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ABSTRACT 

 
This paper introduces B-ACE (Beyond Visual Range (BVR) - Air Combat Environment), an open-source simulation framework 
leveraging the Godot game engine to evaluate Multi-Agent Reinforcement Learning (MARL) for military research and 
development. Traditional military simulations are often restricted, limiting research discussions and comparisons among 
different groups. B-ACE addresses this by providing an open, accessible environment that can be easily shared and extended 
within the research community, ensuring reproducibility and flexibility for further studies. Our approach capitalizes on Godot's 
high performance and script-based development, offering a cost-effective and customizable solution for creating air combat 
scenarios. This integration allows rapid prototyping and evaluation of autonomous agent behaviors using existing reinforcement 
learning frameworks. In the developed scenario, agents should learn to engage in BVR Air Combat, defend itself and a position 
against enemy aircraft. Using integration with state-of-the-art MARL algorithms, we explore advanced techniques in 
autonomous agent development within complex Beyond Visual Range (BVR) air combat scenarios. The environment simulates 
key aspects of air combat, including radar detection, weapons engagement, and tactical maneuvers. While not overly realistic,  
B-ACE provides a valuable testbed for prototyping and evaluating AI development approaches. Through three study cases, we 
demonstrate B-ACE's capability to support research in BVR air combat scenarios, including the generation of weapon 
efficiency models, optimizing baseline behaviors, and training agents using MARL. 
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INTRODUCTION 
 
This paper introduces the B-ACE (Beyond Visual Range (BVR) - Air Combat Environment), an open-source 
environment designed to facilitate the experimentation and evaluation of autonomous agents in BVR air combat 
scenarios, focusing on Multi-Agent Reinforcement Learning (MARL) research. The advancement of autonomous air 
combat systems has become a major focus in military research, aiming to enhance the performance of Unmanned 
Combat Aerial Vehicles (UCAVs) in complex environments. To address this, DARPA created the Air Combat 
Evolution (ACE) program to increase trust in combat autonomy. In 2024, ACE successfully conducted in-flight tests 
of AI algorithms, enabling an F-16 to autonomously engage in Within Visual Range (WVR) combat against a human-
piloted aircraft (DARPA, 2023). These advancements are largely related to the progress in Reinforcement Learning 
(RL) algorithms, which allow an AI model to continuously learn from its own errors to achieve desired behaviors 
(Pope et al., 2021). While ACE has been focusing on WVR air combat development for individual aircraft, many 
recent academic works are already exploring more complex scenarios involving multiple agents in both WVR and 
BVR engagements (P. R. Gorton et al., 2024).  
 
BVR air combat, characterized by engagements beyond visual contact, presents distinct challenges where coordinated 
tactical decisions are crucial. These engagements occur in dynamic scenarios with states determined by partial and 
uncertain information from onboard sensors and allies (D. Hu et al., 2021). The complexity of BVR air combat 
necessitates sophisticated AI techniques to enhance learning efficiency, with MARL proving to be a feasible 
alternative (D. Hu et al., 2021; Wang & Wang, 2024). Despite recent advances, MARL research, even for general 
approaches, still faces significant challenges due to a lack of standardization, which limits fair comparisons (Gorsane 
et al., 2022). Additionally, developing MARL-based agents typically requires thousands or even millions of simulation 
runs to achieve reasonable results, making their effectiveness heavily dependent on the capabilities of the simulation 
frameworks. These challenges are further compounded in air combat research, as in many other military scenarios, by 
the reliance on restricted data. This reliance limits reproducibility and makes it difficult to build upon existing 
solutions. In this context, although academic research on UCAV agents has grown significantly in recent years, it is 
often conducted using proprietary governmental platforms or unique solutions (P. R. Gorton et al., 2024) those lack 
standardization, hindering broader collaborations. 
 
B-ACE aims to balance realism and accessibility by providing a simplified yet representative simulation of BVR air 
combat dynamics avoiding the use of restricted military data and focusing on key aspects of the decisions challenges. 
Built on an open-source framework, the environment leverages the high-performance capabilities of this game engine 
and integrates off-the-shelf implementations of the most common MARL algorithms, allowing rapid prototyping for 
researchers using state-of-the-art solutions. The main contributions of B-ACE are as follows: 
 

1. B-ACE is an open BVR air combat simulation, allowing researchers to easily access, modify, and extend the 
environment to suit their research needs. 

2. B-ACE adheres to the Gymnasium and PettingZoo standards, which are widely used in the reinforcement 
learning community to standardize environments for single and multi-agent learning. This adherence ensures 
compatibility with existing MARL frameworks and facilitates the comparison and reproduction of results. 

3. By abstracting away certain complexities and focusing on essential BVR air combat dynamics, B-ACE 
enables rapid prototyping and experimentation of MARL algorithms without compromising the core 
challenges of the domain. 

