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Al is now a cornerstone of modern dataset analysis. In many real world applications,
practitioners are concerned with controlling specific kinds of errors, rather than minimiz-
ing the overall number of errors. For example, biomedical screening assays may primarily
be concerned with mitigating the number of false positives rather than false negatives.
Quantifying uncertainty in Al-based predictions, and in particular those controlling
specific kinds of errors, remains theoretically and practically challenging. We develop
a strategy called multidimensional informed generalized hypothesis testing (MIGHT)
which we prove accurately quantifies uncertainty and confidence given sufficient data,
and concomitantly controls for particular error types. Our key insight was that it is
possible to integrate canonical cross-validation and parametric calibration procedures
within a nonparametric ensemble method. Simulations demonstrate that while typical
Al based-approaches cannot be trusted to obtain the truth, MIGHT can be. We apply
MIGHT to answer an open question in liquid biopsies using circulating cell-free DNA
(ccfDNA) in individuals with or without cancer: Which biomarkers, or combinations
thereof, can we trust? Performance estimates produced by MIGHT on ccfDNA data
have coefficients of variation that are often orders of magnitude lower than other state of
the art algorithms such as support vector machines, random forests, and Transformers,
while often also achieving higher sensitivity. We find that combinations of variable sets
often decrease rather than increase sensitivity over the optimal single variable set because
some variable sets add more noise than signal. This work demonstrates the importance
of quantifying uncertainty and confidence—with theoretical guarantees—for the inter-
pretation of real-world data.

predictive modeling | hypothesis testing | cancer screening | biomedical assays | biomarkers

With data consisting of many variables, Al tools, such as deep neural networks or support
vector machines (SVMs), are often employed for analysis in fields ranging from astronomy
to zoology (1). Many of these tools have decades of theoretical development and real-world
applications to justify our trust in them for predicting various outcomes given a set of
variables (2). For example, in neuroscience, Al tools might predict the presence or absence
of Alzheimer’s disease (outcome) given variables derived from MRI. In genomics, the
variables could be derived from the DNA or RNA sequences of a patient’s tissue, and the
outcome could be whether the patient has cancer.

Many real-world applications, however, require more than merely predictive accuracy.
Consider developing a biomedical screen for a disease. The vast majority of individuals
who get screened will not have the disease, even for relatively common diseases such as
cancer. If the screen results in too many false positives (that is, incorrectly identifies people
without the disease as having the disease, called low “specificity”), too many individuals
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will require further examination, including invasive assays. Thus, biomarkers for screening
purposes must have very high specificity to be clinically useful, even if that means a decrease
in correctly identifying cases (sensitivity, or true positive rate), and with it, a corresponding
decrease in overall accuracy. Therefore, the development of an effective biomedical assay
for screening may aim to optimize sensitivity at high specificity, such as sensitivity at 98%
specificity, called S@98 hereafter (3).

Given high-dimensional data, one can leverage Al to estimate quantities of interest,
such as sensitivity at a given specificity. To do so, an Al-based classifier is typically trained
on data from a cohort of patients. That classifier provides a score for each sample, and a
threshold for assigning each sample to the positive or negative class. Varying the threshold

Copyright © 2025 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).

'S.D.C., S.P., and A.L. contributed equally to this work.

2To whom correspondence may be addressed. Email:
vogelbe@jhmi.edu, jovo@progl.ai, or cdouvill@jhmi.
edu.

This article contains supporting information online at
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2424203122/-/DCSupplemental.

Published August 20, 2025.

PNAS 2025 Vol. 122 No.34 2424203122

https://doi.org/10.1073/pnas.2424203122 1 of 11


https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:vogelbe@jhmi.edu
mailto:jovo@progl.ai
mailto:cdouvil1@jhmi.edu
mailto:cdouvil1@jhmi.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2424203122/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2424203122/-/DCSupplemental
https://orcid.org/0000-0002-5311-2001
https://orcid.org/0000-0001-8455-4243
https://orcid.org/0000-0001-8421-365X
https://orcid.org/0009-0007-0689-7487
https://orcid.org/0000-0001-8382-5080
mailto:
mailto:
https://orcid.org/0000-0003-2487-6237
mailto:
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2424203122&domain=pdf&date_stamp=2025-8-19

Downloaded from https://www pnas.org by JOHNS HOPKINS UNIVERSITY; MT WASHINGTON; SHERIDAN LIB TECH SERVICES on December 4, 2025 from IP address 128.220.159.210.

2 of 11

yields a trade-off between fewer false positives and fewer false
negatives. To maximize accuracy, one value of the threshold is
chosen, but that threshold does not, in general, have high speci-
ficity (which is required in certain applications). The curve char-
acterizing all possible trade-offs is called the receiver operating
characteristic (ROC) curve (4). Ideally, the ROC curve generated
from the training set accurately estimates the ROC curve for the
entire population, not just the individuals in the training cohort.
In the literature, ROC curves are typically described as properties
of a classifier. Our perspective is that classifiers estimate an ROC
curve that characterizes the population of interest. And we desire
that our estimate satisfies the basic desirable properties of estima-
tors, for example, that they are accurate with low variance.

Many classifiers have theoretical guarantees that their estimates
of one point on the ROC is accurate (5-7). However, very few
classifiers have theoretical guarantees that they can accurately esti-
mate the entire ROC curve, which includes the sensitivity at all
possible specificities (8). Moreover, empirically, Al algorithms are
typically not well calibrated, i.e., the likelihood of reporting that
an individual is positive is equal (calibrated) to the true probability
that the individual is actually positive (9). This means that the
ROC curves from Al algorithms are often inaccurate (10-12). To
mitigate this issue, practitioners often use “calibration” techniques
(9, 13). However, such calibration techniques typically lack the-
oretical guarantees that they converge to the truth. And, while
they often empirically perform reasonably well in low-dimensional
settings, in the high-dimensional settings of interest in modern
datasets, they can be relatively inaccurate. Because of these inac-
curacies and uncertainties, collecting an independent cohort of
patients to validate the estimates derived from the training cohort
is mandated. However, collection and analysis of additional
patients and controls is costly and infeasible in many situations.
Moreover, there is no theoretical guarantee that the results on the
validation cohort are any more accurate than the results on the
training cohort—or than on a third independent cohort—though
the estimates on these other cohorts will not be overfit. This fun-
damental issue has contributed to the perceived crisis in scientific
reproducibility surrounding Al-based predictions in medi-
cine (14-17).

