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Significance

 The knowledge that abnormal 
cell-free DNA (cfDNA) 
fragmentation patterns are found 
in patients without cancer will 
guide the development of more 
effective molecular diagnostics 
and encourage more research 
into the use of cfDNA in 
individuals with cancer as well as 
in those with autoimmune or 
vascular diseases. The 
decomposition of cfDNA 
fragmentation patterns into 
Fragmentation Signatures reveals 
a fundamental relationship 
among abnormal fragmentation 
signatures, plasma cfDNA 
concentration, and an increase in 
inflammatory plasma proteins. 
The purposeful incorporation of 
patients with nonmalignant 
diseases during test development 
represents a major advance for 
improved multicancer earlier 
detection (MCED). From a basic 
science perspective, our findings 
indicate that a shared 
inflammatory process is likely 
responsible for the abnormal 
fragmentation patterns in cancer 
and other diseases.
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Multiple case- controlled studies have shown that analyzing fragmentation patterns in 
plasma cell- free DNA (cfDNA) can distinguish individuals with cancer from healthy 
controls. However, there have been few studies that investigate various types of cfDNA 
fragmentomics patterns in individuals with other diseases. We therefore developed a 
comprehensive statistic, called fragmentation signatures, that integrates the distributions 
of fragment positioning, fragment length, and fragment end- motifs in cfDNA. We found 
that individuals with venous thromboembolism, systemic lupus erythematosus, dermat-
omyositis, or scleroderma have cfDNA fragmentation signatures that closely resemble 
those found in individuals with advanced cancers. Furthermore, these signatures were 
highly correlated with increases in inflammatory markers in the blood. We demonstrate 
that these similarities in fragmentation signatures lead to high rates of false positives in 
individuals with autoimmune or vascular disease when evaluated using conventional 
binary classification approaches for multicancer earlier detection (MCED). To address 
this issue, we introduced a multiclass approach for MCED that integrates fragmentation 
signatures with protein biomarkers and achieves improved specificity in individuals with 
autoimmune or vascular disease while maintaining high sensitivity. !ough these data 
put substantial limitations on the specificity of fragmentomics- based tests for cancer 
diagnostics, they also offer ways to improve the interpretability of such tests. Moreover, 
we expect these results will lead to a better understanding of the process—most likely 
inflammatory—from which abnormal fragmentation signatures are derived.

cell- free DNA | cancer screening | fragmentomics | rheumatology | autoimmune diseases

 !e use of cell-free DNA (cfDNA) to assist with the diagnosis of cancer has a long and 
venerable history. More than 40 y ago, researchers showed that the concentration of cfDNA 
in the blood of cancer patients was higher than in healthy controls ( 1 ). Later studies showed 
that this increase was not speci"c for cancer, and that elevations in blood cfDNA concen-
trations occur in other states, including exercise, trauma, cardiovascular disease, sepsis, 
aseptic in#ammation, autoimmune disease, and viral infections ( 2     – 5 ). However, in the 
early 90’s, researchers demonstrated that mutations present in cancer cells can provide 
highly speci"c biomarkers for cancer ( 6 ,  7 ). !ese studies stimulated e$orts to use genetic 
alterations such as mutations and aneuploidy, as well as epigenetic alterations such as DNA 
methylation, in a variety of clinical samples, including plasma, serum, sputum, Pap Smears, 
cerebrospinal #uid, saliva, and urine ( 8                 – 17 ). Such analyses are referred to as “liquid biop-
sies,” emphasizing their noninvasive nature compared to conventional biopsies. !ere are 
now thousands of examples of the productive use of such liquid biopsies to assist in the 
diagnosis of patients with cancer or suspected cancer, and several of these tests are o$ered 
commercially, some with Food and Drug Administration approval.

 More recently, the analysis of fragmentation patterns in cfDNA, called fragmentomics, 
has emerged as a promising approach for the evaluation of liquid biopsies ( 18 ,  19 ). In 
healthy individuals, cfDNA fragmentation patterns have a characteristic pattern that 
includes a length distribution consistent with the wrapping of DNA around nucleosomes, 
an end-motif pattern indicative of digestion from speci"c nucleases, and a genomic posi-
tioning pattern that represents a footprint of the chromatin proteins bound to nuclear 
DNA within cells ( 20 ,  21 ). Individuals with cancer frequently have alterations to their 
cfDNA fragmentation patterns, including alterations to fragment positioning, fragment 
length, fragment end-motifs patterns, and repetitive elements ( 22           – 28 ). Multiple 
case-controlled, retrospective studies have demonstrated the potential of fragmentomics D
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for multicancer earlier detection (MCED) and minimal residual 
disease monitoring.

 However, the mechanisms responsible for fragmentomic pat-
terns in the cfDNA from cancer patients, and whether these occur 
exclusively in individuals with cancer, are still unclear. We here 
report observations, initiated serendipitously, that demonstrate 
these patterns are not speci"c to cancer patients and can arise in 
the absence of any neoplastic cells. 

Results

Background. !is study was initiated with an analysis of plasma 
cfDNA from patients with unprovoked venous thromboembolism 
(VTE). In the absence of known risk factors, such as postsurgery, 
a substantial fraction of such patients are found to have cancer 
(29, 30). We hoped to use cfDNA to reveal which patients with 
an unprovoked VTE are likely to have cancer and thereby could 
bene"t from further imaging studies and earlier detection of a 
previously undiagnosed malignancy. We used a targeted mutation 
panel to search for mutations in the cfDNA, and whole genome 
sequencing to search for aneuploidy. !is study is still ongoing, 
but during its course, we evaluated the proportion of an end- motif 
signature (called MendSeqS) that we had been investigating for 
potential incorporation into a screening test for cancer (24). To 
our surprise, we found that a high proportion of VTE patients had 
a MendSeqS pattern that was indistinguishable from that in cancer 
patients, even though only a small proportion of the VTE group 
had cancer. !is stimulated us to evaluate other fragmentation 
patterns in VTE patients, as well as to evaluate whether patients 
with other illnesses might have similar fragmentation patterns.

cfDNA Fragmentation Patterns in Healthy Individuals and 
Patients with Cancer, Autoimmune, or Vascular Diseases. To 
evaluate fragmentation patterns, we performed shallow whole- 
genome sequencing (~1%) on the cfDNA from 941 plasma 
samples from 882 individuals as follows:

 Group IA – controls with no known history of cancer, used for 
normalization (n = 130)

 Group IB – controls with no known history of cancer, used for 
validation (n = 255)

 Group IIA – cancer <30 d prior to surgical excision with a high 
plasma tumor fraction (>10%, n = 69)

 Group IIB – cancer <30 d prior to surgical excision with unde-
tectable plasma tumor fraction, (n = 142)

 Group III – unprovoked VTE <30 d following diagnosis who 
did not develop cancer within 2 y of the thromboembolic event 
(VTE; n = 75)

 Group IV – current diagnosis of systemic lupus erythematosus 
(SLE; n = 21)

 Group V – current diagnosis of dermatomyositis (DM;  
n = 143).

