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Abstract—In lifelong learning, data are used to improve per-
formance not only on the present task, but also on past and future
(unencountered) tasks. While typical transfer learning algorithms
can improve performance on future tasks, their performance on
prior tasks degrades upon learning new tasks (called forgetting).
Many recent approaches for continual or lifelong learning have
attempted to maintain performance on old tasks given new
tasks. But striving to avoid forgetting sets the goal unnecessarily
low. The goal of lifelong learning should be to use data to
improve performance on both future tasks (forward transfer)
and past tasks (backward transfer). In this paper, we show that
a simple approach—representation ensembling—demonstrates
both forward and backward transfer in a variety of simulated
and benchmark data scenarios, including tabular, vision (CIFAR-
100, 5-dataset, Split Mini-Imagenet, Food1k, and CORe50), and
speech (spoken digit), in contrast to various reference algorithms,
which typically failed to transfer either forward or backward,
or both. Moreover, our proposed approach can flexibly operate
with or without a computational budget.

Index Terms—continual/lifelong learning, forward transfer,
backward transfer, replay

I. INTRODUCTION

EARNING is a process by which an intelligent system

improves performance on a given task by leveraging
data [1]. In classical machine learning, the system is often
optimized for a single task [2, 3]. While it is relatively
easy to simultaneously optimize for multiple tasks (multi-task
learning) [4], it has proven much more difficult to sequentially
optimize for multiple tasks [5, 6]. Specifically, classical ma-
chine learning systems, and natural extensions thereof, exhibit
“catastrophic forgetting” when trained sequentially, meaning
their performance on the prior tasks drops precipitously upon
training on new tasks [7, 8, 9]. However, learning could be
lifelong, with agents continually building on past knowledge
and experiences, improving on many tasks given data associ-
ated with any task. For example, in humans, learning a second
language often improves performance in an individual’s native
language [10].

In lifelong learning, where tasks arrive sequentially, the
ability to transfer knowledge across tasks is characterized by
two complementary objectives: forward transfer and backward
transfer. Forward transfer facilitates accelerated learning in
new tasks using previous knowledge. In contrast, backward
transfer evaluates the impact of new learning on previously
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encountered tasks. Achieving both positive forward and back-
ward transfer is crucial for an effective lifelong learner. How-
ever, as we will demonstrate, many existing lifelong learning
algorithms do not enable forward transfer to future tasks, and
most do not exhibit positive backward transfer to previously
learned tasks.

In this paper, we propose a general and simple approach
for lifelong learning which can be used with many exist-
ing encoder models. Specifically, we focus our approach on
ensembling deep networks (Simple Lifelong Learning Net-
works, S1LLy-N). Additionally, we demonstrate how the
same approach can be generalized for lifelong learning based
on ensembling decision forests (Simple Lifelong Learning
Forests, SILLY-F). Table I and Figure 3 show our proposed
approaches grow linearly with the task number and can flexibly
operate with both growing and constant resources depending
on the available computation budget. Moreover, we explore
our proposed algorithm as compared to a number of reference
algorithms on an extensive suite of numerical experiments
that span simulation, vision datasets including CIFAR-100,
5-dataset, Split Mini-Imagenet, and Foodlk, as well as the
spoken digit dataset. Figure 1 illustrates that our algorithm
outperforms all the reference algorithms in terms of forward,
backward, and overall transfer on different vision and speech
datasets. Ablation studies indicate the degree to which the
amount of representation or storage capacity and replaying old
task data impact performance of our algorithms. All our code
and experiments are open source to facilitate reproducibility.

The subsequent organization of the paper can be summa-
rized as:

1) Section II presents a discussion of relevant algorithms,
highlighting their architecture and computational com-
plexity in comparison to SILLY-N and SILLY-F.

2) Section III introduces the learning environment and
proposes three transfer statistics.

3) Section IV details the design of SILLY-N and
SILLY-F, incorporating insights from various ensem-
bling approaches.

4) Sections V and VI provide empirical evaluations of
S1LLY-N and SILLY-F on both simulated and bench-
mark datasets.

5) Section VII concludes with a discussion of strengths,
limitations, and directions for future research.

II. RELATED WORKS

In this work, we propose a lifelong learning approach
based on representation ensembling which can flexibly operate
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Fig. 1. Performance summary on different vision and speech benchmark datasets. Columns are different evaluation criteria (see Section III for definitions,
and Section VI for experimental details), each strip of colored dots corresponds to an algorithm (we introduce STLLY-N here) and each dot represents a task.
Older tasks have darker colors. Resource growing algorithms have a “*’. EWC, O-EWC, SI, TAG and ER always perform worse than LwF, and hence we do
not show them in the plot. STLLY-N (red) outperforms all reference algorithms in terms of overall (first column), forward (second column), and backward
(third column). Importantly, such better transfer is achieved at high overall accuracy (fourth column). For CORe50 dataset, we are unable to run MODEL
Zoo in the resource constrained environment of the experiment and LwE completely forgets the first several tasks with the task-accuracies going down to the

chance level (20%). See Appendix Figure 1 for the error bars for each dot in

in both resource growing and resource constrained modes.
Existing resource constrained algorithms, such as EWC [11],
ONLINE EWC [12], EWC++ [13], SI [14], and LwF [15],
use regularization techniques to exploit the stability-plasticity

trade-off to mitigate forgetting.

On the contrary, the resource growing approaches add
resources as they face more tasks. Authors from [16] used a
weighted ensemble of learners in a streaming setting with dis-
tribution shift. TRADABoosT [18] boosts ensemble of learners
to enable transfer learning. In continual learning scenarios,
many algorithms have been built on these ideas by ensem-
bling dependent representations. For example, LEaArRN++ [19]
boosts ensembles of weak learners learned over different data
sequences in class incremental lifelong learning settings [20].
MoDpEL Zoo [21] uses the same boosting approach in task
incremental lifelong learning scenarios. Another group of algo-
rithms, PRoGNN [22] and DF—CNN [23] learn a new “column”

the figure.

of nodes and edges with each new task, and ensembles the
columns for inference (such approaches are commonly called
‘modular’ now). The primary difference between ProGNN and
DF-CNN is that PRoGNN has forward connections to the
current column from all the past columns. This creates the
possibility of forward transfer while freezing backward trans-
fer. However, the forward connections in PROGNN render
it computationally inefficient for a large number of tasks.
DF-CNN gets around this problem by learning a common
knowledge base and thereby, creating the possibility of back-

ward transfer.

