s and a perimetric cell O’ of O which lies vertically
above O (after a rotation). By Lemma 7.1, the collection of disks whose center lies in O’ intersects O
as a collection of N pseudolines £. Assume each pseudoline £, in £ has an associated interval I, in
some given stabbing path A. Our next goal is to describe how to build a stabbing path data structure D,
that answers the COVERS?(s,I) query: whether the union of intervals I,, for every object v intersecting s
covers the whole I. (This data structure would then be used to solve the interval searching problem,
which gives us the interval representation of the modified neighborhood of s.) A disk D, intersecting a
query disk D, with center s in O corresponds to a pseudoline £, that lies below the center s of the query
disk. Therefore it is equivalent if we can support the following query:

* COVERS?(s,I): Given a query point s and an interval I, test whether U I, contains I.

L,eL
£, below s

Lemma 7.3. Fix a radius r. Let A’ be a stabbing path defined for the union of set systems

{N;l[v] S VP} u {N;[s] :sEVp}.
A stabbing path data structure D7, (with respect to A’) can be constructed in n**°M) time, and support
each COVERS?(s,I) query in n°Y) time for any s.

A proof of Lemma 7.3 can be found in Appendix C.3. By the same argument in Lemma 6.1, we can
augment D7, to construct the interval representation of N rT[s] with respect to A’ for every s by calling an
interval search query INTERVALSEARCH(s) to D7.. The readers might have noticed that the stabbing order
maintained by the data structure D7, is not the same as the stabbing order we would like to represent
the neighborhoods K rT[s] in. This discrepancy leads to the need for tool that allows the switch between
different interval representations.

Switching between interval representations. We gain the ability to switch between different interval
representations by computing a special kind of stabbing paths that “respect” some common p-sampling of
the set system (X, 8). This requires us to compute stabbing paths not using Lemma 2.10, but something
more sophisticated. Ultimately we will be able to shrink from § to a subcollection 8’ of 8, and vice versa.
First we set up the terminologies.

We are given a set system (X, 8) with at most n = |X| elements and m = |§| sets with dual shatter
dimension of (X,8) is d. We fix a unique p-sampling R of 8, where each set in § chosen with probability
p/m. (Later on we will restrict R to subcollection 8’ of § and obtain R’; we can still think of R’ as
obtained from 8’ by sampling each element with probability p/m, even though we do not explicitly
sample from 8’. Notice that the parameter m does not change even if 8 gets smaller.)

Let A be an ordering of X. We say that a set S crosses a pair (x,y) if x € S and y ¢ S, or vice versa.
The number of consecutive pairs in A crossed by S is at most twice the size |Rep;(S)|. For any collection
R, define the equivalence relation =5 over X, where x =4 y if and only if no set in R crosses (x,y). (In
other words, {S€R: x € S} ={S € R:y €S}.) Then =4 has O(|R|?) equivalence classes since the
dual shatter dimension is at most d.
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Let 8 be an arbitrary subcollection of 8. Denote the restriction of the unique p-sampling R of § in
8’ as R’; in notation, R’ := 8§’ N R. Notice that R’ is also a p-sampling. Given any set system (X, §), a
stabbing path A of (X, 8) is R'-respecting if each equivalence class of =, appears contiguously in A for
the restriction R’. (The equivalence classes of =4, are defined with respect to the restriction R, not R.)
We compute specialized stabbing paths using the following lemma.

Lemma 7.4. Assume the existence of an element reporting oracle that, given S € §, can enumerate
all elements of S in Ty(n) time. Consider a fixed p-sampling R of 8. We can compute the equivalence
classes of =5 and construct an R-respecting stabbing path A of (X,8) such that Y ¢ |Rep,(S)| =
O(mn/p+mp?=1) in O(T,(n)- p) time with high probability. In other words, one can compute a sampled
p-stabbing path A of (X, 8) and the equivalence classes of = as byproducts.

For the case of unit-disks, we have the element reporting oracle with query time Ty(n) = O(n) by
computing a BFS tree using Lemma 2.1. Once both stabbing paths (and their corresponding equivalence
classes) were computed, respecting a common p-sampling (and its restriction), we can convert one
interval representation to the other efficiently.

Lemma 7.5. [Conversion of interval representations. ] Let (X, 8) be a set system with |X| < n and || < m.
Let 8’ be a subcollection of § and T be a subcollection of 8'. Let R be the unique p-sampling of 8, and
R’ be its restriction in 8'. We are given an R-respecting stabbing path A of (X,8), and an R’-respecting
ordering A" of (X, 8") (along with the equivalence classes of =5 and =y/).

(1) [:Shrinkingfrom 8 to 8. ] Given Rep,(S) for all S € T, we can compute Rep/(S) for all S € T in
O(mn/p +mp?) total time with high probability.

2) LExpandingfrom 8’ to 8.] Given Rep,/(S) for all S € T, we can compute Rep,(S) forall S € T in
O(mn/p +mp?) total time with high probability.

The proof of the two lemmas can be found in Appendix D.

Neighborhood growing algorithm. Assuming we are equipped with the geometric data structure
(Lemma 7.3) and the ability to switch between interval representations with respect to different stabbing
paths (Lemma 7.5), we can now formally describe the algorithm.

Fix a piece P. For simplicity of the proof, we use 8" to denote the collection {N "vl:ve Vp} and
8}, to denote {N Irw[v] (v e Vp} for any subset M C [1: o]. (Recall that the modified balls are defined
by intersecting with the relevant region Rp, and thus are dependent on P.) Similarly, we define A" be a
stabbing path for the (V;,8"), and A}, be a stabbing path for (V;, 8},) for any subset M C [1: o ]. Since
all the set systems we need here are with respect to the same ground set V;, we will slightly abuse the
notation and use the shorthand 8 to denote the set system (V, 8), and use 8; U8, to denote the union
of the two set systems (V,8; US,).

The algorithm has an outer-loop and an inner-loop. The outer-loop has 4A + 1 rounds, iterating
over every relevant radii r € [eccp —3A : eccp + AJ; at the start of round r, we maintain the following
invariants that we have computed,

(1) an iR;_al-respecting p-stabbing path A;_Gl for the set system S;:Tl and its p-sampling R%!; and

<o’
_ . . . o&r—1 .
(2) AL gl-representatlon of the modified neighborhood balls N ; o Lv] for every vertex v in P.
For each round with radius r, our algorithm now performs an inner-loop by repeating the following
steps for o iterations, where T ranges from 1 to o; in iteration T we take into account type-T shortest

paths using Eq. (5), until we include all o types and thus finish computing the A"-representation of §".
At the start of iteration T, we maintain the following invariants that we have computed, for each type T,
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() an R, _,-respecting p-stabbing path A

r

<7 for the set system 8_,._, and its p-sampling R

r .
<T-1°

(i) AL,_,-representation of the modified neighborhood balls N ;T_l[s] for every vertex s in P \ JP.

At every iteration T, we perform the following steps in order. For the base case when T = 1, objects with
the -7, subscript are considered to be null, which we omit from the algorithm.

1.

Consider the combined set system S;_Ul U 8’.. Compute a p-sampling R, of 87, and take union with
the p-sampling RZ! of 87! from invariant (1) to form a 2p-sampling R’ of 87! U ST..

. Compute an R’-respecting 2p-stabbing path A’ along with the equivalence classes of =, for the

combined set system using Lemma 7.4.

_ . o r—1 . . . . .
. Convert the Arggl-representatwn of N r<0 [v] for every v in P given by invariant (2) into A’-

representation, using Lemma 7.5(2) and the fact that SZ} is a subcollection of the combined
set system.

Compute the geometric data structure D’. with respect to the p-stabbing path A’ using Lemma 7.3.

5. Compute the A’-representation of

Nisl= | K~

veN[s]nCelly

for every vertex s in P \ 9P with the help of geometric data structure D7,..

. Convert the A’-representation of N ;[s] for every s in P \ 0P back into A7.-representation, using

Lemma 7.5(1).

(At this point, we have successfully computed the spanning path A7. for 87. and its interval representation

with respect to A7.. We now proceed to take union with §

7.

10.

11.

12.

. Convert A_,._,-representation of N

r

R .
<715 currently in A L r_;-representation.)

Define the auxiliary set system:

8, USLUSL, = (VG,{N;T_l[v] RS Vp} u {N;[V] (Ve VP} U {]\A[;T[V] (v e Vp}). (6)

Compute a p-sampling R_, of 8L, and take union with the p-sampling R_,_; of 8L, _, from
invariant (i) and p-sampling R’. of 87. computed in Step 1 to form a 3p-sampling R of the auxiliary

set system S;T_l ushu S;T.

. Compute a Rf-respecting 3p-stabbing path A! along with the equivalence classes of =;; for the

auxiliary set system, using Lemma 7.4.

r
<T-1
representations, using Lemma 7.5(2).

[s] for every s in P \ 8P given by invariant (ii) to A!-

Convert A7.-representation of N rT[s] for every s in P \ 8P given by Step 6 to Af-representations,

using Lemma 7.5(2).

Compute N ;T[s] by taking the union of N ;T_l [s]and N rT[s] as Af-representations for every s in

P\ aP. The output N ;T[s] is again in the auxiliary set system and thus have A!-representation.

Compute an R_ ,-respecting p-stabbing path A_ . for set system 8., by restricting A to S

Convert the Af-representation of N ;T[s] for every s in P \ OP into AL -representation, using
Lemma 7.5(1) and the fact that S;T is a subcollection of the auxiliary set system.

Notice that Step 12 of the algorithm maintains invariants (i) and (ii). After o iterations, the inner-loop
ends. We perform one extra step:
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. & r—1 : : . .
083 13. Convert the A’-representation of N r< o Ls]for every s in 9P computed in Step 3 into A _-representation,

084 using Lemma 7.5(1). Insert elements in the difference N ; - [s]\N ;1 [s]to create AL -representation
085 of N;U[s] for every s in OP.

986 We then proceed to the next round of the outer-loop. Notice that invariant (1) follows directly from
987 invariant (i), and invariant (2) follows from invariants (ii) together with Step 13 from the previous
088 round.

989 Handling small pieces. The most time-consuming part of our algorithm is to compute the p-stabbing
990 paths; each computation takes O(np) time. But we have to compute O(1) many stabbing paths for
991 each piece and each round of the outer-loop; there are O(n/A) many pieces (remember the modified
992 neighborhood balls were defined differently for each piece P), but also for O(A) many rounds. Therefore
993 the computation of stabbing paths alone already takes 5(np -(n/A)-A) = 0(n?p) time.

994 To handle the issue, we only apply the above algorithm to large pieces whose size is above certain
995 threshold A > A. This way, the number of such pieces is at most O(n/A) instead of O(n/A). (We
996 eventually set A= A°1)) To compute diameter or eccentricities for small pieces, we use Lemma 2.15.

907 7.3 Analysis for Eccentricities

998 We make the following observations about the shatter dimension of unions of set systems.

999 Observation 7.6. Let X be a ground set and let 8§, and 8, be two set systems on X. Let us denote the
1000 set of ranges obtained by taking unions of ranges from 8! and 8> byg ={S;US,:S5; €8,,5, €8,}.
1001 Suppose that the shatter dimension of 8, is d, and the shatter dimension of 8, is d,. Then the shatter
1002 dimension of 8; U 8, is at most d; + d,, and the shatter dimension of §; U 8, U S is also at most d; +d,.

1003 The observation shows that the combined set system 8’%‘1 U 8’ has dual shatter dimension 8, because
1004 both SrT_l and 8. individually has dual VC-dimension (and thus dual shatter dimension) at most 4 by
1005 Lemma 7.2. It also shows that the dual shatter dimension of the auxiliary set system 8., _; US7. USL . is
1006 also 8 again as the individual dual VC-dimensions are at most 4 Lemma 7.2. Thus we set d = 8 for the

1007 time analysis that follows.

1008 Lemma 7.7. Fix a piece P, a radius r, and some arbitrary parameter p. We can maintain invariants (1)
1009 and (2) between iterations T — 1 and T, in time O*(n- p +|P|- (n/p + p®)), by computing (1) an R" -
1010 respecting p-stabbing path A7, for the set system 87, for some p-sampling R"; and (2) A%.-representation
1011 of the modified neighborhood balls N rT[v] for every vertex v.

1012 Proof: Steps 1 and 7 take O(n) time to compute p-samplings. Steps 2 and 8 take O(n - p) time to
1013 compute O(p)-stabbing paths. Steps 3, 6 and 13 take O(|P| - (n/p + p?)) time to convert interval
1014 representations, because the combined set system SL‘; U 8. has size 2|P|. Step 4 takes o(n'*°M) time
1015 to compute the geometric data structure D7.. Step 5 takes O(n - n°M) time to compute the union using
1016 DY Steps 9, 10, 12 take O(|P| - (n/p + p®)) time to convert interval representations, because the
1017 auxiliary set system S’ U 8% USL . has size 3|P|. Step 11 takes O(n) time to compute the union of

<T-1
1018 two sets with the same Af-representation. Overall the neighborhood growing step can be implemented
1019 in 0*(n-p +|P|-(n/p + p®)) time per piece per radius. O
1020 To analyze the total running time, we separate the pieces of LDD into large and small, based on
1021 whether the size of the piece is at least A or not for some parameter A. For large piece P of size
1022 at least A, we run the ball growing algorithm in Section 7.2. The outer-loop is executed for O(A)
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rounds, each taking O*(n- p + |P|-(n/p + p?)) time by Lemma 7.7, followed by Step 13, which takes
5(2565}, ‘N;U[S] \N;l[s] ) time to compute N;U[s] for every s in JP using binary search in the
AL ,-representation. There are O(n/A) large pieces. Overall, for each large piece, this takes time

(23
=O*(|8P|~n+A(n-p+|P|~(n/p +p8))).