Once an estimate of a given statistic is obtained, it is also impor-
tant to know whether that estimate is significantly different from
what would be expected by “chance alone.” One could, in prin-
ciple, simply run a permutation test to obtain a P-value. However,
using a permutation test on statistics derived using standard Al
methods lacks theoretical guarantees (18). Finally, investigators
often want to know whether additional biomarkers could improve
the sensitivity, specificity, or other performance metrics, and
whether their estimated improvements are larger than one would
expect by chance (19, 20). Again, one can combine multiple sets
of biomarkers in various ways (21) but testing whether there is
significant improvement lacks theoretical justification. All these
gaps in theoretical understanding and justification of the existing
Al roolkit for estimating medically relevant quantities limits the
trustworthiness of existing tools. To address these gaps, we devel-
oped multidimensional informed generalized hypothesis test-

ing (MIGHT).

Results

Simulations Demonstrating the Value of MIGHT. Suppose we
wish to develop a screening test for cancer based on biomarkers
containing many variables. Further, suppose that the true
distribution of one of the assessed variable sets is standard normal
(i.e., Gaussian) for the individuals without cancer (controls). In
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the cancer patients (cases), a subset looks just like the controls,
while the distribution is shifted to the right for others (Fig. 1A)
Finally, assume that all other of the assessed variables are identically
distributed in cases and controls (Fig. 1B).

Fig. 1C shows the true ROC curve (black) for this simulation,
which entails 256 patients and 4,096 variables, numbers that are
typical in biomedical datasets used for initially exploring biomark-
ers. MIGHT’s estimate of the ROC curve (red) closely matched
the truth, even though only one of the 4,096 variables contains
any signal for cancer (see below for details on how MIGHT
works). In contrast, the estimates from other machine learning
approaches, after calibration, including random forest (RE blue),
nonlinear SVM (green), logistic regression (LR, orange), and
k-nearest neighbors (kNN, brown), were all far from the truth
(see SI Appendix, Algorithm 5 for details on other algorithms, all
use default settings from scikit-learn).

We next considered sensitivity at a high specificity, e.g., 98%
specificity (S@98), as a statistic of interest for screening purposes
(22). We choose this metric because in clinical screenings, espe-
cially for detecting rare but serious conditions such as cancer,
the goal is to identify as many true cases as possible without
falsely alarming healthy patients. Among these, high specificity
is essential, and sensitivity at a fixed high specificity (e.g., 98%)
becomes a critical performance measure. Medically relevant data-
sets generally contain a large number of relatively uninformative
(noisy) variables, and a crucial property of any estimate (such as
S@98) based on such datasets is robustness against many noisy
variables. MIGHT is largely insensitive to thousands of noisy
variables, whereas other algorithms demonstrate a drastic per-
formance drop when even tens of noisy variables are included
(Fig. 1D). Another important property of an algorithm is that
its estimates empirically converge to the truth as the sample size
increases [sometimes this property is referred to as the minimal
requirement for an estimator (23)]. MIGHT indeed converges
to the truth in this setting, in fact, quite quickly (Fig. 1), mean-
ing that relatively few clinical samples are needed to achieve high
accuracy. RF also converges, but more slowly, whereas the other
algorithms do not seem to converge to the truth (Fig. 1E). The
simulations in Fig. 1 illustrate the situation when variables are
associated with cancer. When there is no association of cancer
with any of the variables, MIGHT, like the other algorithms,
accurately reported this fact (S7 Appendix, Fig. S1).

Simply having an estimate of a statistic is insufficient for testing
hypotheses. For example, suppose that MIGHT estimates that
the S@98 of a specific variable set is 0.4. How likely is it that an
estimate of S@98 is greater than 0.4 by chance alone? When there
are thousands of variables in a set, this could certainly occur by
chance, the so-called “curse of dimensionality” (24, 25). To eval-
uate MIGHT s ability to reject the null hypothesis (i.e., that there
is no relationship between the variables and the outcome), we
computed its power in various settings. The power of an algorithm
is its probability of correctly rejecting the null hypothesis when
the null hypothesis is false. For the S@98 statisticc MIGHT
achieved nearly perfect power (1.0) with only 256 samples, even
when there were a relatively large number (4,096) of variables
(Fig. 1 Fand G). In contrast, other algorithms™ power dropped
precipitously as more noisy variables were added and converged
to a power of 100% substantially more slowly, if at all.

Another important property of Al algorithms is their false
positive rate. Specifically, when there is no relationship between
the variables and the outcome, i.e., the null hypothesis should
not be rejected. A test is called valid if its rejection rate when the
null hypothesis is true is less than or equal to the significance
threshold (e.g., <0.05). Reassuringly, MIGHT as well as the other
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Fig. 1. Performance of MIGHT and conventional algorithms on simulated datasets. (A and B) Distributions for both case (black) and control (dotted gray), with
the first variable shown in (A) and all other variables shown in (B). (C) Optimal ROC curve and estimated ROC curve for each algorithm using 4,096 variables and
256 samples. (D) Sensitivity at 98% Specificity (S@98) as a function of the number of variables using 256 samples. (F) S@98 as a function of sample size using
4,096 variables. (F) Power as a function of the number of variables using 256 samples. (G) Power as a function of sample size using 4,096 variables. The classifiers
are MIGHT, random forest (RF), support vector machine (SVM), logistic regression (LR), and KNN.

algorithms evaluated in this study, had this property (57 Appendix,
Fig. S1).

How MIGHT Works.