 Group VI – current diagnosis of systemic sclerosis (SSc;  
n = 106)

 Previous studies have demonstrated that alterations to cfDNA 
fragmentation patterns are highly correlated with the fraction of 
molecules in the plasma that are tumor-derived ( 25 ,  31 ). Upon the 
"nding that nonmalignant conditions such as VTE shared similar 
alterations, we aimed to better evaluate the e$ect of circulating 
tumor DNA (ctDNA) on fragmentation patterns. Using a meas-
urement of aneuploidy [ichorCNA ( 32 )] we selected two nonover-
lapping groups of patients with cancer: (IIA) those with a high 
plasma tumor fraction (>10%) and (IIB) those with undetectable 
plasma tumor fraction (i.e., tumor fraction < 3%). Aneuploidy is 
widely appreciated to be exquisitely speci"c for cancer ( 33 ). We also 

used ichorCNA to con"rm that all individuals without a diagnosis 
of cancer, including those with vascular or autoimmune diseases, 
had no detectable aneuploidy in their plasma (Dataset S1 ). For 
statistical rigor, the controls were also divided into two nonoverlap-
ping groups: Group IA, a “Normalization Control Group” (n = 
130) and Group IB, an independent “Validation Control Group” 
(n = 255). Group IA was used to convert all variables into z-scores. 
Group IB was used to compare controls with patients harboring 
various diseases in an unbiased manner (Methods ).  

Fragment End- Positions. !e ends of cfDNA fragments are not 
randomly distributed throughout the genome. In other words, the 
fragment end- positions are di$erent from what would be expected 
if nuclear DNA is mechanically sheared or digested by nonspeci"c 
nucleases. Rather, cfDNA fragment end positions appear to re#ect 
the chromatin state of the cells from which the DNA originated 
(34–37). Numerous recurrently protected regions (RPRs) are 
found in the cfDNA in healthy individuals, resulting in a relative 
decrease of fragments whose ends are located within these regions 
(25). !ese regions are thought to be protected by chromatin 
proteins in the normal leukocytes of these patients, as leukocytes 
contribute the vast majority of cfDNA to the plasma of healthy 
individuals as well as those with cancer (38).

 Budhraja et al. generated a map of RPRs using high depth 
sequencing of cfDNA from healthy individuals and demonstrated 
that individuals with cancer have a signi"cant increase in the fre-
quency of fragments whose end-positions map within the RPRs 
( 25 ). We analyzed the frequency of fragment end-positions within 
RPRs in our WGS data (Methods ) and con"rmed Budhraja’s 
results. Individuals with cancer from a variety of tumor types had 
major increases in the representation of these fragment ends while 
control samples showed no such increase ( Fig. 1A  ). We also 
observed increases in fragment-ends within RPRs in individuals 
with VTE, SLE, DM, and scleroderma ( Fig. 1A  ). !e fragment 
end-positions were remarkably similar in the plasma of patients 
with cancer or the other diseases, with a peak at the center of the 
RPR and valleys at ±100 bp from the center ( Fig. 1A  ).        

 To generate a univariate biomarker derived from fragment 
end-positions, Budhraja et al. described a metric called 
information-weighted Fraction of Aberrant Fragments (iwFAF). 
!is statistic re#ects the fraction of fragments that have fragment 
ends within RPRs, weighted by the length and GC content of the 
fragments. We con"rmed that this metric separated cancer patients 
from controls in our cohort ( Fig. 1B  ). Similar to the "ndings from 
Budhraja et al., we observed that the iwFAF was increased in 
 cancer patients with high plasma tumor fraction (Group IIA) 
compared to those with low plasma tumor fraction (Group IIB;  
 P   < 0.001) ( Fig. 1B  ). !e di$erence between iwFAF was observed 
in cancers with high plasma tumor fractions, regardless of cancer 
type (SI Appendix, Fig. S1 ). Furthermore, we also observed 
increases in iwFAF in individuals with VTE (P  < 0.001), SLE  
(P  < 0.001), DM (P  < 0.001), and to a lesser extent, scleroderma 
(P  = 0.0017) ( Fig. 1B  ).  

Fragment Length Patterns. !e "rst identi"ed fragmentomic 
biomarker for cancer was observed over 25 y ago as a change in 
the distribution of fragment lengths of cfDNA (39). Since then, 
the fragment length of cfDNA molecules has often been used as 
a biomarker for cancer screening and monitoring (23, 40–43). 
Individuals with cancer have been shown to have at least three 
types of alterations in their fragment length patterns: i) an increase 
in the proportion of short, subnucleosomal fragments (<160 bp), 
ii) a 10 bp periodicity in the fragmentation patterns of these short 
fragments, and iii) a decrease in the proportion of nucleosomal D
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fragments (160 to 180 bp) compared to healthy controls. In Fig. 2, 
we plot the distribution of fragments with lengths between 80 bp and 
225 bp, representing the great majority (>90%) of the total cfDNA 
fragments in plasma. Intriguingly, we found that in individuals 
with VTE, DM, or scleroderma, the fragmentation patterns were 
similar to those of cancer patients (Fig.  2A). Speci"cally, there 
was an increase in the proportion of subnucleosomal fragments, 
a clear 10-  bp periodicity among these short fragments, and an 
increase in the proportion of nucleosomal fragments (Fig. 2A; also 
see SI Appendix, Fig. S2, which describes the entire distribution of 
fragments, including those larger than 225 bp).

 As with RPRs, it is useful to be able to de"ne a single variable 
that captures the essence of the length patterns. One such variable, 
described by Christiano et al. ( 23 ), is the fragment length ratio 
(FLR), de"ned as the ratio of short (100 to 150 bp) to long (151 
to 220 bp) fragments. We found that the plasma of cancer patients 
with a high plasma tumor fraction (Group IIA) had a signi"cant 
increase in the FLR, in agreement with Christiano et al. ( 23 ) (P  
< 0.00001;  Fig. 2 B  and D  ). However, cancer patients with a low 
plasma tumor fraction (Group IIB) did not have a signi"cant 
increase in FLR (P  = 0.22,  Fig. 2 B  and D   and SI Appendix, 
Fig. S1 ). !e FLR was considerably higher in patients VTE, SLE, 
DM, and scleroderma than it was in cancer patients with low 
plasma tumor fractions (Group IIB, P  < 0.001,  Fig. 2 B  and D  ).  

