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Multiple case-controlled studies have shown that analyzing fragmentation patterns in
plasma cell-free DNA (cfDNA) can distinguish individuals with cancer from healthy
controls. However, there have been few studies that investigate various types of cfDNA
fragmentomics patterns in individuals with other diseases. We therefore developed a
comprehensive statistic, called fragmentation signatures, that integrates the distributions
of fragment positioning, fragment length, and fragment end-motifs in cfDNA. We found
that individuals with venous thromboembolism, systemic lupus erythematosus, dermat-
omyositis, or scleroderma have cfDNA fragmentation signatures that closely resemble
those found in individuals with advanced cancers. Furthermore, these signatures were
highly correlated with increases in inflammatory markers in the blood. We demonstrate
that these similarities in fragmentation signatures lead to high rates of false positives in
individuals with autoimmune or vascular disease when evaluated using conventional
binary classification approaches for multicancer earlier detection (MCED). To address
this issue, we introduced a multiclass approach for MCED that integrates fragmentation
signatures with protein biomarkers and achieves improved specificity in individuals with
autoimmune or vascular disease while maintaining high sensitivity. Though these data
put substantial limitations on the specificity of fragmentomics-based tests for cancer
diagnostics, they also offer ways to improve the interpretability of such tests. Moreover,
we expect these results will lead to a better understanding of the process—most likely
inflammatory—from which abnormal fragmentation signatures are derived.

cell-free DNA | cancer screening | fragmentomics | rheumatology | autoimmune diseases

The use of cell-free DNA (cfDNA) to assist with the diagnosis of cancer has a long and
venerable history. More than 40 y ago, researchers showed that the concentration of fDNA
in the blood of cancer patients was higher than in healthy controls (1). Later studies showed
that this increase was not specific for cancer, and that elevations in blood ¢fDNA concen-
trations occur in other states, including exercise, trauma, cardiovascular disease, sepsis,
aseptic inflammation, autoimmune disease, and viral infections (2-5). However, in the
early 90%s, researchers demonstrated that mutations present in cancer cells can provide
highly specific biomarkers for cancer (6, 7). These studies stimulated efforts to use genetic
alterations such as mutations and aneuploidy, as well as epigenetic alterations such as DNA
methylation, in a variety of clinical samples, including plasma, serum, sputum, Pap Smears,
cerebrospinal fluid, saliva, and urine (8—17). Such analyses are referred to as “liquid biop-
sies,” emphasizing their noninvasive nature compared to conventional biopsies. There are
now thousands of examples of the productive use of such liquid biopsies to assist in the
diagnosis of patients with cancer or suspected cancer, and several of these tests are offered
commercially, some with Food and Drug Administration approval.

More recently, the analysis of fragmentation patterns in cfDNA, called fragmentomics,
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has emerged as a promising approach for the evaluation of liquid biopsies (18, 19). In
healthy individuals, cfDNA fragmentation patterns have a characteristic pattern that
includes a length distribution consistent with the wrapping of DNA around nucleosomes,
an end-motif pattern indicative of digestion from specific nucleases, and a genomic posi-
tioning pattern that represents a footprint of the chromatin proteins bound to nuclear
DNA within cells (20, 21). Individuals with cancer frequently have alterations to their
cfDNA fragmentation patterns, including alterations to fragment positioning, fragment
length, fragment end-motifs patterns, and repetitive elements (22-28). Multiple
case-controlled, retrospective studies have demonstrated the potential of fragmentomics
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for multicancer earlier detection (MCED) and minimal residual
disease monitoring.

However, the mechanisms responsible for fragmentomic pat-
terns in the cfDNA from cancer patients, and whether these occur
exclusively in individuals with cancer, are still unclear. We here
report observations, initiated serendipitously, that demonstrate
these patterns are not specific to cancer patients and can arise in
the absence of any neoplastic cells.

Results

Background. This study was initiated with an analysis of plasma
cfDNA from patients with unprovoked venous thromboembolism
(VTE). In the absence of known risk factors, such as postsurgery,
a substantial fraction of such patients are found to have cancer
(29, 30). We hoped to use cfDNA to reveal which patients with
an unprovoked VTE are likely to have cancer and thereby could
benefit from further imaging studies and earlier detection of a
previously undiagnosed malignancy. We used a targeted mutation
panel to search for mutations in the cfDNA, and whole genome
sequencing to search for aneuploidy. This study is still ongoing,
but during its course, we evaluated the proportion of an end-motif
signature (called MendSeqS) that we had been investigating for
potential incorporation into a screening test for cancer (24). To
our surprise, we found that a high proportion of VTE patients had
a MendSeqS pattern that was indistinguishable from that in cancer
patients, even though only a small proportion of the VTE group
had cancer. This stimulated us to evaluate other fragmentation
patterns in VTE patients, as well as to evaluate whether patients
with other illnesses might have similar fragmentation patterns.

cfDNA Fragmentation Patterns in Healthy Individuals and
Patients with Cancer, Autoimmune, or Vascular Diseases. To
evaluate fragmentation patterns, we performed shallow whole-
genome sequencing (~1x) on the cfDNA from 941 plasma
samples from 882 individuals as follows:

Group IA — controls with no known history of cancer, used for
normalization (n = 130)

Group IB — controls with no known history of cancer, used for
validation (n = 255)

Group ITA — cancer <30 d prior to surgical excision with a high
plasma tumor fraction (>10%, n = 69)

Group IIB — cancer <30 d prior to surgical excision with unde-
tectable plasma tumor fraction, (n = 142)

Group III — unprovoked VTE <30 d following diagnosis who
did not develop cancer within 2 y of the thromboembolic event
(VTE; n=75)

Group IV — current diagnosis of systemic lupus erythematosus
(SLE; n = 21)

Group V — current diagnosis of dermatomyositis (DM;
n = 143).

Group VI — current diagnosis of systemic sclerosis (SSc;
n = 106)

Previous studies have demonstrated that alterations to cfDNA
fragmentation patterns are highly correlated with the fraction of
molecules in the plasma that are tumor-derived (25, 31). Upon the
finding that nonmalignant conditions such as VTE shared similar
alterations, we aimed to better evaluate the effect of circulating
tumor DNA (ctDNA) on fragmentation patterns. Using a meas-
urement of aneuploidy [ichorCNA (32)] we selected two nonover-
lapping groups of patients with cancer: (IIA) those with a high
plasma tumor fraction (>10%) and (IIB) those with undetectable
plasma tumor fraction (i.e., tumor fraction < 3%). Aneuploidy is
widely appreciated to be exquisitely specific for cancer (33). We also
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used ichorCNA to confirm that all individuals without a diagnosis
of cancer, including those with vascular or autoimmune diseases,
had no detectable aneuploidy in their plasma (Dataset S1). For
statistical rigor, the controls were also divided into two nonoverlap-
ping groups: Group IA, a “Normalization Control Group” (n =
130) and Group IB, an independent “Validation Control Group”
(n=255). Group IA was used to convert all variables into z-scores.
Group IB was used to compare controls with patients harboring
various diseases in an unbiased manner (Methods).

