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A calculus that characterizes the interaction between quantities, and the mathematical implications
of those interactions, will help prepare students who take physics to use mathematics for quantifying
the natural world, and uncovering its laws. In this talk I characterize essential features of reasoning
with quantity in physics, and some implications for the teaching of calculus.

Introduction

Conceptually understanding what calculus is doing when its most basic functions represent relations
between physical quantities is a more valuable learning outcome for students of physics than
demonstrating mastery of multiple integration techniques in the contexts of challenging integrals, or
knowing cold the tests of convergence for unfamiliar series.

Here is why:

1. A proceptual facility with functions whose variables are scalar or vector quantities is a central
feature to expert reasoning in physics. Instructors expect students to have quick facility with
this as well, based on their prerequisite math courses.

2. The relationship between physical quantities, their change, their rates of change with respect
to time and position, and their accumulation from these rates of change is central to
understanding the meaning of the laws of physics.

3. The clear majority of the models in introductory physics involve linear, inverse, sine, cosine
and quadratic functions. Students are expected to know the derivatives and antiderivatives of
these functions, symbolically and graphically, as well as their behavior at physically
significant points and extreme cases.

A significant majority of the students who are taking calculus in the US at any given time will
subsequently take introductory physics - with the main exception being calculus courses for business
and economics majors. I argue that rate and accumulation reasoning are likely important for all
calculus students, even those who won’t take a physics course.

In calculus and in introductory physics, we are essentially teaching the same students. But do they
perceive what we are doing as being the same things? Arguably, students are "culture-shifting"
between doing math and doing physics, which limits the quantitative resources they tap into when
taking a physics course (Taylor & Loverude, 2023). Bajracharya, Sealey and Thompson interviewed
math majors as part of a study to uncover how they made sense of a negative definite integral. They
observed that invoking a physics example of a stretched spring helped catalyze sense making.
Although the physical context helped math majors conceptualize the accumulation, there was a

69


mailto:brahmia@uw.edu

perceived departure from the pure math world to make meaning, as articulated by one interviewee,
“when you think about just, like, the pure math problems, that’s all you really think about — just the
fact that dx is just telling you ... what variable to use (in the integral) ... but ... here, it represents, it
represents something...” (Bajracharya, Sealey, & Thompson, 2023). In physics, every variable
represents something physical, we'd like students to imagine the potential of x and y in calculus to
represent a whole variety of quantities, even when they’re not prompted to do so.

It is challenging to serve all the future needs of the students in a service course as ubiquitous as
calculus. Physics is asking for just a bit less breadth in the interest of more depth, such that students
can spontaneously decide that taking an integral, or a derivative, or representing a function as a series,
is a sensible thing to do in a physics context. Why would you integrate? When is it useful to
approximate a function by terms in a series? And can do it as well. The tradeoff is that by considering
the interplay between quantities: fundamental quantities, their rates of change, and the accumulation
of the product quantities they form, can perhaps help a more diverse group of students conceptualize
calculus as well.

There is a natural tension between the learning objectives of a calculus course and what students
really need for a physics course. It is true that our worldviews differ. Physics is about modeling the
physical world by inventing quantities and their relationships to each other. The ultimate test of
models is if they predict what happens in nature. Validated models represent the corpus of knowledge
in physics. Mathematics has different constraints, and its validity test is logical proof. Developing
reliable capacity to solve problems is an added utilitarian emphasis in both disciplines, to make sure
that students can "do" math/physics after having taken a course. While becoming efficient at problem
solving is an important learning objective, an excessive focus on sharpening this skill comes at a
price. Much is missing in the quantitative reasoning behind why we do what we do, rendering most
students unaware as to how they can use their quantitative insight to think creatively in physics.