Fragment End- Motif Patterns. One frequently used fragmentation- 
based biomarker used to distinguish patients with cancer from 
healthy individuals is the nucleotide motif at the 5′ end of plasma 
DNA fragments (24, 44–46). We analyzed the four bases (tetramer) 
at the 5′ end of each cfDNA molecule for each of the 256 possible 
tetramers and then converted end- motif frequencies into z- scores 
based on the Normalization Control Group (Group IA; Methods). 
As expected, we found major di$erences in end- motif frequencies 
between the Validation Control Group (Group IB of heat map in 
Fig. 3A) vs. cancer patients with high tumor fraction in their plasma 
(Group IIA in Fig. 3A). !e same tetramers were correspondingly 
elevated or depressed in frequency in the cancer patients with low 
tumor fraction in their plasma (Group IIB in Fig. 3A), but to a 
lesser extent than in the cancer patients with high tumor fraction 

in their plasma. Strikingly, the same tetramers that were elevated in 
frequency in the cancer patients were often also elevated in patients 
with VTE, SLE, SSc, and DM (Fig. 3 A and B). !e same was true 
for tetramers whose frequencies were depleted in cancer patients 
compared to controls (blue bars in Fig. 3A). To quantify the e$ects 
shown in the heat map, we correlated the mean end- motif z- scores 
of the 256 tetramers in the various groups of patients. We found that 
the individual tetramer frequencies in patients with VTE (R = 0.88, 
P < 0.00001), SLE (R = 0.475, P < 0.00001), DM (R = 0.76, P < 
0.00001), and SSc (R = 0.72, P < 0.00001) were highly correlated 
with those of patients with cancers having high tumor fractions 
(Fig. 3B). Fragment end- motif z- scores were uniformly greater in 
patients with VTE, SLE, and DM patients than they were in cancer 
patients with low tumor plasma fractions (P < 0.00001, Fig. 3B).

 Jiang et al. described a single variable that captures the major 
characteristics of the motif patterns, called Motif Diversity Score 
(MDS) ( 46 ). We found, as expected, that the plasma of cancer 
patients with high tumor plasma fractions (>10%) had a signi"-
cant increase in the MDS compared to the Validation Control 
Group (P  < 0.001;  Fig. 3C  ). Cancer patients with a lower plasma 
tumor fraction did not have a signi"cant increase in MDS com-
pared to the controls ( Fig. 3C  ). In contrast, individuals with VTE 
(P  < 0.001), SLE (P  < 0.001), DM (P  < 0.001), and scleroderma 
(P  < 0.001) had a signi"cant increase in the MDS compared to 
the control group ( Fig. 3C  ).  

Fragmentation Signatures. We next sought to further explore 
the nature of the fragmentation patterns in these various disease 
states in an unbiased manner. For this purpose, we evaluated all 
three of the fragmentation patterns described above (fragment 
end- positions, fragment lengths, and fragment end- motifs) using 
Principal Component Analysis (PCA). PCA is a dimension reduction 
technique, like that of Non- Matrix Factorization (NMF), which has 
in the past been used to de"ne mutational signatures rather than 
fragmentation signatures (47). PCA provides the optimal linear 
reconstruction of the data in terms of minimizing the squared error 
and is guaranteed to "nd the global minimum, whereas NMF is 
not. While supervised approaches rely on "nding disease- speci"c 
signatures, unsupervised approaches such as PCA operate without 

Fig. 1.   Fragment end- positioning in RPRs. (A) Fragment end- position z- scores. Solid lines represent the mean z- score for each group while shaded regions 
represent the 95% CI. The z- scores were calculated using the distribution of fragment- ends in the Normalization Control Group (Group IA) and the blue represents 
the distribution of z- scores in the Validation Control Group (Group IB). “TF” = plasma tumor fraction. (B) Box plots of the information- weighted Fraction of 
Aberrant Fragments (iwFAF) value. The dotted black line represents the mean values of the Validation Control Group (Group IB). Asterisks indicate statistical 
significance differences compared to Group IB (P < 0.001). Horizontal lines on boxplots represent 1st, 2nd, and 3rd quartiles. Notches on boxplots represent 
95% CI of the median (median ± 1.57 × IQR/n0.5). Whiskers represent 1.5*IQR. Notches One low tumor fraction cancer outlier in B (z- score>20) was removed to 
enhance visibility. Fragment end- positioning variables and iwFAF for all patients are provided in Dataset S2.
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any knowledge of disease group labels, allowing the algorithm to 
identify variance- driving components based solely on the intrinsic 
properties and relationships of the variables. For each fragmentation 
pattern, we analyzed the minimum number of principal components 
that were required to capture more than 90% of the explained 
variance—resulting in two, two, and eight principal components for 
end- positions, lengths, and end- motifs, respectively (Fig. 4). !ese 12 
principal components comprise what we call fragmentation signatures.

 To better understand the representation of components within 
fragmentation signatures we analyzed the singular values, eigenval-
ues, and eigenvectors (loadings) for each of the 12 principal com-
ponents. Our analysis demonstrated that the 1st component 
(highest explained variance) of each fragmentation pattern was 
highly correlated with the fragmentation patterns (z-scores) found 
in cancer patients with high plasma tumor fractions (P  < 0.0001, 
 SI Appendix, Fig. S3  and Dataset S6 ). Similarly, we found that the 
1st principal component for each fragmentation pattern was signif-
icantly elevated in cancer patients with high plasma tumor fractions 
as well as those with autoimmune or vascular disease (P  < 0.0001). 
Interestingly, we found that some of the components with less 
explained variance appeared to represent information that was spe-
ci"c to certain disease groups. For example, fragment end-position 
PC2 (FP PC2) was related to an increase in fragment-ends within 
the center of the RPR and was signi"cantly elevated only in cancer 
patients with high plasma tumor fractions (P  < 0.0001). 
Furthermore, fragment end-motif PC3 (FM PC3) was related to 
an increase in T-motifs and was signi"cantly decreased only in indi-
viduals with autoimmune or vascular conditions (P  < 0.0001).

 To determine how these fragmentation signatures were distributed 
within our cohort, we performed clustering using AutoGMM on 
these twelve components. AutoGMM is an automated Gaussian 
Mixture Model (GMM) framework that streamlines clustering by 
automatically optimizing critical hyperparameters ( 48 ). We applied 
AutoGMM to our fragmentation signatures and identi"ed two major 
clusters—Cluster 1 and Cluster 2 ( Fig. 4A  ). We found that the 

principal components with the highest explained variance were most 
informative for distinguishing between the two clusters, whereas 
those with low variance were relatively similar between clusters 
( Fig. 4B   and Dataset S5 ). !e clustering analysis revealed a striking 
pattern: Cluster 1 contained nearly all control samples (97%), while 
Cluster 2 contained most cancer patients with high plasma tumor 
fraction (75%) ( Fig. 4C   and Dataset S5 ). Interestingly, Cluster 2 
contained only a small portion (20%) of cancer patients with low 
plasma tumor fractions but a majority (146/280) of patients with 
other nonmalignant conditions—64% of VTE cases, 63% of DM 
cases, 38% of SLE cases, and 25% of SSc cases ( Fig. 4C  ).

 As a “sanity check,” we determined whether the patients in 
Cluster 1 had di$erent individual fragmentomics patterns, rather 
than fragmentation signatures, than those in Cluster 2. Indeed, 
the fragment end-positions, fragment lengths, and fragment 
end-motifs of samples in Cluster 1 were all di$erent from those 
in Cluster 2 ( Fig. 4 D –F  ). To ensure that these di$erences were 
not driven by speci"c disease groups we evaluated the same frag-
mentation patterns within each disease group and found similar 
di$erences in fragmentation patterns between clusters (SI Appendix, 
Fig. S5 ). Similarly, we investigated whether Clusters 1 and 2 sep-
arated patients with or without various diseases when using aggre-
gate (rather than individual) metrics of fragmentation patterns. 
As noted earlier in this paper, iwFAF, FLR, and MDS are aggregate 
metrics of RPR fragment end-positions, fragment lengths, and 
fragment end-motifs, respectively. Across all diseases, patients in 
Cluster 2 had higher iwFAF, higher FLR, and higher MDS scores 
than patients in Cluster 1 (P  < 0.001; SI Appendix, Fig. S6 ).  

