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Abstract

k-means++ and the related greedy k-means++ algorithm are celebrated algorithms
that efficiently compute seeds for Lloyd’s algorithm. Greedy k-means++ is a
generalization of k-means++ where, in each iteration, a new seed is greedily chosen
among multiple ℓ ≥ 2 points sampled, as opposed to a single seed being sampled
in k-means++. While empirical studies consistently show the superior performance
of greedy k-means++, making it a preferred method in practice, a discrepancy
exists between theory and practice. No theoretical justification currently explains
this improved performance. Indeed, the prevailing theory suggests that greedy
k-means++ exhibits worse performance than k-means++ in worst-case scenarios.
This paper presents an analysis demonstrating the outperformance of the greedy
algorithm compared to k-means++ for a natural class of well-separated instances
with exponentially decaying distributions, such as Gaussian, specifically when
ℓ = ln k +Θ(1), a common parameter setting in practical applications.

1 Introduction

Clustering of k means is the most widely used method for data analytics. In the problem, given a set
of points in a high-dimensional space along with a parameter k > 0 as input, we are asked to find a
set of k centers in the space that minimizes the total squared distance of the points to the center set.
This problem is known to be NP-hard [Aloise et al., 2009, Mahajan et al., 2012] and does not admit
an approximation arbitrarily close the optimum unless P = NP [Awasthi et al., 2015, Lee et al., 2017].

While several constant-factor approximation algorithms have been found [Kanungo et al., 2002,
Ahmadian et al., 2019, Grandoni et al., 2022, Cohen-Addad et al., 2022], Lloyd’s heuristic [Lloyd,
1982] remains the most popular in practice due to its fast running time, simplicity, and easy adaptation
to parallel and distributed settings. Lloyd’s heuristic starts with k initial seeds and iteratively updates
the k clusters by alternating between assigning points to their closest centroid and recomputing the
centroid of each cluster.

It is well known that the quality of Lloyd’s k-means clustering critically depends on the initial
centroids (seeds). In fact, poorly chosen seeds can lead to significantly worse clustering results, even
an unbounded cost compared to the optimum even for fixed k and n values [Arthur et al., 2007].
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To address this issue, [Arthur et al., 2007] proposed a very simple seeding method called k-means++.
It begins by choosing the first seed uniformly at random from the data points and subsequently
samples a seed with probability proportional to the squared distance of that point to the already
chosen seeds. They proved that k-means++ achieves an O(ln k)-approximation in expectation. k-
means++ has been commonly used in conjunction with Lloyd’s heuristic because the seeding is fast
and it can make the solution returned by Lloyd’s significantly better.

Interestingly, what is more commonly implemented is a variant of k-means++, which is called greedy
k-means++. The greedy variant of the algorithm differs in that in each iteration, it first samples ℓ ≥ 2
candidates and chooses the candidate from them as a seed that decreases the cost function the most.
This greedy algorithm is also discussed in the paper that introduced k-means++ [Arthur et al., 2007]
and is implemented in popular libraries such as Scikit-learn library [Pedregosa et al., 2011] because
of its superior experimental performance over k-means++.

The expectation had been that the greedy variant would yield a seeding at least as good as, if not
better than, k-means++ theoretically in the worst case. Surprisingly, the greedy k-means++ was
recently shown to be Ω(ℓ log k)-approximate [Bhattacharya et al., 2020]. That is, strictly worse than
the standard k-means++ for certain instances, which contradicts empirical findings.

The lower bound was further improved to be Ω(ℓ3 log3 k/ log2(ℓ log k)) [Grunau et al., 2023]. The
paper additionally showed that it is O(ℓ3 log3 k)-approximate on the positive side. These results do
not explain why greedy outperforms k-means++ in practice. The gap between theory and practice
motivates this paper.

1.1 Our Results and Contributions

In this paper, we present the first beyond-worst-case analysis of Greedy k-means++ for a natural
class of instances to bridge the gap between theory and practice. Our analysis demonstrates that the
greedy k-means++ algorithm indeed outperforms k-means++ for such instances.

Theoretical challenge. In the line of research focused on beyond-worst-case analysis of the k-means
problem, a well-explored class of instances is well-separable inputs, where an optimal k-means
clustering partitions X into k clusters and the distance between any two cluster centroids is sufficiently
large compared to the variance of each cluster. Well-separable instances were widely considered
in the literature [Jaiswal and Garg, 2012, Ackermann and Blömer, 2010, Braverman et al., 2011,
Shechner et al., 2020]. However, even with such a simple point set, it has been theoretically proven
that greedy k-means++ performs worse than k-means++ in [Bhattacharya et al., 2020].

Main theoretical result. We demonstrate that Greedy k-means++ outperforms k-means++ for a
natural class of instances, which we call regular2, with the following properties:

1. Points of each cluster follow an exponentially decaying distribution, such as Gaussian
[Bishop, 2007, Aggarwal and Reddy, 2014]. Further, each cluster is assumed to be symmetric
since k-means clustering is not well suited for highly asymmetric clusters.

2. Clusters have a similar number of points within a constant factor. This is justified by the
fact that while k-means doesn’t explicitly assume approximately equal-sized clusters, it is
known to struggle with clusters of significantly different size [Bishop, 2013].

3. The distances between clusters are within a constant factor of kθ where θ ∈ (0, 1/2],
assuming that each cluster’s radius (the average distance of points to the center) is Θ(1).
This property is also obtained naturally: the distance between k centers sampled uniformly
at random from [0, 1]k is Θ(

√
k) with a high probability.

In essence, the above assumptions characterize the instances where the k-means clustering method
can be ideally used. For these k-means clustering-friendly instances, we show that Greedy k-means++
with ℓ = ln k + Θ(1) is O((ln ln k)2)-approximate for the above regular instances, as opposed to
k-means++ that is shown to be Ω(ln k)-approximate. Provided that ℓ = Θ(ln k) is a common choice
in practice—for example, the Scikit-learn library [Pedregosa et al., 2011] sets ℓ = ⌈ln k⌉+ 2, our
result implies that the commonly used Greedy has a better theoretical guarantee over k-means++,
even asymptotically.

2Later, we will more formally define the instances to consider and call them EWW.
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Analysis overview. The high-level analysis idea is as follows. Let us say that a cluster is covered if a
point within the cluster has been chosen as a seed. Since clusters are sufficiently far from each other
and have similar sizes, it is advantageous to cover all clusters.

For simplicity, suppose that we are at the beginning of the κ-th iteration and have successfully covered
the κ− 1 clusters without wasting any previous seeds. Further, assume that the chosen seeds are close
to the cluster centers, which is ensured by the fact that clusters have exponentially decaying tails in
distance, and therefore most sampled points are not too far from their centers. Here, it is used that if
a point is conditioned on being sampled from a specific cluster, the sample more or less follows a
uniform sampling from the cluster since the clusters are sufficiently far from one another.

Then, we can show that given multiple sampled candidates, the greedy algorithm chooses one from
an uncovered cluster to decrease the k-means objective the most. Thus, as long as the greedy
algorithm finds at least one candidate point from an uncovered cluster out of ℓ = Θ(ln k) candidates,
it successfully covers an additional cluster in the current κ-th iteration.

The greedy algorithm may select a candidate point further from the centers when given multiple such
candidate points, since it may prefer a point that is close to many clusters simultaneously. However,
since the clusters have exponentially decaying tails, we can show that even the worst candidate point
has a distance of at most O(ln ln k) from its respective center in expectation. In contrast, we show
that for regular instances, k-means++ is highly likely to fail to cover many clusters because it only
samples one point in each iteration.

When clusters are very far apart from each other. Finally, we briefly discuss when the regular
instance has large distances between the cluster centers, more formally when θ ≥ 1/2. In this case, it
becomes hard to show that the greedy algorithm performs better in terms of the k-means objective.
This is not surprising. Intuitively, when clusters are very far away from each other, each cluster can
essentially be seen as a single point, and therefore there is very little room for k-means++ to make
mistakes. However, we can still show that the greedy algorithm has a higher chance of covering all
clusters than k-means++. Intuitively, the initial seeds having covered all clusters will likely result in a
good clustering by a subsequent run of Lloyd’s algorithm. Thus, even in this case, we indirectly show
the advantage of the greedy algorithm over k-means++.

