
Approximate Light Spanners in Planar Graphs

Hung Le∗ Shay Solomon† Cuong Than‡ Csaba D. Tóth§ Tianyi Zhang¶

Abstract

In their seminal paper, Althöfer et al. (DCG 1993) introduced the greedy spanner and showed
that, for any weighted planar graph G, the weight of the greedy (1 + ϵ)-spanner is at most
(1 + 2

ϵ) ·w(MST(G)), where w(MST(G)) is the weight of a minimum spanning tree MST(G) of
G. This bound is optimal in an existential sense: there exist planar graphs G for which any
(1 + ϵ)-spanner has a weight of at least (1 + 2

ϵ) ·w(MST(G)).
However, as an approximation algorithm, even for a bicriteria approximation, the weight

approximation factor of the greedy spanner is essentially as large as the existential bound:
There exist planar graphs G for which the greedy (1 + xϵ)-spanner (for any 1 ≤ x = O(ϵ−1/2))
has a weight of Ω

(︁
1

ϵ·x2

)︁
·w(Gopt,ϵ), where Gopt,ϵ is a (1 + ϵ)-spanner of G of minimum weight.

Despite the flurry of works over the past three decades on approximation algorithms for
spanners as well as on light(-weight) spanners, there is still no (possibly bicriteria) approximation
algorithm for light spanners in weighted planar graphs that outperforms the existential bound.
As our main contribution, we present a polynomial time algorithm for constructing, in any
weighted planar graph G, a

(︁
1 + ϵ · 2O(log∗ 1/ϵ)

)︁
-spanner for G of total weight O(1) ·w(Gopt,ϵ).

To achieve this result, we develop a new technique, which we refer to as iterative planar
pruning. It iteratively modifies a spanner; each iteration replaces a heavy set of edges by a light
path, to substantially decrease the total weight of the spanner while only slightly increasing
its stretch. We leverage planarity to prove a laminar structural property of the edge set to be
removed, which enables us to optimize the path to be inserted via dynamic programming. Our
technique applies dynamic programming directly to the input planar graph, which significantly
deviates from previous techniques used for network design problems in planar graphs, and might
be of independent interest.

∗University of Massachusetts Amherst, hungle@cs.umass.edu
†Tel Aviv University, solo.shay@gmail.com
‡University of Massachusetts Amherst, cthan@umass.edu
§California State University Northridge and Tufts University, csaba.toth@csun.edu
¶Nanjing University, tianyiz25@nju.edu.cn

Contents

1 Introduction 1
1.1 Our Main Contribution: Approximate Light Spanners 3
1.2 Hardness of Minimum Spanners . 4

2 Technical Overview 4
2.1 Hard instances . 4
2.2 A pruning framework in planar graphs . 5

3 Preliminaries 9

4 Pruning Planar Light Spanners 10
4.1 Description of the Pruning Algorithm and Runtime Analysis 10
4.2 Weight Analysis . 12

4.2.1 Structural Properties . 13
4.2.2 Lower Bounding DP[s∗, t∗, L∗] . 16
4.2.3 Upper Bounding the Multiplicity of P [s∗, t∗, L∗] 19
4.2.4 Stretch Analysis . 25

4.3 Extension to Large Edge Weights . 26

5 Hardness for Planar Spanners 27

6 A Hard Instance for the Greedy Algorithm 32

1 Introduction

A t-spanner of an edge-weighted undirected graph G = (V,E,w) is a subgraph H of G such that
distH(u, v) ≤ t · distG(u, v) for every pair u, v of points in V , where distG denotes the shortest path
distance in G w.r.t the weight function w. The study of graph spanners was pioneered in the late
1980s by influential results on spanners for general graphs [PU89, PS89] and in low-dimensional
spaces [Che86, Cla87, Kei88], and it has grown into a very active and vibrant research area; see
the survey [ABS+20]. A central research direction within the area of spanners is the design of
approximation algorithms for an optimal t-spanner of a given graph, where the optimality usually
refers to the two most common “compactness” measures: the spanner size (number of edges) or
weight (total edge weight).1 The greedy algorithm by Althöfer et al. [ADD+93] gives a t-spanner
of size O(n1+2/(t+1)) for odd t and O(n1+2/t) for even t. Therefore, the approximation ratio of the
greedy algorithm (for minimizing the number of edges) is naively bounded by O(n2/(t+1)) for odd t
and by O(n2/t) for even t. The recent line of work on light spanners [CDNS95, CW18, FN22, LS22a,
LS23] implies almost the same approximation ratio for minimizing the weight of the spanners.

Beating the approximation ratio of the greedy algorithm has been extremely challenging despite
years of effort. Better approximation factors for sparsity are known only for t ∈ {2, 3, 4}; specifically
O(log n) [KP94] for t = 2 (matching a known lower bound [Kor01]) and Õ(n1/3) for t = 3 [BBM+11]
and t = 4 [DZ16]. The gap between the upper and lower bounds is fairly large: for any t ≥ 3 and
for any constant ϵ > 0, there is no polynomial-time algorithm approximating a t-spanner with ratio
better than 2logn

1−ϵ/t assuming NP ̸⊆ BPTIME(2polylog(n)) [DKR16]. (For directed graphs,2 the
current best approximation ratios are even worse [BBM+11, BGJ+12, BRR10, DK11].) Some of
the aforementioned results extend to minimizing the weight of the spanner and produce the same
(or sometimes worse) approximation ratio [BBM+11, GKL23]. Efforts have also been made to
experimentally test LP-based algorithms to find the (exact) minimum weight spanner of general
graphs [SZ04, AHJ+19, BCJW24].

For general graphs, perhaps the most interesting stretch regime is t ≥ 3 since, in this regime,
t-spanners have a subquadratic size for any input graph. Even in this regime, as mentioned above,
poly-logarithmic approximation algorithms are impossible under a standard complexity assumption.
In various real-life applications, even stretch t = 3 is too large. It is thus only natural to focus on
structural classes of graphs, where we can hope to achieve (i) stretch t = 1 + ϵ for any given ϵ > 0
and (ii) a constant-factor approximation (with a constant that does not depend on ϵ). Perhaps the
two most basic and well-studied structural classes of graphs are low-dimensional Euclidean spaces
and planar graphs.

In low-dimensional spaces, we are given a set P of n points in the Euclidean space Rd of any
constant dimension d; the metric graph GP = (P,E,w) induced by P is the edge-weighted complete
graph with vertex set P and edge weights w(u, v) = ∥u− v∥2 for all u, v ∈ P . Euclidean spanners
have been thoroughly investigated; the book by Smid and Narasimhan [NS07] covers dozens of
techniques for constructing Euclidean (1 + ϵ)-spanners, and a plethora of additional techniques
have been devised since then [Smi25]. In particular, one can construct (1 + ϵ)-spanners with
O(ϵ1−dn) size [RS91, LS22b] and O(ϵ−dw(MST(GP))) weight [DNS95, LS22b], where MST(GP)
is the weight of the Euclidean minimum spanning tree for P . These results imply an O(ϵ1−d)-
approximation for the minimum size and O(ϵ−d) for the minimum weight—of the optimal (1 + ϵ)-
spanner. Finding a minimum weight (1 + ϵ)-spanner is still NP-hard in this setting [CC13]. A
major open problem is to obtain an O(1)-approximation (w.r.t. the size or weight) for the optimal

1There are also other compactness measures, such as the maximum degree, but the most common and well-studied
measures are the size and weight of spanners and for brevity we will restrict attention to them.

2In the literature survey that follows we restrict attention to undirected graphs, which is the focus of this work.

1

Euclidean (1 + ϵ)-spanner, where the approximation factor does not depend on ϵ. Despite a vast
literature on Euclidean spanners, there has been no progress on this problem until the recent work
of Le et al. [LST+24], which gives the first bi-criteria approximation algorithm. Specifically, they
constructed (1 + ϵ · 2O(log∗(d/ϵ)))-spanners whose size and weight are within O(1) of those of the
optimal (1 + ϵ)-spanners for any ϵ > 0.

For planar graphs, the literature on spanners is much sparser. Basic geometric techniques and
concepts do not apply and cannot even be adapted to planar graphs. One exception is with the
aforementioned greedy algorithm by Althöfer et al. [ADD+93], which applies to any graph, as it is
oblivious to the input structure. They showed that the greedy (1+ ϵ)-spanner of any edge-weighted
planar graph G has weight at most (1+ 2

ϵ)w(MST(G)). (Since planar graphs have only O(n) edges,
the focus has been mainly on optimizing the weight.) Klein [Kle05] gave a more relaxed variant
of the greedy algorithm, with the same asymptotic weight bound, which can be implemented in
O(n) time. Both the greedy algorithm and Klein’s variant imply an O(1/ϵ)-approximation for the
minimum weight (1 + ϵ)-spanner for any input planar graph. The following fundamental question
remains open.

Question 1.1. Can one get a polynomial-time algorithm that computes a (1+ϵ)-spanner of weight
O(1) ·w(Gopt,ϵ), where Gopt,ϵ is a minimum-weight (1 + ϵ)-spanner of any input planar graph G?

A wide variety of techniques have been designed for approximation algorithms in planar graphs
over the years [Bak94, Kle05, BKM09, BHM11, BDHM16, BCE+11, FKS19, FL22], but none of
them appears to be applicable to Question 1.1. Compared to many network design problems, such
as TSP or Steiner tree, the key challenge in approximating the minimum weight (1 + ϵ)-spanner is
that we have to achieve two guarantees: (i) stretch of 1 + ϵ (i.e., preserving all pairwise distances
up to a factor of 1 + ϵ) and (ii) minimizing the weight (approximating the minimum weight up to
a given factor). Baker’s technique [Bak94] is perhaps the most basic one: compute a BFS tree of
G, divide the input graph into subgraphs consisting of O(1) layers of the BFS tree, each subgraph
then has treewidth O(1), and solve the problem in each subgraph, say H, by applying dynamic
programming on bounded treewidth graphs. If one applies Baker’s technique to spanners, the issue
is that the distance between vertices in each subgraph H (of bounded treewidth) is not the same as
the distance in the input graph, and hence the optimal solution for H could be much heavier than
E(Gopt,ϵ) ∩ E(H). (When the graph is unweighted and the stretch is constant, one can extend H
by O(t) more layers to preserve the distances between vertices in H [DFG11]; when the graph is
weighted, such a trick does not apply.) Other variants of Baker’s technique, such as the contraction
decomposition [Kle05], run into a similar issue.

The two different guarantees in approximating spanners are reminiscent of other problems with
distance constraints in planar graphs. One such problem is the ρ-dominating set problem: given
an input (non-constant) parameter ρ, find a minimum set of vertices such that other vertices must
be within distance at most ρ from the set. For these problems, there is an effective technique
for designing bicriteria approximation algorithms by embedding the graph into a small treewidth
graph [FKS19, FL22, CCL+23]. Specifically, given a planar graph G with diameter ∆, one can
embed G into a graph H with treewdith O(1/ϵ4), such that distG(u, v) ≤ distH(u, v) ≤ distG(u, v)+
ϵ∆ for any ϵ ∈ (0, 1) [CCL+23]. However, the additive distortion +ϵ∆ could be very large compared
to distG(u, v); for example, in unweighted graph we have distG(u, v) = 1 for every edge (u, v), while
the additive distortion guarantee is ϵ∆, which could be as large as Ω(ϵn). Therefore, such an
embedding technique also does not provide a good bicriteria approximation algorithm for (1 + ϵ)-
spanners.

Another natural attempt to obtain a bicriteria approximation algorithm is to apply the greedy
algorithm with stretch (1 + x · ϵ), for some parameter x, and compare its weight to the minimum

2

weight of a (1 + ϵ)-spanner. In Section 6, we present a hard planar graph instance for which the
greedy (1 + x · ϵ)-spanner has weight as large as Ω

(︁
1

x2ϵ

)︁
w(Gopt,ϵ); this instance is obtained by a

careful adaptation of a hard Euclidean instance from [LST+24]. Therefore, the greedy algorithm
does not yield an O(1)-approximation for the weight even when x is rather large, say x ≈ ϵ−1/3.

1.1 Our Main Contribution: Approximate Light Spanners

In this paper, we make significant progress toward the resolution of Question 1.1 by designing a
bicriteria approximation algorithm for (1 + ϵ)-spanners in planar graphs: The stretch is 1 + ϵ ·
2O(log∗(1/ϵ)) while the approximation ratio is O(1); here log∗ is iterated logarithm.

Theorem 1.2. Given any edge-weighted planar graph G = (V,E,w) with integral edge weights
w : E → N+ as well as a parameter ϵ > 0, a poly(n, 1/ϵ)-time algorithm can construct a(︁
1 + ϵ · 2O(log∗ 1/ϵ)

)︁
-spanner H ⊆ G of total weight O(1) · w(Gopt,ϵ), where Gopt,ϵ = (V,Eopt,ϵ)

denotes a (1 + ϵ)-spanner of G of minimum total weight.

To obtain our result, we develop a new technique, which we refer to as iterative planar pruning.
While our technique is inspired by the recent biciteria approximation algorithm for Euclidean
(1 + ϵ)-spanner [LST+24], it has to deviate significantly from it, since the algorithm of [LST+24]
crucially relies on several basic properties of Euclidean geometry that do not hold in planar graphs.
In Section 2 we provide a detailed overview of our technique, and its comparison with previous
work and the technique of [LST+24] in particular. At a very high-level, our technique will heavily
exploit the planarity of the input graph to establish a certain laminar structural property of carefully
chosen paths in the current spanner. This laminar structure property is key for obtaining an efficient
dynamic programming algorithm, which is, in turn, used for iteratively finding a light path to replace
a set of much heavier edges.

Perhaps our most significant departure from existing techniques for network design problems
in planar graphs, including TSP [Kle05], Steiner tree [BKM09], Steiner forest [BHM11], and their
prize-collecting counterparts [BCE+11], to name a few, is the usage of dynamic programming.
Existing techniques could be seen as providing a reduction to bounded treewidth graphs, where
dynamic programming naturally arises3. In contrast to previous work, the dynamic programming
in our work applies directly to the input planar graph, whose treewidth may be as large as Θ(

√
n).

Our technique could potentially be applicable to other network design problems where, in addition
to minimizing the total weight, one seeks to impose distance constraints between nodes in the
network. One class of such problems lies in the context of hop-constrained network design: find
a network of minimum weight such that the hop-distance between two nodes is at most a given
input parameter h. For several hop-constraint problems, strong inapproximability results [DKR16]
rule out polylogarithmic single-criteria approximation algorithms. There is a long line of work
on bicriteria-approximation algorithms for hop-constrained network design problems in general
graphs, where one wishes to approximate both the weight of the network and the hop constraint.
The state-of-the-art algorithms for general graphs achieve polylogarithmic approximations to both
the weight and the hop-constraint; see [HHZ21] and references therein. Remarkably, none of the
hop-constrained network design problems are known to admit a bicriteria constant approximation
in planar graphs. We anticipate that exploring the applicability of our technique to these problems
in planar graphs is a promising research avenue.

3These reductions basically apply Baker’s technique to the dual planar graph. As we pointed out above, this
technique can distort the distances significantly, and hence such a reduction does not seem applicable to our problem.

3

1.2 Hardness of Minimum Spanners

For unweighted planar graphs, the minimum t-spanner problem is fully understood. The regime of
stretch t < 2 is equivalent to t = 1, for which the only 1-spanner is the entire graph. Dragan, Fomin
and Golovach [DFG11] developed an efficient polynomial-time approximation scheme (EPTAS)
using Baker’s technique, constructing a t-spanner with at most (1 + δ)|E(Gopt,t)| edges for any
t ≥ 2 and δ > 0. For exact algorithms, Brandes and Handke [BH98] proved NP-hardness for the
regime of stretch t ≥ 5, which was later improved by Kobayashi [Kob18] to the entire nontrivial
regime of stretch t ≥ 2. Kobayashi [Kob18] also showed that the problem is NP-hard even for planar
graphs of maximum degree at most ∆ = 9 and t = 2 (however, it can be solved in polynomial time
for ∆ ≤ 4 and t = 2 [CK94]); Gómez, Miyazawa, a Wakabayashi [GMW23] settled the dichotomy
between NP-hardness and polynomial-time algorithms for almost all pairs (∆, t) of maximum degree
and stretch in unweighted planar graphs.

In weighted planar graphs, the goal is to find a minimum weight t-spanner (generalizing the
measure of size in the unweighted setting). The problem remains NP-hard in this setting [BH98,
Kob18], and Dragan et al. [DFG11] extended their result to planar graphs with positive integer
weights bounded by a constant W , yielding an EPTAS with a running time of 1

δ ·(t·W)O((t·W/δ)2) ·n,
for any t ≥ 2 and δ > 0. Remarkably, no hardness result has been established in the stretch regime
1 < t < 2, which is arguably the most interesting. In Section 5, we prove that the problem of
computing an exact minimum-weight (1+ ϵ)-spanner in planar graphs is NP-hard, thus closing the
only gap left open by previous work.

