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Significance

 The method developed in this 
paper, multidimensional 
informed generalized hypothesis 
testing (MIGHT), addresses a 
fundamental, underappreciated 
problem in AI when applied to 
big data: How do we confidently 
quantify the amount of predictive 
information in large sets of 
variables? Unlike commonly used 
AI approaches, simulations and 
theoretical results show that the 
estimates generated using 
MIGHT are guaranteed to 
converge to the truth and are 
highly reproducible across 
repetitions, particularly in 
settings with high dimensionality 
and low sample sizes. 
Comparisons between 
algorithms on real-world data 
demonstrate higher reliability of 
MIGHT estimates compared to 
state-of-the-art algorithms. The 
application of MIGHT to 
circulating cell-free DNA from 900 
individuals with and without 
cancer introduces a framework 
for the development and 
evaluation of biomedical assays.
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AI is now a cornerstone of modern dataset analysis. In many real world applications, 
practitioners are concerned with controlling specific kinds of errors, rather than minimiz-
ing the overall number of errors. For example, biomedical screening assays may primarily 
be concerned with mitigating the number of false positives rather than false negatives. 
Quantifying uncertainty in AI-based predictions, and in particular those controlling 
specific kinds of errors, remains theoretically and practically challenging. We develop 
a strategy called multidimensional informed generalized hypothesis testing (MIGHT) 
which we prove accurately quantifies uncertainty and confidence given sufficient data, 
and concomitantly controls for particular error types. Our key insight was that it is 
possible to integrate canonical cross-validation and parametric calibration procedures 
within a nonparametric ensemble method. Simulations demonstrate that while typical 
AI based-approaches cannot be trusted to obtain the truth, MIGHT can be. We apply 
MIGHT to answer an open question in liquid biopsies using circulating cell-free DNA 
(ccfDNA) in individuals with or without cancer: Which biomarkers, or combinations 
thereof, can we trust? Performance estimates produced by MIGHT on ccfDNA data 
have coefficients of variation that are often orders of magnitude lower than other state of 
the art algorithms such as support vector machines, random forests, and Transformers, 
while often also achieving higher sensitivity. We find that combinations of variable sets 
often decrease rather than increase sensitivity over the optimal single variable set because 
some variable sets add more noise than signal. "is work demonstrates the importance 
of quantifying uncertainty and confidence—with theoretical guarantees—for the inter-
pretation of real-world data.

predictive modeling | hypothesis testing | cancer screening | biomedical assays | biomarkers

 With data consisting of many variables, AI tools, such as deep neural networks or support 
vector machines (SVMs), are often employed for analysis in !elds ranging from astronomy 
to zoology ( 1 ). Many of these tools have decades of theoretical development and real-world 
applications to justify our trust in them for predicting various outcomes given a set of 
variables ( 2 ). For example, in neuroscience, AI tools might predict the presence or absence 
of Alzheimer’s disease (outcome) given variables derived from MRI. In genomics, the 
variables could be derived from the DNA or RNA sequences of a patient’s tissue, and the 
outcome could be whether the patient has cancer.

 Many real-world applications, however, require more than merely predictive accuracy. 
Consider developing a biomedical screen for a disease. "e vast majority of individuals 
who get screened will not have the disease, even for relatively common diseases such as 
cancer. If the screen results in too many false positives (that is, incorrectly identi!es people 
without the disease as having the disease, called low “speci!city”), too many individuals 
will require further examination, including invasive assays. "us, biomarkers for screening 
purposes must have very high speci!city to be clinically useful, even if that means a decrease 
in correctly identifying cases (sensitivity, or true positive rate), and with it, a corresponding 
decrease in overall accuracy. "erefore, the development of an e#ective biomedical assay 
for screening may aim to optimize sensitivity at high speci!city, such as sensitivity at 98% 
speci!city, called S@98 hereafter ( 3 ).

 Given high-dimensional data, one can leverage AI to estimate quantities of interest, 
such as sensitivity at a given speci!city. To do so, an AI-based classi!er is typically trained 
on data from a cohort of patients. "at classi!er provides a score for each sample, and a 
threshold for assigning each sample to the positive or negative class. Varying the threshold D
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yields a trade-o# between fewer false positives and fewer false 
negatives. To maximize accuracy, one value of the threshold is 
chosen, but that threshold does not, in general, have high speci-
!city (which is required in certain applications). "e curve char-
acterizing all possible trade-o#s is called the receiver operating 
characteristic (ROC) curve ( 4 ). Ideally, the ROC curve generated 
from the training set accurately estimates the ROC curve for the 
entire population, not just the individuals in the training cohort. 
In the literature, ROC curves are typically described as properties 
of a classi!er. Our perspective is that classi!ers estimate  an ROC 
curve that characterizes the population  of interest. And we desire 
that our estimate satis!es the basic desirable properties of estima-
tors, for example, that they are accurate with low variance.

 Many classi!ers have theoretical guarantees that their estimates 
of one point on the ROC is accurate ( 5   – 7 ). However, very few 
classi!ers have theoretical guarantees that they can accurately esti-
mate the entire ROC curve, which includes the sensitivity at all 
possible speci!cities ( 8 ). Moreover, empirically, AI algorithms are 
typically not well calibrated, i.e., the likelihood of reporting that 
an individual is positive is equal (calibrated) to the true probability 
that the individual is actually positive ( 9 ). "is means that the 
ROC curves from AI algorithms are often inaccurate ( 10   – 12 ). To 
mitigate this issue, practitioners often use “calibration” techniques 
( 9 ,  13 ). However, such calibration techniques typically lack the-
oretical guarantees that they converge to the truth. And, while 
they often empirically perform reasonably well in low-dimensional 
settings, in the high-dimensional settings of interest in modern 
datasets, they can be relatively inaccurate. Because of these inac-
curacies and uncertainties, collecting an independent cohort of 
patients to validate the estimates derived from the training cohort 
is mandated. However, collection and analysis of additional 
patients and controls is costly and infeasible in many situations. 
Moreover, there is no theoretical guarantee that the results on the 
validation cohort are any more accurate than the results on the 
training cohort—or than on a third independent cohort—though 
the estimates on these other cohorts will not be over!t. "is fun-
damental issue has contributed to the perceived crisis in scienti!c 
reproducibility surrounding AI-based predictions in medi-
cine ( 14     – 17 ).