Experiments. Since it is well known that the greedy algorithm outperforms k-means++ in practice
and empirical studies, we rather focus on our experiments on tracking how the algorithm makes
choices over iterations towards a better seeding. We create synthetic data sets using various distribu-
tions and study how the algorithm makes progress in terms of covering new clusters over iterations,
not only tracking how the objective changes. The experiments show that the greedy algorithm outper-
forms k-means++ in both decreasing the objective and covering new clusters. Thus, the experiments
further corroborate the greedy algorithm’s better performance, together with the theoretical analysis.

1.2 Other Related Work

While k-means clustering is NP-hard to solve optimally, for any ϵ > 0, the problem admits a
(1 + ϵ)-approximation when either k or d (the number of dimensions) is a constant. Feldman et al.
[2007], Kumar et al. [2004]. Recent works show that k-means++ can also be used with a small
number of steps of a local search algorithm Lattanzi and Sohler [2019], Choo et al. [2020] to yield
O(1)-approximations. This result is further improved to (9 + ϵ) by Beretta et al. [2023], which
matches the best approximation for the local search algorithm Kanungo et al. [2002]. Sketching can
be used to compress the input data into a compact subset of points, called a coreset. This allows for
faster clustering by running the algorithm on the coreset instead of the original data (e.g., Har-Peled
and Mazumdar [2004], Chen [2009]).

There is currently no theoretical analysis of Greedy k-means++ beyond the works by Bhattacharya
et al. [2020], Grunau et al. [2023]. For a comparative study of seeding methods, see Celebi et al.
[2013]. They recommend a value of ℓ (number of candidates sampled per iteration) proportional
to the logarithm of k (number of clusters). The Scikit-learn library specifically sets ℓ = ⌈ln k + 2⌉
Pedregosa et al. [2011].

Except for the classical Greedy k-means++ and k-means++, several variants have also been studied.
Aggarwal et al. [2009] show that k-means++ is O(1)-approximation with constant probability if it
allows selecting O(k) centers. This bicriteria approximation is further improved by Makarychev et al.
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[2020], Wei [2016]. Balcan et al. [2018] suggest seeding the initial centers via Dα-sampling, which
generalizes the k-means++ algorithm (α = 2). Bamas et al. [2024] analyze the new seeding method
and show that Dα-sampling admits better approximation than D2-sampling under specific instances.

The k-means clustering has also been studied in various settings, including distributed Bahmani et al.
[2012], streaming Ailon et al. [2009], and dynamic environments Bhattacharya et al. [2024]. In
particular, Bahmani et al. [2012] extends k-means++ to a distributed setting.

1.3 Organization

In the following section, we recall the greedy k-means++ and k-means++ algorithms and formally
define the instances we will consider throughout this paper. To make our presentation transparent,
we will only show our results for more restricted instances requiring fewer parameters, deferring the
analysis of the more general instances to the appendix. Then, we analyze the greedy and k-means++
when the distances between clusters are not too large in Section 3, 4. The other case is handled in
Section 5. After presenting experiments in Section 6, we conclude the paper.

2 Preliminaries

This section formally defines the k-means clustering problem, along with notations and background.

k-Means Clustering. Consider an m-dimensional Euclidean space Rm. For a point x ∈ Rm, its
connection cost to a point set C ⊆ Rm is defined as the squared distance of x to its closest point in C,
i.e., φ(x,C) := minc∈C ||x− c||22. In the k-means problem, we are given a set of n points X ⊆ Rm

as well as a parameter k ∈ N>0, and the goal is to find a set of k centers S ⊆ Rd that minimizes the
total connection cost of points in X to S, i.e., φ(X,S) :=

∑
x∈X φ(x, S).

For a given point set X , let {Ci}i∈[k] denote the k clusters in the optimal solution, and let {µi}i∈[k]

represent the corresponding cluster centers. We define Ci(r) as the set of points in Ci that are at a
distance r from µi.

We first formally present the statements of greedy k-means++ in Algorithm 1. The k-means++ algo-
rithm is a special case of Algorithm 1 when ℓ = 1. Both of the two algorithms run iteratively. In each
iteration, k-means++ samples one candidate from the probability distribution {φ(x, S)/φ(X,S)}
while greedy k-means++ samples ℓ > 1 candidates and pick the one with the minimum connection
cost. Since Greedy k-means++ commonly uses ℓ = ln k + Θ(1) Pedregosa et al. [2011], we will
assume ℓ = ln k and k is sufficiently large unless stated otherwise.

Algorithm 1 Greedy k-means++ Initialization Arthur et al. [2007]
Input: A point set X ⊆ Rm and parameters k > 0, ℓ = ln k3.
Output: A center set S that serves as the initial centers of Lloyd’s heuristic.

1: Independently and uniformly sample ℓ points x1, . . . , xℓ ∈ X .
2: Greedily pick x := argminxi∈{x1,...,xℓ} φ(X, {xi}) and set S ← {x}.
3: for t = 2, . . . , k do
4: Sample ℓ points x1, . . . , xℓ ∈ X independently (with replacement) with probability φ(x,S)

φ(X,S) .
5: Greedily pick x := argminxi∈{x1,...,xℓ} φ(X,S ∪ {xi}), breaking ties arbitrarily.
6: Set S ← S ∪ {x}.
7: end for
8: return S.

The paper analyzes these two algorithms on the input point set X satisfying the three properties:

• Exponentially Distributed: For each cluster Ci, the density of points decreases exponentially as the
distance from the center increases. Specifically, |Ci(r)|

|Ci| = 1
b · e

−r/b, for a constant b > 0.

• Well Separable: The minimum distance d between any two centers of the optimal clusters be
sufficiently large relative to the cluster distribution parameter b, i.e., d = kθ · b, for a constant
θ > 0.

3We assume that ln k > 1 is an integer for notational convenience, instead of using ⌈ln k⌉ explicitly.
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• Well Spread: The optimal clusters are roughly homogeneous, with the number of points in each
cluster and the distances between clusters differing by at most a constant factor.

Define a point set that satisfies the above properties as an EWW point set. We remark that our analysis
applies to any subexponential-tailed distribution, such as Gaussian and sub-Gaussian distributions,
with a mild assumption. The details are deferred to Appendix C. For simplicity and readability, we
assume throughout the analysis that each cluster has the same size and equal pairwise distances. We
remark that the analysis can be easily extended to the case where these quantities differ by at most a
constant factor. These extensions can also be found in Appendix C.

We now present several useful observations concerning the structure of EWW point sets, which can
be readily derived through straightforward mathematical calculations.
Observation 1. The optimal total connection cost is achieved by selecting each cluster center µi,
resulting in an objective: OPT = n

∫∞
0

r2

b · e
−r/bdr = 2b2n, where n is the number of points.

Observation 2. Consider a cluster Ci with its center µi. For a point x located at distance h from µi,
the total connection cost of all points in Ci to x is (2b2 + h2) · |Ci|.

3 Approximation Guarantee of Greedy k-Means++

In this section, we analyze the performance of the greedy k-means++ algorithm on EWW point sets
and aim to show the following:
Theorem 1. Given any EWW point set X , the greedy k-means++ algorithm admits an expected
approximation ratio of O((ln ln k)2).

Proof Outlines. Due to the exponentially distributed property, we can show that, with very high
probability, the points sampled by the algorithm are located close to the optimal centers {µi}i∈[k].
In the following, we define a concentration ball for each cluster and prove that we may assume the
algorithm never samples points outside these balls. In particular, the chance the algorithm samples a
point outside these balls is very low and, due to this, the total contribution to the expected objective
is small in this case. Under this concentration assumption, we classify the clusters {Ci}i∈[k] into
two types at each iteration: covered clusters (those for which the algorithm has already selected a
point within the corresponding concentration ball), and uncovered clusters (the rest). Due to the
greedy nature of the algorithm, it always prefers candidate points from uncovered clusters over those
from covered clusters. Leveraging the well-separability and well-spreadness, we show that with
high probability, the algorithm covers a new cluster in most iterations, thereby achieving the desired
approximation ratio.

We remark that, while the above captures the high-level strategy of our analysis, applying only these
techniques can only give an approximation ratio of O((ln k)2). To improve the ratio to O((ln ln k)2),
we further exploit the independence among clusters induced by well separability and conduct a more
careful analysis. We begin by introducing the definition of a concentration ball and the corresponding
lemma.
Definition 1 (Concentration Ball). We define the concentration radius δ := 4b(1 + θ) ln k, where θ
and b are input parameters. For each cluster Ci with center µi, we define its concentration ball σ(Ci)
as the set of all points in Ci whose distance to µi is at most δ.
Lemma 1 (Concentration Lemma). Let A denote the event that greedy k-means++ samples at least
one candidate point outside the concentration balls during any iteration. Given any EWW point
set, the probability that A occurs is at most 1/k. Furthermore, the contribution of this event to
the expected objective can be bounded: Pr[A] · E[OBJ | A] ≤ n

k , where E[OBJ | A] denotes the
expected objective value (i.e., total connection cost) conditioned on the occurrence ofA. Furthermore,
this upper bound holds as well when A is k-means++.

