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Abstract. In most real-world applications of artificial intelligence, the
distributions of the data and the goals of the learners tend to change over
time. The Probably Approximately Correct (PAC) learning framework,
which underpins most machine learning algorithms, fails to account for
dynamic data distributions and evolving objectives, often resulting in
suboptimal performance. Prospective learning is a recently introduced
mathematical framework that overcomes some of these limitations. We
build on this framework to present preliminary results that improve
the algorithm and numerical results, and extend prospective learning
to sequential decision-making scenarios, specifically foraging. Code is
available at: https://github.com/neurodata/prolearn2.
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1 Introduction

Learning involves updating decision rules or policies, based on past experiences,
to improve future performance. The Probably Approximately Correct (PAC)
learning [1, 2] framework has led to the development of learning algorithms that
provably minimize the risk (expected loss) over unseen future samples during
inference. When proving such guarantees, PAC learning assumes that data is
independently and identically (iid) distributed according to a fixed distribution
at training and inference time.

While this assumption has been useful, it is rarely held true in practice. In
fact, the future is more likely to be di!erent from the past as distributions of data
and goals of the learner may change over time. Therefore, the true hypothesis
can be time-variant, and classical PAC learning does not address this situation.
Although sub-disciplines such as transfer learning [3], continual/lifelong learning
[4–7], online learning [8], meta-learning [9, 10], sequential decision-making [11, 12],
forecasting [13], reinforcement learning [14–17], out-of-distribution generalization
[18] have introduced attractive solutions that retrospectively adapt to distribu-
tions that change over time, they often fail to anticipate and generalize to future
even when data evolves in simple but predictable ways as shown in [19, 20].
ω Equal contribution
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Prospective learning [19, 20] is a recently developed mathematical framework
to bridge this gap. Instead of data arising from a fixed distribution, prospective
learning assumes that data is drawn from a stochastic process, that the loss
considers the future, and that the optimal hypothesis may change over time. A
prospective learner uses samples received up to some time t → N to output an
infinite sequence of predictors, which it uses for making predictions on data at all
future times t↑ > t. An exhaustive comparison between prospective learning and
related sub-fields of machine learning literature is provided in De Silva et al. [19].

We build on the prospective learning framework and introduce several pre-
liminary results. The rest of the paper is organized as follows; Section 2 provides
a concise summary of the prospective learning framework, Section 3 presents
several empirical observations on deep learning-based prospective learners, Sec-
tion 4 introduces a decision-tree based prospective learner and demonstrates
its performance, and finally, Section 5 introduces prospective foraging, showing
that the prospective learning framework extends beyond supervised learning and
performs competitively with reinforcement learning in preliminary results.

2 Preliminaries

Let input and output be denoted by xt → X and yt → Y, respectively. Let
zt = (xt, yt). We will find it useful to denote the observed data, z↓t = {z1, . . . , zt},
and the unobserved data, z>t. In contrast to PAC learning, t is not just a dummy
variable, but rather, indexes time. We therefore define the data triple (xt, yt, t),
and augment the input space to include the time of the input, X ↑ X ↓ T .
Consider an infinite sequence of hypotheses h ↔ (h1, . . . , ht, ht+1, . . . ) where
ht : X ↗ Y. The hypothesis class H is the space that contains such sequences.
With a slight abuse of notation, we will refer to a sequence of hypotheses h as a
hypothesis, where each element of this sequence ht : X ↘↗ Y. 3

Loss The instantaneous loss, ω(h(x), y), is a map from Y ↓ Y to R. In all
real-world problems we care about the integrated future loss. Let w(i) be a non-
increasing non-negative weighting function that sums to one, that is

∑
i w(i) = 1

and 0 ≃ w(i) ≃ 1 ⇐i. We thus define prospective loss as

ω̄(h, z>t) =
∑

s>t

w(s⇒ t)ω(h(xs), ys) (1)

which is the weighted cumulative loss over all the future data. 4

Taking the expectation of Eq. (1) over the future conditioned on the observed
data z↓t, we arrive at the prospective risk at time t,

Rt(h) = E
[
ω̄t(h, Z) | z↓t

]
=

∫
ω̄t(h, Z) dPZ|z→t

. (2)

3 One could also think of prospective learning as using a single time-varying hypothesis
h : N→X ↑↓ Y, i.e., the hypothesis takes both time and the datum as input to make
a prediction.