Recently, many other modular approaches have been pro-
posed in the literature that improve on PROGNN’s capacity
growth. These methods consider the capacity for each task
being composed of modules that can be shared across tasks
and grown as necessary. For example, PAckNET [24] starts
with a fixed capacity network and trains for additional tasks
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by freeing up portion of the network capacity using iterative
pruning. Veniat et al. [25] trains additional modules with each
new task, and the old modules are only used selectively. [26]
improved the memory efficiency of the modular methods by
adding new modules according to the complexity of the new
tasks. Authors in [27] proposed non-parametric factorization
of the layer weights that promotes sharing of the weights
between tasks. However, all of modular methods described
above lack backward transfer because the old modules are
not updated with the new tasks. Dynamically Expandable
Representation (DER) [28] proposed an improvement over the
modular approaches where the model capacity is dynamically
expanded and the model is fine-tuned by replaying a portion
of the old task data along with the new task data. This
approach achieves backward transfer between tasks as reported
by the authors in the experiments. Another modular approach,
proposed by Kang et al. [29], uses sub-networks inspired by
the lottery ticket hypothesis [30] and dynamically expands the
network capacity with the number of tasks.

Another strategy for building lifelong learning machines is
to use total or partial replay [31, 32, 33, 34, 35]. Replay
approaches keep the old data and replay them when faced
with new tasks to mitigate catastrophic forgetting. Many
recent approaches combine replay with other transfer learning
strategies like knowledge distillation [37] to improve storage
efficiency of replay data. Recently, hypernetwork based old
network weight generation accompanied by synthetic replay
[38] demonstrated potential of memory-efficient operation in
a learning environment with a huge number of tasks. Another
replay algorithm, MER [39], aligns the gradient update between
task datasets while replaying old task data. However, as
we illustrated in the main text, previously proposed replay
algorithms do not demonstrate positive backward transfer in
our experiments, though they often do not forget as much as
other approaches.

Our approach builds directly on previously proposed mod-
ular and replay approaches with one key distinction: in our
approach, representations are learned independently. Indepen-
dent representations also have computational advantages, as
doing so merely requires quasilinear time and space, and can
be learned in parallel.

1II. MATHEMATICAL FRAMEWORK
A. The lifelong learning objective

In a lifelong learning setting, we consider a sequence of
tasks 7 = {1,2,...,T}, where the tasks are known during
training and testing. Each task ¢t € T shares the same input
space, X C RP, with class labels Y = {1,...,K;}. The
tasks arrive sequentially, and within each task ¢, the dataset
St = {(X;,Y;)}, is sampled 7id from a fixed distribution
D;, with Zthl ng =n.

Given access to all observed datasets Uthl S, the goal is
to find a learner f that minimizes the overall generalization
error across all tasks:

S EHUL_, ST
feF ’

minimize
subject to

(D

where 6’} is the generalization error or expected risk on
task ¢ and the learner will have access to a total of 7" datasets
after T tasks, Uthl S* !, Risk is defined as the expected task-
specific loss ¢, : Y x Y — [0,00) in task t (see [40] for a
detailed formulation on different out-of-distribution learning
scenarios).

B. Lifelong learning evaluation criteria

Others have previously introduced criteria to evaluate trans-
fer, including forward and backward transfer [25, 41, 42, 43].
Pearl [44] introduced the transfer benefit ratio, which builds
directly off relative efficiency from classical statistics [45]. We
define three notions of transfer building on relative efficiency.

Definition 1 (Transfer). Overall transfer of algorithm f for a
given Task t is:

£4(s")
T N
Ep(Up—1 8")
In words, Equation 2 quantifies the extent that a learner f,
is able to improve the performance on task t, when using the
data on all other tasks, (1,...,T). It does so by computing
the ratio of generalization error on task t while only training

on data from task t, relative to the generalization error on
task t when training on the data from all tasks.

Transfer’(f) := log (2)

Forward transfer quantifies how much performance a learner
transfers forward to future tasks, given prior tasks.

Definition 2 (Forward Transfer). The forward transfer of f
for task t is :
. Eﬁ(St)
t N
& (Up—18")
Forward transfer is identical to transfer as defined in Equa-
tion 2, except that it only considers the relation between

training on data from task t as compared to training on the
prior tasks, (1,...,t), excluding future tasks, (t +1,...,T).

Forward Transfer’(f) :=lo 3)

Backward transfer quantifies how much a learner transfers
backward to previously observed tasks, in light of new tasks.

Definition 3 (Backward Transfer). The backward transfer of
f for Task t is:

t ’
Er(Up=1 8")

T N
euUr_, ")
Backward transfer is also like Equation 2, except it compares

the performance when training on all prior tasks, (1,...,t),
with training on all tasks, (1,...,T).

Backward Transfer’(f) := log 4)

Note that Transfer can be decomposed into
Forward Transfer and Backward Transfer (see Appendix
A for details):

Transfer' (f) = Forward Transfer®(f)-+Backward Transfer(f).
(&)
'More generally, we may have J datasets, where J # T and each

dataset may be associated with the target distributions of multiple tasks. For
simplicity, we do not consider such scenarios further at this time.
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TABLE I
A COMPUTATIONAL TAXONOMY OF LIFELONG LEARNERS. WE SHOW SOFT-O NOTATION ((5(7 )) AS A FUNCTION OF TOTAL TRAINING SAMPLES,
n = ZtT n¢, WHERE n¢ IS THE NUMBER OF TRAINING SAMPLES FOR THE " TASK AND TOTAL TASK, T', AS WELL AS THE COMMON SETTING WHERE n
IS PROPORTIONAL TO T'. PARAMETRIC, SEMI-PARAMETRIC, AND NON-PARAMETRIC ALGORITHMS HAVE PARAMETERS THAT REMAIN FIXED, GROW
SLOWLY, AND SCALE PROPORTIONALLY TO m, RESPECTIVELY.

Parametric Capacity Space Time Examples
n,T) n,T) [ (nxT) | n,T) | (nxT)
parametric 1 1 1 1 1 SILLY-N-M, S1LLY-F-M
parametric 1 1 1 n n O-EWC [12], ST [14], LwF [15]
parametric 1 T n nT n2 EWC [11]
parametric 1 n n nT n? TOTAL REPLAY
semi-parametric | T T2 n2 nT n? PROGNN[22]
semi-parametric | 1 T n n n DF—-CNN [23]
semi-parametric | 1T T+n | n n n SILLY-N, MopEL Zoo[21], DER [28], LMC[26]
non-parametric n n n n n STLLY-F, IBP-WF [27]

The above equation underscores the sequential progres-
sion of tasks in lifelong learning, indicating that the total
knowledge a learner acquires is derived from both previously
encountered tasks (forward transfer) and those yet to be
encountered (backward transfer). While forward transfer is
relatively straightforward to achieve [46], backward transfer
presents a significant challenge due to the issue of catastrophic
forgetting. In particular, a learner that demonstrates strong
forward transfer (Forward Transfer’(f) > 0) but experiences
negative backward transfer (Backward Transfer’(f) < 0) from
all future tasks will eventually lose the learned knowledge,
resulting in Transfer’(f) < 0 for the task.