As OPT = Θ(n) (see Observation 1), the above lemma implies that the total contribution of points
outside the concentration balls is modest compared to the optimal cost. Hence, throughout the
remainder of this paper, we adopt the concentration assumption, under which no point outside the
concentration balls is sampled by the algorithm, whether it is greedy k-means++ or k-means++.

We say that a feasible solution covers a cluster Ci if it includes at least one point from its concentration
ball σ(Ci). We claim the following:
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Lemma 2. Under the concentration assumption, for each cluster Ci , we have:

(2a) If greedy k-means++ does not cover this cluster, then its total connection cost is Ω(k2θ · |Ci|).

(2b) If greedy k-means++ covers this cluster, then the total connection cost for Ci does not exceed
O((ln k)2 · |Ci|), and further, its expectation is O((ln ln k)2 · |Ci|) and Ω(|Ci|).

As established in Lemma 2, under the well-spread assumption, achieving the approximation guarantee
stated in Theorem 1 requires that the number of uncovered clusters is at most O(k1−2θ · (ln ln k)2).
Otherwise, the total connection cost contributed by the uncovered clusters would exceed (ln ln k)2 ·
OPT, violating the desired bound. The next lemma establishes the probability of covering a new
cluster, which will later be used to determine the number of uncovered clusters.
Lemma 3. In each iteration t ≤ k −O(k1−2θ · (ln ln k)2), the greedy k-means++ algorithm covers
a new cluster with probability at least 1− 1/k2θ+2.

Proof. We first leverage (2a) of Lemma 2 to show that, with high probability, the greedy k-means++
algorithm covers a new cluster in each iteration up to iteration k − O(k1−2θ · (ln k)2). Then, by
applying (2b) of Lemma 2 along with the Chernoff bound, we demonstrate that the algorithm
continues to cover a new cluster in each iteration, with high probability, even during the range of
iterations from k−O(k1−2θ · (ln k)2) to k−O(k1−2θ · (ln ln k)2). Intuitively, the reason we cannot
directly apply the Chernoff bound is that, when doing so, we require the connection cost upper bound
of each individual covered cluster to be significantly smaller than the expected total connection cost
of the covered clusters, which only holds when the greedy is at at a later iteration, say for t ≥ k/2.

First, consider an iteration k ≤ t0 := k − 22θ+5 · k1−2θ · (ln k)2. Lemma 2 implies that the greedy
comparison step always prefers points from uncovered concentration balls over those from already
covered ones. This is because if the greedy selects a point from an uncovered concentration ball (by
(2a)), it decreases the objective by Ω(n/k)k2θ while if it selects from a covered concentration ball,
it only decreases the objective by O(n/k)(ln k)2 (by (2b)). Thus, it follows that, in iteration t, if at
least one of the ln k sampled candidates is from an uncovered concentration ball, then the algorithm is
guaranteed to cover a new cluster in that iteration. Suppose that p clusters have already been covered
by St−1 at the beginning of iteration t (so p < t). By (2b) of Lemma 2 and the well-spread property,
the total connection cost contributed by the covered clusters is at most n

k · p · (ln k)
2 , while the total

connection cost from the uncovered clusters is at least n
k · (k − p) · k2θ , where we omit constant

factors for simplicity—such constants do not affect our analysis. Therefore, the probability4 that the
algorithm fails to sample any point from the uncovered concentration balls is at most(

p · (ln k)2

p · (ln k)2 + (k − p) · k2θ

)ln k

≤ 1/k2θ+5 when p ≤ t0.

Next, we analyze the time period between iteration t0 and t1 := k − 22θ+5 · k1−2θ · (ln ln k)2.
From the earlier analysis and by applying a union bound, we know that with probability at least
1 − 1/k2θ+4, the algorithm has already covered t0 clusters within the first t0 iterations. Then,
according to Lemma 2, conditioned on this event, the expected connection cost of these covered
clusters is lower bounded by Ω(nk · t0) , which is asymptotically much larger than the upper bound
on the connection cost for any single cluster, O

(
n
k · (ln k)

2
)
. This suggests the connection cost of

the covered clusters is well-concentrated.

We shall upper bound the total connection cost of the covered clusters in the first t0 iterations via the
concentration bound. Note that each cluster can be approximately treated as being sampled uniformly
based on the analysis in the proof of Lemma 2, which enables us to use concentration inequalities.

Applying the concentration bound, we get the following claim; the proof is deferred to the appendix.

Claim 1. With probability at least 1− exp
(
Θ(1) · (−k) ·

(
ln ln k
ln k

)2)
, the total connection cost of

the clusters covered in the first t0 iterations is at most 2b2 · nk · t0 · (ln ln k)
2.

4As mentioned earlier, for simplicity, we assume that each cluster is of equal size and that they are equidistant
from one another. We note that if the clusters are not exactly equal in size but differ by only a constant factor,
the probability will increase by at most a constant, and the overall order of magnitude will remain the same.
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Consider any iteration t ∈ (t0, t1]. The algorithm can cover at most t1 − t0 new clusters during the
interval from iteration t0 to t1, and each newly covered cluster contributes at most O

(
n
k · (ln k)

2
)

to
the connection cost. Thus, with a probability of at least(

1− 1

k2θ+4

)(
1− exp

(
Θ(1) · (−k) ·

(
ln ln k

ln k

)2
))

,

the total connection cost of the already covered clusters at the beginning of iteration t is at most

A := 2 · n
k
·
(
b2 · t0 · (ln ln k)2 + (t1 − t0) · (ln k)2

)
.

Note that the total connection cost from the uncovered clusters is at least B := n
k · (k − t0) · k2θ.

Similar to the analysis in the previous case, the probability that the algorithm fails to sample any point
from the uncovered concentration balls is at most (A/(A+B))ln k. This implies that the probability
that greedy k-means++ fails to cover a new cluster is at most 1/k2θ+2.

Proof of Theorem 1. By Lemma 3 and a union bound, we have that, with probability at least 1 −
1/k2θ+1, the greedy k-means++ algorithm covers k −O

(
k1−2θ · (ln ln k)2

)
clusters and achieves

an approximation ratio of O((ln ln k)2). If this case does not occur, we can simply use an upper
bound on the objective of O(n · k2θ). Taking expectation over both cases, we obtain an expected
approximation ratio of O((ln ln k)2).

4 Approximation Lower Bound of k-Means++

This section analyzes the k-means++ algorithm and establishes a lower bound Ω(ln k) on its approxi-
mation ratio. This lower bound highlights a gap between the performance of the greedy k-means++
and standard k-means++ algorithms: while the latter suffers from an Ω(ln k) lower bound, the former
achieves an O((ln ln k)2) approximation ratio on the same instances, demonstrating the theoretical
advantage.
Theorem 2. Given any EWW point set X with parameter θ ∈ (0, 1/2], the k-means++ algorithm
has an expected approximation ratio of Ω(ln k).

Our proof strategy mirrors that used for greedy k-means++, where we analyze the expected number
of uncovered clusters to derive bounds on the approximation ratio. Specifically, to establish a lower
bound for the algorithm, we aim to show that with non-negligible probability, k-means++ selects
points from already covered concentration balls in certain iterations (recall that k-means++ samples
only one point per iteration, whereas greedy k-means++ samples ln k candidates). To this end, we
require a lemma symmetric to Lemma 2, which provides a lower bound on the probability that the
algorithm samples from an already covered concentration ball.
Lemma 4. Under the concentration assumption, for each cluster Ci , we have:

(4a) If k-means++ does not cover this cluster, then its total connection cost is Θ(k2θ · |Ci|).

(4b) If k-means++ covers this cluster using exactly one center—that is, the final solution includes
exactly one point from σ(Ci)—then the total connection cost for Ci is Ω(|Ci|).

Proof of Lemma 4: This proof follows a similar analysis to that in Lemma 2. By Observation 2,
the total connection cost of a cluster Ci is (2b2 + h2) · |Ci|, where h denotes the distance from
the cluster center µi to the current set of selected centers S. When the cluster is not yet covered,
h ∈ [d− δ, d+ 2δ], which is of order Θ(kθ); whereas once the cluster is covered, h can be as small
as 0. This completes the proof of the lemma.