Relationship between Fragmentation Signatures, cfDNA 
Concentrations, and Circulating Inflammatory Markers. With 
the knowledge that fragmentation signatures are often increased 
in patients with autoimmune diseases, we determined whether 
plasma markers for in#ammation were correlated with these 
signatures. We were able to analyze the concentration of 17 plasma 

Fig. 2.   Fragment length distributions 
(A) Fragment length z- scores. Solid 
lines represent the mean z- score for 
each disease group. The z- scores 
were calculated on the basis of the 
distribution of lengths in the control 
group used for normalization (Group 
IA), and the blue represents the 
distribution of lengths of the Validation 
Control Group (Group IB), with the 
mean of Group IB depicted by the 
horizontal dashed line. TF = plasma 
tumor fraction. (B–D) Box plots of 
the proportion of short fragments 
(100 to 150 bp) (B), the proportion of 
long fragments (151 to 220) (C), and 
the ratio of short fragments over 
long fragments (D). The dotted black 
line represents the mean values of 
the Validation Control Group (Group 
IB). Horizontal lines on boxplots 
represent 1st, 2nd, and 3rd quartiles. 
Notches on boxplots represent 95% CI 
of the median (median ± 1.57 × IQR/
n0.5). Whiskers represent 1.5*IQR. In 
(B–D) 11, 8, and 14 outlying points, 
respectively, in the patients in the high 
plasma tumor fraction group of cancer 
patients (Group IIA) are not shown, so 
as to more conservatively visualize 
the differences between patients with 
disease and controls. Fragment length 
ratios for all patients are provided in 
Dataset S3.
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proteins in 838 of the 882 (95%) patients included in this study 
(Dataset S7). !ese proteins were originally chosen because the 
literature indicated that they were often elevated in patients with 
cancer (8). Seven of the 17 proteins were very highly correlated 
with an abnormal fragmentation signature: GDF- 15, OPG, 
IL- 8, myeloperoxidase(MPO), HGF, OPN, TIMP- 1, and NSE  
(P < 0.0001, Fig. 5 A and B). Importantly, all of these seven were 
classic markers for in#ammation (49), and none were speci"c 
biomarkers for cancer, such as CEA, CA19- 9, AFP, or CA125. 
!e e$ect sizes of these correlations were large, with P- values 
< 10−5 after correcting for false discovery using the Benjamini–
Hochberg heuristic. To control for the possibility that these 
correlations are driven by individual disease groups, we strati"ed 
the samples by disease group and found that the relationship 
between fragmentation signatures and in#ammatory markers 
remained consistent across disease groups (SI Appendix, Fig. S7).

 !e concentration of cfDNA has been demonstrated to be an 
activator of innate immunity and is often higher in cancer patients 
and individuals with autoimmune or vascular disease compared to 
healthy controls ( 1 ,  38 ,  50 ). In light of these observations we evalu-
ated whether there was a correlation between fragmentation  
signatures and cfDNA concentration. Indeed, our clustering of frag-
mentation signatures revealed a signi"cant di$erence in cfDNA con-
centrations between samples in cluster 1 and cluster 2 ( Fig. 5C  ). 
When we analyzed each patient group separately, this relationship 
was also signi"cant (P  < 0.005) in several patient groups. To further 
characterize these relationships, we examined the relationship between 
cfDNA concentration and three fragmentation metrics (iwFAF, FLR, 

and MDS). Each metric showed signi"cant positive correlations  
(P  < 0.05) with plasma cfDNA levels in many patient groups 
(SI Appendix, Fig. S8 ).  

Supervised Learning to Distinguish Malignant from Nonmalignant 
Disease Using Fragmentation Signatures and Plasma Proteins. 
We next aimed to determine whether a supervised learning method 
could more e$ectively distinguish autoimmune or vascular disease 
from cancer. We utilized a newly described AI (a.k.a. machine 
learning) algorithm called MIGHT (Curtis et  al., in press at 
PNAS) that has major advantages over other commonly used 
classi"cation approaches. Using a bootstrapping methodology, 
MIGHT incorporates canonical cross- validation into the learning 
process to train, calibrate, and estimate posteriors without the need 
for external datasets. !is methodology has been shown to provide 
more reliable and accurate estimates of sensitivity and speci"city 
compared to other state of the art algorithms (Curtis et  al., in 
press at PNAS). Estimates generated by MIGHT are universally 
consistent, meaning that asymptotically they achieve the optimal 
result, regardless of the underlying distributions of the variables, 
and do not rely on the assumption that the variables are distributed 
in any speci"c fashion, such as linearly, among the cases (e.g., 
cancer) and controls (e.g., healthy individuals).

 We "rst applied MIGHT to estimate the sensitivity and speci-
"city of fragmentation signatures in a classical MCED setting, 
wherein a model is trained to classify individuals as either cancer or 
noncancer (e.g., binary classi"cation). We trained a MIGHT model 
using the Fragmentation Signatures derived from a cohort of healthy 

B

C

A

Fig. 3.   Fragment- end motifs. (A) 
Fragment- end motif z- scores for each 
sample separated by sample group. 
Motifs are sorted by the mean z- score 
in High TF Cancers. Samples are grouped 
on the y- axis according to the disease 
group. Order of samples within the 
disease group (y- axis) is sorted based 
on the z- score of the CCCT end- motif. 
(B) Correlation between fragment- 
end motif z- scores in individuals with 
cancers having high plasma tumor 
fraction (x- axis) and the other groups. 
Each data point represents the mean 
z- score among samples for a single 
tetramer end- motif, so there are 256 
data points for each group. (C) Motif 
Diversity Score (MDS) for each sample 
stratified by sample type. Horizontal 
lines on boxplots represent 1st, 2nd, 
and 3rd quartiles. Notches on boxplots 
represent 95% CI of the median (median 
± 1.57 × IQR/n0.5). Whiskers represent 
1.5*IQR. Fragment end- motif variables 
and MDS for all patients are provided in 
Dataset S4.
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controls (n = 255) along with low and high tumor fraction cancers 
from the pancreas, lung, colon, breast, liver, esophagus, and stomach 
(n = 193). We subsequently applied the PCA and classi"cation 
models, including predetermined thresholds for 98% speci"city, to 
our training data and a nonoverlapping cohort of individuals diag-
nosed with autoimmune or vascular disease (n = 286) (SI Appendix, 
Fig. S9A  ). We observed high sensitivity at a prede"ned speci"city 
of 98% (S@98) in our training data with sensitivities of 67% and 
26% for high and low tumor fraction cancers, respectively. However, 
we observed high rates of false positives in individuals with VTE 
(48%), SLE (57%), DM (50%), and SSc (14%) (SI Appendix, 
Fig. S9B  ). In a MIGHT model integrating both fragmentation 
signatures and our panel of 17 plasma proteins, we observed 
increased sensitivity for high and low tumor fraction cancers but 

similarly high rates of false positives in individuals with autoimmune 
or vascular disease (SI Appendix, Fig. S9C  ).