4 If we let w(i) be a constant function of i, we recover the classical loss in PAC learning.
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5

We consider a family of stochastic processes Z to be strongly prospective-
learnable if there exists a learner that likely returns an approximately optimal
hypothesis (with a risk close to the Bayes risk R↔

t ) after observing enough
past data z↓t from any process Z → Z. Theorem 1 from De Silva et al. [19]
guarantees that under certain general assumptions, a slightly modified Empirical
Risk Minimizer (ERM) a learner returning the hypothesis

ĥ = argmin
h↗Ht

t∑

t↑>0

ω̄(h, z>t↑) = argmin
h↗Ht

t∑

t↑>0

∑

s>t↑

w(s⇒ t↑)ω(ht↑(xs), ys). (3)

is a strong prospective learner for a finite family of stochastic processes under
certain assumptions. We refer to this learner as Prospective ERM.

To implement prospective ERM in practice, one may modify a predictor (e.g.
a multi-layer perceptron) to take (ε(s), xs) as the input and train it to predict
the label ys, where ε(s) is a suitable embedding on the time s. We refer to
this predictor as Prospective-MLP. Inspired by the positional encoding of the
Transformer [21], De Silva et al. [19] have used the time-embedding,

εf (t) = (sin(ϑ1t), . . . , sin
(
ϑd/2t

)
, cos(ϑ1t), . . . , cos

(
ϑd/2t

)
), (4)

where ϑi = ϖ/i for i = 1, . . . , d/2. It is shown that the prospective-MLP converges
to the Bayes risk on certain stochastic processes over synthetic and image data.

Prospective Learning Scenarios

Depending on the nature of the stochastic process, one can consider 4 scenarios of
prospective learning; (1) Data is independent and identically distributed, (2) Data
is independent but not identically distributed, (3) Data is neither independent
nor identically distributed (e.g. Markov Processes), and (4) Future depends on
the current prediction (Stochastic Decision Processes). Scenario 1 puts us back
in the PAC learning setting. Scenario 4, on the other hand, is arguably a special
case of Scenario 3 and has implications for reinforcement learning and control.
As we will introduce in Section 5, prospective foraging is closely related to this
scenario.

Example Stochastic Processes

Here we describe three stochastic processes we will consider in the experiments
outlined in Sections 3 and 4.

First, consider two binary classification distributions (“tasks”) (see Fig. 1
(Left)). The inputs for both tasks are drawn from a uniform distribution on the
set [⇒2,⇒1] ⇑ [1, 2]. Ground-truth labels correspond to the sign of the input for
Task 1, and the negative of the sign of the input for Task 2. The process switches

5 This is a slight abuse of notation, because previously ω mapped from a hypothesis and
data corpus, but now we are saying that it maps from a hypothesis and a collection
of random variables. We have used the shorthand E[Y | x] for E[Y | X = x]. Note
that E[Z|z→t] is equivalent to E[Z>t|z→t] because the past z’s are given.
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Fig. 1: Pictorial depictions of 3 types of stochastic processes considered in our experi-
ments. (Left) Periodic Process, (Middle) Linear process, and (Right) Hierarchical
hidden Markov Process. The periodic and linear processes belong to scenario 2 whereas
the hierarchical hidden Markov process is an instance of scenario 3.

the two tasks every 10 time steps, resembling a reversal learning problem. We
refer to this as the “periodic” process.