Proof of Theorem 2. Lemma 4 shows that if the number of uncovered clusters is p, then the objective
value is at least n

k · p · k
2θ , omitting constant factors for simplicity. Therefore, to establish a lower

bound of Ω(ln k) on the approximation ratio, it suffices to show that, in expectation, k-means++
leaves Ω(ln k · k1−2θ) clusters uncovered. This also explains why we require θ ∈ (0, 1/2]: otherwise,
ln k · k1−2θ would be subconstant, rendering the argument meaningless.
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We partition all possible outcomes of the algorithm into two cases based on the number of uncovered
clusters: (1) the final number of uncovered clusters is at least ∆, and (2) the final number of uncovered
clusters is less than ∆, where ∆ = ln k · k1−2θ. Clearly, in all outcomes falling into the first case, the
approximation ratio is Ω(ln k). Next, we analyze the second case and show that, in expectation, the
number of uncovered clusters remains Ω(∆).

Consider an arbitrary iteration t. In the second case, where the final number of uncovered clusters
is less than ∆, the number of clusters already covered by the solution St−1 at the beginning of this
iteration must be at least t−∆. Otherwise, even if every subsequent iteration covers a new cluster,
the final number of uncovered clusters would exceed ∆, contradicting the assumption. Then, by the
pigeonhole principle, at least t− 2∆ clusters must be covered by exactly one center—that is, St−1

contains exactly one point from each of these clusters. By Lemma 4 and the well-spread property, the
total connection cost of the covered clusters is at least n

k · (t− 2∆), while the total connection cost
of the uncovered clusters is at most n

k · (k − t+∆) · k2θ. Therefore, in each iteration t > 2∆, the
probability that the k-means++ algorithm fails to cover a new cluster is at least t−2∆

(t−2∆)+(k−t+∆)·k2θ .

We compute the expected number of uncovered clusters by summing the failure probabilities across
all iterations (conditioned on the second case). Specifically, we have:

E[number of uncovered clusters] ≥
k∑

t>2∆

t− 2∆

(t− 2∆) + (k − t+∆) · k2θ

≥
k∑

t≥k/2

t− 2∆

(t− 2∆) + (k − t+∆) · k2θ
≥

k∑
t≥k/2

k/4

k/4 + (k − t+∆) · k2θ
(∆ = o(k))

= k1−2θ ·
k∑

t≥k/2

1

k−2θ + 4(k − t+∆)
≥ k1−2θ ln

(
k/2 + ∆

∆

)

≥ k1−2θ ln

(
k2θ

2 ln k

)
= Ω(k1−2θ ln k) ,

which implies that the expected number of uncovered clusters is Ω(∆) and completes the proof.

5 Analysis of Covering Probability

Theorem 1 and Theorem 2 demonstrate that, on the EWW point set with parameter θ ∈ (0, 1/2],
the greedy k-means++ algorithm achieves a better approximation ratio than the standard k-means++
algorithm. The intuition is that when θ ∈ (0, 1/2], the optimal clusters are not yet well-separated, so
the probability that k-means++ fails to cover a new cluster in a given iteration remains relatively high.
In contrast, greedy k-means++ can exponentially reduce this failure probability through multiple
samples per iteration.

As θ increases further and the optimal clusters become more widely separated, the failure probability
for standard k-means++ correspondingly decreases, reducing the approximation gap between the two
algorithms. This section formally addresses such cases, showing that even in these settings, greedy
k-means++ remains theoretically superior to standard k-means++ from a certain perspective.
Theorem 3. Given any EWW point set with parameter θ > 1/2, the probability that greedy k-
means++ covers all optimal clusters is greater than that of k-means++.

One might find this theorem intuitively trivial. Since greedy k-means++ performs multiple samples
per iteration, it should naturally have a higher probability of covering a new cluster than k-means++,
which would suggest the theorem’s correctness. However, this reasoning strictly holds only when
both algorithms share the same set of selected centers S, which we cannot guarantee. In fact, during
the execution of greedy k-means++ and k-means++, the distribution over all possible center sets St

at each iteration t may differ significantly, which makes the proof of the theorem non-trivial.

Observe that if an algorithm fails to cover all optimal clusters, it must have selected at least two points
from the same optimal cluster. Therefore, the probability that an algorithm covers all optimal clusters
is equal to 1 minus the probability that there exists at least one iteration in which the algorithm selects
a point from an already covered cluster.
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To prove Theorem 3, we analyze the probabilities that greedy k-means++ and k-means++ encounter
such a bad event. Specifically, we establish a lower bound on that probability for k-means++
(Lemma 5) and an upper bound for greedy k-means++ (Lemma 6), and finally show that the former
is greater than the latter. Let event B denote the bad event that the algorithm selects a point from an
already covered cluster. We claim the following.
Lemma 5. The probability that k-means++ encounters B is at least k−1

k−1+k2θ .

Proof of Lemma 5: We partition the bad event into two sub-events based on the time at which B first
occurs: (1) k-means++ encounters B before the last iteration k, and (2) k-means++ first encounters
B at the last iteration k. We denote these two sub-events as P and Q, respectively. By expanding
the conditional probability of the second sub-event, we derive a lower bound on the probability that
k-means++ encounters B:

Pr[k-means++ encounters B] = Pr[P] + Pr[Q] = Pr[P] + Pr[¬P ] · Pr[Q | ¬P ] ≥ Pr[Q | ¬P ].

Conditioned on ¬P , the notion of “first” in event Q is not essential—Pr[Q | ¬P ] simply equals
the probability that k-means++ samples a point from one of the k − 1 already covered clusters.
By Lemma 4, the total connection cost of the already covered clusters is at least n

k · (k − 1), while
the total connection cost of the last uncovered cluster is at most n

k · k
2θ, omitting constant factors

for simplicity. Thus, the probability that k-means++ encounters event B can be lower bounded by
k−1

k−1+k2θ .

Lemma 6. The probability that greedy k-means++ encounters B is at most
(

e·(k−1)·(ln k)2

(k−1)·(ln k)2+k2θ

)ln k

.

Proof of Lemma 6: To upper bound the probability for greedy k-means++, we partition the bad
event into k sub-events {Pt}t∈[k], where Pt denotes the event that greedy k-means++ encounters
B for the first time in iteration t. Similarly, we then expand the probability of Pt using conditional
probability:

Pr[greedy k-means++ encounters B] =
∑
t∈[k]

Pr[Pt]

=
∑
t∈[k]

Pr[¬(P1 ∨ · · · ∨ Pt−1)] · Pr[Pt | ¬(P1 ∨ · · · ∨ Pt−1)] ≤ k · Pr[Pk | ¬(P1 ∨ · · · ∨ Pk−1)]

where the last inequality uses the fact that Pr[Pt | ¬(P1 ∨ · · · ∨ Pt−1)] attains its maximum at t = k.

The term Pr[Pk | ¬(P1 ∨ · · · ∨Pk−1)] simply equals the probability that greedy k-means++ samples
all ln k candidates from one of the k−1 already uncovered clusters. By Lemma 2, the total connection
cost of the already covered cluster is at most n

k · (k − 1) · (ln k)2, while the total connection cost
of the last uncovered cluster is at most n

k · k
2θ, omitting constant factors for simplicity. Thus, the

probability that greedy k-means++ encounters B can be upper bounded by

k ·
(

(k − 1) · (ln k)2

(k − 1) · (ln k)2 + k2θ

)ln k

=

(
2 · (k − 1) · (ln k)2

(k − 1) · (ln k)2 + k2θ

)ln k

.

Proof of Theorem 3. Lemma 5 and Lemma 6, through a series of mathematical calculations, directly
establish the theorem. More specifically, when θ > 1/2, the lower bound on the failure probability
for k-means++ is Θ(k1−2θ), while the upper bound for greedy k-means++ is Θ

(
ke ln ln k+(1−2θ) ln k

)
.

As the former asymptotically dominates the latter, we can conclude that greedy k-means++ has a
higher probability of covering all optimal clusters than k-means++.

6 Experiments

Our experiments are conducted on a machine with Processor 11th Gen Intel(R) Core(TM) i5-1135G7
2.40GHz, 1382 Mhz, 4 Core(s), 8 Logical Processor(s) and 12 GB RAM. We evaluate the performance
of greedy k-means++ and k-means++ on 3 datasets.
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Our goal is to demonstrate that the theory is predictive of practice. Our experiments correspond to
our theoretical model and remark that there is extensive empirical work on both k-means++ and the
greedy variant previously known.