N, [s] \NZJ[S]D +0(A)-0%(n-p +IP|-(n/p + p%))

By Lemma 2.15, for each small piece P of size less than 4, it takes O(n - |8P| + |P| - (|P| + (|8P| A)*)) time
to compute eccentricity of all vertices in P. There are at most O(n/A) small pieces.

The final running time of the all-vertex eccentricities algorithm for unit-disk graphs is:

o*( > (1ePl-n+A-(n-p+IPl-(n/p+p*))+ D (n-|aP|+|P|-(|P|+(|aP|A)4)))

P:|P|>A P:|P|<A

SO*(HZ/A+(%-A-np)+ ST (PI-(/p+p%)+ D (n-lePl+IPP)+ > (|8P|-A4A4))

P:|P|>A P:|P|<A P:|P|<A
= 0*(n*/A+ An*p /A+ An?/p + Anp® +n?/A +nA% /A + A%A*).

Balancing cost by setting parameters A =n/?°, p = A% and A = A* then yields 0*(n?>1/20).

Theorem 7.8. Computing eccentricities of an n-node unit-disk graph can be done in 0*(n?>'/2°) time.

7.4 Analysis for Diameter

For the special case of computing the diameter of unit-disk graphs, we can get a slight improvement in
running time by making the following observation:

In the analysis for the all-vertex eccentricities algorithm, computing p-stabbing paths in Step
2 and Step 8 using Lemma 7.4 takes O(n - p) time per piece per r, which is the bottleneck.
We can instead compute a global p-stabbing path per type for both the combined set system
and the auxiliary set system at the start of each iteration of the inner-loop, then restrict these
stabbing paths to each piece P.

More specifically, at the start of iteration T':

0.1. Consider the global combined set system (VG, {N;;l[v] (v e VG} U {N}[v] (v e VG}). This set
system differs from 8;_01 U 87 in two places: the neighborhood balls are not modified, and the ball
centers range over all vertices in G, not just in P.

Compute a p-sampling Jv%rT of (VG, {N}[v] (Vv E VG}), then take union with the p-sampling of

v h
(VG, {N ;;1[\/] 1V E VG}) computed from the previous round r — 1 to form a p-sampling R of the
global combined set system.

vh xh
0.2. Compute an R -respecting p-stabbing path A along with the equivalence classes of =5 for the
global combined set system using Lemma 7.4.

0.3. Consider the global auxiliary set system
(Ve ANL,_ [v]:ve Ve U{Nf[v] v e Vg U{NL, [v]: v € Vg }).
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Compute a p-sampling JVQLT of (VG, {N;T[v] v e VG}), then take union with the p-sampling
of (VG, {N Lralvlive VGD computed from the previous iteration T — 1 and p-sampling of
(VG, {N}[V] S VG}) from Step 0.1 to form a p-sampling flv%u of the global auxiliary set system.

0.4. Compute an ﬂin-respecting p-stabbing path i along with the equivalence classes of = 5 for the
global auxiliary set system using Lemma 7.4.

Then, for each piece P, we modify the following steps in iteration T':

vb xb

2. Restrict the R -respecting p-stabbing path A" to another stabbing path A’ for the combined set
system 8’;71 U 8. for piece P. This is done by first removing every neighborhood ball Ny.[v] not
centered in P, then taking intersection between N;[v] and the relevant region Rp to form N ; [v].

8. Restrict the Jv%n-respecting p-stabbing path in to another stabbing path A’ for the auxiliary set
system S8T_! U8, for piece P.

Analysis. We only count for the new changes in the diameter case; for the remaining steps, see the
time analysis for computing eccentricities.

In the new Step 2, the removal of balls not centered in P does not increase the stabbing number
of ib. Taking intersection with Rp does not change the stabbing number, because this is equivalent to
restricting the stabbing path range from [1 : n] to Rp (in the same order), and what was one interval in
[1: n] remains one interval in Rp. So A is still a p-stabbing path. The p-sampling R’ can be obtained
by restricting ilvlb to S;_al U 87.. The removal of balls not centered in P only decreases the number of sets
in consideration and thus makes =, coarser than = 5 Taking intersection with Rp does not change the
status of N ;[v] being chosen in the sample or not. Thus A’ remains R’-respecting. As a result, A’ is an
R’-respecting p-stabbing path.

For the new Step 8, using similar reasoning, A! is an Rf-respecting p-stabbing path.

Steps 0.2 and 0.4 take O(n - p) time. Steps 2 and 8 now take O(n) time to carry out the restriction.
(Only the part about restricting [1: n] to Rp needs to be implemented, not the removal of balls centered
outside P.) Overall the neighborhood growing step can be implemented in O*(n+ |P|- (n/p + p®)) time
per piece, plus another O(np) time across all pieces.

The final running time of the diameter algorithm for unit-disk graphs is:

O*(A~np+ > (1aPl-n+a-(+Pl-(n/p +p*))+ Y. (n~|8P|+|P|-(|P|+(|8P|A)4)))

P:|P|>A P:|P<A
= 0*(n?/A + Anp + An?/A+ An?/p + Anp® + n? /A +nA? /A + A3A*n).
Balancing cost by setting parameters A = n'/1® and p = A = A? then yields 0*(n?>1/18).

Theorem 7.9. Computing diameter of an n-node unit-disk graph can be done in O*(n®>~/18) time.

8 Framework for Distance Oracles (and Wiener Index)

Our algorithm for computing the Wiener index is a simple extension of our algorithm for computing the
exact distance oracle. Therefore, in the following, we focus exclusively on describing the framework for
computing an exact distance oracle. Then we give more details on how to compute the Wiener index
with the same running time.
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For distance oracles, the first two steps are the same as in the framework for eccentricities described
in Section 3. Nonetheless, we present a full description of the framework since there are significant
differences in step 3. The key difference is that instead of a specific set of relevant vertices Rp for piece
P, we need to consider all vertices V. The distances we need to consider will vary depending on the
vertex t € Vg, and therefore, we could not use the same definition of N "[s] in the diameter computation
for distance oracles. However, we observe that since we have a good additive estimate d that is within
+A of the true distance between t € V;; and a vertex s € P, we only need to consider distances in an
O(A) range around d. Our idea is to add a weight to each vertex t and use vertex weights to define
N'[s] (Equation (7)).

In our oracle construction, it is important to distinguish between large and small pieces (determined
by some size threshold) in the LDD L. For large pieces, we will use the interval representation. For small
pieces, we use the oracle construction of Lemma 2.16.

Oracle construction. Let A be the parameter chosen later. For each piece P in an LDD L.

1. Compute a low-diameter decomposition £ of G with a diameter parameter A > 0.
2. For each vertex v € | p., 0P compute a breath-first search tree in G rooted at v.

3. For each piece P € L where |P| > A, let sp be an arbitrary vertex of JP. For every vertex v € V,
we compute and store a weight wp(v) = d;(v,sp). Observe by the triangle inequality that for any
vertex s € P:

wp(v) —A <dg(s,v) <wp(v)+ A

Now we define an adjusted neighborhood ball as follows:

AT

N [s]:={veV:dg(v,s) <r+wp(v)} Vre[—A,A] (7

Then we compute N r[s] with the ball expansion data structure D and store all intermediate balls
in the following procedure:

3.1 For every s € 8P, we can explicitly compute the modified balls N' [s] for all r € [-A, A] as
well as compute and store a compact interval representation with respect to an ordering A.

3.2 As a base case, we initialize N' [s] = & for every s € P when r = —A — 1.
3.3 For other values of r € [—A, A], compute Rep; (N "[s]) using the inductive formula

Nisl= | 87 (8)

by taking the union of the intervals.

4. For each piece P € £ with |P| < A, construct the distance oracle of Lemma 2.16.

Correctness of ball expansion initialization. Since d;(sp, t) — A < dg(s,t) < dg(sp, t) + A for every
teV,t¢N —at [s]land t € N A[s]. Thus, the initialization is correct, and we have correctly computed
the desired modified neighborhood balls.
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Answering queries. Suppose we get a distance query between a vertex s that is in a piece P € £, and
any other vertex t € G. If |P| < A, we query the distance oracle for small pieces, and by Lemma 2.16 the
query time is O(logn). Otherwise, for any r € [—-A, A], we can detect if t € N' [s] by checking if ¢ lies in
an interval of Rep, (N "Is]) by binary search in O(logn) time'“. Thus, we can binary search for the first
radius r, such that t € N "[s]and t ¢ N r[_l[s]. By the definition of N of Equation (7), we can conclude:

dG(sﬁ t) = dG(tasp) + T't.

In either case, we spend O(1) time.

Computing the Wiener index. In the oracle construction, we compute and store N' [s] for every s

. . AT ~T—1 . .

in a large piece P. For every vertex t € N [s]\ N [s], the exact distance from s to t is ds(t,s,) + T,
AT ~r—1 .

and hence Zteﬁr[s]\ﬁrfl[s] dg(s,t) = Zteﬁr[s]\ﬁrfl[s] dg(t,sp) +|N [sI\N" "[s]| - r. This allows us to

compute Y., ds(s,v) in the same running time as it takes to construct the interval representation

of {N r[s]}rA:_ - For small pieces, Le and Wulff-Nilsen [ ] provided an algorithm for computing

Zvev d;(s,v) that has the same running time as the construction time for exact oracles of small pieces.

Therefore, the time to compute the Wiener index is the same as the time to construct an exact distance

oracle.

Organization. In the next four sections, we will apply our framework to devise algorithms for exact
distance oracles (and thus Wiener index) for different graph classes: sparse graphs of bounded VC-
dimension (Section 9), arbitrary-square graphs (Section 10), unit-square graphs (Section 11), and
unit-disk graphs (Section 12). There will be similarities with earlier sections on diameter (Sections 4-7).

9 Distance Oracles for Sparse Graphs of Bounded VC-dimension

We begin by considering sparse graphs of bounded VC-dimension.

Stabbing path construction. For a piece P € £, let vol(P) = >, _, deg(s) be the total degree of
vertices in P, i.e., the volume of P. We will construct a stabbing path A, for each piece P € £ satisfying
0(1)- Zf:_A D ccp deg(s) - |RepAP(Nr[s])| = 5(AV01(P)(n/p + pT™1)) for a parameter p to be specified
later using Lemma 7.4.

Construction time. Computing the low diameter decomposition and the boundary distances stored in
step 2 takes O(mn/A) time. For large pieces, the total construction time involves computing the ordering
Ain 5(mp) time (by Lemma 7.4) and the ball expansion procedure which takes O(A vol(P)-(n/p+p<™1))
time per piece. Thus, the total running time is:

Z O(mp + Avol(P)-(n/p + p?™1) = O(nmp/A+ Amn/p + Ampd™1).

pPel
[V,1=A

For small pieces, we observe that we can compute a vertex weighted BFS on P with weights at most
A in time O(vol(P)). Therefore, in Lemma 2.16, T(P) = O(vol(P)), giving the total running time for all
the small pieces:
> 0(nlap|+(|P|1a? + |P|) - T(P)) = O(n?/A)+0(A%AY +4)- > vol(P)
Pel Pel
Ve I<IAl = 0(n?/A+mA?A?).

14We can reduce this running time to O(1) by using the fractional cascading technique; this would complicate the details.
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The total running time for the algorithm is:
O(mn/A +nmp /A+ Amn/p + Amp?™! + mATA?) = O(mn!~1/(4d+1D)

for A =n!/(d+1) 5 = A2 and A= A3,

Space usage. The boundary distances that we store in step 2 take O(n?/A) space. For large pieces, in
step 3, we use O(Avol(P)(n/p + p?~1)) space to store compact representations of the neighborhood
balls and O(n) space to store distances from each vertex to sp. We also use O(n) space per boundary
vertex to store N' [s] for all r € [—-A, A] in step 3(0) by storing {N'[s]\ N r_l[s]} for every r. Thus, the
total space is:

Z O(n-|8P|+ Avol(P)(n/p + p¢™)) = O(n%/A+ Am(n/p + pT™h))
el
Vi = O(n®/A+mn/A+mA%~1)  (since p = A?).

For each small piece, step 4 requires O(n|dP| + |Vp|?) space by Lemma 2.16. The total space required for
all small pieces is

> 0(nldP| +|Vpl?) = O(n?/A+nAtY) = 0(n?/A+nA¥2) spaceas A=A,
pel
IVpl<iAl

Therefore, the total space of our oracle is:
0 (nz/A +mn/A+mAa2 4 nA3d_3) = O(mn!~1/(4d+1))
for A = nl/(4d+1)

Theorem 9.1. Given undirected graph G with n vertices and m edges that has generalized distance VC-
dimension at mostd, we can construct in O(mn*~/“44+1) time an exact distance oracle of O(mn'~/(4d+1))
space and O(1) query time.

Remark 9.2. We chose our parameters to minimize the construction time. We can trade off between
space and query time. In the extreme, if construction time does not matter, we can apply the large piece
solution to all pieces to obtain a distance oracle using O(mn'~1/(29) space.