There is mounting evidence that students struggle with conceptualizing arithmetic and algebra as used
in introductory physics (Kuo, Hull, Gupta, & Elby, 2011; White Brahmia et al., 2021). These
difficulties carry over into subsequent course taking. In a summary of studies on mathematical
reasoning in upper-division physics, the authors found the following common student difficulties,
despite having taken many math courses beyond the calculus level:

e activating appropriate mathematical tool without prompting (e.g., delta function, Taylor
series)

e recognizing meaning of mathematical expressions

e spontaneous reflection on results (e.g., limiting cases, dimensional analysis)

e generating mathematical expressions from physical description

The students had no problems with executing the mathematics when asked, but they expressed a
strong desire to understand what they were doing, and why (Caballero, Wilcox, Doughty, & Pollock,
2015).

This paper explores current educational research focusing on the salient aspects of how some
important calculus concepts appear in introductory physics teaching, with recommendations of
materials that can help foster a conception of calculus that promotes physics reasoning.
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Calculus in introductory physics
Expert physics modeling involves significant overlap of the mathematical and physical worlds

Consider current a priori cognitive models of modeling in physics and in math contexts, on which
classroom mathematical modeling activities are framed. The concept of a cycle is ubiquitous,
exemplified by the Modeling Cycle shown in Figure 1 (Blum & Lei3, 2007; Czocher, 2016). Note
the complete separation of the math world and the rest of the world in the mental process. The model
implies that mathematizing is done largely in a separate mental place from the context in which it is
being done.

Understanding
Simplifying/Structuring
Mathematising

Working mathematically
Interpreting

Validating

g
:
g
Lo LT R SR TR R

real situation 4 a real situation
situation 72 a0 b situation model
c real model
d mathematical model
mathematical e mathematical results
results f.‘\__/e results f real results
rest of
the world 5 mathematics

Figure 1: Czocher's redraft of Blum and Leif}'s modeling cycle (Blum & Leil3, 2007; Czocher, 2016)

In contrast to the apriori cyclic models, researchers in mathematics education have found little
evidence that students' reasoning while modeling is cyclical (Arlebick 2009; Borromeo Ferri, 2007).
In a recent study, Czocher (2016) conducted interviews throughout an academic term of four
engineering majors enrolled in a differential equations course. In each interview, the students were
observed solving problems in everyday contexts that required generating mathematical descriptions
from a variety of branches of mathematics, including differential equations. The author describes a
much finer-grained blending of mathematical reasoning and physical sense-making than is
represented in apriori cyclic models of modeling, specifically that *“there are transitions that appear
out-of-order. This was largely because three of the modeling transitions (understanding,
simplifying/structuring, and validating) appeared early and often throughout the students’ modeling
processes." The importance of continuous validation to the progress of their mathematization is not
predicted by the apriori models. Czocher (2016) presents a fine-grain description of the interpreting
and validating that was observed, a portion is reproduced in Table 1.

The students who were less successful spent little time validating, while students who were more
successful spent much more time on validation. The subset of skills listed in Table 1 involved in
interpreting and validating are precisely the skills physics counts on its students mastering to be
successful at modeling in physics -- they are central to mathematization in physics.
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Interpreting | Re-contextualizing | e Referring to units

the  mathematical | ® Answering contextual question, not just

result mathematical one

e Interpreting meaning from an equation or its
elements, or from the mathematical representation

e Referring to conditions/variables/parameters from
“simplifying/structuring”

Validating Verifying  results | e Statements about reasonableness of answer/model

against constraints e Checking extreme cases and special cases (of
variable, parameter, relationship)

e Comparing answer to a known result

e Estimating an appropriate result

¢ Adding limitations to the model

e Talking about ideal results

e Comparing merits of different models

e Dimensional analysis

Table 1: Adapted from Czocher (2016)

In Zimmerman, Olsho, Loverude and White Brahmia's study of expert modelers in physics (graduate
students and faculty), interviewees were asked to create graphical solutions for novel physics tasks
(Zimmerman, Olsho, Loverude & White Brahmia, under review). The tasks were isomorphic versions
of the kinematics tasks used in the study by Hobson and Moore (Hobson & Moore, 2017), but
rendered more challenging for expert physicists by invoking abstracts contexts and quantities. For
example, “Going around Gainesville”, which asks the interviewee to generate a graph of the distance
of a car from Gainesville as a function of the distance it has travelled along the road, became a charged
probe moving around a small charged sphere. The task prompts participants to create a graph that
relates the electric potential and the total distance traveled, as it moves at constant speed from start to
finish.