 To improve the speci"city of fragmentation signatures, we 
hypothesized that including patients with autoimmune or vascular 
disease in the training set could allow MIGHT to learn speci"c 
variables that could di$erentiate these patients from those with 
cancer. To test this hypothesis, we trained a MIGHT model on 
the fragmentation signatures derived from the same cohort of low 
and high tumor fraction cancers alongside a “noncancer” cohort 
including healthy controls as well as those with autoimmune or 
vascular diseases (SI Appendix, Fig. S10A  ). In this scenario, the 
S@98 was 53% and 23% for high and low tumor fraction cancers, 
respectively (SI Appendix, Fig. S10B  ). Adding plasma proteins to 
this model increased S@98 to 66% and 53% for high and low 

A

C

D E F

B

Fig. 4.   Automated Gaussian mixture model clustering of cfDNA fragmentation signatures. (A) unsupervised AutoGMM clustering based on 12 principal 
components derived from variations in fragmentation patterns, including fragment end- positions, fragment lengths, and fragment end- motifs. (B) Strip plots 
illustrating the distribution of each principal component between clusters 1 and 2. Blue and red circles indicate the mean value for clusters 1 and 2, respectively. 
(C) Proportion of samples in each disease group assigned to Cluster 1 (blue) and 3 (red). (D–F) Mean fragment end- positions, fragment lengths, and fragment 
end- motif z- scores for samples in Cluster 1 (blue) and 2 (red). (F) Z- Scores are sorted based on the mean z- score in high tumor fraction cancers (IIA). Principal 
components and cluster assignment for all patients are provided in Dataset S5.
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tumor fractions, respectively (SI Appendix, Fig. S10C  ). In sum, 
adding patients with autoimmune or vascular diseases to the train-
ing set did indeed decrease the fraction of patients with autoim-
mune or vascular diseases who were falsely classi"ed as having 
cancer (thereby increasing speci"city), but also decreased the frac-
tion of patients with cancer who were truthfully classi"ed as having 
cancer (thereby decreasing sensitivity); compare SI Appendix, 
Fig. S10C   with SI Appendix, Fig. S9C  ).

 Our analysis of fragmentation signatures and circulating pro-
teins revealed signi"cant similarity between individuals with can-
cer and those with autoimmune and vascular disease. However, 
we also identi"ed speci"c fragmentation signature components 
that may be able to stratify patients with autoimmune or vascular 
disease from healthy controls and patients with cancer. We there-
fore generalized MIGHT to enable it to work on multiclass  

data, rather than merely two-class. We then proved that this mul-
ticlass MIGHT is also a universally consistent estimator of S@98 
(SI Appendix, Methods , !eorem 1 ). We then could evaluate 
whether a multiclass model trained to distinguish three classes—
healthy controls, patients with autoimmune or vascular diseases, 
and patients with cancer—could learn subtle di$erences in the 
fragmentation signatures that the binary approach was unable to 
detect. For clarity, the samples chosen for this multiclass model 
development ( Fig. 6A  ) were identical to those used to develop the 
two-class model (SI Appendix, Fig. S10A  ). Using this approach, 
we observed that patients with cancer were classi"ed as well as 
they were with the conventional approach (~78% and ~60% for 
high- and low-tumor fraction patients in both conventional and 
three-class models, respectively. However, patients with autoim-
mune or vascular diseases were much less frequently falsely 

A

B

C

Fig. 5.   Comparison of inflammatory biomarkers between Fragmentation Signature Clusters. (A) One- sided Mann–Whitney P- values comparing plasma proteins 
between individuals in Clusters 1 and 2. P- values were corrected using Benjamini–Hochberg FDR adjustment. (B) Box and strip plots illustrating the distribution 
of plasma proteins with significant differences between Fragmentation Signature Clusters 1 and 2 (P < 0.0001). (C) Comparison of plasma cfDNA concentration 
between Fragmentation Signature Clusters 1 and 2 stratified by disease group. Outlier points > IQR are not shown in these graphs so as to more conservatively 
visualize the differences, but all values are provided in Dataset S7. P- values for comparisons between Fragmentation Signature Clusters were performed using 
one- sided Mann–Whitney U tests. * indicates P < 0.05. ** indicates P < 0.001. Protein concentrations for all patients are provided in Dataset S7.
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classi"ed as harboring cancer (compare  Fig. 6C   to SI Appendix, 
Fig. S9C  ). For example, 40% of patients with VTE and 44% of 
patients with DM were wrongly classi"ed as having cancer with 
a conventional model (SI Appendix, Fig. S9C  ) while only 6.7% of 
patients with VTE and 0.9% of patients with DM were wrongly 
classi"ed as having cancer with the multiclass model ( Fig. 6C  ).           

Discussion

 In the past decade, fragmentomic biomarkers have been increasingly 
investigated in case-controlled studies as high sensitivity, high spec-
i"city biomarkers for cancer screening and monitoring ( 17 ,  18 ,  41 ). 
Alterations in the fragmentation patterns have also been shown to 
be highly enriched in ctDNA, allowing for both in-vitro and in-silico 
enrichment of ctDNA to enhance the detection of orthogonal bio-
markers such as somatic mutations and copy number alterations ( 51 , 
 52 ). Our results con"rm previous observations ( 17 ,  18 ,  50 ,  51 ) doc-
umenting the ability to use fragmentomics of cfDNA to distinguish 
patients with and without cancer. However, our observations of 
abnormal fragmentation patterns in individuals with VTE, SLE, 
DM, and SSc unequivocally document that these fragmentomic 
biomarkers are not speci"c for cancer.

 Our observations are consistent with previous studies that found 
abnormal fragmentation patterns in conditions other than cancer. 
Chan et al. previously observed that individuals with SLE had sig-
ni"cant alterations to fragment lengths, speci"cally an increase in the 
proportion of short fragments ( 53 ). Similarly, Zhu et al. recently 
identi"ed abnormal fragment lengths and end-motifs that were asso-
ciated with alterations to postprandial metabolic and immune states 
( 54 ). !ough all these and previous observations motivate serious 
concern for the ability of fragmentomics to distinguish patients with 
cancer from those without cancer in MCED testing, we showed that 
this concern is partially mitigated by our development of a multiclass 
approach to MCED that demonstrates improved speci"city for 
patients with autoimmune or vascular disease while maintaining high 
sensitivity for patients with cancer ( Fig. 6C  ).

