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Abstract

We propose a novel statistical inference framework for streaming principal component analy-
sis (PCA) using Oja’s algorithm, enabling the construction of confidence intervals for individual
entries of the estimated eigenvector. Most existing works on streaming PCA focus on provid-
ing sharp sin-squared error guarantees. Recently, there has been some interest in uncertainty
quantification for the sin-squared error. However, uncertainty quantification or sharp error
guarantees for entries of the estimated eigenvector in the streaming setting remains largely un-
explored. We derive a sharp Bernstein-type concentration bound for elements of the estimated
vector matching the optimal error rate up to logarithmic factors. We also establish a Central
Limit Theorem for a suitably centered and scaled subset of the entries. To efficiently estimate
the coordinate-wise variance, we introduce a provably consistent subsampling algorithm that
leverages the median-of-means approach, empirically achieving similar accuracy to multiplier
bootstrap methods while being significantly more computationally efficient. Numerical experi-
ments demonstrate its effectiveness in providing reliable uncertainty estimates with a fraction
of the computational cost of existing methods.

1 Introduction

Principal Component Analysis (PCA) [Pearson, 1901, Ziegel, 2003| is a cornerstone for statistical
data analysis and visualization. Given a dataset {X;}!";, where each X; € R¢ is independently
drawn from a distribution P with mean zero and covariance matrix >, PCA computes the eigenvector
v1 of X that corresponds to the largest eigenvalue A1, and is the direction that explains the most
variance in the data. It has been established [Wedin, 1972, Jain et al., 2016, Vershynin, 2012 that
the leading eigenvector v of the empirical covariance matrix 3= % Yoy Xz-Xl-T is a nearly optimal
estimator of v; under suitable assumptions on the data distribution.

While theoretically appealing, computing the empirical covariance matrix by explicitly requires O(d?)
time and space, which is expensive in high-dimensional settings when both the sample size and the
dimension are large. Oja’s algorithm [Oja and Karhunen, 1985]— a streaming algorithm inspired
by Hebbian learning [Hebb, 2005]— has emerged as an efficient and scalable algorithm for PCA. It
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maintains a running estimate of v; similar to a projected stochastic gradient descent (SGD) update

»
i i1+ Xi(X ] uic1), w1 (1)
il
for ¢ € [n], where ug is a random unit vector and 7, > 0 is the learning rate. The algorithm is
single-pass, runs in time O(nd), and takes only O(d) space. We call the output u, of the above
algorithm an Oja vector vgj,.

Oja’s algorithm has fueled significant research in theoretical statistics, applied mathematics, and
computer science [Jain et al., 2016, Allen-Zhu and Li, 2017, Chen et al., 2018, Yang et al., 2018,
Henriksen and Ward, 2019, Price and Xun, 2024, Lunde et al., 2021, Monnez, 2022, Huang et al.,
2021, Kumar and Sarkar, 2024a,b]. Despite the plethora of work on sharp rates for the sin-squared
error sin? (Vojas v1) == 1 — (vaoja)2, entrywise uncertainty estimation for streaming PCA has re-
ceived only limited attention. Since the update rule in Oja’s algorithm is similar to a broad class
of important non-convex problems, uncertainty estimation for Oja’s algorithm has potential impli-
cations for matrix sensing [Jain et al., 2013|, matrix completion [Jain et al., 2013, Keshavan et al.,
2010], subspace estimation [Balzano, 2022], and subspace tracking [Balzano et al., 2010]. A notable
exception is Lunde et al. [2021], who show that sin? (veja, v1) := 1 — (v] voja)? behaves asymptotically
like a high-dimensional weighted chi-squared random variable. A main ingredient in their analysis
is the Hoeffding decomposition of the matrix product B,,. Their method takes O(bnd) time and
O(bd) space, where b is the number of bootstrap replicas. While Lunde et al. [2021] do uncertainty

estimation of the sin? error, we are interested in coordinate-wise uncertainty estimation.

In contrast, in offline eigenvector analysis, there has been a surge of interest for two-to-infinity
(l2—,00) error bounds for empirical eigenvectors and singular vectors of random matrices [Eldridge
et al., 2018, Mao et al., 2021, Abbe et al., 2020, Cape et al., 2019a, Abbe et al., 2022, Cape et al.,
2019b]. However, none of these apply directly to the matrix product structure that arises from the
Oja update in Eq (1). Recent advances on the concentration of matrix products [Huang et al., 2022,
Kathuria et al., 2020] only provide operator norm or the ¢, moment of the Schatten norm of the
deviation of a matrix product and do not provide non-trivial guarantees on the coordinates.

Our contributions:
In this paper, we obtain finite sample and high probability deviation bounds for elements of vo;s.

1. We show that the deviation of the elements of v, is governed by a suitably defined limiting
covariance matrix V. Furthermore, for a subset K of [d] of interest, the distribution of the coordinate
Uoja(k), when suitably centered and rescaled, is asymptotically normal with variance V.

2. We provide a sharp Bernstein-type concentration bound to show that uniformly over entries of

Voja, V k € [d],
e (veja = (7 veja)uy)] = O (\/ "n) . )

‘=Toja

where ej, denotes the k'™ standard basis vector. This is a surprising and sharp result because it
can be used (see Lemma 8) to recover the optimal sin? error up to logarithmic factors with high
probability.



3. We provide an algorithm that couples a subsampling-based O(nd) time and O(dlog(d/d)) space
algorithm with Median of Means [Nemirovskij and Yudin, 1983] to estimate the marginal variances
of the elements of 745 := vVgja — (v{voja)vl. Theorem 2 provides high-probability error bounds of
our variance estimator uniformly over Vk € [d].

4. We present numerical experiments on synthetic and real-world data to show the empirical per-
formance of our algorithm and also compare it to the multiplier bootstrap algorithm in Lunde et al.
[2021] to show that our estimator achieves similar accuracy in significantly less time.

The paper is organized as follows: Section 1.1 discusses related work on streaming PCA, entrywise
error bounds on eigenvectors, and statistical inference for Stochastic Gradient Descent. Section 2
provides our problem setup, assumptions, and necessary preliminaries. Section 3 provides our main
results regarding entrywise concentration, CLT and our variance estimation algorithm, Algorithm 1.
We provide proof sketches in Section 4 and experiments in Section 5.

1.1 Related Work

Streaming PCA. A crucial measure of performance for Oja’s algorithm is the sin? error, which

quantifies the discrepancy between the estimated direction and the principal eigenvector of ¥ (the
true population eigenvector, v1) and the Oja vector, voja. Notably, several studies [Jain et al., 2016,
Allen-Zhu and Li, 2017, Huang et al., 2021] have shown that Oja’s algorithm attains the same error
as its offline counterpart, which computes the leading eigenvector of the empirical covariance matrix
directly. More concretely, it has been shown that for an appropriately defined variance parameter
V (equation (3)),

v
. 9 L T 2 __
sin”(v1, voja) := 1 — (v} Voja)” = O (Tl(/\1—)\2)2> .

£ error bounds. There is an extensive body of research on eigenvector perturbations of matrices.
Most traditional bounds [Davis and Kahan, 1970, Wedin, 1972, Stewart and Sun, 1990| measure error
using the f5 norm or other unitarily invariant norms. However, for machine learning and statistics
applications, element-wise error bounds provide a better idea about the error in the estimated
projection of a feature in a given direction. This area has recently gained traction for random
matrices. Eldridge et al. [2018], Abbe et al. [2020], Cape et al. [2019a], Abbe et al. [2022]| provide
ls_, 0 bounds for eigenvectors and singular vectors of random matrices with low-rank structure. Cape
et al. [2019a] show an f5_,+, norm for the error of the singular vectors of a covariance matrix formed
by n i.i.d. Gaussian vectors; as long as A1 — Ao > 0 and wv; satisfies certain incoherence conditions,
there exists a w € {—1,1} such that with probability 1 — d~2, the top eigenvector #; of the sample
covariance matrix satisfies, up to logarithmic factors,

Tr(Z) /M <max“/27i+x2> L TE) /N < L, >\2>

o1 — wit]loo S

n VA1 A1 Vd A1

The guarantees of Cape et al. [2019a] are offline and provide a common upper bound on all coordi-
nates. Our algorithm has error guarantees that scale with the variances of the coordinates.

Uncertainty estimation for SGD. For convex loss functions, the foundational work of Polyak and
Juditsky [1992], Ruppert [1988], Bather [1989] in Stochastic Gradient Descent (SGD) demonstrates



that averaged SGD iterates are asymptotically Gaussian. A significant body of research has focused
on the convex setting. These include notable works on covariance matrix estimation [Li et al.,
2018, Su and Zhu, 2018, Fang et al., 2018, Chen et al., 2020, Lee et al., 2022, Zhu et al., 2023].
In comparison, work on uncertainty estimation for nonconvex loss functions is relatively few [Yu
et al., 2021, Zhong et al., 2023]. Yu et al. [2021] establishes a Central Limit Theorem (CLT) under
relaxations of strong convexity assumptions. Zhong et al. [2023] weakens the conditions but relies
on online multiplier bootstrap methods to estimate the asymptotic covariance matrix. Existing
methods for estimating and storing the full covariance matrix suffer from numerical instability or
slow convergence rates (see Chee et al. [2023]). For convex functions and their relaxations, Zhu
et al. [2024], Carter and Kuchibhotla [2025] present computationally efficient uncertainty estimation
approaches that are related but different from ours.

In large-scale, high-dimensional problems, maintaining numerous bootstrap replicas is computation-
ally expensive. Chee et al. [2023] introduce a scalable method for confidence intervals around SGD
iterates, which are informative yet conservative under regularity conditions such as strong convexity
at the optima. In their setting, for an appropriate initial learning rate, the covariance matrix can
be approximated by a constant multiple of identity (see also Ljung et al. [1992]). In our setting,
such an approximation requires knowledge of all eigenvalues and eigenvectors of .. The work most
relevant to ours is by Lunde et al. [2021]. They provide asymptotic distributions for the sin? error of
the Oja vector and an online multiplier bootstrap algorithm to estimate the underlying distribution.

Resampling Methods and Bootstrapping. Nonparametric bootstrap [Efron, 1979, Hall, 1992,
Efron and Tibshirani, 1993| is a resampling method where b resamples of a given size n dataset
are drawn with replacement and treated as b independent samples drawn from the underlying
distribution. Of these varieties of bootstraps, the one widely used in SGD inference is the online
multiplier bootstrap, where multiple bootstrap resamples are updated in a streaming manner by
sampling multiplier random variables to emulate the inherent uncertainty in the data [Ramprasad
et al., 2023, Zhong et al., 2023, Lunde et al., 2021].

A major concern about the bootstrap is its computational bottleneck. Maintaining many bootstrap
replicates is computationally prohibitive if the number of data points n and the dimension d are large.
Some computationally cheaper alternatives to bootstrap are subsampling [Politis et al., 1999, Politis,
2023, Bertail et al., 1999, Levina and Priesemann, 2017, Chaudhuri et al., 2024, Chua et al., 2024]
and m-out-of-n bootstrap |Bickel et al., 1997, Bickel and Sakov, 2008, Sakov, 1998, Andrews and
Guggenberger, 2010] both of which rely on drawing o(n) with-replacement samples. These methods
are used in Kleiner et al. [2014] to create n with-replacement samples from smaller subsamples, but
require multiple bootstrap replicates and are not directly applicable to the streaming setting.

2 Problem Setup and Preliminaries

Notation. Let [n] = {1,...,n} for all positive integers n. For a vector v, ||v|| = ||v||2 denotes its lo
norm. For a matrix A, [|A[| = [|A[|,, is the operator norm, [|Al|p is the Frobenius norm, and [|A[|,, is
the Schatten p-norm of A, which is the £, norm of the vector of singular values of A. We define the
two-to-infinity norm [|Afly,_ := sup|g|,=1 [[Az|| - For a random matrix M and p,q > 1, we define

the norm [[M]l, , :== [E[HMHZ]U‘J. Let I € R™? be the identity matrix with i*" column e;. Define
the inner product of matrices as (A, B) = Tr(ATB). We use O and € for bounds up to logarithmic



factors and use a < b to mean a < Cb for some universal constant C. diag (a1, ...,aq) denotes the
diagonal matrix with entries ay,...,aq. For a vector v € R? and S C [d] with |S| = k, v[S] € R is
the “sub-vector” of v with its coordinates indexed by S.