Fragment End-Positions. The ends of cfDNA fragments are not
randomly distributed throughout the genome. In other words, the
fragment end-positions are different from what would be expected
if nuclear DNA is mechanically sheared or digested by nonspecific
nucleases. Rather, cfDNA fragment end positions appear to reflect
the chromatin state of the cells from which the DNA originated
(34-37). Numerous recurrently protected regions (RPRs) are
found in the cfDNA in healthy individuals, resulting in a relative
decrease of fragments whose ends are located within these regions
(25). These regions are thought to be protected by chromatin
proteins in the normal leukocytes of these patients, as leukocytes
contribute the vast majority of cfDNA to the plasma of healthy
individuals as well as those with cancer (38).

Budhraja etal. generated a map of RPRs using high depth
sequencing of cfDNA from healthy individuals and demonstrated
that individuals with cancer have a significant increase in the fre-
quency of fragments whose end-positions map within the RPRs
(25). We analyzed the frequency of fragment end-positions within
RPRs in our WGS data (Methods) and confirmed Budhraja’s
results. Individuals with cancer from a variety of tumor types had
major increases in the representation of these fragment ends while
control samples showed no such increase (Fig. 14). We also
observed increases in fragment-ends within RPRs in individuals
with VTE, SLE, DM, and scleroderma (Fig. 14). The fragment
end-positions were remarkably similar in the plasma of patients
with cancer or the other diseases, with a peak at the center of the
RPR and valleys at +100 bp from the center (Fig. 14).

To generate a univariate biomarker derived from fragment
end-positions, Budhraja etal. described a metric called
information-weighted Fraction of Aberrant Fragments (iwFAF).
'This statistic reflects the fraction of fragments that have fragment
ends within RPRs, weighted by the length and GC content of the
fragments. We confirmed that this metric separated cancer patients
from controls in our cohort (Fig. 1B). Similar to the findings from
Budhraja etal., we observed that the iwFAF was increased in
cancer patients with high plasma tumor fraction (Group IIA)
compared to those with low plasma tumor fraction (Group IIB;
P<0.001) (Fig. 1B). The difference between iwFAF was observed
in cancers with high plasma tumor fractions, regardless of cancer
type (SI Appendix, Fig. S1). Furthermore, we also observed
increases in iwFAF in individuals with VTE (P < 0.001), SLE
(P <0.001), DM (2 <0.001), and to a lesser extent, scleroderma
(P=10.0017) (Fig. 1B).

Fragment Length Patterns. The first identified fragmentomic
biomarker for cancer was observed over 25 y ago as a change in
the distribution of fragment lengths of ¢fDNA (39). Since then,
the fragment length of (fDNA molecules has often been used as
a biomarker for cancer screening and monitoring (23, 40-43).
Individuals with cancer have been shown to have at least three
types of alterations in their fragment length patterns: i) an increase
in the proportion of short, subnucleosomal fragments (<160 bp),
ii) a 10 bp periodicity in the fragmentation patterns of these short
fragments, and iii) a decrease in the proportion of nucleosomal
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Fig. 1. Fragment end-positioning in RPRs. (A) Fragment end-position z-scores. Solid lines represent the mean z-score for each group while shaded regions
represent the 95% Cl. The z-scores were calculated using the distribution of fragment-ends in the Normalization Control Group (Group IA) and the blue represents
the distribution of z-scores in the Validation Control Group (Group IB). “TF” = plasma tumor fraction. (B) Box plots of the information-weighted Fraction of
Aberrant Fragments (iwFAF) value. The dotted black line represents the mean values of the Validation Control Group (Group IB). Asterisks indicate statistical
significance differences compared to Group IB (P < 0.001). Horizontal lines on boxplots represent 1st, 2nd, and 3rd quartiles. Notches on boxplots represent
95% Cl of the median (median + 1.57 x IQR/nO'S). Whiskers represent 1.5%IQR. Notches One low tumor fraction cancer outlier in B (z-score>20) was removed to
enhance visibility. Fragment end-positioning variables and iwFAF for all patients are provided in Dataset S2.

fragments (160 to 180 bp) compared to healthy controls. In Fig. 2,
we plot the distribution of fragments with lengths between 80 bp and
225 bp, representing the great majority (>90%) of the total cfDNA
fragments in plasma. Intriguingly, we found that in individuals
with VTE, DM, or scleroderma, the fragmentation patterns were
similar to those of cancer patients (Fig. 2A4). Specifically, there
was an increase in the proportion of subnucleosomal fragments,
a clear 10- bp periodicity among these short fragments, and an
increase in the proportion of nucleosomal fragments (Fig. 24; also
see SI Appendix, Fig. S2, which describes the entire distribution of
fragments, including those larger than 225 bp).

As with RPRs, it is useful to be able to define a single variable
that captures the essence of the length patterns. One such variable,
described by Christiano et al. (23), is the fragment length ratio
(FLR), defined as the ratio of short (100 to 150 bp) to long (151
to 220 bp) fragments. We found that the plasma of cancer patients
with a high plasma tumor fraction (Group ITA) had a significant
increase in the FLR, in agreement with Christiano et al. (23) (P
< 0.00001; Fig. 2 Band D). However, cancer patients with a low
plasma tumor fraction (Group IIB) did not have a significant
increase in FLR (P = 0.22, Fig. 2 B and D and S/ Appendix,
Fig. S1). The FLR was considerably higher in patients VTE, SLE,
DM, and scleroderma than it was in cancer patients with low
plasma tumor fractions (Group IIB, P < 0.001, Fig. 2 Band D).