[ ®
Start Q Finish

Figure 2: Still from the animation associated with example task (Zimmerman et al., under review)

Zimmerman et al. report many of the mental actions included in Czochers's description of validation
are precisely the features that characterize aspects of the study participants’ covariational reasoning -
specifically their simplification techniques and their tools for covariation when modeling novel
physics tasks. A subset of the expert physicists reasoning methods uncovered in this study are
represented in the behaviors in Table 1. We note that reasoning with units, dimensional analysis,
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checking extreme cases, simplifying/structuring and interpreting meaning from an equation and its
elements are all essential ingredients in physics modeling.

Many physics students struggle to naturally take up these behaviors in a physics course if they never
encountered them in a math course before. In a study conducted by Rowland in the context of a
differential equations course, the author found that despite having completed introductory physics,
over half of the engineering students were not confident about linking the mathematical expressions
they were creating to the physics phenomena they represent, and the clear majority failed to
incorporate the notion that the units of each term in the model should be the same (Rowland, 2006).
The author argues ""a consideration of units, how they combine, and how they can be used to analyze
systems in modelling contexts needs to be an explicit part of instruction." The disconnect between
amount and its unit is as much of a problem with physics instruction as it is with mathematics, and it
is one we can solve collectively by expanding the overlap of our worlds, such that they aren’t
perceived by our students as separate mental places.

Quantities are central to the laws of physics

Quantities in physics are either scalars or vectors, and are commonly the result of multiplying and
dividing other quantities (e.g., momentum, density). Procedurally, the arithmetic involved in creating
new quantities is not a challenge for most students, however deciding when and why the arithmetic
makes sense can pose a significant challenge (Thompson, 2011). Vergnaud (1998) argues that
multiplication, division, fraction, ratios, proportions, linear functions, dimensional analysis and
vector spaces are not mathematically independent, and should be included in a domain he names
multiplicative structures. Tuminaro (2007) reports on student difficulties conceptualizing the simplest
multiplicative structures in physics contexts.

Quantification produces the physical quantities that are used in physics modeling, and it relies on
blending physics meaning with a conceptualization of multiplicative structures. For experts, the
blending of the mathematical concepts with physics quantities happens unconsciously and seamlessly
(Kustusch, Roundy, Dray, & Manogue, 2014; Zimmerman et al., under review). Expert-like math-
physics blending is a desired learning outcome of an introductory physics course, yet it needs to be
nurtured as part of instruction for students to understand and develop creativity as they learn to
interpret physics models. We suggest that the foundation for this blending can be part of a calculus
course. For that to happen, we should agree on what we mean by representing quantity.

Sherin developed a symbolic form framework that explains how successful students understand and
construct equations in physics. The symbolic form framework posits that students have conceptual
schema associated with specific symbolic patterns (e.g., the ratio form) commonly invoked to

compare two quantities [ﬂ (Sherin, 2001). Dorko and Spear (2015) developed the Measurement
symbolic form in the context of area and volume in mathematics, which always includes a unit as
well as a value. The authors argue that the units are an important part of students’ conception of
measurement. I make the argument that in physics, where use the term quantity instead of

measurement, this form should also include a sign, as most quantities students work with in an
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introductory physics course are vector components and other signed quantities (Olsho, White
Brahmia, Smith, & Boudreaux, 2021; White Brahmia, 2019; White Brahmia, Olsho, Smith,
Boudreaux, 2020; White Brahmia et al., 2021). The units and the sign carry important meaning, and
I suggest that students can be better primed for this onslaught in physics if they encounter quantity in
this way in a calculus course.