Theorem 1.3. For every ϵ > 0, the problem of computing a minimum-weight (1 + ϵ)-spanner for
a given edge-weighted planar graph G = (V,E,w) with polynomially bounded integral edge weights
w : E → N+, is NP-hard.

2 Technical Overview

In this section, we highlight the key ideas behind the proof of Theorem 1.2.

2.1 Hard instances

As a reminder of the greedy spanner algorithm, it goes over all edges in the input graph in the
non-decreasing order in terms of edge weights, and in each iteration it adds the edge to the spanner
if the distance stretch between the two endpoints is larger than 1 + ϵ.

We will first demonstrate that the greedy (1+ϵ)-spanner algorithm incurs a weight approximation
of Θ(1/ϵ) for some hard instances. With a concrete hard instance at hand, we then demonstrate
how a simple modification to the greedy spanner can yield a much better spanner construction
for this particular instance. In Section 2.2 we highlight some key insights that are needed for
generalizing this simple modification to obtain a pruning procedure for general planar instances.

Consider a planar graphG′ = (V ′, E′,w′) on 2n+2 vertices V ′ = {u0, u1, . . . , un}∪{v0, v1, . . . , vn}
that includes an edge (ui, vi) of weight 1 for every 0 ≤ i ≤ n, and two edges (u0, uj), (v0, vj) of weight
ϵ/2 each, for every 1 ≤ j ≤ n. See Figure 1 for an illustration. The minimum weight (1+ϵ)-spanner
of G′ consists of edges {(u0, v0)}∪ {(u0, uj), (v0, vj) : 1 ≤ j ≤ n} and has total weight 1+nϵ. How-
ever, the greedy algorithm for stretch 1+ϵ, and in fact for any stretch less than 1+2ϵ, could possibly
begin with a minimum spanning tree consisting of edges {(u1, v1)}∪ {(u0, uj), (v0, vj) : 1 ≤ j ≤ n},
and then greedily add all edges (ui, vi), 2 ≤ i ≤ n, incurring a total weight of (1 + ϵ)n. Thus, the
approximation ratio of the greedy algorithm is (n + ϵn)/(1 + ϵn) ≈ 1/ϵ when n grows, which is
asymptotically as large as the naive existential bound. In Section 6, we present a stronger hard

4

u0 v0

u1

u2

u3

u4

v1

v2

v3

v4

1

1

1

1

1

ε
2

ε
2

ε
2

ε
2

ε
2

ε
2

ε
2

ε
2

Figure 1: In this example, the optimal (1 + ϵ)-spanner contains all the red and orange edges, but
a greedy (1 + ϵ)-spanner might contain all edges in the graph except for the red edge (u0, v0).

instance, for which the weight of the greedy (1 + xϵ)-spanner, for any 1 ≤ x = O(ϵ−1/2), exceeds

the minimum weight of any (1 + ϵ)-spanner by a factor of Ω
(︂
ϵ−1

x2

)︂
. In other words, the greedy

algorithm performs poorly even as a bicriteria approximation algorithm.
Observe that the main reason that the greedy algorithm returns a heavy spanner is that it

misses the critical edge (u0, v0), which, together with the 2n edges in {(u0, uj), (v0, vj) : 1 ≤ j ≤ n},
“serves” (i.e., provides (1+ϵ)-spanner paths between) all pairs ui, vj of vertices in G. In general, the
greedy (1+ ϵ)-spanner might miss some critical paths (instead of direct edges), each of which serves
many pairs of vertices simultaneously in the unknown optimal (1 + ϵ)-spanner, while the greedy
(1 + ϵ)-spanner has to connect each of these pairs of vertices separately, incurring a much higher
total weight. Consequently, to outperform the O(1/ϵ)-approximation of the greedy (1+ ϵ)-spanner
algorithm, our high-level strategy is to identify critical paths that can replace as many existing
edges in the greedy spanner as possible. For example, in the instance shown in Figure 1, edge
(u0, v0) would be a critical edge, and adding (u0, v0) to the greedy spanner allows us to remove the
edges (ui, vi), 1 ≤ i ≤ n, thereby achieving a much lower, and in fact the optimal, weight.

2.2 A pruning framework in planar graphs

To reduce the approximation ratio to O(1) for general instances, we develop a certain pruning
procedure, which is inspired by the pruning framework in [LST+24], developed for Euclidean low-
dimensional spaces, and is also reminiscent of the standard local search approach in the broader
context of approximation algorithms.

At a high level, following [LST+24], we start with a (greedy) (1 + ϵ)-spanner H for the input
graph G = (V,E,w) that has a (high) approximation ratio O(1/ϵ) (in the Euclidean setting the
initial approximation is O(1/ϵ2)), find two sets of edges F new ⊆ E and a F old ⊆ E(H), and exchange
them: H1 ← F new ∪ (H \ F old). The key guarantees of our construction are: (i) H1 has stretch
(1 + O(ϵ)) and (ii) w(H1) = O(log 1/ϵ) ·w(Gopt,ϵ). Thus, we pruned a set of heavy edges F old to
reduce the approximation ratio for the weight of the spanner H exponentially at the expense of a
slight increase in the stretch. We can then apply the same pruning procedure to H1. By repeating

5

the pruning procedure log∗ (1/ϵ) times, we obtain a spanner H∗ with stretch (1 + ϵ · 2O(log∗ (1/ϵ)))
and weight

w(H∗) = O(1) log . . . log(1/ϵ)⏞ ⏟⏟ ⏞
iterate log∗(1/ϵ) times

w(Gopt,ϵ) = O(1) ·w(Gopt,ϵ),

as claimed in Theorem 1.2.
Our main technical contribution lies in efficiently finding the heavy(-weight) pruned set F old

and the light replacement set F new in each iteration of the pruning procedure. We note that the
existence of such sets is immediate: simply take F old = E(H) (the edges of the current spanner)
while F new = E(Gopt,ϵ) (the edges of the optimal solution). However, Gopt,ϵ is not known, and
the algorithmic task of efficiently (in poly-time) computing such sets F old and F new—on which our
approximation algorithm crucially relies—is highly nontrivial, as discussed next.

In Euclidean spaces, Le et al. [LST+24] rely on Euclidean geometry in a crucial way to find
such sets F old and F new. For each edge (u, v), let Euv be the ellipsoid of width O(

√
ϵ) that has u

and v as the foci. A basic observation is that Euv contains all points on any (1 + ϵ)-approximate
path between u and v. One of the key ideas in [LST+24] is the following. Consider any two edges
(s, t) and (s′, t′) of almost the same length, say Θ(ℓ) for some ℓ > 0, and suppose there are two
points z, w such that: (i) both z and w lie in the intersection of the two ellipsoids Est and Es′t′ , and
(ii) ∥z−w∥2 = Θ(ℓ)/c for a sufficiently large constant c. Item (i) guarantees that, by taking (z, w)
to F new (to be added to the spanner) and both edges {(s, t), (s′, t′)} to F old (to be removed from
the spanner), the stretch of the new spanner may grow only slightly; item (ii) guarantees that F old

is heavy while F new is light. Edge (z, w) is called a helper edge in [LST+24]. Clearly, Euclidean
geometry is central to the approach in [LST+24]. Furthermore, [LST+24] also used the fact that
in Euclidean spanners, the graph G is the complete graph on n input points in Rd, and so any two
vertices are connected by an edge, thus the helper edge can be added to F new; in planar graphs,
however, most pairs of vertices are non-adjacent.

A laminar structural property. In light of the above discussion, our primary objective is to
efficiently compute critical paths in G that could replace a set of edges with large total weight in
any given spanner H ⊆ G such that w(H)≫ w(Gopt,ϵ) (possibly slightly increasing the stretch of
H). Before we can proceed to the algorithmic task of efficiently computing such critical paths, we
must first prove their existence, which by itself is nontrivial. In particular, removable edges could
form far more intricate structures than the basic ladder-like graph shown in Figure 1; for example,
there could be multiple ladders hanging on a critical path (see Figure 2 for an illustration). The
algorithmic task of computing such paths poses further technical challenges; it turns out that these
challenges can be overcome by carefully employing dynamic programming, as discussed below.

s t

Figure 2: There could be multiple ladder structures that are hanging on a single critical path,
colored red. The blue edges forming the ladders are removable edges of the current spanner H.

To be more precise, we shall consider critical paths with somewhat relaxed constraints. Specif-

6

ically, the distances from removable edges to the critical path will not necessarily be as small as
an ϵ-fraction of the lengths of the removable edges, as in the hard instance shown in Figure 1.
For general instances, we can only guarantee a much weaker upper bound of a (1− Ω(1))-fraction
instead of an ϵ-fraction; this is the main reason why our pruning procedure increases the stretch.
With the above relaxation, we can ultimately prove the existence of a path ρ∗ and an edge set
F ∗ = F ∗(ρ∗) ⊆ E(H), such that w(F ∗)

w(ρ∗) ≈
w(H)

w(Gopt,ϵ)
, while the stretch of H ∪E(ρ∗) \F ∗ only slightly

exceeds that of H. Hence, adding ρ∗ to H and pruning F ∗ from H produces a significantly lighter
spanner with almost the same stretch guarantee. We refer to such a pair, ρ∗ and F ∗, as a pruning
pair.

We note that proving the existence of a pruning pair using a naive averaging argument is
doomed. Specifically, let us associate every edge (s, t) ∈ E(H) with a shortest path γs,t in Gopt,ϵ

and map each such path γs,t to a disjoint edge set Fs,t ⊆ E(H), where the union of all paths γs,t
(respectively, edge sets Fs,t) is Gopt,ϵ (resp., H). Consequently, an average path γs,t in Gopt,ϵ is

mapped to a set Fs,t ⊆ E(H) of total weight w(γs,t) · w(H)
w(Gopt,ϵ)

; note that
w(Fs,t)
w(γs,t)

≈ w(H)
w(Gopt,ϵ)

. It is

now tempting to argue that γs,t could replace this heavy edge set Fs,t ⊆ E(H) (which would reduce
the weight by the required amount) without blowing up the stretch. Alas, the main issue with such
an averaging argument is that it completely ignores cases where γs,t intersects many different paths
γu,v, but any single path γu,v shares only a small proportion with γs,t, and so the path γs,t itself
could not replace any other edge (u, v) ∈ E(H) without significantly blowing up the stretch.

In our proof, to establish the existence of a pruning pair ρ∗, F ∗, where the single path ρ∗ in
Gopt,ϵ can remove the much heavier set of edges F ∗ in H without blowing up the stretch, we
need to drill much deeper, by leveraging planarity and exploring certain laminar structures of all
paths {γs,t : (s, t) ∈ E(H)}. First, we introduce the following key definition of κ-hanging, which
formalizes the notion of removable edges (a canonical setting of κ is κ = 2/3):

Definition 2.1 (κ-hang). Consider any (not necessarily simple) path ρ = ⟨v1, v2, . . . , vk⟩ in G and
any edge (a, b) ∈ E(H). We say that edge (a, b) is κ-hanging on the path ρ if there exists a pair of
vertices vi, vj with i < j such that:

(1) w (ρ[vi, vj]) ≥ κ ·w(a, b), where ρ[vi, vj] denotes the subpath of ρ between vi and vj ;

intuitively, the lower bound on w (ρ[vi, vj]) will be helpful when we add the path ρ[vi, vj] and
remove the edge (a, b) in spanner H while preserving the stretch;

(2) distG(a, vi) +w(ρ[vi, vj]) + distG(vj , b) ≤ (1 + ϵ) ·w(a, b).

We say that (a, b) is κ-hanging at (vi, vj) on ρ.

See Figure 3 for an illustration. We argue that, since κ = 2/3, and due to items (1) and (2)
in Definition 2.1, the spanner obtained from the current (1 + ϵ)-spanner, by adding ρ to it and
removing all the κ-hanging edges from it, has a stretch of at most 1 + O(ϵ). The reason why the
additive term ϵ has to increase by some constant factor to O(ϵ) is that our current spanner may not
include the optimal sub-paths in G from a to vi or from vj to b. In fact, our current spanner may
not even include (1 + ϵ)-spanner paths between these points, as we are iteratively pruning paths,
hence our argument has to bypass several hurdles in order to prove the stretch bound.

Proving the stretch bound alone is insufficient—we also need to guarantee that the weight
reduces significantly, and thus it is crucial that the κ-hanging edges are heavy with respect to the
path on which they are hanging. Furthermore, while proving the existence of a path ρ∗ with heavy
κ-hanging edges is already nontrivial, the existence alone does not guarantee an efficient algorithm.
Our key insight is that we can impose a laminar structure of κ-hanging paths in a way that can be

7

ρ[vi, vj]

ρ
vi vj

a b

Figure 3: An example for an edge (a, b) that is κ-hanging at (vi, vj) on path ρ. The orange path
between a and b has length at most (1 + ϵ) ·w(a, b); the orange sub-path of ρ between vi and vj ,
which is also a sub-path of the orange path between a and b, has length at least κ ·w(a, b).

exploited for an efficient algorithm, formalized by the following structural lemma; when applying
the lemma, we may assume that the weight of the current (1 + ϵ)-spanner H exceeds that of the
optimal solution Gopt,ϵ by a factor of α, for a large parameter α≫ 1.

Lemma 2.2 (structural property, simplified). Define α = w(H)
w(Gopt,ϵ)

. There exists a pruning pair that

consists of a shortest path ρ∗ in Gopt,ϵ and an edge set F ∗ ⊆ E(H), with the following guarantees:

(1) Each edge e ∈ F ∗ is 2
3 -hanging on ρ∗;

(2) The total weight w (F ∗) of F ∗ satisfies w (F ∗) ≥ α
6 ·w (ρ∗);

(3) For each edge e ∈ F ∗, let (ae, be) be the hanging points of e on ρ∗; then all the sub-path
intervals {ρ∗[ae, be] : e ∈ F ∗} form a laminar family; recall that a laminar family is a family
of sets where any two sets are either disjoint or related by containment.

By the first guarantee, the edges in F ∗ are 2/3-hanging; as discussed above, which means that
we can remove them from H without incurring much stretch. The second guarantee implies that
the set F ∗ of removable edges is heavy with respect to the weight of the edges in ρ∗, and hence
removing the edges in F ∗ from the spanner H and adding the edges in ρ in their place results in a
significant reduction to the weight of H. The third guarantee, namely the laminar family structure,
is crucial for obtaining an efficient dynamic programming algorithm to compute an approximation
of ρ∗. Here, we heavily exploit the planarity of the input graph in establishing the laminar property.

Dynamic programming. The structural property, which asserts the existence of pruning pairs
as stated in Lemma 2.2, does not immediately lead to an efficient pruning procedure; indeed, in our
existential proof, the structure of critical paths will depend on Gopt,ϵ, which is of course unknown.
So the algorithmic goal is to find an approximate shortest path ρ between some vertex pair s, t such
that a large amount of edges in H could be hanging on ρ in some ladder-like manner, similarly to
the illustration of Figure 2. For this task, we will adopt a dynamic programming approach which
is fairly natural: we will maintain two tables (this is only an informal description, and some details
in the main algorithm are omitted here)

{ρ[s, t, L] : s, t ∈ V,L ≤ (1 + ϵ) distG(s, t)}

{P [s, t, L] : s, t ∈ V,L ≤ (1 + ϵ) distG(s, t)},

8

where ρ[s, t, L] will be an approximate shortest path (not necessarily a simple path) between s
and t, and P [s, t, L] ⊆ E(H) will be a set of edges which can 1

3(1+ϵ) -hang on ρ[s, t, L]; note that

the hanging parameter now degrades by roughly a factor of 2, from 2
3 to 1

3(1+ϵ) , which is needed
for technical reasons. The transition rule of the dynamic programming table would be to find the
best intermediate vertex z and 1 ≤ L′ < L so that the concatenated path ρ[s, z, L′] ◦ ρ[z, t, L− L′]
collects the heaviest possible edge set.