 Once an estimate of a given statistic is obtained, it is also impor-
tant to know whether that estimate is signi!cantly di#erent from 
what would be expected by “chance alone.” One could, in prin-
ciple, simply run a permutation test to obtain a P -value. However, 
using a permutation test on statistics derived using standard AI 
methods lacks theoretical guarantees ( 18 ). Finally, investigators 
often want to know whether additional biomarkers could improve 
the sensitivity, speci!city, or other performance metrics, and 
whether their estimated improvements are larger than one would 
expect by chance ( 19 ,  20 ). Again, one can combine multiple sets 
of biomarkers in various ways ( 21 ) but testing whether there is 
signi!cant improvement lacks theoretical justi!cation. All these 
gaps in theoretical understanding and justi!cation of the existing 
AI toolkit for estimating medically relevant quantities limits the 
trustworthiness of existing tools. To address these gaps, we devel-
oped multidimensional informed generalized hypothesis test-
ing (MIGHT). 

Results

Simulations Demonstrating the Value of MIGHT. Suppose we 
wish to develop a screening test for cancer based on biomarkers 
containing many variables. Further, suppose that the true 
distribution of one of the assessed variable sets is standard normal 
(i.e., Gaussian) for the individuals without cancer (controls). In 

the cancer patients (cases), a subset looks just like the controls, 
while the distribution is shifted to the right for others (Fig. 1A) 
Finally, assume that all other of the assessed variables are identically 
distributed in cases and controls (Fig. 1B).

  Fig. 1C   shows the true ROC curve (black) for this simulation, 
which entails 256 patients and 4,096 variables, numbers that are 
typical in biomedical datasets used for initially exploring biomark-
ers. MIGHT’s estimate of the ROC curve (red) closely matched 
the truth, even though only one of the 4,096 variables contains 
any signal for cancer (see below for details on how MIGHT 
works). In contrast, the estimates from other machine learning 
approaches, after calibration, including random forest (RF, blue), 
nonlinear SVM (green), logistic regression (LR, orange), and 
k-nearest neighbors (kNN, brown), were all far from the truth 
(see SI Appendix, Algorithm 5  for details on other algorithms, all 
use default settings from scikit-learn).

 We next considered sensitivity at a high speci!city, e.g., 98% 
speci!city (S@98), as a statistic of interest for screening purposes 
( 22 ). We choose this metric because in clinical screenings, espe-
cially for detecting rare but serious conditions such as cancer, 
the goal is to identify as many true cases as possible without 
falsely alarming healthy patients. Among these, high speci!city 
is essential, and sensitivity at a !xed high speci!city (e.g., 98%) 
becomes a critical performance measure. Medically relevant data-
sets generally contain a large number of relatively uninformative 
(noisy) variables, and a crucial property of any estimate (such as 
S@98) based on such datasets is robustness against many noisy 
variables. MIGHT is largely insensitive to thousands of noisy 
variables, whereas other algorithms demonstrate a drastic per-
formance drop when even tens of noisy variables are included 
( Fig. 1D  ). Another important property of an algorithm is that 
its estimates empirically converge to the truth as the sample size 
increases [sometimes this property is referred to as the minimal 
requirement for an estimator ( 23 )]. MIGHT indeed converges 
to the truth in this setting, in fact, quite quickly ( Fig. 1E  ), mean-
ing that relatively few clinical samples are needed to achieve high 
accuracy. RF also converges, but more slowly, whereas the other 
algorithms do not seem to converge to the truth ( Fig. 1E  ). "e 
simulations in  Fig. 1  illustrate the situation when variables are 
associated with cancer. When there is no association of cancer 
with any of the variables, MIGHT, like the other algorithms, 
accurately reported this fact (SI Appendix, Fig. S1 ).

 Simply having an estimate of a statistic is insu%cient for testing 
hypotheses. For example, suppose that MIGHT estimates that 
the S@98 of a speci!c variable set is 0.4. How likely is it that an 
estimate of S@98 is greater than 0.4 by chance alone? When there 
are thousands of variables in a set, this could certainly occur by 
chance, the so-called “curse of dimensionality” ( 24 ,  25 ). To eval-
uate MIGHT’s ability to reject the null hypothesis (i.e., that there 
is no relationship between the variables and the outcome), we 
computed its power in various settings. "e power of an algorithm 
is its probability of correctly rejecting the null hypothesis when 
the null hypothesis is false. For the S@98 statistic, MIGHT 
achieved nearly perfect power (1.0) with only 256 samples, even 
when there were a relatively large number (4,096) of variables 
( Fig. 1 F  and G  ). In contrast, other algorithms’ power dropped 
precipitously as more noisy variables were added and converged 
to a power of 100% substantially more slowly, if at all.

 Another important property of AI algorithms is their false 
positive rate. Speci!cally, when there is no relationship between 
the variables and the outcome, i.e., the null hypothesis should 
not be rejected. A test is called valid if its rejection rate when the 
null hypothesis is true is less than or equal to the signi!cance 
threshold (e.g., <0.05). Reassuringly, MIGHT as well as the other D
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algorithms evaluated in this study, had this property (SI Appendix, 
Fig. S1 ).  

How MIGHT Works.
Computing a test statistic with MIGHT. "e conventional heuristic 
for estimating test statistics such as sensitivity and speci!city is to 
!rst train some AI procedure (e.g., support vector machine or deep 
neural network) on a subset of the data (“training set”). Second, 
use a held-out dataset (“testing set”) to “calibrate” the classi!er, 
which means to modify the output of the AI with the goal that 
the likelihood of reporting that an individual is positive is equal to 
(calibrated to) the true probability that the individual is actually 
positive. "ere are multiple standard empirical procedures for 
achieving this calibration, including isotonic regression and LR 
(9) [via Platt scaling (9, 13)]. "en, use a third nonoverlapping 
dataset (“validating set”) to calculate the statistic of interest, such 
as S@98. Fourth, repeat the above procedure several times, each 
time with di#erent data in each of the three subsets, and average 
the results (“cross-validation”) (26). "e primary issue of concern 
with this procedure is that it lacks theoretical guarantees that 
the estimated statistics converge to the truth. "is means that a 

user does not know when it does (or does not) yield trustworthy 
estimates.
MIGHT uses this type of conventional heuristic (27), but with 
important modi!cations (Fig.  2 and SI  Appendix for details). 
First, MIGHT constructs a single decision tree on a randomly 
chosen group of patients from the cohort (the Training Set in 
Fig.  2). MIGHT then uses an independent group of patients 
from the same cohort (the Calibrating Set in Fig. 2) to estimate 
the likelihood of each individual being positive (or not) (25, 28–
32). Classical decision trees then essentially ignore the remaining 
samples (called “out of bag”). MIGHT instead uses the remaining 
samples (Validating Set in Fig.  2) as validation data for that 
particular tree. Each decision tree in MIGHT follows the standard 
process of training, calibration, and validation, but does so using 
our bagging strategy in place of traditional cross-validation. "is 
is an e%cient use of the available data because each tree uses every 
sample in the cohort rather than a subset of samples. We dub this 
type of decision tree a “MIGHTY Tree”. For the !nal estimate 
of the test statistic, MIGHT generally uses 100,000 decision 
trees, called a MIGHTY Forest. We use so many trees because 
the S@98 estimate critically depends on the threshold chosen on 