sign

value units

Figure 3: The Quantity symbolic form relevant to physics builds on the Measurement symbolic form
by including sign (Dorko & Spear, 2015; White Brahmia, 2019)

Both Czocher’s and our (Zimmerman et al., under review) studies provide evidence that successful
students, and experts, derive physical meaning from “an equation or its elements” (see Table 1),
which are measured or derived quantities in physics models. Calculus provides a mental framework
for thinking about the relationships between quantities in physics, and for imagining new ones. The
clear majority of quantities in physics have an amount/change/rate/accumulation relationship.

Figure 4 shows a plot of how some fundamental quantities in physics (examples shown are from
mechanics) are mathematically processed to create new quantities that eventually play a central role
in the fundamental laws of mechanics — Newton’s laws and the conservation laws of momentum,
energy and angular momentum. The fundamental quantities are directly measurable. All the rest are
derived from these measurable quantities. While each of these quantities is sometimes combined with
the same type of quantity through arithmetic operations (lengths combine for area, displacement, etc.)
many of the quantities that are involved in the laws of physics are related to each other as rates and
accumulations (i.e. “‘area under the curve"). We adopt “accumulation” as has been put forward by
Thompson and others, as it holds much more potential for student comprehension in a physics context
than area-under-the-curve does. None of these important quantities are actual areas. The notion of the
derivative/antiderivative/accumulation/change relationships are so important in physics, that
frequently they are created as new quantities and given their own name - connected through the
Fundamental Theorem of Calculus (FTC).

Samuels” Amount Change Rate Accumulation (ACRA) framework of the FTC shows promise for
supporting students of physics to conceptualize these relationships (Samuels, 2022, 2023) in the
context of a calculus course (see shaded region of Table 2). I’ve applied the ACRA framework in the
unshaded region of Table 2 to demonstrate the essential role the FTC plays understanding the
generation of physics quantities, and the physical laws that relate them to each other (e.g., Newton’s
laws, Conservation laws of energy, momentum, etc.).
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Figure 4: Quantities encountered in introductory mechanics
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I argue that quantification is the neglected first step in modeling in physics (White Brahmia, 2019), a
neglect that increases the likelihood that students’ beliefs about doing physics is that their job is to
find the right equation (Hammer, 1989; Kuo, Hull, Gupta, & Elby, 2011). The notion that they can
participate in the mathematical creativity of quantification, and modeling, is largely lost on them.
Physics has a long way to go such that all students feel confident in their capacity to engage in creative
mathematization. Given the preponderance of calculus concepts involved, deepening students’
conceptual understanding of what they are doing and why they are doing it in calculus can help
students’ feel more confident modeling in physics.

Expert Modeling in physics involves a small number of functions

Models in physics typically involve only a small finite number of functions. At the level of
introductory mechanics, the laws of physics are dominated by linear and inverse functions, with the
more complex combinations of functions that are frequently addressed in a calculus course rarely or
never appearing.

Frequency of function-type

® Linear
@ Inverse
' Quadratic
® Square root
® Sinor Cos
® Iogx, e”x, polynomial>2