The second is a stochastic process whose marginal distribution at time t
is defined as follows: The input xt is drawn from a uniform distribution over
[ϱt+ 10, ϱt+ 11] ⇑ [ϱt⇒ 10, ϱt⇒ 11] and its label yt is 0 if xt > t and 1 otherwise.
In other words, it is a process where the task is hiking up a slope with a small
gradient ϱ (see Fig. 1 (Middle)). This process yields an infinite number of tasks,
in contrast to the first one, where there are finite (two) tasks. Thus, we refer to
it as the “infinite task process”.

The third and final process includes four tasks that are created using 2-
dimensional inputs as shown in Fig. 1 (Right). After every 10 time-steps, a
di!erent Markov chain would govern the transitions among tasks (one Markov
chain for tasks 1 and 2, and another for tasks 3 and 4 as illustrated in the
figure). Therefore, the data distribution is e!ectively distributed according to the
hierarchical hidden Markov model. We refer to it as the ”dependent structured
task process”.

Relationship between Continual and Prospective Learning

Although continual and prospective learning both involve learning over sequences
of tasks, they di!er fundamentally in their objectives and assumptions. As
formalized in Section 2, the goal of a prospective learner is to perform well on
future tasks. In contrast, the objective in continual learning, though typically
less formally defined, is to maintain good performance on previously seen tasks
and avoid catastrophic forgetting. Continual learning often assumes a task-
aware setting, where the learner receives a batch of data per task along with
the task identity. Prospective learning, by contrast, does not assume access
to such task labels or boundaries. A notable exception is task-agnostic online
continual learning [22], which operates under similar assumptions to prospective
learning. However, De Silva et al. [19] shows that such methods still fail to
improve upon chance-level prospective risk when learning the periodic process
above. Furthermore, continual learning benchmarks typically involve sequences of
unrelated tasks without any predictable structure, whereas prospective learning is
meaningful when the tasks evolve over time in a predictable manner. To address
this gap, we introduce simple yet representative benchmarks designed to assess
the ability of learners to generalize to future tasks. For additional experiments
and a deeper comparison of prospective learning with related paradigms, we refer
the reader to De Silva et al. [19].
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Training and Evaluating Learners

The next two sections present experiments including Prospective-MLPs and
Prospective-Trees, and a time-agnostic Follow-the-Leader (FTL) baseline that
minimizes empirical risk over all past data without incorporating time as an
input. When training and evaluating these learners, we roughly follow the steps
detailed in the Section 6 of De Silva et al. [19].

3 Several Empirical Observations on Prospective-MLPs

Prospective-MLP prevails under heterogeneous sampling.

The experiments in De Silva et al. [19] assume homogeneous past data where
exactly one sample is received at each time step. This assumption overlooks more
realistic scenarios where samples may be missing or multiple samples may be
available per time step. To model the heterogeneity of sampling, we assume that
the number of samples received from the process at each time step is distributed
according to a Poisson distribution with ς = 1. We train Follow-the-Leader
(FTL) and prospective-MLP on data collected this way and compare them
against their counterparts trained on homogeneous data (see Fig. 2). It is evident
that prospective-MLP manages to secure a good prospective risk regardless of
how the data is sampled.

Fig. 2: Instantaneous (top) and prospective (bottom) risks of Follow-the-Leader (FTL,
blue) and Prospective-MLP (P-MLP, red) trained on homogeneously (lighter shade) and
heterogeneously (darker shade) sampled data from the periodic process. Homogeneous
sampling is where you get exactly one sample each time step. In heterogeneous sampling,
there can be missing samples and/or multiple samples available per time step.

Prospective-MLP prevails in infinite task scenarios.

Experiments in De Silva et al. [19] are mostly based on stochastic processes
that include several tasks that periodically switch between each other. On such
processes, it has been shown that the Prospective-MLPs equipped with the
time-embedding defined by Eq. (4) are able to achieve a low prospective risk
and generalize over the future. It is intuitive that a time-embedding comprised
of Fourier basis functions is appropriate for a periodic process assuming that it
contains the function with the true switching frequency.