A B C

D E

GF

Fig. 1.   Performance of MIGHT and conventional algorithms on simulated datasets. (A and B) Distributions for both case (black) and control (dotted gray), with 
the first variable shown in (A) and all other variables shown in (B). (C) Optimal ROC curve and estimated ROC curve for each algorithm using 4,096 variables and 
256 samples. (D) Sensitivity at 98% Specificity (S@98) as a function of the number of variables using 256 samples. (E) S@98 as a function of sample size using 
4,096 variables. (F) Power as a function of the number of variables using 256 samples. (G) Power as a function of sample size using 4,096 variables. The classifiers 
are MIGHT, random forest (RF), support vector machine (SVM), logistic regression (LR), and KNN.
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only the positive cases, and so the variance of that threshold is 
quite high. Because of the e%ciency of the code we developed, 
evaluating 100,000 decision trees is possible even when relatively 
small computation resources are available.
Computing a P-value with MIGHT. Suppose we want to test whether 
a given variable set contains any informative signal versus the 
null hypothesis that it contains none. One way to evaluate this 
is by computing a p-value, which quanti!es how likely it is to 
observe the given data purely due to random chance. MIGHT 
enables computation of a P-value by incorporating permutations 
of sample labels (18, 33–35). Most permutation procedures using 
classi!ers require training thousands of classi!er iterations, which 
is computationally ine%cient. We therefore devised an algorithm 
that only requires training one additional classi!er, making it 
thousands of times more e%cient (36).

   "e classical approach to performing a permutation test using 
classi!cation algorithms proceeds as follows. 1) Train a classi!er 
on the true data, and obtain an observed test statistic, such as 
S@98. 2) Permute the labels for each sample to remove any asso-
ciation between the labels and the variable set. 3) Train a classi!er 
on these permuted data, and compute a test statistic using the 
permuted data. 4) Repeat steps 2 and 3 a thousand times to yield 
the distribution of the test statistic under the “null” hypothesis: 
that there is no association between the labels and the variable set. 
5) Compare the observed test statistic to the null distribution of 
the test statistic; the P -value is the fraction of null statistics that 
are more extreme than the observed statistic. "is procedure can 
be e#ective, however, it requires 1,000× more compute time than 
estimating the test statistic, because it requires training the classi-
!er for each permutation. We use a modi!ed procedure based on 
( 36 ), that only requires training a single additional classi!er.

   As before, 1) train a classi!er on the true data to obtain a test 
statistic, 2) permute the labels for each sample, and 3) train a 
classi!er on the permuted data. However, we now rede!ne the 
observed test statistic to be the di#erence between the test statistic 
obtained on the true data, and the test statistic obtained on the 
permuted data. When there is a real signal in the nonpermuted 
data, we expect this di#erence to be large. 4a) Instead of retraining 
a new classi!er, we simply permute the trees across the two clas-
si!ers. "is yields two new forests, each with about half their trees 
learned on permuted data, and half on the true data. If the true 
data and permuted data are the same in distribution, then the 

resulting trees will also be about the same in distribution. Again, 
we compute the di#erence between the test statistics computed 
from each of these new forests. 4b) Repeat step 4 a thousand times, 
each time constructing a pair of new forests from the existing trees, 
to obtain a null distribution of the test statistic. 5) "is step is the 
same as above, we compare the observed test statistic (the di#er-
ence between the true forest and the null forest’s test statistic), 
with the null distribution of the test statistic (obtain by permuting 
trees across forests); and the P -value is the fraction of null statistics 
that are more extreme than the observed statistic. See SI Appendix, 
Algorithm 3  for details. Additionally, we can also test whether one 
variable set is better than another variable set (details in 
 SI Appendix, section B.5 ).  
Theoretical guarantees for MIGHT. A suite of theoretical guarantees 
for MIGHT is provided in the SI Appendix. Here, we brie'y state 
the key assumptions and results. For each patient, we observe 
a set of d variables x and a binary class label y. We assume that 
each data pair (x, y) is an independent sample of a set of random 
variables (X, Y) with unknown distribution (this is known as the 
iid assumption). An estimator of a given quantity related to the 
data distribution is consistent if it converges in probability to the 
truth as the sample size grows. "e !rst result is that MIGHT 
yields a consistent estimate of the true posterior probabilities 
under certain conditions on the splitting procedure for each tree 
and mild assumptions on the data distribution. Let η(x) be the 
true (i.e., population) probability that x is in class 1 (in this case, 
that x is a cancer patient), and let ηn(x) be MIGHT’s estimate of 
η(x) from n data samples.

  Lemma 1.      Under the setting and assumptions of  SI Appendix, 
section A , η n (x) converges in probability to η(x) .  

   Given a pointwise consistent estimator of the posterior proba-
bilities, we next obtain that MIGHT produces a consistent esti-
mate of sensitivity at any given speci!city.

     !eorem 1.      Under the setting and assumptions of  SI Appendix, 
section A , we have that MIGHT’s estimate of S@r converges in 
probability to the true population S@r, for any r.   

   A hypothesis test is consistent if it will reject a false null with 
probability converging to one as the number of data samples 
increases. In other words, its power converges to one for any !xed 
signi!cance level ( 33 ,  35 ,  37 ). Of note, while the literature 

Fig. 2.   Schematic of MIGHT. In step 0, the samples are separated into three nonoverlapping groups, which are used for the purposes indicated in Steps 1, 
2, and 3, corresponding to the train, test, and validation steps in classical cross-validation. As shown by the pseudocode, MIGHT uses bagging, rather than 
cross-validation. These steps can be repeated any number of times, regardless of the number of samples, whereas cross-validation is limited by the number of 
samples. See more details in SI Appendix, Algorithm 1.
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includes many permutation tests ( 38 ), proving that a particular 
permutation procedure yields a consistent test is relatively rare 
( 39 ,  40 ). Our !nal result states that a test for independence using 
a MIGHT test statistic is consistent.