4. B-ACE demonstrates the capabilities of Godot Engine (Godot Foundation, 2024) as a competitive alternative 
for military simulation research. 
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BACKGROUND AND RELATED WORK 
 
Simulation Environments for BVR Air Combat 
 
The simulation of BVR air combat scenarios has been a crucial aspect of pilot training for several decades and is now 
essential for developing autonomous agents. Recent efforts in Machine Learning (ML) approaches for agent 
development have employed various simulation engines, divided between proprietary platforms and custom solutions 
(P. R. Gorton et al., 2024). Government-owned platforms are commonly chosen due to research support from defense 
institutions, and adapting established air combat training simulations is a straightforward approach. Since these 
simulations are built for real-time training, however, they can be inefficient for ML applications, as training 
autonomous agents often requires thousands or even millions of simulation runs. For instance, the Next Generation 
Threat System (NGTS) is a government-owned synthetic environment generator sustained by the Naval Air Warfare 
Center Aircraft Division (NAWCAD). NGTS serves as the backbone of most Naval Aviation ground-based 
simulators. It has been explored for some ML studies like (Abbott et al., 2010; P. R. Gorton et al., 2023), but presents 
limitations for broader research due to challenges in running multiple simulations. The Advanced Framework for 
Simulation, Integration, and Modeling (AFSIM), a more recent project from the Air Force Research Lab (AFRL), 
offers more flexibility for ML research and has been used to develop air combat agents (Floyd et al., 2017) , but it is 
only accessible to DoD partners. TACSI (Tactical Simulation) is another simulator used as a tactical environment for 
manned simulators at Saab Aerosystems that has been adapted for ML research (Johansson, 2018), however with 
restricted access. 
 
To address the need for higher performance simulations for ML research, many studies rely on custom solutions built 
from scratch or based on existing libraries and development frameworks. JSBSim, for instance, is an open-source 
flight dynamics framework frequently used in air combat research (P. R. Gorton et al., 2024). While it does not address 
combat directly, it offers well-established aerodynamic models for real aircraft such as the F-16. IAGSim leverages 
JSBSim and integrates it with the Unity game engine (Juliani, Berges, et al., 2018) to represent BVR air combat 
scenarios (Qian et al., 2024). This approach has achieved high performance in deep reinforcement learning research, 
yielding promising results (Li et al., 2024; Qian et al., 2024), but the solution is not publicly available. The Mixed 
Reality Simulation Platform (MIXR), an open-source alternative from AFRL, also uses JSBSim and provides some 
off-the-shelf models for BVR combat simulations, though significant development effort is still required for efficient 
utilization in MARL applications. The Aerospace Simulation Environment (Ambiente de Simulação Aeroespacial - 
ASA in Portuguese) project by the Brazilian Air Force (Dantas et al., 2022) leverages MIXR models to create its own 
air combat simulation, supporting many works in air combat research (Dantas et al., 2021; Kuroswiski et al., 2023; 
Lima Filho et al., 2022), but this solution, including the BVR engagements, is also not publicly accessible. Similarly, 
the WUKONG platform has supported several studies exploring MARL for BVR air combat (Li et al., 2024; Qian et 
al., 2024) but remains a proprietary solution. To our knowledge, BVRGym (Scukins et al., 2024) is the only 
environment for BVR engagement simulations that is open to the public, developed specifically for reinforcement 
learning research. BVRGym is the closest solution to our proposed B-ACE, but it aims to support the development of 
low-level control of the aircraft, while we aim to learn at a higher level with multi-agent tactics decision-making.  
 
The B-ACE environment aims to address the limitations of existing solutions, such as restricted accessibility, lack of 
standardization, and the high complexity of simulations, by providing an open and flexible simulation platform 
specifically designed for MARL research in BVR air combat scenarios. It does not aim to replace proprietary solutions, 
which contain much of the organizational doctrine and restricted knowledge, but serves as a lightweight alternative 
for initial research, allowing the evaluation of experimental settings in a simplified manner, exploring innovative 
approaches, and easily comparing previous benchmarks. 
 
Multi-Agent Reinforcement Learning Approach 
 
MARL is a framework in which agents learn to make decisions through interactions with an environment and each 
other. Formally, MARL can be modeled as a Markov Decision Process (MDP), extended to accommodate multiple 
agents. In this setting, the environment is described by a set of states 𝑆, a set of actions 𝐴𝑖 for each agent 𝑖, a state 
transition function P: S × A1 × A2 × …× An → Δ(S), where Δ(𝑆) denotes the probability distribution over states, and 
a reward function 𝑅𝑖: 𝑆 × 𝐴𝑖 → 𝑅 for each agent.  
 



