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A focus on quantity in calculus instruction can enrich students’ understanding of what 
they are doing, and why they are doing it. To help prepare calculus students for future 
learning in a physics course, we present an evidentiary argument that a Riemann sum 
representation of integration with quantities is important for quantifying in physics. 
This paper presents two conservation laws encountered in a physics course through 
the lens of the Fundamental Theorem of Calculus as a potential bridge between the 
calculus that students learn, and important physical contexts in which it is used.  
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INTRODUCTION 
Physics is the science of change, and calculus is its language. Most physics and 
engineering majors are required to complete calculus and calculus-based introductory 
physics courses in their first year of study – ideally preparing them to use calculus in 
physically significant contexts. Calculus helps guide modelling in physics; it is 
essential to describing how physical quantities are related to each other, and for 
creating a structure for new ones to emerge. While many students master procedures 
in their calculus courses, research shows that it is not unusual for them to view the 
mathematics in mathematics courses as distinct from physics (Bajracharya, Sealey and 
Thompson, 2023). This paper argues for an agreed-upon objective for calculus learning 
that students understand why they do what they do in a calculus course, as well as how 
to do it. The physical world creates a need for the tools that calculus provides. This 
need is an opportunity for learning, as seen through the lens of Harel’s necessity 
principle -- students must have an intellectual need for a topic to be able to learn it. 
In addition to quantities playing an important role in physics, the quantities of calculus 
mean more in calculus learning than simply being the objects of procedures. 
Researchers argue that reasoning with an explicit focus on mathematical quantities 
facilitates students’ learning of calculus. For example, the differential dx in an 
indefinite integral is seen by many as a cue to the variable of integration. Operationally, 
there is nothing wrong with that interpretation, it helps you efficiently get an answer, 
but it reveals essentially nothing about why you would want to perform the integral in 
the first place. Many authors argue for an infinitesimal interpretation of dx as a 
quantity, because it facilitates visualizing a tiny amount of something, which is 
valuable in making meaning of the ratio and products involving dx (Thompson, 2011, 
Oehrtman and Simmons, 2023, Ely and Jones, 2023). 
Ratio quantities, product quantities, rates, intervals, accumulation and change are 
mathematical quantities around which the ideas of calculus are formed. Student 



  
conceptualization of these quantities, and how derivatives and integrals emerge from 
their combination, is at the heart of understanding why one does calculus in the 
sciences, and not just how to do it. Conceptualizing the unit as part of quantity has been 
shown to be important for students in mathematics courses. Thompson (2011) 
emphasizes the importance of the unit as part of the quantity itself, e.g. a speed v= 10 
m/s. In one study in determining the areas and volumes of shapes, Dorko and Speer 
(2015) observed that calculus students who wrote correct units could explain 
dimensions of planar figures and solids, and connect this knowledge to the shapes’ 
units. In contrast, students who struggled with units also struggled with dimensionality. 
This brief paper narrows the calculus focus to the evaluation theorem of the 
fundamental theorem of calculus (FTC) 𝐹 𝑎 − 𝐹 𝑏 = 𝑓 𝑥 𝑑𝑥)

* , and the 
mathematical quantities it combines. It highlights the generative richness of the FTC 
in the context of two foundational laws of physics – the laws of conservation of 
energy, and the conservation of momentum. The paper concludes, that through 
coordination, the two disciplines can help students’ conceptual gap narrow.  
BACKROUND 
Quantification and symbolizing in physics 
Quantification involves generating physical quantities as useful and productive objects 
for making sense of a situation. Consider a sailboat moving across water. What 
measurable quantities can help describe the motion? What arithmetic makes sense in 
constructing rates? What are their units? White Brahmia (2019) argues that 
quantification is at the root of modelling on physics, emphasizing the importance of 
quantity and its rate of change. Many physics quantities are vector quantities, and 
signed scalars, presenting an additional challenge for new learners. Many quantities 
emerge from multiplying and dividing other quantities (e.g., momentum = mass x 
velocity, density=mass/volume). Procedurally, the arithmetic involved in creating new 
quantities is not a challenge for most students, however understanding why the 
arithmetic makes sense can pose a significant challenge (Thompson, 2011).  
Physics students struggle with symbolizing quantities and operations (Von Korff and 
Rebello, 2012). Given the challenges of quantification and symbolizing in introductory 
physics, students must have a solid understanding of mathematical quantities and their 
meanings before they blend them with the many new symbols they will encounter in a 
physics course. For example, Gauss’s law combines mathematical quantities, 
symbolizing and both vector and scalar physical quantities: 𝑬 ∙ 𝑑𝑨 = .