     !eorem 2.      Consider the permutation hypothesis test described in  
 SI Appendix, section A.2 , where the null hypothesis is X and Y are 
independent. For a signi"cance threshold α in the interval (0,1), 
assume the number of permutations satis"es M ≥ 1/α − 1. Let the 
setting and assumptions of Section A in the SI hold and additionally 
assume that the trees are grown to depth k such that k grows to in"nity 
as the sample size increases.%en, for a distribution of (X, Y) that 
satis"es the alternative hypothesis, the power converges to one as the 
number of data samples grows.   

   "e combination of the empirical results depicted in  Fig. 1  and 
strong theoretical guarantees for MIGHT motivated exploration 
of its utility to experimental data.   

Application of MIGHT to Experimental Data. "e evaluation 
of ccfDNA from plasma, often called liquid biopsies, has been 
used for purposes ranging from noninvasive prenatal detection of 
genetic abnormalities in a fetus to cancer screening and monitoring 
(41–45). Because >50 million ccfDNA fragments are assessed in 
each patient—each with a unique sequence of ~160 base pairs 
(bp)—the resultant data incorporate an immense number of 
variables. Moreover, the distribution of many variables in the 
cancer patients is likely non-Gaussian and nonlinearly related to 
the corresponding distribution in the patients without cancer. 
One approach to analyzing raw ccfDNA sequencing data involves 
generating a set of informative variables by extracting features 
such as fragment length and end motifs. Multiple such variable 
sets can be constructed through di#erent preprocessing and 
analytical pipelines. Determining whether any particular strategy 
yields a highly informative variable set—one that can serve as a 
clinically useful biomarker—remains an active and important area 
of scienti!c research (22, 46, 47).

 We applied MIGHT to data on ccfDNA fragments puri!ed 
from the plasma of 102 patients with cancers of the pancreas, 
colon, breast, liver, ovary, lung, esophagus, stomach, or kidney, 
and 250 patients without known cancer. To maximize the 
signal-to-noise ratio, only patients with advanced cancers were 
assessed ( 48   – 50 ). An average of 25.8 million fragments were 
collected from each plasma sample [interquartile range (IQR) 

22.1 M—29.6 M]. We chose to analyze 44 variable sets, many 
of which have been analyzed in prior publications ( 41 ,  50         – 55 ). 
Each variable set contains between 3 and 15,370 variables. We 
are searching for the optimal prede!ned variable set, rather than 
seeking to select subsets of variables from within a prede!ned set. 
We focus on the S@98 statistic, because sensitivity at high spec-
i!city is a crucial determinant of the utility of liquid biopsies ( 48 , 
 56 ,  57 ).

 "e reliability of a given algorithm’s estimate of S@98, or any 
other statistic, is crucial for using such an algorithm in real-world 
data. "us, for each of the 44 variable sets, we run, i.e., repeat, 
each algorithm 10 times on the same data. Because each algorithm 
has some degree of randomness (due to randomly sampling which 
data are used for training, testing, or validating), repeats of the 
identical algorithm on the identical samples will yield a di#erent 
S@98 for each run. We found that the variability of MIGHT as 
quanti!ed by the coe%cient of variation (CoV) of the S@98 was 
often lower than 0.02 and as low as 0.004 ( Fig. 3 ). "is implies 
that if we estimate that S@98 was 44% on a single run of MIGHT, 
we expect other runs of MIGHT to also yield an estimate of 
between 43% and 45%. In contrast, every other algorithm tested 
tended to have CoV values that were about 10 times—and some-
times 100 times—higher than MIGHT’s. "is means that if, for 
example, SVM estimated S@98 of 44% on one run, on another 
run, it might be as high as 49% or as low as 39%. Importantly, 
MIGHT was not only more reliable than other algorithms but 
was often more sensitive than other algorithms. "e S@98 for the 
best performing variable set, Wise-5, was 72% using MIGHT. 
"e best performing algorithm other than MIGHT on this vari-
able set, TabPFN ( 58 ), achieved an S@98 of 71%. However, the 
CoV values for the S@98 were 0.004 and 0.046 for MIGHT and 
TabPFN, respectively. We similarly measured the IQR and SD of 
each algorithm and found that MIGHT often had values that 
were one to two orders of magnitude lower than every other algo-
rithm tested (SI Appendix, Fig. S4 A  and B ). "e low reliability of 
these other algorithms rendered them of limited utility for esti-
mating S@98 or for ranking the sensitivity of di#erent variable 
sets. We therefore proceeded to use MIGHT to compare the per-
formance of each of these 44 variable sets, grouped in classes 
de!ned by their biochemical nature ( Fig. 3 ).        

 Aneuploidy-based variable sets, re'ecting abnormal chromo-
some numbers in cancer cells ( 59           – 65 ), achieved the highest per-
formance, with S@98 up to 0.72, correctly identifying 73 of 102 

Fig. 3.   Variation of S@98 estimates achieved with various classifiers. For each classifier, 10 iterations of the identical data from Cohort 1 were performed on 
each of 44 variable sets, with numbers of variables ranging from 3 to 15,370. Each dot represents a different one of the 44 variable sets. The classifiers were 
MIGHT, RF, SVM, Naive Bayes (NB), LR, and TabPFN. Highest sensitivity was observed with MIGHT on Wise-5, with a mean S@98 of 0.72. MIGHT posteriors for 
all variable sets and all patients in Cohort 1 are available in Dataset S3.D
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cancer samples while misclassifying only 5 of 250 normal samples 
( Fig. 3 ). Fragment End-Motifs, representing sequences at ccfDNA 
fragment ends ( 66 ,  67 ), yielded !fteen di#erent variable sets 
(SI Appendix, Figs. S5 and S6 ) with varying numbers of variables 
(4 to ~16,000). "ree motif-based sets (outside pentamers, tetram-
ers, and hexamers) achieved S@98 estimates above 0.4. Breakpoint 
analysis, examining fragment end-positioning within regions with 
di#erential chromatin structure between cancer and healthy cells 
( 54 ,  63 ,  66       – 70 ), yielded eleven variable sets based on breakpoint 
frequencies within recurrently protected regions (RPRs) ( 66 ), 
cis-regulatory elements, and repetitive elements, with four sets 
achieving S@98 > 0.4. Fragment length analysis, one of the earliest 
discriminating variables for cancer detection ( 50 ,  57 ,  71     – 74 ), 
showed that individual base-pair resolution (70 to 499 bp frag-
ments, 430 variables) achieved S@98 of 0.45, while binning into 
larger intervals reduced performance. A commonly used 
ratio-based approach comparing short to long fragments across 5 
Mb genomic intervals yielded an S@98 of 0.26 ( 75 ). Finally, loci 
fraction variable sets based on the relative abundance of repeated 
sequence families and other functionally important genomic ele-
ments ( 76 ) all achieved S@98 values lower than 0.4.