 !e results of the current study are analogous to the historical 
results on cfDNA concentrations. As mentioned in the introduction, 
it was originally thought that high cfDNA concentrations were a 
speci"c marker for cancer. However, it was later found that high 
cfDNA concentrations were not speci"c for cancer, as they were 
elevated in numerous other circumstances ( 55     – 58 ). Now, the results 
reported in this paper show that fragmentation patterns, originally 
suggested to be a speci"c biomarker for cancer, are actually not spe-
ci"c for cancer. Moreover, we observed that individuals with abnor-
mal fragmentation signatures (Cluster 1) had signi"cantly higher 
cfDNA concentrations compared to those with normal signatures 
(Cluster 2), suggesting a possible relationship between the two bio-
markers ( Fig. 5C  ). Similarly, we observed a signi"cant positive cor-
relation between plasma cfDNA concentrations and plasma cfDNA 
fragmentation metrics (iwFAF, FLR, MDS) within the four disease 
groups that had a signi"cant increase in cfDNA concentration (high 
tumor fraction cancer, low tumor fraction cancer, VTE, and DM) 
( Fig. 5  and SI Appendix, Fig. S8 ). Interestingly, we observed a slight 
negative correlation between fragmentation metrics and cfDNA con-
centrations in healthy individuals, a "nding that is in line with pre-
vious studies ( 59 ).

 !e most parsimonious explanation of our data is that the same 
in#ammatory process found in patients with autoimmune and vas-
cular diseases is also found in cancer patients, and that this process is 
responsible for the abnormal fragmentation signatures. !is expla-
nation is supported by the fact that a wide range of in#ammatory 
markers, including circulating proteins and cfDNA itself, are elevated 
in patients with abnormal fragmentation signatures ( Fig. 5 ). Recent 

studies have demonstrated that increased concentrations of cfDNA 
directly activate innate immunity ( 60 ,  61 ) and are associated with 
disease activity and markers of in#ammation in a range of conditions 
including cancer, VTE, SLE, DM, and SSc ( 50 ,  59 ,  62   – 64 ). Previous 
studies have come to similar conclusions, proposing that in#amma-
tory processes such as necroptosis, NETosis, or other methods of 
phagocytosis may be responsible for the increase in cfDNA, and 
possibly for abnormal fragmentation patterns, in a variety of condi-
tions ( 45 ,  65   – 67 ). To reconcile the observations that abnormal frag-
mentation signatures are both highly correlated with the tumor 
fraction but not tumor-speci"c, we propose that the same phagocytic 
mechanism is responsible for both the release of ctDNA into the 
plasma and the generation of abnormal fragmentation patterns. !is 
hypothesis is supported by previous studies demonstrating that 
necrotic tumor cells release DNA mainly through phagocytosis ( 68 ). 
Inte restingly, MPO was the most elevated protein in individuals with 
abnormal fragmentation signatures ( Fig. 5  and SI Appendix, Fig. S4 ). 
MPO is the most abundant protein within neutrophil-extracellular 
traps (NETs) and directly generates reactive oxygen species (ROS) 
upon neutrophil activation ( 65 ). Five of the six (OPN, GDF-15, 
IL-8, OPG, NSE) remaining in#ammatory proteins associated with 
abnormal fragmentation signatures are similarly induced by ROS and 
related to increased activity of the innate immune response ( 49 ,  69 , 
 70 ). !is theory is also consistent with the historic idea that cancer 
represents an unhealed wound, "rst introduced by Virchow in the 
19th century ( 71 ). !is interpretation is supported by many studies 
indicating that high levels of circulating in#ammatory markers are 
commonly observed in cancer patients ( 72 ,  73 ). !e data in  Fig. 5  
add to this body of literature by showing strikingly high correlations 
between typical markers of in#ammation and an abnormal fragmen-
tation signature.

 An alternative explanation of our data is that there are two dif-
ferent processes responsible for the abnormal fragmentation sig-
natures, one occurring within the neoplastic cells of the cancer cells 
and one occurring in the absence of any cancer in the body. For 
example, it is possible that in#ammatory cells degrade DNA in the 
same way as neoplastic cells, leading to similar fragmentation sig-
natures. We believe this potential explanation is unlikely because 
it has been shown that most of the cfDNA in cancer patients is 
derived from leukocytes, not neoplastic cells ( 38 ). A more tenable 
explanation is that the same type of cells (e.g., monocytes or gran-
ulocytes) within a tumor degrade their own cellular DNA or DNA 
from other cells that they digest, then release this DNA into the 
circulation as part of NETosis or related in#ammatory processes. 
Many cancers are known to harbor relatively high numbers of 
in#ammatory cells, including macrophages, consistent with the 
“unhealed wound” concept ( 74 ). !is explanation is supported by 
the seminal observation that plasma DNA fragments derived from 
CAR19 T-cells or derived from lymphomas of patients treated with 
these CAR19 T-cells have similar size distributions ( 75 ).

 !ere are several practical implications of our data. !ey place 
limits on the speci"city of fragmentomics-based methods for cancer 
detection because the fragmentation signals are not speci"c for cancer. 
!e prevalence of autoimmune diseases is high, a$ecting ~5 to 10% 
of the population, and is increasing ( 76     – 79 ). One could exclude all 
patients with known vascular or autoimmune diseases from 
fragmentomics-based testing, but this would not be ideal. Notably, 
a subset of patients with vascular or autoimmune diseases are at high 
risk of having an undiagnosed cancer so cancer screening in this 
population is particularly worthwhile ( 29 ,  63 ,  80   – 82 ). Indeed, the 
rationale for the current study was our serendipitous observation that 
patients with VTE had abnormal fragmentation patterns. A second 
reason is that some patients with autoimmune diseases are not yet 
aware that they have the disease as the presentation is often D
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nonspeci"c or disease can be low grade and symptoms can be inter-
mittent. On the other hand, it is possible that such patients may have 
less abnormal fragmentomics signatures than those we studied, who 
were already diagnosed with these diseases. Conversely, it is also pos-
sible that other diseases with in#ammatory components, including 
various infectious diseases or allergic conditions, have abnormal frag-
mentomic signatures, leading to additional positive results in fragmentomics- 
based tests for the presence of cancer. !ese are all important ques-
tions for future investigation.

 On the bright side, the knowledge that patients with vascular and 
autoimmune diseases have fragmentation patterns similar to those of 
advanced cancer patients o$ers clues for both basic science and clinical 
medicine. !is knowledge could lead to a better appreciation of the 
cellular and biochemical mechanisms responsible for the generation 
of cfDNA in both healthy and disease states, which are currently 
poorly understood. And though the fragmentation patterns are 

similar among cancer patients and those with other diseases, they are 
not identical, and vary with the type of noncancerous disease. It is 
possible that AI-based investigation could distinguish the fragmen-
tation signatures found in cancer patients from those with other 
diseases, thereby restoring the speci"city of such tests. And viewed 
from the perspective of the autoimmune or vascular disease patient 
rather than from that of the cancer patient, it is conceivable that 
fragmentation patterns could improve early diagnosis of autoimmun-
ity or vascular disease, help assess the e$ects of treatment, distinguish 
one type of autoimmune disease from another, or identify distinct 
disease subsets.