Data. Let {X;},c[, be independent and identically distributed (i.i.d. ) mean-zero vectors sampled

from the distribution P over R? with covariance matrix ¥ := E [X,-XiT } Let A; = XiXi—r . Let
v1, V2, . ..,vq denote the eigenvectors of ¥ with corresponding eigenvalues Ay > Ao > ... > A\;. Let
V9= [1)2,1)3, e ,Ud] € Réx(d=1),

We operate under the following assumptions unless otherwise specified.

Assumption 1. For any X; ~ P, A; = XiXZ-T, we assume the following moment bounds, where

VYV < Mgy < My:

( E [(A,» - 2)2} <y (3)
op
1 1
2 4
E[l4-,) " s Mo E[JAi— 205 ] " < Mo (4)
Assumption 2. There exists a universal constant k > 5 such that d = o(n") and logTEn) >
KQMglog(d)}
2max {/1, S

Assumption 1 provides a suitable moment bound on the iterates A;, and Assumption 2 shows that
we can handle the dimension d growing polynomially with the sample size n, while requiring a mild
base number of samples for convergence. We note that the constraint x > 5 is arbitrary and our
algorithm works as long as d = poly(n). These assumptions are commonly used in the streaming
PCA literature (see for e.g. Jain et al. [2016]).

Oja’s Algorithm with constant learning rate. With a constant learning rate, n,, and initial
vector, ug, Oja’s algorithm [Oja, 1982| (denoted as Oja ({Xt}te[n] sy uo)) performs the updates in
Eq (1). Define Vt € [n],

t—1

By =] (T +mXiiXl;);  Bo=1 (5)
=0

such that u; = Byug/ || Bruo||s-

3 Main Results

Recall the definition of Oja’s algorithm with a constant learning rate, as defined in Section 2. For
iid. data D, := {Xi; X, € [Rd}z.e[n]7 the learning rate n,, defined in Lemma 9, and a random initial
vector ug := g/ ||g|| where g ~ N(0,1,), define the Oja vector

Uoja(Dn) = Oja(Dnann,UO)' (6)

This is a random vector, with randomness over the data D,, as well as the initial vector ug. While
there are a myriad of works on the sin-squared error 1 — (v{voja)z, there is, to our knowledge, no



existing analysis on the concentration of the elements of the recovered vector around their population
counterparts. One exception is [Kumar and Sarkar, 2024b|, who showed that for sparse PCA, the
elements of the Oja vector in the support of the true eigenvector are large, whereas those outside are
small. However, these guarantees do not show concentration in our setting. We start our analysis
with the Hoeffding decomposition of the matrix product (also see Lunde et al. [2021], van der Vaart
[2000]). The Hoeffding decomposition is a powerful tool that allows one to write the residual of the
Oja vector as

Toja = Uoja — (v]—voja> v1 = ¥, 1 + Res, (7)

where W, 1 is 7, times a sum of independent but non-identically distributed random vectors and
the residual Res,, is negligible compared to ¥, ; (see Lemma 2 for details).

First, we show that the covariance matrix E[U,, ; \Ifgl] of the dominant term in the residual converges
to ¥V when suitably scaled. Later, in Proposition 1 we will show that the distribution of the entries
of roja is asymptotically normal with covariance matrix E[W,, ; \11271]/(% (A — A2)).

Lemma 1 (Asymptotic variance). Let
M=E [Vf (A — Z)vrof (A - ) VL],

A1 — )\k+1>
dp =1— | —————— | np.
" ( 1 + nn)\l K

Then, the matriz R™ e RE-D*=1) with entries

m _ My 1 — (ddy)"
RET A4 naM)? 1 —dedy )

satisfies £ [\Iln,l\lfll] =2V, RV

Define the matrices Ry € RU=D*E=1) gnd v e RIXd g

R = V= —V  RyVi. 8
(Rojrs = o3 I e N, VL (8)
then,
1 A\ M2
— 1w,y g MM (9)
N (A1 — A2) ’ Fo(A1—=A)

This shows that suitably scaled, [E[\Ifml\l'z’l] converges to the matrix V. Note that the scaling factor
M (A1 — A2) = % is independent of model parameters for the choice of 7, defined in Lemma 9.
The next result establishes a Central Limit Theorem (CLT') for the subset of elements in the residual
vector 7,4, with sufficiently large limiting variance.

Proposition 1 (CLT for a suitable subset of entries). Let {X;}" ; be independent mean-zero random

vectors with covariance matrix 3 such that [E[exp(vTXl)] < exp("%ﬁm) for allv e R and o > 0
15 some constant.



For alli € [n], let
__sign (vf—uo)
T (1 + nn/\l)

Let b > 0 be a constant, and let J C [d] be the set of coordinates with Vj; > b. Let p :=|J|.

VATV (4 - D),

Let Y; € RP be independent mean-zero Gaussian vectors with covariance matrix

n
E[V;Y,"] = —" E[H,[J)H, (],
A1 — A2
and let Sy := Y1 | Y;. Suppose the learning rate 1y, set according to Lemma 9, satisfies (/;’@A;n)g <
1—A2

b. Then,

roialJ] Sy ‘ - ( My )1/3 . My \V?
P(—222 __cA)-P(Z=ec4)|=0 64 = 8,
(o ) -r(Srea) o () e (325)

where A" is the collection of all hyperrectangles in RP, i.e, sets of the form A = {ueRP:q; <
uj < by forj =1,...,p} and each a; and bj belongs to R U {—o00,00}. Here, O hides logarithmic
factors in n, d, and polynomial factors in b and in model parameters A1, \; — Aa, Mo, My.

sup
AeAre

Remark 1. Note that the first n= /6 term in the convergence rate arises from the high-dimensional
CLT result by Chernozhukov et al. [2017a] applied to ¥y, 1. The main bottleneck is the n=1/% term,
resulting from the higher-order terms of the Hoeffding decomposition (Res, in equation 7). We note
that the second term may be tightened by using better concentration bounds. We point the reader to
Proposition 2 in the Appendiz for a complete statement and proof.

Proposition 1 establishes a Gaussian approximation of suitably scaled roj[J], where J is a set
of elements with large enough asymptotic variance. Our proof uses results from Chernozhukov
et al. [2017b] on the Hajek projection (7) and bounds the effect of the remainder term by using
Nazarov’s Lemma [Nazarov, 2003| (Theorem 4). We use this to derive concentration bounds for all
coordinates. The lower bound on the variance is crucial and comes from Nazarov’s inequality. It
is also a condition of the results in Chernozhukov et al. [2017b|. A simple observation here is that
when by, is zero, i.e. v1(k) = 1, then Vi = 0. Here, CLT may not hold since the Hajek projection is
zero, and the perturbation arises from some of the smaller error terms in the error decomposition.

Theorem 1. Let the learning rate n, be set according to Lemma 9. Further, for X; ~ P, A; =
X, X[, let ||A; — Z‘HOP < M almost surely. Then, for by := HE;VL with probability at least 3/4,
uniformly for oll k € [d],

>+

.
; 1
—‘ek roi| SV Viklog (d) 4+ Cbyyf oen
V1 (A1 — A2) n

where V is defined in Eq 8, and C is a constant that depends on A1, A1 — Ao, Ma, and M.

Remark 2. The limiting marginal variances Vi also appear in the finite-sample bound for the
elements of the residual vector. Estimating these variances enables us to quantify the uncertainty
associated with each component of U1, even when the sample size is finite.

In Appendix C, we provide a complete result with arbitrary failure probability ¢ in Lemma 30. The
above guarantee can be boosted to a high probability one using geometric aggregation (see e.g. Alg.
3 in Kumar and Sarkar [2024D]).



3.1 Uncertainty estimation

Proposition 1 shows that the asymptotic variance of elements of the residual rj,(7) is governed by
the variance of the entries [E[(eiT\I'n’l)g] of ¥, 1. We cannot directly get to ¥,, 1 since we only observe
Uoja- If we could estimate 755, it would give us an idea of the error. However, we do not know w1,
and so cannot directly access roja. We alleviate this difficulty by using the following high-accuracy
estimate ¥ of vy constructed using N samples:

7 < Oja(Dn, up), (10)
where N satisfies the bounds of Theorem 2. The vector satisfies the bound

Clog (1) log (N/log (%)) M3
N(A — A2)?

sin? (7, v1) <

with probability at least 1 —J. Such an estimator can be constructed by splitting the IV samples into
© (log(1/0)) batches of roughly equal size, running Oja’s algorithm on each batch, and aggregating
them by geometric aggregation.

Algorithm 1 takes as input the data {X; € [Rd}l-e[n], a failure probability ¢, and the proxy unit
vector 9. The n samples are split into m; batches with n/m; samples each. Then, the ¢** batch of
n/my samples is further split into mg batches of size B := n/(mim2) each. Oja vectors {0y ; }je[m2]
are computed on each of these my batches, and the variance of the k" coordinate is estimated as

el (00, — (07 00,)0))*
6-]%72 — Z (k; ( 4,j TrE Zv]) )) ) (11)
J€[me] 2

Algorithm 1 OjaVarEst({Xi € [Rd}ie[n]a 6,0, M — )\2)

1: Input: Data D,, := {X; € [Rd}ie[n}, failure probability § € (0, 1), unit vector 0, eigengap A1 — Ao
2: Output: Estimates {Yi}yerq of {Vir}rej

3: my < 8log(d/§), ma < logn, B < n/(mims).
4: for £ € [my] do

5: for j € [ms] do

6: Dyj < {XB(m2(€—1)+(j—1))+t}te[B]

T g<—N(07[)7 u<—g/||g||2

8: 'ﬁ&j — Oja (D&j, nB, U())

9: end for

10: for k € [d] do

11. 5’?7k - Zje[mg](ez(f’:;j;(ﬁTﬁ&j)ﬁ))Q

12: end for

13: end for

14: for k € [d] do

15 4 < Median <{agk}
16: end for
17: return {Yi}pcpq

> /nB(A1 — A2)

€€[m1]




We will show that with a constant success probability, &,% ¢ is close to the true variance of the
corresponding coordinate. This is essentially the variance of a smaller dataset with scale np. To
obtain a bound over all coordinates with an arbitrary failure probability, we take a median of the
m1 variances.

For the final estimate of the diagonal elements Vi of V, the median is scaled by np (A1 — A2).
In Theorem 2, we show that 45 concentrates around Vy (see (14)). For elements with large Vy,
appropriate sample size N and batch size B, Theorem 2 also provides multiplicative error guarantees
for the variance estimate (see (15)).

Remark 3. We are using an estimate of E[(elW,,1)?] to provide the confidence interval around
01(k). Algorithm 1 requires an estimate U of vy for computing the estimates (T?k i Line 11, which
s assumed to satisfy equation 10. For large N, this error of approximating vy 6y v 1s small. In our
experiments, we choose N = n and obtain v by running the algorithm on the entire data.

Theorem 2. Let K be the set of indices in [d] that satisfy

=0 (B/ck) and (12)
() G+ () GR)
B=Q — + (= — ) + =, 13
(<Ck )\1 — )\2 Cl MQ CZ ()\1 — )\2) ( )
E[(efp,1)?
where by = HeEVJ_ , Cp = \/ [( knBB’l) ] ’\5\23)‘2, and B, N are respectively the batch size and the

number of samples used for the proxy estimate v in Algorithm 1.

Then, with probability at least 1 — 6, the output {%}ke[d] of Algorithm 1 satisfies

Vi B 1
Ve — Vik| S —= + O < Bl/2> Vk € [d], and (14)
kk’

< m
= Vaul S % k€ (K] (15)

Remark 4. The output of Algorithm 1 rescales the median of the variances by ng (A — \2) = %,
This is consistent with the entrywise concentration bounds in Theorem 1 (which shows that the error
in the j entry is \/mn (A1 — A2) Vi, up to logarithmic terms) for a sufficiently large sample size
and with Proposition 1 and Lemma 1 (which show that the limiting variance of suitable entries of

Toja 18 M (A1 — A2) Vig ).

Remark 5. Theorem 1 provides bounds about entries of the leading eigenvector. We believe our
techniques can be generalized to provide uncertainty estimates for entries of top-k eigenvectors using
deflation-based approaches (see e.g Jambulapati et al. [2024]).

Equation (14) holds for all k € [d]. In the Appendix (see Remark 7) we show that for the choice of

B and N in Theorem 2, the higher order terms are indeed o (ﬁ) Moreover, for any coordinate

k for which equations (12) and (13) hold, the lower order terms of equation (14) are O(Vgg/v/m).
This implies an O(1/+/logn)-multiplicative guarantee on the error of 44 like equation (15).