 We applied our permutation-based approach for calculating a 
 P -value to all 44 variable sets from whole genome sequencing of 
plasma ccfDNA. "e number of variables in these sets di#ered by 
more than 10,000-fold (from 3 to ~16,000), and the S@98 of 
these sets di#ered by nearly sixfold (0.09 to 0.72). Nevertheless, 
for all 44 variable sets, MIGHT’s estimates of S@98 were di#erent 
from those predicted by chance alone (P  < 0.0001). "is provided 
con!dence that even the sets with large numbers of variables were 
performing considerably better than expected if none of the var-
iables within them, alone or in combination, were related to can-
cer. We also con!rmed that the single best variable set, Wise5, 
achieves a signi!cantly higher S@98 than any of the other variable 
sets (SI Appendix, Algorithms 3 and 4 ).  

CoMIGHT For Evaluating More Than One Variable Set. Once 
MIGHT is used to discover that a variable set is associated with 
an outcome, a naturally arising question is whether another 
variable set adds to this association. "is situation is particularly 
challenging when the number of variables in one set is vastly 
di#erent from the number of variables in the other set. To 
address this question, we developed a variation of MIGHT, called 
CoMIGHT (for Combined MIGHT) to simultaneously evaluate 
multiple variable sets.
Computing a test statistic with CoMIGHT. Evaluation of multiple 
variable sets is often termed multiview or multimodal learning (19, 
21). To learn with multiple variable sets, one could train AI on one 
set, train another AI on the other set, and then combine answers. 
"is approach su#ers when the variables in each set alone provide 
little information about outcome but the combination of the two 
sets provides a large amount of information. Alternatively, one 
could combine multiple variable sets into a single ensemble and 
ignore which variable comes from which set. When the number of 
variables in one set is much larger than the other, the signal from 
the variable set with fewer variables could be swamped by the noise 
in the variable set with more variables. CoMIGHT mitigates this 
e#ect by balancing both sets in a way that does not allow any node 
of the tree to use a large number of variables from one set and zero 
variables from the second set. "is is achieved through di#erential 
(strati!ed) sampling from each variable set at each node of the tree 
(SI Appendix, section 2.B). "is strati!ed approach is possible due 
to the nature of the random tree construction common in RFs and 
gradient boosting trees, but not as easily implemented in other 
algorithmic approaches, such as deep learning.

   Simulations were performed to determine whether a second 
variable set improves S@98, by comparing the S@98 estimates 
with and without a second set (SI Appendix, Fig. S2 A  and B ). To 
simulate a particularly challenging situation, we evaluated the case 
in which only one of the variables in each set contributes any 
useful information. Even when the variable sets contain vastly 
di#erent numbers of variables, S@98 estimates from CoMIGHT 
remain high even with thousands of uninformative variables from 
the second set, unlike other approaches (SI Appendix, Fig. S2 C  
and D ). Moreover, even with so many uninformative variables, 
CoMIGHT converges to the truth with a relatively small number 
of samples (SI Appendix, Fig. S2E  ). "e power of CoMIGHT to 
reject a false null hypothesis, like that of MIGHT, is considerably 
greater than that of conventional algorithms and remains relatively 
high, regardless of the number of variables or samples (SI Appendix, 
Fig. S2 F  and G ) ( 77 ). In addition to the examples provided by 
these simulated datasets, mathematical proofs that CoMIGHT is 
a universally consistent estimator are provided in SI Appendix, 
"eorem 3 .  
Computing a P-Value with CoMIGHT. As with MIGHT, these 
results brought up a basic statistical question: Does the inclusion 
of other variable sets modify the S@98 score of one variable set 
alone more than expected by chance? In statistics, this is known as 
a model selection problem. To answer this question, we developed 
a permutation-based approach for CoMIGHT that was analogous 
to that described for MIGHT. Its key principle was that only the 
variables in the second variable set, rather than all the variables or 
the labels of the samples, were permuted. Simulations illustrate 
that the power of CoMIGHT approaches one, whereas other 
algorithms failed to achieve such power at sample sizes typical 
of experimental data (number of samples < 400, SI  Appendix, 
Fig.  S3). Moreover, CoMIGHT was the only algorithm that 
proved valid where there is no relationship between variables and 
outcome (SI Appendix, Fig. S3).
Theoretical guarantees for CoMIGHT. In CoMIGHT, the 
question is whether an additional variable set adds any signal. 
To theoretically address this question, we enrich the theoretical 
framework mentioned above. Speci!cally, we assume there exists 
an additional variable set, Z, such that the data triple (x,y,z) is 
independently sampled from the random variable set (X,Y,Z). 
Perhaps the most natural statistic to consider in this scenario is 
conditional mutual information, which quanti!es the amount 
of uncertainty between X and Y when conditioned on Z. In the 
SI Appendix, we prove that, under the same assumptions we used 
for MIGHT, that CoMIGHT’s estimate of mutual information 
and conditional mutual information are consistent, that is, they 
both converge to the truth ("eorems 3 and 4, respectively).

  !eorem 3.      Under the setting and assumptions of  SI Appendix, 
section A , we have that MIGHT’s estimate of mutual information 
I n (X ;Y ) converges in probability to the true population mutual infor-
mation, I (X ;Y ), as n  →(. 

     !eorem 4.      Under the setting and assumptions of  SI Appendix, 
section A , and the mutual information estimates using two honest 
forests built to Speci"cation 1 for I n ([X , Z ]; Y ) and I n (Z ; Y ), the 
conditional mutual information estimate I n (X ; Y  | Z ) = I n ([X , Z ]; Y ) 
) I n (Z ; Y ) is consistent. %at is , I n (X ; Y  | Z ) convergences in proba-
bility to I n (X ; Y  |Z ) as n  →(.  