The main technical issue here is that the two removable edge sets, P [s, z, L′] and P [z, t, L −
L′], are usually not disjoint, and so w(P [s, z, L′] ∪ P [z, t, L − L′]) could be much smaller than
w(P [s, z, L′]) + w(P [z, t, L − L′]). If we take the intermediate vertex z and L′ that maximize
the total weight of the union P [s, z, L′] ∪ P [z, t, L − L′], then we could suffer a significant under-
estimation of the total weight of edges removable by the best approximate shortest path between
s and t, especially when P [s, z, L′] and P [z, t, L − L′] have large intersections. Hence, ultimately,

the ratio w(P [s,t,L])
w(ρ[s,t,L]) may be significantly smaller than w(F ∗)

w(ρ∗) .

s u1 v1 u2 v2 u9 v9 t

x yf

Figure 4: In this figure, the red path is ρ[s, t, L], and f = (x, y) appears many times in the multi-
set P [s, t, L]. Then, we can show that f can hang on the path ρ[s, t, L] at multiple positions, say
(u1, v1), (u2, v2), . . . , (u9, v9). Then, we can replace the sub-path ρ[u1, v9] with a shortcut u1 →
(x, y)→ v9, which reduces the total weight of ρ by at least w(f).

To resolve this issue, we will instead maximize the union with multiplicities, P [s, z, L′] ⊎
P [z, t, L − L′], whose total weight is w(P [s, z, L′]) + w(P [z, t, L − L′]). By using such an over-

estimation, we will be able to lower bound w(P [s,t,L])
w(ρ[s,t,L]) with w(F ∗)

w(ρ∗) . It turns out that we can handle
multi-set union and the consequent over-estimation much more effectively than an ordinary set
union and the consequent under-estimation. The issue with an over-estimation is that when we
replace the edge set P [s, t, L] with the path ρ[s, t, L], the total weight of H usually does not de-
crease by the amount of w(P [s, t, L]), since P [s, t, L] is a multi-set. To lower bound the total weight
of edges that we can actually prune, we will upper bound the multiplicities of most edges in the
multi-set P [s, t, L] by a large constant (say 20), crucially relying on the fact that ρ[s, t, L] is an
approximate shortest path. Roughly speaking, imagine that some edge f ∈ P [s, t, L] has a high
multiplicity, then we can show that f must hang on the path ρ[s, t, L] at many different positions.
In this case, there exists a shortcut on ρ[s, t, L] through the edge f that can reduce the total weight
of ρ[s, t, L] by at least w(f). Since we know that w(ρ[s, t, L]) is at most (1+ϵ)distG(s, t) beforehand,
we can upper bound the total weight improvements due to shortcuts by ϵ · distG(s, t), which, in
turn, yields the required constant upper bound on the overall multiplicities of edges in P [s, t, L].
See Figure 4 for an illustration.

3 Preliminaries

For every integer x ≥ 1, let ⌊x⌋2 be the largest integer power of 2 not exceeding x (that is, ⌊x⌋2 =
2⌊log2 x⌋). Let G = (V,E,w) be an undirected weighted planar graph, where w : E → {1, 2, . . . ,W}

9

is an integral edge weight function. Let ϵ > 0 be the input stretch parameter. We assume that
shortest paths are unique in both G and Gopt,ϵ by breaking ties lexicographically.

For any s, t ∈ V , let distG(s, t) denote the length of the shortest path between s and t in G. For
any (not necessarily simple) path ρ = ⟨v1, v2, . . . , vk⟩ in G and any pair of indices 1 ≤ i < j ≤ k,
let P [vi, vj] be the sub-path of P between vi and vj . For any two (not necessarily simple) paths ρ1
and ρ2, let ρ1 ◦ ρ2 be their concatenation if they share one endpoint. For any subgraph H of G, let
w(H) =

∑︁
e∈E(H)w(e) be the total weight of edges in H. For any multi-set of edges F , let w(F)

be the total weight of edges in F . For two multi-sets F1 and F2, let F1 ⊎ F2 denote the multi-set
union of F1 and F2 by summing the multiplicities of each element.

4 Pruning Planar Light Spanners

Throughout this section, we assume thatW < n2/ϵ; in the end we will show how to deal with general
cases. In order to prove Theorem 1.2, our main technical contribution is a pruning algorithm, as
summarized in the following statement.

Theorem 4.1. Take two parameters ϵ, δ > 0 such that ϵ ≤ min{10−2, δ}. Let G = (V,E,w) be an
undirected planar graph with positive integral edge weights w : E → N+, and let H be a (1 + δ)-
spanner of G such that θ := w(H)/w(Gopt,ϵ) ≥ Ω(1). Then one can compute, in polynomial time,
two sets of edges, F new ⊆ E and F old ⊆ E(H), such that the following holds:

(1) the stretch of graph H1 = F new ∪ (H \ F old) is at most 1 +O(1) · δ, and

(2) w(H1) ≤ O(log θ) ·w(Gopt,ϵ).

Our main theorem follows immediately by a successive application of Theorem 4.1.

Proof of Theorem 1.2. Starting with H being the greedy light (1 + ϵ)-spanner from [ADD+93]
of weight O(1/ϵ) · w(Gmst) ≤ O(1/ϵ) · w(Gopt,ϵ), we successively apply Theorem 4.1 and update
H ← H1 for O(log∗(1/ϵ)) iterations. At the end, H is a

(︁
1 + ϵ · 2O(log∗(1/ϵ))

)︁
-spanner of weight

O(1) ·w(Gopt,ϵ).

The rest of this section is dedicated to the proof of Theorem 4.1. In Section 4.1, we present a
pruning algorithm that finds the edge sets F new ⊆ E and F old ⊆ E(H), followed by the weight and
stretch analyses establishing properties (1) and (2) in Section 4.2.

4.1 Description of the Pruning Algorithm and Runtime Analysis

Definition 4.2. Consider any (not necessarily simple) path ρ = ⟨v1, v2, . . . , vk⟩ in G and any edge
(a, b) ∈ E(H). We say that edge (a, b) can κ-hang on the path ρ if there exists a pair of vertices
vi, vj with i < j such that

(1) w (ρ[vi, vj]) ≥ κ ·w(a, b);

(2) distG(a, vi) +w(ρ[vi, vj]) + distG(vj , b) ≤ (1 + ϵ) ·w(a, b).

The vertex pair (vi, vj) will be called the κ-hanging points of (a, b) on ρ; or equivalently, we say
that (a, b) is κ-hanging at (vi, vj) on ρ.

10

Initially, set F new ← ∅ and F old ← ∅. We will repeatedly find an approximate shortest path ρ
on which a large number of edges in P ⊆ E(H) \ (F new ∪F old) can 1

3(1+ϵ) -hang: In each round, we

prune these 1
3(1+ϵ) -hanging edges in P by setting F old ← F old ∪ P , and then add the path ρ to the

spanner H1 by setting F new ← F new ∪ E(ρ). We expect that adding E(ρ) and removing P would
significantly reduce the total weight while approximately preserving distance stretch.

To find such a good approximate shortest path ρ in each round, we will rely on a dynamic
programming approach. The dynamic programming procedure maintains three tables, described
in the following.

A dynamic programming table for triples (s, t, L), where s, t ∈ V (G) and L ≤ (1+ ϵ) ·distG(s, t)
is a positive integer.

• A table of paths ρ[s, t, L], for all (s, t, L) ∈ V ×V × [2nW] such that L ≤ (1+ ϵ) · distG(s, t).,
where ρ[s, t, L] is a (not necessarily simple) path between s and t inG such thatw (ρ[s, t, L]) =
L.

• A table of edge multi-sets P [s, t, L] ⊆ E(H) \ (F new ∪F old), for all (s, t, L) ∈ V × V × [2nW]
such that L ≤ (1 + ϵ) · distG(s, t), and each edge e ∈ P [s, t, L] is 1

3(1+ϵ) -hanging on the path

ρ[s, t, L].

• A table of edge weight sums DP[s, t, L] ∈ N+, for all (s, t, L) ∈ V × V × [2nW] such that
L ≤ (1 + ϵ) · distG(s, t) and DP[s, t, L] = w (P [s, t, L]).

Intuitively, our goal is to find an approximate shortest path ρ[s, t, L] on which an edge set
P [s, t, L] ⊆ E(H) \ (F new ∪ F old) of large total weight can be 1

3(1+ϵ) -hanging. Due to technical

reasons, we approximate the charging sets by multi-sets (rather than ordinary sets).
We compute the entries of the three tables as follows. For every pair of vertices s, t ∈ V , let πs,t

be the shortest path between s and t in G. First, compute the (non-multi) set B[s, t] of all edges
e ∈ E(H) \ (F new ∪ F old) that is 1

3(1+ϵ) -hanging at (s, t) on πs,t; this computation can be done in

O(n3) time.
Initialize ρ[s, t, distG(s, t)] ← πs,t (i.e., a shortest st-path in G), P [s, t, L] ← B[s, t], and

DP[s, t, L] ← w (B[s, t]) for any L ≤ (1 + ϵ)distG(s, t). Next, go over every length parameter
L = 1, 2, . . . , nW . For every pair (s, t) such that L ≤ (1 + ϵ) · distG(s, t), we choose a via point
z ∈ V and 0 ≤ L′ < L by setting

(z, L′) = arg max
(z,L′)

{︁
DP[s, z, L′] + DP[z, t, L− L′] + 1

[︁
max{L′, L− L′} < ⌊L⌋2

]︁
·w (B[s, t])

}︁
,

and then assign

DP[s, t, L]← DP[s, z, L′] + DP[z, t, L− L′] + 1
[︁
max{L′, L− L′} < ⌊L⌋2

]︁
·w (B[s, t]) ,

P [s, t, L]←

{︄
P [s, z, L′] ⊎ P [z, t, L− L′] if max{L′, L− L′} ≥ ⌊L⌋2
P [s, z, L′] ⊎ P [z, t, L− L′] ⊎B[s, t] if max{L′, L− L′} < ⌊L⌋2,

ρ[s, t, L]← ρ[s, z, L′] ◦ ρ[z, t, L− L′].

Intuitively, to find the best path between s, t, we identify the best via point z′ along with a length
parameter L′ and build the path ρ[s, t, L] as the concatenation of paths ρ[s, z, L′] and ρ[z, t, L−L′],

11

and entries P [s, t, L],DP[s, t, L] keep track of the pruned sets and weights associated with path
ρ[s, t, L].

After all entries in the dynamic programming table have been computed, which takesO(n5W 2) =
nO(1) time, find the triple (s∗, t∗, L∗) which maximizes the ratio

β =
DP[s∗, t∗, L∗]

w (ρ[s∗, t∗, L∗])
.

If β ≥ 1, then update F new ← F new ∪ E(ρ[s∗, t∗, L∗]) and F old ← F old ∪ P [s∗, t∗, L∗], and start
a new round (recomputing the dynamic programming tables); otherwise our pruning algorithm
terminates and returns

H1 = F new ∪ (H \ F old)

The whole algorithm is summarized below as Algorithm 1.

Algorithm 1: Prune a (1 + δ)-spanner H ⊆ G

1 initialize F new, F old ← ∅;
2 while true do
3 compute B[s, t] ⊆ E(H) \ (F new ∪ F old) which are edges that is 1

3(1+ϵ) -hanging at (s, t)

on πs,t;
4 initialize ρ[s, t, distG(s, t)]← πs,t, P [s, t, L]← B[s, t],DP[s, t, L]← w (B[s, t]) , ∀L ≤

(1 + ϵ)distG(s, t);
5 for L = 1, 2, . . . , nW do
6 for (s, t) such that L ≤ (1 + ϵ) · distG(s, t) do
7 choose a vertex z ∈ V and 0 ≤ L′ < L such that: (z, L′)←

argmax(z,L′) {DP[s, z, L′] + DP[z, t, L− L′] + 1 [max{L′, L− L′} < ⌊L⌋2] ·w (B[s, t])};

8 DP[s, t, L]← DP[s, z, L′]+DP[z, t, L−L′]+1 [max{L′, L− L′} < ⌊L⌋2]·w (B[s, t]);

9 P [s, t, L]←

{︄
P [s, z, L′] ⊎ P [z, t, L− L′] if max{L′, L− L′} ≥ ⌊L⌋2
P [s, z, L′] ⊎ P [z, t, L− L′] ⊎B[s, t] if max{L′, L− L′} < ⌊L⌋2,

;

10 ρ[s, t, L]← ρ[s, z, L′] ◦ ρ[z, t, L− L′];

11 find the triple (s∗, t∗, L∗) which maximizes the ratio β = DP[s∗,t∗,L∗]
w(ρ[s∗,t∗,L∗]) ;

12 if β ≥ 1 then
13 update F new ← F new ∪ E(ρ[s∗, t∗, L∗]), F old ← F old ∪ P [s∗, t∗, L∗];

14 else
15 break;

16 return H1 ← F new ∪ (H \ F old);

4.2 Weight Analysis

Let us begin with some basic properties of the dynamic programming scheme.

Lemma 4.3. Throughout the course of the dynamic programming algorithm, for any triple (s, t, L),
L ≤ (1 + ϵ)distG(s, t), the value of DP[s, t, L] is non-decreasing, and DP[s, t, L] ≥ w(B[s, t]).

12

Proof. At the beginning, we have DP[s, t, L] = w(B[s, t]). In each update, if we take L′ = 0 and
z = s, then the value of DP[s, z, L′] + DP[z, t, L − L′] + 1 [max{L′, L− L′} < ⌊L⌋2] · w (B[s, t]) is
exactly the current value of DP[s, t, L]. Since (z, L′) is the maximizer, we know that DP[s, t, L]
never decreases.

4.2.1 Structural Properties

Let us begin with a high-level outline before focusing on technical details. When H is much heavier
than the unknown optimal spanner Gopt,ϵ, our goal is to add to H a small set of new edges to
help remove a large set of old edges from H. The purpose of this subsection, roughly speaking, is
to identify a key structural property that there always exists an approximate shortest path ρ∗ in

G as well as an edge subset F ∗ ⊆ E(H), such that w(ρ∗)
w(F ∗) ≈

w(Gopt,ϵ)
w(H) , and E(ρ∗) ∪ (H \ F ∗) has

stretch 1+O(δ). As we shall see shortly, finding the ideal choice of ρ∗, F ∗ requires knowledge of the
optimal (1 + ϵ)-spanner Gopt,ϵ, but we will discuss how to find ρ∗, F ∗ algorithmically by allowing
approximations later on.

Fix a plane embedding of G (the embedding is used only in the analysis). For each edge
(a, b) ∈ E(H), let γa,b be the shortest ab-path in Gopt,ϵ. Since G is an embedded planar graph, we
can define Ra,b ⊆ R2 as the bounded region enclosed by the edge (a, b) and the path γa,b.

Lemma 4.4. For any two distinct edges e1, e2 ∈ E(H), the regions Re1 and Re2 are either interior-
disjoint, or one contains the other.

Proof. The proof is evident because shortest paths and edges do not cross each other in any plane
embedding of G. See Figure 5 for an illustration.

γa1,b1γa2,b2

Ra1,b1

Ra2,b2

a1 b1

a2 b2

Figure 5: In this example, e1 = (a1, b1), e2 = (a2, b2) and region Re1 is contained within region Re2 .

By Lemma 4.4, the regions Re, e ∈ E(H), naturally form a laminar family. Create a rooted
tree T where each node corresponds to a region Re, and a region Re1 is an ancestor of another
region Re2 if and only if Re1 ⊇ Re2 .

Consider any iteration of the while-loop of Algorithm 1. Define a weight ratio

α =
w

(︁
H \ (F new ∪ F old)

)︁
w (Gopt,ϵ)

. (1)

The following structural property will be important to our analysis.

13

Lemma 4.5 (structural property). There exists a shortest path ρ∗ in Gopt,ϵ together with an edge
set F ∗ ⊆ E(H) \ (F new ∪ F old) such that:

(1) Each edge e ∈ F ∗ is 2
3 -hanging on ρ∗;

(2) The total weight w (F ∗) of F ∗ satisfies w (F ∗) ≥ α
6 ·w (ρ∗);

(3) For each edge e ∈ F ∗, let (ae, be) be the hanging points of e on ρ∗; then all the sub-path
intervals {ρ∗[ae, be] : e ∈ F ∗} form a laminar family.

Proof. The main part of this proof is to construct a set Γ of shortest paths of the form γe for some
edges e ∈ E(H) \ (F new ∪ F old), such that (1) each edge e ∈ E(H) \ (F new ∪ F old) is 2

3 -hanging on
some path γ ∈ Γ, and (2) the total length w(Γ) of all paths in Γ is at most 6w (Gopt,ϵ). Having
constructed Γ, the proof will be concluded by applying the pigeon-hold principle.

Construction of Γ. Initialize Γ ← ∅. Traverse the nodes of the tree T in a depth-first-search
order. For each node Re ∈ T such that e ∈ E(H) \ (F new ∪ F old), let Re0 ⊇ Re be the lowest
ancestor of Re in T such that γe0 ∈ Γ (if γe /∈ Γ for any ancestor Re in T , then γe0 ← ∅). Let
η = γe ∩ γe0 ; note that γe ∩ γe0 is empty or a path because both γe and γe0 are unique shortest
paths in Gopt,ϵ. Then, we add γe to Γ iff w (η) < 2

3 ·w(e). See Figure 6 for an illustration.