 
 
 

2024 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

I/ITSEC 2024 Paper No. 24464 Page 4 of 14 

In the context of BVR air combat, the application of MARL is particularly challenging. Each aircraft (agent) must 
make decisions based on limited information and learn to cooperate or compete with other agents in a highly dynamic 
and adversarial scenario (D. Hu et al., 2021). The state space includes possible configurations of aircraft positions, 
velocities, weapons, sensors, and other relevant air combat parameters. The action space 𝐴𝑖 includes maneuvers, 
weapon deployment, and other tactical decisions available to each aircraft. The transition function 𝑃 in a BVR scenario 
is influenced by the physics of flight, weapon dynamics, and interactions between different aircraft and sensors 
(Scukins et al., 2024). The reward function 𝑅𝑖 is designed to reflect the mission objectives, such as minimizing risks 
of being hit, maximizing enemy damage, and achieving strategic positions. In a MARL framework, each agent aims 
to learn an optimal policy 𝜋𝑖: 𝑆 → 𝐴𝑖 that collectively maximize their expected cumulative reward. This learning 
process involves exploring different actions and updating policies based on observed shared rewards and state 
transitions. 
 
The BVR air combat problem is both adversarial and cooperative. It is adversarial because active enemies react to the 
agents' behaviors, creating a constantly changing threat landscape. It is cooperative because allied agents need to work 
together, sharing information and coordinating their actions to achieve better results. Agents communicate with each 
other to share their states and detected targets. In real-world scenarios, this communication typically occurs via radio 
transmissions involving human interactions and data sent through datalink. Autonomous agents can enhance the 
utilization of shared data among allies, with MARL studies providing insights into how the amount and frequency of 
data can improve or limit the development of such systems. 
 
The challenges in a BVR scenario, such as balancing adversarial and cooperative dynamics, managing partial 
observability, and ensuring effective coordination among agents, are similar to the common challenges addressed in 
MARL research. This alignment allows researchers to leverage state-of-the-art MARL solutions and lessons learned 
to tackle BVR air combat problems. Developing and comparing MARL applications, however, still face significant 
challenges due to the lack of standardization (Gorsane et al., 2022). To address these challenges and promote MARL 
development, there is a growing trend toward standardization and the use of open-source solutions. OpenAI Gym, 
now rebranded as Gymnasium (Towers et al., 2023), is a protocol designed to standardize the interface between RL 
environments and algorithms, ensuring consistent input and output formats. PettingZoo (Terry et al., 2021) extends 
this concept to multi-agent environments, allowing multiple agents to interact within the same environment. Both 
protocols facilitate the training and evaluation of RL and MARL algorithms by providing a unified structure for 
environment interaction, making it easier to implement, compare, and benchmark different algorithms across a variety 
of tasks. Additionally, BenchMARL (Bettini et al., 2023), Tianshou (Weng et al., 2022), and MARLLib (S. Hu et al., 
2023) are recent alternatives that simplify the development of benchmarks for MARL problems, offering flexible 
implementations of state-of-the-art algorithms. Integrating military research scenarios into these solutions can be an 
efficient way to increase collaboration and advance the field. 
 
 
The Godot Game Engine as a Simulation Framework 
 
With the advances in game engines such as Unity and Unreal, their use for military simulation has become a common 
approach due to their high performance, maturity, and simplified implementation (Goecks et al., 2023). As commercial 
frameworks, however, they bring intrinsic limitations to broadening the academic benefits of research based on these 
solutions. Godot (Godot Foundation, 2024), an open-source alternative, is gaining increasing relevance among game 
developers and has the potential to be a viable alternative for military simulations and serious games. 
 
The selection of the Godot game engine for developing the B-ACE environment is motivated by its open-source 
nature, performance capabilities and ease of use. Godot's open-source nature provides complete access to the source 
code, enabling deep customization, bug fixing, and feature development. This makes it easier to reproduce results, 
reduces costs, and offers flexibility for academic military simulations (Mohd et al., 2023). Godot achieves strong 
performance capabilities comparable to traditional engines like Unity or Unreal. Its optimized scene system and 
lightweight architecture support complex simulations with minimal computational overhead (de la Torre et al., 2024; 
van Rozen, 2023). Although the Godot community is smaller than that of Unity or Unreal, it has shown significant 
growth and potential (Holfeld, 2023). The community-driven development model ensures continuous improvement in 
response to user feedback, making it advantageous for simulation research that benefits from constant enhancements.  
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The Godot engine’s intuitive interface and flexible scripting language (GDScript) facilitate rapid prototyping and 
iteration. Its user-friendly design lowers the barrier to entry for new developers and researchers (van Rozen, 2023). 
Additionally, it supports multiple alternative languages, including C#, VisualScript, and C++, which can enhance 
flexibility and performance. Godot is completely free under the MIT license, allowing unrestricted access, 
modification, and distribution of its source code (Godot Foundation, 2024). This contrasts with commercial engines, 
which impose costs and restrictions, especially for military and government applications. Godot's integration with 
reinforcement learning frameworks, such as the Godot RL Agents (Beeching et al., 2021) enables the development of 
environments and facilitates agent behavior learning using deep reinforcement learning algorithms. This integration 
with Python-based libraries accelerates the development and testing of autonomous agents. These characteristics 
demonstrate how the Godot Engine can be a compelling alternative for military simulation projects and academic 
research. The authors inform that they have no partnership with the Godot project; our endorsement is based solely 
on our experiences and needs in developing a simulation prototype for reinforcement learning.  
 