Fragment End-Motif Patterns. One frequently used fragmentation-
based biomarker used to distinguish patients with cancer from
healthy individuals is the nucleotide motif at the 5" end of plasma
DNA fragments (24, 44—46). We analyzed the four bases (tetramer)
at the 5" end of each cfDNA molecule for each of the 256 possible
tetramers and then converted end-motif frequencies into z-scores
based on the Normalization Control Group (Group 1A; Methods).
As expected, we found major differences in end-motif frequencies
between the Validation Control Group (Group IB of heat map in
Fig. 34) vs. cancer patients with high tumor fraction in their plasma
(Group IIA in Fig. 34). The same tetramers were correspondingly
elevated or depressed in frequency in the cancer patients with low
tumor fraction in their plasma (Group IIB in Fig. 34), but to a
lesser extent than in the cancer patients with high tumor fraction
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in their plasma. Strikingly, the same tetramers that were elevated in
frequency in the cancer patients were often also elevated in patients
with VTE, SLE, SSc, and DM (Fig. 3 A and B). The same was true
for tetramers whose frequencies were depleted in cancer patients
compared to controls (blue bars in Fig. 34). To quantify the effects
shown in the heat map, we correlated the mean end-motif z-scores
of the 256 tetramers in the various groups of patients. We found that
the individual tetramer frequencies in patients with VTE (R = 0.88,
P <0.00001), SLE (R = 0.475, P < 0.00001), DM (R = 0.76, P <
0.00001), and SSc (R = 0.72, P < 0.00001) were highly correlated
with those of patients with cancers having high tumor fractions
(Fig. 3B). Fragment end-motif z-scores were uniformly greater in
patients with VTE, SLE, and DM patients than they were in cancer
patients with low tumor plasma fractions (P < 0.00001, Fig. 3B).

Jiang et al. described a single variable that captures the major
characteristics of the motif patterns, called Motif Diversity Score
(MDS) (46). We found, as expected, that the plasma of cancer
patients with high tumor plasma fractions (>10%) had a signifi-
cant increase in the MDS compared to the Validation Control
Group (P < 0.001; Fig. 3C). Cancer patients with a lower plasma
tumor fraction did not have a significant increase in MDS com-
pared to the controls (Fig. 3C). In contrast, individuals with VTE
(P<0.001), SLE (P < 0.001), DM (P < 0.001), and scleroderma
(P < 0.001) had a significant increase in the MDS compared to
the control group (Fig. 3C).

Fragmentation Signatures. We next sought to further explore
the nature of the fragmentation patterns in these various discase
states in an unbiased manner. For this purpose, we evaluated all
three of the fragmentation patterns described above (fragment
end-positions, fragment lengths, and fragment end-motifs) using
Principal Component Analysis (PCA). PCA is a dimension reduction
technique, like that of Non-Matrix Factorization (NMF), which has
in the past been used to define mutational signatures rather than
fragmentation signatures (47). PCA provides the optimal linear
reconstruction of the data in terms of minimizing the squared error
and is guaranteed to find the global minimum, whereas NMF is
not. While supervised approaches rely on finding disease-specific
signatures, unsupervised approaches such as PCA operate without
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any knowledge of disease group labels, allowing the algorithm to
identify variance-driving components based solely on the intrinsic
properties and relationships of the variables. For each fragmentation
pattern, we analyzed the minimum number of principal components
that were required to capture more than 90% of the explained
variance—resulting in two, two, and eight principal components for
end-positions, lengths, and end-motifs, respectively (Fig. 4). These 12
principal components comprise what we call fragmentation signatures.

To better understand the representation of components within
fragmentation signatures we analyzed the singular values, eigenval-
ues, and eigenvectors (loadings) for each of the 12 principal com-
ponents. Our analysis demonstrated that the 1lst component
(highest explained variance) of each fragmentation pattern was
highly correlated with the fragmentation patterns (z-scores) found
in cancer patients with high plasma tumor fractions (2 < 0.0001,
SI Appendix, Fig. S3 and Dataset S6). Similarly, we found that the
Ist principal component for each fragmentation pattern was signif-
icantly elevated in cancer patients with high plasma tumor fractions
as well as those with autoimmune or vascular disease (P < 0.0001).
Interestingly, we found that some of the components with less
explained variance appeared to represent information that was spe-
cific to certain disease groups. For example, fragment end-position
PC2 (FP PC2) was related to an increase in fragment-ends within
the center of the RPR and was significantly elevated only in cancer
patients with high plasma tumor fractions (2 < 0.0001).
Furthermore, fragment end-motif PC3 (FM PC3) was related to
an increase in T-motifs and was significantly decreased only in indi-
viduals with autoimmune or vascular conditions (P < 0.0001).

To determine how these fragmentation signatures were distributed
within our cohort, we performed clustering using AutoGMM on
these twelve components. AutoGMM is an automated Gaussian
Mixture Model (GMM) framework that streamlines clustering by
automatically optimizing critical hyperparameters (48). We applied
AutoGMM to our fragmentation signatures and identified two major
clusters—Cluster 1 and Cluster 2 (Fig. 44). We found that the

https://doi.org/10.1073/pnas.2426890122
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principal components with the highest explained variance were most
informative for distinguishing between the two clusters, whereas
those with low variance were relatively similar between clusters
(Fig. 4B and Dataset S5). The clustering analysis revealed a striking
pattern: Cluster 1 contained nearly all control samples (97%), while
Cluster 2 contained most cancer patients with high plasma tumor
fraction (75%) (Fig. 4C and Dataset S5). Interestingly, Cluster 2
contained only a small portion (20%) of cancer patients with low
plasma tumor fractions but a majority (146/280) of patients with
other nonmalignant conditions—64% of VTE cases, 63% of DM
cases, 38% of SLE cases, and 25% of SSc cases (Fig. 4C).

As a “sanity check,” we determined whether the patients in
Cluster 1 had different individual fragmentomics patterns, rather
than fragmentation signatures, than those in Cluster 2. Indeed,
the fragment end-positions, fragment lengths, and fragment
end-motifs of samples in Cluster 1 were all different from those
in Cluster 2 (Fig. 4 D-F). To ensure that these differences were
not driven by specific disease groups we evaluated the same frag-
mentation patterns within each disease group and found similar
differences in fragmentation patterns between clusters (S Appendix,
Fig. S5). Similarly, we investigated whether Clusters 1 and 2 sep-
arated patients with or without various diseases when using aggre-
gate (rather than individual) metrics of fragmentation patterns.
As noted earlier in this paper, iwFAFE, FLR, and MDS are aggregate
metrics of RPR fragment end-positions, fragment lengths, and
fragment end-motifs, respectively. Across all diseases, patients in
Cluster 2 had higher iwFAE higher FLR, and higher MDS scores
than patients in Cluster 1 (P < 0.001; SI Appendix, Fig. S6).