Input Data. We conduct experiments on synthetic datasets. To generate a dataset, we first fix a
distribution. In the experiment, we use the exponential, half-normal (the absolute variant of the
Gaussian), and Lomax (heavy-tail sub-exponential) distributions for different datasets. We first
sample k centers in Rk uniformly at random from a unit hypercube. Then we sample the radius for
each cluster uniformly at random from (0, 2). The number of points of each cluster is uniformly
sampled from [64, 256]. To generate the points of a cluster, we choose uniform random points
whose distance to the center follows the fixed distribution. Since the centers are sampled from a
unit hypercube, it is well-separable because the distances between every two centers are

√
k. The

generation of the points guarantees that it is well-spread.

Experiments. We consider two different metrics – the k-means objective and coverage probability.
For greedy k-means++, we sample ⌈ln k⌉+ 2 candidates in every iteration. The experiment involves
100 repetitions. We compare the average objective and coverage probability in every iteration.
The average objective in an iteration is the average k-means objective using the currently chosen
centers in 100 repetitions. Similarly, the average coverage probability is the probability that a new
center is covered in 100 repetitions. We show the results over iterations for k = 16 in Figure 1
(refer to Appendix D for different k). We can see the superior performance of greedy k-means++
over k-means++ under two different measures, which validates our theory that greedy k-means++
outperforms k-means++.

Figure 1: Coverage probability and k-means objective over iterations for k = 16.

7 Conclusions

In this paper, we presented the first beyond-worst-case analysis of the greedy k-means++ algorithm.
We conclude the paper with some open problems. Our analysis assumes that the greedy algorithm
samples ln k + Θ(1) candidate points per iteration. While this is commonly used in practice,
sampling a constant number of candidates could still place the greedy ahead of k-means++. Our
current analysis falls short of showing this and studying the greedy’s performance when ℓ = o(ln k)
could be interesting. Also, it could be plausible that one can prove the greedy algorithm has a better
approximation ratio than O((ln ln k)2) for the EWW instances. Finally, it would be very interesting
to discover new algorithms that improve the greedy algorithm now that we have a theoretical
understanding of it in a beyond-worst-case setting.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contribution.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper aims to seek an instance that separates the greedy k-means++ and
k-means++. Thus, there are some assumptions for the instance, but the instance assumption
captures the instance in reality.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The main contribution of this paper is theoretical. All proofs and assumptions
are explicitly described in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes the experiments. The experiment aims to verify the
theoretical findings of the paper. All required information for reproducibility is provided in
the main text and supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The submission includes the source code of the experiment in supplemental
material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper includes the experiments. All settings of the experiment are
explicitly described in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiment result includes different values of parameters. The statistical
result is shown in a figure.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experimental details are described in the Experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The submission respects the NeurIPS code of ethics. The submission is
theoretical work and there is no ethics issue.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical work and there is no societal impact.
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• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a theoretical submission, and there is no safeguard issue.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The submission does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The submission does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The submission does not involve crowdsourcing or research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The submission does not involve crowdsourcing nor research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The submission does not use any LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Missing Proofs in Section 3

Proof of Lemma 1: To show the lemma for both cases when A is the greedy and k-means++,
assume that the greedy samples ℓ candidate points per iteration, where ℓ ∈ {1, 2, . . . , ln k}. Clearly,
it captures both the greedy that samples ℓ candidates per iteration and k-means++ that samples exactly
one candidate per iteration. For an arbitrary r ≥ δ, let A(r) denote the subevent of A in which
the farthest distance between any sampled candidate and its corresponding cluster center in greedy
k-means++ is exactly r. Clearly, Pr[A] =

∫∞
4b(1+θ) ln k

Pr[A(r)]dr .

We now analyze Pr[A(r)]. To this end, we partition A(r) into k subevents {A(t)(r)}t∈[k], based
on the iteration in which a candidate point at distance r from its cluster center is first sampled.
Specifically, A(t)(r) denotes the subevent in which such a point is sampled for the first time in
iteration t.

We next prove an upper bound on each Pr[A(t)(r)]. By the definition of the event, all centers selected
by the algorithm before iteration t, i.e., the points in St−1, must lie within a distance less than r from
their respective cluster centers. Consider all points in

⋃
i∈[k] Ci(r). By the triangle inequality, the

distance from any such point to any selected center in St−1 is at most d+ 2r. Therefore, the total
connection cost of these points to St−1 is at most

(d+ 2r)2 · 1
b
· e−r/b · n.

According to Observation 1, the total connection cost of all points to St−1 is at least 2b2 · n. Since
ℓ ≤ ln k, from union bounds, we have

Pr[A(t)(r)] ≤ ln k · (d+ 2r)2 · e−r/b

2b3
.

Therefore,

Pr[A] =
∫ ∞

4b(1+θ) ln k

Pr[A(r)] dr

≤
∫ ∞

4b(1+θ) ln k

k ln k · (d+ 2r)2 · e−r/b

2b3
dr

(Sum of the upper bounds over the k subevents)

≤
∫ ∞

4b(1+θ) ln k

k1+2θ ln k · 16r
2 · e−r/b

b
dr

≤ 16 · k1+2θ ln k · (2b+ 4b(1 + θ) ln k)2 · e−4(1+θ) ln k ,

which is o(1/k) asymptotically. Similarly, for the contribution of event A to the expected objective,
we have

Pr[A] · E[OBJ | A] =
∫ ∞

4b(1+θ) ln k

Pr[A(r)] · E[OBJ | A(r)] dr

≤
∫ ∞

4b(1+θ) ln k

Pr[A(r)] · n · (2b2 + (d+ 2r)2) dr (Observation 2)

≤
∫ ∞

4b(1+θ) ln k

n · (2b2 + (d+ r)2) · k ln k · (d+ r)2 · e−r/b

2b3
dr ,

which is bounded by o(n/k) asymptotically.

Proof of Lemma 2: The first argument (2a) follows directly. By the concentration assumption,
for any uncovered cluster, the distance from its center µi to solution S is Ω(kθ), which yields a
connection cost of Ω(k2θ · |Ci|) by Observation 2. Similarly, since the distance from µi to solution S
is O(ln k) for covered clusters, the first part of the second argument follows. It remains to show the
second part.
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Consider the first iteration t in which the algorithm covers cluster Ci. In this iteration, the algorithm
samples a set of candidate points from σ(Ci). Suppose that p such points are sampled, denoted by
P = {x1, . . . , xp}, where 1 ≤ p ≤ ln k. We will show that the expected maximum connection
cost from the cluster center µi to the sampled candidates is O((ln p)2). Then, by Observation 2, the
expected total connection cost for cluster Ci is also bounded by O((ln p)2). Since p ≤ ln k, this
implies a bound of O((ln ln k)2).

As t is the first iteration in which Ci is covered, all centers selected before this iteration, i.e., the
points in St−1, are far from the points in σ(Ci), with distances lying in the range [d− 2δ, d+ 2δ].
Recalling that d = Θ(kθ) and δ = Θ(ln k), we have for any point x ∈ σ(Ci), the connection cost
φ(x, St−1) differs from that of other points in σ(Ci) by at most a small constant factor, especially
when k is large. Consequently, up to a constant-factor loss in expectation, we may assume that the
algorithm samples p points uniformly at random from σ(Ci). For notational simplicity, we omit the
conditioning on the event that exactly p candidates are sampled from σ(Ci) in the expectation below.
We have

E
[
max
x∈P
∥x− µi∥22

]
≤
∫ ∞

0

Pr

[
max
x∈P
∥x− µi∥22 ≥ r

]
dr

=

∫ ∞

0

Pr

[
max
x∈P
∥x− µi∥2 ≥

√
r

]
dr

=

∫ ∞

0

2h · Pr
[
max
x∈P
∥x− µi∥2 ≥ h

]
dh

=

∫ ∞

0

2h · Pr [∃x ∈ P such that ∥x− µi∥2 ≥ h] dh

=

∫ ∞

0

2h ·
(
1− (1− e−h/b)p

)
dh .

A standard calculation can show that the expression above is asymptotically bounded by
O((ln p)2). From the fact of the exponential distribution, it is straightforward to see that
E
[
maxx∈P ∥x− µi∥22

]
= Ω(1). Thus, we have established the upper and lower bounds on Ci’s

expected connected cost when covered as claimed. This completes the proof of (2b).