 
B-ACE ENVIRONMENT 
 
The B-ACE environment is a simulation solution designed to represent BVR Air Combat scenarios, facilitating the 
research and development of autonomous agents for academic and training purposes. We built the B-ACE 
environment using the Godot framework, leveraging Godot-RL (Beeching et al., 2021) to simplify the implementation 
of MARL solutions. This integration allows the use of Python scripts to train and evaluate models for BVR agents' 
behaviors using the standard Gymnasium protocol, ensuring compatibility with PettingZoo and state-of-the-art MARL 
frameworks as BenchMARL, MARLLib and Tianshou (Bettini et al., 2023; S. Hu et al., 2023; Weng et al., 2022). 
 
Model Definitions 
 
The primary objective of the B-ACE environment is to serve as a tool for evaluating MARL solutions aimed at 
developing efficient cooperative behaviors. Our model design prioritizes simplicity while accurately representing 
BVR air combat scenarios to necessitate realistic decision-making processes. Most studies on BVR agents utilize 
highly detailed models for aircraft and sensors, often controlling the fighters at the flight command surfaces (Zhou et 
al., 2023). This level of detail, however, can be excessive and complicate BVR behavior research by requiring the 
model to learn basic aircraft control, which can be effectively managed by established control theories or lower-level 
ML models. In our study, we focus on higher-level decision-making, presuming that basic flight operations are already 
addressed. Therefore, the physical models do not need to be highly detailed; they only need to perform adequately 
when required. For example, executing a 180-degree turn at maximum performance is a typical maneuver in BVR 
combat. If actions control the basic aircraft commands, the policy must first learn to fly the aircraft before executing 
tactical actions. By bypassing this phase and assuming the aircraft can fly in a determined direction while maintaining 
the desired g-force, the policy can concentrate on learning higher-level decisions, which are more relevant to our 
objectives. 
 
Aircraft, Sensors, and Weapons 
 
The fighter aircraft model in the B-ACE environment is implemented using Godot's CharacterBody3D class (Godot 
Foundation, 2024). This model encapsulates general properties and behaviors to simulate air combat dynamics 
relevant to BVR air combat engagement. Key properties include position, rotation, velocity, radar specifications, and 
missile capabilities. Inputs for heading, flight level, and desired G-force govern the aircraft's movements, assuming 
an effective control system to achieve the desired conditions. In the B-ACE simulation, fuel consumption is not 
accounted for, and aircraft operate at maximum available thrust for each altitude, eliminating the need for learning 
engine operation. This simplification is reasonable for specific combat conditions and is considered sufficient to 
evaluate the agents' capability to learn general tactical behavior. We also assume that communication systems are 
always effective, ensuring that agents always receive complete information about their allies. This simplification 
works for initial evaluations; however, as the models evolve, potential limitations in communication systems could 
become a crucial aspect to analyze.  
 
Another factor that influences the pilots’ decisions is how each aircraft's performance is affected by flight altitude. 
For instance, higher altitudes result in decreased air density, which reduces aerodynamic forces. Reduced aerodynamic 
forces can limit available G-force, impacting maneuverability, but can also lead to higher ground speeds due to reduced 
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drag. Jet engine performance can be more efficient at higher altitudes due to cooler temperatures, but may produce 
less thrust because of reduced oxygen availability  (Anderson & Bowden, 2005).  These factors create a complex 
pattern for overall aircraft performance that must be considered when engaging in a BVR air combat scenario. In B-
ACE, we incorporate simplified linear effects of altitude on speed and available G-force. While this approach does 
not necessarily represent a specific aircraft model, it generates conditions that require agents to adapt their decisions 
to simulated altitude-related changes in aircraft performance. 
 
In BVR air combat, the onboard radar's capability to detect enemies is a crucial factor, as it becomes the main reference 
for engagement. Detailed radar simulation can be computationally expensive and dependent on the sensor and target 
characteristics. We simplify the model by defining three main parameters: maximum detection range, horizontal field 
of view, and vertical field of view. These parameters define a volume in front of the aircraft where an enemy would 
be detected. Despite being simplistic compared to real models, this representation captures the essential characteristics 
of the radar and the basic limitations that the agent needs to consider when making decisions. 
 