Another paper [25], concomitantly introduced transfer and
forgetting (backward transfer). Their statistics are the same
as ours, except they do not use a log. We opted for a log to
address numerical stability issues in comparing small numbers.
Because log is a monotonic function, the order of ranking
algorithms is preserved (Appendix Figure 2 shows a version of
Figure 1, but using Veniat’s statistics, which is nearly visually
identical). By virtue of introducing Forward Transfer here,
we can identify the inherent trade-off between forward and
backward transfer, for a fixed amount of total transfer. Apart
from the above statistics, we also report accuracy per task.

Definition 4 (Accuracy). The accuracy of algorithm f on task
t after observing total T’ datasets is:

T
Accuracy®(f) :=1 — Ex( U st). (6)

t'=1

C. Computational Taxonomy of Lifelong Learners

In the past 30 years, a number of lifelong learning al-
gorithms have attempted to overcome catastrophic forgetting
[47, 48]. These algorithms can be broadly classified into three
categories: parametric, semi-parametric, and non-parametric
approaches, based on their representational capacity and how
it scales with the number of tasks and data samples. Table
I shows a computational taxonomy of lifelong learners as
a function of the sample size n and the total task 7', as
well as the common scenario where the sample size is fixed
per task and therefore proportional to the number of tasks,
n o« T. For time complexity, we only consider the training

time complexity. The space complexity of the learner refers to
the amount of memory space needed to store the learner [49].
We also study the representation capacity of these algorithms.
Capacity is defined as the size of the subset of hypotheses that
is achievable by the learning algorithm [50]. For a detailed
discussion and assumptions behind the complexity analysis,
see Appendix D.

IV. REPRESENTATION ENSEMBLING ALGORITHMS

Shannon proposed that a learned hypothesis can be decom-
posed into three components: an encoder, a channel, and a
decoder [51, 52]: h(-) = w o v o u(-). Figure 2 shows these
three components as the building blocks of different learning
schemas. The encoder, u : X — X, maps an X'-valued input
into an internal representation space X [53, 54). The channel
v X Ay maps the transformed data into a posterior
distribution (or, more generally, a score). Finally, a decoder
w : Ay +— Y, produces a predicted label.

A canonical example of a single learner depicted in Figure
2A is a decision tree. Importantly, one can subsample the
training data to learn different components of the tree [55,
56, 57]. For example, one can use a portion of data to learn
the tree structure (which is the encoder). Then, by pushing
the remaining data (sometimes called the ‘out-of-bag’ data)
through the tree, one can learn posteriors in each leaf node
(which are the channel). The channel thus gives scores for each
data point denoting the probability of that data point belonging
to a specific class. Using separate sets of data to learn the
encoder and the channel results in less bias in the estimated
posterior in the channels as in ‘honest trees’ [55, 56, 57].
Finally, the decoder provides the predicted class label using
arg max over the posteriors from the channel.

One can generalize the above decomposition by allowing for
multiple encoders, as shown in Figure 2B. Given B different
encoders, one can attach a single channel to each encoder,
yielding B different channels. Doing so requires generalizing
the definition of a decoder so that it would operate on multiple
channels. Such a decoder ensembles the decisions, because
here each channel provides the final output based on the
encoder. This is the learning paradigm behind bagging [58]
and boosting [59]; indeed, decision forests are a canonical
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A. Single
Learner

B. Ensembling
Decisions

Channel

C. Multi-head

2 Vg
Encoder . ‘ Y

E. Ensembling
Representations

1830253
SEXTE

D. Modular

Fig. 2. Schemas of composable hypotheses. A. Single task learner. B. Ensembling decisions (as output by the channels) is a well-established practice,
including random forests and gradient boosted trees. C. Learning a joint representation or D. learning future representations depending on the past encoders
was previously used in lifelong learning scenarios, but encoders were not trained independently as in E. Note that the new encoders in E interact with the
previous encoders through the channel layer (indicated by red arrows), thereby, enabling backward transfer. Again the old encoders interact with the future

encoders (indicated by black arrows), thereby, enabling forward transfer.

example of a decision function operating on an ensemble of
B outputs [60].

Although the task specific structure in Figure 2B can
provide useful decision on the corresponding task, they cannot,
in general, provide meaningful decisions on other tasks, be-
cause those tasks might have completely different class labels.
Therefore, in the multi-head structure (Figure 2C) a single
encoder is used to learn a joint representation from all the
tasks, and a separate channel is learned for each task to get
the score or class conditional posteriors for each task, which
is followed by each task specific decider [11, 12, 14].

Modular approaches, such as ProcNN and LMC (Fig-
ure 2D), have both multiple encoders and decoders. Connec-
tions from past to future encoders enables forward transfer.
However, they freeze backward transfer.

Our approach also uses multiple encoders and decoders
(Figure 2E). Unlike modular approaches, we allow interaction
among encoders through the channels, including both forward
and backward interactions. The result is that the channels
ensemble representations (learned by the encoders), rather
than decisions (learned by the channels as in Figure 2 B). In
our algorithms, we push all the data through each encoder, and
each channel learns and ensembles across all encoders. When
each encoder has learned complementary representations, the
channels can leverage that information to improve over single
task performance. This approach has applications in few-shot
and multiple task scenarios, as well as lifelong learning.

A. Our representation ensembling algorithms

Figure 2E shows a general structure of our algorithm. As
data from a new task arrives, the algorithm first builds a new
encoder. Then, it builds the channel for this new task by
pushing the new task data through all existing encoders. Thus
the channel integrates information across all existing encoders
using the new task data, thereby enabling forward transfer.
At the same time, if it stores old task data (or can generate
such data), it can push that data through the new encoders
to update the channels from the old tasks, thereby enabling
backward transfer. In either case, new test data are passed
through all existing encoders and corresponding channels to
make a prediction (see appendix for detailed description of
this approach).
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Fig. 3. Space and time complexity as a function on number of tasks in
CIFAR 10X10. Section VI describes the experimental setup and architecture
of the convolutional network used. Top left: Model size, S1LLy can flexibly
operate between resource constrained and growing modes. Top right: Memory
consumed by STLLY-N is dominated by the encoder size. Bottom left: STLLY
takes less training time compared to other baselines. Bottom right: Inference
time taken by different lifelong learners for 1000 samples. Bottom row has
log y-axis.

1) Simple Lifelong Learning Networks in resource growing
mode: A Simple Lifelong Learning Network (S1LLy-N)
ensembles deep networks. For each task, the encoder u; in
S1LLY-N is the “backbone” of a deep network (DN). Thus,
each u; maps an element of X’ to an element of R?, where d
is the number of neurons in the penultimate layer of DN. The
channels are learned by averaging the outputs from decision
forests [60, 61] trained on the d dimensional representations
of X. See Appendix Figure 3 where we conduct experiments
on a CIFAR 10X10 (described later in Section VI-B1) while
varying the number of decision trees per channel. Appendix
Figure 3 shows that decision forest-based channels are robust
to hyperparameter perturbation. Other algorithms could also
be used to learn the channels, though we do not pursue them
here. The decoder w, outputs the arg max to produce a single
prediction.
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2) Simple Lifelong Learning Networks in resource con-
strained mode: The above resource growing approach is ideal
when the upcoming tasks become more and more complex
and there is no constraint imposed by the computation and
storage budget available. However, real-world scenarios often
impose computational constraints. In the constant resource
mode, we stop building new encoders after we have reached
the computation and the storage budget imposed by the user.
As new tasks arrive, we only learn new channels associated
with new tasks using the old encoders. Note that this approach
completely excludes the need to save old task data after we
have reached the budget.