However, aside from capturing periodic patterns, the utility of a Fourier-based
time embedding is likely to be limited. To demonstrate this, we consider the
linear process (see Section 2 and Fig. 1 (Middle)). There, we get a new task
at each time and the task evolves according to a linear trend in time. The
prospective learner must exploit this trend in order to generalize over the future.
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To illustrate the e!ect the choice of time-embedding has on the learner, we
train two Prospective-MLPs, one with the Fourier embedding from Eq. (4) and
the other with a time-embedding based on monomial basis functions given by
εm(t) = (t, t2, t3, . . . , td). We repeat the same routine with the periodic process
(see Section 2 and Fig. 1 (Left)) as well.

Fig. 3: Prospective risk of Follow-the-Leader (FTL), and Prospective-MLP with Fourier
embeddings, and Prospective-MLP with monomial embeddings on periodic (Right
top) and linear (Right bottom) processes. Prospective-MLP with Fourier embeddings
performs best on the periodic process, whereas the variant with monomial embeddings
achieves the best performance on the linear process.

As expected, the Prospective-MLP with the monomial embedding outperforms
other learners trained on the samples from the linear process with an infinite
number of tasks. However, it fails to perform well on the periodic process,
where the Fourier embedding is more appropriate. The key takeaways from
this experiment is that prospective learning can perform well even when there
are an infinite number of tasks, but to do so, it must leverage an appropriate
time-embedding for the underlying process.

Prospective-MLPs can be trained in a streaming or online manner.

So far, we have considered scenarios where Prospective-MLPs are trained in
an o"ine or batched setting, using a fixed dataset of past samples drawn from
the process. This requires the learner to have access to a memory where it may
store the dataset used for training. When there are constraints on the memory
allowed for the learner, batched-learning is no longer feasible. Here, we consider
an extreme but realistic setting, where the learner will see the sample drawn from
the process at time t only once. Therefore, the learner is expected to perform a
parameter update after observing each new sample. In Fig. 4, we plot the risk of
a Prospective-MLP that was trained in this manner over the data sampled from
the periodic process. Notice that the batch-trained Prospective-MLP converges
to the optimal risk within approximately 250 samples (see Fig. 2 (Bottom)),
whereas its online-trained counterpart requires nearly 10 times as many samples
to reach the same level of performance. This is expected as the model is exposed
to the same training datum more than once during batched-training.

4 Prospective Forests

4.1 Motivation and background

Decision forests, including Random Forests (RF) and Gradient Boosted trees
(GBTs) continue to empirically outperform deep learning methods on tabular and
vector-valued data [23, 24] while o!ering superior interpretability. However, most
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Fig. 4: Prospective risk of the learners that are trained in an online manner on data
from the periodic process.

existing results are for problems under the assumptions of the PAC framework [25].
In addition to the strong theoretical guarantees, including universal consistency
[25–27], decision forests can be e#ciently trained in parallel or sequentially [28].
Motivated by these strengths, we extend decision forests to the prospective
learning regime. Our preliminary results indicate that Prospective Decision Trees
perform comparably to the deep learning-based Prospective-MLP.

Conventional CART (Classification and Regression Trees), as defined in
Breiman et al. [28], is a greedy algorithm that builds a hierarchical structure
through recursive binary splitting. We define a prospective variant of CART in
the following.