Proof of Claim 1: We shall use the following concentration bound:
Theorem 4 (Hoeffding’s inequality). Let X1, X2, . . . , Xn be independent random variables such
that ai ≤ Xi ≤ bi. Let X =

∑
i∈[n] Xi and µ = E[X]. For all t > 0, we have

Pr[X − µ ≥ t] ≤ exp
(
− 2t2∑

i∈[n](bi − ai)2

)
Let random variable Yt denote the connection cost of a cluster covered in the t-th iteration with
t ∈ {1, 2, . . . , t0}. By (2b) of Lemma 2, we know that Yt ≤ ρ1 · (ln k)2 · nk and E[

∑
t∈[t0]

Yt] ≤
ρ2 · (ln ln k)2 · nk · t0 where we are allowed to let ρ1 = (4b(1 + θ))2, and ρ2 = b2. For simplicity,
we denote E[

∑
t∈[t0]

Yt] by µ and its upper bound ρ2 · (ln ln k)2 · nk · t0 by C. Applying Chernof-
Hoeffding’s inequality (Theorem 4 in the appendix), we have

Pr
[ ∑
t∈[t0]

Yt ≥ 2 · C
]
≤ Pr

[ ∑
t∈[t0]

Yt ≥ µ+ C
]
≤ exp

(
− 2C2∑

t∈[t0]
(ρ1 · (ln k)2 · nk )2

)
≤ exp

(
− 2k ·

(ρ2 ln ln k
ρ1 ln k

)2)

B Missing Proofs in Section 4

Proof of Lemma 4: This proof follows a similar analysis to that in Lemma 2. By Observation 2,
the total connection cost of a cluster Ci is (2b2 + h2) · |Ci|, where h denotes the distance from
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the cluster center µi to the current set of selected centers S. When the cluster is not yet covered,
h ∈ [d− δ, d+ 2δ], which is of order Θ(kθ); whereas once the cluster is covered, b is still constant
that implies the total connection cost is Ω(|Ci|). This completes the proof of the lemma.

C Distributions with Sub-Exponential Tails

In the main body, we present the results and detailed proofs under the assumption that each cluster
follows an exponential distribution. However, this assumption is not essential—in fact, the same
analysis applies to any subexponential-tailed distributions with a mild assumption. In an extreme
case, all points in a cluster share the same location as the center. k-means++ or the greedy can
always pick a new uncovered cluster in every iteration. To avoid points being overly concentrated
around the centers, we assume that the distributions satisfy Prx∼D[x ≥ ϵ] = Ω(1). Clearly, the
exponential distribution has this property. Below, we provide three representative examples: Gaussian,
sub-Gaussian, and sub-exponential distributions. Each of them exhibits tail probabilities that decay
exponentially with distance from the center.

Gaussian Distribution

• Parameters: Mean vector b ∈ R, variance σ2.

• Tail bound: For X ∼ N (b, σ2),

Pr (X − b ≥ r) ≤ exp

(
− r2

2σ2

)
,

which decays exponentially in r2.

Sub-Gaussian Distribution

• Parameter: Mean b ∈ R, variance proxy parameter σ2.

• Tail bound: For a sub-Gaussian random vector X ,

Pr (X − b ≥ r) ≤ exp

(
−cr2

σ2

)
for some absolute constant c > 0, showing exponential decay in r2.

Sub-Exponential Distribution

• Parameters: Mean b ∈ R, sub-exponential parameters (ν, α), where ν2 reflects the variance-
like behavior, and α controls the tail heaviness.

• Tail bound: For a sub-exponential random variable X ,

Pr (X − b ≥ r) ≤

{
exp

(
− r2

2ν2

)
, for 0 ≤ r ≤ ν2

α ,

exp
(
− r

2α

)
, for r > ν2

α ,

showing sub-Gaussian decay for small t and exponential decay for large t.

The sub-exponential distribution is a well-known generalization of the sub-Gaussian and the Gaussian
distribution. For completeness, we will show the results in the main body under the sub-exponential
distributions with a mild assumption. First, we restate our assumption. We denote the sub-exponential
distribution by D = subE(ν, α). Each cluster has a different distribution Di = subE(νi, αi) with a
mean bi. Let λ ≥ 1 be a universal constant which is the upper bound of all constant parameters. The
input point set X satisfying the three properties:

• Sub-Exponentially Distributed: For each cluster Ci, the density of points decreases sub-
exponentially as the distance from the center increases. Specifically,

|Ci(r)|
|Ci|

∼ subE(νi, αi)
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• Well Separable: The minimum distance d between any two centers of the optimal clusters is
sufficiently large, i.e., d = kθ · λ, for a constant θ > 0.

• Well Spread: The optimal clusters are roughly homogeneous, with the number of points in
each cluster and the distances between clusters differing by at most a constant factor. For
the cluster Ci, we denote the number of points by ni. Further, we have

Pr
x∼Di

[x ≥ ϵi] ≥ pi ∀i ∈ [k]

where ϵ0, p0 are some constant.

The universal constant controls the effects from the heterogeneous parameters where 1/λ ≤
νi, αi, bi, ni/(n/k), ϵi, pi ≤ λ.

Theorem 5 (Corresponding to Theorem 1). Given any general EWW point set X , the greedy
k-means++ algorithm admits an expected approximation ratio of O((log log k)2).

Similarly, we define the concentration balls as follows.

Definition 2 (Corresponding to Definition 1). We define the concentration radius δ := 4λ(1+ θ) ln k,
where θ and b are input parameters. For each cluster Ci with center µi, we define its concentration
ball σ(Ci) as the set of all points in Ci whose distance to µi is at most δ.

Lemma 7 (Corresponding to Lemma 1). Let A denote the event that greedy k-means++ samples at
least one candidate point outside the concentration balls during any iteration. Given any general
EWW point set X , the probability that A occurs is at most 1/k. Furthermore, the contribution of this
event to the expected objective can be bounded:

Pr[A] · E[OBJ | A] ≤ n

k
,

where E[OBJ | A] denotes the expected objective value (i.e., total connection cost) conditioned on
the occurrence of A.

Proof. To show the lemma for both cases when A is the greedy and k-means++, assume that the
greedy samples ℓ candidate points per iteration where ℓ ∈ [1, log k]. Clearly, it captures both the
greedy that samples ℓ candidates per iteration and k-means++ that samples exactly one candidate per
iteration. For an arbitrary r ≥ δ, let A(r) denote the subevent of A in which the farthest distance
between any sampled candidate and its corresponding cluster center in greedy k-means++ is exactly r.
Clearly, Pr[A] =

∫∞
4λ(1+θ) ln k

Pr[A(r)]dr .

We now analyze Pr[A(r)]. To this end, we partition A(r) into k subevents {A(t)(r)}t∈[k], based
on the iteration in which a candidate point at distance r from its cluster center is first sampled.
Specifically, A(t)(r) denotes the subevent in which such a point is sampled for the first time in
iteration t.

We next prove an upper bound on each Pr[A(t)(r)]. By the definition of the event, all centers selected
by the algorithm before iteration t, i.e., the points in St−1, must lie within a distance less than r from
their respective cluster centers. Consider all points in

⋃
i∈[k] Ci(r). By the triangle inequality, the

distance from any such point to any selected center in St−1 is at most d+ 2r. Therefore, the total
connection cost of these points to St−1 for a cluster i is at most

(d+ 2r)2 · e−r/(2αi) · ni ≤ (d+ 2r)2 · e−r/(2λ) · λn/k.

From the well-spread property of the dataset, the total connection cost of all points to St−1 for a
cluster i is at least ϵ2i pi · ni ≥ (n/k)/λ4. Since ℓ ≤ log k, from union bounds, we have

Pr[A(t)(r)] ≤ log k · (d+ 2r)2 · e−r/(2λ) · λ
1/λ4

.

Therefore,

Pr[A] =
∫ ∞

4λ(1+θ) ln k

Pr[A(r)] dr
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≤
∫ ∞

4λ(1+θ) ln k

k log k · λ5(d+ 2r)2 · e−r/(2λ) dr

(Sum of the upper bounds over the k subevents)

≤
∫ ∞

4λ(1+θ) ln k

16λ7k1+2θ log k · r2 · e−r/(2λ) dr

≤ 128 · λ10k1+2θ log k · (2λ+ 4λ(1 + θ) ln k)2 · e−4λ(1+θ) ln k ,

which is o(1/k) asymptotically. Similarly, for the contribution of event A to the expected objective,
we have

Pr[A] · E[OBJ | A] =
∫ ∞

4λ(1+θ) ln k

Pr[A(r)] · E[OBJ | A(r)] dr

≤
∫ ∞

4λ(1+θ) ln k

Pr[A(r)] · n · (2λ2 + (d+ 2r)2) dr (Observation 2)

≤
∫ ∞

4λ(1+θ) ln k

n · (2λ2 + (d+ r)2) · k log k · λ5(d+ 2r)2 · e−r/(2λ) dr ,

which is bounded by o(n/k) asymptotically.