η

a1 b1

a2 b2

a3 b3

a4 b4

Figure 6: In this picture, e = (a1, b1), and e0 = (a4, b4). If w(η) < 2
3w(e), we would add γe

to Γ which decreases Φ. There are two intermediate regions R(a2,b2) and R(a3,b3) whose paths
γ(a2,b2), γ(a3,b3) were not added to Γ.

Analysing the properties of Γ.

Claim 4.6. Each edge e ∈ E(H) \ (F new ∪ F old) is 2
3 -hanging on a path in Γ.

Proof. Consider the step in which node Re is visited by the depth-first-search, and let Re0 be its
lowest ancestor, with γe0 ∈ Γ, as defined above. If γe ∈ Γ, then by definition, e is 1-hanging on
γe ∈ Γ. Otherwise γe /∈ Γ, and by the construction we have w(η) ≥ 2

3 ·w(e), where η = γe ∩ γe0 ,
which means e is 2

3 -hanging on γe0 ∈ Γ.

Claim 4.7. The total weight w (Γ) is at most 6 ·w (Gopt,ϵ).

14

s t

x1 y1

x2 y2

x3 y3

x4 y4

Figure 7: The path ρ∗ is drawn as the orange curve, and C(ρ∗) are the red edges which are 2
3 -

hanging on ρ∗, and the black curves are shortest paths in Gopt,ϵ.

Proof. For each edge f ∈ Eopt,ϵ, let P
1
f and P 2

f be the two faces containing f in the planar embedding

of G (possibly P 1
f = P 2

f if f is a cut edge). Define the following potential function Φ(f) with respect
to Γ:

Φ(f) =

⎧⎪⎨⎪⎩
0 if both P 1

f and P 2
f are contained in some Re where f ∈ γe ∈ Γ,

3w(f) if only one of P 1
f and P 2

f is contained in some Re where f ∈ γe ∈ Γ,

6w(f) if neither P 1
f nor P 2

f is contained in any Re where f ∈ γe ∈ Γ.

Define the following sum as the overall potential (in the sum below, we want to count each f at
most once):

Φ = w (Γ) +
∑︂

e∈E(H)\(Fnew∪F old),f∈γe

Φ(f).

Clearly, we have Φ ≤ 6w (Gopt,ϵ) at the beginning when Γ = ∅. We show that Φ never increases
in the course of the algorithm. Consider any step when we add a certain path γe to Γ. Since Re

is enclosed by a simple curve, it contains exactly one face Pf ∈ {P 1
f , P

2
f } for any edge f ∈ γe \ η.

More importantly, since the algorithm visits all the nodes on T in a depth-first-search order, Pf

was not included in any region Re′ before where f ∈ γe′ ∈ Γ.
Therefore, Φ(f) decreases by 3w(f), and so the sum

∑︁
e∈E(H)\(Fnew∪F old),f∈γe Φ(f) decreases

by at least 3 · (w(γe)−w(η)) > w(γe). On the other hand, w(Γ) increases by at most w(γe), and
so overall Φ deceases.

Conclusion of the proof. By Claim 4.6, for every edge e ∈ E(H) \ (F new ∪F old), there exists a
path in Γ path on which e can 2

3 -hang. For any path ρ ∈ Γ, let Cρ ⊆ E(H) \ (F new ∪ F old) be the
set of all edges e which can 2

3 -hang on ρ. By the averaging argument and Claim 4.7, there exists
ρ∗ ∈ Γ such that

w(Cρ∗)

w(ρ∗)
≥

∑︁
ρ∈Γw(Cρ)∑︁
ρ∈Γw(ρ)

≥
∑︁

e∈E(H)\(Fnew∪F old)w(e)∑︁
ρ∈Γw(ρ)

≥
∑︁

e∈E(H)\(Fnew∪F old)w(e)

6 ·w(Gopt,ϵ)
= α/6.

Set F ∗ = C(ρ∗). To verify the requirements, let s, t be the two endpoints of ρ∗. By construction,
we know that for any e ∈ F ∗, the region Re is contained within region Rs,t. Also, since all edges in
F ∗ are on the same side of ρ∗, all the sub-path intervals {ρ∗[ae, be] : e ∈ F ∗} should form a laminar
structure. Check Figure 7 for an illustration .

Next, our main goal is to show that our dynamic programming finds a path ρ[s∗, t∗, L∗] which
would be a good approximation to the path ρ∗ in Gopt,ϵ, and the multiset P [s∗, t∗, L∗] would also

15

be a good approximation to the set F ∗. The analysis consists of two steps: first, we will show that
the multi-set P [s∗, t∗, L∗] contains a large number of edges in terms of edge weights; secondly, since
P [s∗, t∗, L∗] is a multi-set, we need to upper bound the amount of duplications so as to prove a true
lower bound on P [s∗, t∗, L∗].

4.2.2 Lower Bounding DP[s∗, t∗, L∗]

In this subsection, we show that the multi-set P [s∗, t∗, L∗] is relatively heavy (in terms of α, see
Equation (1)) compared to ρ[s∗, t∗, L∗].

Lemma 4.8. DP[s∗, t∗, L∗] ≥ α
6 ·w (ρ[s∗, t∗, L∗]).

Proof. Let ρ∗, F ∗ be the path and edge sets provided by Lemma 4.5. Let s and t be the two
endpoints of the path ρ∗ which is unknown to our algorithm, and set L = w (ρ∗). Since the ratio

DP[s∗, t∗, L∗]/w (ρ[s∗, t∗, L∗])

is maximized by the triple (s∗, t∗, L∗), it suffices to show that:

DP[s, t, L] ≥ α

6
·w (ρ[s, t, L]) .

For every edge e ∈ F ∗, let (ae, be) be the hanging points of e on ρ∗. According to the proof of
Lemma 4.5, all the sub-path intervals {ρ∗[ae, be] : e ∈ F ∗} form a laminar family L. For notational
convenience, we could naturally rewrite any sub-path ρ∗[a, b] in an interval manner [a, b]. We can
view L as a tree where each node corresponds to an interval [a, b] together with a weight:

p[a,b] =
∑︂

e∈F ∗,{ae,be}={a,b}

w(e). (2)

Note that multiple edges e ∈ F ∗ might be hanging at the same vertex pair (a, b), which is why we
define p[a,b] by a summation. According to Lemma 4.5, we have:∑︂

[a,b]∈L

p[a,b] = w(F ∗) ≥ α

6
·w(ρ∗).

Thus, our goal is to show that DP[s, t, L] is at least the total weight over all nodes in the tree L.
For technical convenience, we will modify L to make it a binary tree. First, if the root node of

L is not [s, t], then add a root node corresponding to the interval [s, t] with weight p[s,t] = 0. In
general, while there is a node [a, b] with more than two children [a1, b1], [a2, b2], . . . , [ak, bk], where
k > 2, insert an intermediate node [b1, b] as a child of [a, b] of zero weight p[b1,b] = 0; and move the
children [a2, b2], . . . , [ak, bk] below [b1, b].

We will derive a sequence of lower bounds for DP[s, t, L] using the tree L and the dynamic
programming rules. Intuitively, we will keep unpacking the term DP[s, t, L] recursively using the
dynamic programming rule, and collect all the additive terms of the form w(B[·, ·]) that show up
during the unpacking procedure, and argue that the total sum of these additive terms is lower
bounded by w(F ∗).

To do this, to each node [a, b] of L, we will associate with a value q[a,b] ≥ 0 such that:

DP [a, b,w (ρ∗[a, b])] ≥
∑︂

[c,d]∈L[a,b]

q[c,d], (3)

where L[a, b] denotes the subtree of L rooted at [a, b]. We will define the values in {q[a,b] : [a, b] ∈ L}
as following.

16

• [a, b] is a leaf node of L. In this case, assign q[a,b] = w(B[a, b]).

• [a, b] has exactly one child [a1, b1]. In this case, we assign

q[a,b] =w(B[a, a1]) +w(B[b1, b])

+ 1
[︁
max{w(ρ∗[a, b1]),w(ρ∗[b1, b])} < ⌊w(ρ∗[a, b])⌋2

]︁
·w (B[a, b])

+ 1
[︁
max{w(ρ∗[a1, b1]),w(ρ∗[a, a1])} < ⌊w(ρ∗[a, b1])⌋2

]︁
·w (B[a, b1]) .

• [a, b] has two children [a1, b1] and [a2, b2] (where a1 lies between a and a2). In this case, we
assign

q[a,b] = w(B[a, a1]) +w(B[b1, a2]) +w(B[b2, b])

+ 1 [max{w(ρ∗[a, b1]),w(ρ∗[b1, b])} < ⌊w(ρ∗[a, b])⌋2] ·w (B[a, b])

+ 1 [max{w(ρ∗[a, a1]),w(ρ∗[a1, b1])} < ⌊w(ρ∗[a, b1])⌋2] ·w (B[a, b1])

+ 1 [max{w(ρ∗[b1, b2]),w(ρ∗[b2, b])} < ⌊w(ρ∗[b1, b])⌋2] ·w (B[b1, b])

+ 1 [max{w(ρ∗[b1, a2]),w(ρ∗[a2, b2])} < ⌊w(ρ∗[b1, b2])⌋2] ·w (B[b1, b2]) .

Next, we verify Equation (3) based on definitions of q[·,·]’s. This is done in a bottom up manner
on the tree L. The inequality holds trivially for leaf nodes by definition of q[·,·]. For a non-leaf node
[a, b], if it has only one child [a1, b1], then according our dynamic programming rule, we have

DP[a, b,w(ρ∗[a, b])] ≥DP[a, b1,w(ρ∗[a, b1])] + DP[b1, b,w(ρ∗[b1, b])]

+ 1
[︁
max{w(ρ∗[a, b1]),w(ρ∗[b1, b])} < ⌊w(ρ∗[a, b])⌋2

]︁
·w (B[a, b])

≥DP[a, a1,w(ρ∗[a, a1])] + DP[a1, b1,w(ρ∗[a1, b1])] + DP[b1, b,w(ρ∗[b1, b])]

+ 1
[︁
max{w(ρ∗[a, b1]),w(ρ∗[b1, b])} < ⌊w(ρ∗[a, b])⌋2

]︁
·w (B[a, b])

+ 1
[︁
max{w(ρ∗[a1, b1]),w(ρ∗[a, a1])} < ⌊w(ρ∗[a, b1])⌋2

]︁
·w (B[a, b1])

≥w(B[a, a1]) + DP[a1, b1,w(ρ∗[a1, b1])] +w(B[b, b1])

+ 1
[︁
max{w(ρ∗[a, b1]),w(ρ∗[b1, b])} < ⌊w(ρ∗[a, b])⌋2

]︁
·w (B[a, b])

+ 1
[︁
max{w(ρ∗[a1, b1]),w(ρ∗[a, a1])} < ⌊w(ρ∗[a, b1])⌋2

]︁
·w (B[a, b1])

≥DP[a1, b1,w(ρ∗[a1, b1])] + q[a,b]

.

Then by induction, we can conclude Equation (3); here, the third inequality is due to Lemma 4.3,
and recall the definition that ⌊w(ρ∗[a, b])⌋2 = 2k such that w(ρ∗[a, b]) ∈ [2k, 2k+1).

Next, assume [a, b] has two children [a1, b1] and [a2, b2] (where a1 lies between a and a2).
According to our dynamic programming rule, we have

DP[a, b,w(ρ∗[a, b])] ≥DP[a, b1,w(ρ∗[a, b1])] + DP[b1, b,w(ρ∗[b1, b])]

+ 1
[︁
max{w(ρ∗[a, b1]),w(ρ∗[b1, b])} < ⌊w(ρ∗[a, b])⌋2

]︁
·w (B[a, b])

.

To further expand the two terms DP[a1, b1,w(ρ∗[a1, b1])],DP[a2, b2,w(ρ∗[a2, b2])], we apply
again the dynamic programming rules together with Lemma 4.3, we have

DP[a, b1,w(ρ∗[a, b1])] ≥w(B[a, a1]) + DP[a1, b1,w(ρ∗[a1, b1])]

+ 1 [max{w(ρ∗[a, a1]),w(ρ∗[a1, b1])} < ⌊w(ρ∗[a, b1])⌋2] ·w (B[a, b1]) .

DP[b1, b,w(ρ∗[b)1, b])] ≥w(B[b1, a2]) + DP[a2, b2,w(ρ∗[a2, b2])] +w(B[b2, b])

+ 1 [max{w(ρ∗[b1, b2]),w(ρ∗[b2, b])} < ⌊w(ρ∗[b1, b])⌋2] ·w (B[b1, b])

+ 1 [max{w(ρ∗[b1, a2]),w(ρ∗[a2, b2])} < ⌊w(ρ∗[b1, b2])⌋2] ·w (B[b1, b2]) .

17

Summing up the above three inequalities, we have

DP[a, b,w(ρ∗[a, b])] ≥DP[a1, b1,w(ρ∗[a1, b1])] + DP[a2, b2,w(ρ∗[a2, b2])]

+w(B[a, a1]) +w(B[b1, a2]) +w(B[b2, b])

+ 1 [max{w(ρ∗[a, b1]),w(ρ∗[b1, b])} < ⌊w(ρ∗[a, b])⌋2] ·w (B[a, b])

+ 1 [max{w(ρ∗[a, a1]),w(ρ∗[a1, b1])} < ⌊w(ρ∗[a, b1])⌋2] ·w (B[a, b1])

+ 1 [max{w(ρ∗[b1, b2]),w(ρ∗[b2, b])} < ⌊w(ρ∗[b1, b])⌋2] ·w (B[b1, b])

+ 1 [max{w(ρ∗[b1, a2]),w(ρ∗[a2, b2])} < ⌊w(ρ∗[b1, b2])⌋2] ·w (B[b1, b2])

≥DP[a1, b1,w(ρ∗[a1, b1])] + DP[a2, b2,w(ρ∗[a2, b2])] + q[a,b].

By induction, we can show that

DP [s, t, L] ≥
∑︂

[a,b]∈L

q[a,b].

Finally, let us we prove that: ∑︂
[a,b]∈L

q[a,b] ≥
∑︂

[a,b]∈L

p[a,b].

By definition (2), the term p[a,b] is the total weight of edges e ∈ F ∗ which are 2
3 -hanging on ρ∗

at (a, b), and each q[a,b] is a sum of several terms of the form w(B[·, ·]). So the proof strategy is to
assign each edge e ∈ F ∗ to a set B[·, ·] which contains e and contributes to a value q[a,b].

Consider any edge e ∈ F ∗ which is 2
3 -hanging at (a, b). Let [c, d] be the lowest descendant of

[a, b] in L such that w(ρ∗[c, d]) ≥ ⌊w(ρ∗[a, b])⌋2. There are several cases to consider.

• [c, d] is a leaf node of L.
According to the assumption, we know that distG(c, d) ≥ 1

1+ϵ ·w(ρ∗[c, d]) > 1
2(1+ϵ) ·w(ρ∗[a, b])

and e is 2
3 -hanging at (a, b) on ρ∗. Since c, d both are lying on the sub-path ρ∗[a, b], by

Definition 4.2 we know that e is 1
3(1+ϵ) -hanging at (c, d) on the shortest path πc,d, and so

e ∈ B[c, d]. By definition, q[c,d] = w(B[c, d]), so we can assign w(e) to q[c,d].

• [c, d] has one child [c1, d1] in L.
If w(B[c, c1]) or w(B[d, d1]) is at least ⌊w[ρ∗[c, d]]⌋2, then by the same calculation as above,
we can argue that e is 1

3(1+ϵ) -hanging at one of (c, c1) or (d1, d) on shortest path πa,a1 or πd1,d,
respectively.

So, let us assume that w(B[c, c1]),w(B[d1, d]) < ⌊w(ρ∗[c, d])⌋2. There are two sub-cases to
verify.

– w(ρ∗[c, d1]) < ⌊w(ρ∗[c, d])⌋2.
In this case, by definition of q[c,d], it concludes the term w(B[c, d]). As distG(c, d) ≥
1

1+ϵ · w(ρ∗[c, d]) > 1
2(1+ϵ) · w(ρ∗[a, b]), we know that e is 1

3(1+ϵ) -hanging at (c, d) on
shortest path πs,t. So we can assign e to q[c,d].