The primary weapon in BVR air combat is a long-range air-to-air missile, capable of hitting an enemy aircraft from 
dozens of miles away. The missile model, though potentially complex, is simplified to focus on the main 
characteristics that affect decision-making. The key configurable parameters are the maximum time of flight and 
maximum speed, which determine the missile's capability to hit targets at different ranges. The simulated missile 
performance is also influenced by altitude and depends on the aircraft's radar. After launch, the aircraft needs to keep 
tracking the enemy with the radar until the missile can pursue the target independently, defined as 10 nautical miles 
away. In BVR air combat, successful missile operation is highly dependent on the Weapon Engagement Zone (WEZ)   
(Dantas et al., 2021). The WEZ continuously calculates the missile's capability to hit the target given the current state, 
providing crucial information to support the pilot's decision on when to launch the weapon. The WEZ for the default 
model in B-ACE is integrated into the simulation, and agents have access to this information.  
 
For the default configuration in B-ACE, the aircraft has a maximum speed of 650 knots (1203.8 km/h) and can 
withstand a maximum g-force of 9g at 25,000 feet (7620 meters), with performance varying based on the altitude of 
operation, which ranges from 1,000 to 50,000 feet (304.8 to 15,240 meters). The radar has a maximum detection range 
of 50 nautical miles (approximately 92.6 kilometers) and a field of view of 60 degrees both horizontally and vertically. 
The aircraft can carry up to six missiles, each capable of flying for 50 seconds at a maximum speed of 3,600 km/h. 
All models operate with a 20 Hz update rate, which is sufficient given that the simulation does not involve detailed 
low-level physics. Radar and behavior processing are set to 1 Hz, meaning MARL algorithms interact with the 
simulation once every second in simulation time. 
 
State Space 
 
The state space is a critical aspect of the MARL process, as it carries all available information about the scenario for 
the agents when learning and making decisions. In common approaches, the state space variables are the input for AI 
models such as Neural Networks, which should learn the desired policy. The B-ACE environment defines a 
comprehensive state space to provide detailed information about the aircraft, allied units, and tracked enemies. This 
extensive state space is essential for enabling effective decision-making by autonomous agents and allows researchers 
to explore variable possibilities using all or part of it. Table 1 summarizes the various state variables available for the 
simulation. The environment outputs normalized values to simplify data processing in external algorithms, 
maintaining the values within a range of -1.0 to 1.0. 
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Table 1. B-ACE default Space State variables 

 
 
 
Action Space 
 
The action space is the only mechanism that allows agents to interact with entities in the simulation. The policy must 
essentially learn which action to select at every step. The B-ACE environment supports both continuous and discrete 
types of actions, enabling the use of a wider range of MARL algorithms. In the continuous action space, agents provide 
continuous values for heading, flight level, desired g-force, and missile firing. These continuous action inputs allow 
agents to make precise adjustments to the aircraft's heading, altitude, and g-force, as well as to decide the exact moment 
to fire a missile: 
 

1. Heading Input: The desired heading change from the current heading, represented as a continuous input 
value ranging from -180 to 180 degrees, normalized by 180. 

2. Flight Level Input: The desired flight level change from the current level, with the input normalized by 
25,000 feet. 

3. Desired G-Force Input: The desired g-force, determined using a continuous input value, scaled to the range 
between 1g (for -1.0 input) and the maximum g-force capability of the aircraft (for +1.0 input). 

4. Fire Input: An input value of +1.0 indicates the desire to fire a missile, while any other value means no 
action is taken. 

 
The discrete action space is a quantized version of the continuous action space. In this space, continuous values for 
heading, flight level, desired g-force, and missile firing are discretized using predefined conversion tables. These 
tables map discrete input values to specific continuous values, simplifying the action space while maintaining effective 
control. Although this quantization can increase compatibility with certain algorithms, it may limit the agent's 
flexibility depending on the learning strategy and scenario conditions. 
 
Rewards and Penalties 
 
Rewards and penalties provide essential feedback to autonomous agents in a MARL, guiding their learning process. 
Positive values (rewards) reinforce desired behaviors, while negative values (penalties) discourage undesired 
behaviors. The environment outputs these feedback values at each simulation step, helping agents adapt their decisions 
to maximize cumulative rewards while minimizing penalties. The proposed rewards are based on missile operation, 
radar detection, aircraft status, and overall mission accomplishment. While the primary rewards and penalties are tied 
to critical events such as hitting an enemy or completing a mission, we also include shaping feedback rewards to guide 
learning, such as maintaining radar contact with an enemy or stay close to the mission target position. Table 2 
summarizes the feedback factors and their default values. 
 