Hereafter, we will use suffix ‘-M’ after the algorithm name
whenever we use resource constrained operation of STLLY-N.
Here M is the total number of encoder allowed by the budget.

3) Additional realization of our approach using random for-
est as encoder: Simple Lifelong Learning Forest (SILLY-F)
ensembles decision trees or forests. For each task, the encoder
u; of SILLY-F is the representation learned by a decision
forest. The channel then learns the class-conditional posteriors
by populating the forest leaves with out-of-task samples, as in
“honest trees” [55, 56, 57]. Each channel outputs the posteriors
averaged across the collection of forests learned over different
tasks. The decoder w; outputs the argmax to produce a single
prediction.

Note that the amount of additional representation capacity
added per task by ST1LLY-F is a function of the amount
and complexity of the data for a new task. Contrast this with
SILLY-N and other deep net based modular or representation
ensembling approaches, which a priori choose how much
additional representation to add, prior to seeing all the new
task data. So, SILLY~-F has capacity, space complexity, and
time complexity scale with the complexity and sample size of
each task. In contrast, PRoOGNN, S1LLY-N (and others like
it) have a fixed capacity for each task, even if the tasks have
very different sample sizes and complexities.

Figure 3 top left shows the model size for our proposed
approach grows linearly with the number of tasks. Moreover,
the memory consumed by the new channels is negligible com-
pared to the memory required to store the encoders (Figure 3
top right). The time required for inference on 1000 testing
points (Figure 3 bottom right) is an order of magnitude lower
compared to the time required to train a new encoder with 500
samples(Figure 3 bottom left).

V. SIMULATION DATA STUDY
A. Forward and backward transfer in a simple environment

Consider a very simple two-task environment: Gaussian
XOR and Gaussian Exclusive NOR (XNOR) (Figure 4A, see
Appendix E for details). The two tasks share the exact same
discriminant boundaries: the coordinate axes. Thus, transfer-
ring from one task to the other merely requires learning a bit
flip of the class labels. We sample a total 750 samples from
XOR, followed by another 750 samples from XNOR.

S1LLY-N and deep network (DN) achieve the same gen-
eralization error on XOR when training with XOR data
(Figure 4Bi). But because DN does not account for a change

in task, when XNOR data appear, DN performance on XOR
deteriorates (it catastrophically forgets). In contrast, STLLY-N
continues to improve on XOR given XNOR data, demon-
strating backward transfer. Now consider the generalization
error on XNOR (Figure 4Bii). Both SILLY-N and DN are at
chance levels for XNOR when only XOR data are available.
When XNOR data are available, DN must unlearn everything
it learned from the XOR data, and thus its performance on
XNOR starts out nearly maximally inaccurate, and quickly
improves. On the other hand, because STLLY-N can leverage
the encoder learned using the XOR data, upon getting any
XNOR data, it immediately performs quite well, and then
continues to improve with further XNOR data, demonstrat-
ing forward transfer (Figure 4Biii). ST1LLY-N demonstrates
positive forward and backward transfer for all sample sizes,
whereas DN fails to demonstrate neither forward nor backward
transfer, and eventually catastrophically forgets the previous
tasks.

B. Forward and backward transfer for adversarial tasks

In the context of lifelong learning, we informally define a
task ¢ to be adversarial with respect to task ¢’ if the true joint
distribution of task ¢, without any domain adaptation, impedes
performance on task ¢'. In other words, training data from
task ¢ can only add noise, rather than signal, for task ¢'. An
adversarial task for Gaussian XOR is Gaussian XOR rotated
by 45° (R-XOR) (Figure 4Aiii). Training on R-XOR therefore
impedes the performance of SILLy-N on XOR, and thus
backward transfer becomes negative, demonstrating graceful
forgetting [62] (Figure 4Ci).

To further investigate this relationship, we design a suite
of R-XOR examples, generalizing R-XOR from only 45°
to any rotation angle between 0° and 90°, sampling 100
points from XOR, and another 100 from each R-XOR (Fig-
ure 4Cii). Note that we could not run the experiment for a
lot of Monte Carlo repetition to have a smooth curve and
hence we have shown a regressed curve fitted to the low
repetition noisy curve. As the angle increases from 0° to 45°,
Backward Transfer gradually decreases for S1LLvy-N. The
45°-XOR is the maximally adversarial R-XOR. Thus, as the
angle further increases, Backward Transfer increases back up
to ~ 0.18 at 90°, which has an identical discriminant boundary
to XOR. Moreover, when 0 is fixed at 25°, Backward Transfer
increases at different rates for different sample sizes of the
source task (Figure 4Ciii).

Together, these experiments indicate that the amount of
transfer can be a complicated function of (i) the difficulty of
learning good representations for each task, (ii) the relation-
ship between the two tasks, and (iii) the sample size of each.

VI. BENCHMARK DATA STUDY

For benchmark data, we build STLLy-N encoders using
the network architecture described in [31]. We use the same
network architecture for all benchmarking models. For the
following experiments, we consider two modalities of real
data: vision and language.
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discriminant boundary as XOR, and (Aiil) R-XOR, which has a discriminant boundary that is uninformative, and therefore adversarial, to XOR. (Bi)
Generalization error for XOR, and (Bii) XNOR. S1LLy~-N outperforms DN on XOR when XNOR data is available, and on XNOR when XOR data are
available. (Biii) Forward and backward transfer of ST1LLy-N are positive for all sample sizes. (Ci) In an adversarial task setting, STLLY-N gracefully forgets
XOR, whereas DN catastrophically forget and interfere. (Cii) Backward Transfer is maximum positive with respect to XOR when the optimal decision
boundary of 6-XOR is similar to that of XOR (e.g. angles far from 45°), and negative otherwise. The dashed line shows the regression line fitted through
the original points. (Ciii) Backward Transfer is a nonlinear function of the source training sample size (XOR sample size is fixed at 500).

A. Reference algorithms

We compared our approaches to 16 reference lifelong
learning methods. Among them five are resource growing as
well as modular approach: PRoGNN [22], DE-CNN [23], LMC
[26], MopEL Zoo[21], CoSCL [63]. Note that "MoDEL Z00”
was published after our work was archived on arXiv, and the
authors have built on our work (personal communications).
Other reference algorithms are resource constrained: Elastic
Weight Consolidation (EWC) [11], Online-EWC (O-EWC) [12],
Synaptic Intelligence (SI) [14], Learning without Forgetting
(LwF) [15], RanDuMB [64] and “None”.