Definition 1 (Prospective CART). Consider Z to be a finite family of

stochastic processes. Suppose there is an increasing sequence of hypothesis class

H1 ⇓ H2 ⇓ . . . with each Ht ⇓ (YX )N. H
tree
t is a subset of Ht and is the

collection of all hypothesis h → H
tree
t returned by decision trees regressor. We

define Prospective CART as the learner minimizes the empirical risk over past

data z≃t, i.e:

ĥ = argmin
h↗H

tree
t

t∑

t↑>0

∑

s>t↑

w(s⇒ t↑)ω(ht↑(xs), ys), (5)

where w(i) is non-increasing non-negative weighting function defined in Section 2

Naturally, random forest is a randomized ensemble of decision trees; analogously,
aggregating prospective trees yields a prospective forest. However, another en-
semble technique, GBTs often outperform RF [29, 30] in certain PAC settings.
Therefore, we also introduce a prospective version of GBTs.

Definition 2 (Prospective Gradient Boosted Trees). Moreover, based on

the definition of prospective forests, we defined prospective gradient boosting

trees (GBTs) also as an ensemble of trees hB
t =

∑B
b=1 w

b
th

b
t(x;φ

b
t ). Unlike the

prospective forests defined above, each tree grows independently. In prospective

GBTs, the parameters φb
t and the weights wb

t are iteratively updated by minimizing

the empirical risk. This iterative process ensures that each step improves the model

by reducing the residual error over the past data z↓t. i.e.

ĥ = argmin
hB↗lin(Htree

t )

t∑

t↑>0

∑

s>t↑

w(s⇒t↑)ω(ht↑(xs), ys), subject to hB =
B∑

b=1

wb
th

b
t(x;φ

b
t ),

where lin(Htree
t ) is the set of all linear combinations of functions in H

tree
t .
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4.2 Preliminary results

We consider data drawn from a periodic process and the Hierarchical Markov
Process described in Section 2 and illustrated in Fig. 1. To each data point
from these processes, we append two additional noise dimensions sampled from
a standard normal distribution, ensuring the presence of both informative and
noisy components.

As discussed in Section 2, we implement Prospective-GBTs by giving it
(xs,ε(s)) as input and training it to predict the label ys, where we use the
time-embedding defined in Eq. (4). In Fig. 5, we compare the prospective risks
between several learners including Prospective-GBTs and Prospective-MLP.

Fig. 5: Prospective risk of Prospective-GBTs (red), Prospective-MLP (green) and Time-
agnostic Gradient Boosted trees (Plain-GBTs, blue) across two scenarios where, (1) data
is independent but not identically distributed (Left), and (2) data is neither independent
nor identically distributed (Right). In both cases, the risk of Prospective-GBTs and
Prospective-MLP approach the Bayes risk, with Prospective-GBTs converging faster.
In contrast, the time-agnostic GBTs do not converge consistently. For comparison, the
chance prospective risk is 0.5 in the left panel and 0.3 in the right panel.

5 Prospective Foraging

5.1 Motivation and background

Foraging—searching for food, water, and mates—is vital for survival and re-
production, relying on predictions of environmental fluctuations and resource
availability. However, standard machine-learning and reinforcement learning
(RL) methods—whether minimizing past errors or requiring extensive trial-and-
error—are ill-suited to the real-time, single-lifetime risks of foraging. To bridge
this gap, we introduce the prospective learning framework in which agents project
into possible future states under a one-life constraint. We implement it in a
simplified OpenAI Gym foraging scenario [31], compare standard actor-critic
RL agents [32, 33] to prospectively augmented versions. Finally, we show that
prospective learning framework can be extended beyond the supervised learning
problem and that it outperforms an actor critic RL algorithm in a foraging task.