Relationship between Fragmentation Signatures, cfDNA
Concentrations, and Circulating Inflammatory Markers. With
the knowledge that fragmentation signatures are often increased
in patients with autoimmune diseases, we determined whether
plasma markers for inflammation were correlated with these
signatures. We were able to analyze the concentration of 17 plasma
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1.5%IQR. Fragment end-motif variables
and MDS for all patients are provided in
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Dataset S4.

proteins in 838 of the 882 (95%) patients included in this study
(Dataset S7). These proteins were originally chosen because the
literature indicated that they were often elevated in patients with
cancer (8). Seven of the 17 proteins were very highly correlated
with an abnormal fragmentation signature: GDF-15, OPG,
IL-8, myeloperoxidase(MPO), HGE, OPN, TIMP-1, and NSE
(P<0.0001, Fig. 5 A and B). Importantly, all of these seven were
classic markers for inflammation (49), and none were specific
biomarkers for cancer, such as CEA, CA19-9, AFP, or CA125.
The effect sizes of these correlations were large, with P-values
< 107 after correcting for false discovery using the Benjamini—
Hochberg heuristic. To control for the possibility that these
correlations are driven by individual disease groups, we stratified
the samples by disease group and found that the relationship
between fragmentation signatures and inflammatory markers
remained consistent across disease groups (S Appendix, Fig. S7).

‘The concentration of cfDNA has been demonstrated to be an
activator of innate immunity and is often higher in cancer patients
and individuals with autoimmune or vascular disease compared to
healthy controls (1, 38, 50). In light of these observations we evalu-
ated whether there was a correlation between fragmentation
signatures and cfDNA concentration. Indeed, our clustering of frag-
mentation signatures revealed a significant difference in fDNA con-
centrations between samples in cluster 1 and cluster 2 (Fig. 5C).
When we analyzed each patient group separately, this relationship
was also significant (P < 0.005) in several patient groups. To further
characterize these relationships, we examined the relationship between
cfDNA concentration and three fragmentation metrics (iwFAE FLR,

and MDS). Each metric showed significant positive correlations
(P < 0.05) with plasma cfDNA levels in many patent groups
(81 Appendix, Fig. S8).

Supervised Learning to Distinguish Malignant from Nonmalignant
Disease Using Fragmentation Signatures and Plasma Proteins.
We next aimed to determine whether a supervised learning method
could more effectively distinguish autoimmune or vascular disease
from cancer. We utilized a newly described Al (a.k.a. machine
learning) algorithm called MIGHT (Curtis et al., in press at
PNAS) that has major advantages over other commonly used
classification approaches. Using a bootstrapping methodology,
MIGHT incorporates canonical cross-validation into the learning
process to train, calibrate, and estimate posteriors without the need
for external datasets. This methodology has been shown to provide
more reliable and accurate estimates of sensitivity and specificity
compared to other state of the art algorithms (Curtis et al., in
press at PNAS). Estimates generated by MIGHT are universally
consistent, meaning that asymptotically they achieve the optimal
result, regardless of the underlying distributions of the variables,
and do not rely on the assumption that the variables are distributed
in any specific fashion, such as linearly, among the cases (e.g.,
cancer) and controls (e.g., healthy individuals).

We first applied MIGHT to estimate the sensitivity and speci-
ficity of fragmentation signatures in a classical MCED setting,
wherein a model is trained to classify individuals as either cancer or
noncancer (e.g., binary classification). We trained a MIGHT model
using the Fragmentation Signatures derived from a cohort of healthy
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Fig. 4. Automated Gaussian mixture model clustering of cfDNA fragmentation signatures. (A) unsupervised AutoGMM clustering based on 12 principal
components derived from variations in fragmentation patterns, including fragment end-positions, fragment lengths, and fragment end-motifs. (B) Strip plots
illustrating the distribution of each principal component between clusters 1 and 2. Blue and red circles indicate the mean value for clusters 1 and 2, respectively.
(C) Proportion of samples in each disease group assigned to Cluster 1 (blue) and 3 (red). (D-F) Mean fragment end-positions, fragment lengths, and fragment
end-motif z-scores for samples in Cluster 1 (blue) and 2 (red). (F) Z-Scores are sorted based on the mean z-score in high tumor fraction cancers (lIA). Principal
components and cluster assignment for all patients are provided in Dataset S5.

controls (n = 255) along with low and high tumor fraction cancers
from the pancreas, lung, colon, breast, liver, esophagus, and stomach
(n = 193). We subsequently applied the PCA and classification
models, including predetermined thresholds for 98% specificity, to
our training data and a nonoverlapping cohort of individuals diag-
nosed with autoimmune or vascular disease (n = 286) (S/ Appendix,
Fig. S94). We observed high sensitivity at a predefined specificity
0f 98% (S@98) in our training data with sensitivities of 67% and
26% for high and low tumor fraction cancers, respectively. However,
we observed high rates of false positives in individuals with VTE
(48%), SLE (57%), DM (50%), and SSc (14%) (SI Appendix,
Fig. S9B). In a MIGHT model integrating both fragmentation
signatures and our panel of 17 plasma proteins, we observed
increased sensitivity for high and low tumor fraction cancers but

https://doi.org/10.1073/pnas.2426890122

similarly high rates of false positives in individuals with autoimmune
or vascular disease (S Appendix, Fig. S9C).

To improve the specificity of fragmentation signatures, we
hypothesized that including patients with autoimmune or vascular
disease in the training set could allow MIGHT to learn specific
variables that could differentiate these patients from those with
cancer. To test this hypothesis, we trained a MIGHT model on
the fragmentation signatures derived from the same cohort of low
and high tumor fraction cancers alongside a “noncancer” cohort
including healthy controls as well as those with autoimmune or
vascular diseases (S Appendix, Fig. S104). In this scenario, the
S@98 was 53% and 23% for high and low tumor fraction cancers,
respectively (S Appendix, Fig. S10B). Adding plasma proteins to
this model increased S@98 to 66% and 53% for high and low
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Fig. 5. Comparison of inflammatory biomarkers between Fragmentation Signature Clusters. (A) One-sided Mann-Whitney P-values comparing plasma proteins
between individuals in Clusters 1 and 2. P-values were corrected using Benjamini-Hochberg FDR adjustment. (B) Box and strip plots illustrating the distribution
of plasma proteins with significant differences between Fragmentation Signature Clusters 1 and 2 (P < 0.0001). (C) Comparison of plasma cfDNA concentration
between Fragmentation Signature Clusters 1 and 2 stratified by disease group. Outlier points > IQR are not shown in these graphs so as to more conservatively
visualize the differences, but all values are provided in Dataset S7. P-values for comparisons between Fragmentation Signature Clusters were performed using
one-sided Mann-Whitney U tests. * indicates P < 0.05. ** indicates P < 0.001. Protein concentrations for all patients are provided in Dataset S7.

tumor fractions, respectively (S7 Appendix, Fig. S10C). In sum,
adding patients with autoimmune or vascular diseases to the train-
ing set did indeed decrease the fraction of patients with autoim-
mune or vascular diseases who were falsely classified as having
cancer (thereby increasing specificity), but also decreased the frac-
tion of patients with cancer who were truthfully classified as having
cancer (thereby decreasing sensitivity); compare SI Appendix,
Fig. S10C with ST Appendix, Fig. S9C).