Computing a test statistic with MIGHT. The conventional heuristic
for estimating test statistics such as sensitivity and specificity is to
first train some Al procedure (e.g., support vector machine or deep
neural network) on a subset of the data (“training set”). Second,
use a held-out dataset (“testing set”) to “calibrate” the classifier,
which means to modify the output of the Al with the goal that
the likelihood of reporting that an individual is positive is equal to
(calibrated to) the true probability that the individual is actually
positive. There are multiple standard empirical procedures for
achieving this calibration, including isotonic regression and LR
(9) [via Platt scaling (9, 13)]. Then, use a third nonoverlapping
dataset (“validating set”) to calculate the statistic of interest, such
as S@98. Fourth, repeat the above procedure several times, each
time with different data in each of the three subsets, and average
the results (“cross-validation”) (26). The primary issue of concern
with this procedure is that it lacks theoretical guarantees that
the estimated statistics converge to the truth. This means that a

PNAS 2025 Vol. 122 No.34 2424203122

user does not know when it does (or does not) yield trustworthy
estimates.

MIGHT uses this type of conventional heuristic (27), but with
important modifications (Fig. 2 and S/ Appendix for details).
First, MIGHT constructs a single decision tree on a randomly
chosen group of patients from the cohort (the Training Set in
Fig. 2). MIGHT then uses an independent group of patients
from the same cohort (the Calibrating Set in Fig. 2) to estimate
the likelihood of each individual being positive (or not) (25, 28—
32). Classical decision trees then essentially ignore the remaining
samples (called “out of bag”). MIGHT instead uses the remaining
samples (Validating Set in Fig. 2) as validation data for that
particular tree. Each decision tree in MIGHT follows the standard
process of training, calibration, and validation, but does so using
our bagging strategy in place of traditional cross-validation. This
is an efficient use of the available data because each tree uses every
sample in the cohort rather than a subset of samples. We dub this
type of decision tree a “MIGHTY Tree”. For the final estimate
of the test statistic, MIGHT generally uses 100,000 decision
trees, called a MIGHTY Forest. We use so many trees because
the S@98 estimate critically depends on the threshold chosen on
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A MIGHTY Tree
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Fig. 2. Schematic of MIGHT. In step O, the samples are separated into three nonoverlapping groups, which are used for the purposes indicated in Steps 1,
2, and 3, corresponding to the train, test, and validation steps in classical cross-validation. As shown by the pseudocode, MIGHT uses bagging, rather than
cross-validation. These steps can be repeated any number of times, regardless of the number of samples, whereas cross-validation is limited by the number of

samples. See more details in S/ Appendix, Algorithm 1.

only the positive cases, and so the variance of that threshold is
quite high. Because of the efficiency of the code we developed,
evaluating 100,000 decision trees is possible even when relatively
small computation resources are available.

Computing a P-value with MIGHT. Suppose we want to test whether
a given variable set contains any informative signal versus the
null hypothesis that it contains none. One way to evaluate this
is by computing a p-value, which quantifies how likely it is to
observe the given data purely due to random chance. MIGHT
enables computation of a P-value by incorporating permutations
of sample labels (18, 33—35). Most permutation procedures using
classifiers require training thousands of classifier iterations, which
is computationally inefficient. We therefore devised an algorithm
that only requires training one additional classifier, making it
thousands of times more efficient (36).

The classical approach to performing a permutation test using
classification algorithms proceeds as follows. 1) Train a classifier
on the true data, and obtain an observed test statistic, such as
S@98. 2) Permute the labels for each sample to remove any asso-
ciation between the labels and the variable set. 3) Train a classifier
on these permuted data, and compute a test statistic using the
permuted data. 4) Repeat steps 2 and 3 a thousand times to yield
the distribution of the test statistic under the “null” hypothesis:
that there is no association between the labels and the variable set.
5) Compare the observed test statistic to the null distribution of
the test statistic; the P-value is the fraction of null statistics that
are more extreme than the observed statistic. This procedure can
be effective, however, it requires 1,000x more compute time than
estimating the test statistic, because it requires training the classi-
fier for each permutation. We use a modified procedure based on
(36), that only requires training a single additional classifier.

As before, 1) train a classifier on the true data to obtain a test
statistic, 2) permute the labels for each sample, and 3) train a
classifier on the permuted data. However, we now redefine the
observed test statistic to be the difference between the test statistic
obtained on the true data, and the test statistic obtained on the
permuted data. When there is a real signal in the nonpermuted
data, we expect this difference to be large. 4a) Instead of retraining
a new classifier, we simply permute the trees across the two clas-
sifiers. This yields two new forests, each with about half their trees
learned on permuted data, and half on the true data. If the true
data and permuted data are the same in distribution, then the
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resulting trees will also be about the same in distribution. Again,
we compute the difference between the test statistics computed
from each of these new forests. 4b) Repeat step 4 a thousand times,
each time constructing a pair of new forests from the existing trees,
to obtain a null distribution of the test statistic. 5) This step is the
same as above, we compare the observed test statistic (the differ-
ence between the true forest and the null forest’s test statistic),
with the null distribution of the test statistic (obtain by permuting
trees across forests); and the P-value is the fraction of null statistics
that are more extreme than the observed statistic. See ST Appendix,
Algorithm 3 for details. Additionally, we can also test whether one
variable set is better than another variable set (details in
SI Appendix, section B.5).

Theoretical guarantees for MIGHT. A suite of theoretical guarantees
for MIGHT is provided in the ST Appendix. Here, we briefly state
the key assumptions and results. For each patient, we observe
a set of d variables x and a binary class label y. We assume that
each data pair (x, y) is an independent sample of a set of random
variables (X, Y) with unknown distribution (this is known as the
iid assumption). An estimator of a given quantity related to the
data distribution is consistent if it converges in probability to the
truth as the sample size grows. The first result is that MIGHT
yields a consistent estimate of the true posterior probabilities
under certain conditions on the splitting procedure for each tree
and mild assumptions on the data distribution. Let n(x) be the
true (i.e., population) probability that x is in class 1 (in this case,
that x is a cancer patient), and let 1,(x) be MIGHTs estimate of
N(x) from n data samples.

Lemma 1. Under the setting and assumptions of SI Appendix,
section A, n,,(x) converges in probability to n(x).

Given a pointwise consistent estimator of the posterior proba-
bilities, we next obtain that MIGHT produces a consistent esti-
mate of sensitivity at any given specificity.

Theorem 1.  Under the setting and assumptions of SI Appendix,
section A, we have that MIGHT estimate of S@r converges in
probability to the true population S@r, for any r.