   We then prove that under certain conditions, a positive mutual 
information implies S@r is greater than chance.

  Lemma 2.      If the population ROC curve is concave, then I (X ; Y ) 
> 0 if and only if S @r  > 1 ) r /100 for all r  ∈ [0, 100]. D
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   Moreover, if S@r is greater than chance, then so is mutual 
information. "is collection of theoretical results connects mutual 
information to S@r, and motivates using CoMIGHT to estimate 
S@r for these purposes.   

Application of CoMIGHT to Experimental Data. CoMIGHT was 
used to determine whether combining any variable set with the 
best performing variable set (Wise-5) would increase S@98 over the 
maximum achieved with a single variable set. We used a classical 
forward insertion approach, with a slight modi!cation. Typically, 
forward insertion is used to determine whether a single variable 
improves performance; here, we inserted an entire variable set, with 
anywhere between 3 and 15,370 variables. We combined each of the 
40 variable sets that are not based aneuploidy with Wise-5. Fig. 4 
"ese combinations never increased S@98 above MIGHT’s Wise-5 
estimate of 0.72, indicating that these other variable sets added more 
noise than signal once aneuploidy was taken into account (Fig. 4).

MIGHT and CoMIGHT for the Detection of Early Cancers of the 
Breast and Pancreas. As an additional example of the value of 
MIGHT, we then addressed an important question in multicancer 
early detection: Can the identical variable sets be used to detect 
cancers derived from di#erent tissue types? Previous studies have 
addressed this question, with somewhat con'icting results (48, 
49, 75, 78). "ere are at least two possible explanations that could 
explain how di#erent variables could have higher performance in 
one cancer type than in another cancer type. First, it is possible 
that the algorithms were not as well-designed for some cancer types 
as they were for others. Second, it is possible that the particular 
algorithm used to predict performance was not the issue, but rather 
that there were di#erent amounts or di#erent characteristics of the 
DNA released into the circulation from di#erent cancer types. 
Which of these explanations is most likely can best be addressed 
by a method that is universally consistent, such as MIGHT.

 To inform these explanations with MIGHT, we chose a cohort 
of 549 individuals without cancer, 126 patients with Stage II 
breast cancer, and 125 patients with Stage II pancreatic cancer 
(Dataset S4 ). Stage II cancers, when detected early enough, o#er 
a higher possibility of cure than later stage cancers. In each cancer 
type, we assessed the 44 variable sets described above. "rough 
CoMIGHT analysis, we found that the information provided 
about cancer status from the plasma of breast cancer patients was 
uniformly less than that from the plasma of pancreatic cancer 
patients ( Fig. 5A   and Dataset S5 ). Moreover, as with MIGHT, 
CoMIGHT was much more reliable than the other algorithms, 
with CoMIGHT achieving lower CoV for nearly every variable 

set than any  of the variable sets for the other algorithms, while 
also typically achieving as high or higher S@98 and  Fig. 5C   and 
 Dataset S6 . "e implications of these results for multicancer early 
detection are discussed below.           

Discussion

 As documented by theory as well as simulated and experimental 
data, the MIGHT suite of algorithms provides a broadly applica-
ble approach to judge the amount of signal provided by a variable 
set. MIGHT-derived statistics such as S@98 can be directly 
applied to predictive modeling. When typically evaluating AI 
methods, benchmark data are used to compare algorithms, and 
this can be done because the ground truth—which samples are 
positive or negative—is available. However, when evaluating AI 
methods to estimate statistics such as S@98, there are no existing 
satisfactory benchmark datasets, because the probability of any 
sample being positive or negative is not available in real world 
data. "is is also true when evaluating the power of an approach. 
For these reasons, we leverage theory and simulations to build 
evidence that our algorithms are trustworthy.

 Accurately assessing signal in high-dimensional data is notori-
ously di%cult due to the well-known curse of dimensionality and 
the associated bias–variance tradeo#. In contrast, a notable 
strength of MIGHT is its ability to maintain high predictive accu-
racy even when only a small number of informative variables are 
embedded within a large set of uninformative ones. "is robust-
ness—demonstrated in our experiment ( Fig. 1 ), sets MIGHT 
apart from conventional methods that typically struggle under 
such conditions. "is is particularly important when a variable set 
including only a few variables provides more information about 
a state than variable sets which each contain orders of magnitude 
more variables. CoMIGHT enables one to determine whether a 
second (or third,...) variable set adds any value at all. CoMIGHT 
revealed that in one cohort, combining variable sets always resulted 
in lower  sensitivity rather than retaining the same sensitivity or 
higher sensitivity, because the other variable sets added more noise 
than signal. "ese results were consistent across algorithms, indi-
cating that it was not the case that CoMIGHT was unable to !nd 
additional signal that was present, yet other algorithms were; 
rather, that MIGHT essentially found all the signal present across 
any of the variable sets (in the set of algorithms we considered). 
"ese kinds of results are informative for machine learning as they 
directly focus on the combination of variable sets providing high 
signal and low noise, with minimal bias and regardless of the 
nature of the distribution of the variables.

Fig. 4.   Performance of CoMIGHT on Cohort 1. Relationship between the CoV and the mean S@98 across five classifiers upon adding other 43 variable sets to 
Wise-5. CoMIGHT classifier achieved S@98 at 0.70 with a CoV of 0.007, whereas the best other algorithm on multiple variable sets only achieved an S@98 of 
0.70 with a CoV of 0.03, which is greater than fourfold worse than MIGHT.D
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 Another useful property of MIGHT is its ability to analyze 
multiple cancer types. A second cohort revealed that machine 
learning algorithms based on the 44 sets of variables listed in 
 Dataset S2  are unlikely to make the sensitivity for detection of 
patients with Stage II breast cancers as high as that of patients 
with Stage II pancreatic cancers. Interestingly, in this cohort, 
CoMIGHT revealed that certain pairs of variable sets had more 
signal than the top single variable set, suggesting that in early stage 
cancers, multiple types of variable sets may be valuable. To raise 
the sensitivity of an assay for breast cancer detection, therefore, 
investigators could add di#erent variable sets from the DNA 
sequencing data, or from di#erent analytes, such as DNA meth-
ylation, RNA, proteins, or metabolites. "ese other variables could 
be evaluated by MIGHT in the same way as described above, and 
their ability to add to these DNA-sequence based variables could 
be assessed via CoMIGHT.