Our analysis of fragmentation signatures and circulating pro-
teins revealed significant similarity between individuals with can-
cer and those with autoimmune and vascular disease. However,
we also identified specific fragmentation signature components
that may be able to stratify patients with autoimmune or vascular
disease from healthy controls and patients with cancer. We there-
fore generalized MIGHT to enable it to work on multiclass

PNAS 2025 Vol. 122 No.34 2426890122

data, rather than merely two-class. We then proved that this mul-
ticlass MIGHT is also a universally consistent estimator of S@98
(SI Appendix, Methods, Theorem 1). We then could evaluate
whether a multiclass model trained to distinguish three classes—
healthy controls, patients with autoimmune or vascular diseases,
and patients with cancer—could learn subtle differences in the
fragmentation signatures that the binary approach was unable to
detect. For clarity, the samples chosen for this multiclass model
development (Fig. 6A4) were identical to those used to develop the
two-class model (S Appendix, Fig. S104). Using this approach,
we observed that patients with cancer were classified as well as
they were with the conventional approach (~78% and ~60% for
high- and low-tumor fraction patients in both conventional and
three-class models, respectively. However, patients with autoim-
mune or vascular diseases were much less frequently falsely
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classified as harboring cancer (compare Fig. 6C to SI Appendix,
Fig. S9C). For example, 40% of patients with VTE and 44% of
patients with DM were wrongly classified as having cancer with
a conventional model (S Appendix, Fig. S9C) while only 6.7% of
patients with VTE and 0.9% of patients with DM were wrongly
classified as having cancer with the multiclass model (Fig. 6C).

Discussion

In the past decade, fragmentomic biomarkers have been increasingly
investigated in case-controlled studies as high sensitivity, high spec-
ificity biomarkers for cancer screening and monitoring (17, 18, 41).
Alterations in the fragmentation patterns have also been shown to
be highly enriched in ctDNA, allowing for both in-vitro and in-silico
enrichment of ctDNA to enhance the detection of orthogonal bio-
markers such as somatic mutations and copy number alterations (51,
52). Our results confirm previous observations (17, 18, 50, 51) doc-
umenting the ability to use fragmentomics of (fDNA to distinguish
patients with and without cancer. However, our observations of
abnormal fragmentation patterns in individuals with VTE, SLE,
DM, and SSc unequivocally document that these fragmentomic
biomarkers are not specific for cancer.

Our observations are consistent with previous studies that found
abnormal fragmentation patterns in conditions other than cancer.
Chan et al. previously observed that individuals with SLE had sig-
nificant alterations to fragment lengths, specifically an increase in the
proportion of short fragments (53). Similarly, Zhu et al. recently
identified abnormal fragment lengths and end-motifs that were asso-
ciated with alterations to postprandial metabolic and immune states
(54). Though all these and previous observations motivate serious
concern for the ability of fragmentomics to distinguish patients with
cancer from those without cancer in MCED testing, we showed that
this concern is partially mitigated by our development of a multiclass
approach to MCED that demonstrates improved specificity for
patients with autoimmune or vascular disease while maintaining high
sensitivity for patients with cancer (Fig. 6C).

The results of the current study are analogous to the historical
results on cfDNA concentrations. As mentioned in the introduction,
it was originally thought that high cfDNA concentrations were a
specific marker for cancer. However, it was later found that high
cfDNA concentrations were not specific for cancer, as they were
elevated in numerous other circumstances (55-58). Now, the results
reported in this paper show that fragmentation patterns, originally
suggested to be a specific biomarker for cancer, are actually not spe-
cific for cancer. Moreover, we observed that individuals with abnor-
mal fragmentation signatures (Cluster 1) had significantly higher
cfDNA concentrations compared to those with normal signatures
(Cluster 2), suggesting a possible relationship between the two bio-
markers (Fig. 5C). Similarly, we observed a significant positive cor-
relation between plasma cfDNA concentrations and plasma cfDNA
fragmentation metrics (iwFAE, FLR, MDS) within the four disease
groups that had a significant increase in cfDNA concentration (high
tumor fraction cancer, low tumor fraction cancer, VTE, and DM)
(Fig. 5 and ST Appendix, Fig. S8). Interestingly, we observed a slight
negative correlation between fragmentation metrics and cfDNA con-
centrations in healthy individuals, a finding that is in line with pre-
vious studies (59).

The most parsimonious explanation of our data is that the same
inflammatory process found in patients with autoimmune and vas-
cular diseases is also found in cancer patients, and that this process is
responsible for the abnormal fragmentation signatures. This expla-
nation is supported by the fact that a wide range of inflammatory
markers, including circulating proteins and cfDNA itself, are elevated
in patients with abnormal fragmentation signatures (Fig. 5). Recent
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studies have demonstrated that increased concentrations of cfDNA
directly activate innate immunity (60, 61) and are associated with
disease activity and markers of inflammation in a range of conditions
including cancer, VTE, SLE, DM, and SSc (50, 59, 62-64). Previous
studies have come to similar conclusions, proposing that inflamma-
tory processes such as necroptosis, NETosis, or other methods of
phagocytosis may be responsible for the increase in cfDNA, and
possibly for abnormal fragmentation patterns, in a variety of condi-
tions (45, 65-67). To reconcile the observations that abnormal frag-
mentation signatures are both highly correlated with the tumor
fraction but not tumor-specific, we propose that the same phagocytic
mechanism is responsible for both the release of ctDNA into the
plasma and the generation of abnormal fragmentation patterns. This
hypothesis is supported by previous studies demonstrating that
necrotic tumor cells release DNA mainly through phagocytosis (68).
Interestingly, MPO was the most elevated protein in individuals with
abnormal fragmentation signatures (Fig. 5 and ST Appendix, Fig. S4).
MPO is the most abundant protein within neutrophil-extracellular
traps (NETs) and directly generates reactive oxygen species (ROS)
upon neutrophil activation (65). Five of the six (OPN, GDF-15,
IL-8, OPG, NSE) remaining inflammatory proteins associated with
abnormal fragmentation signatures are similarly induced by ROS and
related to increased activity of the innate immune response (49, 69,
70). This theory is also consistent with the historic idea that cancer
represents an unhealed wound, first introduced by Virchow in the
19th century (71). This interpretation is supported by many studies
indicating that high levels of circulating inflammatory markers are
commonly observed in cancer patients (72, 73). The data in Fig. 5
add to this body of literature by showing strikingly high correlations
between typical markers of inflammation and an abnormal fragmen-
tation signature.