A hypothesis test is consistent if it will reject a false null with
probability converging to one as the number of data samples
increases. In other words, its power converges to one for any fixed
significance level (33, 35, 37). Of note, while the literature
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includes many permutation tests (38), proving that a particular
permutation procedure yields a consistent test is relatively rare
(39, 40). Our final result states that a test for independence using
a MIGHT test statistic is consistent.

Theorem 2.  Consider the permutation hypothesis test described in
SI Appendix, section A.2, where the null hypothesis is X and Y are
independent. For a significance threshold a in the interval (0,1),
assume the number of permutations satisfies M = I/o - 1. Let the
setting and assumptions of Section A in the SI hold and additionally
assume that the trees are grown to depth k such that k grows to infinity
as the sample size increases. Then, for a distribution of (X, Y) that
satisfies the alternative hypothesis, the power converges to one as the
number of data samples grows.

The combination of the empirical results depicted in Fig. 1 and
strong theoretical guarantees for MIGHT motivated exploration
of its utility to experimental data.

Application of MIGHT to Experimental Data. The evaluation
of ccfDNA from plasma, often called liquid biopsies, has been
used for purposes ranging from noninvasive prenatal detection of
genetic abnormalities in a fetus to cancer screening and monitoring
(41-45). Because >50 million ccfDNA fragments are assessed in
each patient—each with a unique sequence of ~160 base pairs
(bp)—the resultant data incorporate an immense number of
variables. Moreover, the distribution of many variables in the
cancer patients is likely non-Gaussian and nonlinearly related to
the corresponding distribution in the patients without cancer.
One approach to analyzing raw ccfDNA sequencing data involves
generating a set of informative variables by extracting features
such as fragment length and end motifs. Multiple such variable
sets can be constructed through different preprocessing and
analytical pipelines. Determining whether any particular strategy
yields a highly informative variable set—one that can serve as a
clinically useful biomarker—remains an active and important area
of scientific research (22, 46, 47).

We applied MIGHT to data on ccfDNA fragments purified
from the plasma of 102 patients with cancers of the pancreas,
colon, breast, liver, ovary, lung, esophagus, stomach, or kidney,
and 250 patients without known cancer. To maximize the
signal-to-noise ratio, only patients with advanced cancers were
assessed (48-50). An average of 25.8 million fragments were
collected from each plasma sample [interquartile range (IQR)

22.1 M—29.6 M]. We chose to analyze 44 variable sets, many
of which have been analyzed in prior publications (41, 50-55).
Each variable set contains between 3 and 15,370 variables. We
are searching for the optimal predefined variable set, rather than
seeking to select subsets of variables from within a predefined set.
We focus on the S@98 statistic, because sensitivity at high spec-
ificity is a crucial determinant of the utility of liquid biopsies (48,
56, 57).

The reliability of a given algorithm’s estimate of S@98, or any
other statistic, is crucial for using such an algorithm in real-world
data. Thus, for each of the 44 variable sets, we run, i.e., repeat,
each algorithm 10 times on the same data. Because each algorithm
has some degree of randomness (due to randomly sampling which
data are used for training, testing, or validating), repeats of the
identical algorithm on the identical samples will yield a different
S@98 for each run. We found that the variability of MIGHT as
quantified by the coeflicient of variation (CoV) of the S@98 was
often lower than 0.02 and as low as 0.004 (Fig. 3). This implies
that if we estimate that S@98 was 44% on a single run of MIGHT,
we expect other runs of MIGHT to also yield an estimate of
between 43% and 45%. In contrast, every other algorithm tested
tended to have CoV values that were about 10 times—and some-
times 100 times—higher than MIGHT’s. This means that if, for
example, SVM estimated S@98 of 44% on one run, on another
run, it might be as high as 49% or as low as 39%. Importantly,
MIGHT was not only more reliable than other algorithms but
was often more sensitive than other algorithms. The S@98 for the
best performing variable set, Wise-5, was 72% using MIGHT.
The best performing algorithm other than MIGHT on this vari-
able set, TabPFN (58), achieved an S@98 of 71%. However, the
CoV values for the S@98 were 0.004 and 0.046 for MIGHT and
TabPFN, respectively. We similarly measured the IQR and SD of
each algorithm and found that MIGHT often had values that
were one to two orders of magnitude lower than every other algo-
rithm tested (S/ Appendix, Fig. S4 A and B). The low reliability of
these other algorithms rendered them of limited udility for esti-
mating S@98 or for ranking the sensitivity of different variable
sets. We therefore proceeded to use MIGHT to compare the per-
formance of each of these 44 variable sets, grouped in classes
defined by their biochemical nature (Fig. 3).

Aneuploidy-based variable sets, reflecting abnormal chromo-
some numbers in cancer cells (59-65), achieved the highest per-
formance, with S@98 up to 0.72, correctly identifying 73 of 102

Reliability of S@98 across multiple replications
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Fig. 3. Variation of S@98 estimates achieved with various classifiers. For each classifier, 10 iterations of the identical data from Cohort 1 were performed on
each of 44 variable sets, with numbers of variables ranging from 3 to 15,370. Each dot represents a different one of the 44 variable sets. The classifiers were
MIGHT, RF, SVM, Naive Bayes (NB), LR, and TabPFN. Highest sensitivity was observed with MIGHT on Wise-5, with a mean S@98 of 0.72. MIGHT posteriors for

all variable sets and all patients in Cohort 1 are available in Dataset S3.
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cancer samples while misclassifying only 5 of 250 normal samples
(Fig. 3). Fragment End-Motifs, representing sequences at ccfDNA
fragment ends (66, 67), yielded fifteen different variable sets
(SI Appendix, Figs. S5 and S6) with varying numbers of variables
(4 to ~16,000). Three motif-based sets (outside pentamers, tetram-
ers, and hexamers) achieved S@98 estimates above 0.4. Breakpoint
analysis, examining fragment end-positioning within regions with
differential chromatin structure between cancer and healthy cells
(54, 63, 66-70), yielded eleven variable sets based on breakpoint
frequencies within recurrently protected regions (RPRs) (66),
cis-regulatory elements, and repetitive elements, with four sets
achieving S@98 > 0.4. Fragment length analysis, one of the earliest
discriminating variables for cancer detection (50, 57, 71-74),
showed that individual base-pair resolution (70 to 499 bp frag-
ments, 430 variables) achieved S@98 of 0.45, while binning into
larger intervals reduced performance. A commonly used
ratio-based approach comparing short to long fragments across 5
Mb genomic intervals yielded an S@98 of 0.26 (75). Finally, loci
fraction variable sets based on the relative abundance of repeated
sequence families and other functionally important genomic ele-
ments (76) all achieved S@98 values lower than 0.4.