We also compare two variants of exact replay (Total Replay
and Partial Replay) using the code provided in [31]. Both
Total and Partial Replay store all the data they have ever
seen, but Total Replay replays all of it upon acquiring a new
task, whereas Partial Replay replays [N samples, randomly
sampled from the entire corpus, whenever we acquire a new
task with N samples. The above two replay approaches can be
considered as two variants of GDumBs [65]. Additionally, we
have compared our approach with more constrained ways of
replaying old task data, including Averaged Gradient Episodic
Memory (A-GEM) [66], Experience Replay (ER) [34] and

Task-based Accumulated Gradients (TAG) [67].

For the baseline “None”, the network was incrementally
trained on all tasks in the standard way while always only
using the data from the current task. The implementations for
all of the algorithms are adapted from open source codes [23,
68]; for implementation details, see Appendix C.

B. Core benchmarks

1) CIFAR 10X10: The CIFAR 100 challenge [69], consists
of 50,000 training and 10,000 test samples, each a 32x32 RGB
image of a common object, from one of 100 possible classes,
such as apples and bicycles. CIFAR 10x10 divides these data
into 10 tasks, each with 10 classes [23] (see Appendix F for
details).

SILLy-N and MobEL Zoo demonstrate positive forward
and backward transfer for every task in CIFAR 10x10, in
contrast, other algorithms do not exhibit any positive backward
transfer (Figure 1 first column). Moreover, they retained their
accuracy while improving transfer (Figure 1 first column, first
and fourth rows). PRoGNN had a similar degree of forward
transfer, but zero backward transfer, and requires quadratic
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Fig. 6. Pretrained encoders on CIFAR 10X10. Using pretrained encoders results in better forward transfer and accuracy for STLLy-N.

space and time in sample size, unlike SILLY-N which re-
quires quasilinear space and time.

2) Spoken Digit: In this experiment, we used the Spoken
Digit dataset [70]. As shown in Figure 1 second column,
SILLY-N shows positive backward and forward transfer be-
tween the spoken digit tasks, in contrast to other methods,
some of which show only forward transfer, others show only
backward transfer, with none showing both and some showing
neither. See Appendix F for details of the experiment.

3) FOODIk 50X20 Dataset: In this experiment, we use
Foodlk which is a large scale vision dataset consisting of
1000 food categories from Food2k [71]. FOOD1k 50X20 splits
these data into 50 tasks with 20 classes each. For each class,
we randomly sampled 60 samples per class for training the
models and used rest of the data for testing purpose. Because
on the CIFAR experiments MopEL Zoo performs the best
among the reference resource growing models, and LwF is the
best performing resource constrained algorithm, we only use

them as the reference models for the large scale experiment to
avoid heavy computational cost. As shown in Figure 1 third
column, STLLY-N performs the best among all the algorithms
on this large dataset.

See Appendix F for experiments with datasets having more
samples per task. In lifelong learning, we are often primarily
concerned with situations in which we have a small number
of samples per task. If we have enough samples per task, the
learning agent does not need to transfer knowledge from other
tasks. However, below we also experiment with non-trivial
lifelong learning setting where sample per task is high.

These experiments indicate that SILLY-N has positive
transfer in learning environments with various classes and
sample sizes.

C. Ablation experiments

Our proposed algorithms can improve performance on all
the tasks (past and future) by both growing additional re-
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sources and replaying data from the past tasks. Below we
do two ablation experiments using CIFAR 10X10 to measure
the relative contribution of resource growth and replay to the
performance of our proposed algorithms.

a) Constrained resource experiment: In this experiment,
we ablate the capability of SILLY-N to grow additional
resources after learning 4 encoders. We also reduce the number
of channels and nodes at each encoder layer by four times
to keep the total number of parameters similar to the other
constant-resource-algorithms. As shown in the top row of
Figure 5, S1LLy~-N-4 still shows positive forward and back-
ward transfer with constant resources. However, the accuracy
for SILLY-N-4 gets reduced compared to that of resource
growing S1LLv-N in Figure 1. Note that all the baseline
algorithms have negative backward transfer. This experiment
indicates that constant resource mode operation for STLLY-N
may be advantageous when we have a lot of tasks to learn
and have a decent amount of storage budget available. We
will elaborate the above point later with a large scale dataset
(food1k).

b) Controlled replay experiment: In this experiment, we
train four different versions of SILLy-N sequentially on the
10 tasks from CIFAR 10X10. The only difference between
different versions of the algorithms is the amount of old task
data replayed. In four different versions of each algorithm,
we replay 40%, 60%, 80% and 100% of the old task data
respectively. As apparent from Figure 5 bottom, replaying
old task data has no effect on forward transfer, but replaying
more data improves backward transfer as the number of tasks
increases.

These experiments indicate that (i) constraining the resource
growth results in lower accuracy while still achieves positive
forward and backward transfer for the algorithm, (ii) lowering
the amount of replay lowers backward transfer without any
effect on forward transfer.

c) Experiment using pretrained encoders: We explore
the effect of using pretrained encoders on the performance
of SILLyY-N. For this experiment only, we use RESNET
50 and vision transformer VIT_B16 (provided in keras-vit
package) [72]. We freeze all the layers excluding the final
two linear layers during training. Pretraining the encoders
results in better accuracy and forward transfer, but less back-
ward transfer for S1LLY-N (Figure 6). Vision transformers
achieved lower accuracy, as expected with the small samples
sizes used here [73]. Pretrained network requires less training
epochs for each task (with early stopping). In this experiment,
one forward pass through V1T takes ~ 5 seconds and training
a V1T encoder (20 epochs) takes ~ 4 minutes using an Apple
M1 Max chip and 64 GB of RAM.

D. Adversarial analysis

Consider the same CIFAR 10x10 experiment setup in Sec-
tion VI-B1. In the following experiments, we modify the above
setup in different adversarial settings.

a) Shuffled task order experiment: We repeat the same
experiment mentioned above 5 times more by permuting the
task order. Figure 7 left column shows the mean as well as the

spread of Transfer over all tasks remain the same for different
shuffled task orders. Note that the encoders and thus all the
channels remain the same regardless of the above task order
permutation after all the tasks have been introduced, hence the
distribution of Transfer for all the tasks after all the tasks have
been introduced remain similar.

b) Label shuffle experiment: In this experiment, for Task
2 through 10, randomly permute the class labels within each
task, rendering each of those tasks adversarial with respect
to the first task (because the labels are uninformative). Fig-
ure 7 middle column indicates that SILLy-N show positive
backward transfer even with such label shuffling (the other
algorithms, except MODEL Zoo, did not demonstrate positive
backward transfer).