4 Proof Techniques

Let voja ~ Oja (Dy j, M, up) for uniform unit vector uy and ¥ defined as in equation (10). Proposition

A.1 in Lunde et al. [2021] shows that B, defined in (5), can be written as

n
Bn = Z Tn,ku
k=0

where

n
To g = Z HMS,n+1—ia and

SCInl|s|=k i=1

(XX -%) ifies,
ST\ IS ifid S

(16)

(17)

(18)

The term 7}, is called the Hajek projection of the random variable B,, on the random variables
Xi1,...,X,. T, is the best approximation to B,, among the estimators that can be written as the

sum of independent random vectors and satisfy certain integrability conditions. Moreover,

e T, and T, ; are uncorrelated for all £ # j, and

e the summands in T}, j, are also pairwise uncorrelated.

We exploit this structure of the Hoeffding decomposition to decompose the residual vector 7;a.

Lemma 2. [Error Decomposition of voja| Let voja, 0 be defined as in (6) and (10) respectively. Then,

Voja — ('DT'Uoja)f} = \Ijn,O + \Ijn,l + \I’n,Q + ‘I/n,?; + \I/n,4a

where

U, 0= (v]—voja)vl — (17Tvoja)17,

VLV, qvisign(v] ug)

U=
! (L + A"
N Vivj(Zkzz Ty 1. )visign(v] uo)
n,2 ‘— (1 T Un)\l)n )
1 1
U,3:=V, VB - :
3 LTt <||BnUO||2 v uo| (1 +77>\1)”>
ViV I B,V V| ug
\I/n,4 —

ol ue| (T mA)n

(19)

(20)

We bound the variance of each of these terms separately. The dominating term W¥,, ; corresponding

to the Hajek projection T;, 1 has the largest variance. Recall from Lemma 1 that

. 2
‘[E [(% ‘Pn,1> ] — A1 Vik

go(;>.

10



A finer analysis is needed for this term than the other residual terms in (20). To do this, we
bound the variance of (e;—\Iln’l)Q. Lemma 3 shows that |/ Var((e] ¥y, 1)?) is a constant factor within

El(ef ¥,1)%] = O(1/n) up to an additive error term O(1/n%2) which depends polynomially on
model parameters.

Lemma 3 (Variance of the Hajek projection). Let Wy, 1 be defined as in Lemma 2. Then,

V/Var (] 1)) < V2E [(eg\pn,l)Q] +0 (71;/2) .

The three terms ¥y, 2, ¥, 3, and ¥,, 4 are lower order terms.

Lemma 4 (Bound on lower order terms). Let W, 2, U, 3, and ¥, 4 be defined as in Lemma 2.

Then,
e[ (el ta) + (e 00a) 4+ (f )| =0 ().

The bound on the error term e;—\lln,g stems from a more general analysis of the terms T}, in the
Hoeffding decomposition of B,. Lemma 5 is shown by exploiting the Martingale structure of T}, j,
and using norm inequalities [Huang et al., 2022] to compare the operator norm with the ||.[[, ,
norm.

Lemma 5. Let T, be as defined in equation (17). Let for any 2 < q < 4logd, M, be defined

such that E[||4; — ZHq]l/q < My and nuMgy/nlogd S 1. Then, for any j € [n], § € (0,1), with
probability at least 1 — 0

3(1 4 7, M) (7. Mgy/AnTog d)’
Z Tn,k < 1

k>j ) 4logd

Proof sketch. Let Sy, be the set of subsets of [n] of size k.
Do =T +m25) -1k +0n(An — X)Th—1 k1
Proposition 4.3. of Huang et al. [2022] implies
ITokll2, < I+ 1) T 1 all2,

+ (p = Dllma(An = DTl

as long as E [0, (A, — X)Th—1k—1|(I + 7.2)T5—1%) = 0, which is true due to Ay, As, ..., A, being
mutually independent. Solving the recurrence shows the bound. O

The term W, o arises in the decomposition (20) because we use ¢ as a proxy to v; in Algorithm 1.

Lemma 6 (Variance of Approximating v1). Let ¥,, o be defined as in Lemma 2. Then, E [(eglﬂn,o)z} =
0 (%), where © (Eq 10) uses N samples.

Theorem 2 follows by combining all these bounds. See Appendix B.2.6 for a complete argument.
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5 Experiments

In this section, we provide experiments on synthetic and real-world data to validate our theory.
For all experiments, we estimate variance of the entries of 74j, (see Eq 7) by scaling the output of
Algorithm 1 by np (A1 — A2).

5.1 Synthetic data experiments

We provide numerical experiments to compare Algorithm 1 (OjaVarEst) with the multiplier boot-
strap based algorithm proposed in Lunde et al. [2021]. As discussed in Section 3.1, given a dataset
Dy, := {Xi};e[)» We choose ¥ for OjaVarEst as ¥ := Oja (Dn, 1, 2/ ||2l5) for z ~ N (0,1) and set
mi; = 3, mg = log(n), N = n. Given a variance estimate, ET%javarEst, we construct a (1 — «)-
confidence interval as v £+ za 00jaVarEst-

For the bootstrap algorithm, using Algorithm 1 in the aforementioned paper, we use b bootstrap
samples to generate estimates v*(), ... v*(®) and measure the empirical variance by computing the
average squared residual with ©. Again, given a variance estimate, 6%00tstrapoja, we construct a
(1 — «av)-confidence interval as © + zg GBootstrapOja-

We also use the data generation process proposed in Lunde et al. [2021] for our experiments. Specif-
ically, we begin by generating independent samples Z;; ~ Uniform(—+/3,v/3) for indices i € [n] and
J € [d]. Next, we define a positive semidefinite matrix K with entries K;; = exp(—c|i — j|) using
the constant ¢ = 0.01. With this matrix, we construct a covariance matrix ¥ via ¥;; = K (4, j) 0, 05,
where the scaling factors are specified by o; = 5i77 for § € {0.2,1}. We finally transform the
samples as X; = EI/QZZ-.

Computation Time Comparison

—#-Bootstrap (b=1)
—+-Bootstrap (b=10)
25 Bootstrap (b=20)
i -#-Bootstrap (b=50)
+-OjaVarEst (Our Algorithm)

Time (seconds)

100 500 1000 1500 2000
Dimension d
Figure 1: Time taken by the bootstrap methods and the OjaVarEst algorithm. Experiments verify
that our proposed algorithm is as fast as bootstrap with b = 1.

The first experiment (see Figure 1) compares the computational performance of OjaVarEst with
bootstrap to measure variance, varying the number of bootstrap samples, b, and recording perfor-
mance for different values of d with a fixed n = 5000 and S = 1. We note that the performance of
our algorithm is computationally at par with bootstrap when using only 1 bootstrap sample, and
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is substantially better if the number of bootstrap samples increase. This is to be expected since for
our algorithm, only two passes over the entire dataset suffice, whereas for bootstrap, b bootstrap
vectors are required to be maintained, which slows computation by a factor of b. Furthermore, it
also requires b times as much space to maintain b different iterates, which may be costly in context
of training large models.

‘ Dist. 1 (8 = 1), Coordinate 1 ‘ Dist. 1 (8 =1), Coordinate 2
(n,d) | OjaVarEst BS (b=1) BS (b=10) BS (b=20) | OjaVarEst BS (b=1) BS (b=10) BS (b=20)
23, 2¢3 | 96.50% 65.00% 93.00% 95.00% 94.00% 69.50% 91.00% 91.50%
5e3, 2e3 | 95.50% 73.00% 91.50% 94.00% 95.50% 73.00% 89.00% 92.00%
led, 2¢3 | 96.00% 69.00% 93.50% 94.50% 96.00% 71.50% 93.50% 96.00%

| Dist. 2 (8 = 0.02), Coordinate 1 | Dist. 2 (8 = 2), Coordinate 2
(n,d) | OjaVarEst BS (b=1) BS (b=10) BS (b=20) | OjaVarEst BS (b=1) BS (b=10) BS (b=20)
23, 2¢3 | 94.50% 74.00% 87.00% 93.50% 94.00% 75.00% 86.50% 92.00%
5e3, 2e3 | 96.00% 71.00% 87.50% 92.00% 96.50% 72.50% 87.00% 93.00%
led, 2¢3 | 94.00% 65.00% 95.00% 94.00% 94.50% 66.50% 94.50% 93.50%

Table 1: Coverage statistics for our algorithm, OjaVarEst, and the Bootstrap(BS) estimator, with
varying bootstrap samples (b = 1,10,20), data distributions (8 = 1,0.02) and sample sizes (n =
2000, 5000, 10000) with a fixed dimension d = 2000.

The next experiment (Table 1) compares the quality of the variance estimates of our algorithm,
&%javarEst with that of bootstrap a—%ootstrapOja for different number of bootstrap samples, b, and
distributions, 8. We record the average coverage rate, which is the proportion of times the confidence
interval provided by the algorithm contains the coordinate of the true eigenvector, for a target
coverage probability of 95% for the first two coordinates of the eigenvector. OjaVarEst performs
similarly to Bootstrap with b = 20. However, as shown in Figure 1, the bootstrap method is 20
times slower. The time taken by bootstrap with b = 1 is similar to OjaVarEst but has a significantly
worse average coverage rate.

Our final experiment compares the Algorithm 1 with m; = 3 to using just the mean (m; = 1).
Even with the choice m; = 3, the uncertainty in variance estimation is reduced.

5.2 Real-world data experiments

We provide experiments on two real-world datasets in this section. For each dataset, we show the
95% confidence intervals and plot the top 20 coordinates of the true offline eigenvector (red dot),
used as a proxy for the ground truth.

Time series+missing data: The Human Activity Recognition (HAR) Dataset [Anguita et al.,
2013] contains smartphone sensor readings from 30 subjects performing daily activities (walking,
sitting, standing, etc.). Each data instance is a 2.56-second window of inertial sensor signals repre-
sented as a feature vector. Here, n = 7352 and d = 561. For each datum, we also replace 10% of
features randomly by zero to simulate missing data. Even in this setting, which we do not analyze
theoretically, most of the top 20 coordinates of the offline eigenvector are inside the 95% CI returned
by our algorithm (see Figure 3).
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10 Variance Estimates with m = 3
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Figure 2: Comparison of Median and Mean in Algorithm 1 for n = 5000, d = 2000, 8 =1, b = 10.

Class 0 1 2 3 4 5 6 7 8 9
sin? error  0.12 0.07 0.18 0.32 0.53 0.18 0.08 0.09 0.20 0.17

Table 2: sin? of the angle between the offline eigenvector and the subsampling eigenvector output
by our algorithm, computed separately after filtering the MNIST data for each class.

Image data: We use the MNIST dataset [LeCun et al., 1998 of images of handwritten digits (0
through 9). Here, n = 60,000,d = 784, with each image normalized to a 28 x 28 pixel resolution.
We see (Figure 4) that for the classes where Oja’s algorithm converges (small sin? error in Table 2),
most of the top 20 coordinates are inside their confidence intervals (Cls). Notable exceptions are
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Figure 3: Uncertainty Estimation for HAR dataset (n = 7352,d = 561). The sin2 error of Oja’s
algorithm is equal to 0.057 for this dataset. (a) plot of the eigenvector with 95% confidence interval
for all coordinates and (b) the same plot zoomed in on indices 170-310 for exposition.

classes 3 and 4, where several of the top 20 coordinates are not contained inside the corresponding
ClIs. This is expected because our theory is applicable when Oja’s algorithm converges.

In this work, we develop a novel statistical inference framework for streaming PCA using Oja’s
algorithm. We derive finite-sample and high-probability deviation bounds for the coordinates of
the estimated eigenvector, establish a Bernstein-type concentration bound on the residual of the
Oja vector, establish a Central Limit Theorem for suitable subsets of entries, and devise an efficient
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Figure 4: Uncertainty Estimation for MNIST dataset. The sin? error of Oja’s algorithm for each
class is provided in Table 2.

subsampling-based variance estimation algorithm. By leveraging the structure of the Oja updates,
we provide entrywise confidence intervals, bypassing expensive resampling techniques such as boot-
strapping. Our theoretical results are supported by extensive numerical experiments, indicating
that our proposed estimator achieves accuracy similar to the multiplier bootstrap method while
requiring significantly less time.