We applied our permutation-based approach for calculating a
P-value to all 44 variable sets from whole genome sequencing of
plasma ccfDNA. The number of variables in these sets differed by
more than 10,000-fold (from 3 to ~16,000), and the S@98 of
these sets differed by nearly sixfold (0.09 to 0.72). Nevertheless,
for all 44 variable sets, MIGHT"s estimates of S@98 were different
from those predicted by chance alone (P < 0.0001). This provided
confidence that even the sets with large numbers of variables were
performing considerably better than expected if none of the var-
iables within them, alone or in combination, were related to can-
cer. We also confirmed that the single best variable set, Wise5,
achieves a significantly higher S@98 than any of the other variable
sets (SI Appendix, Algorithms 3 and 4).

COMIGHT For Evaluating More Than One Variable Set. Once
MIGHT is used to discover that a variable set is associated with
an outcome, a naturally arising question is whether another
variable set adds to this association. This situation is particularly
challenging when the number of variables in one set is vastly
different from the number of variables in the other set. To
address this question, we developed a variation of MIGHT, called
CoMIGHT (for Combined MIGHT) to simultaneously evaluate
multiple variable sets.

Computing a test statistic with COMIGHT. Evaluation of multiple
variable sets is often termed multiview or multimodal learning (19,
21). To learn with multiple variable sets, one could train Al on one
set, train another Al on the other set, and then combine answers.
'This approach suffers when the variables in each set alone provide
little information about outcome but the combination of the two
sets provides a large amount of information. Alternatively, one
could combine multiple variable sets into a single ensemble and
ignore which variable comes from which set. When the number of
variables in one set is much larger than the other, the signal from
the variable set with fewer variables could be swamped by the noise
in the variable set with more variables. CoMIGHT mitigates this
effect by balancing both sets in a way that does not allow any node
of the tree to use a large number of variables from one set and zero
variables from the second set. This is achieved through differential
(stratified) sampling from each variable set at each node of the tree
(SI Appendix, section 2.B). This stratified approach is possible due
to the nature of the random tree construction common in RFs and
gradient boosting trees, but not as easily implemented in other
algorithmic approaches, such as deep learning.

https://doi.org/10.1073/pnas.2424203122

Simulations were performed to determine whether a second
variable set improves S@98, by comparing the S@98 estimates
with and without a second set (S Appendix, Fig. S2 A and B). To
simulate a particularly challenging situation, we evaluated the case
in which only one of the variables in each set contributes any
useful information. Even when the variable sets contain vastly
different numbers of variables, S@98 estimates from CoMIGHT
remain high even with thousands of uninformative variables from
the second set, unlike other approaches (ST Appendix, Fig. S2 C
and D). Moreover, even with so many uninformative variables,
CoMIGHT converges to the truth with a relatively small number
of samples (S Appendix, Fig. S2E). The power of CoMIGHT to
reject a false null hypothesis, like that of MIGHT, is considerably
greater than that of conventional algorithms and remains relatively
high, regardless of the number of variables or samples (SI Appendix,
Fig. S2 Fand G) (77). In addition to the examples provided by
these simulated datasets, mathematical proofs that CoMIGHT is
a universally consistent estimator are provided in S/ Appendix,
Theorem 3.

Computing a P-Value with CoMIGHT. As with MIGHT, these
results brought up a basic statistical question: Does the inclusion
of other variable sets modify the S@98 score of one variable set
alone more than expected by chance? In statistics, this is known as
a model selection problem. To answer this question, we developed
a permutation-based approach for CoMIGHT that was analogous
to that described for MIGHT. Its key principle was that only the
variables in the second variable set, rather than all the variables or
the labels of the samples, were permuted. Simulations illustrate
that the power of CoMIGHT approaches one, whereas other
algorithms failed to achieve such power at sample sizes typical
of experimental data (number of samples < 400, SI Appendix,
Fig. S3). Moreover, CoMIGHT was the only algorithm that
proved valid where there is no relationship between variables and
outcome (87 Appendix, Fig. S3).

Theoretical guarantees for CoMIGHT. In CoMIGHT, the
question is whether an additional variable set adds any signal.
To theoretically address this question, we enrich the theoretical
framework mentioned above. Specifically, we assume there exists
an additional variable set, Z, such that the data triple (x,y,z) is
independently sampled from the random variable set (X,Y,Z).
Perhaps the most natural statistic to consider in this scenario is
conditional mutual information, which quantifies the amount
of uncertainty between X and Y when conditioned on Z. In the
SI Appendix, we prove that, under the same assumptions we used
for MIGHT, that CoMIGHT’s estimate of mutual information
and conditional mutual information are consistent, that is, they
both converge to the truth (Theorems 3 and 4, respectively).

Theorem 3.  Under the setting and assumptions of SI Appendix,
section A, we have that MIGHT's estimate of mutual information
1,(X:Y) converges in probability to the true population mutual infor-
mation, I(X;Y), as n —oo.

Theorem 4.  Under the setting and assumptions of SI Appendix,
section A, and the mutual information estimates using two honest
Sorests built to Specification 1 for 1.([X, Z1; Y) and 1(Z; Y), the
conditional mutual information estimate I (X; Y| Z) = I([X, Z1; Y)
- 1(Z4 Y) is consistent. That is, [ (X; Y| 2) convergences in proba-
bility to I (X; Y |2) as n —oo.

We then prove that under certain conditions, a positive mutual
information implies S@r is greater than chance.