At each discrete time step t → N the agent observes xt = (st, at→19:t) → X— its
current spatial location and the last 20 actions—and receives a scalar reward yt →
Y. The only data it may inspect is the trajectory z↓t = {(xs, ys)}ts=1. Standard
on-policy control maximizes the generalized advantage estimator (GAE) ÂGAE

t .
For notational uniformity we instead minimize the loss ω(t, ŷt, yt) = ⇒ÂGAE

t .
We define a prospective forager that minimizes the sum of weighted cumulative
instantaneous losses on the observed trajectory.
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Definition 3 (Prospective Forager). Consider Z to be a finite family of

stochastic processes. Let H1 ⇓ H2 ⇓ · · · ⇓ (YX )N be an expanding hypothesis

class. We employ an actor–critic architecture: the critic evaluates any h → Ht,

whereas the actor can selects from H
actor
t ⇓ Ht. We define Prospective Forager

as the learner that minimizes the empirical risk over past data z↓t, i.e:

ĥ = argmin
h↗H

actor
t

max
uit↓m↓t

1

m

m∑

s=1

1

m⇒ s+ 1

m∑

r=s

ω(s, hs(xs), ys) (6)

Due to the double summation in Eq. (6), more recent events are weighted more
heavily when minimizing the empirical risk.

5.2 Preliminary results

Experiments Setting

An agent forages along a 1 × 7 linear track that contains two reward patches, A
and B, positioned three grid spaces apart (see Fig. 6 (Left)). Reward availability
alternates between the two patches every 10 timesteps. Once the reward avail-
ability starts, the reward amount decays in an exponential fashion. A reward can
be collected at time t only if the agent is at the patch that is available at that
moment. The agent moves one grid per timestep, and traveling between A and
B takes at least three timesteps. The goal of the agent is to maximize the total
amount of reward in its single lifetime, which means that there is no reset in
location or time within each run.

Fig. 6: (Left) Schematics of the foraging task. Agents forage in a 1 → 7 linear track
with two reward patches (A and B), whose reward decays in an exponential fashion.
Active patches with reward availability alternates every 10 timesteps. (Right) The
actor-critic architecture used for retrospective and prospective agents.

Optimal Solution

Since the reward function is fixed, we can derive an optimal foraging strategy:
the agent should leave the current patch (Patch A) before its reward is depleted
and arrive at the next patch (Patch B) exactly when its reward peaks. Since
no reward is available during travel, an optimal agent accepts zero immediate
reward (during travel) over a low immediate reward (by staying in Patch A), in
order to maximize future reward. Hence, an agent has to prospect into the future
to learn the optimal solution.
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Fig. 7: (Left) Prospective risk of prospective agents (blue and red) and retrospective
agents (green) in foraging task, compared to Bayes risk (dotted blue) and chance (yellow)
performance. The prospective agent without time converges to a suboptimal risk closer
to Bayes risk than retrospective agent, whereas prospective agent with time converges
to Bayes risk. (Right) Agent actions plotted for the last 100 timesteps of training.
Prospective agent with time embedding (red) shows the same action plan as the optimal
agent, prospective agent without time embedding (blue) leaves the patch few steps
earlier than optimal, and retrospective agent does not follow the action patterns of the
optimal agent.

Preliminary Result

We first implemented a standard actor-critic RL agent in the prospective foraging
environment. The model architecture is described in Fig. 6 (Right). We then
implemented the prospective forager by integrating prospective risk minimization
into the actor-critic agent. Finally, we added time to the prospective forager, using
the same time embedding defined by Eq. (4). At each timestep, time embedding
is concatenated to the input xt in addition to agent state and action. Fig. 7 shows
that the prospective agent significantly outperforms the standard actor-critic
algorithm, and the inclusion of time further improves the performance to near
optimal.

6 Conclusion

In this work, we presented preliminary results that extend the prospective learning
framework. We began by revisiting the foundational concepts and then analyzed
the behavior of deep learning-based prospective learners by experimenting with
heterogeneous sampling, two di!erent choices of time-embeddings, and online-
training. Next, we introduced Prospective-Trees, a nonparametric alternative that
o!ers competitive performance against Prospective-MLPs. Finally, we proposed
prospective foraging, demonstrating the framework’s potential beyond supervised
learning settings and highlighting its promise in sequential decision-making
tasks. Collectively, these results motivate further mathematical and algorithmic
exploration of prospective learning to improve learning in dynamic environments.
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