We believe that our subsampling algorithm can be adapted to any SGD problem where the covari-
ance matrix of the estimator 6,, scales as ¢, times some scale-free matrix V, where ¢, is known. This
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structure aligns with subsampling and m-out-of-n bootstrap methods, where the variance estimated
from a subsample of size m is scaled by m/n to approximate the variance of the full sample esti-
mator. Our findings also highlight the potential for improved uncertainty quantification techniques
in streaming non-convex optimization problems beyond PCA, since Oja-type updates can be found
in many important non-convex optimization algorithms such as matrix sensing, matrix completion,
and subspace estimation. Further directions include deflation-based methods to apply our method
to variance estimation for top k eigenvectors.
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The Appendix is organized as follows:

1. Section A provides some useful results used in subsequent analyses

2. Section B has the Bias and Concentration calculation of our estimator designed in Algorithm 1
3. Section C provides high probability Entrywise Error Bounds on the entries of vy,
4

. Section D provides a Central Limit Theorem for the entries of the Oja vector, voj,, Which ties
the results developed in Section B to provide confidence intervals

A Utility Results

Lemma 7. For any integer n > 2, real € € (0,1), and reals {ai}ie[n},

2 n—1g 2 - 2 2 2(n - 1) ¢ 2
(1—¢€)aj — Z‘%‘S(Zai) S(l—i—e)al%—iZai.
€ = i=1 ‘ i=2
Proof. We begin by writing
(al + Z ai) =al+ 2a1< ai) + ( ai> . (21)
i=2 i=2 i=2
By Cauchy-Schwarz inequality,
n 2 n
0< (Za) <mn-1)Y db (22)
i=2 i=2

The cross-term can be bounded using the inequality

1 1
—ex2—7y2§2xy§6x2+*y2
€ €

with = a; and y = Y " 5 a; to get

n n

1 2 -1
2a1 (Z ai> > —ea? — 7( ai> > —eat — n Z a?,
€ \4 €

=2 =2 =2

and

1=2 1=

- 2, v 2 o, n—1g~ 5
2a1<2ai> <eaj + E(Zm) <eaj + egai.
1=
The proof follows by using the above inequalities in (21) followed by another application of (22). [

Lemma 8. Let V be the asymptotic variance matriz defined in Lemma 1, and let vojy be the Oja
vector as defined in (6). If the coordinate-wise bound

A%
T T kk
€; (Uoja - (Ul Uoja) Ul) ‘ S Cd,n 7
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holds for every i € [d], where C’in hides logarithmic factors in d,n, then

$in2 (Vgja, V1) = Z (eiT (’Uoja - <U1TUoja) v1>)2 < Cﬁ,n()\l_v/b)g,

i€ld) n

where V is the matrix variance statistic defined in Assumption 1.
Proof. By the definitions of V and Ry as in Lemma 1,

2 Tr (V) Ci, \Tr(R) ([ Ci, \1 My,
Z (eiT (Uoja — (UIUoja) 01)) < Cin o < <)\1 _)\2> n = <>\1 W nZng()\l )

i€[d] <k<

Cin TrEMVLA-Z) v (A-2)V/]])

N (Al - )\2)2 n
Ch, E[M(VL(A-S)vo (A-S)V])]
(A1 = A2)” n
_ Cin VE[A-D)VIV(A-%)]wn
(A1 = A2)? n
- Cin Uil—ﬂ': [(A — 2)2:| V1 - 02 v
= 2 =Ydn N2
()\1 — /\2) n (/\1 — )\2) n
O
Lemma 9 (Choice of learning rate). Let n, := no(‘;\?g_(f\g) for a > 1. Then, under Assumptions 1

and 2
1. ndexp (—nyn (A1 — A2)) = o (1).
log(d M3
2. max {nn, A1g£A)2} )\173277% =o0(1).

o2 (202 + M3) <1

Proof. The above conditions on 7, imply Corollary 1 in Lunde et al. [2021]|. Let’s start with the
first condition. We have

d
ndexp (—nnn (A1 — A2)) < ndexp (—alog(n)) = = 0(1), using the bound on d

na—l

For the second condition, we first note that for n > alog (n) provided by Assumption 2,

log (d)
R e

Now for the second condition, we require,

a®> M3 log? (n)log (d)
TL2 ()\1 — )\2)4

=o(1)
which is again ensured by the condition on n in Assumption 2. O
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Lemma 10. Let t be a positive integer, § € (0,1), and let I be an interval in R. Suppose
ai,az, . ..,a; are independent random variables such that P (a; € I) > 3/4. Then, fort > 8log (1/6),

P (I\/Iedian ({ai}ie[t]> € I) >1-—0.
Proof. Since I is an interval, the median does lies in [ if at least half the a; are in I. Let b; be the

indicator that a; ¢ I, and let B = Zie[t] b;. Then, by, bs,...,b; are independent Bernoulli random
variables each with mean at most 1/4. By Hoeffding’s inequality,

P (Median ({ai}ie[t]) ¢ I> < P(B>1/2) < exp (—2(t/2 — E[B])2/t) < exp (—t/8) < 6.
O
Lemma 11. Consider random variables {(ai, b;)};ciy, ai,bi € R such that {b};cqp are mutually
independent. For a fized cp > 0, define the event € := {Vi € [n],a; < cp}. Further, suppose there

exists a bound dr such that for any i € [T], P(b; <dr) > 3/4. Then for any 6 € (0,1) and
T > 8log(1/6), we have

P (Median ({az + bi}ie[T}) >cr + dT> <6+P (5[:)
Proof. Define indicator random variables X;,Y;,i € [T] as
X; ::I(aieriZcTerT), E/Z‘::I(bisz) (23)

Then, we have

P (Median ({a; +bi}ieqry) = er+dr) <P | D Xi> )
1€[T)

T

2

2

Here (i) follows by the definition of the event &, (i) follows from Hoeffding’s inequality and (i77)
follows from E [Y;] < 1/4. O

25



Lemma 12. Let {Vi}l-e[T] ,V; € R be random variables satisfying v; = vy + a; + b; for a fixed scalar
vy and random variables {(z;, yi)}ie[T], i, y; € R such that {yi}ie[T} are mutually independent. For
a fized cp > 0, define the event € := {Vi € [n],|z;| < cr}. Further, let there exist dr such that for
any i € [T], P (|yil <dr) > 3/4. Then for any § € (0,1) and T > 8log (1/9),

P <’Median (twdiem) - VT( > cp+dr) <0+ P ()
Proof. We first note that

Median ({Vi}ie[:r]> = Median ({VT +x; + yi}iem) = vr + Median ({acz + yi}z’e[T]) (24)

Next we note that for any A > 0,

N[N

Median ({lai] + [l icr)) <A = {7 € [T]: laal + ol < A} =
Therefore, for all i € S := {i € [T : |z;| + |yi| < A} we have
[z + yil < @il + lyil <A

This in turn implies that for S := {i € [T]: =\ < z; +y; < A}, |S| > L. Therefore,

Median ({xi +yi}ie[T]> € [-\,\] < |[Median ({xi +yi}i€m) <\

Therefore, we have shown that for any A > 0,

Median <{\le + ‘yi|}i€[T]> <A = |Median ({xz + yi}ie[T]> | <A

or equivalently,

Median ({]a:] + [yi[}iciry ) > [Median ({ + yi}ieqn) |

Substituting in (24), we have

IMedian ({Vi}ie[T]> — ur| = [Median <{:U2- n yi}iE[T]> | < Median ({|x2-| n ]y@-]}iem)

The result then follows from Lemma 11 with a; := |z;| and b; := |y;]. O

We next define a variant of Oja’s algorithm, 6];, which provides a high-probability convergence
guarantee. This can be satisfied by geometric boosting of the standard Oja algorithm (see for e.g.
Lemma 3.9 in Kumar and Sarkar [2024b]), and we use it to obtain our high-accuracy estimate, 0,
used for recentering and variance computation subsequently in Algorithm 1.

Definition 1. Let N > 0, ug ~ N (0,1) and {Xi}z‘e[N] beii.d. datapoints satisfying Assumption 1.

We define v + a;({Xi}ie[N] ,ug) to be any variant of Oja’s algorithm satisfying, with probability
at least 1 — 9,

C'log (%) log (N/log (%)) M3
N(A1 — Xo)?

sin? (9, v1) <

where C' > 0 is a universal constant and § € (0,1).
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B Estimator Concentration
Lemma 2. [Error Decomposition of voja| Let voja, U be defined as in (6) and (10) respectively. Then,
Voja — (’f)TUoja)’D =V, 0+ V1 + Yo+ V,3+ W, 4, (19)
where

\I/n70 = (UlTUoja)Ul — (TN)TUoja)@,

_ ViVT, qvisign(vf uo)

U, 1=

TL,I (1+77n)\1>n )
v o VLVI(ZkEQ Tn,k)vlsign(viruo)

n,2 — (1+77n)\1)n 9

1 1

U, 5:=V, V] Byu — ;

e T °<|!Bnuoug \viuouuml)n)

v,vIB, v,V

U,y = koL 1O (20)

o ‘UIUO‘ (1 + T})\l)" '
Proof. We have,

Voja = (Uirvoja)vl + VJ_VJ—_F'Uoja
ViV Bhug
[ Bruol|
ViV Byug
Cn
VlVanvlsign (v{ up)
(14 npA1)"

ViV (B, — E[By])visign(v{ ug)
(1 +nA)"

VLVI(Zk21 Ty, 1) visign(v] ug)
(1 + 77n)‘1)n

= (6Tvoja)f} + \I/n,o + \Iln,l + \11%2 + \I/n73 + \I’n74.

= (Uirvoja)vl +

= (v] Voja)v1 + + U, 3

= (Uir%ja)“l + + Vs + Wng

= (v} Voja)v1 + + W34+ U,y

+ U, 3+ ¥, 4, using Theorem A.1 Lunde et al. [2021]

= (vlTvoja)vl +

Lemma 13. Let V,,; be as defined in Lemma 2. Then,

ot o= Yo, for Vo= 3 X0 and 7 o= S8 sy
n1 = NnYn, for ._j; j an j = 1+ o i J 1

where A | € RU=D*=1) 45 o diagonal matriz with entries A, (i,1) = %
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Let {Ai};cp, be symmetric independent matrices satisfying E[A;] = X,
|A; — |, < M. Define,

E[(4; — %) H <V and
=37, <
Vi€, XP=VIATIV (4= S)vy, and ¥, = Y X7

J€ln]

B.1 Estimator Bias

Proof of Lemma 1. Using the definitions of ¥, and X3" from Lemma 13, we have

1 n n
E {\pn,lqzll] ~E [Ynyﬂ - Y E [Xj X,J}
" Jikeli]
= Z E [X;‘X}ﬂ} , since Aj, Ay, are independent for j # k
J€[n]
1 . .
L — VIA"IVIE (A — ) o] (A; =) | VATV
(1_'_17”/\1)2]%;] 1 s [( J ) 1 1( J )} 148 €
1 , ,
=V ANTVIE (A =)o) (A=) VAT | V]
o | 2 ATV - Dol (4 - D) viay |V

J€ln] —
=M

Recall R™ := Aiﬁj M. Azl_fj and consider (k,1)™ entry of R(™.

1
(1+7nA1)2 Zje{n]

(n) _ 1 T N T A 1 = nej 1~ (1 - (dkdl)”>
RY = el SONTIMAT o= ——— My Y (dydy)" ™ = M .
W g g? 2 M MAL e = e e 2 () = S M T

Jj€[n] j=1

Let Ro(k,1) = Mye/(2\1 — ki1 — Aeg1). Note that

| dpdy = AT Ak =) M (A1 = A1) (A1 = Aiga)
1+nA (1+nA)?
_ M (221 = A1 — Aig) [ (A= M) (M — Aug) ]
L+nX\ (1 +7A1) (M1 = A1 + A1 — A1)
o M (2A1 = Aepn — M) [1 ~ (A = Apn) (M — >\l+1)}
- 1+ (A1 — X1 + A1 — Nya)
M (2A1 = Agr1 — Aigr) :
1- n - ) -
T on [1—ny,min{A; — Agr1, A1 — N1}
M (2A1 — Ak — A1)
> 1— noA
=z 1+ [1 = npAd]

> Nn (201 — Ak — Nig1) (1= O (M)

v
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Then,

" My (1+O(naA1)) My
R - R kpl mn = -
%l ok, 1)/n MM — M1 — A1) (14 77n>\1)2 n(2A1 = Apg1 — Aeg1)
My M

(1 + O(nn/\l)) -

T (A — Akt — Arr1)
= O(npA
M (2A1 — A1 — Aes1) ()

M (2A1 — Aeg1 — Aeg1)

So we have:

R — Ro(k, 1)

= O(npA
Finally, we have:
(n) Ao
[ R — Rol|p < M| /2
AL — A

Note that

1M1 < E [[|(4: = Dyono] (4; - D[] <E[14 - BI7) < M3

B.2 Estimator Concentration

In this section, we estimate the bias of the variance estimate output by Algorithm 1. In the entirety

2
of this section, we assume that the vector @ is “good”, i.e sin? (¥, v1) < bggé/(s) (Z]fi\;\[;) , which happens

with probability at least 1 — 4. Recall that v < Oja(Dn,nn,uo) is the high accuracy estimate of

v1. We present all results using a general n number of i.i.d. samples per split, which will later be

2
replaced by n/(mims) as required by Algorithm 1. We denote s, := bgg#% to be the upper

bound on the sin? error of the Oja vector due to Jain et al. [2016]. While our results henceforth are
written using s, and s, is not guaranteed to be smaller than 1, it is straightforward to replace it
by min {s,, 1} since the sin? error between any two vectors is always at most 1.