¢) Rotation experiment: Consider a Rotated CIFAR ex-
periment, which uses only data from the first task, divided
into two subsets of equal size (making two tasks), where the
second subset is rotated by different amounts (Figure 7 right
column). Backward transfer of STLLY~-N is nearly invariant
to rotation angle, whereas the other approaches are much more
sensitive to the rotation angle. Note that the zero rotation angle
corresponds to the two tasks having identical distributions.
The fact that other algorithms fail to transfer even in this
setting suggests that they may never be able to achieve a
positive backward transfer. See Appendix F for an additional
experiment using CIFAR 10X10.

These adversarial experiments indicate that STLLY-N is

robust to adversarial perturbations in the source tasks, while
most of the other algorithms are not.

E. Constant Resource Mode Operation

1) FOODIk 50X20: The binary distinction we made above,
algorithms either build resources or reallocate them, is a false
dichotomy, and biologically unnatural. In biological learning,
systems develop from building to fixed resources, as they
grow from juveniles to adults. To explore this continuum of
amount of resources to grow, we experiment on FOODI1k
50X20 dataset using the constant resource mode operation
of SILLY-N as described in Section IV. We evaluate the
performance of S1LLy-N for different number of encoder
budget. Performance of S1LLy-N saturates after 30 encoders,
though with only 5 encoders, still demonstrates forward and
backward transfer (Figure 8).

2) CORe50 110X5: To further evaluate the effectiveness
of constant resource mode operation, we utilize a large-
scale dataset: CORe50 [74], partitioned into 110 tasks with
5 classes each and 100 training samples per class. To simulate
a resource-constrained environment, we conducted all experi-
ments on an Apple M1 Max chip with 64 GB of RAM. We
set a budget of 20 encoders, as this configuration maintains
high accuracy (above 90%) across all tasks. The fourth row
of Figure 1 shows that STLLY—-N achieves higher Transfer
operating in constant resource mode on a large dataset, that
is, CORe50 compared to the smaller datasets discussed above.
In particular, BackwardTransfer drops to zero after 20 tasks
due to the encoder limit, leaving only ForwardTransfer for
subsequent tasks. Moreover, we cannot run resource-growing
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backward transfer while operating with less parameters compared to other baseline approaches on tabular data.

algorithms like MOoDEL Zoo in this resource-constrained envi-
ronment. The constant resource algorithm, such as LwF, com-
pletely forgets the first several tasks, and the corresponding
task accuracies go as low as the chance level, 20%.

F. ST1LLY-F on tabular data

In this experiment, we experiment with SILLY-F, an
additional realization of our approach using random forests
as encoders (described in Section IV). We flatten the CIFAR
10X10 data and use them as tabular data. We train two other
best performing baseline algorithms, SILLY-N and MODEL
Zoo and use three fully connected hidden layers, each having
2000 nodes, as encoders. As shown in Figure 9, SILLY-F
performs the best among all the approaches. This experiment
shows our approach can be used as a general structure to
do lifelong learning using other machine learning models as
encoder.

VII. DISCUSSION

We introduced representation ensembling as a simple
approach for lifelong learning. Two specific algorithms,
SILLY-N and S1LLY-F, achieve both forward and back-
ward transfer, by leveraging resources learned for other tasks
without undue computational burdens. Our work is well suited
for federated learning scenarios, where each data center inde-
pendently trains a model on its private data and shares only
the encoders with other centers [76]. In this paper, we have
mainly focused on task-aware setting, because it is simpler.
Future work will extend our approach to more challenging
task-unaware settings [75]. Our code, including the code for
reproducing the experiments in this manuscript, is available
from http://proglearn.neurodata.io/.
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APPENDIX

A. Decomposition of Transfer

Transfer can be decomposed into Forward Transfer and
Backward Transfer:

t St
Transfer’(f) = log # (7
E(Up=18")
gL(st EL Uy, SY
S8 Uit

E U1 8") U, 8Y)
—Forward Transfer’(f) 4+ Backward Transfer’(f).
©)

We say that an algorithm f has transferred to task ¢ from all
the tasks up to 7' if and only if

Transfer’(f) > 0. (10)

B. Representation Ensembling Algorithms

1) Model Architecture: In this paper, we proposed two rep-
resentation ensembling algorithms, Simple Lifelong Learning
Networks (S1LLy-N) and Simple Lifelong Learning Forests
(STLLY-F). The two algorithms differ in their details of how
to update encoders and channels, but abstracting a level up they
are both special cases of the same procedure. Let SILLy-X
refer to any possible representation algorithm. Algorithms
1, 2, 3, and 4 provide pseudocode for adding encoders,
updating channels, and doing inference for any S1LLy-X
algorithm.

2) Data Preparation: Whenever the learner gets access to
a new task data, we use Algorithm 1 to train a new encoder
for the corresponding task. We split the data into two portions
— in-task set and held out or out-of-bag set.

3) Training Procedures: In-task set is used to learn the
encoder and the indices of the out-of-bag (OOB) data which
is returned by Algorithm 1 to be used by Algorithm 2 to
learn the channel for the corresponding task. Note that we
push the OOB data through the in-task encoder and the whole
dataset through the cross-task encoders to update the channel,
i.e, learn the posteriors according to the new encoder (see
Algorithm 3). Finally, Algorithm 4 does inference on a new
sample. Given the task identity, we use the corresponding
channel to get the average estimated posterior and predict the
class label as the arg max of the estimated posteriors.
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Algorithm 1 Add a new S1LLY-X encoder for a task. OOB

= out-of-bag.

Require:
(Mt > current task number
(2) D! = (x,y") e R"*P x {1,..., K}" > training data
for task ¢

Ensure:
(1) uy > an encoder trained on task ¢
2) ZHop > a set of the indices of OOB data

1: function STLLY-X.FIT(, (x!,y"))
ut, Ihop + encoder.fit(x’, y*) > train an encoder on
training data partitioned into in-bag and OOB samples
30 return u, I p
4: end function

»

Algorithm 2 Add a new S1LLy-X channel for the current
task.
Require:
(Ht > current task number
QU ={up}t_, > the set of encoders
(3) D!, = (x¢,yt) € R™P x {1,..., K}" > training data
for task ¢
) Thop
current task
Ensure: v > channel for task ¢
1: function S1LLY-X.ADD_CHANNEL(, us, (Xt,¥t): Zoop)
2: vy < up.add_channel((x¢,y:), Z5op) > add the new
in-task channel using OOB data

> a set of the indices of OOB data for the

3: fort' =1,...,t—1do

4: vy <— uypupdate_channel(xs, y¢,v;) © update the
channel for task ¢ using the old encoders

5: end for

6: return vy

7: end function

Algorithm 3 Update S1LLY~-X channel for the previous tasks.