Figure 5: Functions encountered in introductory mechanics

I generated Figure 5 by going through a list of the essential formulas for introductory physics, which
is representative of just about any standard college physics textbook (Elert, 2023), and sorting it by
function type, noting the frequency of appearance for each function type. The uncertainty on the
values shown is likely a few percent. Each of the limited number of functions listed in Figure 5 are
central to the covariational reasoning of physics.
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Physic.s fb) = f(a) fx=bdf Jbﬂdx be'(x)dx
quantity x=a q dx a
Total change Infinite The integral (infinite The  integral
(accumulatio sum of sum) of  every (infinite  sum)
n) every (infinitesimal of infinitesimal
infinitesim change) + rate  (as a
al change (infinitesimal  input function) times
change) X infinitesimal
(infinitesimal  input input change
change)
displacement | x(t,) — x(t;) ft=t2dx ftz d—xdt ftzv(t)dt
t=t, ty dt t1
Change in Same as Same as above The integral of
position above...in the (signed)
position velocity times
tiny time
intervals
Av  (velocity | v(t,) — v(t;) j =tz j 2 dy f f2
dv —dt a(t)dt
change) t=t, ¢, dt t
Change in Same as Same as above Same as above
velocity above...in (acceleration)
velocity
impulse p(t2) = p(ts) j tztzdp f *dp dt J tzF (t)dt
t=t, tq dt %1
Change in Same as Same as above Same as above
momentum above...in (force)
momentu
m
work —aone | UG || [y W ] [reom
on system —U(xy) x=2 ¢, ax t
Change in Same as Same as above The integral of
potential above...in the (signed)
energy potential force times tiny
energy displacements

Table 2: My extension of ACRA (shaded) FTC to include important physical quantities (unshaded)
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Function Function Function
Knowing Choosing Generating

Applying Generating
Models Models

Figure 6: Experts interaction with functions when modeling

Knowing what they look like graphically, how the behave covariationally, how they behave in the
limits of very large and very small values of the independent variable, and any other special cases
that are specific to the function (e.g. min/max/zeros/special arguments of sine or cosine functions)
facilitates modeling for experts (Zimmerman et al., under review). Students who have this deep
understanding of these functions before taking a physics course will be at a significant cognitive
advantage; it is expected knowledge. In the Zimmerman et al study, we found that when modeling,
experts engaged in behaviors of function knowing, function choosing or function generating — which
become more cognitively demanding moving from left to right in Figure 6. Experts first look for a
function they know based on a similar context (e.g. circular motion invokes sinusoidal functions),
and if that fails they tend to choose from the list in Figure 5. If that is unsuccessful, then they try
generating a graphical function by invoking covariational reasoning tools (see Table 1 and
Zimmerman et al.), designating several physically significant points. They engage in “neighborhood
analysis” by considering the first derivative in the neighborhood of these points, and then connecting
the points with a line or curve, by considering the 2" derivative behavior between the points.

An important feature of function choosing and function generating is that they are generally evoked
in the context of some sort of data that might (or might not) show a trend consistent with a meaningful
function. This modeling scenario is ubiquitous in physics, whether graphically modelling an
imaginary situation, or collecting actual data in an experiment and modeling the patterns that emerge
from the data. Clean analytical solutions are the exception rather than the norm beyond the
introductory course when comparing the real-world patterns to mathematical functions. Making
approximations are a standard part of rendering a messy physical system tractable. Einstein famously
said, "Everything should be made as simple as possible, but not simpler." Rather than resorting to
messy functions, we always hope for one of the functions in Figure 5. Series representations of those
functions, especially their first couple of terms, become a standard tool for modeling the physical
world beyond the introductory course, and are even invoked in a couple of contexts there as well (e.g.
small angle approximation for simple pendulum). Knowing how common approximations are used,
and why, would be a wonderful outcome of calculus for physics students.

Recommendations for the teaching of calculus

While I am not an expert in calculus instruction, I understand that changing the content in courses as
institutionalized as tertiary-level calculus courses are in the United States is not straightforward. I
suggest here some effective, research-validated materials that help students construct their
mathematical knowledge in the contexts of quantity. They were all designed to be used in the context
of classroom instruction, ideally in collaborative learning environments.
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Developing conceptual foundation

Physics Invention Tasks (White Brahmia, Kanim, Boudreaux): Designed to engage students in

authentic quantification, in preparation for subsequent formal learning. Students use data from
contrasting cases to invent ratio or product quantities, rules or equations to characterize a variety of
physical systems. Students work through sequences of such tasks to ramp up from everyday contexts
to more abstract physics contexts. We have field tested sets of invention tasks, called invention
sequences, both at the pre-college level, in middle school and high school, and in a variety of
introductory  physics courses, from pre-service teachers to engineering students.
https://depts.washington.edu/pits/Background.html