B.2.1 V¥, Tail Bound
Lemma 14. Let W, o be defined as in Lemma 2 for voj defined in (6). Let {\IJS)O} ] and
T Jigm
{Ugji} ] be m iid. instances of ¥, o and veja respectively.
e|m

Suppose the vector v satisfies the bound of Definition 1. Then, for any k € [d],

Z €k *n0 < C'log (3) log (N/ log (3)) M3

m - N()\l — /\2)2 '

1€[m]

29



Proof. For any i € [m],

)

= ‘e; (vlvlT — 1713T) vgjz‘

< HvlvlT —ﬁf)TH = V/2|sin (7, v1)] .

The result now follows from the assumed bound

Clog (%) log (N/ log (%)) M3
N(A1 — Ag)? )

sin? (7, v1) <
for some universal constant C' > 0. O

B.2.2 V¥, ; (Hajek Projection) Concentration

Lemma 15. Let ¥, be defined as in Lemma 2 for ug = g/ ||g|ly with g ~ N(0,14). Let {‘yg’)l}ie[m]

and {g(i)}ie[m} be m ii.d. instances of ¥y, 1 and g respectively. Then, for any 6 € (0,1) and k € [d],
with probability at least 1 — ¢,

B vms

m

> ic[m] (%T‘I’g,)1)2 E Kequjn 1>2] § V2E [(613‘1’71,1)2} + ﬁ%szﬁ\/ﬁ'

where by, 1= HerkH2.

Proof. Recall the notations X7 = VLAZ_jVI (Aj —E)viand Y, =377 | X7 from Lemma 1. Since
VLVIX;‘ = X;-"” and Ty, 1 = 0, Z;;l X]’-l, e;—\I'n,l can be written as

n

T, = ep ViV T, 1visign(v] ug) _ Nnsign(v] ug) Ze;VLVIX;-L _ nnsign(vfuo)e;Yn. (25)
’ (1+mnAr)" (1+mnA1) L+ A

j=1
Next, we bound the variance of (e} Y;,)2.
"~ 2
T T T T
D) = 2 () +2 1 (o) (15
J=1 VA

Most pairs of summands are uncorrelated.
e Cov <(eTXJ’-"°)2, (e;—X;.%)2) = 0 for any distinct j,j’ € [n].

e Cov ((eng‘)z, (e;X}L)(egX]n,)) =0forany £ € [njand 1 <j < j' <n.

e Cov ((eTX]’.L)(eZXJ’?,), (ein)(eEXZ)) =0forany 1 <j<j <mnand1</¢< /¢ <nsuch

that (j,5') # (£,0').

It follows that

Var ((egyn)Q) - Zn: Var ((egxy)Z) +4Y Var ((egxy)(eg){;&)) : (26)
j=1

J<j’
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We bound both terms separately. By Lemma 1, the second term can be bounded as
43" Var ((egxy)(egxge)) —43E [(engﬂ)?] E [(egxge )2}
1<j

J<y’

< QZH: Zn: E {(e,IX]’?)?] E {@X}%)Q} = 9F [(e,jyn)Q]Q. (27)

j=1j'=1

Next, we bound the first term of Equation (26). For any j € [n],

T yn
‘ek AXV‘7

_ ‘ekTVLATjVI(Ai - Z)vl‘ < He;VLH ‘

N\ VT (45 = Sy | < brll4; - 3

which implies
n

zn:var ((e,jxy)Q) <Y E [(eg ;)4} <Y E [bﬁ 14; — zyﬂ < biMin. (28)
j=1

Jj=1 Jj=1

Combining equations (26), (27), and (28) and using equality (25),

Var (e .07) < 26 (6 00?)]" 4 bt

By Chebyshev’s inequality, for any ¢ > 0,

P (‘; i:; (e,jqfﬁjflf ~E {(e,jqu)?]

. t) - Var ((egllfn,l)2>

mit2

2 [((ef Wn1)?)]” + riyrbiMin
_ .

mt

V2E[((ef ©p1)?)]+n2b3 M3/

The result follows by setting t = N

O

Remark 6. Note that in Lemma 15, one can always provide a uniform bound on all elements using
a Bernstein-type tail inequality rather than a Chebyshev bound. This is possible because we can use
our concentration inequality in Lemma 28. However, there are two pitfalls of this approach; first, for
failure probability 0, the errors of the lower order terms (VUy, 2, Wy, 3, Wy, 1) still depend polynomially
on the 1/6 (see Lemma 19, 21, 23), which limits the sample complexity of our estimator to have a
poly(1/0) factor, and secondly, Lemma 28 requires a stronger a.s. upper bound on A; —3 fori € [n].
However, we can get both a uniform bound over all coordinates k € [d], and a log(1/9) dependence
on the sample complexity, using our median of means based algorithm (Algorithm 1).
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B.2.3 V¥, tail bound

We start by providing a tail bound on higher order terms in the Hoeffding decomposition of B, —
E [By], which may be of independent interest. Let S, = {{i1,...,ix} : 1 <3 < -+ < i < n}.
Consider a general product of n matrices, where all but k of the matrices are constant, and k indexed
by the subset S are mean zero independent random matrices. With slight abuse of notation, let
Mg ; denote a constant matrix M; with ||M;]| =: m; when i ¢ S and W; when i € S, EW; = 0,
Wi,i=1,...,n are mutually independent.

n
Tk =Y [[Msni1-i (29)

SES, 1 i=1

Let T}, be a scaled version of the k" term in the Hoeffding projection of the matrix product
By, =1, (I +n,A;). Let W; = A; — 3. We want a tail bound for Zk22 T k-

Lemma 16. For S € S, 1, denote a function Mg; := n,(A; —X) when i € S and I 4+ n,X when
i ¢ S. Suppose ¢ > 2 and M, are such that E[||A; — EHq]l/q < My. Then, for any1 < j <n and
any p = q,

WM/ \?
ETHJ < 2d"YP(1 4 nu )" <171+q)\p> ;
k2 P e

2N Mgy/np <1

as long as Trmon

Proof. We start by deriving a recurrence relation for T;, 5, as follows:

n
Th%::: jg: I]:A[&n+l—i

SeSn,kizl
n n
= > HMswriv >0 [ Msnn
SESp oS i=1 SES, pmeS i=1

n n
= > U+ [[Mspri+ D (A=) [[ Msni1-iMsnii

SGSH,LIQ =2 SES»,L,L}C,l =2
n—1 n—1
=T+m2) [ > I Msni | +mAn=5) > [ Msn
SeSp_1,k =1 SeSp_1,k-1 =1

= [ +mE)Th—1k + M(An — 2) D1 k—1-

Next, we apply Proposition 4.3. of Huang et al. [2022] to bound ||]Tn,k|||p g To apply the proposition,
we require E [, (Ap, — )11 k—1|(I + 9 X)T—1,%] = 0. Indeed, by independence of A, As, ..., Ay,

E [0 (An — B)Th—1 k-1 + 12 X)To1k] = E [0 (An — E) E[Th—1 -1 + 1. 2)Tn—1k] = 0.
Therefore, the proposition implies that

2 2 2
IT0ill?, < 1T+ 5D T il + B = Dl (An — ST,
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From Equation 4.1. and Equation 5.3. of Huang et al. [2022],

(T + 1S Tl < I+ 705l Tl and
190 (An = )T 151ll, , < mE 140 = 1T T 1l
Plugging these bounds into the recurrence yields

P9 —
2 2 2
Ikl < (1 1AW T lI2 , + M2 — DE ([ An — S10%9 1T 1P,

pq —

Letting fp, 1 := ||]Tnk\||; o Wwe have the following recurrence for all n > k = 1:

Fok < (0 +m20)2 foo1 ke + nnMQ( — 1) fu—1k—1-

fn,k
= W) 2R (2 M2 (p—1))F

Defining a, 1, : we recover an inequality resembling Pascal’s identity:

nk < Qp_1k + Gp_1 k-1

Moreover, a, ; = 0 for all n < k and ano = (1 +n,M1) " 2"||(I + nnE)”\H;q < d?/?. Inducting on n

and k shows
wn < d? ().

Translating this back to the bound on the norm of 7T;, 1, we conclude

n _
1Tl < \/ (112200 (A3 = D) (1) < P14 ) M)

Mg/1
Since norms are sub-additive and mi qu N < 2,

Yo Tok|| <D dYP( 40 )" (naMgy/np)*
—

k>j
=J p.q

—dl/p(1+n>\1”2n:< qxﬁ>

my 1+ A1
o\ J
< 2d"P(1+ )" (W) :
nA1l
O

Lemma 17. For S € S, 1, denote a function Mg; := n,(A; —X) when i € S and I 4+ n,X when
1€ S. Then, forany 1 < j<n, and 2 < q <4logd,

e 3(1 4 1 A1)" (maMgy/AnTog d)’
n,k|| =

_1
k> J4logd

as long as 4n, Mgy/nlogd < 1.

P
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2N Mg/mp

Ty~ < 1 holds. By Markov’s inequality,

Proof. Let p = 4logd; note that the assumption
Equation 4.2. of Huang et al. [2022], and Lemma 16,

P
Pl Tosl| = @ +nad)"t | < inf (L4 ma20)") 7 E > T
k>j - k>j
- Iy
< inf ((1 gy~
< inf (L+maA)") 7 E ;Tn,k
L =J ',q
N YA -\ 4logd
- 2d'/ ( Trmay ) - 3 (mMgv/Anlogd)’ o8
- t - t '
j -1
for all ¢ > 0. The lemma follows by setting ¢t = 3 (nn/\/lq\/éln log d) §*logd
O
Lemma 18. Let U,, 5 be as defined in Lemma 2 with ug = g/ ||g||y. Then, for any ¢ € (0,1),
12n2 M3nlogd
P (ll@n,zll < WWLO%) S1_4
V6
Proof. By Lemma 17, with probability at least 1 — ¢,
ZT < 3(1 + muA1)” (nnM2v4n log d)2 < 12(1 + Un)\l)”ﬂﬁ/\/@n log d
>2 k|l = 54101g(i \/S '
Conditioned on this event,
ViV (3 ag Thk)uisign(v] ug) HV VTH > oo Tkl vall
T 1V k>2 4n,k)U1SI8N(V] U < vy k>24ink 1
A (1 mh)" B (1+ )"
g HZkZQka’ _ L2 Minlogd
- (1+77n)\1)n o \/5
O
Lemma 19. Let ¥y, 9 be defined as in Lemma 2 for ug = g/ ||gl|, with g ~ N(0,14). Let {\Pg’)z}ié[m]

and {g(i)}ie[m] be m iid. instances of ¥y, and g respectively, and let 6 € (0,1). Then, with
probability at least 1 — 9,

Tg® )’
Zz‘e[m} (ek ‘I'n,2) < 144bi77ffb/\/l‘21n2 log? d

m ) ’

for all k € [d], where by, := HerkHz.
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Proof. We have

‘ekTVJ-VI(ZkEQ Tn,k)UISig”(TﬁTuO)‘ legvlvleVI(ZkEQ Tn,k)UISig”(vlTUO)

(1 + npA1)" B (1 +npA1)"

b | Crea T
(1 + 77n>\1)” .