Remark 9.3. In this section, we assumed the graph has a bounded distance VC-dimension. The exponent
can be slightly optimized when the time it takes to perform BFS in a piece P is O(|P|) instead of O(vol(P)).
This is the case for minor-free graphs, where the space can be improved to O(mn'~/“®). We can also
obtain similar results (albeit with worse exponents) if we make other bounds on VC-dimension, such
as the distance VC-dimension, and even if we only assume that the k-neighborhood VC-dimension is
bounded by d for all k.

10 Distance Oracles for Square Graphs

For square graphs, we follow the construction of the oracle in Section 8. We note that the VC-dimension
d =4 in this case. We only analyze the construction time since space is bounded by it.
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Stabbing path construction. For a piece P € £. We will construct a stabbing path A, for each piece
P € [ satisfying:

A
0(1)- > > IRep,, (N [sDI =0(AIPI(n/p + p*)) )
r=—A s€P
for a parameter p to be specified later using Lemma 7.4. The running time is O(pn) as we show in
Appendix A that we can find a BFS tree in square graphs in O(n) time.

Given the interval representation {N - [s]}sep for radius r—1, we compute the interval representation
of {N r[s]}sep using the data structure D for the interval search problem for squares (Lemma 5.2) in
the eccentricities computation with the same setup: the input contains a set of squares corresponding
to vertices of P and the interval representation {Rep,, (N r_l[s])}sep for radius r — 1. The queries are
{INTERVALSEARCH(s) : s € P} whose outputs are the interval representations of {N r[s]}sep. The total
time to grow balls for all radii, using the same efficient encoding as in the improved algorithm for
computing eccentricities in Section 5, is:

A

D 0(b- > (IReps, (V"' [s1)| + [Repy, (N [sDI)) + O(IPIn/b)

r=—A sepP
= 5(bA|P|(n/p +p3)+|P|n/b) (by Equation (9)).

(10)

Construction time. For small pieces, we show (in Lemma E.3 in the appendix) that we can compute a
vertex weighted BFS on P with weights at most A in time O(|P|). Therefore, in Lemma 2.16, T(P) =
O(|P|), giving the total running time for all the small pieces:

Z O(n|aP| + (|oP|*A* + |P]) - |P|) = 25(n|8P|+A4A4-|8P|)
pPel

AN
o = O(n?/A +nA*A3).

For large pieces, the running time to grow balls (Equation (10)) plus the running time of O(np) to
compute Ap for each piece P is:

> O(np +bAIP|(n/p +p®) +|Pln/b) = O(n*p/A+bAn(n/p +p*)+n?/p).

Pel
[Vpl=|Al

Therefore, the total running time to construct the oracle is:
O(n%/A+nA*A% +n%p /A+ bAn(n/p + p3)+n?/p) = O(n?1/29)
by setting b= A =n'/?, p = A3, A= A%

Theorem 10.1. Given a square graph with n vertices, we can construct in O(n>~*/?°) time an exact
distance oracle of O(n*~'/2°) space and O(1) query time.

11 Distance Oracles for Unit-square Graphs

For unit square graphs, we follow the oracle construction for square graphs above. The only difference
is that we use Lemma 6.1 for solving the interval searching problem for unit squares. Therefore, the
running time to construct all the intervals is within an n° factor of the total number of intervals. Since
the stabbing path A, for each piece P still satisfies Equation (9), the total running time to grow all
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the balls for each large piece is O*(A|P|(n/p + p2)). Therefore, the construction time for large pieces
becomes:
D, 0'(np +API(n/p +p*) = O"(n’p/A+An’[p + Anp?).

pPel
IV, [=4

The construction time for small pieces is the same: O(n?/A + nA*A%). Thus, the total construction time
of the oracle is:

O*(n?/A+nA*A% + n?p /A+ An?/p + Anp®) = 0*(n%1/16)
for A = nl/lé’A: AS’p = Az.

Theorem 11.1. Given a unit square with n vertices, we can construct in 5(n2_1/ 16 time an exact
distance oracle of O(n*~1/16) space and O(1) query time.

12 Distance Oracles for Unit-disk Graphs

For unit-disk graphs, we follow the same strategy in Section 7, adapted to the distance oracle framework
Section 8.

* We partition the neighborhood balls into types, so that within any cell, balls of a fixed type intersect
the cell as a pseudoline arrangement.

* We use the same geometric data structure (Appendix C.3) and interval representation switching
technique (Appendix D), to implement the ball growing step (Step 3.3) in the framework using
the inductive formula (1).

* We switch to a different distance oracle construction using Lemma 2.16 when the piece has size at
most A.

We only analyze the construction time since space is bounded by it.

Ball expansion step. We now need to deal with modified balls of a fixed radius r for different types
with vertex weights on their endpoints. To be precise:

Nlrw[s] = {(v,w(v)) : v € V where the t-walk from s to v is at most r + w(v) for 7 € M}
We bound the dual VC-dimension of the set system ((v, w(v)), ey, {Ny,[s]};ep) in Lemma B.3.

For each type T, given the ArT_l-representation for every modified balls in the set system SrT_l, we
compute the A7.-representation for every modified balls in the set system 87, using the same interval
representation switching strategy and the data structure D, for the interval cover problem for unit-disks,
similar to Section 7.2. The total time to grow balls for all radiiis n- p +|P|- (n/p + p®).

Construction time. For small pieces, we show (in Observation E.2 in the appendix) that we can
compute a vertex weighted BFS on P with weights at most A in time O(|P|). Therefore, in Lemma 2.16,
T(P) = O(|P)), giving the total running time for each small piece to be n - |0P| + |P| - (|P| + (|6P|A)Y).

For large pieces, we grow the balls for O(A) rounds, each taking time n-p +|P|-(n/p +p®). Therefore,
the total running time to construct the oracle is:

o*(rﬂ/m > Atp+IPl-(nfp+p" N+ D (n-|ap|+|P|-(|P|+(|aP|A)4)))

P:|P|>A P:|P|<A
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= 0" (n?/A+ An®p/A+ An?/p + Anp® +n?/ A+ nA?/ A + A%A*n).
Balancing cost by setting parameters A =n/?°, p = A% and A = A* then yields O(n®>~/20).

Theorem 12.1. Given a unit-disk graph with n vertices, we can construct in O(n>~/2%) time an exact
distance oracle of O(n*~'/2%) space and O(1) query time.

13 Conclusion and Open Questions

In this paper, we have presented the first truly subquadratic algorithms for diameter and related problems
for many classes of geometric intersection graphs. Naturally, many open questions follow, for example,
improving the exponents of the time bounds of any of our algorithms. More intriguingly:

* Is there a truly subquadratic algorithm for computing the diameter of arbitrary disk graphs? Our
algorithm can be extended to the case when the number of different radii is n°(*), but the general
case appears more difficult.

* Could we prove any conditional lower bound on the running time of the form £2(n'*?) for computing
the diameter of unit-disk graphs? Bringmann et al. [ ] proved a near-quadratic conditional
lower bound for 3D unit-ball graphs under the orthogonal vector (OV) hypothesis.

If one considers more difficult problems than diameter, e.g., counting the number of pairs with
shortest-pair distance at most  (which can be solved by our algorithms in subquadratic time),
an Q(n*?) conditional lower bound follows for unit-disk graphs if one believes certain offline
range searching problems similar to Hopcroft’s problem require Q(n*?) time (namely, counting
the number of pairs of points with Euclidean distance at most 1 in R?).

* Is there a near-linear-time algorithm for distinguishing between diameter 2 vs. 3 for unit-disk
graphs? Bringmann et al. [ ] proved a near-quadratic conditional lower bound for 12D unit-
hypercube graphs under the hyperclique hypothesis, and obtained an O(nlogn)-time algorithm
for unit-square graphs.

There are a few specific open questions related to our algorithms. For example:

* Is the VC-dimension of the set system in Lemma 7.2 bounded when we do not restrict to a fixed r
and T? If so, this might simplify our algorithms for unit disks.

* Could we solve the interval cover data structure problem (Problem 1.3) for arbitrary squares with
N'°() preprocessing time and N°() query time? If so, this would improve the exponent for our
algorithms for arbitrary squares. This appears difficult.

* Less importantly, on the interval cover problem data structure problem for unit disks from a fixed
modulo class, could the extra 20(v10gNlogaV)) < yo(D) factors be reduced to polylogarithmic? A
related question is to determine tight bounds on the combinatorial complexity of the “generalized
envelopes” from Appendix C.3.

Besides unit squares, Duraj, Konieczny, and Potepa [ ] also considered translates of a convex
polygon with constant complexity. It is not difficult to similarly extend our algorithms for unit/arbitrary
squares to translates/homothets of other convex polygonal shapes with constant complexity (and our
algorithms for unit disks to translations of fat convex non-polygonal shapes with constant complexity).
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A Low-diameter Decompositions

In this section, we construct the low-diameter decomposition of sparse graphs and geometric intersection
graphs. Recall that we use N'[v] = {u: d;(u,v) < r} to denote the set of vertices in the neighborhood
ball of radius r centered at v.

We give an algorithm for computing a low-diameter decomposition as claimed in Section 2.1. Our
low-diameter decomposition for graphs is perhaps most similar to the low-diameter decomposition
in [ ]; we are not aware of any work stating the exact guarantees with our definition of LDD.
We first present the general algorithm and the properties of the LDD. We will discuss the detailed
implementation and running time for sparse graphs and geometric intersection graphs separately.

Basic algorithm. Let ¢ be a parameter with 0 < ¢ < 1. We will choose ¢ = 24logn/A. Start with
the entire graph G; = G. Pick an arbitrary vertex u € V, perform a BFS to compute neighborhood balls
centered at v: N'[v], N2[v], ..., N[v]. Stop when |[N‘[v]|/IN‘2[v]| <1+ ¢, and set V; = N [v]
as one piece in the decomposition. Note that this is guaranteed to eventually happen because when
N 2[v] s the entire connected component of v, then N[v] = N1 [v] = N'~2[v]. We mark the vertices
in N‘[v]\ N‘~2[v] as boundary vertices'®>. Repeat this procedure on G, = G; \ V; to find V,, then on
G3 = G, \ V,, and so on.

Low diameter property. First we bound the strong diameter of one such ball N¢~1[v] that we included
in our low diameter decomposition. Observe that for all 2 < i < £, the ball N'[v] of radius i satisfies
IN{[v]] > (1 + ¢)IN=2[v]]. Since the size of the largest ball is at most n, if £ is odd, we have that:

n= [N' )| = INTITO)I > (1+¢)- INFPO) > (14 )2 INO)| = (1 + ¢) P2

Taking logarithms on both sides, and using the fact that ¢ < 1, we obtain:

(—1)-¢ 6({—1)-logn
4 A
Rearranging the inequality yields £ < A/6. The diameter is at most 2 < A/3.

logn > 15—71 -log(1+¢) = 6%1-(¢—¢2/2)>

Small boundary property. Let Néll[vl] be the ball of largest radii we compute in G, Néi[vz] the
ball in G, ..., Né"[vk] the ball in G;. Observe that when we choose P; = G[Ngi_l[vi]], the vertices
of Ncrr."i_l[vl-] \Ng_ [v;] are potentially boundary vertices dP;, and a vertex in Néi[vi] \Ncrr."i_l[vi] isa
boundary vertex in JP; for some piece P; with j > i. Assume we have a total of k pieces in the LDD.
Thus it can be seen that:

k k
D 18P < > INGIviI\NG (v
i=1 i=1

k

<> NGl (since [NG [v:] < (1 + $)ING “[v1D
i=1
k

<> é-ING V] (since NG —*[v;] € Ng ' [v])
i=1

< ¢ -n=24nlogn/A.

15The vertices in N*[v]\ N*7![v] are boundary vertices of later pieces constructed in the process. The vertices in N*1[v]\
N‘2[v] are boundary vertices of V;, although there may be other boundary vertices in N*~2(v) that we accounted for earlier in
the process.
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No small pieces. To ensure that no piece is small, we will do some post-processing of the pieces
obtained from the basic algorithm. We use the following claim.

Lemma A.1. Let P; be a piece found in the basic LDD algorithm found by taking the vertices N"~'[v] in
G;. Either P; has at least Q(A/logn) vertices, or P; is an entire connected component of G;.

Proof: Suppose that [N"(v)| > [N"72(v)|. Then as (1+ ¢)-|N"2(v)| > [IN"(v)| > [IN"2(v)| + 1, we
conclude that [IN""2(v)| > 1/¢ = O(A/logn), so P has size at least O(A/logn). Otherwise [N (v)| =
IN"1(v)| = IN""2(v)| and thus P; is an entire connected component of G;. O

In our post-processing, we will merge P; with an arbitrary neighboring component. Observe that since P;
is an entire connected component of G;, no later piece P; with j > i will merge into P;. Now consider a
piece P; with multiple pieces P; , P; ,---, P; merging into it in the post-processing step, j <ij,---,j <1i;.
Since all pieces have diameter at most A/3, the resulting merged P; has diameter at most A.

A.1 Sparse Graphs

Consider the standard BFS algorithm that computes N”[v] by adding all neighbors incident to N™![v]
into a queue. For every vertex v, the basic algorithm will add all its neighbors into a queue at most
once, so the basic algorithm can be implemented in O(m + n) time. The post-processing step involving
merging components can also be done in O(m + n) time.