– w(ρ∗[c, d1]) ≥ ⌊w(ρ∗[c, d])⌋2.
In this case, since [c, d] is the lowest descendant of [a, b] such thatw(ρ∗[c, d]) ≥ ⌊w(ρ∗[a, b])⌋2,
we have w(ρ∗[c1, d1]) < ⌊w(ρ∗[a, b])⌋2 ≤ ⌊w(ρ∗[c, d])⌋2. As we have already assumed
w(ρ∗[c, c1]) < ⌊w(ρ∗[c, d])⌋2, q[c,d] contains the term w(B[c, d1]). By the same calcula-

tion, we can show that e is 1
3(1+ϵ) -hanging at (c, d1) and can be assigned to q[c,d].

18

• [c, d] has two children, [c1, d1] and [c2, d2], in L and c1 lies between c and c2 on ρ∗.

By the choice of descendant [c, d], we know that

max {w(ρ∗[c1, d1]),w(ρ∗[c2, d2])} < ⌊w(ρ∗[a, b])⌋ ≤ ⌊w(ρ∗[c, d])⌋2.

We can first assume that

max {w(ρ∗[c, c1]),w(ρ∗[d1, c2]),w(ρ∗[d2, d])} < ⌊w(ρ∗[c, d])⌋2.

since otherwise we could assign e to one of the three edge sets which contribute to q[c,d]. Next,
we need to discuss several cases.

– max {w(ρ∗[c, d1],w(ρ∗[d1, d]))} < ⌊w(ρ∗[c, d])⌋2.
In this case, the term w(B[c, d]) would be included in the definition of q[c,d]. As before,

we can show that e is 1
3(1+ϵ) -hanging at (c, d), so we can assign e ∈ B[c, d] to q[c,d].

– w(ρ∗[c, d1]) ≥ ⌊w(ρ∗[c, d])⌋2.
In this case, since we already know

w(ρ∗[c, c1]),w(ρ∗[c1, d1]) < ⌊w(ρ∗[c, d])⌋2 ≤ ⌊w(ρ∗[c, d1])⌋2,

the term w(B[c, d1]) should be included in q[c,d]. As w(ρ∗[c, d1]) ≥ ⌊w(ρ∗[c, d])⌋2, for the
same reason as before we can show e ∈ B[c, d1], and so we are able to assign e to q[c,d].

– w(ρ∗[d1, d]) ≥ ⌊w(ρ∗[c, d])⌋2.
In this case, if w(ρ∗[d1, d2]) < ⌊w(ρ∗[d1, d])⌋2, then the term w(B[d1, d]) would be
included in the definition of q[c,d]. As w(ρ∗[d1, d]) ≥ ⌊w(ρ∗[c, d])⌋2 > 1

2w(ρ∗[a, b]), we
know that e ∈ B[d1, d], and so we can assign e to q[c,d].

Otherwise, we have w(ρ∗[d1, d2]) ≥ ⌊w(ρ∗[d1, d])⌋2 ≥ ⌊w(ρ∗[c, d])⌋2. Hence, by the
choice of [c, d], we must have

max {w(ρ∗[d1, c2]),w(ρ∗[c2, d2])} < ⌊w(ρ∗[a, b])⌋2 ≤ ⌊w(ρ∗[d1, d2])⌋2.

Consequently, q[c,d] contains the term w(B[d1, d2]). As w(ρ∗[d1, d2]) ≥ ⌊w(ρ∗[a, b])⌋2,
we know that e ∈ B[d1, d2], and so we can assign e to q[c,d].

In this way, we can show that any term p[a.b] > 0 can be assigned to some term q[c,d], and so we
have

DP [s, t, L] ≥
∑︂

[a,b]∈L

q[a,b] ≥
∑︂

[a,b]∈L

p[a,b] ≥
α

6
·w(ρ∗).

4.2.3 Upper Bounding the Multiplicity of P [s∗, t∗, L∗]

Lemma 4.8 implies that the weight of the multi-set P [s∗, t∗, L∗] of edges that are 1
3(1+ϵ) -hanging on

ρ[s∗, t∗, L∗] is at least α
6 ·w(ρ[s∗, t∗, L∗]). However, it does not mean we are pruning a lot of weight

by updating F old ← F old ∪ P [s∗, t∗, L∗] since the multi-set P [s∗, t∗, L∗] might include many edges
in E(H) \ (F new ∪ F old) with high multiplicity. Next, our main goal is to upper bound the total
amount of over-counting (that is, the difference between the weight of the multi-set P [s∗, t∗, L∗]
and the corresponding (non-multi) set).

Suppose ρ[s∗, t∗, L∗] is a (not necessarily simple) path ρ = ⟨(s∗ =)u1, u2, . . . , um(= t∗)⟩. Build a
tree Tdp according to the maximizers of the dynamic programming table as follows. The tree is built

19

in a top-down manner. Each node of Tdp is associated with an interval [i, j] ⊆ [1,m]. The root node
corresponds to interval [1,m]. For an arbitrary node [i, j], consider the maximizer for computing
the entry DP[ui, uj ,w(ρ[ui, uj])]. Since ρ[ui, uj] is the walk ⟨ui, ui+1, . . . , uj⟩, the maximizer for
entry DP[ui, uj ,w(ρ[ui, uj])] is either a vertex uk for i < k < j, or DP[ui, uj ,w(ρ[ui, uj])] is simply
equal to w(B[ui, uj]). In the former case, we leave [i, j] as a leaf node on Tdp; and in the latter
case, we create two children of [i, j] associated with [i, k] and [k, j].

Definition 4.9. According to the dynamic programming rules, for any copy of edge e in the multi-
set P [s∗, t∗, L∗], it should appear at some tree node [i, j] by set B[ui, uj]. For convenience, we say
that e is hanging at the interval [i, j] on ρ.

It is clear that any two different copies of the same edge e in P [s∗, t∗, L∗] should be hang-
ing at distinct intervals since none of the sets B[x, y] is a multi-set. Therefore, any edge e ∈(︁
E(H) \ (F new ∪ F old)

)︁
∩ P [s∗, t∗, L∗] is mapped to a set Ie of distinct intervals in Tdp.

Lemma 4.10. For any edge e ∈ E(H) \ (F new ∪F old) and any interval [i, j] ∈ Ie, the interval [i, j]
has at most 3 ancestors in Ie on Tdp.

Proof. Suppose, for the sake of contradiction, that [i, j] has four different ancestors [i1, j1] ⊂
[i2, j2] ⊂ [i3, j3] ⊂ [i4, j4] in the tree Tdp which are all in the set Ie. On the one hand, e should
belong to B[i, j]∩B[i1, j1]∩B[i2, j2]∩B[i3, j3]∩B[i4, j4], which implies that e is 1

3(1+ϵ) -hanging at

all of the pairs (i, j), (i1, i1), (i2, j2), (i3, j3), (i4, j4), and therefore we have

w(e) ≥ distG(ui4 , uj4) ≥ distG(ui3 , uj3) ≥ distG(ui2 , uj2)

≥ distG(ui1 , uj1) ≥ distG(ui, uj) ≥
1

3(1 + ϵ)
w(e).

However, by our rule of dynamic programming, we know that

(1 + ϵ)w(e) ≥ ⌊w(ρ[ui4 , uj4])⌋2 > ⌊w(ρ[ui3 , uj3])⌋2 > ⌊w(ρ[ui2 , uj2])⌋2

> ⌊w(ρ[ui1 , uj1])⌋2 > ⌊w(ρ[ui, uj])⌋2 ≥
1

6(1 + ϵ)
w(e).

This is impossible as there cannot be 5 different integral powers of 2 in the interval
[︂

w(e)
6(1+ϵ) , (1 + ϵ)w(e)

]︂
when ϵ < 0.1.

For each e ∈ E(H) \ (F new ∪ F old), let Je ⊆ Ie be the set of lowest nodes on Tdp. According to
Lemma 4.10, we know that |Je| ≥ 1

4 |Ie|, and therefore∑︂
e∈E(H)\(Fnew∪F old)

|Je| ·w(e) ≥ 1

4

∑︂
e∈E(H)\(Fnew∪F old)

|Ie| ·w(e) =
β

4
·w(ρ) ≥ α

48
·w(ρ).

Recall that β = DP[s∗, t∗, L∗]/w(ρ[s∗, t∗, L∗]). To lower bound the total weight of edges in P [s∗, t∗, L∗]
without any double-counting, it suffices to lower bound the quantity

∑︁
e∈E(H)\F ∗ 1[Je ̸= ∅] ·w(e).

Lower bounding
∑︁

e∈E(H)\(F old∪Fnew) 1[Je ̸= ∅] · w(e) via shortcuts. Intuitively speaking, if
a set Je is very large, say |Je| > 20, then e is hanging at many different positions simultaneously
[c1, d1], [c2, d2], . . . , [c20, d20] on ρ. Then, w(ρ[uc1 , ud20]) would be much larger than distG(uc1 , ud20),
and so we could shortcut the path ρ by replacing the sub-path ρ[uc1 , ud20] with the shortest path

20

between uc1 , ud20 and reduce w(ρ) significantly. Since we knew that ρ was already a (1 + ϵ)-
approximate shortest path between s and t at the beginning, we could shortcut ρ by at most
ϵ · distG(s, t) in total length, which would upper bound the total amount of multiplicities of Je’s.

Let us now formalize the above idea. We will design a procedure which repeatedly finds shortcuts
along ρ and maintains some invariants.

A shortcut structure on ρ.

• A subset Ke ⊆ Je for all e ∈ E(H) \ (F new ∪ F old).

• A sequence of disjoint intervals I = {[a1, b1], [a2, b2], . . . , [ak, bk]} such that bi ≤ ai+1 for
1 ≤ i < k.

• A sequence of shortcut (not necessarily simple) paths P = {η1, η2, . . . , ηk+1}, where ηi is a
path in G connecting ubi−1

and uai such that w(ηi) < w(ρ[ubi−1
, uai]); conventionally, set

s = ub0 and t = uak+1
. The paths ηi are the so-called shortcuts.

Denote η = η1 ◦ ρ[ua1 , ub1] ◦ η2 ◦ ρ[ua2 , ub2] ◦ · · · ◦ ρ[uak , ubk] ◦ ηk+1 which is a (not necessarily
simple) path between s and t.

We formulate two properties in terms of the above notation.

Invariant 4.11. Our shortcut algorithm will preserve the following properties.

(1) For any e ∈ E(H) \ (F new ∪ F old), if |Ke| > 20, then there exists an interval [a, b] ∈ I that
contains all [c, d] ∈ Ke.

(2)
∑︁

e∈E(H)\(Fnew∪F old) |Je \Ke| ·w(e) ≤ 10β · (w(ρ)−w(η)).

Let us now describe the shortcut algorithm which will only refine the intervals in I. At the
beginning, initialize Ke ← Je for all e ∈ E(H) \ (F new ∪ F old), I ← {[1,m]}, and η ← ρ. Note
that Invariant 4.11 holds initially. Our strategy is to successively decrease the length of η as long
as some nonempty set Ke has size larger than 20. We need to define the following notion of span
for each edge e ∈ E(H) \ (F new ∪ F old) such that |Ke| > 20.

Definition 4.12 (span). For each edge e ∈ E(H) \ (F new ∪ F old) such that |Ke| > 20, by In-
variant 4.11(1), there exists an interval [a, b] ∈ I which contains all intervals in Ke. Assume
[c1, d1], [c2, d2], . . . , [cl, dl] are all elements of Ke, then define the span of e (with respect to the
current P, I) to be span(e) = w(ρ[uc1 , udl]).

Claim 4.13. For any e ∈ E(H)\ (F new∪F old) such that |Ke| > 20, we have span(e) > 20
3(1+ϵ)w(e).

Proof. This is straightforward since e is 1
3(1+ϵ) -hanging on ρ at (uci , udi) and l > 20.

In each iteration of the shortcut procedure, as long as there exists e ∈ E(H) \ (F new ∪ F old)
such that |Ke| > 20, let f ∈ E(H) \ (F new ∪ F old) be the edge such that |Kf | > 20 and span(f) is
maximized. Let [c1, d1], [c2, d2], . . . , [cl, dl] be all the elements in Kf , and we already know l > 20.
Next, we show how to update I, P and sets {Ke : e ∈ E(H) \ (F new ∪ F old)}.

21

s uc1 ud1 uc2 ud2 uc3 ud3 t

f

e1 e2

Figure 8: In this example, we find the best edge f maximizing span(f) such that |Kf | > 20. Then,
we make a shortcut between uc1 and ud1 , and remove some intervals from Ke1 and Ke2 .

• Updating P, I.
Suppose f = (x, y). By definition of If , each f is 1

3(1+ϵ) -hanging at vertex pair (uc1 , ud1) and

(ucl , udl). Therefore, we have

distG(x, uc1) ≤
(︃
1− 1

3(1 + ϵ)

)︃
w(f) <

3

4
w(f),

distG(y, udl) <

(︃
1− 1

3(1 + ϵ)

)︃
w(f) <

3

4
w(f).

Hence, by triangle inequality, we have

distG(uc1 , udl) < distG(uc1 , x) +w(f) + distG(y, udl) <
5

2
w(f).

Let λ be the shortest path in G between uc1 and udl . Then, replace [a, b] with [a, c1] and
[dl, b] in I, and add λ to P as a new shortcut between c1 and dl.

• Updating {Ke : e ∈ E(H) \ (F new ∪ F old)}.
Let [i1, j1] be the maximal set corresponding to a tree node in Tdp such that i1 < c1 < j1, and
there exists an edge e1, |Ke1 | > 20 and [i1, j1] ∈ Ke1 ; if no such edge e1 exists, then simply set
i1 = j1 = c1. Symmetrically, define [i2, j2] to be the maximal interval such that i2 < dl < j2,
and there exists e2 such that |Ke2 | > 20 and [i2, j2] ∈ Ke2 . Note that since both [i1, j1], [i2, j2]
are tree nodes in Tdp, these two intervals are disjoint internally.

To update the sets {Ke : e ∈ E(H) \ (F new ∪ F old)}, for each Ke such that |Ke| > 20, if any
[i, j] ∈ Ke satisfies [i, j] ⊆ [i1, j2], then remove [i, j] from Ke.

See Figure 8 for an illustration. Next, we show that these updates preserve Invariant 4.11.

Lemma 4.14. After each iteration of updating P, I, and {Ke : e ∈ E(H) \ (F new ∪ F old)},
Invariant 4.11 is preserved.

Proof. Let us first verify Invariant 4.11(1). Consider any edge e ∈ E(H) \ (F new ∪ F old) such that
|Ke| > 20 at the beginning of the iteration. Since Invariant 4.11(1) held before this iteration, there
exists [a′, b′] ∈ I such that Ke ⊆ [a′, b′]. If [a′, b′] ̸= [a, b], then Invariant 4.11(1) continues to hold
for e.

22

When [a′, b′] = [a, b], according to our update rules, for each interval [i, j] ∈ Ke, |Ke| > 20,
which strictly contains c1 or dl, this interval must be contained entirely within [i1, j2]. Therefore,
after the updates, all elements in Ke are contained either in [a, c1] or [dl, b]. To complement the
argument for Invariant 4.11(1), it suffices to show that there cannot be two different elements
[i, j], [i′, j′] ∈ Ke such that [i, j] ⊆ [a, c1], [i

′, j′] ⊆ [dl, b]. This is because we chose f to be the
maximizer of span(f).

Next, we mainly focus on Invariant 4.11(2). It suffices to upper bound the total amount of edge
weight we remove from all the sets Ke by 10β (w(ρ[uc1 , udl])−w(λ)).

To limit the total amount of edge weights that we remove when updating {Ke : e ∈ E(H) \
(F new ∪F old)}, we distinguish between three cases for an interval [i, j] that belonged to Ke, |Ke| >
20, before the update.

• Case 1: [i, j] ⊆ [i1, j1]. Notice that each such interval [i, j] corresponds to an appearance of e
in the multi-set of edges P [ui1 , uj1 ,w(ρ[ui1 , uj1])] with total weight DP [ui1 , uj1 ,w(ρ[ui1 , uj1])].
Since (s∗, t∗, L∗) is the ratio maximizer, we know that

DP [ui1 , uj1 ,w(ρ[ui1 , uj1])] ≤ β ·w(ρ[ui1 , uj1]) ≤ (1 + ϵ)β ·w(e1)

≤ (1 + ϵ)β · 3(1 + ϵ)

20
span(e1)

≤ 1

5
β · span(f) = 1

5
β ·w(ρ[uc1 , udl]).

The last inequality is due to the selection of f , as f was the edge such that |Kf | > 20 with
maximum span(f).

• Case 2: [i, j] ⊆ [i2, j2]. Symmetrically, we can show that the total weight of all such copies of
edge e is at most

DP [ui2 , uj2 ,w(ρ[ui2 , uj2])] ≤ β ·w(ρ[ui2 , uj2]) ≤ (1 + ϵ)β ·w(e2)

≤ (1 + ϵ)β · 3(1 + ϵ)

20
span(e2)

≤ 1

5
β · span(f) = 1

5
β ·w(ρ[uc1 , udl]).