T
‘ek \Iln72

Ty,T
= ‘ek VJ_ VJ_\I/n’Q

< |led Vi sl <

By Lemma 18, for each i € [m], with probability at least 1 — %,

‘ g 12bxn2 M3nlog d
€k ¥n2| = :
’ Vo/m

By a union bound, the above holds for all i € [m] with probability at least 1 —¢. Under this event,

(i) 2 ' 12bkn%./\/l%nlogd
Zze[m] (6]1—‘1/7%2) < Zze[m] ( \Vo/m B 144[)%7];11./\/{%7‘&2 10g2d

m m 1)

B.2.4 V¥, 3 tail bound

Lemma 20. Let ¥, 3 be as defined in Lemma 2 with ug = g/ ||g|ly. Let nn be set according to
Lemma 9. Fiz 6 € (0,1). Then for any € > 0 we have with probability at least 1 — ¢,

1
5\ L
sl < V5 dexp (—2n,n (A1 — A2) +man (AF + M3)) + % i n \/—Un\/ﬁMz log (d)
S s .
malle ~ VIR 53(1 — 5)log(1/4) " 5%
. Clog(5) naM3 ‘
where sp, 1= —3 n ) for a universal constant C' > 0.
Proof. Let ¢, = (1 +npA1)"|udv1|. We first note that
1 1 VLV Byug || Bruo|
v = VVTBu<—> :HL L
Ponalle = VAV Bato (g gl = ), = | 1Bl e )l
[Bnuolly [lo]  ¢n

We bound each of the two multiplicands separately. The first term corresponds to the sin error
between vqj, and vq:

2

ViV Buug 2 (v{ Bpuo) . 9

|| =1— =3 =sin" (Voja, v1) .
[ Bruolly |l | Bruoll3

By Corollary 1 of Lunde et al. [2021],
V.V Buuo||”
P ' ZLY1 Pntio >s,| =P (SiIl2 (Vojas V1) > sn) <. (31)
| Bruoll, 2
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It follows that for any € > 0,

VLV Bauo || Bou
P (1003, > ev/5n) <P (' W > sn) +P <’”’;0”2 - 1‘ > e> (32)
B
<5+[P<'”"“0”2—1‘>e>. (33)
Cn

To bound the second term, we adapt the proof of Lemma B.2 in Lunde et al. [2021]. Letting
T
a; = ‘U1 i

)

’HBnuo! 3 1‘ - ‘ | Brvtasll = llas (I + 9. 2)"vll| [ B ViV uo
Cp, B Cn Cn
_ ‘ [Bavr|| = (T + na2)"w1]l] | 1 BaVLV ] uoll
N (1 +npA1)” Cn
HBn - [E[Bn]Hop ||BnVJ_VfU0” (34)
(1 +maA1)? Cn '

For the first summand, using Eq 5.6 of Huang et al. [2022] with ¢ = 2 and by Markov’s inequality,

2
(HBn - [E[Bn]Hop S 6) < 2 [”B" - [E[B"]Hop < CninM3(1 + logd)?

2 (14 nAp)e? - €2

T many 2 (35)

For the second summand of equation (34), define the event

|BnViVTiuo|* _ Clog(1/d) T BT
= < t Vi B, B,V .
g { [vT up 2 - 52 race (VI By BaVl)
By Proposition B.6 of Lunde et al. [2021], P(G) > 1 — ¢ where C' > 0 is some universal constant.
Since P(A|B)P(B) = P(AN B) < P(A), Markov’s inequality together with Lemma 5.2 of Jain
et al. [2016] with V < M2 yields

B, r

p (Ll ) -
Cn 2

1 T T 62 62
< Ss& . 9
<o 5[]3 (trace(VLBn B,Vi)> I Clog(1/0)

29X n 2 2 2
L e (2 (= do) e (3 4 M) 4 ERSEREE
B €2621log™! (1/0)
enn M3

_ 1 CdeXP (=2nan (A1 — A2) + n2n (A\] 4+ M3)) + 2(21_/\22) -
1= €262 log ™! (1/6) ’

where the last bound follows from Lemma 9.
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Finally, define the error € as

N[

2
LA (2mn (1~ )+ win (O + M3)) + i, L /M log (d)
53(1 — 0) log~*(1/) 52 '

(39)

Substituting € in equations (38) and (35), and combining with equation (34),

|| Brnuo| |Bp ViVl _ e [Bn —E[Bulllop
P(|l— -1 <P|————m— > — P — 40
(ESNEDE o 2) a2 1)

HBnVJ_VEUOH € C ||B’ﬂ -L [Bn]”op €
<P|{——> = P P -] < 36.
< < . > 519 ) +P(G7) + Oroa/me ~2)S
(41)
From equations (33) and (41), we conclude
P (1Wn3lly > ey/sn) < 40.
U

Lemma 21. Let ¥, 3 be defined as in Lemma 2 for ug = g/ ||g|l, with g ~ N(0,13). Let n, be

set according to Lemma 9. Let {\Ilg)g} ] and {g(i)}ie[m} be m ii.d. instances of ¥y, 3 and g
= Jiglm

respectively. Then for any ¢ € (0, 1), with probability at least 1 — 0,

> icm] (62‘1’%}3)2

m
n M3
<o [ dexp (—277nn (A1 —A2) + 7772171 ()\% + M%)) + ﬁ N mn%nM% 10g2 (d)
~ ok 53(1 — 6/m)log ™ (m/5) 5
— T P CIOg(%) nnM2 .
for all k € [d], where by, := HVJ_ ekHQ and sp == —53*~ ()\1_);) for a universal constant C' > 0.

Proof. Using Lemma 20, for any fixed ¢ € [m], with probability at least 1 — 0,

1
nnMg 2

|99, 5 var dexp (=2 (M = do) +in (M + M) + 0557 |, /mMalog (d)
ndlg ~ Vor 63(1 — &) log™1(1/6) o3
(42)
Furthermore, note that
Tg® T T 1 1
e, ¥, =le, V.V, Bpug <—>
bl = VI B (15— o),
1 1
T T T
=le, V V! ViV'Byug | ———+ — —
e O(HBnUOHQ CN) 2
1 1
<7 TH "B — — —
S )ekVJ_VL ) ViV Bpug 1Bouolly  cn )
—b VVTBu(l—l) —b ‘\11)‘ (43)
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The result then follows by a union bound over all i € [m] for the event in (42) and using (43).

B.2.5 W, 4 tail bound

Lemma 22. Let U, 4 be defined as in Lemma 2 for ug = g/ |9l with g ~ N(0,14). Let n, be set
according to Lemma 9. For any 6 € (0, 1), with probability at least 1 — 0,

1
0, d —2n,n (A — A Zn (A2 4+ M3

Proof. Recall that

_ VAV B VIV wol| _ [[VAVI BRVLVi g

\I/
| oTuol L+ A T gL+ )

To bound this quantity, we will bound its square instead. Using Markov’s inequality, with probability
at least 1 —0/2,

Hvu/l B,V.V] gH [va/L B,V.V] gH ]

2.
=45
§T <E {(VLVanVLVf@ <VLVjBnVLVIg)T]>
_ 2 [Tr (VL B VLVTBZVL)} .

By Lemma B.3 of Lunde et al. [2021],

E[Tr (VB V.V B, V.)]

enMi(1+2108(d))
M3) '

en3n M3 (1 + 2log (d))

(14 h)*" < dexp (~2man (M — Ao) + n2n (A + M3)) +

Also, with probability at least 1 — &/2, [v{ g| > 6/2 (see Proposition 7 from Lunde et al. [2021] for
anticoncentration of gaussians). Combining the two bounds yields the result. O

Lemma 23. Let ¥, 4 be defined as in Lemma 2 for ug = g/ ||g|ly with g ~ N(0,14). Let n, be
set according to Lemma 9. Let {\115)4} m and {g(i)}.e[ | be m ii.d. instances of V,4 and g
“Jiem etm ’

respectively. Fiz 0 € (0,1). Then, conditioned on £, with probability at least 1 — 6,

Zz’e[m} <€;‘I’S,)4>2

2(A\1 — A2) + ()\% — \2

m
bim? endn M3 (1 + 2log (d))
< i | dexp (—=2nan (A1 — o) +mpn (AT + M3 2
—53(1—5)< exp (=2 (A1 = 2) 1 (AL + 2))+2(A1—A2)+nn(A§—A2—M2)
for all k € [d], where by, := HVIekHQ.
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Proof. Note that

VI BV o, )
{UlTU()‘ (1 + ﬁn)\l)n

-~

129

2 2
() < e

Let <I>$f ) correspond to the i*" instance of the random variable ®,,. Then, for any k € [d],

2 v

2
LS (e ul) < ﬂf‘“”z > el (44)
ic[m) i€[m]

Define the event & := {|v] g| > %} and let £@), i € [m] be the i*" instance of this event. First,
observe that:
VI B ViVIgg "VIVIBIVL |,

(U1Tg)2 (1+ )2
2

H@mefw%Q‘ .
’UFUOI (14 npA1)"

E[®,|] = E (

<—  _[E|\V'B,V,V'gq"V VBV

m? E[Tr(V/B,V.V]/B,V.)]
~ 02P(€) (1 4+ npA1)2n

g

(45)

Now, using Markov’s inequality conditioned on ﬂie[m] £ we have with probability at least 1 —

m )

JEm|

e > ol g%[E Q)

1 , , 1
(By i.i.d. nature of the instances) = S[E [q)sf) 5(’)] = —E[®,|€]

5
__m? E[M(V/BViV B, Vi)] (46)
~ B3P(E) (1 +nnA1)?n

The last step uses Eq 45. Using Lemma B.3 from Lunde et al. [2021], we have
en3nM3 (1 + 2log (d))

E[Tr (VB V.V B, V.)]
(1 + 77n)\1)2n

< on, B 2. (2 2
< dexp (=2 (M = do) +ipn (A + M) + o Em - (32— 22— Ag2)

(47)
Finally, we note that using Proposition 7 from Lunde et al. [2021], we have
C
, ) - 1)
; (4) _ = (4) C i

The result follows by substituting (47) in (46) and then using (44), along with the union-bound
provided in (48). O
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) L R Coordinate-wise
Median(6y,1, 6k2, -+ Ok,m,) k| median

Figure 5: Schematic picture of Algorithm 1

B.2.6 Total Variance Bound

We now put together the results from Lemmas 14, 15, 19, 21, and 23 to provide a high probability
bound on the error of the variance estimator Algorithm 1.

Figure 5 summarizes how the variance estimation algorithm works. The algorithm first computes
an Oja vector ¥ using N samples. Then, n samples are divided into m; batches, with each batch
containing n/my samples. These n samples need not be disjoint from the N samples used to compute
the high-accuracy estimate o. Then, the ¢*! batch of n/m; samples is split into m = my batches of
size B :=n/mims each. Oja vectors {9, }j Elmy] AT€ computed on each of these ma batches, and

e (0 — (570,)8))°
&]3;78 = Z (k‘ ( J TrE ]) )) ) (49)
Jj€[ma] 2

for all k € [d]. The overall estimate for the variance of the k" coordinate is Median <{5’k’g} Ze[m1]>'

Since this variance scales with the inverse of the learning parameter np, we define the scale-free
A = Median ({6k,g}£€[mﬂ) /(nB (A1 — A2)). For each k € [d], define the quantities

E [(6;‘1’3,1)2} A — /\2'

’ CL ‘=
nB M3

bk = H@;—VJ_

Under this setting, we show that each &,% ;, approximates the true variance with at least 3/4 proba-
bility. We assume that the learning rate np satisfies

UBSL-FM_)\Q

20 2M3 (50)

It can be verified that this assumption is satisfied by the bounds on B provided in (60).
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Let v be the high probability estimate as defined in 1. For the remainder of the proof, we condition
on the event

(51)

g C'log (+)log (N/log (%)) M3
5:—{81112(1),1)1)5 g(é)N(g)\l(_/)\Q)i(a)) 2}

for some universal constant C' > 0, and assume this event £ holds with probability at least 1 — 4.