Lemma 2. If the population ROC curve is concave, then I(X; Y)
> 0 if and only if S@r > 1 - /100 for all r € [0, 100].
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Moreover, if S@r is greater than chance, then so is mutual
information. This collection of theoretical results connects mutual
information to S@r, and motivates using CoOMIGHT to estimate

S@r for these purposes.

Application of COMIGHT to Experimental Data. CoMIGHT was
used to determine whether combining any variable set with the
best performing variable set (Wise-5) would increase S@98 over the
maximum achieved with a single variable set. We used a classical
forward insertion approach, with a slight modification. Typically,
forward insertion is used to determine whether a single variable
improves performance; here, we inserted an entire variable set, with
anywhere between 3 and 15,370 variables. We combined each of the
40 variable sets that are not based aneuploidy with Wise-5. Fig. 4
These combinations never increased S@98 above MIGHT’s Wise-5
estimate of 0.72, indicating that these other variable sets added more
noise than signal once aneuploidy was taken into account (Fig. 4).

MIGHT and CoMIGHT for the Detection of Early Cancers of the
Breast and Pancreas. As an additional example of the value of
MIGHT, we then addressed an important question in multicancer
early detection: Can the identical variable sets be used to detect
cancers derived from different tissue types? Previous studies have
addressed this question, with somewhat conflicting results (48,
49,75, 78). There are at least two possible explanations that could
explain how different variables could have higher performance in
one cancer type than in another cancer type. First, it is possible
that the algorithms were not as well-designed for some cancer types
as they were for others. Second, it is possible that the particular
algorithm used to predict performance was not the issue, but rather
that there were different amounts or different characteristics of the
DNA released into the circulation from different cancer types.
Which of these explanations is most likely can best be addressed
by a method that is universally consistent, such as MIGHT.

To inform these explanations with MIGHT, we chose a cohort
of 549 individuals without cancer, 126 patients with Stage II
breast cancer, and 125 patients with Stage II pancreatic cancer
(Dataset S4). Stage IT cancers, when detected eatly enough, offer
a higher possibility of cure than later stage cancers. In each cancer
type, we assessed the 44 variable sets described above. Through
CoMIGHT analysis, we found that the information provided
about cancer status from the plasma of breast cancer patients was
uniformly less than that from the plasma of pancreatic cancer
patients (Fig. 54 and Dataset S5). Moreover, as with MIGHT,
CoMIGHT was much more reliable than the other algorithms,
with CoMIGHT achieving lower CoV for nearly every variable

0.70- + 3
% 7 * ° * x9
¢ ne e
= 04 " o olm,
0.001 0.0070.01
Classifier ® CoMIGHT
Variable-Set

Type ® Fragment End-Motif

set than any of the variable sets for the other algorithms, while
also typically achieving as high or higher S@98 and Fig. 5C and
Dataset S6. The implications of these results for multicancer early
detection are discussed below.

Discussion

As documented by theory as well as simulated and experimental
data, the MIGHT suite of algorithms provides a broadly applica-
ble approach to judge the amount of signal provided by a variable
set. MIGHT-derived statistics such as S@98 can be directly
applied to predictive modeling. When typically evaluating Al
methods, benchmark data are used to compare algorithms, and
this can be done because the ground truth—which samples are
positive or negative—is available. However, when evaluating Al
methods to estimate statistics such as S@98, there are no existing
satisfactory benchmark datasets, because the probability of any
sample being positive or negative is not available in real world
data. This is also true when evaluating the power of an approach.
For these reasons, we leverage theory and simulations to build
evidence that our algorithms are trustworthy.

Accurately assessing signal in high-dimensional data is notori-
ously difficult due to the well-known curse of dimensionality and
the associated bias—variance tradeoff. In contrast, a notable
strength of MIGHT is its ability to maintain high predictive accu-
racy even when only a small number of informative variables are
embedded within a large set of uninformative ones. This robust-
ness—demonstrated in our experiment (Fig. 1), sets MIGHT
apart from conventional methods that typically struggle under
such conditions. This is particularly important when a variable set
including only a few variables provides more information about
a state than variable sets which each contain orders of magnitude
more variables. COMIGHT enables one to determine whether a
second (or third,...) variable set adds any value at all. CoMIGHT
revealed that in one cohort, combining variable sets always resulted
in lower sensitivity rather than retaining the same sensitivity or
higher sensitivity, because the other variable sets added more noise
than signal. These results were consistent across algorithms, indi-
cating that it was not the case that CoMIGHT was unable to find
additional signal that was present, yet other algorithms were;
rather, that MIGHT essentially found all the signal present across
any of the variable sets (in the set of algorithms we considered).
‘These kinds of results are informative for machine learning as they
directly focus on the combination of variable sets providing high
signal and low noise, with minimal bias and regardless of the
nature of the distribution of the variables.

Reliability of S@98 upon adding other variable-sets to Wise-5
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Fig. 4. Performance of COMIGHT on Cohort 1. Relationship between the CoV and the mean S@98 across five classifiers upon adding other 43 variable sets to
Wise-5. CoMIGHT classifier achieved S@98 at 0.70 with a CoV of 0.007, whereas the best other algorithm on multiple variable sets only achieved an S@98 of

0.70 with a CoV of 0.03, which is greater than fourfold worse than MIGHT.
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Fig. 5. Comparison of Stage Il breast and pancreatic cancers. (A) MIGHT analysis of the 44 variable sets on pancreas and breast cancer. COMIGHT analysis of
adding the top variable set, to other 43 variable sets in either breast or pancreatic cancers. Variable sets that had statistically significant (P < 0.005) increases
in S@98 over the best single variable set are labeled with stars. (B) Relationship between the CoV and the mean S@98 across five classifiers upon adding other
43 variable sets to InsideTetramer on breast cancer stage Il. (C) Relationship between the CoV and the mean S@98 across five classifiers upon adding other 43
variable sets to Wise-1 on pancreas cancer stage Il. S@98 estimates for MIGHT and CoMIGHT are available in Dataset S5. MIGHT and CoMIGHT posteriors for
patients with pancreatic and breast cancer are available in Datasets S6 and S7, respectively.