• Case 3: [i, j] ⊆ [j1, i2]. Let I1 be the set of all such intervals [i, j]. Then, since all such
intervals form a laminar family, we can find the set I2 ⊆ I1 of maximal intervals. Assume
I2 = {[p1, q1], [p2, q2], . . . , [pz, qz]} with qi ≤ pi+1, 1 ≤ i < z. Then any [i, j] ⊆ [j1, i2] which
belongs to some set Ke, |Ke| > 20 must be contained in an interval [p, q] ∈ I2, which corresponds
to one copy of e in the multi-set P [up, uq,w(ρ[up, uq])]. Therefore, the total weight of edges e
corresponding to such intervals [i, j] is bounded by

z∑︂
o=1

DP [upo , uqo ,w(ρ[upo , uqo])] ≤ β ·
z∑︂

o=1

w(ρ[upo , uqo])

≤ β ·w(ρ[uj1 , ui2])

≤ β ·w(ρ[uc1 , udl])

< 5β · (w(ρ[uc1 , udl])−w(λ)) .

Here, the first inequality holds because β is the maximum ratio. As for the last inequality, we
have

w(ρ[uc1 , udl]) ≥
l∑︂

o=1

w(ρ[co, do]) ≥
20

3(1 + ϵ)
·w(f).

23

On the other hand, since f = (x, y) is 1
3(1+ϵ) -hanging at both (uc1 , ud1) and (ucl , udl), by the

triangle inequality we get

w(λ) ≤ distG(uc1 , x) +w(f) + distG(y, udl) ≤ (3 + 2ϵ)w(f).

Hence, we have w(ρ[uc1 , udl]) ≥
20

3(1+ϵ)(3+2ϵ)w(λ) > 2w(λ), and consequently we have:

w(ρ[uc1 , udl])−w(λ) ≥ 1

5
w(ρ[uc1 , udl]).

By the above case analysis, the total amount of edge weight we remove from all the sets Ke is
at most

2

5
β ·w(ρ[uc1 , udl]) + 5β · (w(ρ[uc1 , udl])−w(λ))

≤ 2

5
β · (w(ρ[uc1 , udl])−w(λ)) + 5β · (w(ρ[uc1 , udl])−w(λ))

< 10β (w(ρ[uc1 , udl])−w(λ)) .

Hence, Invariant 4.11(2) still holds.

By Lemma 4.14, we can repeatedly update the sets I, P, and {Ke : e ∈ E(H) \ (F new ∪ F old)}
until all the sets Ke have size at most 20. Then, we can derive a lower bound on

∑︁
e∈E(H)\F ∗ 1[Je ̸=

∅] ·w(e) as follows:∑︂
e∈E(H)\F ∗

1[Je ̸= ∅] ·w(e) ≥ 1

20

∑︂
e∈E(H)\F ∗

|Ke| ·w(e)

≥ 1

20

⎛⎝ ∑︂
e∈E(H)\(Fnew∪F old)

|Je| ·w(e)−
∑︂

e∈E(H)\F ∗

|Je \Ke| ·w(e)

⎞⎠
≥ 1

20
·

⎛⎝β

4
w(ρ)−

∑︂
e∈E(H)\F ∗

|Je \Ke| ·w(e)

⎞⎠
≥ 1

20
·
(︃
β

4
w(ρ)− 10β(w(ρ)−w(η))

)︃
≥ 1

20
·
(︃
β

4
w(ρ)− 10β · ϵ ·w(ρ)

)︃
>

β

100
w(ρ) ≥ α

600
w(ρ).

Recall that w(ρ)−w(η) ≤ (1 + ϵ)distG(s, t)− distG(s, t) ≤ ϵ ·w(ρ) and ϵ ≤ 10−2. Therefore, when
we update F new ← F new ∪E(ρ[s∗, t∗, L∗]) and F old ← F old ∪ P [s∗, t∗, L∗], then w (F new) increases
by w(ρ) and F old increases by at least α

600w(ρ), where α = w
(︁
E(H) \ (F new ∪ F old)

)︁
/w (Gopt,ϵ).

Given this, the following statement helps to verify property (2) of Theorem 4.1.

Lemma 4.15. Assume θ = w(H)/w(Gopt,ϵ). Then, when Algorithm 1 terminates, we have
w(H1) ≤ O(log θ) ·w(Gopt,ϵ).

Proof. During the course of Algorithm 1, let α = w(H \ F old)/w(Gopt,ϵ). For any fixed integer k,
whenever α ∈ [2k, 2k+1), each iteration of the while-loop decreases w(H \F old) by ∆ and increases

24

w(F new) by at most 600
2k
· ∆. Hence, while α ∈ [2k, 2k+1), the weight w(F new) could increase by

at most 600
2k
· 2k+1 · w(Gopt,ϵ) = O(1) · w(Gopt,ϵ). Therefore, in the end when β < 1, we have

w(H \ (F new ∪ F old)) = α · w(Gopt,ϵ) ≤ 600w(Gopt,ϵ) and w(F new) ≤ O(log θ) · w(Gopt,ϵ), which
finishes the proof.

4.2.4 Stretch Analysis

Let us begin with a basic property of Algorithm 1.

Lemma 4.16. During Algorithm 1, when an edge e ∈ E joins F new, then it stays in F new until
the end.

Proof. This is evident because all the multi-sets P [s, t, L] are contained in E(H)\(F new∪F old).

Finally, let us analyze the stretch of graph H1 = F new ∪ (H \ (F new ∪ F old)), proving property
(1) of Theorem 4.1.

Lemma 4.17. The stretch of graph H1 = F new ∪ (H \ F old) is at most 1 +O(1) · δ.

Proof. Consider any pair of vertices s, t ∈ V . By assumption, we have distH(s, t) ≤ (1+δ)·distG(s, t).
To bound the distance between s and t in H1, let us conceptually maintain a short path ρ in H1∪H
which is originally the shortest path between s, t in H and then gradually transform it to an st-path
in H1. To analyze the length of ρ, we use a potential function Φ(ρ) which is the total length of the
edges in not in H1. Initially, Φ(ρ) is at most w(ρ) ≤ (1 + δ) · distG(s, t).

Let us iteratively update ρ so that ρ eventually belongs to H1. While there is an edge (u, v) ∈
E(ρ) not in H1, by definition, (u, v) must belong to F old. Consider the moment when (u, v) was
added to F old by Algorithm 1. According to the algorithm description, at the moment there must
exist a path γu,v ⊆ E(F new) (between vertices x, y ∈ V) such that (u, v) is 1

3(1+ϵ) -hanging at γu,v.
Let ρ1 and ρ2 be the shortest paths between u, x and v, y in graph H. By Definition 4.2, we have

w(ρ1) +w(γu,v) +w(ρ2) ≤ (1 + δ) · distG(u, x) +w(γu,v) + (1 + δ) · distG(y, v)
≤ (1 + δ) · ((1 + ϵ)w(u, v)−w(γu,v)) +w(γu,v)

≤ (1 + δ)(1 + ϵ) ·w(u, v).

Update ρ← ρ[s, u] ◦ ρ1 ◦ γu,v ◦ ρ2 ◦ ρ[v, t], and so w(ρ) would increase by at most

(1 + δ)(1 + ϵ) ·w(u, v)−w(u, v) ≤ (δ + ϵ+ δϵ) ·w(u, v) < 3δ ·w(u, v).

The key point is that all edges on γu,v are in F new at the moment when (u, v) joined F old, and by
Lemma 4.16, these edges will stay in F new til the end. Therefore, by replacing ρ with ρ[s, u] ◦ ρ1 ◦
γu,v ◦ ρ2 ◦ ρ[v, t], the value of Φ(ρ) has decreased by at least w(γu,v) ≥ 1

3(1+ϵ)w(u, v), according to
Definition 4.2.

As Φ(ρ) was originally at most (1 + δ) · distG(s, t), the total amount of error increase would be
bounded by

3δ · 3(1 + ϵ) · (1 + δ) · distG(s, t) ≤ 10δ · distG(s, t).

If follows that distH1(s, t) ≤ (1 + 11δ) · distG(s, t).

25

4.3 Extension to Large Edge Weights

In this subsection, let us discuss how to deal with general edge weights when W ≥ n2/ϵ. Recall
that G = (V,E,w) is an undirected weighted planar graph, where w : E → {1, 2, . . . ,W}. We may
assume that W = maxe∈E w(e), and for any edge (u, v) ∈ E, distG(u, v) = w(u, v), since otherwise
we could remove (u, v) from E. Under these assumptions, we know that w(Gopt,ϵ) ≥ W , so we
could always include all edges with weight less than W/n in a spanner of weight O(w(Gopt,ϵ)).

To compute a spanner, contract all the connected components spanned by edges of weights
less than ϵW/n2, and denote the contracted graph by G′ = (V ′, E′,w′), where we round the edge

weights as w′(u, v) =
⌊︂
w(u, v) · n2

Wϵ

⌋︂
. Intuitively, the optimal spanner on G′ will be the same as

the optimal spanner on the original graph G since the total weight change is small. The advantage
of the rounding procedure is that the maximum weight is now polynomial in n, and so the runtime
would also be polynomial, according to the main algorithm.

Technically speaking, by definition of G′, edge weights w′ take integer values in [1, n2/ϵ]. Then,
apply the main algorithm on graph G′ to obtain a (1 + ϵ0)-spanner H ′ in time poly(n, ϵ−1) such
that

w′(H ′) ≤ C ·w′(G′
opt,2ϵ),

where C = O(1), ϵ0 = ϵ · 2O(log∗ 1/ϵ) and G′
opt,2ϵ is the optimal (1 + 2ϵ)-spanner of G′. In the end,

define
E0 = {e ∈ E : w(e) ≤W/n}

and return
H = H ′ ∪ E0

as the approximate spanner of G. Let us verify the stretch and weight of H below.

Lemma 4.18. For any (s, t) ∈ E, we have distH(s, t) ≤ (1 + ϵ0 + 2ϵ) ·w(s, t).

Proof. If w(s, t) ≤ W/n, then by construction (s, t) ∈ E(H), so distH(s, t) = w(s, t). Otherwise,
we may assume w(s, t) > W/n. Since H ′ is a (1 + ϵ0)-spanner of G

′, we have

distH′(s, t) ≤ (1 + ϵ0)w
′(s, t) ≤ (1 + ϵ0)w(s, t) · n

2

Wϵ
.

Let π′ be the shortest path between s and t in the contracted graph H ′. Unpack all the
contracted nodes inG′, then π′ expands to a sequence of edges (u1, v1), (u2, v2), . . . , (uk, vk) ∈ E(H),
where vi−1, ui are in the same contracted node for all 1 ≤ i ≤ k + 1 (s = v0, t = uk+1). Since H
includes all edges whose weights are at most W/n under w, the unpacking increases the distance
between s and t by at most

∑︁k+1
i=1 distH(vi−1, ui) < n · Wϵ

n2 = Wϵ
n . Therefore, overall we have

distH(s, t) ≤ Wϵ

n
+

k∑︂
i=1

w(ui, vi) ≤
Wϵ

n
+

k∑︂
i=1

Wϵ

n2
· (w′(ui, vi) + 1)

< (1 + ϵ0)w(s, t) +
2Wϵ

n
< (1 + ϵ0 + 2ϵ)w(s, t).

Lemma 4.19. w(H) ≤ (4C + 4) ·w(Gopt,ϵ).

Proof. Define F = E(Gopt,ϵ) ∪ E0, and let ˆ︁G be the graph obtained from (V, F) by contracting all
edges in F whose weights are less than ϵW/n2.

26

We claim that ˆ︁G is a (1 + 2ϵ)-spanner of G′. In fact, for any edge (s, t) ∈ E such that
w(s, t) > W/n, we have

dist ˆ︁G(s, t) ≤ distGopt,ϵ(s, t) ·
n2

Wϵ
≤ (1 + ϵ)w(s, t) · n

2

Wϵ
< (1 + ϵ) · (w′(s, t) + 1) ≤ (1 + 2ϵ) ·w′(s, t).

The last inequality holds because w(s, t) > W/n and w′(s, t) =
⌊︂
w(s, t) · n2

Wϵ

⌋︂
≥ ⌊n/ϵ⌋ ≥ 1 + ϵ−1.

As ˆ︁G is a (1 + 2ϵ)-spanner of G′, we have

n2

Wϵ
·w(Gopt,ϵ) +w′(E0) ≥ w′(ˆ︁G) ≥ w′(G′

opt,2ϵ) ≥
1

C
·w′(H ′)

≥ 1

C
·
(︁
w′(H \ E0)

)︁
≥ 1

C

(︁
w′(H)−w′(E0)

)︁
≥ 1

C

(︃
n2

Wϵ
(w(H)− |E(H)|)

)︃
− 1

C
w′(E0).

Rearranging the terms and using |E(H)| ≤ |E| < 3n and 3n ≤W ≤ w(Gopt,ϵ), we obtain

w(H) < C ·w(Gopt,ϵ) + (C + 1)
Wϵ

n2
·w′(E0) + 3n

≤ C ·w(Gopt,ϵ) + (C + 1) · W
n
· |E0|+ 3n

< (4C + 4) ·w(Gopt,ϵ).

5 Hardness for Planar Spanners

In this section, we prove Theorem 1.3. For simplicity of notation, we assume that ϵ > 0 is rational.
The integer edge weight condition is achieved through proper scaling.

3SAT. Given a set X of n Boolean variables x1, x2, . . . , xn and a Boolean formula ϕ in conjunctive
normal form, where each clause has at most 3 literals, the 3SAT problem is to determine whether
there is an assignment of true or false values to the variables such that ϕ is satisfied (i.e., evaluates
true).

Incidence graph. Given a 3SAT instance I with variable set X and a Boolean formula ϕ =
c1∧c2∧ . . .∧cm, the incidence graph G = G(I) corresponding to I is a bipartite graph with partite
sets corresponding to all variables in X and all clauses in ϕ; there is an undirected edge (xi, cj) in
G if and only if the clause cj contains xi or ¬xi. The edge (xi, cj) is a positive edge if cj contains
xi and is a negative edge if cj contains ¬xi. For each clause cj , let |cj | be the number of variables
in cj . For each variable xi, let C

+
i be the set of clauses containing xi and C−

i be the set of clauses
containing ¬xi.

Planar 3SAT. A 3SAT instance I is planar if its incidence graph G is planar. Furthermore, I
is planar rectilinear if there exists a planar representation of G where the vertices are represented
by horizontal line segments (specifically, the vertices representing variables are on the x-axis while

27

the segments representing clauses are above or below the x-axis); and the edges are represented by
vertical segments. An instance I is planar rectilinear monotone if all edges above the x-axis are
positive and all edges below are negative (see an example in Figure 9).

x1 x2 x3 x4 x5

c1 = x1 ∨ x2 ∨ x3

c2 = x1 ∨ x4 ∨ x5

c3 = ¬x1 ∨ ¬x3 ∨ ¬x4

Figure 9: A planar representation of a planar rectilinear monotone 3SAT instance.

Theorem 5.1 ([dBK12]). Planar rectilinear monotone 3SAT is NP-hard.

Weight-k planar (1 + ϵ)-spanner. Given a planar graph G = (V,E), is there a (1 + ϵ)-spanner
of G of weight k? In this section, we reduce the weight-k planar (1 + ϵ)-spanner problem to the
planar rectilinear monotone 3SAT.

Reduction. Given an instance I of planar rectilinear monotone 3SAT. Let G′ be the planar
rectilinear drawing of the incidence graph of I. We construct an edge-weighted planar graph G
such that G has a (1 + ϵ)-spanner of weight at most k (for some value of k defined later) if and
only if I is satisfiable. We can assume that each variable x appears in both positive and negative
clauses, since otherwise we can assign a true/false value to x according to a clause it appears in
and delete all clauses containing x or ¬x.

Clause gadget. If clause cj has 3 literals, we assume w.l.o.g. that cj = x1 ∧ x2 ∧ x3. In the
drawing of G′, we assume that the edges corresponding to (x1, cj), (x2, cj) and (x3, cj) appear
from left to right. We then replace each clause segment with the gadget in Figure 10b. Formally,
we create a cycle (ej , lj,1, rj,1, lj,2, rj,2, lj,3, rj,3, fj). For h ∈ {1, 2, 3}, the vertices lj,h and rj,h are
connected to a gadget of the literal xh, which will be discussed later, via two edges (lj,h, aj,h) and
(rj,h, bj,h). The order of those edges is shown in Figure 10b. The weight of each edge (lj,h, rj,h) is
2 + 2ϵ. We set the weight of each edge (lj,h, aj,h) and (rj,h, bj,h) to be ϵ. Set the weight of (ej , fj)
to 6+10ϵ

1+ϵ . All other edges have weight 0. If clause cj contains two literals, say x1 and x2, then we
construct the graph of the clause similar to the case with three literals, but without lj,3 and rj,3.
The weight of (lj,1, rj,1) and (lj,2, rj,2) remains unchanged, while the weight of (ej , fj) is

4+6ϵ
1+ϵ .