 Previous studies reporting whole genome sequencing of plasma 
ccfDNA have provided a plethora of variable sets that have been 
incorporated into various algorithms and predictive assays ( 41 , 
 50   – 52 ). It has therefore been challenging to estimate which of 
these variable sets are most useful. "e challenge arises in part 
because the ampli!cation of the original template molecules and 
the other techniques required to determine the sequences of 
ccfDNA are performed di#erently in di#erent laboratories, com-
plicating comparison. A commonly encountered scenario is that 
an algorithm performs well in a !rst independent cohort, but not 
in a second cohort assembled by other researchers (due to “batch 
e#ects” or “Out-of-Distribution” data) ( 29 ,  31 ,  76 ,  79 ,  80 ). "is 
circumstance contributes to the ongoing debate about the appli-
cation of AI algorithms to life and death decisions that often are 
made in medical practice. "e debate is fueled by the fact that no 
rigorously de!ned statistical approach has been available to com-
pare sets of variables with respect to certain critical endpoints, 

such as sensitivity at high speci!city. MIGHT addresses this latter 
issue and can be applied to multiple !elds of scienti!c research. 
An interesting direction for future work is to generalize MIGHT 
to be able to handle batch e#ects and out-of-distribution data.

 To facilitate building on this work, we have made all the code 
for these methods available at https://treeple.ai/  and have depos-
ited the data in the European Genome-Phenome Archive under 
EGA00001007763.  

Materials and Methods
Experimental Study Design. This study was approved by the Institutional 
Review Boards for Human Research at Johns Hopkins Medical Institutes and other 
participating institutions in compliance with the Health Insurance Portability and 
Accountability Act. No proper sample size was calculated. Samples were chosen 
on the basis of availability to be representative of multiple tumor types and a 
diverse range of tumor stages. All individuals participating in the study provided 
written consent. All analyses were retrospective in nature. Blood was collected 
in Streck tubes and plasma was purified from 678 individuals without cancer 
and 354 patients with solid cancer using the BioChain ccfDNA Extraction Kit (Cat 
X K5011625) within 2 d. All patients were deidentified, and patients are not 
known to anyone outside the research group. Demographics for the individual 
are included in Datasets S1 and S4.

Whole Genome Sequencing. We developed a library preparation workflow that 
can efficiently re-cover input DNA fragments and simultaneously incorporate 
double-stranded molecular barcodes (48). In brief, libraries were prepared with 
ccfDNACell using an Accel-NGS 2S DNA Library Kit (Swift Bio- sciences, 21024) 
with the following critical modifications: 1) DNA was pretreated with 3 U of USER 
enzyme (New England BioLabs, M5505L) for 15 min at 37 °C to excise uracil 
bases; 2) the SPRI bead/PEG NaCl ratios used after each reaction were 2.0×, 
1.8×, 1.2×, and 1.05× for end repair 1, end repair 2, ligation 1, and ligation 
2, respectively; 3) a custom 50 μM 3′ adapter was substituted for reagent Y2 
and 4) a custom 42 μM 5′ adapter was substituted for reagent B2. Libraries 

A B

C

Fig. 5.   Comparison of Stage II breast and pancreatic cancers. (A) MIGHT analysis of the 44 variable sets on pancreas and breast cancer. CoMIGHT analysis of 
adding the top variable set, to other 43 variable sets in either breast or pancreatic cancers. Variable sets that had statistically significant (P < 0.005) increases 
in S@98 over the best single variable set are labeled with stars. (B) Relationship between the CoV and the mean S@98 across five classifiers upon adding other 
43 variable sets to InsideTetramer on breast cancer stage II. (C) Relationship between the CoV and the mean S@98 across five classifiers upon adding other 43 
variable sets to Wise-1 on pancreas cancer stage II. S@98 estimates for MIGHT and CoMIGHT are available in Dataset S5. MIGHT and CoMIGHT posteriors for 
patients with pancreatic and breast cancer are available in Datasets S6 and S7, respectively.
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were subsequently PCR amplified in 50-μL reactions using primers targeting 
the ligated adapters. The following reaction conditions were used: 1× NEBNext 
Ultra II Q5 Master Mix (New England BioLabs, M0544L), 2 μM universal forward 
primer and 2 μM universal reverse primer. Libraries were amplified with 7 or 11 
cycles of PCR, depending on how many experiments were planned, according to 
the following protocol: 98 °C for 30 s, cycles of 98 °C for 10 s, 65 °C for 75 s and 
hold at 4 °C. If seven cycles were used, the libraries were amplified in single 50-μL 
reactions. If 11 cycles were used, the libraries were divided into eight aliquots and 
amplified in eight 50-μL reactions, each supplemented with an additional 0.5U 
of Q5 Hot Start High-Fidelity DNA Polymerase (New England BioLabs, M0493L), 1 
μL of 10 mM dNTPs (New England BioLabs, N0447L) and 0.4 μL of 25 mM MgCl2 
solution (New England BioLabs, B9021S). The products were purified with 1.8× 
SPRI beads (Beckman Coulter, B23317) and eluted in EB buffer (Qiagen). Whole 
genome libraries were sequenced with paired-end 2× 100 bp sequencing on 
either a HiSeq 4000 or NovaSeq 6000 to a median depth of 26.6 M read pairs, 
or 1.35× (IQR 23.6 M-30.1 M).

Bioinformatic Pipeline. Fastq files were demultiplexed using a custom script 
that utilized index sequences added during library preparation. Demultiplexed 
read 1 and read 2 fastq files were trimmed using a custom script to remove 27 
base oligonucleotides added during library preparation. Trimmed sequences were 
then aligned to the hg19 genome with bowtie2 using end-to-end alignment 
(81). After alignment, UID duplicates were removed using a custom script. Picard 
AddOrReplaceReadGroups was used to add read groups (82).

Quality Control. Samtools flagstat (83) was used to evaluate sequencing qual-
ity. Any samples that had greater than 2.5% singletons, less than 80% of reads 
mapped, or less than 80% of reads properly paired were removed from further 
analysis. Only molecules that were mapped to autosomal chromosomes, were 
properly paired, had a MAPQ > 30, and were between 70 to 500 bp in length 
were used in all analyses.

Fragment Length Analysis. Fragment length was extracted from the BAM 
files using the TLEN alignment field. Fragments for each sample were binned 
into either 1, 5, 10, 15, or 20 length bins. For example, fragment lengths of 70 
to 74 is one 5-length bin, 70 to 79 is one 10-length bin, and 70 to 89 is one 
20-length bin.