An alternative explanation of our data is that there are two dif-
ferent processes responsible for the abnormal fragmentation sig-
natures, one occurring within the neoplastic cells of the cancer cells
and one occurring in the absence of any cancer in the body. For
example, it is possible that inflammatory cells degrade DNA in the
same way as neoplastic cells, leading to similar fragmentation sig-
natures. We believe this potential explanation is unlikely because
it has been shown that most of the cfDNA in cancer patients is
derived from leukocytes, not neoplastic cells (38). A more tenable
explanation is that the same type of cells (e.g., monocytes or gran-
ulocytes) within a tumor degrade their own cellular DNA or DNA
from other cells that they digest, then release this DNA into the
circulation as part of NETosis or related inflammatory processes.
Many cancers are known to harbor relatively high numbers of
inflammatory cells, including macrophages, consistent with the
“unhealed wound” concept (74). This explanation is supported by
the seminal observation that plasma DNA fragments derived from
CAR19 T-cells or derived from lymphomas of patients treated with
these CAR19 T-cells have similar size distributions (75).

There are several practical implications of our data. They place
limits on the specificity of fragmentomics-based methods for cancer
detection because the fragmentation signals are not specific for cancer.
'The prevalence of autoimmune diseases is high, affecting ~5 to 10%
of the population, and is increasing (76-79). One could exclude all
patients with known vascular or autoimmune diseases from
fragmentomics-based testing, but this would not be ideal. Notably,
a subset of patients with vascular or autoimmune diseases are at high
risk of having an undiagnosed cancer so cancer screening in this
population is particularly worthwhile (29, 63, 80-82). Indeed, the
rationale for the current study was our serendipitous observation that
patients with VTE had abnormal fragmentation patterns. A second
reason is that some patients with autoimmune diseases are not yet
aware that they have the disease as the presentation is often

pnas.org


http://www.pnas.org/lookup/doi/10.1073/pnas.2426890122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2426890122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2426890122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2426890122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2426890122#supplementary-materials

Downloaded from https://www pnas.org by JOHNS HOPKINS UNIVERSITY; MT WASHINGTON; SHERIDAN LIB TECH SERVICES on December 4, 2025 from IP address 128.220.159.210.

A Multi-Class MCED Test Development

I Develo!) biomarlkers usingj\ealthy controls, cancers, II. Train multi-class MIGHT model 1ll. Use MIGHT to evaluate
and autc vascular with three classes: cancer, one-vs-all performance
autoimmune/vascular, or healthy
Cs:g:aer - Fragmentation Signature
VARV
() = |
- - : : Cancer vs Non-Cancer
S S = Vs : Cancer Score ——>
g g One vs. All
" f
Autoimmune or X .
Vascular Disease ! ; Train H
N=286 H :
8 . 8 Al/V vs Non-Al/V
R = g - —> Al/VScore ——>
q [};‘ + : Multi-Class /V Score : =N
‘ i Plasma Proteins / MIGHT :
v ‘f\ B Control Score : Control vs Non-Control
Healtt&zzgsontrol Qj =] : g One vs. All
Y ﬂ‘ :
B One-Vs-All Classification Using Fragmentation Signatures Alone
lassificati
Non-Cancer Cancer
e
g 31.7%
f =
\/\/ 8
=]
©
; kS 78.0%
—] k=
o~ A%/ 3 99.2% i 95.2% 99.1% 100.0%
O
5 68.3%
<
WN 2
£
& 22.0%
o
5 4 i i i g U i
=5 Control High TF Low TF VTE SLE DM SSc
Cancer Cancer
C One-Vs-All Classification Using Fragmentation Signatures and Plasma Proteins
Classification
Non-Canc Cancer
6.7% I
N /\\/ : M\r - | 6.7% |
] IS
e~ Vel =
o
=1 60.0%
W E 78.0%
,_3‘, 99.2% CFIEDS 95.2% 99.1% 98.7%
: g
f=
S
3 b= 40.0%
& g 22.0%
S J |IE S N B .
“ Control High TF Low TF VTE SLE DM SSc
Cancer Cancer

Fig. 6. Multiclass MCED test development. (A) Development of a multiclass MIGHT model using three classes: i) individuals with no diagnosis of disease (healthy
controls; n = 255) ii) individuals with autoimmune or vascular disease (n = 286) and iii) individuals with cancer (n = 193). (B) One-vs.-all performance of multiclass
MIGHT using fragmentation signatures alone. (C) One-vs.-all performance of multiclass MIGHT using fragmentation signatures and plasma proteins. Multiclass

MIGHT posteriors for all patients are provided in Dataset S8.

nonspecific or disease can be low grade and symptoms can be inter-
mittent. On the other hand, it is possible that such patients may have
less abnormal fragmentomics signatures than those we studied, who
were already diagnosed with these diseases. Conversely, it is also pos-
sible that other diseases with inflammatory components, including
various infectious diseases or allergic conditions, have abnormal frag-
mentomicsignatures,leadingtoadditionalpositiveresultsinfragmentomics-
based tests for the presence of cancer. These are all important ques-
tions for future investigation.

On the bright side, the knowledge that patients with vascular and
autoimmune diseases have fragmentation patterns similar to those of
advanced cancer patients offers clues for both basic science and clinical
medicine. This knowledge could lead to a better appreciation of the
cellular and biochemical mechanisms responsible for the generation
of ¢fDNA in both healthy and disease states, which are currently
poorly understood. And though the fragmentation patterns are

PNAS 2025 Vol. 122 No.34 2426890122

similar among cancer patients and those with other diseases, they are
not identical, and vary with the type of noncancerous disease. It is
possible that Al-based investigation could distinguish the fragmen-
tation signatures found in cancer patients from those with other
diseases, thereby restoring the specificity of such tests. And viewed
from the perspective of the autoimmune or vascular disease patient
rather than from that of the cancer patient, it is conceivable that
fragmentation patterns could improve early diagnosis of autoimmun-
ity or vascular disease, help assess the effects of treatment, distinguish
one type of autoimmune disease from another, or identify distinct
disease subsets.