Lemma 24. For § € (0,1) and any £ € [m1], under assumption 50, with probability at least 3/4,

N 1 2
Ul%,é — B (>\1 - /\2) e;\/ek‘ <8 <\/m + m> nB ()\1 — AQ) eg\/ek

+O<bilog23< My >2+log((15)log(]\7/log((1s))< My )2>

B3/2m1/2 \ A\ — Ao N AL — A9
Lo b2m? log? dlog* B < Mo )4 M M3log? B (52)
B2 AL — Ao B2(M\ — X))

Proof. Drop the index ¢ for convenience of notation. Let dy := 1/20. By triangle inequality,

‘6’,3 —np (A — X\2) e;—\/ek‘ <

2 2
6]%’[ —E [(e;\PBJ) :| ‘ + ‘[E |:<€;—\I’B,1> :| — B ()\1 - )\2) e;\/ek
(53)

and by Lemma 1,

2 2 M3\ M M3log? B
El(e]w g (A — Ag) ef Ve | < 1B2AL o ALV . 54
’ [<ek B’l) ] s (A= Aa) e Ver| < A=A Y B2(A - \p)? oY

By equation (19) and Lemma 7, for any € € (0,1),

SRR DO (L S P TA

m

Z (e;\l,g7)0>2 + (e;—\IJ(Bg?Q)Q:r—L (6E‘I’g’)3>2 + (6’;‘1’%,)4)2 ) (55)

J€[m]

_l’_

o | oo

‘=C€small

Set € = 2/y/m. By Lemmas 14, 19, 21, and 23, along with Lemma 9 to bound nd exp (—n,n (A1 — A\2)) =
o (1), we have with probability at least 1 — 4dy that

e;n/mll (56)
€

log (%) log (N/1log (%)) M3 3 BM4log(d)b?m?
< og (5) log (N/log (5)) M3 4 A MAB2 log? d + spbimit BM2 log? d + ngBM; log(d)bim

~ A — A 2(A\ = X2) +0p (\F = A3 — M3)

_ log (%) log (N/log (%)) My \? N b2mlog® dlog* B My \? n b2m? log dlog® B My \*

~ N AL — Ao B2 AL — Ao B2 A =X/
(57)
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where we used Assumption 50 to bound the last term. By Lemma 15, with probability 1 — dg,

. 2
S e (1 5)) | VEE[(e] W)Y + i MVE
~E|(efwga) || < ’

m mdo

21052 2
b;log” B < My ) (58)

< 4elt [(6;\1'3,1)2} + B3/2m1/2 \ A\ — X9

We now combine equations (54), (55), (57), and (58) in (53) to conclude that with probability at
least 1 — 59 = 3/4,

‘6’,374 —np (A — X\2) e;—\/ek

bi log® B ZM3A
<(1+¢) <4enB<A1—A2>ezv@k+ k8 ( Ma neMoh

2
B3/2m1/2 \ N\ — )\2> > + (1 +e)(1+4e) A — Ao + €smalls

which simplifies to the lemma statement.

O
Next, assume that the following relations hold:
Blog (3 B

szQOg(‘S)log(Qm > (59)

c; log B c; log B

2 2
B> m? O Mz log® (B) log? (d) . (60)
Ci )\1 — )\2
bk>4</\/l4)4 5 mhlogB

BZmax|[m|— — | log“°B, 54— | . 61
~ ( <Ck M2 & Ci ()\1 - )\2) ( )

These assumptions on N and B subsume the assumption on the learning rate np in equation 50.

Using equation 54 and the relation

T 2
Elefve)] i ag
m o m )\1—)\2.

(62)

and comparing it with each term in the smaller order error of Lemma 24 yields the following Lemma.

Lemma 25. Under assumptions (59), (60), and (61), we have the following upper bound on the
right hand side of equation (52) in Lemma 2/.

log(é)log(N/log(é))( Mo )2+ b%log2B< M,y >2+b%m210g2dlog4B< Mo )4

N Al — Ao B3/2m1/2 \ \1 — Xy B2 Al — Ag
2 2 o T
/\1M2 log B3 S nB ()\1 )\2) ek Vek ' (63)
B2 ()\1 — )\2) m
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It follows that a stronger multiplicative guarantee holds for any coordinate k that satisfies the above
assumptions:

Lemma 26. For any coordinate k that satisfies Lemma 24 and assumptions 59, 60, and 61,

B (A1 — A2) e;\/ek
Vvm '

(3']3 — B ()\1 - )\2) eg\/ek) S O <

Given a per-coordinate guarantee with success probability 3/4, we can boost the success probability
and give a high-probability guarantee over all coordinates using the median-of-means approach (see
Lemma 12). Since the vector ¥ is shared between all Oja vectors in the uncertainty algorithm,
the estimates &]%ﬂ- are not independent for any coordinate k. However, the errors due to the terms

\Ilgj)l, \IIS,)% \1137)3, \IJS)4 are mutually independent because they do not depend on ©. Moreover, the
()

uncertainty in the estimate due to U, can be accounted for by the sin-squared error of o only,
which is bounded with high probability by equation 10.

Lemma 27. Let {f?k}ke[d} be the output of Algorithm 1. Under assumption (50), with probability
1—26, for all k € [d],

b2 log B 2 Blog (1) log (N/log (% 2
A% — Vi < 8 L_i_z Vip + O | £ o8 Ma n og (3) log (N/1log (5)) Mo
\/ﬁ m vmB A — Ao NlogB A1 — Ao

o bim2logZdlog® B [ My \* MMZlogB
+ B A — A PN A
1 2 B (A — A2)

Moreover, let K be the set of indices in [d] that satisfy assumptions (59), (60), and (61). Then, for
alk € K,

. Vik
‘vk — e,l—\/ek’ =0 <\/ﬁ> .

Proof. Recall the error decomposition equation (53) of Lemma 24. The first term is bounded in
equation (54), while the second term is bounded above as

o 2
Zjé[m} <el—|c—lI](Bg,)1

&g,g—[ﬁ[(eZ%J)QHS(1+e> - ) —E[(e;%’lﬂ “E[(e’j%’lﬂ

S (T w) + (T wds) + () + (efwd)’
€ jetml

= a0 + By,
m

‘=€small

8 .
where € = 2/\/m, a4y = — Zje[m](e;\llg)o)z and f ¢ is the sum of the remaining summands. We
em ’

drop the index k from the subscript presently.
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By assumption (51) on o, the event

o, Clog (3) log (N/1log (})) M3
e {sz Go) s = 0 R

occurs with probability at least 1 — §. Under this assumption, Lemma 14 implies

Tg® )’
(61: lI'no) vmlog (l)log (N/log (5)) M3
ar = v mi;[m} m N — A\2)2 ‘

for all £ € [my]. Also, following the proof of Lemma 24, with probability at least 3/4,

1 9 b2log? B My \?
- 2 B k
5€N8<\/m+m) 18 (A1 = A2) Vir + O <B3/277’Ll/2 <)\1—)\2>

+O<bzm21og2dlog43< Mo >4 A1M§10g23>

B? AL — X B2 (A — \p)?
Also, the quantities 1, 8, ..., B¢ are mutually independent as they do not involve the error term
U, 0 or . By Lemma 12, the choice m; = 8log(d/§) and conditioned on the event &£, the median
Median ({07 ¢ }ecmi)) = 18 (A1 — A2) Yk (64)

satisfies the bound of Lemma 24, with probability at least 1 — §/d.

Taking a union bound over all k& € [d] and rescaling equation 64 by it follows that

conditioned on &£, with probability at least 1 — ¢,

+2>vkk+0<bﬁlog3< My >2+Blog(;)1og(zv/1og(§))< My >z>

1
ne(A1—A2)’

~ 1
e — Vig| < 8(

\/ﬁ vmB A — Ao NlogB A1 — Ag
L0 b2m?log? dlog® B < Mo >4 A M3log B
B AL — Az B —X)% )7

Since the event £ holds with probability 1 — §, the bound holds unconditionally with probability at
least 1 — 2. The second result follows by Lemma 26.

O
Remark 7. The first term of the error of Lemma 27 is O (Vi //m), where m = logn. We verify

that for N = n = mym the other terms are smaller asymptotically in n. Since m = logn and
ma = 8log(20d/d) where d = poly(n), we have

n n
B = =0 ——— |.
mmy <lognlog d)
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Therefore, each summand with a /B or B in the denominator of the error of Lemma 27 is O(1/+y/n).

It suffices to show that \/—% asymptotically dominates ﬁ,kl’oggj\; where N' = N/log (%) Note that

1 <logd < 5logn, B=0(n) and log B = O(logn). Therefore,

Bmim m
BlogN' log(1/6) log (1og(11/5)) _log(1/6)log(Bm) N log(1/6) log 153175y
N'logB mimlog B N mimlog B mimlog B
log(1/4) logn N log (log(rlb/é)) _0 1 _, 1
lognlog(d/d)logn ﬁlogn logn vm) '’

C Entrywise Error Bounds

Lemma 28. Let the learning rate, n,, be set according to Lemma 9. Further, for X; ~ P, A; =
X, X', let ||A; — Ellop £ M almost surely. Then, for ¢ € (0,1), with probability at least 1 — 4, we
have for all k € [d],

d d A1 d
< \/ﬁn (ef ViRoV " eg) log <6> + Nnbk (M log <6> + My, N /\2”10g <5>>

where W, 1 is defined in Lemma 2, by, = HVIekHz, M:=E [VI (A; — ) vv] (4 — o)’ VJ_:| and

Ry € REDX(d=1) wyith entires

T
‘ek \I/nJ

My
Ro(k,l) = Vk,leld—1

Proof. Using Lemma 13, we have

n
e;—\Ian = nne;Yn = Znne;—X}z, where Xjn = VLAZiQVI(Aj — YY)y
j=1

Let o := nneZXj”. Then, note that E[a;] = 0. Furthermore,

F (03] = 26l VIATIE [V (45 D) o] (4~ )T Vi ALV ex = el VAT TRIAT V] e = o,

5] = el VANV (A = Dy < by [ A7 M < i

Therefore, using the fact that a; are independent of each other, along with Bernstein’s inequality,
(see e.g. Proposition 2.14 and the subsequent discussion in Wainwright [2019]), we have with
probability at least 1 — 6,

T
‘ek \IITL,I

a 1 1
< Zajzk log (5) + N Mby log (6)
j=1
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Furthermore, considering a union bound over k € [d], we have for all k € [d],

T
‘Ck \Ij’n,l

. d d
< Za?k log <5> + np M log (6)
j=1

Finally, using Lemma 1, we have

n n
Z a?k =nle) Z VIATIMAT | Ve,

j=1 j=1

= nne;—[E [Y Y, } ek

= nnek v, (R(")) Vj—ek

saietvs (G (#0 = 52) ) Vi

R
< nnell—VLROVISk —+ ngb% R(n) _ 7770
n P
2b2 \ M3
< med ViVl T

which completes our proof.

O

Lemma 29. Let the learning rate, n,, be set according to Lemma 9. Then, for § € (0,1), with
probability at least 1 — 0, we have

ninM3log d N V/3niny/nMslog (d)

H\I’n,2 + \I]n,i’) + ‘Ijn74||2 5

Vv NG
log (%) \/777/\/12 log (d
d i (A n
+ &3 feXp( Nnn (A1 — YD
and for all k € [d],
ef (W2 + W+ )| < bWz + Wy + Wl
< bgnanM3logd n bir/Sniin/nMa log (d)
lo 1 M21
+ by, ggé) Videxp (—nun (A — \/77 og (d
0 VAL A2
. L T L Clog(%) nnMg
where Wy, 9, ¥, 3, W, 4 are as defined in Lemma 2, by, := HVJ_ ek’H2 and 8, = 5 for a

universal constant C > 0.
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Proof. We have

H\I/mz + \11%3 + \I/n74H2 < ‘e;‘l’mg + ’6;\117173 + ‘62\1’71,4 (65)
Using Lemma 18, we have for all k € [d], with probability at least 1 — %,
122 M2nlogd _ 21n> M3nlogd

5/3 Vo

Using Lemma 20 , along with the definition of 7, in Lemma 9, with probability at least 1 — g,

Vony/log (3) VM Nny/nMa log (d)
Vsl < V200 (Ve (—an (A1 — Ao)) 4+ 2 L
[P0y < o <\fexp( N (A1 2))+m>+\/; 7
<@ Vdexp (—in (1 — Ag)) + | L2080/ M5 nMalogd
~ Tl PAT T (AL = A2 e R )
log (1 anM3
< oggga) (ﬁexp (_nnn()\l _)\2))+ \/7771777’/-\/\/121§g (d)> 7 (67)
1= A2

where the second inequality used s, < 1. Using Lemma 22, along with the definition of 7, in
Lemma 9, with probability at least 1 — g,

1 VninMElog (d
Wl S =5 (V&exm—nnn (A — Ag)) + VMo log ( )> (68)

VAL — A2
The first result follows by a union bound over (66), (67), (68) and substituting in (65). Finally,
note that using Lemma 2, 3z, Yn, 2n € R?-! such that of V,0 = VJ_VI.Tn, V,3 = V]_ijn,

V4= VLVISUH. Therefore,

el—lg— (\I]n,Q + \Iln73 + ‘lln,4)‘ = ‘GEVLVI (xn + yn + Zn)

- \e;vlvawj (Zn + Yo + 2n)

< HegVJ_VLT’L HVJ_VLT (xn + Yn +Zn) 5

= by [[Wn2 + Vs + Y,

which completes the proof of the second result. O

Now we are ready to prove a detailed version of Theorem 1.