Theorem 2.2. Let G be a graph with n vertices and m edges. For any parameter 24logn < A < n, we
can compute a low-diameter decomposition for G in O(m + n) time.

A.2 Geometric Intersection Graphs

Here we consider geometric intersection graphs of fat pseudo-disks of similar size and squares of varying
sizes. A family of objects are called pseudo-disks if each one is the interior of a simple closed Jordan
curve and two objects are either disjoint, have one object fully inside the other, or properly intersect
each other at two boundary points. Disks are by definition pseudo-disks. The geometric intersection
graph of a family of pseudo-disks can be considered, combinatorially, as a set of vertices V representing
the pseudo disks and two vertices are connected if their corresponding pseudo-disks have non-empty
intersection. For the algorithm below, we consider fat pseudo-disks that are of roughly the same size and
have constant complexity. Specifically, a fat pseudo-disk is sandwiched between two disks of the same
center p of radius r and R with two fixed constants r,R and r <R and the boundary can be described by
a constant number of algebraic curves. We call this pseudo-disk centered at p as C,. The input to our
algorithm consists of the description of a family of n fat pseudo-disks with input size O(n). We assume
that one can compute in O(1) time whether two pseudo-disks have an edge or not. The geometric
intersection graph of such pseudo-disks can be dense (i.e., having edges of size ©(n?)). We show that
the low diameter decomposition can still be computed in near linear time, similar to the running time
for sparse graphs (Appendix A.1).

Recall that the basic idea is to perform BFS from a vertex v to compute balls centered at v: N°[v] = {v},
N[v], N2[v], ..., N[v], and stop when |[N‘[v]|/IN*2[v]| < 1+ ¢. Let V; = N*"1[v]. Then repeat this
procedure on G, = G; \ V; to find V;,, then on G5 = G, \ V,, and so on.

We have to be careful in implementing the basic idea: we do not want to spend O(n) time per
iteration as the number of iterations could be Q(n). This is achievable by not explicitly constructing
all the edges, an idea that is generally adopted for computing a breadth-first search tree for geometric
intersection graphs (for fat objects of similar sizes) [ R s ]. We use the same algorithm
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asin [ ] for pseudo-disks of similar sizes. The core step in the BFS is to find the vertices that are
exactly j-hops away from v, denoted by Y; — from the vertices that are exactly j — 1 hops away from
v, Y;_;. Put a grid of size r+/2. Two pseudo-disks with centers in the same grid cell are connected
by an edge for sure. Thus, if a pseudo disk centered at p in one cell appears in Y;_;, all pseudo-disks
centered in the same cell will be included in Y; if they are not yet covered in B’~1(v). In addition, the
other vertices to be included in Y; will come from cells that have distance at most 2R away from cells
touched by Y;_;. Since R?/r? is a constant, we only need to check for each cell touched by Y;_;, at most a
constant number of nearby cells. This step can be implemented by using an operation called the red-blue
intersection problem, which finds all the blue pseudo-disks that intersect at least one red pseudo-disks,
where all red pseudo-disks and blue pseudo-disks are separated by a horizontal (or a vertical) line. We
use the following lemma from [ 1.

Lemma A.2 ([ D). In time O(n,logn, + n,a(n,)logn, + n,2%")), we can solve the red-blue
intersection problem of n, pseudo-disks and n;, blue pseudo-disks. Here a(n) is the inverse Ackermann
function.

With this Lemma we can conclude the following theorem.

Theorem A.3. Let G be the intersection graphs of n fat pseudo-disks of similar size. For any parameter
24logn < A < n, we can compute a low-diameter decomposition for G in O(n) time.

Proof: We argue that for the entire algorithm, a non-empty cell in the grid of size r+/2 is only visited a
constant number of times. First, if cell ¢ has a vertex p € V; and p is not on the boundary of this piece
V;, then all pseudo-disks centered in the cell will be included in V;. After V; is removed, cell ¢ becomes
empty and will not be visited again in later iterations. Therefore, a cell ¢ visited by V; is only visited
again by pieces V; with j > i if ¢ has only vertices that are at the boundary of V;. That says, the cell ¢
has a neighboring cell ¢’ (within distance 2R from c), such that ¢’ contains a vertex p of V; and p is not
on the boundary of V;. In this case all vertices in ¢’ are entirely in V; (or earlier pieces). Thus, after the
i-th iteration, at least one of the neighboring cells of ¢ is wiped out. Since ¢ has only a constant of such
neighboring cells, c is only visited a constant number of times. This finishes the argument. O

As a corollary, since unit squares and unit disks are fat pseudo-disks of similar size, we conclude that
a low diameter decomposition can be computed for these classes of intersection graphs in O(n) time.

Axis-aligned squares. We will need a similar theorem for axis-aligned squares (which might not
be of similar size.) A BFS on the intersection graph of axis-parallel squares can be done in time
O(nlogn) [ ], by using data structures developed in [ ]. Again we focus on how to find the
objects of j-hops away from a starting vertex v from the objects of j —1 hops away. When the squares
have different sizes, instead of a grid of a single size, one can use a hierarchical structure such as the
(compressed) quadtree. Each square is associated with a quad whose size is comparable with its size.
Further the compressed quadtree can be decomposed into O(n) canonical paths such that each root to
leaf path can be represented by O(logn) disjoint canonical paths. A canonical path has a smallest cell o
and largest cell 7, and is associated with a constant number of regions, classified as inner, middle and
outer regions. The inner region is a disk centered at the smallest cell o of the canonical path. Further,
each region A is associated with two sets, the first type S;(A) contains a collection of objects centered
inside A that form a clique, and the second type S,(A) contains objects that intersect with at least one site
in S1(A). A similar red-blue intersection problem can be solved in linear time for axis-parallel squares,
assuming sorting along x and Y coordinates is performed already, as shown in [ ]. In summary,
to implement a BFS step, for each region A touched by the vertices in Y;_;, include all objects that are
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in S;(A) and then perform red-blue intersection modules with A against a constant number of other
regions. Since each object stays in at most O(logn) sets of the first type and at most O(logn) sets of the
second type, the total running time carries an extra O(logn) factor. We can use this algorithm for the
low-diameter decomposition and obtain the following.

Theorem A.4. Let G be the intersection graphs of n axis-aligned squares. For any parameter 24logn <
A < n, we can compute a low-diameter decomposition for G in O(n) time.

Proof: The same argument as in Theorem A.3 applies here: for each region A, either the type one objects
S1(A) are completely included in a piece V; and this region disappears; or, one of the (constantly many)
nearby regions are completely included in V; and disappears. By a charging argument, each region is
only touched a constant number of times. Thus the total running time is in the order of O(n). O

B VC-dimension Lemma

In this section, we prove a lemma bounding the VC-dimension of certain set systems (Lemma 7.2) from
Section 7, which is needed in our algorithms for unit-disk graphs.

Let G be the geometric intersection graphs of unit-disk graphs. Let M be a subset of vertices, called a
type. We say that a walk W from a vertex v to a vertex u is a Type-1 M-walk if the vertex preceding u
(the second to last vertex) in the walk is in M. We say that the walk is a Type-2 M-walk if the vertex
following v (the second to first vertex) in the walk is in M.

For a technical reason explained later, we assume that every vertex in G has a self-loop attached to it.
For every vertex v, define:

BI(\})(V, r) = {u € V| there is a Type-1 M-walk from v to u of length exactly r} an
B](é)(v, r) = {u € V| there is a Type-2 M-walk from v to u of length exactly r}

The reason for attaching a self-loop to every vertex is that if d;(v, x) < r —1 for some vertex x in M,
then x € BI(Vl[)(v, r) since we can make a Type-1 M-walk of length r by traversing from v to x along the
shortest path (of length at most r — 1) and then along the self-loop to get a walk of length at most r. The
second to last vertex of the walk is x itself, which is in M. Furthermore, if there is a Type-1 M-walk from
v to u of length less than r, then there is a Type-1 M-walk from v to u of length exactly r by traveling
the self-loop attached to the vertex in M preceding u. The same holds for Type-2 M-walk. The main
result of this section is to show that the system of balls deriving from Type-1 M-walk has a bounded
VC-dimension.

Lemma B.1. (V, {BI(V})(V, )} er vev) has VC-dimension at most 4.

Observe that Type-1 and Type-2 M-walks are dual to each other: a Type-1 M-walk from v to u of
length r is a Type-2 M-walk from u to v of length r. Therefore, for a given r, (V, {Bl(\j)(v, )} ey) is the
dual set system of (V, {B](Vll)(v, r)}yev), and therefore, has VC-dimension at most 2% = 16. By modifying
the proof of Lemma B.1, get an improved bound for balls from Type-2 M-walk:

Lemma B.2. Foranyr €N, (V, {Bg)(v, r)},ev) has VC-dimension at most 4.

The set system in Lemma B.2 only includes balls of fixed radius. It is possible that the more general set
system (V, {B](\?(v, )} er vev ), which includes all balls of all radii, has VC-dimension at most 4. However,
for a technical reason, our proof of Lemma B.1 does not extend to this general case. See Remark B.5 for
more details.
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For the distance oracle application, we will need to handle vertices with weights. So we define the
following set system for weighted vertices. Suppose each vertex u has a weight w(u), and the ground set
is {(u, w(u))},ey- Recall for the distance oracle, we maintain the adjusted neighborhood ball as follows
(see Section 8 Equation (7), copied below):

AT

N [s]:={veV:ds(v,s) <r+wp(v)} Vre[—A,A]

Further, the path connecting s (the center of the neighborhood ball) to v has the second vertex (adjacent
to s) of a special type. Thus, we consider a Type-2 walk from s to v. Therefore the set system we work
with will be ({(u, w(u))}hyev, {BS, (v, 1)} ev ) where

W

BI(VZI) (s,r) ={v € V| there is a Type-2 M-walk from s to v of length exactly r + w(v)} (12)

W

Take this set system as the primal system, we can define the dual system as follows. Specifically,
Ve B](\?W(s, r) if and only if s € B](V})W(v, r) where

BI(V}’)W(V, r) = {s € V| there is a Type-1 M-walk from v to s of length exactly r + w(v)} (13)
Notice that BI(V})W(V, r)= BI(V})(V, r + w(v)). Therefore, the VC-dimension bound we need is provided
precisely by Lemma B.1 for Type-1 walks, which fortunately works for neighborhood balls of varying
radii. With this we immediately have the following.

(2

Lemma B.3. Foranyr €N, ({(u, w(u))},ev, {By,

(v,r)},ev) has dual VC-dimension at most 4.

B.1 Type-1 M-Walks

In this section, we prove Lemma B.1. As all M-walks in this section are of Type-1, we will drop the prefix
Type-1, and only refer to Type-1 M-walks as M-walk. We also call the last edge of an M-walk to u as an
M-edge.

Proof (Sketch Proof of Lemma B.1): The strategy is basically the same as [ 1'°. We only show
the steps needed for adapting the proof here. Consider four vertices a, b, ¢, d representing four disks
D,,Dy,D,,D,; and assume that there are two (Type 1) M-walks P(b,a) from b to a and P(c,d) from ¢
to d. (The vertices preceding a and d in the walks are in M.) We define a local crossing pattern to be
four distinct vertices a’, b’,c’,d’ with a’, b’ on P(a, b) (with a’ closer to a than b’) and ¢’,d’ on P(c,d)
(with ¢’ closer to ¢ than d”) such that one of the four vertices a’, b’,c’,d’ has edges to all the other three
vertices; see Figure 3. The central claim is the following; if the claim holds, then the rest of the argument
is standard.

Claim B.4. Either there is an M -walk P’(c, a) whose hop length is at most |P(c,d)| or there is an M -walk
P’(b,d) whose hop length is at most |P(b, a)|.

We consider a case study depending on whether the local crossing pattern involves an M-edge. In
the first case when the local crossing pattern does not involve the last edge (from a vertex in M to the
endpoint of the walk) of the two M-walks (see Figure 3 (a) for an example), the proof follows exactly the
same as that of [ ]. The second case, which is also easy, is when the local crossing pattern involves
two M-edges. In this case, both ¢/, b’ € M. Either we have the edge c’a’ or the edge b’d’. In both cases
the claim is true. Figure 3 (b) shows the case with edge c’a present. In this case, we can find an M-walk

16We refer to https://arxiv.org/pdf/2401.12881.
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(b)

Figure 3. If two M-walk P(b,a) and P(c,d) intersect with a local crossing pattern a’, b’,¢’,d’, then there is an M-walk from ¢
to a that are no longer than |P(c,d)| or there is an M-walk from b to d that is no longer than P(b,a). The vertices in M are
highlighted red.

(d)

P’(c,a) through P(c,c’) and then take edge ¢’a, which is not longer than path P(c,d). If b’d is present,
then the path that follows P(b, b’) and then edge b’d is an M-walk and not longer than P(b, a).

The difficult case for the proof of the claim is when the local crossing pattern happens at an M-edge of
one path with the non M-edge part of the other path. Without loss of generality, assume that the M-edge
involved in a local crossing pattern is the edge ¢’d. See case (c) and (d) in Figure 3 for an example.

We first consider the case when c¢’a’ and a’d are present. We prove by contradiction. Consider an
M -path from b to d:

P'(b,d)=P(b,b")o(b’a’)o(a’c’)o(c’'d").

Since the claim does not hold, the following holds:
|P’(b,d)| > |P(b,a)| & |P(b,b")|+3 > |P(b,b)|+1+|P(a,a’)| & |P(d’,a)| < 2.