There are of course limitations to the current study. Though
MIGHT does not require an external validation set to obtain confi-
dence limits about its predictions within the sampled population
(Curtis et al., in press at PNAS), no algorithm, including MIGHT,

can exclude confounding variables or that the same results would be
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obtained if other populations, library preparation methods, or DNA
purification methods were studied (83). Moreover, the current sample
size for some disease groups (e.g., SLE, n = 21) was small and future
studies should make use of larger cohorts to document reproducibil-
ity. In addition, the reported relationships between cfDNA fragmen-
tation and inflammatory conditions/markers are associations at this
stage, and a causal relationship remains to be established. Finally,
while known batch effects were removed (Methods) the effect of
unknown batch effects may still affect the results. On the other hand,
our use of multiple nonoverlapping cohorts of healthy controls, nor-
malization of known preanalytic batch effects, use of unsupervised
methods for dimension reduction and clustering, and high-powered
supervised methods such as MIGHT do lend confidence in the
results presented within this study.

Methods

Experimental Study Design. This study was approved by the Institutional
Review Boards for Human Research at Johns Hopkins Medical Institutes and other
participating institutions in compliance with the Health Insurance Portability and
Accountability Act. No proper sample size was calculated; samples were chosen on
the basis of availability. All individuals participating in the study provided written
consent. Blood was collected in Streck tubes or in Ethylenediaminetetraacetic
acid (EDTA) tubes, and plasma separated from cells within 2 d or 2 h, respec-
tively. Plasma was purified using the BioChain Cell-free DNA Extraction Kit (Cat X
K5011625).All patients were deidentified, and patients are not known to anyone
outside the research group. Demographics for the individuals are included in
Dataset S1. Certain data from individuals from the control groups, as well as from
the cancer groups, I1B, and VIl were included in a recent study to develop MIGHT
(manuscript submitted to PNAS), though with different study goals.

Plasma samples from adult participants with unprovoked VTEs were collected
within 10 d of the VTE event. Patients were eligible if they were aged =40y and had
afirstepisode of symptomatic, objectively confirmed, unprovoked VTE, i.e., lower-
extremity deep vein thrombosis and/or pulmonary embolism. VTE was considered
unprovoked if it was not related to pregnancy or puerperium, recentimmobiliza-
tion for =3 d (<3 mo), recent surgery (<3 mo), recent hospitalization (<3 mo),
known genetic or acquired thrombophilia, or use of systemic estrogen therapy.
Exclusion criteria were a known malignancy in the previous 5 y and enrollment
>10 d after the VTE event. Patients with suspected cancer at presentation were
only allowed to participate if the cancer had not yet been objectively confirmed by
histology or cytology. All participants provided written informed consent prior to
enroliment. All VTE patients assessed in our study were not diagnosed with cancer
within a follow-up period of at least 2 y following the thromboembolic event.

Adult patients with SLE met either the revised American College of
Rheumatology (ACR) criteria for SLE or the 2012 Systemic Lupus International
Collaborating Clinics classification criteria (84). Patients =18 y of age with SLE
were recruited from the Johns Hopkins Lupus Clinic at scheduled outpatient
visits or, if hospitalized, the inpatient services at The Johns Hopkins Hospital.

Adult participants with scleroderma or DM were recruited from the Johns Hopkins
Scleroderma Center Research Registry and the Johns Hopkins Myositis Research
Registry. Participants in the scleroderma registry had features concerning for sclero-
dermaeither defined by 2013 ACR/EULAR classification criteria, 3 of 5 CREST (calcino-
sis, Raynaud's, esophageal dysmotility, sclerodactyly, telangiectasia) criteria, definite
Raynaud's phenomenon, abnormal nailfold capillaries, and a scleroderma specific
autoantibody, or a high titer scleroderma autoantibody. All DM patients met ACR/
EULAR 2017 Idiopathic Inflammatory Myositis Classification Criteria.

Whole Genome Sequencing. We previously developed a library preparation
workflow that can efficiently recover input DNA fragments and simultane-
ously incorporate double-stranded molecular barcodes (85). In brief, librar-
ies were prepared with (fDNA using an Accel-NGS 2S DNA Library Kit (Swift
Bio- sciences, 21024) with the following critical modifications: 1) DNA was
pretreated with 3 U of USER enzyme (New England BioLabs, M5505L) for 15
min at 37 °Cto excise uracil bases; 2) the SPRI bead/PEG NaCl ratios used after
each reaction were 2.0x, 1.8, 1.2x,and 1.05x for end repair 1, end repair
2, ligation 1, and ligation 2, respectively; 3) a custom 50 pM 3 adapter was
substituted for reagent Y2 and 4) a custom 42 pM 5" adapter was substituted
forreagent B2. Libraries were subsequently PCR amplified in 50-pL reactions
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using primers targeting the ligated adapters. The following reaction condi-
tions were used: 1x NEBNext Ultra Il Q5 Master Mix (New England BioLabs,
M0544L), 2 M universal forward primer and 2 pM universal reverse primer.
Libraries were PCR-amplified according to the following protocol: 98 °C for
20 s, then eight cycles of 98 °Cfor 10's, 65 °C for 75 s, and hold at 4 °C. The
products were purified with 1.8x SPRI beads (Beckman Coulter, B23317) and
eluted in EB buffer (Qiagen). Whole genome libraries were sequenced with
paired-end 2x 100 bp sequencing on either a HiSeq 4000 or NovaSeq 6000
to a median depth of 26.9M read pairs (IQR 23.5-30.5).

Bioinformatic Pipeline. Fastq files were demultiplexed using a custom script that
utilized index sequences added during library preparation. Demultiplexed read 1and
read 2 fastq files were trimmed using a custom script to remove 27 base oligonucleo-
tidesadded during library preparation. Timmed sequences were then aligned to the
hg19 genome with bowtie2 (86) using end-to-end alignment. After alignment, UID
duplicates were removed using a custom script. Picard AddOrReplaceReadGroups (87)
was used to add read groups. Samtools flagstat (88) was used to evaluate alignment.
Binary Alignment Map (BAM)files were converted to bed format using bedtools (89).
Custom scripts forthe analysis of fragmentation patterns were all written using python
3.9.12. All scripts are available from the authors upon request. Samples that had
multiple technical replicates were consolidated into a single sample by taking the
average of each variable between all replicates.

Quality Control. Each sample was evaluated based on library DNA concentration,
read alignment metrics, GC content of the sequenced molecules, and total molecules.
Any samples with less than 4 ng/pL of DNA, greater than 2.5% singletons, less than
80% of reads mapped, less than 80% of reads properly paired, less than 43% GC
content, greater than 48% GC content, or less than five million usable molecules were
removed from analysis. A total of 24 samples, representing 2.3% of the processed
samples, were removed. Only properly paired reads with a MAPQ>30 mapped to
autosomal chromosomes were used for the analysis of fragmentation patters.