Lemma 8 (Corresponding to Lemma 2). Given any general EWW point set X , under the concentra-
tion assumption, for each cluster Ci , we have:

(8a) If greedy k-means++ does not cover this cluster, then its total connection cost is Ω(k2θ · |Ci|).

(8b) If greedy k-means++ covers this cluster, then the total connection cost for Ci does not exceed
O((ln k)2 · |Ci|), and further, its expectation is O((ln ln k)2 · |Ci|) and Ω(|Ci|).

Proof. The first argument (8a) follows directly. By the concentration assumption, for any uncovered
cluster, the distance from its center µi to solution S is Ω(kθ), which yields a connection cost of
Ω(k2θ · |Ci|) by Observation 2. Similarly, since the distance from µi to solution S is O(ln k) for
covered clusters, the first part of the second argument follows. It remains to show the second part.

We apply the same strategy in Lemma 2. As t is the first iteration in which Ci is covered, all centers
selected before this iteration, i.e., the points in St−1, are far from the points in σ(Ci), with distances
lying in the range [d− 2δ, d+ 2δ]. Recalling that d = Θ(kθ) and δ = 4λ(1 + θ) ln k, we have for
any point x ∈ σ(Ci), the connection cost φ(x, St−1) differs from that of other points in σ(Ci) by at
most a small constant factor, especially when k is large. Consequently, up to a constant-factor loss in
expectation, we may assume that the algorithm samples p points uniformly at random from σ(Ci).
For notational simplicity, we omit the conditioning on the event that exactly p candidates are sampled
from σ(Ci) in the expectation below. We have

E
[
max
x∈P
∥x− µi∥22

]
≤
∫ ∞

0

Pr

[
max
x∈P
∥x− µi∥22 ≥ r

]
dr

=

∫ ∞

0

Pr

[
max
x∈P
∥x− µi∥2 ≥

√
r

]
dr

≤
∫ (λ ln p)2

0

1dh+

∫ ∞

(λ ln p)2
2h · Pr

[
max
x∈P
∥x− µi∥2 ≥ h

]
dh

= (λ ln p)2 +

∫ ∞

(λ ln p)2
2h · Pr [∃x ∈ P such that ∥x− µi∥2 ≥ h] dh

≤ (λ ln p)2 +

∫ ∞

(λ ln p)2
2h · ln p · e−h/(2λ)dh

A standard calculation can show that the expression above is asymptotically bounded by O((ln p)2).
From the well-spread property, it is straightforward to see that E

[
maxx∈P ∥x− µi∥22

]
= Ω(1). Thus,

we have established the upper and lower bounds on Ci’s expected connected cost when covered as
claimed. This completes the proof.
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Lemma 9 (Corresponding to Lemma 3). Given any general EWW point set X , in each iteration
t ≤ k − O(k1−2θ · (log log k)2), the greedy k-means++ algorithm covers a new cluster with
probability at least 1− 1/k2θ+2.

Proof. Since we have Lemma 8 for sub-exponential distributions, using the same proof for Lemma 2,
we could have the lemma. For the sake of completeness, we provide the following proof with
a slightly different constant factor. We first leverage (8a) of Lemma 8 to show that, with high
probability, the greedy k-means++ algorithm covers a new cluster in each iteration up to iteration
k − O(k1−2θ · (ln k)2). Then, by applying (8b) of Lemma 8 along with the Chernoff bound, we
demonstrate that the algorithm continues to cover a new cluster in each iteration, with high probability,
even during the range of iterations from k −O(k1−2θ · (ln k)2) to k −O(k1−2θ · (ln ln k)2).

First, consider an iteration k ≤ t0 := k − 22θ+5 · k1−2θ · (ln k)2. Lemma 8 implies that the greedy
comparison step always prefers points from uncovered concentration balls over those from already
covered ones. This is because if the greedy selects a point from an uncovered concentration ball (by
(8a)), it decreases the objective by Ω(n/k)k2θ while if it selects from a covered concentration ball,
it only decreases the objective by O(n/k)(ln k)2 (by (8b)). Thus, it follows that, in iteration t, if at
least one of the ln k sampled candidates is from an uncovered concentration ball, then the algorithm is
guaranteed to cover a new cluster in that iteration. Suppose that p clusters have already been covered
by St−1 at the beginning of iteration t (so p < t). By (8b) of Lemma 8 and the well-spread property,
the total connection cost contributed by the covered clusters is at most λ· nk ·p·(4λ(1+θ) ln k)2 , while
the total connection cost from the uncovered clusters is at least 1/λ · nk · (k − p) · λ2k2θ , Therefore,
the probability5 that the algorithm fails to sample any point from the uncovered concentration balls is
at most (

λp · (4λ(1 + θ) ln k)2

λp · (4λ(1 + θ) ln k)2 + (k − p) · λk2θ

)ln k

≤ 1/k2θ+5 when p ≤ t0.

Next, we analyze the time period between iteration t0 and t1 := k − 22θ+5 · k1−2θ · (ln ln k)2.
From the earlier analysis and by applying a union bound, we know that with probability at least
1 − 1/k2θ+4, the algorithm has already covered t0 clusters within the first t0 iterations. Then,
according to Lemma 8, conditioned on this event, the expected connection cost of these covered
clusters is lower bounded by Ω(nk · t0) , which is asymptotically much larger than the upper bound
on the connection cost for any single cluster, O

(
n
k · (ln k)

2
)
. This suggests the connection cost of

the covered clusters is well-concentrated.

We shall upper bound the total connection cost of the covered clusters in the first t0 iterations via the
concentration bound. Note that each cluster can be approximately treated as being sampled uniformly
based on the analysis in the proof of Lemma 8, which enables us to use concentration inequalities.

Let random variable Yt denote the connection cost of a cluster covered in the t-th iteration with
t ∈ {1, 2, . . . , t0}. By (8b) of Lemma 8, we know that Yt ≤ ρ1 · (ln k)2 · nk and E[

∑
t∈[t0]

Yt] ≤
ρ2 · (ln ln k)2 · n

k · t0 where we are allowed to let ρ1 = λ(4λ(1 + θ))2, and ρ2 = 4λ3. For
simplicity, we denote E[

∑
t∈[t0]

Yt] by µ and its upper bound ρ2 · (ln ln k)2 · nk · t0 by C. Applying
Chernof-Hoeffding’s inequality (Theorem 4 in the appendix), we have

Pr
[ ∑
t∈[t0]

Yt ≥ 2 · C
]
≤ Pr

[ ∑
t∈[t0]

Yt ≥ µ+ C
]
≤ exp

(
− 2C2∑

t∈[t0]
(ρ1 · (ln k)2 · nk )2

)
≤ exp

(
− 2k ·

(ρ2 ln ln k
ρ1 ln k

)2)
Thus, with probability at least 1 − exp

(
Θ(1) · (−k) ·

(
ln ln k
ln k

)2)
, the total connection cost of the

clusters covered in the first t0 iterations is at most 4λ3 · nk · t0 · (ln ln k)
2.

Consider any iteration t ∈ (t0, t1]. The algorithm can cover at most t1 − t0 new clusters during the
interval from iteration t0 to t1, and each newly covered cluster contributes at most O

(
n
k · (ln k)

2
)

to

5As mentioned earlier, for simplicity, we assume that each cluster is of equal size and that they are equidistant
from one another. We note that if the clusters are not exactly equal in size but differ by only a constant factor,
the probability will increase by at most a constant, and the overall order of magnitude will remain the same.
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the connection cost. Thus, with a probability of at least(
1− 1

k2θ+4

)(
1− exp

(
Θ(1) · (−k) ·

(
ln ln k

ln k

)2
))

,

the total connection cost of the already covered clusters at the beginning of iteration t is at most

A := 16λ3(1 + θ)2 · n
k
·
(
b2 · t0 · (ln ln k)2 + (t1 − t0) · (ln k)2

)
.

Note that the total connection cost from the uncovered clusters is at least B := λn
k · (k − t0) · k2θ.

Similar to the analysis in the previous case, the probability that the algorithm fails to sample any point
from the uncovered concentration balls is at most (A/(A+B))ln k. This implies that the probability
that greedy k-means++ fails to cover a new cluster is at most 1/k2θ+2.