/01   

Reliable resources and difficulties applying calculus reasoning in physics  
Conceptualizing the summing up of quantities, as exemplified in the Riemann sum, is 
productive for many students (Meredith and Margonelle, 2008, Von Korff and Rebello, 
2012, Sealey, 2014, Ely and Jones, 2023). However, students often struggle with 
understanding physical quantities that approach zero. Visualizing what happens to the 



  
physical quantity represented by the infinitesimal dx in a definite integral in the limit 
that it goes to zero is difficult. Where does it go? What are you summing up if you’re 
multiplying by zero? Research suggests that physics students are more successful when 
reasoning about summing finite infinitesimals, as this approach helps make the abstract 
concept of limits more accessible and intuitive. (Meredith and Margonelle, 2008, Von 
Korff and Rebello, 2012, Oehrtman and Simmons, 2023) 
Interpretation of the FTC through mathematics quantities 
Mathematics education researchers present a framing of the FTC as a relationship 
between key mathematical quantities of change, rate and accumulation (Samuels, 
2022), see Table 1(a). 
 

Physics 
quantity 

𝑓 𝑏
− 𝑓(𝑎) 

= 
𝑑𝑓

45)

45*
 

= 𝑑𝑓
𝑑𝑥

𝑑𝑥
)

*
 

= 
𝑓′(𝑥)𝑑𝑥
)

*
 

 Total 
change 
(accumulati
on) 

 Infinite 
sum of 
small 
change 

 Infinite sum of 
dep. variable 
change for each 
interval  ´ interval  

 Infinite sum 
of rate ´ 
interval 

impulse 𝑝 𝑡9
− 𝑝 𝑡:  

= 
𝑑𝑝

;5;<

;5;=
 

 𝑑𝑝
𝑑𝑡
𝑑𝑡

;<

;=
 

 
𝐹(𝑡)𝑑𝑡

;<

;=
 

 Change in 
momentum 

 Same as 
above 

 Same as above  Infinite sum 
of force ´ 
time interval 

work done 
on system 

𝑈 𝑥9
− 𝑈 𝑥:  

= 
𝑑𝑈

454<

454=
 

 𝑑𝑈
𝑑𝑥

𝑑𝑥
4<

4=
 

 
𝐹(𝑥)𝑑𝑥

4<

4=
 

 Change in 
potential 
energy 

 Same as 
above 

 Same as above  Infinite sum 
of force ´ 
displacement 

Table 1: (a) Shaded region represents mathematical quantities in the FTC (Samuels, 
2022) (b) Unshaded region is an FTC representation of conservation laws. 

The term change here is used to refer uniquely to the change in the dependent variable. 
While both ∆y and ∆x are referred to as "change" in mathematics, in the context of 
scientific measurement they represent different types of change. One is manipulated, 
and the other is a response, even though they covary. The right –hand side is a sum of 
infinitesimally small products. Each product has a specific value of the rate as one 
factor, and infinitesimally small interval of the independent variable as the other. The 
key mathematical quantities are the change, the infinitesimal products, and the 
accumulation that is found through summing up these tiny products. 



  
EXAMPLES OF FTC IN PHYSICS: CONSERVATION LAWS 
The conservation laws are introduced in students’ first physics course, mechanics.  The 
conservation of total mechanical energy and the total momentum of a system form the 
foundation of mechanics. The Fundamental Theorem of Calculus (FTC) provides a 
framework for representing these conservation laws, as represented in Table 1 (b).  
The total energy of a system changes when an external object exerts a force on the 
system as its position changes along the direction of the force. The dot product of the 
two vector quantities (force and displacement) in the integral result in a scalar change 
in energy that is exactly equal to the cumulative effect of the force acting over a 
displacement (position interval). This accumulation is so significant that it is given a 
specific name: work. Work is the only way to change the mechanical energy a system. 
In the context in Table 1(b), the force both drives and quantifies the rate at which work 
is done as the object’s position changes. Similarly, the total momentum of a system 
changes when a force acts over a time interval. The vector change in momentum is 
equal to the cumulative effect of the vector force over that total time interval. This 
accumulation, too, is so crucial that it is given a name: impulse. Here, the force both 
drives and quantifies the time rate at which momentum changes. 
A student who is well-versed from calculus in the mathematical quantities that make 
up the FTC will be better-positioned to take up the new and challenging ideas that it 
frames when they encounter them in the context of physics. Energy and momentum are 
abstract, being able to fall back on a facility with conceptualizing the calculus can make 
learning them easier. Emphasizing the meaning of the operators, quantities and their 
symbols in the FTC can help prepare students to more easily frame the applications 
they will encounter in their subsequent courses. 
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Table 2: FTC symbols and quantities common across calculus and physics.  



  
IMPLICATIONS FOR CALCULUS AND PHYSICS INSTRUCTION 
Symbols and quantities carry deep significance, and calculus instruction can convey 
that to students. Table 2 presents those that recur in the FTC, and merit instructional 
time in calculus. Physics instructors can help enrich their students’ mathematical 
knowledge by knowing the calculus quantities and correctly using them in physics 
instruction help their students’ calculus knowledge emerge in physics contexts. 
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