Aircraft State (5) Allies Info (9) Enemies Info (10)
Aircraft's X position Allied aircraft's X position Altitude difference with tracked enemy
Aircraft's Z position Allied aircraft's Z position Aspect angle to tracked enemy
Aircraft's altitude Allied aircraft's altitude Angle off to tracked enemy
Current heading Allied aircraft's distance to target Distance to tracked enemy
Current speed Allied aircraft's aspect angle to target Tracked enemy's distance to target

Mission / Navigation State (2) Allied aircraft's current heading Own missile RMax against tracked enemy
Distance to target Allied aircraft's current speed Own missile Nez against tracked enemy
Aspect angle to target Allied aircraft's number of missiles Enemy missile RMax against own aircraft

Missile Status (2) Allied in-flight missile status Enemy missile Nez against own aircraft
Number of missiles Tracked enemy detection status
In-flight missile status
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Table 2. Reward and Penalty Factors in B-ACE Environment 

 
 
Scenario Mission 
 
To define the roles of the agents in the simulation, we allow two types of missions: Defensive Counter Air (DCA) and 
Airstrike operations (Joint Chiefs of Staff, 2020). For DCA, the agents need to prevent enemies from reaching a critical 
position. They must learn to keep the enemies away by threatening or neutralizing them while defending themselves. 
In Airstrike operations, the agents must achieve a target position while avoiding enemy aircraft. Although the air 
combat engagement behavior with Airstrike role should be similar to DCA, the primary goal is to advance into the 
field rather than merely holding a defensive position. 
 
In Airstrike missions, the mission is considered accomplished when one aircraft reaches the target position. In contrast, 
for DCA missions, the critical position must remain safe (i.e., no enemy aircraft reaching it) for a specified time 
window or until all enemies are neutralized. For both missions, agents do not necessarily need to hit the enemy, as 
deterring the enemies can also be an effective strategy that reduces the risk of being hit and conserves resources. The 
simulation is limited to 36,000 steps by default, representing 30 minutes in real time, with agents taking actions every 
20 steps (equivalent to 1 second, considering the 20 Hz update rate). 
 
Finite State Machine Baseline Agent 
 
One of the primary goals of B-ACE is to establish a reasonable baseline behavior for evaluating multiple alternative 
solutions. To achieve this, we developed a Finite State Machine (FSM) based solution that enables agents to make 
general expected decisions during BVR air combat. The primary decisions of the B-ACE baseline agent include initial 
defense, last-minute defense, and missile firing moments. By varying these conditions, it is possible to create agents 
with different combat characteristics, balancing offensiveness and defensiveness (Kuroswiski et al., 2023). The agent 
takes into consideration WEZ predictions of missile effectiveness to base its decisions, allowing for more conservative 
or aggressive actions depending on their proximity to critical points (Dantas et al., 2021). Additionally, we created a 
steady baseline agent, referred to as Duck. This agent maintains a steady flight until it reaches its target position or is 
neutralized. The Duck provides an alternative baseline that offers a simpler engagement scenario for initial algorithm 
evaluations. Despite the recent focus on AI-based agents, FSM-based solutions continue to play a crucial role in 
military simulations due to their explainability and simplicity. Using them as a baseline is an effective starting point 
for evaluating AI-based models. 
 
Integration with MARL Standards 
 
For B-ACE, we developed a custom wrapper to enable compatibility between Godot-RL (Beeching et al., 2021) and 
the PettingZoo (Terry et al., 2021) standard. This wrapper facilitates seamless interaction between the Godot 
environment and MARL algorithms, such as BenchMARL (Bettini et al., 2023) and Tianshou (Weng et al., 2022), 
supporting parallel execution of multiple environments and agents for comprehensive algorithm evaluation. By 
adhering to the PettingZoo standard, which is a multi-agent extension of the Gymnasium (Towers et al., 2023), the 
environment provides users with standardized outputs of states and rewards and accepts standardized inputs for actions 
in multi-agent simulations. Although it is not mandatory to interact with agents in B-ACE, following these standards 
offers significant advantages. It increases the possibilities for evaluations and comparisons with state-of-the-art MARL 
solutions, making it easier to integrate and test various algorithms. 
 