Literal gadget. We now construct the gadget for each literal xi. Let hi = max{|C+
i |, |C

−
i |}.

Assume w.l.o.g. that |C+
i | ≤ |C

−
i |. The gadget contains two disjoint paths from a vertex si to a

vertex ti, each path has length 4hi. The two paths enclose a region. Inside the region, there is an

28

cj

(x1, cj) (x2, cj) (x3, cj)

(a) Original Clause

ej fj

lj,1 rj,1

aj,1 bj,1

gj,1

lj,2 rj,2

aj,2 bj,2

gj,2

lj,3 rj,3

aj,3 bj,3

gj,3

(b) Clause Graph

Figure 10: The clause graph of cj = x1 ∨ x2 ∨ x3

edge (si, ti) of weight 4hi/(1+ ϵ). For each clause cj , recall that lj,i, rj,i are connected to the gadget
of xi via two edges, and let aj,i, bj,i be the other endpoints of those edges. We set w(aj,i, bj,i) = 2
and create a vertex gj,i inside the enclosed region of the two paths from si to ti that is adjacent
to aj,i and bj,i. We set the weight of two edges (gj,i, aj,i) and (gj,i, bj,i) to be 1 + ϵ. We arrange
all edges (aj,i, bj,i) corresponding to positive clauses on the upper path from si to ti and all edges
corresponding to negative clauses on the lower path as in Figure 11. From left to right, the order
of each (aj,i, bj,i) added to the path from si to ti is the same as the order of their corresponding
edges in the drawing of G′. If cj contains xi, we call the edge (aj,i, bj,i) a true edge. Otherwise,
(aj,i, bj,i) is a false edge. We append an edge of weight 2hi as the last non-zero weight edge in both
the upper and lower paths from si to ti. Call these edges (ui, u

′
i) and (vi, v

′
i).

si ti

cj

ui u′i

vi v′i

aj,i bj,i

gj,i

Figure 11: Literal Gadget

29

If the number of positive clauses is strictly less than the number of negative clauses, we add
|C−

i | − |C
+
i | true edges, each of which does not connect to any clause gadgets in the upper path

(see Figure 11). We connect true edges to form a path from si to ti of length 4hi, that is, the edges
connecting positive/negative edges have weight 0. We use G[xi] to denote the gadget corresponding
to xi and G[cj] for the gadget corresponding to a clause cj .

The construction of G takes polynomial time of the total number of clauses and literals in I.
The graph G is planar by the planarity of G′. Let W = 2ϵ

∑︁
j |cj |+2(5+ 2ϵ) ·

∑︁
i hi. We prove the

following lemma:

Lemma 5.2. I is satisfiable if and only if G has a spanner of total weight at most W .

For the necessity, assume that I admits a satisfying truth assignment for the Boolean variables
x1, x2, . . . , xn. We then construct a (1 + ϵ)-spanner of G of weight at most W .

Lemma 5.3. If I is satisfiable, then G has a (1 + ϵ)-spanner of total weight at most W .

Proof. Consider a truth assignment satisfying ϕ. We initialize H to be a subgraph containing all
weight-0 edges in G. For each variable xi, if xi = true, we add all true edges in the literal gadget
corresponding to xi to H. Otherwise, we add all false edges in G[xi] to H. For each true or false
edge (aj,i, bj,i), we also add (aj,i, gj,i) and (bj,i, gj,i) to H.

Then, for each clause cj containing a variable xi, we add the edges (lj,i, aj,i) and (rj,i, bj,i) (blue
and green edges in Figure 11).

We show thatH is a (1+ϵ)-spanner of G, that is, for every edge (u, v) in G, we have distH(u, v) ≤
(1 + ϵ)w(u, v). Since H contains all edges of weight 0, we only need to consider the case when
w(u, v) > 0.

By our construction, we add all edges connecting clause gadgets to literal gadgets. Thus, we
focus on the case that (u, v) is either in a clause gadget or in a literal gadget.

Let cj = x1 ∨ x2 ∨ x3 be a clause with the clause gadget of cj as in Figure 10b. The case when
cj contains only two literals can be solved similarly. Consider the edge (lj,1, rj,1). If x1 = true, we
have

distH(lj,1, rj,1) = w(lj,1, aj,1) +w(aj,1, bj,1) +w(bj,1, rj,1) = 2 + 2ϵ. (4)

Else if x1 = false, then

distH(lj,1, rj,1) = w(lj,1, aj,1)+w(aj,1, gj,1)+w(gj,1, bj,1)+w(bj,1, rj,1) = 2+4ϵ ≤ (1+ϵ)w(lj,1, rj,1).
(5)

In both cases, the distances between (lj,1, rj,1) is preserved up to (1 + ϵ)-factor in H. Using a
similar argument, the distance between (lj,2, rj,2) and (lj,3, rj,3) is also preserved. We now prove
that distH(ej , fj) ≤ (1 + ϵ)w(ej , fj). Recall that we do not add the edge (ej , fj) to H. We have

distH(ej , fj) =w(ej , lj,1) + distH(lj,1, rj,1) +w(rj,1, lj,2) + distH(lj,2, rj,2)

+w(rj,2, lj,3) + distH(lj,3, rj,3) +w(rj,3, fj)

=distH(lj,1, rj,1) + distH(lj,2, rj,2) + distH(lj,3, rj,3).

Observe that Equations (4) and (5) yields distH(lj,1, rj,1), distH(lj,2, rj,2), distH(lj,3, rj,3) ∈ {2 +
2ϵ, 2 + 4ϵ}. Since there is at least one literal in {x1, x2, x3} is true, there is at least one value, say
distH(lj,1, rj,1), equal to 2 + 2ϵ. Thus,

distH(ej , fj) = distH(lj,1, rj,1) + distH(lj,2, rj,2) + distH(lj,3, rj,3)

≤ 2 + 2ϵ+ 2 · (2 + 4ϵ) = 6 + 10ϵ = (1 + ϵ)w(ej , fj).

30

For each literal gadget, since there is a path from si to ti of total weight 4hi containing only true
or false edges, the distance between si and ti in H is 4hi, and hence is (1 + ϵ) times the distance
in G which is w(si, ti) = 4hi/(1 + ϵ). For every edge (aj,i, bj,i) in G, since we add (aj,i, cj,i) and
(bj,i, gj,i) to H, distH(aj,i, bj,i) ≤ w(aj,i, gj,i) +w(bj,i, gj,i) = 2 + 2ϵ = (1 + ϵ)distG(aj,i, bj,i).

We now analyze the total weight of H. We distinguish between four types of edges in H:

• (lj,i, aj,i) and (rj,i, bj,i): Each of these edges has weight ϵ. The total weight of those edges is
2ϵ ·

∑︁
j |cj |.

• (aj,i, cj,i) and (bj,i, cj,i): Each literal gadget of xi has 4max{|C+
i |, |C

−
i |} edges of this type.

The total weight of these edges is
∑︁

i(1 + ϵ) · 4max{|C+
i |, |C

−
i |}.

• (ui, u
′
i) and (vi, v

′
i): Each literal gadget for xi has 2 edges of this type. The total weight is

then 4 ·max{|C+
i |, |C

−
i |}.

• (aj,i, bj,i): H contains exactly max{|C+
i |, |C

−
i |} edges of this type in each literal gadget. The

total weight of this type is
∑︁

i 2max{|C+
i |, |C

−
i |}.

The total weight of H is

2ϵ ·
∑︂
j

|cj |+
∑︂
i

(1 + ϵ) · 4max{|C+
i |, |C

−
i |}+ 4 ·max{|C+

i |, |C
−
i |}+

∑︂
i

2 ·max{|C+
i |, |C

−
i |} = W,

as desired.

We now show the converse direction.

Lemma 5.4. If G has a (1 + ϵ)-spanner of total weight at most W , then I is satisfiable.

Observe that if G has a spanner of total weight W , then there exists a (1+ ϵ)-spanner of G with
the same total weight and containing all weight-0 edges. Hence, we can assume that any spanner
contains all weight-0 edges.

Let H be a (1 + ϵ)-spanner of G containing all weight-0 edges. We show that H has weight at
most W only if I is satisfiable.

Observation 5.5. H contains all edges (lj,i, aj,i), (rj,i, bj,i), (aj,i, gj,i), (bj,i, gj,i), (ui, u
′
i), and

(vi, v
′
i).

Recall that hi = max{|C+
j |, |C

−
j |}. We then show that each literal gadget has bounded weight.

Lemma 5.6. For every literal xi, every (1 + ϵ)-spanner H of G must contain a subgraph of G[xi]
of weight at least 2hi · (5 + 2ϵ).

Proof. Consider the gadget for xi as in Figure 11. Let H[xi] be the intersection of H with G[xi].
By Observation 5.5, for every clause cj containing either xi or ¬xi, H[xi] must contain both edges
(aj,i, gj,i) and (bj,i, gj,i). Furthermore, H[xi] also contains (ui, u

′
i) and (vi, v

′
i). The total weight of

these edges is 4hi + 2hi · (2 + 2ϵ) = 4hi · (2 + ϵ).
If H[xi] contains (si, ti), then the total weight of H[xi] is at least 4hi/(1 + ϵ) + 4hi · (2 + ϵ) =

4hi

(︂
2 + ϵ+ 1

1+ϵ

)︂
> 2hi · (5 + 2ϵ) given ϵ < 1.

If H[xi] does not contain (si, ti), then the only (1+ ϵ) path between si and ti is either the path
containing all true edges or the path containing all false edges in G[xi]. Note that the total weight
of true (resp., false) edges is 2hi. Hence, the total weight of H[xi] is at least 4hi · (2 + ϵ) + 2hi =
2hi(5 + 2ϵ), as claimed.

31

We can now prove Lemma 5.4.

Proof of Lemma 5.4. Since H must contain both edges (lj,i, aj,i) and (rj,i, bj,i) for all pairs (j, i)
when those edges exist, we have:

w(H) = 2ϵ ·
∑︂
j

|cj |+
∑︂
i

(w(H[xi]))

≥ 2ϵ ·
∑︂
j

|cj |+ 2(5 + 2ϵ) ·
∑︂
i

hi (by Lemma 5.6)

= W.

(6)

Equality holds if and only if H does not contain any edge of positive weight in G[cj] for all j and
the weight of each H[xi] achieves the minimum value 2hi(5 + 2ϵ) for all i. For the weight of each
H[xi] to be 2hi(5 + 2ϵ), H[xi] does not contain the edge (si, ti), but rather a path of all true or
false edges from si to ti. Observe that H[xi] cannot contain both true and false edges at the same
time (otherwise the total weight is not minimum). Thus, if H[xi] contains a path of true edges
from si to ti, we set xi = true, otherwise, we set xi = false. We show that by this assignment,
every clause is satisfied.

Consider a clause cj = x1 ∨ x2 ∨ x3 with G[cj] in Figure 10b. Since H is a spanner of G,
distH(ej , fj) ≤ (1 + ϵ)w(ei, fi) = 6 + 10ϵ. Given that H does not contain any edge in G[cj] of
positive weight, we prove that distH(lj,1, rj,1) ∈ {2 + 2ϵ, 2 + 4ϵ}. Observe that there are only two
cases for the shortest path P from lj,1 to rj,1 in H:

• P contains (aj,1, bj,1). In this case, distH(lj,1, rj,1) = 2ϵ+w(aj,1, bj,1) = 2ϵ+ 2.

• P contains (aj,1, cj,1) and (bj,1, cj,1). In this case, distH(lj,1, rj,1) = 2ϵ + w(aj,1, cj,1) +
w(bj,1, cj,1) = 2 + 4ϵ.

Similarly, we obtain the same result for distH(lj,2, rj,2) and distH(lj,3, rj,3). On the other hand,
observe that distH(ej , fj) = distH(lj,1, rj,1) + distH(lj,2, rj,2) + distH(lj,3, rj,3) as all other edges in
the path from ej to fj have weight 0. If distH(lj,1, rj,1) = distH(lj,2, rj,2) = distH(lj,3, rj,3) = 2+ 4ϵ,
distH(ei, fi) = 6 + 12ϵ > (1 + ϵ)w(ei, fi) = 6 + 10ϵ. Then, at least one of the edges among
(aj,1, bj,1), (aj,2, bj,2), (aj,3, bj,3) is present in H. Since if one edge, say (aj,1, bj,1), appears in H, we
set x1 to be true if (aj,1, bj,1) is a true edge and false otherwise. In both cases, cj is satisfied.

6 A Hard Instance for the Greedy Algorithm

In this section, we adapt the hard instance for Euclidean spaces of [LST+24] to give a hard instance
for planar graphs where greedy spanners have heavy total weight compared with optimal (1 + ϵ)-
spanners, even when relaxing the stretch of the greedy spanner to be 1 + xϵ for some large x≫ 1.
Recall that the greedy t-spanner H for an edge-weighted graph G = (V,E,w) is constructed as
follows [ADD+93]: Initialize an empty graph H = (V, ∅), and then consider the edges (u, v) ∈ E
sorted by nondecreasing weight (ties are broken arbitrarily), and if distH(u, v) > t · distG(u, v) in
the current spanner H, then add (u, v) to H.

Theorem 6.1. For every ϵ ∈ (0, 14) and every parameter 1 ≤ x ≤ 1
2

√︁
1/ϵ, there exists an undirected

planar graph G = (V,E,w) with positive edge weights such that w(Ggr(x)) ≥ Ω
(︂
ϵ−1

x2

)︂
· w(Gopt,ϵ),

where Ggr(x) is the greedy (1 + xϵ)-spanner of graph G.

32

Proof. This construction is adapted from a Euclidean example in [LST+24]. The graph G is built
as following.

• Vertices. Let V = {w}∪{x1, x2, . . . , xn}∪{y1, y2, . . . , yn} be a vertex set with 2n+1 vertices,

where n = 1 + ⌈ 1x + ϵ−1

2x2 ⌉.

• Edges. For each 1 ≤ i ≤ n, add edge (xi, yi) with weight 1. Connect all vertices via a path
π = ⟨x1, x2, . . . , xn, w, y1, y2, . . . , yn⟩. For each 1 ≤ i < n, set the weight of (xi, xi+1) and
(yi, yi+1) to be xϵ, and add edge (xn, y1) with weight

w(xn, y1) = 1 + ϵ− (n− 1)xϵ ∈
(︃
1− 1

2x
− xϵ, 1− 1

2x

]︃
.

Finally, set the weights of (xn, w) and (w, y1) to be 1
2 · (1 + xϵ) ·w(xn, y1).

One can verify that G is a planar graph; check Figure 12 for a planar drawing.

x1

x2

x3

x4

y1

y2

y3

y4 w

Figure 12: A planar drawing of the hard example against the greedy algorithm when n = 4. The
path π is highlighted as the orange path.

First, we study the total weight of Gopt,ϵ. Consider the graph H = π ∪ {(xn, y1)}. Then, for
any edge (xi, yi), by definition of n, we have

distH(xi, yi) ≤ (n− 1)xϵ+w(xn, y1) ≤ 1 + ϵ = (1 + ϵ)w(xi, yi).

Therefore, H is a (1 + ϵ)-spanner, which implies:

w(Gopt,ϵ) ≤ w(H) = 2(n− 1) · xϵ+ (1 + xϵ)w(xn, y1) +w(xn, y1)

≤ 2

(︃
ϵ+

1

2x

)︃
+ (2 + xϵ) ·

(︃
1− 1

2x

)︃
< 2ϵ+ 1/x+ 2 + xϵ < 4.

Next, we study the total weight of Ggr(x). The greedy algorithm would first go over all edges on path
π and add them toGgr(x). After that, when it comes to the edge (xn, y1), sincew(xn, w)+w(w, y1) =
(1 + xϵ)w(xn, y1), it would not include edge (xn, y1).

Finally, it makes a pass over all edges (xi, yi) for all 1 ≤ i ≤ n. We argue that the greedy
algorithm must add edge (xi, yi) in Ggr(x), namely distGgr(x)

(xi, yi) > 1 + xϵ for the current Ggr(x).

33

Consider any path ρ between xi and yi in the current version of Ggr(x). If ρ = π[xi, yi], then we
have

w(π[xi, yi]) = (n− 1)xϵ+ (1 + xϵ)w(xn, y1)

= 1 + ϵ+ xϵ ·w(xn, y1)

> 1 + ϵ+ xϵ− (x2ϵ2 + ϵ/2)

> 1 + xϵ+ (ϵ/2− x2ϵ2) ≥ 1 + xϵ.