Another useful property of MIGHT is its ability to analyze
multiple cancer types. A second cohort revealed that machine
learning algorithms based on the 44 sets of variables listed in
Dataset S2 are unlikely to make the sensitivity for detection of
patients with Stage II breast cancers as high as that of patients
with Stage II pancreatic cancers. Interestingly, in this cohort,
CoMIGHT revealed that certain pairs of variable sets had more
signal than the top single variable set, suggesting that in early stage
cancers, multiple types of variable sets may be valuable. To raise
the sensitivity of an assay for breast cancer detection, therefore,
investigators could add different variable sets from the DNA
sequencing data, or from different analytes, such as DNA meth-
ylation, RNA, proteins, or metabolites. These other variables could
be evaluated by MIGHT in the same way as described above, and
their ability to add to these DNA-sequence based variables could
be assessed via CoMIGHT.

Previous studies reporting whole genome sequencing of plasma
ccfDNA have provided a plethora of variable sets that have been
incorporated into various algorithms and predictive assays (41,
50-52). It has therefore been challenging to estimate which of
these variable sets are most useful. The challenge arises in part
because the amplification of the original template molecules and
the other techniques required to determine the sequences of
ccfDNA are performed differently in different laboratories, com-
plicating comparison. A commonly encountered scenario is that
an algorithm performs well in a first independent cohort, but not
in a second cohort assembled by other researchers (due to “batch
effects” or “Out-of-Distribution” data) (29, 31, 76, 79, 80). This
circumstance contributes to the ongoing debate about the appli-
cation of Al algorithms to life and death decisions that often are
made in medical practice. The debate is fueled by the fact that no
rigorously defined statistical approach has been available to com-
pare sets of variables with respect to certain critical endpoints,

https://doi.org/10.1073/pnas.2424203122

such as sensitivity at high specificity. MIGHT addresses this latter
issue and can be applied to multiple fields of scientific research.
An interesting direction for future work is to generalize MIGHT
to be able to handle batch effects and out-of-distribution data.

To facilitate building on this work, we have made all the code
for these methods available at hteps://treeple.ai/ and have depos-
ited the data in the European Genome-Phenome Archive under
EGA00001007763.

Materials and Methods

Experimental Study Design. This study was approved by the Institutional
Review Boards for Human Research at Johns Hopkins Medical Institutes and other
participating institutions in compliance with the Health Insurance Portability and
Accountability Act. No proper sample size was calculated. Samples were chosen
on the basis of availability to be representative of multiple tumor types and a
diverse range of tumor stages. All individuals participating in the study provided
written consent. All analyses were retrospective in nature. Blood was collected
in Streck tubes and plasma was purified from 678 individuals without cancer
and 354 patients with solid cancer using the BioChain ccfDNA Extraction Kit (Cat
X K5011625) within 2 d. All patients were deidentified, and patients are not
known to anyone outside the research group. Demographics for the individual
are included in Datasets S1and S4.

Whole Genome Sequencing. We developed a library preparation workflow that
can efficiently re-cover input DNA fragments and simultaneously incorporate
double-stranded molecular barcodes (48). In brief, libraries were prepared with
ccfDNACell using an Accel-NGS 2S DNA Library Kit (Swift Bio- sciences, 21024)
with the following critical modifications: 1) DNAwas pretreated with 3 U of USER
enzyme (New England BioLabs, M5505L) for 15 min at 37 °C to excise uracil
bases; 2) the SPRI bead/PEG NaCl ratios used after each reaction were 2.0x%,
1.8x,1.2x, and 1.05x for end repair 1, end repair 2, ligation 1, and ligation
2, respectively; 3) a custom 50 pM 3’ adapter was substituted for reagent Y2
and 4) a custom 42 uM 5" adapter was substituted for reagent B2. Libraries
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were subsequently PCR amplified in 50-pl reactions using primers targeting
the ligated adapters. The following reaction conditions were used: 1x NEBNext
Ultra I1 Q5 Master Mix (New England BioLabs, M0544L), 2 uM universal forward
primer and 2 pM universal reverse primer. Libraries were amplified with 7 or 11
cycles of PCR, depending on how many experiments were planned, according to
the following protocol: 98 °C for 30's, cycles of 98 °Cfor 10's, 65 °Cfor 75 s and
hold at4 °C. If seven cycles were used, the libraries were amplified in single 50-pL
reactions. If 11 cycles were used, the libraries were divided into eight aliquots and
amplified in eight 50-pL reactions, each supplemented with an additional 0.5U
of Q5 Hot Start High-Fidelity DNA Polymerase (New England BioLabs, M0493L), 1
pLof 70 mM dNTPs (New England BioLabs, N0447L)and 0.4 pL of 25 mM MgCl,
solution (New England BioLabs, B9021S). The products were purified with 1.8x
SPRI beads (Beckman Coulter,B23317) and eluted in EB buffer (Qiagen). Whole
genome libraries were sequenced with paired-end 2x 100 bp sequencing on
either a HiSeq 4000 or NovaSeq 6000 to a median depth of 26.6 M read pairs,
or 1.35x (IQR 23.6 M-30.1 M).

Bioinformatic Pipeline. Fastq files were demultiplexed using a custom script
that utilized index sequences added during library preparation. Demultiplexed
read 1 and read 2 fastq files were trimmed using a custom script to remove 27
base oligonucleotides added during library preparation. Timmed sequences were
then aligned to the hg19 genome with bowtie2 using end-to-end alignment
(81). After alignment, UID duplicates were removed using a custom script. Picard
AddOrReplaceReadGroups was used to add read groups (82).

Quality Control. Samtools flagstat (83) was used to evaluate sequencing qual-
ity. Any samples that had greater than 2.5% singletons, less than 80% of reads
mapped, or less than 80% of reads properly paired were removed from further
analysis. Only molecules that were mapped to autosomal chromosomes, were
properly paired, had a MAPQ > 30, and were between 70 to 500 bp in length
were used in all analyses.

Fragment Length Analysis. Fragment length was extracted from the BAM
files using the TLEN alignment field. Fragments for each sample were binned
into either 1,5, 10, 15, or 20 length bins. For example, fragment lengths of 70
to 74 is one 5-length bin, 70 to 79 is one 10-length bin, and 70 to 89 is one
20-length bin.