 !ere are of course limitations to the current study. !ough 
MIGHT does not require an external validation set to obtain con"-
dence limits about its predictions within the sampled population 
(Curtis et al., in press at PNAS), no algorithm, including MIGHT, 
can exclude confounding variables or that the same results would be 

A

B

C

Fig. 6.   Multiclass MCED test development. (A) Development of a multiclass MIGHT model using three classes: i) individuals with no diagnosis of disease (healthy 
controls; n = 255) ii) individuals with autoimmune or vascular disease (n = 286) and iii) individuals with cancer (n = 193). (B) One- vs.- all performance of multiclass 
MIGHT using fragmentation signatures alone. (C) One- vs.- all performance of multiclass MIGHT using fragmentation signatures and plasma proteins. Multiclass 
MIGHT posteriors for all patients are provided in Dataset S8.
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obtained if other populations, library preparation methods, or DNA 
puri"cation methods were studied ( 83 ). Moreover, the current sample 
size for some disease groups (e.g., SLE, n = 21) was small and future 
studies should make use of larger cohorts to document reproducibil-
ity. In addition, the reported relationships between cfDNA fragmen-
tation and in#ammatory conditions/markers are associations at this 
stage, and a causal relationship remains to be established. Finally, 
while known batch e$ects were removed (Methods ) the e$ect of 
unknown batch e$ects may still a$ect the results. On the other hand, 
our use of multiple nonoverlapping cohorts of healthy controls, nor-
malization of known preanalytic batch e$ects, use of unsupervised 
methods for dimension reduction and clustering, and high-powered 
supervised methods such as MIGHT do lend con"dence in the 
results presented within this study.  

Methods
Experimental Study Design. This study was approved by the Institutional 
Review Boards for Human Research at Johns Hopkins Medical Institutes and other 
participating institutions in compliance with the Health Insurance Portability and 
Accountability Act. No proper sample size was calculated; samples were chosen on 
the basis of availability. All individuals participating in the study provided written 
consent. Blood was collected in Streck tubes or in Ethylenediaminetetraacetic 
acid (EDTA) tubes, and plasma separated from cells within 2 d or 2 h, respec-
tively. Plasma was purified using the BioChain Cell- free DNA Extraction Kit (Cat X 
K5011625). All patients were deidentified, and patients are not known to anyone 
outside the research group. Demographics for the individuals are included in 
Dataset S1. Certain data from individuals from the control groups, as well as from 
the cancer groups, IIB, and VII, were included in a recent study to develop MIGHT 
(manuscript submitted to PNAS), though with different study goals.

Plasma samples from adult participants with unprovoked VTEs were collected 
within 10 d of the VTE event. Patients were eligible if they were aged ≥40 y and had 
a first episode of symptomatic, objectively confirmed, unprovoked VTE, i.e., lower- 
extremity deep vein thrombosis and/or pulmonary embolism. VTE was considered 
unprovoked if it was not related to pregnancy or puerperium, recent immobiliza-
tion for ≥3 d (<3 mo), recent surgery (<3 mo), recent hospitalization (<3 mo), 
known genetic or acquired thrombophilia, or use of systemic estrogen therapy. 
Exclusion criteria were a known malignancy in the previous 5 y and enrollment 
>10 d after the VTE event. Patients with suspected cancer at presentation were 
only allowed to participate if the cancer had not yet been objectively confirmed by 
histology or cytology. All participants provided written informed consent prior to 
enrollment. All VTE patients assessed in our study were not diagnosed with cancer 
within a follow- up period of at least 2 y following the thromboembolic event.

Adult patients with SLE met either the revised American College of 
Rheumatology (ACR) criteria for SLE or the 2012 Systemic Lupus International 
Collaborating Clinics classification criteria (84). Patients ≥18 y of age with SLE 
were recruited from the Johns Hopkins Lupus Clinic at scheduled outpatient 
visits or, if hospitalized, the inpatient services at The Johns Hopkins Hospital.

Adult participants with scleroderma or DM were recruited from the Johns Hopkins 
Scleroderma Center Research Registry and the Johns Hopkins Myositis Research 
Registry. Participants in the scleroderma registry had features concerning for sclero-
derma either defined by 2013 ACR/EULAR classification criteria, 3 of 5 CREST (calcino-
sis, Raynaud’s, esophageal dysmotility, sclerodactyly, telangiectasia) criteria, definite 
Raynaud’s phenomenon, abnormal nailfold capillaries, and a scleroderma specific 
autoantibody, or a high titer scleroderma autoantibody. All DM patients met ACR/
EULAR 2017 Idiopathic Inflammatory Myositis Classification Criteria.

Whole Genome Sequencing. We previously developed a library preparation 
workflow that can efficiently recover input DNA fragments and simultane-
ously incorporate double- stranded molecular barcodes (85). In brief, librar-
ies were prepared with cfDNA using an Accel- NGS 2S DNA Library Kit (Swift 
Bio-  sciences, 21024) with the following critical modifications: 1) DNA was 
pretreated with 3 U of USER enzyme (New England BioLabs, M5505L) for 15 
min at 37 °C to excise uracil bases; 2) the SPRI bead/PEG NaCl ratios used after 
each reaction were 2.0×, 1.8×, 1.2×, and 1.05× for end repair 1, end repair 
2, ligation 1, and ligation 2, respectively; 3) a custom 50 μM 3′ adapter was 
substituted for reagent Y2 and 4) a custom 42 μM 5′ adapter was substituted 
for reagent B2. Libraries were subsequently PCR amplified in 50- μL reactions 

using primers targeting the ligated adapters. The following reaction condi-
tions were used: 1× NEBNext Ultra II Q5 Master Mix (New England BioLabs, 
M0544L), 2 μM universal forward primer and 2 μM universal reverse primer. 
Libraries were PCR- amplified according to the following protocol: 98 °C for 
20 s, then eight cycles of 98 °C for 10 s, 65 °C for 75 s, and hold at 4 °C. The 
products were purified with 1.8× SPRI beads (Beckman Coulter, B23317) and 
eluted in EB buffer (Qiagen). Whole genome libraries were sequenced with 
paired- end 2× 100 bp sequencing on either a HiSeq 4000 or NovaSeq 6000 
to a median depth of 26.9M read pairs (IQR 23.5- 30.5).

Bioinformatic Pipeline. Fastq files were demultiplexed using a custom script that 
utilized index sequences added during library preparation. Demultiplexed read 1 and 
read 2 fastq files were trimmed using a custom script to remove 27 base oligonucleo-
tides added during library preparation. Trimmed sequences were then aligned to the 
hg19 genome with bowtie2 (86) using end- to- end alignment. After alignment, UID 
duplicates were removed using a custom script. Picard AddOrReplaceReadGroups (87) 
was used to add read groups. Samtools flagstat (88) was used to evaluate alignment. 
Binary Alignment Map (BAM) files were converted to bed format using bedtools (89). 
Custom scripts for the analysis of fragmentation patterns were all written using python 
3.9.12. All scripts are available from the authors upon request. Samples that had 
multiple technical replicates were consolidated into a single sample by taking the 
average of each variable between all replicates.