Fragment length ratios across the genome were calculated using a method 
inspired by a previous study (75). Individual fragments within autosomes were 
first binned into nonoverlapping 100 kb bins. Using the 124 control samples in 
the panel of normal (Dataset S1) we evaluated the mean coverage and CoV for 
each 100 kb bin. Any bin that had mean coverage below the 10th percentile or 
above the 99th percentile was removed. Any bin that had a CoV greater than the 
90th percentile was removed. To correct for the possible influence of GC content 
on fragment lengths, we applied a LOESS regression with span of 0.75 on the rela-
tionship between average fragment GC and coverage calculated for each of the 
remaining 100 kb bins. Separate LOESS regression models were performed for 
short (100 to 150) and long (151 to 220) to account for possible differences in GC 
effects by fragment length. Fragment length frequencies were then normalized 
by subtracting the LOESS predicted value from the observed frequency, resulting 
in residuals for short and long fragments that were uncorrelated with GC content. 
Normalized fragment length frequencies were returned to the original scale by 
adding the median genome-wide short and long coverage to the normalized 
values. Finally, GC-normalized counts for each 100 kb bin were aggregated into 
577 nonoverlapping 5 Mb bins to reduce dimensionality and noise.

Fragment End-Motif Analysis. Fragment start position, end position, length, 
and strandedness (±) were extracted from the bam file and converted into bed 
format. The start and end position of each fragment was then extended by 10 
positions to evaluate the sequences upstream and downstream of each frag-
ment-end. The full nucleotide of each fragment and the 10 bases upstream and 
downstream of the fragment was then extracted from the hg19 reference genome 
using bedtools nuc (84). Orientation of 5′ and 3′ of each fragment was inferred 
using the strandedness of each molecule. Fragments that aligned to the nonrefer-
ence (#) strand of the hg19 reference genome were reverse complemented. The 
frequency of 5′ end-motifs, 3′ end-motifs, and fragment lengths were calculated 
by dividing by the count of each motif/length by the total number of fragments 
analyzed. Due to end-repair of the 3′ end during library preparation, the average 

frequency between the 5′ end-motif and reverse complement of the 3′ end-motif 
was used as the final frequency.

When evaluating end-motifs we analyzed “inside,” “outside,” and “congruent” 
motifs. “Inside” motifs are defined as the observed fragment-end motif of the 
sequenced molecule (SI Appendix, Figs. S5 and S6). Outside motifs are defined 
as the motifs upstream or downstream of the fragment-end, representative of 
the motif on the opposite side of the cleavage site. Congruent motifs are half 
outside and half inside. For example, the “congruent hexamer” is defined as the 
trimer upstream of the 5′ fragment-end plus the 5′ trimer motif of the sequenced 
molecule. When evaluating end-motifs, it is possible to analyze any given sized 
sequence such as monomers, dimers, or trimers, tetramers, pentamers, or hexam-
ers. All the aforementioned sizes were analyzed for both inside and outside motifs, 
while only the even sized motifs (dimers, tetramers, hexamers) were analyzed 
for congruent motifs.

Breakpoint Analysis. BED files for ENCODE V3 candidate cis-regulatory ele-
ments and UCSC RepeatMasker repetitive elements were downloaded from the 
UCSC Genome Browser (85, 86). A bedfile for GM12878 A/B genome compart-
ments was downloaded from Xiong and Ma (87). A BED file for RPRs was down-
loaded from Budhraja et al. (68). Bedtools intersect (v2.30.0) was then used to 
intersect the fragment bed file with each genomic element, requiring only a 
single base position of overlap between the molecule and the genomic loci to 
be included. Each region that is found to intersect with the chosen loci analyzed 
for fragment breakpoints.

To calculate the breakpoint variables, we first determined the central base 
position of each genomic loci (SI Appendix, Fig. S7). If there was an even number 
of bases in the loci the central position was rounded up. Each bond between 
the bases was considered as a possible breakpoint (e.g., counting the number 
of phosphodiester bonds, not nucleotides). For each genomic loci we analyzed 
positions #150 to +150 from the central position, where position #1 is the bond 
between the central nucleotide and the nucleotide directly upstream. To calculate 
the breakpoint ratio, the number of fragment-ends at that position was divided 
by the number of fragments that overlapped that position (e.g., had coverage at 
the nucleotide upstream and downstream of that position). In total, 300 possible 
breakpoints were evaluated for each loci.

Genomic Fraction Analysis. BAM files were intersected with autosomal loci 
from bed files for four different families of genomic loci: Alu elements, LINEs, 
Replication timing compartments, and cis-regulatory elements. Using bedtools 
intersect (v2.30.0), molecules from each sample were intersected with each family 
of genomic loci, requiring only a single base position of overlap between the mol-
ecule. If a single molecule overlapped with multiple loci of the same subfamily 
(e.g., multiple AluY repeats) it was only counted a single time. The number of 
fragments intersecting each of the different subfamilies of the target loci (e.g., L1/
L2/L3 for LINEs, or AluJ/S/Y for Alus) was counted. Finally, the number of fragments 
in each subfamily was divided by the total number of fragments intersecting all 
subfamilies of the genomic loci (e.g., AluJ divided by AluJ+AluY+AluS).

Aneuploidy Analysis. WiseCondorX (64) version 1.2.4 was downloaded using 
conda with the following command: conda install -f -c conda-forge -c bioconda 
wisecondorx. A panel of normals was generated from 124 noncancer samples 
(Dataset S1). WiseCondorX was used to predict copy number changes in 1, 5, 
and 10 Mb bin sizes based on the panel of normals.

ichorCNA Analysis. ichorCNA (65) version 0.3.2 was downloaded from the 
GitHub repository https://github.com/broadinstitute/ichorCNA. Wig files were 
generated using readCounter with arguments—indow 5000000 –quality 30. 
CreatePanelOfNormals.R was used to generate a panel of normals (n = 124; 
Dataset S1). The “normal” initialization parameters selected were c(0.95, 0.99, 
0.995, 0.999), the ploidy initialization parameter was 2, and only calls on the 
autosomal chromosomes were generated.

Data, Materials, and Software Availability. Anonymized genome sequencing 
data have been deposited in European Genome Archive (https://ega-archive.org/
studies/EGAS00001007763) (88).
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