Precalculus: Pathways to Calculus (Carlson, Oehrtman, Moore, O’Bryan):

Textbook, workbook and supplemental materials that facilitate student construction of calculus ideas
that are particularly relevant in physics, especially constant rate of change and linear function, and
changing rates of change, using covariation. Includes vector quantities, sequence and series
representation as approximation. Focusses on less breadth in the variety of functions in favor of
building a deeper understanding of the functions themselves using multiple representations and many
relevant applications, while students are constructing their knowledge, not as an afterthought.
https://www.greatriverlearning.com/product-details/2212

Calculus course activities

DIRACC Calculus: (Thompson, Ashbrook, Milner) The intention of this work is that students
understand a calculus that is about more than lines, areas, and pseudo connections with quantitative
situation, with focus on their reasoning about quantities and relationships among quantities. The focus

on the FTC as relating rates of change and accumulations such that students must conceptualize rate
of change as a relationship between quantities who vary is well-aligned our students’ needs. The use
of dynamic graphs as a representation is brilliant, and will help prime students for the ubiquitous
reference to “goes like” reasoning their instructors use from the very first day (Zimmerman, Olsho,
White Brahmia, Boudreaux, Smith, & Eaton, 2020). http://patthompson.net/ThompsonCalc

ACRA framework: The relationships between quantities of single-variable calculus can be described

using the ACRA Framework (Samuels, 2022, Samuels 2023). An example of a quantity-focused
approach to the FTC is in the shaded region of Table 2. This mode of reasoning entails
“conceptualizing a situation in terms of quantities and relationships among quantities” (Thompson &
Carlson, 2017), where a quantity is a measurable attribute combined with a way to measure that
attribute. (contact Joshua Samuels directly for materials)

CLEAR Calculus: (Oehrtman, Tallman, Reed, Martin) Instructional activities that generalize across

contexts to extract common mathematical structure, that are designed to foster quantitative reasoning
and modeling skills required for STEM fields. Students both develop useful tools, and engage in
activities that reveal the mathematics to be learned, thereby developing productive understandings
that can serve as a strong foundation for further study in math and science. The approach to
approximation here is well-suited to physics students. https://clearcalculus.okstate.edu/

79


https://depts.washington.edu/pits/index.html
https://www.greatriverlearning.com/product-details/2212
https://www.greatriverlearning.com/product-details/2212
http://patthompson.net/ThompsonCalc/
http://patthompson.net/ThompsonCalc
mailto:mailto:jsamuels@bmcc.cuny.edu
mailto:mailto:jsamuels@bmcc.cuny.edu
https://clearcalculus.okstate.edu/
https://clearcalculus.okstate.edu/

Conclusion

A calculus course could include many fascinating topics that can unleash quantitative imagination
and creativity. I’ve argued that for those calculus students who intend to pursue majors that also
involve taking physics courses, that a calculus that characterizes the interaction between quantities,
and the mathematical implications of those interactions, will help prepare those students to use
calculus ideas for quantifying the natural world, and uncovering its laws. The students will see the
world through a mathematical frame, with all its wonder and potential, and try out their skills
predicting what nature will, and will not, reveal through observation. Mathematizing physics is
founded in measurable and derived quantities, including its sign and units. The function library of
physical laws isn’t vast, but conceptualizing those functions that appear is essential. Conceptually
understanding what calculus is doing when its most basic functions represent relations between
physical quantities opens the door for students to learn physics as Newton did. There is a growing
collection of effective activities that can help calculus students learn to quantify, and deepen their
facility with the formalism associated with function, changes in quantity, rates of change,
accumulation and approximation. This paper was written to help foster discussions and provide
impetus for the great work described herein to continue, and to inspire more to come.
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