If |P(a’,a)| = 0, then a = a’ and b’ must be a vertex in M. This is a contradiction, as the crossing
occurs between two M-edges.

If |P(a,a’)| =1, then a’ € M. This means a’a is an M-edge. Now we define another walk Q(b,d) =
P(b,b")o(b’a’)o(a’d). Since a’ € M, Q(b,d) is an M-walk and, furthermore, |Q(b,d)| = |P(b,a)|. Thus,
Q(b,d) is the M-walk that satisfies the claim. Now, if Q(b, d) is still longer than P(b, a), by the same
analysis we have |P(a’,a)| < 1. This leads to a contradiction.

The next case we consider is where the edges a’d, b’d are present. See Figure 3 (d). Consider an
M-path from b to d:

P'(b,d)=P(b,b")o(b'd)o(dc’)o(c’d).

Notice that this is an M-walk. If it is longer than |P(b, a)|, we have
|P'(b,d)| > |P(b,a)| & |P(b,b)|+3>|P(b,b")| +1+|P(a,a)| & |P(d’,a)| < 2.

For the same reason as explained earlier, |P(a’,a)| = 0 is not possible and |P(a’,a)| = 1 means that
a’ € M and we now find an M-walk Q(b, d) by following P(b,b’) and then edges b’a’ and a’d. This
path is one shorter than P’(b,d) and this again gives a contradiction.

The other two cases, when either edges ¢’b’,c’a’ or edges ¢’b’, b’d are present, are easy. Basically
the edge b’c’ provides an M-walk from b to d which is not longer than P(b,a). O

Remark B.5. If we apply the same proof to Type-2 M-walks, Claim B.4 remains true. However, what we
need is a slightly different version: Either there is a Type-2 M-walk P’(a, c) whose hop length is at most
|P(a, b)| or there is a Type-2 M-walk P’(d, b) whose hop length is at most |P(d, c)|. The proof does not
extend to show this version. On the other hand, if we fix a radius r, then everything goes through; see
the next section.
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B.2 Type-2 M-Walks

M-walks in this section are referred to Type-2 M-walks.

Proof (Proof of Lemma B.2): We follow the same setup in the proof of Lemma B.1. Assume that there
are two (Type 2) M-walks P(a, b) from a to b and P(d,c) from d to c. (We switch the roles of a and b,
and of ¢ and d, so that we can reuse Figure 3.) The following claim implies the lemma:

Claim B.6. Either there is an M -walk P’(a, c) whose hop length is at most |P(a, b)| or there is an M -walk
P’(d, b) whose hop length is at most |P(d, c)|.

Observe that |P(a, b)| and |P(d, c¢)| have length exactly r each since they are from balls of radius
exactly r. Therefore, |P(a, b)| = |P(d, c)|, and hence Claim B.6 follows directly from Claim B.4. O

C Geometric Data Structures

In this section, we describe how to solve the interval searching problem (Problem 2.11), the main
geometric data structure problem used by our diameter algorithms and distance oracles, for different
types of geometric objects. In Appendix C.1, we first describe how to reduce the interval cover to the
rainbow colored intersection searching (Problem 2.13) and then describe how to reduce the interval
searching problem to the interval cover problem (Problem 1.3), though with some loss of efficiency.
For squares, we solve the rainbow colored intersection searching problem in Appendix C.2. For unit
disks of a fixed modulo class and for unit disks, we solve the interval cover problem directly (without
going through rainbow colored searching), and thus more efficiently, in Appendix C.3 and Appendix C.4
respectively, using an interesting recursive approach.

C.1 Reductions Between Data Structure Problems

In this subsection, we provide the reductions between the data structure problems in Section 2.4, and in
particular, proving Lemma 2.12 and Lemma 2.14.

Interval cover to rainbow colored intersection searching. We reduce the interval cover problem
(Problem 1.3) to the rainbow colored intersection searching problem (Problem 2.13).

Lemma 2.14. If we can construct in O(|Ogc|) time a data structure Dy with O(1) query time for solving
Problem 2.13, then for any parameter b € [1,n], we can construct a data structure D;. for solving
Problem 1.3 that has total run time O(N;¢ - b+ L;¢/b).

Proof: Consider an instance of Problem 1.3. Divide the range [1,n] into n/b blocks of length b, denoted
by intervals By, ...,B,,, with [1,n] = UZ/: bl By.. Denote by 8§ the set of all intervals associated with
objects in O and 8(q) the set of intervals associated with objects intersecting q. Consider the query
interval I. It intersects with a set of blocks B;,...,B; such that I overlaps with at most two of the
blocks partially, namely, the two blocks at the end (B; or B;), and fully contains all the middle chunks
Bit1,--.,Bj_1. To verify if the union of the intervals of 8(q) covers the query interval I, we need to check
for each of the blocks, By, i < k < j, if B, N1 is covered by the union of the intervals of 8(q), limited
within block By. If for each B the answer is true, we answer Yes. Otherwise, we answer No. In the
following we focus on answering the coverage query for a fixed block B and check if the union of the
intervals {I, N B | I, € 8(q)} covers I N B.
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Now fix a block B. Take I’ = I N B. Similarly, for each object s we restrict the interval I, within B
and take I = I, N B and take 8’ = {I | I; € 8}. Each interval I fully covers a set of middle chunks and
only partially covers at most two extreme blocks at the end of I;. Thus we can write 8’ = 8] U8, with
the first category 8] containing the intervals I, = B (i.e., I, fully covers B) and the second category §/,
containing the intervals I, # B (i.e., I; partially covers B). We perform two queries for I’ against 8] and
8, respectively.

For 87, all the intervals are given the same color and we just check if at least one of them is associated
with an object intersecting q. We solve this problem by issuing RAINBOWCOVER?(q) against the objects
whose intervals appear in 8. If this rainbow query returns a positive answer, I is covered and we are
done. Otherwise, we check for I’ against 8,. This query is more complicated since the intervals I/ € 8,
only partially cover B. We give each of the elements in B a unique color. There are at most b colors. Also,
for each object s with I, € 8/, we make a colored copy of the object s for each element in I; the color
of the copy is equal to the color of the corresponding element. Now we discuss the case when I’ = B
and when I’ C B separately. When I’ = B, i.e., B is an ‘internal’ block, we build a rainbow colored query
structure for all color/elements in B and issue a query RAINBOWCOVER?(q) to see if all colors show up.
If the query returns no, we return negative to the interval cover query. In the case when I’ is a boundary
block (I’ C B), we build the rainbow colored query structure for each color/element in B. To answer the
query for I’, we issue RAINBOWCOVER?(q) for each color in I’ against the corresponding data structure to
see if this color appears among objects that intersect g. The total number of such queries is the number
of elements in I’ and is at most b. If all the rainbow queries return True — that all colors in I’ appear —
then all elements in I” are covered by the union of intervals in 8/, for those objects intersecting q. If any
rainbow query returns a no, we return a negative answer for the interval cover query.

To analyze the total running time, we need to account for the preprocessing time and the total query
time for all the n/b blocks. Recall that we solve the interval cover problem in an ‘off-line’ version and
assume all input intervals and query intervals are given. N; is the total number of input objects and
query objects, and L;. is the total length of the input and query intervals. We issue a total of O(L;/b)
rainbow queries in the first category since for each query (q,I) we only consider the blocks that overlap
with I. For the second category we issue a total of O(L;-/b) rainbow queries for the blocks that are
internal to the interval queries and O(N;b) rainbow queries for the boundary blocks. Thus the total
query time is O(N;cb + L;c/b).

For the preprocessing time, we consider the time spent to prepare for the rainbow query in the first
and second category separately. For the second category, we have a total of 2N intervals since each
interval I, of an input object s only contributes at most two boundary intervals. Each interval generates
at most b colored objects so we have a total of O(N;-b) objects, over all the n/b blocks. We build the
rainbow colored query data structure for each block separately. The total preprocessing time for rainbow
query in the second category is thus O(N;¢b). For the rainbow query in the first category, we perform a
linear scan of the blocks and only update the rainbow query data structure Dy when needed - an input
object appears (starts to fully cover a new block) or disappears (stops covering the current block). Each
input object only triggers two updates. In fact, for each update, we simply rebuild the rainbow query
data structure from scratch. For each input interval I, the amortized run time attributed to I, in these
preprocessing and rebuilding efforts is O(|I;|/b) and therefore the total running time remains O(L;./b),
where L; is the total length of the input and query intervals. Therefore, the total run time is bounded
by O(N;cb + L;c/b). This finishes the proof. |

We also need a data structure that can answer interval avoidance queries. Specifically,

Problem C.1 (Interval Avoidance Problem). Given a set of N objects O and each object o € O is
associated with an interval I, C [1 : n]. Design a data structure to answer the following query:
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* AvoIDs?(q,I): Given a query object q and a query interval I C [1 : n], decide whether the union of
intervals associated with the objects intersecting'” q in O is disjoint from the interval I.

The interval avoidance problem is easier than the interval cover problem, as it is decomposible — we
can partition the input objects into two sets and check the query (g, I) against each set for avoidance
separately.

Lemma C.2. If we can construct in O(|Ogc|) time a data structure Dy with O(1) query time for solving
Problem 2.13, then we can construct a data structure D;, for solving Problem C.1 that has a preprocesing
time of O(N;¢) such that each interval avoidance query takes time O(1).

Proof: An interval I, intersects I if either at least one endpoint of I, is inside I or one endpoint of I is
inside I,. Therefore, to answer the interval avoidance query, we run two types of queries. In the first
type we verify if I includes any endpoints of intervals whose associated objects intersect q. If yes, we
immediately return no to the interval avoidance query. If not, we proceed to the second type of queries
where we check if an endpoint of I stabs any intervals whose associated objects intersect g. The first
type is a range query, and the second type is an interval stabbing query. We explain the two operations
separately.

For the range query, we take the set S of all intervals associated with objects in O and build a binary
tree T on all the 2|S| endpoints of the intervals. Further, for each node v on the tree T we build a rainbow
colored query structure on the objects in O whose associated intervals have at least one endpoint in
the subtree of v. In particular, the data structure at the root of T includes all objects in Q. The total
preprocessing time for these query data structures is O(N;¢), since each object in © only appears in
O(log N; () of the rainbow colored query structures. Next we run a standard range query with I on tree
T to find a set Q(I) of O(log|8|) vertices of T such that each vertex v € Q(I) has the entire subtree fully
inside I, but its parent does not meet this condition. We issue a query of q on the rainbow colored
structure at each vertex in Q(I). If any query returns a positive answer (indicating intersection), then I
does not avoid the objects intersecting q. We issue at most O(log N;) rainbow colored range queries
with a total cost of O(1).

For the interval stabbing query, we build an interval tree on the intervals S. Specifically, we have a
binary tree Y where the root r is associated with value £(r) = |n/2] (the median of [1,n]) as well as a
subset of intervals S(r) — all the intervals in 8§ that are stabbed by £(r). Recursively, we build the left
(right) subtree by using all the intervals to the left (right) of £(r) respectively. Further, for each node v
in the interval tree, we build two binary trees, Z;(v) on the left endpoints of the intervals in S(v) (that
are all smaller than or equal to £(v)), and Z,(v) on the right endpoints of the intervals in S(v) (that are
all greater than or equal to £(v)). For each node u on a tree Z;(v), i = 1,2, we build a rainbow colored
query structure for all the intervals in the subtree of u. Again, these objects are given the same color.

The total preprocessing time for these query data structures is O(N;), since each interval in 8 only
appears in the set S(v) of one vertex v on tree Y and then at most O(log N;.) vertices in the secondary
level trees Z;(v).

Next we take one endpoint p of I and issue a stabbing query on Y. We first issue stabbing query
against the root vertex r of Y and depending on whether p is less than or greater than £(r), recursively
query either the left subtree or the right subtree of Y. We just explain how to query p against a node v
of Y. The total query cost is just an extra log factor more. Specifically, if p < £(v), we issue a query to
Z1(v); if p = £(v), we issue a query to Z,(v). Suppose we query p on Z;(v). The other case is symmetric.
We take all the vertices Z;(p) of Z,(v): u € Z;(p) if all vertices in the subtree of u are completely to
the left of p but u’s parent fails to meet this condition. |Z;(p)| = O(log N;-). Now we query g again the

17Here we mean the objects intersect, not their associated intervals.
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rainbow colored range query structure for all vertices in Z;(p). If any of these queries return a Yes, the
interval avoidance query is negative. In total the query cost adds a total factor of O(log® N;¢) on top of
the cost of a single rainbow colored range query.

In summary, we only add extra poly-logarithmic factors on top of the rainbow colored range query
structure. Thus, we can implement the interval avoidance query with a preprocesing time of O(N;¢)
such that each interval avoidance query takes time o(1). O

Interval searching to interval cover. We reduce the interval searching problem (Problem 2.11) to the
interval cover problem (Problem 1.3) with polylogarithmic loss.

Lemma 2.12. If one can construct a data structure D;. for solving Problem 1.3 with total run time
T(N;¢,n, Lic) (for some polynomial function T ), then we can construct a data structure D¢ for solving
Problem 2.11 in total run time O(T (Nys,n, L;g)). Furthermore, if D;. has preprocessing time P(N) and
query time Q(N), then D¢ has preprocessing time O(P(Ns)) and query time O(Q(Ns)-17,,.(q)|) where
Nig = ZOEO,S |J(0)| is the total number of input intervals and J,,,(q) is the set of output intervals from
the interval search query of q to Dis.