Fragment length ratios across the genome were calculated using a method
inspired by a previous study (75). Individual fragments within autosomes were
first binned into nonoverlapping 100 kb bins. Using the 124 control samples in
the panel of normal (Dataset S1) we evaluated the mean coverage and CoV for
each 100 kb bin. Any bin that had mean coverage below the 10th percentile or
above the 99th percentile was removed. Any bin that had a CoV greater than the
90th percentile was removed. To correct for the possible influence of GC content
onfragment lengths, we applied a LOESS regression with span of 0.75 on the rela-
tionship between average fragment GC and coverage calculated for each of the
remaining 100 kb bins. Separate LOESS regression models were performed for
short (100 to 150) and long (151 to 220) to account for possible differences in GC
effects by fragment length. Fragment length frequencies were then normalized
by subtracting the LOESS predicted value from the observed frequency, resulting
inresiduals for shortand long fragments that were uncorrelated with GC content.
Normalized fragment length frequencies were returned to the original scale by
adding the median genome-wide short and long coverage to the normalized
values. Finally, GC-normalized counts for each 100 kb bin were aggregated into
577 nonoverlapping 5 Mb bins to reduce dimensionality and noise.

Fragment End-Motif Analysis. Fragment start position, end position, length,
and strandedness (=) were extracted from the bam file and converted into bed
format. The start and end position of each fragment was then extended by 10
positions to evaluate the sequences upstream and downstream of each frag-
ment-end. The full nucleotide of each fragment and the 10 bases upstream and
downstream of the fragment was then extracted from the hg19 reference genome
using bedtools nuc (84). Orientation of 5" and 3 of each fragment was inferred
using the strandedness of each molecule. Fragments that aligned to the nonrefer-
ence (—) strand of the hg19 reference genome were reverse complemented. The
frequency of 5" end-motifs, 3" end-motifs, and fragment lengths were calculated
by dividing by the count of each motif/length by the total number of fragments
analyzed. Due to end-repair of the 3" end during library preparation, the average
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frequency between the 5" end-motif and reverse complement of the 3’ end-motif
was used as the final frequency.

When evaluating end-motifs we analyzed “inside,” "outside," and "congruent”
motifs. “Inside” motifs are defined as the observed fragment-end motif of the
sequenced molecule (S/ Appendix, Figs. S5 and Sé). Outside motifs are defined
as the motifs upstream or downstream of the fragment-end, representative of
the motif on the opposite side of the cleavage site. Congruent motifs are half
outside and half inside. For example, the "congruent hexamer” is defined as the
trimer upstream of the 5’ fragment-end plus the 5" trimer motif of the sequenced
molecule. When evaluating end-motifs, it is possible to analyze any given sized
sequence such as monomers, dimers, or trimers, tetramers, pentamers, or hexam-
ers. All the aforementioned sizes were analyzed for both inside and outside motifs,
while only the even sized motifs (dimers, tetramers, hexamers) were analyzed
for congruent motifs.

wn

Breakpoint Analysis. BED files for ENCODE V3 candidate cis-regulatory ele-
ments and UCSC RepeatMasker repetitive elements were downloaded from the
UCSC Genome Browser (85, 86). A bedfile for GM12878 A/B genome compart-
ments was downloaded from Xiong and Ma (87). A BED file for RPRs was down-
loaded from Budhraja et al. (68). Bedtools intersect (v2.30.0) was then used to
intersect the fragment bed file with each genomic element, requiring only a
single base position of overlap between the molecule and the genomic loci to
be included. Each region that is found to intersect with the chosen loci analyzed
for fragment breakpoints.

To calculate the breakpoint variables, we first determined the central base
position of each genomic loci (S/ Appendix, Fig. S7). If there was an even number
of bases in the loci the central position was rounded up. Each bond between
the bases was considered as a possible breakpoint (e.g., counting the number
of phosphodiester bonds, not nucleotides). For each genomic loci we analyzed
positions —150 to +150 from the central position, where position —1is the bond
between the central nucleotide and the nucleotide directly upstream.To calculate
the breakpoint ratio, the number of fragment-ends at that position was divided
by the number of fragments that overlapped that position (e.g., had coverage at
the nucleotide upstream and downstream of that position). In total, 300 possible
breakpoints were evaluated for each loci.

Genomic Fraction Analysis. BAM files were intersected with autosomal loci
from bed files for four different families of genomic loci: Alu elements, LINEs,
Replication timing compartments, and cis-regulatory elements. Using bedtools
intersect(v2.30.0), molecules from each sample were intersected with each family
of genomicloci, requiring only a single base position of overlap between the mol-
ecule. If a single molecule overlapped with multiple loci of the same subfamily
(e.g., multiple AluY repeats) it was only counted a single time. The number of
fragments intersecting each of the different subfamilies of the target loci (e.g., L1/
L2/L3 for LINEs, or AluJ/S/Y for Alus) was counted. Finally, the number of fragments
in each subfamily was divided by the total number of fragments intersecting all
subfamilies of the genomic loci (e.g., AluJ divided by AluJ+AluY+AluS).

Aneuploidy Analysis. WiseCondorX (64) version 1.2.4 was downloaded using
conda with the following command: conda install - -c conda-forge -c bioconda
wisecondorx. A panel of normals was generated from 124 noncancer samples
(Dataset S1). WiseCondorX was used to predict copy number changes in 1, 5,
and 10 Mb bin sizes based on the panel of normals.

ichorCNA Analysis. ichorCNA (65) version 0.3.2 was downloaded from the
GitHub repository https://github.com/broadinstitute/ichorCNA. Wig files were
generated using readCounter with arguments-indow 5000000 -quality 30.
CreatePanelOfNormals.R was used to generate a panel of normals (n = 124;
Dataset S1). The "normal” initialization parameters selected were ¢(0.95, 0.99,
0.995, 0.999), the ploidy initialization parameter was 2, and only calls on the
autosomal chromosomes were generated.

Data, Materials, and Software Availability. Anonymized genome sequencing
data have been deposited in European Genome Archive (https://ega-archive.org/
studies/EGAS00001007763) (88).
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