Otherwise if ρ ̸= π[xi, yi], ρ would contain the edge (xk, yk) for some 1 ≤ k < i along with the edges
(xk, xk+1) and (yk, yk+1). Since all edges (xj , xj+1), (yj , yj+1) have weight xϵ, the total weight of ρ
would be at least 1 + 2xϵ > 1 + xϵ.

In the end, Ggr(x) would include the edges (xi, yi) for all 1 ≤ i ≤ n, so w(Ggr(x)) > n. Hence,
the approximation ratio is at least

w
(︁
Ggr(x)

)︁
w(Gopt,ϵ)

>
n

4
>

ϵ−1

8x2
.

Acknowledgements. Hung Le and Cuong Than are supported by the NSF CAREER award
CCF-2237288, the NSF grants CCF-2517033 and CCF-2121952, and a Google Research Scholar
Award. Research by Csaba D. Tóth was supported by the NSF award DMS-2154347. Shay Solomon
is funded by the European Union (ERC, DynOpt, 101043159). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor the granting authority can be
held responsible for them. Shay Solomon is also funded by a grant from the United States-Israel
Binational Science Foundation (BSF), Jerusalem, Israel, and the United States National Science
Foundation (NSF). Work of Tianyi Zhang was done while at ETH Zürich when supported by funding
from the starting grant “A New Paradigm for Flow and Cut Algorithms” (no. TMSGI2 218022)
of the Swiss National Science Foundation.

References

[ABS+20] Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad
Javad Latifi Jebelli, Stephen G. Kobourov, and Richard Spence. Graph spanners: A
tutorial review. Comput. Sci. Rev., 37:100253, 2020. doi:10.1016/J.COSREV.2020.

100253.

[ADD+93] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On
sparse spanners of weighted graphs. Discrete & Computational Geometry, 9:81–100,
1993. doi:10.1007/BF02189308.

[AHJ+19] Abu Reyan Ahmed, Keaton Hamm, Mohammad Javad Latifi Jebelli, Stephen G.
Kobourov, Faryad Darabi Sahneh, and Richard Spence. Approximation algorithms
and an integer program for multi-level graph spanners. In Proc. Analysis of Exper-
imental Algorithms (SEA2), volume 11544 of LNCS, pages 541–562. Springer, 2019.
doi:10.1007/978-3-030-34029-2_35.

[Bak94] Brenda S. Baker. Approximation algorithms for NP-complete problems on planar
graphs. J. ACM, 41(1):153–180, 1994. doi:10.1145/174644.174650.

34

https://doi.org/10.1016/J.COSREV.2020.100253
https://doi.org/10.1016/J.COSREV.2020.100253
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/978-3-030-34029-2_35
https://doi.org/10.1145/174644.174650

[BBM+11] Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova,
and Grigory Yaroslavtsev. Improved approximation for the directed spanner prob-
lem. In Proc. 38th International Colloquium on Automata, Languages, and Program-
ming (ICALP), volume 6755 of LNCS, pages 1–12. Springer, 2011. doi:10.1007/

978-3-642-22006-7_1.

[BCE+11] MohammadHossein Bateni, Chandra Chekuri, Alina Ene, Mohammad Taghi Haji-
aghayi, Nitish Korula, and Dániel Marx. Prize-collecting Steiner problems on planar
graphs. In Proc. 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1028–1049, 2011. doi:10.1137/1.9781611973082.79.

[BCJW24] Fritz Bökler, Markus Chimani, Henning Jasper, and Mirko H. Wagner. Exact mini-
mum weight spanners via column generation. In Proc. 32nd European Symposium on
Algorithms (ESA), volume 308 of LIPIcs, pages 30:1–30:17. Schloss Dagstuhl, 2024.
doi:10.4230/LIPICS.ESA.2024.30.

[BDHM16] MohammadHossein Bateni, Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dániel
Marx. A PTAS for planar group Steiner tree via spanner bootstrapping and prize
collecting. In Proc. 48th ACM Symposium on Theory of Computing (STOC), pages
570–583, 2016. doi:10.1145/2897518.2897549.

[BGJ+12] Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and
David P Woodruff. Transitive-closure spanners. SIAM Journal on Computing,
41(6):1380–1425, 2012. doi:10.1137/110826655.

[BH98] Ulrik Brandes and Dagmar Handke. NP-completeness results for minimum planar
spanners. Discrete Mathematics & Theoretical Computer Science, 3, 1998. URL: http:
//eudml.org/doc/120593.

[BHM11] Mohammadhossein Bateni, Mohammadtaghi Hajiaghayi, and Dániel Marx. Approxi-
mation schemes for Steiner forest on planar graphs and graphs of bounded treewidth.
J. ACM, 58(5), 2011. doi:10.1145/2027216.2027219.

[BKM09] Glencora Borradaile, Philip Klein, and Claire Mathieu. An O(n log n) approximation
scheme for Steiner tree in planar graphs. ACM Trans. Algorithms, 5(3):31:1–31:31,
2009. doi:10.1145/1541885.1541892.

[BRR10] Piotr Berman, Sofya Raskhodnikova, and Ge Ruan. Finding sparser directed span-
ners. In Proc. IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), volume 8 of LIPIcs, pages 424–435. Schloss
Dagstuhl, 2010. doi:10.4230/LIPICS.FSTTCS.2010.424.

[CC13] Paz Carmi and Lilach Chaitman-Yerushalmi. Minimum weight Euclidean t-spanner is
NP-hard. J. Discrete Algorithms, 22:30–42, 2013. doi:10.1016/J.JDA.2013.06.010.

[CCL+23] Hsien-Chih Chang, Jonathan Conroy, Hung Le, Lazar Milenkovic, Shay Solomon, and
Cuong Than. Covering planar metrics (and beyond): O(1) trees suffice. In Proc. 64th
IEEE Symposium on Foundations of Computer Science (FOCS), page 2231–2261, 2023.
doi:10.1109/focs57990.2023.00139.

[CDNS95] Barun Chandra, Gautam Das, Giri Narasimhan, and José Soares. New sparseness
results on graph spanners. Int. J. Comput. Geom. Appl., 5:125–144, 1995. doi:10.

1142/S0218195995000088.

35

https://doi.org/10.1007/978-3-642-22006-7_1
https://doi.org/10.1007/978-3-642-22006-7_1
https://doi.org/10.1137/1.9781611973082.79
https://doi.org/10.4230/LIPICS.ESA.2024.30
https://doi.org/10.1145/2897518.2897549
https://doi.org/10.1137/110826655
http://eudml.org/doc/120593
http://eudml.org/doc/120593
https://doi.org/10.1145/2027216.2027219
https://doi.org/10.1145/1541885.1541892
https://doi.org/10.4230/LIPICS.FSTTCS.2010.424
https://doi.org/10.1016/J.JDA.2013.06.010
https://doi.org/10.1109/focs57990.2023.00139
https://doi.org/10.1142/S0218195995000088
https://doi.org/10.1142/S0218195995000088

[Che86] L. Paul Chew. There is a planar graph almost as good as the complete graph. In
Proc. 2nd ACM Symposium on Computational Geometry (SoCG), pages 169–177, 1986.
doi:10.1145/10515.10534.

[CK94] Leizhen Cai and Mark Keil. Spanners in graphs of bounded degree. Networks,
24(4):233–249, 1994.

[Cla87] Kenneth Clarkson. Approximation algorithms for shortest path motion planning. In
Proc. 19th ACM Symposium on Theory of Computing (STOC), pages 56–65, 1987.
doi:10.1145/28395.28402.

[CW18] Shiri Chechik and Christian Wulff-Nilsen. Near-optimal light spanners. ACM Trans.
Algorithms, 14(3):33:1–33:15, 2018. doi:10.1145/3199607.

[dBK12] Mark de Berg and Amirali Khosravi. Optimal binary space partitions for segments
in the plane. Int. J. Comput. Geom. Appl., 22(3):187–206, 2012. doi:10.1142/

S0218195912500045.

[DFG11] Feodor F. Dragan, Fedor V. Fomin, and Petr A. Golovach. Approximation of minimum
weight spanners for sparse graphs. Theor. Comput. Sci., 412(8-10):846–852, 2011. doi:
10.1016/J.TCS.2010.11.034.

[DK11] Michael Dinitz and Robert Krauthgamer. Directed spanners via flow-based linear pro-
grams. In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC),
pages 323–332, 2011. doi:10.1145/1993636.1993680.

[DKR16] Michael Dinitz, Guy Kortsarz, and Ran Raz. Label cover instances with large girth and
the hardness of approximating basic k -spanner. ACM Trans. Algorithms, 12(2):25:1–
25:16, 2016. doi:10.1145/2818375.

[DNS95] Gautam Das, Giri Narasimhan, and Jeffrey Salowe. A new way to weigh malnour-
ished Euclidean graphs. In Proc. 6th ACM-SIAM Symposium on Discrete Algorithms
(SODA), page 215–222, 1995. URL: http://dl.acm.org/citation.cfm?id=313651.
313697.

[DZ16] Michael Dinitz and Zeyu Zhang. Approximating low-stretch spanners. In Proc. 27th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 821–840, 2016. doi:

10.1137/1.9781611974331.CH59.

[FKS19] Eli Fox-Epstein, Philip N. Klein, and Aaron Schild. Embedding planar graphs into
low-treewidth graphs with applications to efficient approximation schemes for metric
problems. In Proc. 30th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1069–1088, 2019. doi:10.1137/1.9781611975482.66.

[FL22] Arnold Filtser and Hung Le. Low treewidth embeddings of planar and minor-free
metrics. In Proc. 63rd IEEE Symposium on Foundations of Computer Science (FOCS),
page 1081–1092, 2022. doi:10.1109/focs54457.2022.00105.

[FN22] Arnold Filtser and Ofer Neiman. Light spanners for high dimensional norms via
stochastic decompositions. Algorithmica, 84(10):2987–3007, 2022. doi:10.1007/

S00453-022-00994-0.

36

https://doi.org/10.1145/10515.10534
https://doi.org/10.1145/28395.28402
https://doi.org/10.1145/3199607
https://doi.org/10.1142/S0218195912500045
https://doi.org/10.1142/S0218195912500045
https://doi.org/10.1016/J.TCS.2010.11.034
https://doi.org/10.1016/J.TCS.2010.11.034
https://doi.org/10.1145/1993636.1993680
https://doi.org/10.1145/2818375
http://dl.acm.org/citation.cfm?id=313651.313697
http://dl.acm.org/citation.cfm?id=313651.313697
https://doi.org/10.1137/1.9781611974331.CH59
https://doi.org/10.1137/1.9781611974331.CH59
https://doi.org/10.1137/1.9781611975482.66
https://doi.org/10.1109/focs54457.2022.00105
https://doi.org/10.1007/S00453-022-00994-0
https://doi.org/10.1007/S00453-022-00994-0

[GKL23] Elena Grigorescu, Nithish Kumar, and Young-San Lin. Approximation algorithms
for directed weighted spanners. Proc. 26th Approximation, Randomization, and Com-
binatorial Optimization Algorithms and Techniques (APPROX), 275:8:1–8:23, 2023.
doi:10.4230/LIPIcs.APPROX/RANDOM.2023.8.

[GMW23] Renzo Gómez, Flávio Keidi Miyazawa, and Yoshiko Wakabayashi. Improved NP-
hardness results for the minimum t-spanner problem on bounded-degree graphs. Theor.
Comput. Sci., 947:113691, 2023. doi:10.1016/J.TCS.2023.113691.

[HHZ21] Bernhard Haeupler, D. Ellis Hershkowitz, and Goran Zuzic. Tree embeddings for hop-
constrained network design. In Proc. 53rd ACM Symposium on Theory of Computing
(STOC), pages 356–369, 2021. doi:10.1145/3406325.3451053.

[Kei88] J. Mark Keil. Approximating the complete Euclidean graph. In Proc. 1st Scandina-
vian Workshop on Algorithm Theory (SWAT), volume 318 of LNCS, pages 208–213.
Springer, 1988. doi:10.1007/3-540-19487-8_23.

[Kle05] Philip N. Klein. A linear-time approximation scheme for planar weighted TSP. In Proc.
46th IEEE Symposium on Foundations of Computer Science (FOCS), pages 647–657,
2005. doi:10.1109/SFCS.2005.7.

[Kob18] Yusuke Kobayashi. NP-hardness and fixed-parameter tractability of the minimum span-
ner problem. Theor. Comput. Sci., 746:88–97, 2018. doi:10.1016/J.TCS.2018.06.

031.

[Kor01] Guy Kortsarz. On the hardness of approximating spanners. Algorithmica, 30:432–450,
2001. doi:10.1007/S00453-001-0021-Y.

[KP94] Guy Kortsarz and David Peleg. Generating sparse 2-spanners. Journal of Algorithms,
17(2):222–236, 1994. doi:10.1006/JAGM.1994.1032.

[LS22a] Hung Le and Shay Solomon. Near-optimal spanners for general graphs in (nearly) linear
time. In Proc. 33rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
3332–3361, 2022. doi:10.1137/1.9781611977073.132.

[LS22b] Hung Le and Shay Solomon. Truly optimal Euclidean spanners. SIAM Journal on
Computing, 0(0):FOCS19–135–FOCS19–199, 2022. doi:10.1137/20M1317906.

[LS23] Hung Le and Shay Solomon. A unified framework for light spanners. In Proc. 55th
ACM Symposium on Theory of Computing (STOC), pages 295–308, 2023. doi:10.

1145/3564246.3585185.

[LST+24] Hung Le, Shay Solomon, Cuong Than, Csaba D Tóth, and Tianyi Zhang. Towards
instance-optimal Euclidean spanners. In Proc. 65th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 1579–1609, 2024. doi:10.1109/FOCS61266.2024.
00099.

[NS07] Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge Univer-
sity Press, January 2007. doi:10.1017/cbo9780511546884.

[PS89] David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory,
13(1):99–116, 1989. doi:10.1002/jgt.3190130114.

37

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.8
https://doi.org/10.1016/J.TCS.2023.113691
https://doi.org/10.1145/3406325.3451053
https://doi.org/10.1007/3-540-19487-8_23
https://doi.org/10.1109/SFCS.2005.7
https://doi.org/10.1016/J.TCS.2018.06.031
https://doi.org/10.1016/J.TCS.2018.06.031
https://doi.org/10.1007/S00453-001-0021-Y
https://doi.org/10.1006/JAGM.1994.1032
https://doi.org/10.1137/1.9781611977073.132
https://doi.org/10.1137/20M1317906
https://doi.org/10.1145/3564246.3585185
https://doi.org/10.1145/3564246.3585185
https://doi.org/10.1109/FOCS61266.2024.00099
https://doi.org/10.1109/FOCS61266.2024.00099
https://doi.org/10.1017/cbo9780511546884
https://doi.org/10.1002/jgt.3190130114

[PU89] David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. SIAM
J. Comput., 18(4):740–747, 1989. doi:10.1137/0218050.

[RS91] Jim Ruppert and Raimund Seidel. Approximating the d-dimensional complete Eu-
clidean graph. In Proc. 3rd Canadian Conference on Computational Geometry (CCCG),
pages 207–210, 1991. URL: https://cccg.ca/proceedings/1991/paper50.pdf.

[Smi25] Michiel Smid. New references related to geometric spanner networks, 2025.
https://people.scs.carleton.ca/~michiel/SpannerBook/newreferences.html,
accessed March 2025.

[SZ04] Mikkel Sigurd and Martin Zachariasen. Construction of minimum-weight spanners. In
Proc. 12th European Symposium on Algorithms (ESA), volume 3221 of LNCS, pages
797–808. Springer, 2004. doi:10.1007/978-3-540-30140-0_70.

38

https://doi.org/10.1137/0218050
https://cccg.ca/proceedings/1991/paper50.pdf
https://people.scs.carleton.ca/~michiel/SpannerBook/newreferences.html
https://doi.org/10.1007/978-3-540-30140-0_70

	Introduction
	Our Main Contribution: Approximate Light Spanners
	Hardness of Minimum Spanners

	Technical Overview
	Hard instances
	A pruning framework in planar graphs

	Preliminaries
	Pruning Planar Light Spanners
	Description of the Pruning Algorithm and Runtime Analysis
	Weight Analysis
	Structural Properties
	Lower Bounding DP[s*, t*, L*]
	Upper Bounding the Multiplicity of P[s*, t*, L*]
	Stretch Analysis

	Extension to Large Edge Weights

	Hardness for Planar Spanners
	A Hard Instance for the Greedy Algorithm