Proof: We take an instance of Problem 2.11. For each object s € O;5 we duplicate it to k copies if s
is associated with k intervals. Each copy is now associated with a single interval of J,. This creates a
total of N g = Zoeo,s |J(0)| objects. Now we build a data structure D, to solve Problem 1.3 on this

set of objects with preprocessing time O(P(Ns)). For each query INTERVALSEARCH(q), we recursively
issue queries to D;. Specifically, we start with I =[1,n]. If I is completely covered by the union of the
intervals associated with objects in O;¢ that intersect q (which is checked by a query to D, with g and
I), we output I and we are done. Otherwise, if I is completely avoided, we output @ and we are also
done. For the other case, we will recurse. We divide I into two intervals of equal length, I; and I,, and
issue queries (q,I;) and (q, I,) with D;.. In the end, we will output the union of all the intervals that
are fully covered by the intervals associated with objects in O that intersect g.

The running time for a query q is dependent on the total number of queries issued to D, recursively.
Notice that all query intervals are dyadic intervals. In addition, recursion stops when an interval [ is
completely covered by the union of intervals $(q) or completely avoided. Thus only the dyadic intervals
whose parent partially overlaps with a query output interval will ever trigger a query. The total number
of such intervals is in the order of O(|J,,,(q)| - logn). Recall that each query to D;. takes time Q(N ).
Summing up everything, we have the claim in the Lemma. O

C.2 Data Structure for Square Graphs

We now solve the rainbow colored intersection searching problem (Problem 2.13) for a set of axis-parallel
squares of possibly different size. We use an approach that can be commonly found in previous work on
colored range searching [ , ]: for each color class, we build a set of new objects, so that
colored range searching reduces to standard range searching on all the new objects.

Consider the input squares as being in the plane z = 0 in 3D. For each square s of center (x, y,0)
and side length 2r (or £ ,-radius r) consider the point a, = (x, y,—r) € R® and the cone C, with apex
a, whose intersection with the plane z = 0 is the square s. (If we imagine the z axis pointing vertically
up, then this cone opens upward.) See Figure 4 for an example. For a collection S of squares and the
corresponding cones, consider a new square q with center (x4, y,,0) and side length 2r,. Notice that
the normals of the planes bounding any cone C; is the intersection of four upper half-spaces, and the
normals of these upper-half-spaces are (1,0,1),(0,1,1),(0,—1,1) and (—1,0,1).

Observation C.3. The square q intersects s if and only if § = (x4, ¥4,74) € C;.
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(:cq,yq) q= (x ayq>rq)

=Y

(z5,Ys)

21 as = ((ES, Ys, —7"5)

Figure 4. Left: a square centered at (x,, y,) with side length 2r, and a query square centered at (xq,yq) with side length 2rq.
Right: the cone C; and point § = (x,, ¥, T)-

Proof: For a point (x4, Y4, 0) outside s we have that its { o, distance to the square Js is min(|x;— x|, |y;—
Yql) —15. On the other hand, the vertical line through (x4, y,,0) intersects the cone at exactly

(xq)yqamax(lxs _qun |ys _yql) - rq):

that is, the signed vertical distance from (xg, y4,0) to 9C; is equal to the £, distance from (x4, y4,0) to
s. In particular, the square of £, radius r, centered at (x4, y4,0) intersects s if and only if (x,, y4,74) is
above 9C;, i.e., if and only if (x,, y4,74) € C;. O

As a consequence of the above observation, the square q intersects some square among some set S
of squares if and only if ¢ € | J,5 C;. In particular, if we have a convenient data structure to represent
{,es Cs» then we can quickly answer the query: given an axis-aligned square g, does it intersect at least

one square from S?

Detecting intersection with some square from S. We will now work on representing Ug = .5 C;.
Observe that Uy is the union of translates of a fixed convex cone of constant complexity, thus it has linear
union complexity. Indeed, each face f of dUs is bounded from below, and the bottommost vertex (i.e.,
the vertex of minimum z-coordinate) on f cannot be the intersection of a cone edge and a cone face
nor the intersection of three cone faces, as a simple case distinction shows that all such vertices have an
incident edge in f where this vertex is strictly above the other endpoint. Thus the bottommost vertex of
f is the apex of some cone. On the other hand, each cone apex can be assigned to at most 4 faces (as
there cannot be two faces f, f’ of dUg within the same cone face). We conclude that there are at most
4|S| faces in dUg. By Euler’s formula we have that dUg has complexity O(|S|).

Consider the vertical projection Ug of dUs into the plane z = 0. Notice that this is exactly an
additively weighted ¢, Voronoi diagram (where weights are the radii of the squares). Using standard
techniques [ , ] this diagram and dUg itself can be computed in O(|S|) time.

We obtain a planar subdivision where edges are either axis-aligned or they are aligned with a 45
degree rotation of the axes. We decompose this subdivision into O(|S|) trapezoids with two vertical sides
(or right-angle isoceles triangles with axis-aligned legs, as well as some unbounded polygons with at most
two non-vertical sides) using the standard trapezoidation used for point location data structures [ ]
in O(|S|log|S|) time; let Tg denote the resulting subdivision of size O(|S|). More precisely, in order
to get a partition of the plane into faces, on boundary edges with normals (0, 1),(1,0),(1,1),(—1,1)
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we require weak inequalities, while we require strong inequalities for boundary edges with normals
(0,-1),(—1,0),(—1,—-1),(1,—1).

We project T vertically to get a 3-dimensional subdivision T of Ug into convex vertical slabs: here
each region is a vertical slab bounded by one face of Ug from below and Jf x R on the sides, where f is
a face of Ts.

Note that the complexity of T is O(|S|) and it was computed in O(|S|log|S|) time. Moreover, each
slab T € T is bounded by faces whose normals can have 12 possible directions: there are 4 possible
normals for faces coming from dUs, and 4 - 2 for the vertical faces, as each of these are parallel to one of
four directions in the plane z = 0.

To check whether a point g lies in some region T € T, we need to verify if it is contained in each
half-space given by T . Each such condition is of the form (q,v;) < cJT (or < cJT) where v; is one of 12
possible normals and C]T is a constant that depends only on T. (We define cJT = o0 if T does not have a
face with normal direction v;.) For a fixed region T all of these linear conditions can be written as

T:= (C%,C%, .. ~’C71"2) € Ortq = ((—OO, <q: vl)] x (—OO, <q> V2>] x (—OO, (q’ V3>) s X (_OO) (q; le)))'

Thus, our problem of deciding if q intersects at least one square from S is reduced to the following:
given a query square g, we compute a 12-dimensional orthogonal range that contains exactly one point
among {T|T € T} if and only if q intersects at least one square from S. This problem can be solved with
12-dimensional orthogonal range searching [ ], which requires o(|T) =0(s) pre-processing
time and space and O(1) query time, to decide if the query range ort, contains some point T.

Solving rainbow colored intersection searching. Suppose now that we are given a set of objects O,
each associated with some color; let S be the partition of O into its color classes. For each color class
S € 8§ we set up the subdivision T and compute the corresponding points {T | T € Ts}. Then we set up
a standard orthogonal range counting data structure on the 12-dimensional point set Tg := USES{T |
T € Ts}. This takes Y ¢ s 0(|S]) = O(|0]) preprocessing time and space, and for any orthogonal query
we can return the number of points in the range in O(1) time.

Given a query square ¢ we can compute the orthant query ort, and observe that the number of points
in ort, is equal to the number of classes S € 8 such that q intersects at least one square from S. Thus, g
intersects all color classes if and only if ort, contains exactly |$| points from Tg.

C.3 Data Structure for Unit Disks

In this subsection, we directly solve the interval cover problem for unit disks restricted to a fixed modulo
class, as needed in our diameter algorithm and distance oracle for unit-disk graphs. (We do so without
going through rainbow colored intersection searching, to get better time bounds.) As noted in Section 7,
this problem reduces to a corresponding interval cover problem about pseudolines:

Problem C.4. We are given an input set S of N pseudolines'® in the plane, where each pseudoline s € S
has an associated interval I,. We want to build a data structure to answer the following type of queries:

given a query point q and interval I, test whether U I, containsI. "

SES
s below q

18We assume O(1) time oracle access to deciding if a point is above/on/below a pseudoline, as well as to find the intersection
of a pair of pseudolines (or determine that no itnersection exists).

°0One way to interpret the problem is to think of each pseudoline s as being “active” for a time window I,; a query is to
determine whether a given point q stays above the upper envelope of the active pseudolines for the entire duration of the time
window I. We will not need this viewpoint for our algorithm.
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The rest of this subsection is dedicated to showing that Problem C.4 can be constructed in N -
20(logNloga(N)) preprocessing time and answering a query takes 20(v108N10ga(N)) time where a(:) is
the slow-growing inverse Ackermann function. This is sufficient to prove Lemma 7.3.

To appreciate the difficulty of the problem, the reader may first consider the special case when I = R,
which is already nontrivial. Our idea is to explicitly construct the region of all query points q for which
the answer is yes. Interestingly, we are able to prove that this region has near-linear combinatorial
complexity. After constructing the region, answering queries in the case when I = R would become easy.

To prove this combinatorial fact and at the same time design a data structure for general I, we will
use a divide-and-conquer strategy.

Decomposing intervals into canonical intervals. Assume that the endpoints of all intervals I, as
well as I, are integers bounded by O(N) (by replacing numbers by their ranks). Fix a parameter b. A
canonical interval refers to an interval of the form [j- b',(j + 1) - b') for some i and j. Any interval can
be expressed as a union of O(blog, N) canonical intervals. This is a well-known fact (e.g., in analyzing
a b-ary range tree [ , D. For completeness, we include a quick proof in the following
paragraph:

Let J =[x, y] be an original interval, and suppose that the largest canonical interval covered by J
has size b* < N. Remove the maximum number of such intervals. Notice that this operation removes
some middle part M of J consisting of at most b intervals of size b*1, and leaves an interval J; on the left
of M and J, to the right of M, both having size less than b* and one endpoint that is an integer power
of bX. Now if J; =[x, £, - b], then we can shift it to the interval J; = [x — €, - bX, 0]. If (=2 ...2120)} is
the base-b representation of the left endpoint of this interval, then it naturally decomposes this interval
into Y. z; <1+ blog, N intervals. All of these intervals can be shifted by ¢ y* b* to get a decomposition
of J;. Similarly, we can decompose J, = [£,, - b, y] by considering the base-b representation of
Jy=[0,y—¢,- b*]. The resulting representation has at most b + 2+ 2blog, N = O(blog; N) intervals,
and it can be found in O(blog, N) time.

We replace each interval in the input and queries by canonical intervals. If we do this procedure for
all of our N intervals then We end up with O(N - blog, N) canonical input intervals. For each pseudoline
s whose original interval J; has been decomposed into k, canonical intervals, we will have k, copies of s
instead, each associated with one such canonical interval. Thus, we have N’ = O(Nblog, N) pseudolines,
each associated with a single canonical interval. With slight abuse of notation, we will keep using S for
this set of pseudolines (where a single pseudoline may appear several times as long as their associated
canonical intervals are different). Similarly, when a query interval is decomposed into canonical intervals,
the query cost goes up by at most an O(blog, N) factor.

Preprocessing. Let LE(X) and UE(X) denote the lower and upper envelope of a set X of x-monotone
pseudolines, respectively.

For each canonical interval I, let Sc; :={s €S : [ CI}and S; :={s € S : Iy = I}. Let E¢; be the
boundary of the region of all points q¢ € R? such that

U =1

SESc;
s below ¢

Then €¢; is an x-monotone chain in the arrangement of S—we can view this as a kind of “generalized
envelope”. We will show that this generalized envelope has near-linear combinatorial complexity and
can be computed in near-linear time for a sufficiently large choice of b.
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Figure 5. The region £¢; of points g such that the intervals associated with the pseudolines under them covers I =[0,16]
(red shaded region). The boundary of this region is below all pseudolines associated with [0, 16] (blue envelope) and below
the upper envelope of the regions associated with the canonical child intervals (green envelope).

Decompose I into b “child” canonical intervals Iy, ..., I},. Note that S¢; = S; UScy, U---US¢y,. Then
we have the following recursive formula for the generalized envelope £c; (see Figure 5):

€c; = LE({LE(S)), UE({E¢;,,...,Ec;, D})-

Let |€;| denote the combinatorial complexity (number of arcs) of ;. The upper envelope of f
pseudo-segments is known to have combinatorial complexity O(f - a(f)), through Davenport-Schinzel
sequences [ , 1. Thus, UE({E¢y,,...,Ecy,}) has combinatorial complexity O((|€¢; |+ +
1€y, 1) - a(N)). Now, LE(S;) has combinatorial complexity O(|S;|). Thus, [E¢;| < O(IS;|+ (|€cy, |+ +
|€cp, 1) - a(N)). The maximum combinatorial complexity, E(n), of £c; among those with |S¢;| = n,
satisfies the recurrence

E(n) < max  (O(a(N))-(E(ny) +--++E(ny)) + 0(ng)),
ng,...,Np: No+-+np=n
which solves to E(n) = n - a(N)°UgN),

For the data structure, we store Ec; as well as LE(S;) for each canonical interval I. The preprocessing

time satisfies the recurrence
T(n) < max (T(ny)+ -+ T(np) + O(E(ny) + -+ + E(np) + 1)),

Ng,e.o,Mp: Nogt+-+Np=n
which solves to T(n) = O(n - a(N)°Ugs Ny,
Querying. Given a query point q and a canonical interval I, we check that q is above £c; by binary

search in the generalized envelope, or that g is above LE(S;/) for some “ancestor” canonical interval
I’ O I (there are O(log, N) such intervals I’). The query time is O(1).