Preanalytic Conditions. Variations in preanalytic conditions including blood
collection tubes, blood processing, blood storage, and DNA extraction have been
shown to have significant effects on the analysis of cfDNA (90). When comparing
samples collected in EDTA or Streck tubes we observed significant differences in
fragmentend-positions, lengths, and end-motifs (S/ Appendix, Fig. S11). Samples
in EDTA or Streck tubes also had differences in the time from blood collection to
plasma separation (2 d or 2 h, respectively). To account for confounders associated
with tube type or time to plasma separation we separated the normalization
cohort into two nonoverlapping groups: one containing healthy controls pro-
cessed in EDTAtubes (n = 62) and another containing healthy controls processed
in Streck tubes (n = 68). Z-scores for samples in other groups were calculated
using the normalization cohort corresponding to the tube in which the sample
was processed. Information for the tube in which each sample was processed and
subsequently normalized can be found in Dataset S1.

Fragment Length Analysis. Fragment length was extracted from the BAM files
using the TLEN alignment field. Only fragments between 70 bp and 500 bp were
analyzed. Fragment length frequencies were calculated as the count of each indi-
vidual length divided by the total number of fragments of length 70 to 500 bp. The
proportion of short and long fragments were calculated as the sum of frequencies
of fragments 100 to 150 bp and 157 to 220 bp, respectively. The FLR was calculated
as the proportion of short fragments divided by the proportion of long fragments.

Fragment End-Motif Analysis. Fragment start position, end position, and
strandedness (=) were extracted from the fragment BED file. The full nucleotide
sequence of each read pair was then extracted from the hg19 reference genome
using bedtools nuc (89). Orientation of 5’ and 3’ of each fragment was inferred
using the strandedness of each molecule. Fragments that aligned to the nonrefer-
ence (—) strand of the hg19 reference genome were reverse complemented. The
final four bases (tetramer) were then extracted for both the 5" and 3’ ends. After
analyzing all fragments the genome-wide frequencies of the 5 and 3’ end-motifs
were calculated by dividing by the count of each motif by the total number of
fragments analyzed. Due to end-repair of the 3’ end during library preparation,
the average frequency between the 5’ end-motif and reverse complement of the
3’ end-motif was used as the final frequency.

Fragment End-Position Analysis. A BED file for RPRs was downloaded from
Budhraja et al. Bedtools intersect (v2.30.0) was then used to intersect the sam-
ple fragment bed file with each RPR, requiring only a single base position of
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overlap between the molecule and the genomic loci to be included. To calculate
the fragment end-position variables, we first determined the central base position
of each genomic locus. If there was an even number of bases in the locus, the
central position was rounded up. Each bond between the bases was considered
as a possible breakpoint (e.g. counting the number of phosphodiester bonds,
not nucleotides). For each genomic locus, we analyzed positions —150 to +150
from the central position, where position -1 is the bond between the central
nucleotide and the nucleotide directly upstream. The number of fragment-ends
at that position was divided by the number of fragments that overlapped that
position (e.g., had coverage at the nucleotide upstream and downstream of that
position). In total, 300 possible positions were evaluated for each locus.

ichorCNA. ichorCNA version 0.3.2 was downloaded from the GitHub repository
https://github.com/broadinstitute/ichorCNA. Wig files were generated using read-
Counter with arguments -window 5000000 -quality 30. CreatePanelOfNormals.R
was used to generate a panel of normals (n = 124). The "normal" initialization
parameters selected were ¢(0.95, 0.99, 0.995, 0.999) and the ploidy initialization
parameter was 2.

Fragmentation Signatures. For the analysis of fragmentation signatures,
PCA was first performed on z-scores for each fragmentation pattern inde-
pendently using sklearn.decomposition.PCA(n_components=0.9). Resulting
principal components for each fragmentation pattern were then consolidated
into a single matrix. AutoGMM from the graspologic package was applied to
perform model-based clustering on the PCs of fragmentation data. It auto-
mates hyperparameter selection by iterating over combinations of candidate
parameters: the number of clusters (we set both min_components=2 and
max_components=2), covariance structure (default: all types, e.g., spherical,
diagonal, tied, full), and initialization methods (default: k-means++ and ran-
dom). The optimal model was selected via the Bayesian information criterion,
balancing goodness-of-fitand model complexity. We retained the default tol-
erance (tol="1e-3) and maximum iterations (max_iter=100), ensuring conver-
gence. This approach accommodates nonspherical cluster geometries in the
PC-reduced space while automatically inferring cluster numbers, mitigating
biases from manual parameter tuning.

Statistical Analyses. Al statistics were generated using python version 3.9.12
and scipy version 1.13.1. One-sided tests were performed for comparisons of cfDNA
concentration and plasma protein levels using scipy.stats.mannwhitneyu(alterna-
tive="less’). All other statistics generated were with two-sided Mann-Whitney Utests.
Correlation coefficients were calculated using scipy.stats.pearsonr.

MIGHT. MIGHT was installed from GitHub (https://docs.neurodata.io/treeple/
dev/install.html) using treeple version 0.9.1. All MIGHT analyses were run using
the following parameters: est=HonestForestClassifier(n_estimators=n_estima-
tors, max_samples=1.6, max_features='sqrt; bootstrap=True, stratify=True,
n_jobs=10, random_state=9515, honest_prior="ignore," honest_method=
‘apply; honest_fraction=0.367, kernel_method=True, tree_estimator=0Oblique
DecisionTreeClassifier(feature_combinations=1.5)).

Evaluation of Plasma Proteins. The Bioplex 200 platform (Biorad, Hercules
CA) was used to determine the concentration of multiple target proteins in the
plasma samples. Luminex bead-based immunoassays (Millipore, Billerica NY)
were performed following the manufacturers protocols and concentrations were
determined using five parameter log curve fits (using Bioplex Manager 6.0) with
vendor provided standards and quality controls. The HCC BPTMAG-58K panel
was used to detect AFP, CA125, CA15-3, CA19-9, CEA, HGF, OPN, CYFRA21.7, IL-
8, and FGF2. The HCMBMAG-22K panel was used to detect GDF-15, NSE, OPG,
and DKK1.The HCC BP3MAG-58K panel was used to detect MPO and SHBG.The
HTMPTMAG-54K panel was used to detect TIMP-1.

Data, Materials, and Software Availability. Anonymized genetic sequenc-
ing data have been deposited in EGA (https://ega-archive.org/studies/
EGAS00001008004)(91).
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