Explanation Default Value
Reward for successfully completing a mission 10.00
Shaping reward related to mission objectives 0.001
Penalty for firing a missile -0.100
Shaping penalty for firing when not possible -0.001
Penalty for missing a target with a missile -0.500
Shaping penalty for losing track of an enemy -0.100
Shaping reward for maintaining track of an enemy 0.001
Reward for hitting an enemy 3.000
Penalty for being hit -5.000
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Visualization 
 
As a critical resource to support the verification and validation process, the visualization capabilities of a simulation 
are crucial. As a game engine, Godot natively allows for the straightforward creation of 3D visualizations and visual 
debugging resources to analyze behaviors. Figure 1 (left) illustrates a typical BVR scenario with blue agents learning 
to protect a critical position. As highlighted in the figure, the current visualization includes essential resources to 
observe a BVR engagement, such as the radar detection volume, aircraft flight trails, critical positions, and the 
simulation components themselves. Despite its simplicity, the current B-ACE visualization has proven sufficient for 
initial evaluation. Depending on specific needs, however, additional visual debugging resources can be easily added 
using Godot's tools. This flexibility ensures that visualization can evolve to meet more complex requirements, 
enhancing the analysis to support the MARL research. 
 
Experiment Mode 
 
To simplify the development of additional resources, B-ACE includes an Experiment Mode designed to run multiple 
simulations in parallel. This mode facilitates environment initialization, agent setup, and experiment parameter 
management from external scripts. Key features include configuring the environment with global engine parameters 
such as rendering options, seed, and speedup, along with detailed agent and experiment configurations. This mode 
ensures seamless integration with the Godot engine, enabling efficient base experiments to develop and evaluate 
models before being integrated into the MARL process. Figure 1 (right) presents the visualization of an experiment 
running 10 simulations of a BVR 2x2 Air Combat scenario in parallel using the Experiment Mode. 
 

 
Figure 1. Visualization of BVR 2x2 Air Combat simulations in B-ACE. Snapshot of evaluation in a MARL 
experiment (left). Multiple simulation running in parallel in the Experiment Mode (right). 

PRACTICAL STUDY CASES 
 
The studies presented in this paper serve as a demonstration of the capabilities and possibilities using B-ACE. These 
preliminary studies showcase potential applications and are ongoing research that will be further elaborated and 
evaluated in our future publications. 
 
Study Case 1: Missile Weapon Engagement Zone Determination 
 
The first set of experiments demonstrates the capabilities of the B-ACE simulation environment in supporting analysis 
and model development. A critical aspect of BVR air combat is determining the efficiency of weapons, which guides 
both offensive and defensive maneuvers. This efficiency is encapsulated in the WEZ model, which predicts the 
effectiveness of a missile launch at each combat moment. To refine WEZ model predictions, a possible strategy 
involves running thousands of simulations under varying conditions and using regression algorithms to generate 
accurate predictions (Dantas et al., 2021). In B-ACE's experiment mode, we run parallel simulations starting with 
different distances between the shooter and the enemy. From these results, the maximum effective missile distance is 
determined for multiple conditions. Following the methodology proposed by Cheng et al., 2019, we then generate a 
comprehensive WEZ model based on a fourth-degree polynomial regression. With the WEZ model as a polynomial 
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expression, it is possible to use Godot's built-in text-based equation system to integrate the predictive model into the 
simulation, supporting engagement decisions. Beyond generating the desired information for the agents, analyzing the 
model results also serves as a tool to evaluate whether the simulated missile behaves as expected. Figure 3 exemplifies 
the WEZ model predictions for different altitudes and aspects between the two aircraft. This case study highlights B-
ACE's ability to efficiently run multiple simulations, generating sufficient data to understand and optimize models for 
each study's requirements. 
 

 
Figure 2. Example of the prediction generated by the WEZ model created based on the default B-ACE 

Missile performance, evaluated across different altitudes and aspects among agents. 

Study Case 2: Optimizing FSM Behavior 
 
The FSM baseline behavior in B-ACE aims to serve as a static reference for evaluating evolving agents. Despite its 
simplicity, by adjusting the parameters that define the movement and state changes, it is possible to develop a diverse 
set of agents, ranging from conservative to aggressive. This allows for a variety of baseline enemies, making the 
learning process more challenging for MARL-based agents. To identify a diverse and strong group of baseline agents, 
we employed an evolutionary optimization process to search for the best sets of parameters. Our strategy involves 
running groups of simulations in parallel to evaluate agents against a diverse set of enemies. The goal is to ultimately 
select a group of ten agents that can be considered diverse and robust adversaries. 
 
Initially, we select ten random agents, each representing a unique set of behavioral parameters. We then optimize a 
population of 50 agents based on their performance against this initial enemy’s group. The evaluation score is the 
mean difference between the number of times the agent neutralized the enemy and the number of times it was 
destroyed over 30 simulations. Additionally, every three generations, we update the enemies list by adding the three 
best new agents and removing the three weakest. This approach ensures that the enemies list continually evolved to 
include the strongest agents found, with the expectation that the optimization process will yield increasingly capable 
agents.  Given that BVR engagement is an adversarial scenario, the score value is directly dependent on the selected 
group of enemies. Therefore, agents that perform well initially against the initial random group may not perform as 
well as the enemies evolve. After 100 optimization iterations, we take all enemies selected during the evolutionary 
process to define a group of the possibly best agents. Since this group still large, with 87 unique agents, we apply a 
clustering algorithm to reduce it to the desired group of ten, selecting only the agent with the best score in each cluster.  
 