Conclusion. After including the O(blog, N) factor, the overall preprocessing time is O(bN-a(N)°Uogs Ny
and query time is O(b). Setting b := 2V 108N10ga(N) ' yye get N20(v10gNlogaN)) < N1+0(1) preprocessing

time and 20(v1ogNlogaN)) < No(1) query time. This concludes the proof.

C.4 Data Structure for Unit Squares

In this subsection, we directly solve the interval cover problem for unit squares. (Again, we do so without
going through rainbow colored intersection searching, to get better time bounds.)
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Theorem C.5. There is a data structure Dqq,re that solves the inteval cover problem (Problem 1.3)
for axis-aligned unit square objects, each associated with a single interval with N - 20(¥/108N) — Nj1+o(1)
preprocessing time and 2°(V1°8N) = N°(D) guery time.

Observe that for the geometric intersection graph of unit side-length squares, we can replace each of
the squares with squares of side-length 2 with the same center such that a pair s, t of original squares
intersect if and only if the center of s is contained in the scaled square t’. As a result, the data structure
problem is modified as follows: given a set S of squares, where each s € S is associated with an interval
I, we need a data structure to decide if the intervals of the squares containing the query point g will
cover the query interval I.

Instead of the above variant, we overlay a grid of side length 2 (such that no grid line is collinear
with any square of S); let T denote the set of grid cells. Notice that if q is in a given grid cell 0 € T, then
for each square s € S we have that s N[0 appears as an orthant, i.e., a rectangle®® containing exactly one
vertex of 0. Thus, in each cell O we have the following data structure problem. See Figure 6 for an
example.

2

Figure 6. A square s of side length of 2 intersecting cell O and the intersection (shaded) is an orthant containing exactly one
vertex of 0.

Problem C.6. We are given an input set S of N orthants in a cell 0 where each orthant covers exactly
one vertex of O in R, where each orthant s € S has an associated interval I,. We want to build a data
structure to answer the following type of queries: given a query point q and interval I, test whether

U I, contains I.
SES: qE€s

The rest of this subsection is dedicated to showing that Problem C.6 can be constructed in N - 20(v/logN)
preprocessing time and answering a query takes 20(v/10¢N) time. This is sufficient to prove Theorem C.5,
as we can use this data structure in each cell: the preprocessing time is ), Ng .20(y/10gNo) — y20(y/10gN)
where Ny is the number of orthants in cell D and ), Ng = 4N. To answer queries, we switch to the cell Oy
containing q in O(1) time and answer the query using the data structure of O, in 20(v/1ogho) < 20(¢/1ogN)
time.

20We use the term orthant to distinguish these rectangles from other rectangles in the proof.

21 Alternatively, if we think of intervals as living in a third dimension, the problem is equivalent to the following: given a set
of axis-aligned boxes in R® where the x y-projection of each box is an orthant, determine whether a query line segment parallel
to the z-axis is completely contained in the union of the boxes. We will not need this viewpoint for our algorithm (though
this type of 3-dimensional data structure problem seems interesting in its own right). As mentioned, unlike traditional range
searching, this problem is not decomposable.
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We will use a divide-and-conquer strategy like in Appendix C.3, but the combinatorial complexity of
the regions we want may no longer have near linear complexity (because we do not restrict orthants to a
fixed type), so extra ideas are needed.

Let UNION(X) denote the union of a set X of rectangles. As seen in Appendix C.3, we will later set
some number b and use canonical intervals of the form [j - b',(j + 1) - b') for some i and j. As seen
in Appendix C.3, for each orthant s whose interval I; has been decomposed to k, canonical intervals,
we will have k, copies of s instead, each associated with one such canonical interval. Thus, we have
N’ =0O(Nblog, N) objects, each associated with a single canonical interval. With slight abuse of notation,
we will keep using S for this set of objects. For an interval I we again denote by Sc; and S; the set of
orthants whose intervals are subsets of I or equal to I, respectively.

Preprocessing.
Let Z¢; be the region of all points q¢ € R* such that Usesq: qes Is # I

Unfortunately, the combinatorial complexity of Zc; may be quadratic. Instead, we will maintain a set of
rectangles Zc; with UNION(Z¢;) = Z¢;. In other words, instead of maintaining the region Z; explicitly,
we implicitly represent Zc; as a union of (possibly overlapping) rectangles. We will show that a near
linear number of rectangles suffices (for a sufficiently large b).

With this representation scheme, we can union two regions trivially. However, intersection is a
trickier operation. In the lemma below, we show how to perform intersection with UNION(S)® for a set
S of orthants, which is sufficient for our purposes. Here, for a region U, we let U°:= 0O\ U denote the
complement of U in OI.

Lemma C.7. Given a set S of orthants and a set Z of rectangles in O we can construct a set Z' of
O(|S| + |Z|) rectangles in O(|S| + |Z|) time, such that UNION(S)® N UNION(Z) = UNION(Z).

Proof: A tallest-edge data structure solves the following problem. We are given a set Z of axis-aligned
rectangles in the plane. Then, given a query segment e, we want to find the rectangle z* € Z where
the top side of z* has the maximal y coordinate (i.e., 2" is the tallest) among the rectangles z € Z
covering e. We also allow queries in the other three axis directions, i.e., instead of the tallest reaching
rectangle covering e, we also want to be able to find the leftmost, rightmost, or bottommost reaching
rectangle covering e. Such queries can be answered using range trees in poly(log|Z|) query time and
0(|Z|) preprocessing [ ]. We start our construction by making a tallest-edge data structure
Dy for Z.

Let S; US, US3 US, be the partition of S according to the vertex of O covered by the orthants. The
staircase i for i = 1,2, 3,4 is the polygonal path (8 Usesi s) Nnao.

Set Z, :=Z and D?all = Diap1- For each set S; we will do the following computation in the order of
their indices (i = 1,...,4). Suppose without loss of generality that S; covers the bottom left corner of [J;
the other cases will be obtained from this via rotation. Observe that UNION(S;)¢ is the region above a
staircase. The staircase has O(|S;|) edges. Intersect the staircase with the boundaries of the rectangles of
Z. Subdivide the edges of the staircase at those intersection points. Note that the edge of the staircase
intersected by a given edge of a rectangle z can be found with a simple binary search. The staircase now
has O(|S;| +|Z;_;|) edges, and it has been constructed in O(|S;| + |Z;_;|) time.

For each edge e of the staircase, we query ‘Diau to find the rectangle z, € Z;_; containing e with the
highest top side in poly(log|Z;_;|) time. Define z, to be the rectangle with bottom side e and top side
touching the top side of z,. Add z, to Z;.

For each rectangle z € Z;_,, if the bottom side of z intersects the staircase at a point p,, define 2’ to
be the part of z to the right of p,. Add this rectangle 2’ to Z;. If z is completely above the staircase, add
z to Z;.
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Figure 7. S, is the set of squares that cover the bottom left vertex of O. The staircase of S; is shown in a solid polygonal
path. The figure shows the rectangles z, and 2z’ added to Z;.

Then Z; has O(|S;|+|Z;_,|) rectangles and satisfies the stated property. Finally, we set up a tallest-cover
data structure for Z; in O(]Z;|) time. The total time for step i is therefore O(|S;| + |Z;_1|).

We can handle each of the sets S; one after another, and we set Z’ := Z,. The resulting number of
rectangles is

1Z4] = O(IS4] + 1Z3]) = O(IS4] + O(IS3] +Z2[)) = --- = O(Z ISi| +1Zo) = O(IS[+1Z]).

The total running time is ), o(IS;| +1Z,_1) = 0(S| + |1Z]). O

Recall that the canonical interval I can be decomposed into b “child” canonical intervals I;,..., ;.
Suppose that there are n; orthants in S¢ I; and ng orthants in S;. We can compute Z¢; using the following
recursive formula:

Zcp = UNION(S;)" N (g, U---UZ¢p,).

We can apply the lemma to find a set Z¢; of O(|S;|+|Z¢;, U---UZ¢,, |) rectangles with UNION(Z¢[) = 2.

The number of rectangles in Zc;, assuming |Sc;| = n, satisfies the recurrence

E(n) < max (0(1) - (E(ny) + -+ + E(ny)) + O(ny)),
nQ,...,Mp: No+-+np=n
which solves to E(n) = O(n - 20008 N)),

To construct the data structure Dgqyqre, We store Z¢; and S; in individual rectangle stabbing data
structures [ , ], for each canonical interval I. The data structure for a given canonical interval
I can therefore be made in O(E(n)) time.

Consequently, the preprocessing time satisfies the recurrence

T(n) < max (T(n1)+-~-+T(nb)+6(E(n1)+--~+E(nb)+n0)),

N,y Not+ee-+np=n

which solves to T(n) = O(n - 2000&: M),

Querying. Given a query point g and a canonical interval I, we check that q is not stabbing any
rectangle in Z¢;, or that g stabs some orthant in S;, for some “ancestor” canonical interval I’ O I. Since
there are O(log;, N) = O(log N) ancestor canonical intervals, the query time is o(1).

To answer the query about the original interval J, we make individual queries on each of the
O(blog, N) canonical intervals in its decomposition, and answer “yes” if and only if each canonical
interval was covered.
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Conclusion. After including the O(blog;, N) factor, the overall preprocessing time is O(bN - 20008, N)y
and the query time is O(b). Setting b = 2V 198N  we get N20(v108N) < N1+o(1) preprocessing time and
20(v1ogN) < No(D) query time, and conclude the proof of Theorem C.5.

D Switching Interval Representation between Different Stabbing Paths

We are given a set system (X,8) with at most n = |X| elements and m = |§| sets with dual shatter
dimension of (X,8) is d. Throughout the rest of the section we assume the existence of an element
reporting oracle that, given S € 8, can enumerate all elements of S in T,(n) time, where Ty(n) > n.

Let A be an ordering of X. We say that a set S crosses a pair (x,y) if x €S and y € S, or vice versa.
The number of consecutive pairs in A crossed by S is at most twice the size |Rep,(S)|. For any collection
R, define the equivalence relation =5 over X, where x =g y if and only if no set in R crosses (x, y). (In
other words, {S€R:x €S} ={S € R:y €S}.) Then =4 has O(|R|?) equivalence classes since the
dual shatter dimension is at most d. For every x and y in X, the crossing number cg(x, y) is the number
of sets in S crossing (x, y). (Notice that cg(:,) forms a pseudometric.)

For the purpose of the remaining section, we will fix a p-sampling R of §, where each set in § chosen
with probability p/m. (Later on we will restrict R to subcollection 8’ of § and obtain R’; we can still
think of R’ as obtained from 8’ by sampling each element with probability p /m, even though we do not
explicit sample from §’. Notice that the parameter m does not change even if 8’ gets smaller.)

Our first goal is to prove that any p-sampling of & has low crossing number and thus can be used to
construct a stabbing path for (X, 8).

Lemma D.1. Let R be p-sampling of 8. Then for every x,y € X with x =q y, crossing number cg(x, y)
is at most O((m/p)logn) with high probability.

Proof: This follows by a standard hitting set argument. Consider any two elements x,y € X with
crossing number cg(x, y). By standard Chernoff bounds, if cg(x, y) = Q((m/p)logn), we would have
sampled one of the sets in R that cross (x, y) with high probability, i.e., probability 1 —1/n° for a large
constant ¢, but x =4 y which is a contradiction. The conclusion follows after taking a union bound over
the n? pairs of elements. O

Let 8 be an arbitrary subcollection of 8. Denote the restriction of the fixed p-sampling R of § in
8’ as R’; in notation, R’ := 8 N R. Notice that R’ is also a p-sampling. Given any set system (X, 8), a
stabbing path A of (X, 8) is R’-respecting if each equivalence class of =g, appears contiguously in A for
the restriction R’. (The equivalent classes of =4, is with respect to the restriction R’, not R.) The above
proof can be adapted so that the resulting stabbing path is R-respecting (by choosing 8’ = 8):

Lemma 7.4. Assume the existence of an element reporting oracle that, given S € 8, can enumerate
all elements of S in Ty(n) time. Consider a fixed p-sampling R of 8. We can compute the equivalence
classes of =g and construct an R-respecting stabbing path A of (X,8) such that ) s g |Rep,(S)| =
O(mn/p +mp?~1) in O(Ty(n)- p) time with high probability. In other words, one can compute a sampled
p-stabbing path A of (X, 8) and the equivalence classes of =5 as byproducts.

Proof: Let R be a p-sampling of $; then |R| = O(p) with high probability. We first enumerate the
elements in all R € R in O(Ty(n) - p) time, and compute the 0(p?) equivalence classes of =g in O(np)
time. (Each class will appear contiguously in the stabbing path A to be constructed.) Within each

. . C C; .. . .
equivalence class C;, we order its elements xg l), cees xl( -ll) arbitrarily. We recursively compute an ordering
L

C
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of {xgc") riel: pd]} by invoking the main statement of the lemma itself (which is inductively R-
respecting), with run time 5(T0(n) . (pd)l/d) = 5(T0(n) - p). We then order the classes C; (as intervals
of elements) according to the order of {xgc") riefl: pd]}.