Quality Control. Each sample was evaluated based on library DNA concentration, 
read alignment metrics, GC content of the sequenced molecules, and total molecules. 
Any samples with less than 4 ng/μL of DNA, greater than 2.5% singletons, less than 
80% of reads mapped, less than 80% of reads properly paired, less than 43% GC 
content, greater than 48% GC content, or less than five million usable molecules were 
removed from analysis. A total of 24 samples, representing 2.3% of the processed 
samples, were removed. Only properly paired reads with a MAPQ>30 mapped to 
autosomal chromosomes were used for the analysis of fragmentation patterns.
Preanalytic Conditions. Variations in preanalytic conditions including blood 
collection tubes, blood processing, blood storage, and DNA extraction have been 
shown to have significant effects on the analysis of cfDNA (90). When comparing 
samples collected in EDTA or Streck tubes we observed significant differences in 
fragment end- positions, lengths, and end- motifs (SI Appendix, Fig. S11). Samples 
in EDTA or Streck tubes also had differences in the time from blood collection to 
plasma separation (2 d or 2 h, respectively). To account for confounders associated 
with tube type or time to plasma separation we separated the normalization 
cohort into two nonoverlapping groups: one containing healthy controls pro-
cessed in EDTA tubes (n = 62) and another containing healthy controls processed 
in Streck tubes (n = 68). Z- scores for samples in other groups were calculated 
using the normalization cohort corresponding to the tube in which the sample 
was processed. Information for the tube in which each sample was processed and 
subsequently normalized can be found in Dataset S1.

Fragment Length Analysis. Fragment length was extracted from the BAM files 
using the TLEN alignment field. Only fragments between 70 bp and 500 bp were 
analyzed. Fragment length frequencies were calculated as the count of each indi-
vidual length divided by the total number of fragments of length 70 to 500 bp. The 
proportion of short and long fragments were calculated as the sum of frequencies 
of fragments 100 to 150 bp and 151 to 220 bp, respectively. The FLR was calculated 
as the proportion of short fragments divided by the proportion of long fragments.

Fragment End- Motif Analysis. Fragment start position, end position, and 
strandedness (±) were extracted from the fragment BED file. The full nucleotide 
sequence of each read pair was then extracted from the hg19 reference genome 
using bedtools nuc (89). Orientation of 5′ and 3′ of each fragment was inferred 
using the strandedness of each molecule. Fragments that aligned to the nonrefer-
ence (−) strand of the hg19 reference genome were reverse complemented. The 
final four bases (tetramer) were then extracted for both the 5′ and 3′ ends. After 
analyzing all fragments the genome- wide frequencies of the 5′ and 3′ end- motifs 
were calculated by dividing by the count of each motif by the total number of 
fragments analyzed. Due to end- repair of the 3′ end during library preparation, 
the average frequency between the 5′ end- motif and reverse complement of the 
3′ end- motif was used as the final frequency.

Fragment End- Position Analysis. A BED file for RPRs was downloaded from 
Budhraja et al. Bedtools intersect (v2.30.0) was then used to intersect the sam-
ple fragment bed file with each RPR, requiring only a single base position of 
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overlap between the molecule and the genomic loci to be included. To calculate 
the fragment end- position variables, we first determined the central base position 
of each genomic locus. If there was an even number of bases in the locus, the 
central position was rounded up. Each bond between the bases was considered 
as a possible breakpoint (e.g. counting the number of phosphodiester bonds, 
not nucleotides). For each genomic locus, we analyzed positions −150 to +150 
from the central position, where position - 1 is the bond between the central 
nucleotide and the nucleotide directly upstream. The number of fragment- ends 
at that position was divided by the number of fragments that overlapped that 
position (e.g., had coverage at the nucleotide upstream and downstream of that 
position). In total, 300 possible positions were evaluated for each locus.

ichorCNA. ichorCNA version 0.3.2 was downloaded from the GitHub repository 
https://github.com/broadinstitute/ichorCNA. Wig files were generated using read-
Counter with arguments –window 5000000 –quality 30. CreatePanelOfNormals.R 
was used to generate a panel of normals (n = 124). The “normal” initialization 
parameters selected were c(0.95, 0.99, 0.995, 0.999) and the ploidy initialization 
parameter was 2.

Fragmentation Signatures. For the analysis of fragmentation signatures, 
PCA was first performed on z- scores for each fragmentation pattern inde-
pendently using sklearn.decomposition.PCA(n_components=0.9). Resulting 
principal components for each fragmentation pattern were then consolidated 
into a single matrix. AutoGMM from the graspologic package was applied to 
perform model- based clustering on the PCs of fragmentation data. It auto-
mates hyperparameter selection by iterating over combinations of candidate 
parameters: the number of clusters (we set both min_components=2 and 
max_components=2), covariance structure (default: all types, e.g., spherical, 
diagonal, tied, full), and initialization methods (default: k- means++ and ran-
dom). The optimal model was selected via the Bayesian information criterion, 
balancing goodness- of- fit and model complexity. We retained the default tol-
erance (tol=1e- 3) and maximum iterations (max_iter=100), ensuring conver-
gence. This approach accommodates nonspherical cluster geometries in the 
PC- reduced space while automatically inferring cluster numbers, mitigating 
biases from manual parameter tuning.

Statistical Analyses. All statistics were generated using python version 3.9.12 
and scipy version 1.13.1. One- sided tests were performed for comparisons of cfDNA 
concentration and plasma protein levels using scipy.stats.mannwhitneyu(alterna-
tive=’less’). All other statistics generated were with two- sided Mann–Whitney U tests. 
Correlation coefficients were calculated using scipy.stats.pearsonr.

MIGHT. MIGHT was installed from GitHub (https://docs.neurodata.io/treeple/
dev/install.html) using treeple version 0.9.1. All MIGHT analyses were run using 
the following parameters: est=HonestForestClassifier(n_estimators=n_estima-
tors, max_samples=1.6, max_features=‘sqrt‘, bootstrap=True, stratify=True, 
n_jobs=10, random_state=9515, honest_prior=“ignore,“ honest_method= 
‘apply‘, honest_fraction=0.367, kernel_method=True, tree_estimator=Oblique 
DecisionTreeClassifier(feature_combinations=1.5)).

Evaluation of Plasma Proteins. The Bioplex 200 platform (Biorad, Hercules 
CA) was used to determine the concentration of multiple target proteins in the 
plasma samples. Luminex bead- based immunoassays (Millipore, Billerica NY) 
were performed following the manufacturers protocols and concentrations were 
determined using five parameter log curve fits (using Bioplex Manager 6.0) with 
vendor provided standards and quality controls. The HCC BP1MAG- 58K panel 
was used to detect AFP, CA125, CA15- 3, CA19- 9, CEA, HGF, OPN, CYFRA21.1, IL- 
8, and FGF2. The HCMBMAG- 22K panel was used to detect GDF- 15, NSE, OPG, 
and DKK1. The HCC BP3MAG- 58K panel was used to detect MPO and SHBG. The 
HTMP1MAG- 54K panel was used to detect TIMP- 1.

Data, Materials, and Software Availability. Anonymized genetic sequenc-
ing data have been deposited in EGA (https://ega- archive.org/studies/
EGAS00001008004) (91).
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