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ABSTRACT

In this work, we propose a new efficient solution, which

is a Mamba-based model named BMACE (Bidirectional

Mamba-based network, for Automatic Chord Estimation),

which utilizes selective structured state-space models in a

bidirectional Mamba layer to effectively model temporal

dependencies. Our model achieves high prediction per-

formance comparable to state-of-the-art models, with the

advantage of requiring fewer parameters and lower com-

putational resources.

1. INTRODUCTION AND BACKGROUND

Automatic chord recognition/estimation (ACE) has a long

history in music information retrieval (MIR) research [1].

While the use of modern deep-learning techniques led

to major improvements [2], even the recent state-of-art

approaches still experience a performance ceiling [3–5].

Some challenges in ACE that have been previously iden-

tified are the large number of label permutations [3] and

disagreements between expert annotators [6–9], which is

particularly true for rare chords [8,10]. While transformer-

based models (e.g., [4] excel in capturing the necessary

temporal dependencies for the ACE task, they also in-

troduce significant computational overhead due to their

quadratic complexity with respect to input length.The in-

creased complexity of transformer architectures, combined

with their high memory and processing requirements, lim-

its their usability in low-latency environments, such as

real-time music analysis systems or embedded devices.

Such applications call for a careful balance between model

accuracy and computational efficiency.

In this paper, we evaluate how much improvement and

compactness can be achieved on the ACE task by up-

dating the model architecture, specifically by adding se-

lective structured state-space models in a bidirectional

Mamba layer. Specifically, we introduce BMACE (Bidi-

rectional Mamba-based Network for Automatic Chord Es-

timation), a novel Mamba-based model that incorporates

selective structured state-space models within a bidirec-
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tional Mamba layer to enhance the modeling of temporal

dependencies. Notably, this model achieves performance

comparable to its predecessors while utilizing fewer pa-

rameters, and lower computational costs.

2. BI-DIRECTIONAL MAMBA NETWORK

Inspired by the bidirectional Transformer, we propose a

lightweight bidirectional Mamba-based network specifi-

cally designed for chord estimation/recognition: BMACE

(Bidirectional Mamba-based network for Automatic Chord

Estimation). The Mamba architecture was first introduced

in late 2023 [11] and has been gaining rapid momentum

since its release. It has been applied to some speech

[12–14] and some MIR [15,16] tasks, but not yet for ACE.

Mamba distinguishes itself from other models by eschew-

ing the usual attention and MLP blocks for a more stream-

lined approach. This results in a model that is not only

lighter and faster but also uniquely capable of scaling lin-

early with sequence length, an achievement that sets it

apart from its predecessors. Central to Mamba’s design

are its Selective-State-Spaces (SSM): these are recurrent

models that selectively process information based on the

current input, effectively filtering out irrelevant data to fo-

cus on what is most critical for efficient processing. Ad-

ditionally, Mamba simplifies its architecture by replacing

the complex attention and MLP blocks in Transformers

with a single, unified SSM block, enhancing inference

speed and reducing computational load. Mamba incor-

porates hardware-aware parallelism, using a specially de-

signed parallel algorithm that optimizes recurrent opera-

tions for improved hardware efficiency, potentially boost-

ing performance even further.

Figure 1 shows the three variants of our Mamba-based

model that we experiment with. The first (MACE-V) is

a vanilla Mamba model with two vertical Mamba layers.

The second (MACE-H) is a Mamba model with two con-

catenated/horizontal models. The third is our proposed

model, BMACE, which presents the structure of our bidi-

rectional Mamba network. Bidirectional Mamba blocks

and fully-connected layers are the main modules in the

network. It processes a 10-second audio signal as a Con-

stant Q Transform (CQT) feature. The model integrates a

fully-connected layer into the input, which then proceeds

to two Mamba blocks with opposite masking directions,

represented as dotted boxes in Figure 1. The outputs from

these blocks are concatenated and passed through a fully-



Figure 1. Architecture of Chord Recognition Models with Mamba Block. The diagram illustrates three variants, MACE-

V (A), MACE-H (B), and BMACE (C). Each utilizes the Mamba block for improved feature processing. The Mamba

block employs selective-state-spaces (SSM), SiLU activation, and 1D convolutions (Conv1D) for feature transformation.