As an example of the results, the agent with the best score was able to destroy the enemies in 74% of the engagements 
while being hit in 30% of them. Another agent, although less effective in destroying the enemy with an average success 
rate of 35%, was only hit 8% of the time. These two agents demonstrate different characteristics that generate different 
challenges for the adversaries: the more aggressive agent is more effective at destroying enemies but also takes 
significantly more risks, whereas the other agent is more cautious and still manages to be effective in its own way. 
 
The final ten agents become references for future evaluations in B-ACE. This allows for the selection of baseline 
enemies ranging from one to ten. This experiment aims to demonstrate a potential strategy for enhancing the use of 
FSM behaviors to support MARL development. By incorporating diverse agent behaviors, researchers can create more 
challenging and realistic scenarios, ultimately improving the robustness and effectiveness of MARL agents. 
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Study Case 3: Development of Autonomous Agents using Reinforcement Learning 
 
In the third study case, we leverage the integration with the BenchMARL solution to evaluate the development of 
autonomous agents using MARL. We set up a BVR 2x2 scenario, using either a "duck" behavior or a baseline behavior 
for the enemy agents. The objective is to enhance the capabilities of the allied agents to accomplish their DCA mission 
of holding a strategic position. For the training process, we apply the multi-agent versions of Proximal Policy 
Optimization (PPO) as an on-policy alternative and Deep Deterministic Policy Gradient (DDPG) as the off-policy 
alternative, both of which are common choices for these types of problems (P. R. Gorton et al., 2024). The 
BenchMARL framework serves as the foundation for the training process and comparison. 
 
The results in Figure 3 illustrate the mean agents' rewards over the training iterations for scenarios against the Duck 
(left) and Baseline (right) behaviors. The increasing trend in the results demonstrates that the agents are learning to 
avoid being eliminated by enemies and to maintain control of the critical position. Against the Duck behavior, as 
expected, since the enemy does not react, the model is able to learn efficient behaviors to prevent the enemies from 
reaching the critical position. Observing the simulations, it is evident that the agents learn to split up and engage the 
enemies as soon as possible to eliminate them. The reward values close to 16 are expected to represent this, as 
eliminating both enemy agents provides a reward of 6.0, plus an additional 10.0 for mission accomplishment, with 
variations due to penalties and rewards from shaping values. The results against the FSM baseline behavior show how 
the challenge increases, making the problem much more dynamic and resulting in greater fluctuations during training. 
In both cases, PPO achieves higher performance and stability. These tests, however, were initial experiments to 
evaluate the B-ACE infrastructure and are not sufficient to conclusively determine the advantage of PPO without 
further evaluations. 
 

 
Figure 3. Mean Reward for MARL training in a BVR 2x2 Air Combat Scenario using Multi-Agent PPO and 
Multi-Agent DDPG 

 
CONCLUSION 
 
In this paper, we introduced B-ACE, an open-source simulation framework built on the Godot game engine designed 
to support the development and evaluation of autonomous agents using MARL in BVR air combat scenarios. By 
balancing realism and flexibility, B-ACE provides a simplified yet representative simulation of BVR air combat 
dynamics without relying on restricted military data. 
 
The B-ACE environment provides a solution that can be easily modified and extended by researchers. It adheres to 
Gymnasium and PettingZoo standards, ensuring compatibility with existing MARL frameworks and facilitating result 
comparison and reproducibility. By abstracting certain complexities while maintaining core BVR air combat 
challenges, B-ACE enables efficient prototyping and experimentation with MARL algorithms. Additionally, the use 
of the Godot engine demonstrates its suitability for military simulation development. 
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Through practical study cases, we showcase B-ACE's capabilities in supporting model development and optimizing 
agent behaviors. The WEZ experiment highlights the B-ACE's efficiency in running multiple simulations to generate 
comprehensive data for model refinement. The optimization of the FSM baseline behavior provides a stronger 
benchmark for evaluating MARL solutions. Finally, the development of autonomous agents using MARL 
demonstrates the framework's potential in training agents to adapt to various enemy behaviors and mission objectives. 
 
B-ACE advances research in autonomous air combat systems by providing a versatile platform for MARL 
experimentation. Its design supports academic research and serves as a foundation for exploring innovative solutions 
before applying them to practical systems. Future work will focus on further enhancing the environment's flexibility 
and realism by adding new models and details of BVR air combat that can be relevant for the agents' decision-making 
processes.  
 
 
SOURCE CODE 
 
For further insight and access to the source code of this research, please visit our repository at 
https://github.com/andrekuros/B-ACE 
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