Since 2-|Rep; (S)| is equal to the number of consecutive pairs in A crossed by S, with high probability

D72 |Rep,(S)]
Ses
G Ci G Ciy
= Z(CS(X:(l ),xg ))+“.+CS(X|(CI_|)5X§_ 1)))
G
Ci Ci Ci Ci
< > (2e5 D, KD o 51D, (G0
C.
<

A G G
O(mn/p)+ Y cs(xi, x{1),
G

where the first inequality follows from applying the triangle inequality of cg(:,-) (because cg(-, ) forms a
pseudometric) on the last term cg (xl(g"l), xgc"”)), and the second inequality is from Lemma D.1. Since we
recurse on the first element of every equivalence class, by recursion we have

D IRepa(S)] < OCmn/p +m(p?) /%) = O(mn/p +mp* ™).
Ses

The ordering is clearly R-respecting. The total running time is O(To(n) - p). O

Lemma D.2. Consider a fixed p-sampling R of §. We are given two R-respecting stabbing paths A and
A" of (X,8) (along with the equivalence classes of =¢). Let T be an arbitrary subcollection of 8. Given
Rep,(S) for all S € T, we can compute Rep,,(S) forall S € T in O(mn/p + mp?) total time with high
probability:

Proof: Given S € T and an equivalent class C of =4, we compute the part of Rep, (S) within C as
follows. Fix one representative element x € C.

* Case 1: x; ¢ S. We enumerate all x € C in S, by examining the union of intervals of Rep;(S). We
then concatenate (x) (singletons) over all such x in the order determined by A’.

* Case 2: x; € S. We enumerate all x € C not in S, by examining the complement of the union of
intervals of Rep,(S). We then concatenate (x) (singletons) over all such x in the order determined
by A/, and take the complement of the resulting union of intervals.

In both cases, the run time is linear in the number of x € C such that S crosses (x., x). So, the total
run time over all S € T is upper-bounded by .. > _. cs(x¢,x) = O(mn/p) with high probability by
Lemma D.1.

Finally, we concatenate the different parts of Rep;,(S) over all the classes, in the order determined
by A’. This takes additional O(mp?) total time. O

Lemma 7.5. [Conversion of interval representations. | Let (X, 8) be a set system with |X| < n and |8| < m.
Let 8’ be a subcollection of § and T be a subcollection of 8'. Let R be the unique p-sampling of 8, and
R’ be its restriction in 8’. We are given an R-respecting stabbing path A of (X,8), and an R’ -respecting
ordering A" of (X, 8") (along with the equivalence classes of =¢ and =y/).

(1) QShrinkingfrom 8 to 8'.] Given Rep,(S) for all S € T, we can compute Rep/(S) for all S € T in
O(mn/p +mp?) total time with high probability.
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2) QEXpandingfrom 8’ to 8.] Given Rep,/(S) for all S € T, we can compute Rep,(S) for all S € T in
O(mn/p +mp?) total time with high probability.

Proof: For (1), notice that the equivalence classes for =4 are refinements of the equivalence classes for
=q. Let A” be an ordering obtained by taking A, and re-ordering the classes for =4 so that classes inside
a common class of =, appear contiguously, which takes O(mp?) time. This way, A" is both R-respecting
and R’-respecting. Now, we can apply Lemma D.2 twice, to convert from Rep,(S) to Rep;~(S) and from
Rep;~(S) to Repy/(S) for all S € T. This takes O(mn/p +mp?) time.

Similarly for (2), Let A” be an ordering obtained by taking A, and re-ordering the classes for =4 so
that classes inside a common class of =, appear contiguously. This way, A" is both R-respecting and
R’-respecting. Now, we can apply Lemma D.2 twice, to convert from Rep,/(S) to Rep,~(S) and from
Rep,~(S) to Rep;(S). O

E Handling Small Pieces

E.1 Patterns

Let P be a piece in some LDD of G with diameter A. Recall that the set of boundary vertices of P is
denoted by dP. Fix an arbitrary sequence of vertices o'p = (s1,55,...,5p|). For each vertex v € V(G),
let d(v, P) denote the distance between v and any vertex of P. We denote a pattern of v with respect to
the ordering op, denoted by p, to be the following |dP| dimensional vector:

p,li]=d(v,s;)—d(v,P) forevery 1 <i < |0P|.

We remark that instead of subtracting by an offset of d(v, P), we could have subtracted by any other
offset. For example, [ ] instead use the offset of d(v,s;).

Le and Wulff-Nilsen [ ] showed a bound on the total number of patterns with respect to op
if the distance encoding VC-dimension is bounded. The proof also works for generalized distance
VC-dimension.

Lemma E.1. Let P be a piece in a graph G with general distance VC-dimension d and op an arbitrary
ordering on P. LetP = {p, | v € V(G)} be the set of patterns with respect to op. Then |P| = O(|dP|1A).

Proof: Consider the set system (V; x Z, 3B) of generalized neighborhood balls, and the set system
where we restrict the ground set (9P x [A], §B). This restriction of the ground set does not increase
the VC-dimension of the set system. There is a clear bijection between p, € P and the generalized
neighborhood ball: Nd(V’P)[v] NP x[A]) = {(u,r) :ue€ dPr € [A],d(u,v) < d(u,P)+r}. So the
number of patterns is bounded by the number of unique sets of (0P x [A], §B). By the Sauer-Shelah
Lemma (see Lemma 2.4), this is at most O(|3P|¢|A|%). O

E.2 Diameter and Eccentricities using Patterns

The following algorithm computes the eccentricities of all vertices in a piece P of the graph G.

1. Compute the pairwise distance between pairs of vertices in P. Let d, denote the distance to the
farthest vertex from v that is within P.

2. Compute all patterns P for P, and for each pattern p € P find the farthest vertex u € V(G) that
attains that pattern. Let d,, be d(u,s,), the base distance for the pattern.
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3. For each pattern p € P, compute the distance d(p, v) from the pattern to each v € P by doing
a boundary weighted BFS, i.e., a BFS where the boundary vertex distances are initialized to the
values of the pattern p, and for each vertex v € P compute d, = max,ep d(p, v) + d,,.

4. Return max{d,,d,}.

Step 1 can be implemented by running a BFS within P from each vertex. By Lemma E.1 the number
of patterns computed in step 2 is at most O(|P|¢A?), and it takes O(n|8P|) time to consider all distances
to compute the pattern. Running a BFS for each pattern in step 3 takes time T(P) per pattern where
T(P) is the time it takes to run a boundary weighted BFS in P.

Lemma 2.15. Let G be a graph on n vertices with distance encoding VC-dimension d. Let P be a piece in
G with boundary 0P and diameter A. If distances from P to all vertices of G are known, the eccentricity
of all vertices in P can be computed in O (n- |6P| + (|P| +|oP|?A%) - T(P)) where T(P) is the time it
takes to run boundary weighted BFS on P with weights at most A.

E.3 Boundary Weighted BFS in Geometric Intersection Graphs

One approach to compute a shortest path tree in a unit disk graph of n disks uses a semi-dynamic data
structure, developed in [ ], that in O(logn) amortized time finds a disk containing a query point
and deletes it from the set. Thus one can repeatedly apply the data structure to find the disks at the
(i + 1)-hop frontier in a BFS tree from the ith hop frontier- for each disk at i-hop away from the root,
repeated query the center of the disk to look for disks that intersect with it until such disks are exhausted.
This gives a running time of O(nlogn) to compute a BFS tree, since each disk is only deleted once. The
semi-dynamic data structure uses a grid of side length 1/2. For each cell Q of the grid, maintain the set
of disks whose center lies in Q. Furthermore, maintain the upper envelope S; of the disks that intersect
Q with centers below the line through the lower boundary of Q, and similarly maintain the envelopes
S,,S3, S, for the other three boundaries. Therefore, if a query point q lies in a cell Q, all the disks that
are centered inside Q would contain q and can be returned. Further, query g against the upper envelope
S; (check if g is below S;) to look for additional candidates. And repeat the same procedure for the
other three envelopes. The upper envelope is maintained by a binary tree similar to a segment tree.

The boundary weighted BFS problem in a unit disk graph can be solved by a slight modification of
this procedure: vertices on the boundary appear as query points when the shortest path tree has reached
a sufficient depth. Therefore we have the following observation.

Observation E.2. The boundary weighted BFS problem in a unit disk graph can be implemented in
O(|P|log|P]) time.

For boundary weighted BFS in the intersection graph of axis aligned squares (of varying sizes), we
can use the same idea above. We need the following semi-dynamic data structure for a set of axis-parallel
squares: given a query square g return a square r that intersects q, and then delete r. If g and r intersect,
either some corners of g is inside r or some corners of r are inside q. Thus, the above query can be
implemented by running an orthogonal range query of g on the set of corner points of current set of
squares, as well as a point enclosure query [ ] (also called a rectangle stabbing query [ D
of each of the corners of g against the set of current squares. These queries can be answered by 2D
orthogonal range trees or 2D segment trees. By using dynamic fractional cascading with deletion only,
both query and deletion can be handled in O(logs) amortized time if we have s squares [ , ].
Therefore, we have the following lemma.

Lemma E.3. The boundary weighted BFS problem in the intersection graph of axis-aligned squares can
be implemented in O(|P|log|P|) time.
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E.4 Exact Distance Oracles

The lemmas in this section are implicit in the distance oracles of [ ], but we present their proofs in
full to keep our exposition self-contained.

Lemma E.4 (Section 3.2.3 of [ 1. Let G be a graph on n vertices with bounded generalized dis-
tance VC-dimension d and P be a piece in G with boundary dP and diameter A. There exists an exact
distance oracle for queries in which at least one end point lies within P with O(n + |0P|?A%|P| + |P|?)
space and O(1) query time.

Furthermore if distances from 0P to all vertices of G are known, the distance oracle can be computed
in 0(n|dP| + (|dP|4AY + |P|) - T(P)) precomputation time, where T(P) is the time it takes to run vertex
weighted BFS on P with weights at most A.

Proof: For each vertex v € P, store the distances to all other vertices in P. Every other vertex of the
graph u € G \ P stores a pointer to their respective pattern p,, and the distance d(u, P). Also store the
distance d(p, v) for each pattern p € P to each v € P.

To handle a query between two vertices of P, we can look up the distance between the vertices in
constant time. For one vertex v € P, and another vertex u € G \ P, we know that:

d(u,v)=d(u,P)+d(py,V).

and we can look up d(u, P), p,, and d(p,, v) in constant time.

The total space needed for the oracle is O(|P|?) for the distances between pairs of vertices in P, O(n)
for the pointers from vertices u € G \ P to their respective patterns, and O(|dP|?A¢|P|) to store the
pattern to P distances.

The precomputation time is the same as in Lemma 2.15 for eccentricities. O

Lemma 2.16 (Section 4.3.1 of [ D. Let G = (V;,E;) be a graph with bounded distance VC-
dimension d, and P be an induced subgraph of G with boundary 0P and diameter A. There exists a
distance oracle that answers distances from any vertex s € P and any vertex t € V; with O(n-|dP|+|P|%)
space and O(log|0P|) query time.

Furthermore, if G also has bounded generalized distance VC-dimension d and distances from P
to all vertices of G, the distance oracle can be computed in O (n -18P| + (|aP)4Ad + |P)) - T(P)) time,
where T (P) is the time it takes to run vertex weighted BFS on P with weights at most A.

Proof: Store the distances between pairs of vertices in P. For every other vertex u € G \ P, consider the
sequence of balls B(u,r),...,B(u, ;) such that B(u, r;) is the smallest ball that contains at least one
vertex of dP, and B(u, r;) is the smallest ball containing at least one vertex of dP \ B(u, r;) (note that
k < |0P|). Store a pointer to each of these balls, and the set of vertices ¥; = B(u,r;) NP (and Y, = @) in
a data structure that allows for O(1) time membership lookup. For each relevant Y;, store the distance
d(Y;,v) := mingey, d(s, v).

If two vertices u and v are within P, we can look up their distance in O(1) time. Otherwise, if v € P
and u € G \ P, then we can binary search over Yy, Y;..., Y} to find the first Y; where v ¢ Y; and v € Y, in
O(logk) = O(log|dP|) time. Then, we can look up the distance d(Y;,v) in constant time and return the
distance:

d(u,v)=d(u,r;) +d(Y;,v).

The space required to store distances between pairs of vertices in P is at most O(|P|?). The space
required is O(n|dP|) to store the pointers between u € G \ P and their respective Y, Y,..., Y, since
k < |8P|. The total number of balls is at most O(|P|?) by Lemma 2.4 (Sauer’s lemma).
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To compute this distance oracle, we need to compute Y7, ..., Y; for each vertex u € G \ P. To do so,
we can cluster these vertices into vertices with the same pattern p,, and consider Yy, ..., Y, with respect
to each pattern. This can be done as the BFS to compute d(p,,, v) for every vertex v € P also implicitly
computes the balls Y7,...Y;, as well as the distances d(Y;,v). To compute a pointer from u to Y;, we can
look up the balls we computed by storing all ;s in a data structure that supports O(1) lookup for sets
(e.g. a hashing based data structure). The precomputation time analysis is the same as in Lemma 2.15
for eccentricities. O
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