The figure highlights forward pass operations, feature reversal, addition, and concatenation mechanisms in the respective

models, with fully connected (FC) layers leading to SoftMax output for chord recognition.

Model
maj-min label type large vocabulary label type

Root↑ Maj-min↑ GFlops↓ Params↓ Root↑ Thirds↑ Triads↑ Sevenths↑ Tetrads↑ Maj-min↑ MIREX↑ GFlops↓ Params↓

CRNN [3] 0.8185 0.7796 0.0957 435,609 0.8026 0.7459 0.6384 0.6426 0.5448 0.7544 0.7543 0.1038 472,874

BTC [4] 0.8202 0.7628 0.6282 2,910,361 0.8051 0.7524 0.6469 0.6506 0.5604 0.7531 0.7486 0.6362 2,929,066

MACE-V 0.7920 0.7309 0.0247 111,161 0.7739 0.715 0.6084 0.6137 0.5242 0.7166 0.7057 0.0328 129,866

MACE-H 0.7898 0.7347 0.0261 114,361 0.7833 0.7211 0.6188 0.6236 0.5314 0.7304 0.7238 0.0422 151,626

BMACE 0.8212 0.7678 0.0261 114,361 0.8043 0.7455 0.6426 0.6526 0.5571 0.7536 0.7595 0.0422 151,626

Table 1. Weighted Chord Symbol Recall (WCSR) scores for the performance of the CRNN [3], BTC [4], and our three

Mamba variants (MACE-V, MACE-H, and BMACE) on the uspop2002 dataset.

connected layer to maintain the input’s original dimen-

sions. We added residual operation in the blocks and layers

to increase the information entropy.

3. EXPERIMENT

3.1 Experiment Setting

Our models are implemented with Pytorch [17] frame-

work. All experiments are conducted on the instance node

at Lambda 1 that has a single NVIDIA RTX A6000 GPU

(24 GB), 14vCPUs, 46 GiB RAM and 512 GiB SSD. Our

model was trained and validated on the MARL annota-

tions 2 of uspop2002 dataset [18]. Each 10-second audio

signal was processed with a 5-second overlap between con-

secutive signals. The signals were sampled at 22,050 Hz

and analyzed using a Constant Q Transform (CQT) that

covered 6 octaves starting from C1, with 24 bins per octave

and a hop size of 2048. The CQT features were then con-

verted to log amplitude using the formula Slog = ln(S+ ϵ)
, where S represents the CQT feature, and ϵ is an extremely

small number. This was followed by the application of

1 https://cloud.lambdalabs.com/instances
2 https://github.com/tmc323/Chord-Annotations

global z-normalization, using the mean and variance de-

rived from the training data.

We evaluate the three versions of our model described

in Section 2 (MACE-V, MACE-H, and BMACE) against

state of the art CRNN-based [3] and transformer-based [4]

models on the 25-label maj-min and the 170-label large

chord vocabularies.

3.2 Results

Table 1 presents the model validation results. BMACE per-

forms slightly better on some label types than the CRNN

and BTC models, though the difference is not likely to

be statistically significant. However, there is a notable

improvement over the non-bidirectional Mamba models

(MACE-V and MACE-H). The most significant differ-

ences are in the size and processing requirements of the

various models, as shown in Table 1. As previously ob-

served, CRNNs are more efficient than transformer-based

models, and the claim that Mamba networks are also more

efficient holds true. All Mamba-based models use only

1/25th of the parameters of the transformer-based BTC

model and are slightly less than 1/3 smaller than CRNN.

This reduction in the number of parameters is reflected in

the lower GFlops required to run the model.
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