Require:
()t > current task number
2) ug > encoder for the current task
3) D= {Dtl ’;;11 > training data for old tasks

t—1

(CORZES {vt’}t’:l
Ensure: V = {vy },
1: function S1LLY—-X.UPDATE_OLD_CHANNEL(t, us, D, V)

> set of all previous task voters

2: fort =1,...,t —1do

3: Vyr — ut.update_channel(Dt/, Vyr) > update the
old task channels

4: end for

5: return V

6: end function
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Fig. 1. Error bars (interquartile range, i.e., IQR) for each dot in Figure 1 on different vision and speech benchmark datasets. Error bars for different
performance statistics is negligible in comparison with the median performance shown in the main text Figure 1.

TABLE I

Algorithm 4 Predicting a class label using SynX.
Require: HYPERPARAMETERS FOR STLLyY—-N IN CIFAR 10X10, FIVE DATASETS,
(1) ¢ € R? b test dat SPLIT MINI-IMAGENET, FOOD 1K EXPERIMENTS. NOTE THAT WE USE
) & « ident - e; 'alilm THE SAME HYPERPARAMETERS FOR ALL THE EXPERIMENTS.
4 > task 1dentity associated with x
U > set of all ¢ encoders Hyperparameters Value
4) v > channel for task ¢ optimizer Adam
Ensure: § > a predicted class label learning rate _ 3x10~7
1: function §j = SILLY-X.PREDICT(t, &, v;) max_samples (OOB spli 0.67
, - -t n_estimators (decision forest channel) | 20
2: fort' =1,...,t do > get the output & = {@y }i,_,
from all the encoders
3: &y + up.encode(x)
4: end for
5: D < ve.predict_proba(Z) > p is a K;-dimensional
posterior vector TABLE II
N . . . HYPERPARAMETERS FOR SILLY-F IN TABULAR CIFAR 10X10
6: 9 = argmax(p) > find the index of the elements in EXPERIMENTS
the vector p with maximum value
7 return y Hyperparameters Value
8: end function n_estimators 10
max_depth 30
max_samples (OOB split) | 0.67
min_samples_leaf 1
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Fig. 2. Performance summary on vision and audition benchmark datasets using Veniat’s [25]’s statistics. See Figure 1 for caption details. Note that

the results here look nearly identical other than the y-axis labels.
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Fig. 3. Performance of S1LLvy-N on CIFAR 10X10 remains nearly unchanged for different number of decision trees per channel.

C. Reference Algorithm Implementation Details

The same network architecture was used for all baseline
deep learning methods. Following the work in [31], the ‘base
network architecture’ consisted of five convolutional layers
followed by two-fully connected layers each containing 2000
nodes with ReLL.U non-linearities and a softmax output layer.
The convolutional layers had 16, 32, 64, 128 and 254 channels,
they used batch-norm and a ReLU non-linearity, they had a
3x3 kernel, a padding of 1 and a stride of 2 (except the first
layer, which had a stride of 1). This architecture was used

with a multi-headed output layer (i.e., a different output layer
for each task) for all algorithms using a fixed-size network.
For ProgNN and DF-CNN the same architecture was used
for each column introduced for each new task, and in our
S1LLY-N this architecture was used for the transformers wu;
(see above). In these implementations, ProgNN and DF-CNN
have the same architecture for each column introduced for each
task. Among the reference algorithms, EWC, O—EWC, LwF, ST,
Toral REpLAY and PARTIAL REPLAY results were pro-
duced using the repository https://github.com/GMvandeVen/
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progressive-learning-pytorch. For PRoGNN and DF-CNN we
used the code provided in https://github.com/Lifelong-ML/
DF-CNN. For all other reference algorithms, we modified the
code provided by the authors to match the deep net architecture
as mentioned above and used the default hyperparameters
provided in the code.

D. Training Time Complexity Analysis

We use the soft-O notation O to quantify complexity [77].
Letting n be the sample size and 7' be the number of tasks,
we write that the capacity, space or time complexity of a
lifelong learning algorithm is f(n,t) = O(g(n,T)) when |f|
is bounded above asymptotically by a function g of n and 7" up
to a constant factor and polylogarithmic terms. For simplifying

the calculation, we make the following assumptions:

1) Each task has the same number of training samples.

2) Capacity grows linearly with the number of trainable
parameters in the model.

3) The number of epochs is fixed for each task.

4) For the algorithms with dynamically expanding capacity,
we assume the worst case scenario where an equal
amount of capacity is added to the hypothesis with an
additional task.

Assumption 3 enables us to write time complexity as a
function of the sample size. Table I summarizes the capacity,
space and time complexity of several reference algorithms, as
well as our SILLy-N and SILLY-F.

Lifelong learning methods are parametric if they have a
representational capacity which is invariant to sample size and
task number. Although the space complexity of some of these
algorithms grow (because the number of the constraints stored
by the algorithms grows, or they continue to store more data),
their capacity is fixed. Thus, given a sufficiently large number
of tasks with increasing complexity, in general, eventually
all parametric methods will catastrophically forget. EWC [11],
ONLINE EWC [12], ST [14], and LwF [15] are all examples
of parametric lifelong learning algorithms. Our fixed resource
algorithms are also parametric.

Lifelong learning methods are semi-parametric if they have
a representational capacity which grows slower than sample
size. For example, if T is increasing slower than n (e.g.,
T  logn), then algorithms whose capacity is proportional
to T' are semi-parametric. PROGNN [22] is semi-parametric,
nonetheless, its space complexity is @(T2) due to the lateral
connections. Moreover, the time complexity for PROGNN also
scales quadratically with n when n o T'. Thus, an algorithm
that literally stores all the data it has ever seen, and retrains
a fixed size network on all those data with the arrival of
each new task, would have smaller space complexity and the
same time complexity as PROGNN. DF-CNN [23] improves
upon PROGNN by introducing a “knowledge base” with lateral
connections to each new column, thereby avoiding all pairwise
connections. Because these semi-parametric methods have a
fixed representational capacity per task, they will either lack
the representation capacity to perform well given sufficiently
complex tasks, and/or will waste resources for very simple
tasks.

Lifelong learning methods are non-parametric if they have
a representational capacity which grow in proportion to the
number of tasks or data samples. Table I shows the Indian
Buffet Process for Weight Factors (IBP-WF) is a notable non-
parametric approach alongside SILLY-F.

Our proposed approaches, SILLY-N and SILLy-F, as we
will discuss in details in Section IV, eliminate lateral con-
nections between the columns of the network, thus reducing
the complexity of the space to @(T) Moreover, our proposed
approaches can adapt flexibly to any of the three categories
based on the constraints of the application environment, as
illustrated in Table L.