Proof of Theorem 5. By Lemma 9 and a union bound, we have that, with probability at least 1 −
1/k2θ+1, the greedy k-means++ algorithm covers k −O

(
k1−2θ · (ln ln k)2

)
clusters and achieves

an approximation ratio of O((ln ln k)2). If this case does not occur, we can simply upper bound the
objective by O(n · k2θ). Taking expectation over both cases, we obtain an expected approximation
ratio of O((ln ln k)2).

Theorem 6 (Corresponding to Theorem 2). Given any general EWW point set X with parameter
θ ∈ (0, 1/2], the k-means++ algorithm admits an expected approximation ratio of Ω(log k).

Lemma 10 (Corresponding to Lemma 4). Given any general EWW point set X , under the concen-
tration assumption, for each cluster Ci , we have:

• If k-means++ does not cover this cluster, then its total connection cost is Θ(k2θ · |Ci|).

• If k-means++ covers this cluster using exactly one center—that is, the final solution includes
exactly one point from σ(Ci)—then the total connection cost for Ci is Ω(|Ci|).

Proof. By Observation 2, the total connection cost of a cluster Ci is (2λ2 + h2) · |Ci|, where h
denotes the distance from the cluster center µi to the current set of selected centers S. When the
cluster is not yet covered, h ∈ [d− δ, d+ 2δ], here d = λkθ, which is of order Θ(kθ); whereas once
the cluster is covered, the well-spread property, where Prx∼Di

[x ≥ ϵi] ≥ pi ∀i ∈ [k], implies the
total connection cost is at least |Ci|/λ2 = Ω(|Ci|). This completes the proof of the lemma.

Proof of Theorem 6. Lemma 10 shows that if the number of uncovered clusters is p, then the objective
value is at least λn

k · p · k
2θ , omitting constant factors for simplicity. Therefore, to establish a lower

bound of Ω(ln k) on the approximation ratio, it suffices to show that, in expectation, k-means++
leaves Ω(ln k · k1−2θ) clusters uncovered. This also explains why we require θ ∈ (0, 1/2]: otherwise,
ln k · k1−2θ would be subconstant, rendering the argument meaningless.

We partition all possible outcomes of the algorithm into two cases based on the number of uncovered
clusters: (1) the final number of uncovered clusters is at least ∆, and (2) the final number of uncovered
clusters is less than ∆, where ∆ = ln k · k1−2θ. Clearly, in all outcomes falling into the first case, the
approximation ratio is Ω(ln k). Next, we analyze the second case and show that, in expectation, the
number of uncovered clusters remains Ω(∆).

Consider an arbitrary iteration t. In the second case, where the final number of uncovered clusters
is less than ∆, the number of clusters already covered by the solution St−1 at the beginning of this
iteration must be at least t−∆. Otherwise, even if every subsequent iteration covers a new cluster,
the final number of uncovered clusters would exceed ∆, contradicting the assumption. Then, by
the pigeonhole principle, at least t − 2∆ clusters must be covered by exactly one center—that is,
St−1 contains exactly one point from each of these clusters. By Lemma 10 and the well-spread
property, the total connection cost of the covered clusters is at least 1/λ3 · nk · (t− 2∆), while the
total connection cost of the uncovered clusters is at most λ3 · nk · (k − t+∆) · k2θ. Therefore, in
each iteration t > 2∆, the probability that the k-means++ algorithm fails to cover a new cluster is at
least 1/λ6 · t−2∆

(t−2∆)+(k−t+∆)·k2θ .
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We compute the expected number of uncovered clusters by summing the failure probabilities across
all iterations (conditioned on the second case). Specifically, we have:

E[number of uncovered clusters] ≥ 1/λ6 ·
k∑

t>2∆

t− 2∆

(t− 2∆) + (k − t+∆) · k2θ

≥ 1/λ6 ·
k∑

t≥k/2

t− 2∆

(t− 2∆) + (k − t+∆) · k2θ
≥ 1/λ6 ·

k∑
t≥k/2

k/4

k/4 + (k − t+∆) · k2θ

(∆ = o(k))

= 1/λ6 · k1−2θ ·
k∑

t≥k/2

1

k−2θ + 4(k − t+∆)
≥ 1/λ6 · k1−2θ ln

(
k/2 + ∆

∆

)

≥ 1/λ6 · k1−2θ ln

(
k2θ

2 ln k

)
= Ω(k1−2θ ln k) ,

which implies that the expected number of uncovered clusters is Ω(∆) and completes the proof.

Theorem 7 (Corresponding to Theorem 3). Given any general EWW point set with parameter
θ > 1/2, the probability that greedy k-means++ covers all optimal clusters is greater than that of
k-means++.

Let event B denote the bad event that the algorithm selects a point from an already covered cluster.

Lemma 11 (Corresponding to Lemma 5). Given any general EWW point set X , the probability that
k-means++ encounters B is at least k−1

k−1+k2θ .

Proof. We partition the bad event into two sub-events based on the time at which B first occurs: (1)
k-means++ encounters B before the last iteration k, and (2) k-means++ first encounters B at the last
iteration k. We denote these two sub-events as P and Q, respectively. By expanding the conditional
probability of the second sub-event, we derive a lower bound on the probability that k-means++
encounters B:

Pr[k-means++ encounters B] = Pr[P] + Pr[Q] = Pr[P] + Pr[¬P ] · Pr[Q | ¬P ] ≥ Pr[Q | ¬P ].

Conditioned on ¬P , the notion of “first” in event Q is not essential—Pr[Q | ¬P ] simply equals
the probability that k-means++ samples a point from one of the k − 1 already covered clusters.
By Lemma 10, the total connection cost of the already covered clusters is at least n

k · (k − 1)/λ3,
while the total connection cost of the last uncovered cluster is at most n

k ·λ
3k2θ. Thus, the probability

that k-means++ encounters event B can be lower bounded by 1/λ6 · k−1
k−1+k2θ .

Lemma 12 (Corresponding to Lemma 6). Given any general EWW point set X , the probability that

greedy k-means++ encounters B is at most
(

16e(1+θ)2·(k−1)·(log k)2

(k−1)·(log k)2+k2θ

)log k

.

Proof. To upper bound the probability for greedy k-means++, we partition the bad event into k
sub-events {Pt}t∈[k], where Pt denotes the event that greedy k-means++ encounters B for the first
time in iteration t. Similarly, we then expand the probability of Pt using conditional probability:

Pr[greedy k-means++ encounters B] =
∑
t∈[k]

Pr[Pt]

=
∑
t∈[k]

Pr[¬(P1 ∨ · · · ∨ Pt−1)] · Pr[Pt | ¬(P1 ∨ · · · ∨ Pt−1)] ≤ k · Pr[Pk | ¬(P1 ∨ · · · ∨ Pk−1)]

where the last inequality uses the fact that Pr[Pt | ¬(P1 ∨ · · · ∨ Pt−1)] attains its maximum at t = k.

The term Pr[Pk | ¬(P1 ∨ · · · ∨Pk−1)] simply equals the probability that greedy k-means++ samples
all ln k candidates from one of the k−1 already uncovered clusters. By Lemma 8, the total connection
cost of the already covered cluster is at most λ· nk ·(k−1)·(4λ(1+θ) ln k)2, while the total connection
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cost of the last uncovered cluster is at most λ3 · nk · k
2θ, omitting constant factors for simplicity. Thus,

the probability that greedy k-means++ encounters B can be upper bounded by

k ·
(
(4(1 + θ))2(k − 1) · (ln k)2

(k − 1) · (ln k)2 + k2θ

)ln k

=

(
16e(1 + θ)2 · (k − 1) · (ln k)2

(k − 1) · (ln k)2 + k2θ

)ln k

.

Proof of Theorem 7. Lemma 11 and Lemma 12, through a series of mathematical calculations,
directly establish the theorem. More specifically, when θ > 1/2, the lower bound on the fail-
ure probability for k-means++ is Θ(k1−2θ), while the upper bound for greedy k-means++ is
Θ
(
k16e ln ln k+(1−2θ) ln k

)
. As the former asymptotically dominates the latter, we can conclude

that greedy k-means++ has a higher probability of covering all optimal clusters than k-means++.

D Additional Experiments

In this section, we present more experimental results on varying k, which validates our theory works
for different k.

Figure 2: Coverage probability and k-means objective over iterations for k = 8

Figure 3: Coverage probability and k-means objective over iterations for k = 32
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Figure 4: Coverage probability and k-means objective over iterations for k = 64
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