1) Complexity analysis: Consider a lifelong learning envi-
ronment with 7" tasks each with n’ samples, i.e., total training
samples, n = n/T. For all the algorithm with time complexity
O(n), the training time grows linearly with more training
samples. We discuss all other algorithms with non-linear time
complexity below.

a) EWC: Consider the time required to train the weights
for each task in EWC is k.n’ and each task adds additional k;n’
time from the regularization term. Here, k. and k; are both
constants. Therefore, time required to learn all the 7" tasks can
be written as:

ken' + (ken' + k') + -« + (ken' + (T — Dkin/)

T-1
=ken'T + k' Yt

t=1

T[T -1
= kcn/T + klnl%
= ken + 0.5knT — 0.5kn

= @(nT) (11

b) Total Replay: Consider the time to train the model on
n' samples is k.n'. Therefore, time required to learn all the
T tasks can be written as:

ken' + ke(n' +n') + -+ ken'T

—~

I

=k.n t

=10

(T+1)

2
= 0.5k.nT + 0.5k.n

= O(nT)

= k.n'

(12)

c¢) PRoGNN: Consider the time required to train each
column in PROGNN is k.n’ and each lateral connection can
be learned with time k;n’. Therefore, time required to learn
all the T tasks can be written as:
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TABLE III
BENCHMARK DATASET DETAILS.

Experiment Dataset Training samples  Testing samples =~ Dimension
CIFAR 10X10 CIFAR 100 5000 10000 3 x32x 32

CIFAR-10 50000 10000

MNIST 60000 10000
5-dataset SVHN 73257 26032 3 X 32 x 32 (resized)

notMNSIT 16853 1873

Fashion-MNIST 60000 10000
Split Mini-Imagenet ~ Mini-Imagenet 48000 12000 3 x84 x 84
FOOD1k 50X20 Food1k 60000 99682 3 % 50 x 50 (resized)
Spoken Digit Spoken Digit 1650 1350 28 x 28 (processed and resized)

ken' + (ken' + kin') + -+ + (ken' + (T — 1)kn’)
T-1

=k.n'T + kin/ Z t

t=1

T[T -1

=k.n'T + km'%

= ken + 0.5knT — 0.5kn

= O(nT) (13)

E. Simulation Experiment Details

In each simulation, we constructed an environment with two
tasks. For each, we sample 750 times from the first task,
followed by 750 times from the second task. These 1,500
samples comprise the training data. We sample another 1,000
hold out samples to evaluate the algorithms. For SILLY-N,
we have used a deep network (DN) architecture with two
hidden layers each having 10 nodes. Similarly, for STLLy-N
experiments we did 100 repetitions and reported the results
after smoothing it using moving average with a window size
of 5.

Gaussian XOR is two class classification problem with
equal class priors. Conditioned on being in class 0, a sam-
ple is drawn from a mixture of two Gaussians with means
+ [0.5, 0.5] T, and variances proportional to the identity ma-
trix. Conditioned on being in class 1, a sample is drawn from
a mixture of two Gaussians with means + [0.5, —0.5} T, and
variances proportional to the identity matrix. Gaussian XNOR
is the same distribution as Gaussian XOR with the class labels
flipped. Rotated XOR (R-XOR) rotates XOR by 0° degrees.

This simulation setup facilitates the manipulation of task
overlap, allowing for an examination of the transfer proper-
ties of our proposed approach under different levels of task
similarity (see main text).

F. Real Data Extended Experiments and Details

This section contains extended results on algorithms not
shown in the main text (see Appendix Figure 5). FOODI1k
and Mini-Imagenet datasets were obtained from https://
www.kaggle.com/datasets/whitemoon/miniimagenet and https:
/lgithub.com/pranshu28/TAG, respectively.

a) Split Mini-Imagenet: In this experiment, we have used
the Mini-Imagenet dataset [67]. The dataset was split into 20
tasks with 5 classes each. Each task has 2400 training samples
and 600 testing samples. As shown in Figure 5 right column,
we get positive forward and backward transfer for STLLy—N.
However, although samples per task is lower compared to
that of 5-dataset, it is still quite high. Hence, MobEL ZooO
outperforms all the algorithms in this experiment.

b) 5-dataset: In this experiment, we have used 5-dataset
[67]. It consists of 5 tasks from five different datasets: CIFAR-
10 [69], MNIST, SVHN [78], notMNIST [79], Fashion-
MNIST [80]. All the monochromatic images were converted
to RGB format, and then resized to 3 x 32 x 32. As shown
in Appendix Table III, training samples per task in 5-dataset
is relatively higher than that of low data regime typically
considered in lifelong learning setting. However, as shown in
Figure 5 left column, S1LLY~-N show less forgetting than most
of the reference algorithms. On the other hand, MopEL Zoo
shows comparatively better performance in relatively high task
data size setup. Recall that SILLyY-N is based on bagging,
and MoDEL Zoo is based on boosting. It is well known that
boosting often outperforms bagging when sample sizes are
large 2.

c) Overlapping Task Experiment: We considered the
setting where each task is defined by a random sampling of
10 out of 100 classes with replacement in CIFAR 10x10.
This environment is designed to demonstrate the effect of
having overlapping tasks, which is a common property of
real world lifelong learning tasks. Appendix Figure 4 shows
positive transfer from other tasks to Task 1 for STLLyY-F and
SILLY-N.

d) Spoken Digit Experiment Details: In this experi-
ment, we used the Spoken Digit dataset provided in https://
github.com/Jakobovski/free-spoken-digit-dataset. The dataset
contains audio recordings from six different speakers with
50 recordings for each digit per speaker (3000 recordings
in total). The experiment was set up with six tasks where

2 Authors in [81] shows that both bagging and boosting asymptotically
converge to the Bayes optimal solution. However, for finite sample size
and similar model complexity, we empirically find bagging approach to
lifelong learning performs better than that of boosting when the training
sample size is low whereas boosting performs better on large training sample
size (See Figure 1). This is consistent with similar results in single task
learning [43, 82, 83]
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Fig. 4. S1LLY-N and S1iLLy-F transfer knowledge effectively when
tasks share common classes. Each task is a random selection of 10 out
of the 100 CIFAR-100 classes. Both SILLy-F and S1LLvy-N demonstrate
monotonically increasing transfer efficiency for up to 20 tasks.
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Fig. 5. Performance of different lifelong learners on two vision datasets..

each task contains recordings from only one speaker. For
each recording, a spectrogram was extracted using Hanning
windows of duration 16 ms with an overlap of 4 ms between
the adjacent windows. The spectrograms were resized down
to 28 x 28. The extracted spectrograms from eight random
recordings of ‘5’ for six speakers are shown in Figure 6. For
each Monte Carlo repetition of the experiment, spectrograms
extracted for each task were randomly divided into 55% train
and 45% test set. The experiment is summarized in Figure 7.
Note that we could not run the experiment on other 5 reference
algorithms using the code provided by their authors.
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Short-Time Fourier Transform Spectrogram of Number 5

speaker T speaker N speaker L  speaker) speaker G

speaker Y

Fig. 6. Spectrogram extracted from eight different recordings of six speakers
uttering the digit ‘five’.
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Fig. 7. Extended results on the Spoken Digit experiments. This plot contains algorithms not shown in main text Figure 1.