Lemma 30. Let the learning rate, n,, be set according to Lemma 9. Further, for X; ~ P, A; =
X;X,", let ||A; — ZHOP < M almost surely. Define roja := Voja — (vlTvoja) vi. Then, with probability
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at least 1 — 6, for all k € [d],

d d [ A / d
< \/ n (e;VLROVIek) log (5> + Nnbi <./\/l log (5> + My " —1)\2 log <5>>

+ by, log (5) <\/gexp (=1n (A1 — A2)) + M log (d)>

T
’€k T'oja

o VA= %
n byinM3 log d " bier/Snn/nMa log (d)
Vo NG
Clog( L 2 —
where by, := HVlTek‘ 90 Sn 1= %(?[g‘é), M =[F Vj (Aj -Y) UIUIT (Aj . Z)T VJ_} and Ry €

RA=D>(d=1) with entires

My
Ro(k,l) = k,lel|ld—-1

Proof. Using Lemma 2, we have
T T T T T
€k Toja ‘= € Vo1 t+epVUno+epWnz+e,Ung

Therefore,

< ‘e;\pn,l

T T T T
’ek Toja + ’ek Vypo+e,Wns+e, Uy

The result then following by a union bound over the events defined in Lemma 28 and Lemma 29. [

D Central Limit Theorem for entries of the Oja vector

We consider the following setup from Chernozhukov et al. [2017a]. Let A™ denote the class of all
hyperrectangles in RP. That is, A™ consists of all sets A of the form:

A={weRP:a; <w;j<bjforallj=1,...,p} (69)
for some real values a; and b; satisfying —oo < a; < b; < oo for each j =1,...,p.
Consider . .
SX = NG Z;X
where X;,i € [n] € RP are independent random vectors with E[X;;] = 0 and [E[Xl?j] < oo, for

i € [n],j € [p]. Consider the following Gaussian approximation to S:X. Define the normalized sum
for the Gaussian random vectors:

1 n
\/ﬁiZI
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where Y7,...,Y,, be independent mean zero Gaussian random vectors in RP such that each Y; has
the same covariance matrix as X;. We are interested in bounding the quantity

pn (A™) := sup |P (SxeA)-P(S) e A)|
AgAre

Let C,, > 1 be a sequence of constants possibly growing to infinity as n — oo, and let b,q > 0 be
some constants. Assume that X; satisty,

(M) 0= 300 E[XE] > b forall j=1,...,p,

(M.2) n 130 E[|X;>T*] < Ck forall j=1,....p and k = 1,2.

Further, the authors consider examples where one of the following conditions also holds:
(E.1) Elexp(|Xs]/Cr)] <2 foralli=1,....,nand j=1,...,p,

(E.2) E[(maxi<j<p|Xij|/Cn)l] <2 foralli=1,...,n

Let
PO (C;f 10g7(lm)>1/6 D@ _ (C,% logg(pn))1/3

Now we present Proposition 2.1 [Chernozhukov et al., 2017a].

Theorem 3 (Proposition 2.1 [Chernozhukov et al., 2017al). Suppose that conditions (M.1) and
(M.2) are satisfied. Then under (E.1), we have

pn(A”) < CDLY,
where the constant C depends only on b; while under (E.2), we have

re 1 2
pn(A™) < C{DP + DA},

where the constant C' depends only on b and q.
Next, we will need the following result cited by Chernozhukov et al. [2017b].

Theorem 4 (Nazarov’s inequality [Nazarov, 2003|, Theorem 1 in [Chernozhukov et al., 2017a|).
Let Y = (Y1,...,Y,)T be a centered Gaussian random vector in RP such that
[E[Y]?] >0% forallj=1,...,p

I

for some constant o > 0. Then, for every y € RP and § > 0,

PY <y+0)—PY <y) g \/210g +2).

Here, for vector y € RP, y + § denotes the vector constructed by adding § to each entry of y.

Now we are ready to state our main result in Proposition 2,
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Proposition 2 (CLT for a suitable subset of entries). Suppose the learning rate ny, set according

2
% < % for some b > 0 and a small universal constant Cy. Let
1—A2

{X;}", € R? be i.i.d. mean-zero random vectors with covariance matriz ¥ such that for all vectors
v € R, we have

to Lemma 9, satisfies

2, T
E [exp (vTXl)] < exp (J Y EU) .

Let roja 1= Voja — (virvoja)vl. Consider the set J := {j : Vj; > b}, and let p := |J|. Let H; :=

H T .
MVLAﬁ_’VI (XiXZT — E) vi. Let'Y; € RP be independent mean zero normal vectors such

1+77n>\1
that n
E[V;YT) = " E[H;[J]H[)T).
A1 — A2
Then,
To'a[J] (ZK ) 5 ( M4 >1/3 . ( MQ )1/2 B
Pl —22" ___cA|-P -~ cA)|l=0 /6, e 1/8 ,

Aselilpm ( (A1 = A2) 7, ) Vn P " A1 — A2 "

where O hides logarithmic factors in n, p, and constants depending on b.

Proof of Proposition 2. Consider the error decomposition of the Oja vector in Lemma 2. We have
Toja = Wn1+ Yno + V3 + W4, where U, 1, W, 0, W, 3, ¥, 4 are defined in Equation (19). Let
R:= ‘Ijn,Q + \Ijn,3 + \Iln,4~

For any § € (0,1), 3¢ > 0 such that from Lemma 29 we have,

P((n (A1 — A2)) " V2||R|la > €) <6

we will specify € as needed in the proof.

For all i € [n], let

Ui = \/nnn/ ()\1 — )\2) HZ (70)

Cn

We show that Uy, Us, ..., U, satisfy conditions (M.1) and (M.2) with suitable constants.

For (M.1), using equation (19),

n
> Hi=0,;. (71)
i=1
By Lemma 1 (equation (9)), there exists a universal constant Cj such that

[ M o~ . NuAT M3
e E|\HH | -V]e| < —222
J <)\1 - )\2 ; [ ] ) / Co ()\1 — )\2)2

Vjj

27

b
< =<
=3 =
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for all j € J, where the last two inequalities follow by assumption and definition of J. This implies
forall j € J,

A S Z[E 2> V/2>0/2 = Z[EU2 > V,;;/2>b/2
1= A2

To show (M.2), by Lyapunov’s inequality and Assumption 1:
E U2 Hls] = E |2 Hy 7] < 2(caMa)*

for k € {1,2}, where C), := 2¢, M.

We now check condition E.1. Now note that for any unit vector u € R%, «” H; is subexponential
with parameter o2\; (Proposition 2.7.1. of [Vershynin, 2018]). Hence, there exists a constant C' > 0
such that

Elexp(|Hij|/CAo?)] <2
Therefore,

Elexp(|Uij|/CAicnc?)] < 2.

Now we set C,, := max(2¢, M4, CA1c,0?).
Using Eq 71,

W] = Vi O = ) Y L) = jﬁ > vil]

(A1 = A2)mn

the random variables U;[J], ¢ € [n] satisfy conditions (M.1), (M.2) and (E.1). By Theorem 3,

2 1og7<pn>>” °

n

p(A) < C (

Recall from the statement of the proposition that Y;,i € [n] are mean zero independent Gaussian
vectors in RP with the same covariance structure as U;[J], i.e, E[Y;Y;"] = E [U;[J]U;[J]T].

Let Sy be the random variable ), W; for any collection W of n random variables Wy, W, ..., W,.
Consider the vector Syy[J] to be the projection of W on the set J, defined as e, Sy[J] = e, Sy for
ieJ.

Recall that

eTroJa = e ZnnH + R
7j=1

Let A := {u € [Rp|ui € [ai,bi],i S J} Let Az_ = {X|XZ € [ai—e, bi—l—e],i S [p]} and AE_ = {X|XZ S
[a; + €,b; —¢€],i € J}.
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Let Sg[J] :=>";c; €l Toja. Then, we have Sg[J] = n,Su[J] + R[J].
We will use the following identity for vectors G1, Gy € RP.

P(Gi e A7, [|Gall <€) SP(Gi+Ga € A, ||Go| <€) < P(Gr € AL, [|Gof <€)

So,
P(G1+G2 € A) SP(GLe AL |V <o)+ P([V] =€)
P(G1+ G2 € A) > P(G1 € A_,[|G2|| < ¢)

Using G1 = Sy[J]/v/n and G2 = (9, (A1 — A2)) /2R, we have:

P(((A1 = A2) ma) ™ ?roja[J] € A) = P(Sy /v/n € A)

< P((\ = A2) 1) ™ ProjalJ] € A, (0 (= X2)) 2RI < ) + P((m (A1 = A2) ™I Rl2 = €)

—P(Sy/vn € A)
< P(SulJ]/vn € AF) + P((m (A1 = A2)) 2| Rll2 > €) — P(Sy /v/n € A) =: 4.

Note that v4 can be bounded as

vya < |P(SulJ]/vn € Af) —P(Sy/v/n € AF)|
+|P(Sy/vn € A) = P(Sy /vn € A)| + P((nn (A1 — X)) 2R > e).

Similarly,

P((M = A2) 0n) ™ roja[J] € A) — P(Sy /v/n € A) > wa,

where

wa = P(Su[J]/vn € A, (1n (M = 22) " 2|R|| > €) = P(Sy/v/n € A)
> P(SulJ]/vn € A7) — P((nn (A — X2)) V2||R| > ¢)
~P(Sy/vn € A7) +P(Sy/Vn € A7) — P(Sy/Vn € A).

Therefore, we have by Theorem 3 that for some constant C’ that depends only on b,

AGATe

Similarly,

sup [wal < C’

(c,% 1og7<pn>>”6
AEA e n

For P(Sy/v/n € AF) — P(Sy/+v/n € A), we will use Nazarov’s inequality (Lemma 4):

[P(Sy /it € A3) — B(Sy /v € 4)] < Y2 (/logp +2).
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sup ual <€ (SEEL) T [psy /v € ) - Py Vi e A)] 46

+|P(Sy/vn € A7) — P(Sy/vn € A)| + 6.

(73)

(74)



For bounding the terms concerning A_, we need to be a little careful because if b; — a; < 2¢, then
A7 has measure zero under the Gaussian distribution. If A_ is nonempty, then we have the same
bound as Eq 74. However, in case that is not true, note that there must be some i € [p| such that
b; — a; < 2¢e. Hence

‘[P(Sy/\/ﬁ € Ae_) — [P(Sy/\/EE A)‘ = I]D(Sy/\/ﬁ S A)

= P(Sy[i]/v/n € [ai, bi])
2¢

< (75)

So overall,

‘[P(Sy/\/ﬁ € AE_) — P(Sy/\/ﬁ € A)‘ = [P(Sy/\/ﬁ € A)
= P(Sy[il/v/n € [ai,bi])

2e
§max<\rb1/2,b1/2 v 2logp+2) ) (76)

Putting Eqs 72, 73, 74 and 76 together, we have, for some absolute constant Ci:

sup |P(((A1 — A2) nn)*l/Qroja[J] €A — [P(nil/QSy € A)| <max( sup |ya|, sup |wal)
A€Are AcAre A€Are

C2log™ (pn
< <()> b1/2\/log 6. (77)

n

We invoke Lemma A.2.3 in Kumar and Sarkar [2024a] to see that: My < A\;+o?trace (). Therefore,
for some constant C” > 0,

(A1 — )\2)

From Lemma 29 and the assumption on the learning rate (Lemma 9),

nnnMQIOgd VSnny/nMalog (d) +log() Vn3nM3log (d (78)
Ve V6 5 VAL — A2

Cy, = max(2¢, My, CAicpo?) < C” My.

n ()‘1 /\2)

Substituting the bound on € from equation (78) into equation (77) and optimizing over 4 yields

=~ log p 1/8 Mo —1/8
5—O<< 2 ) /\1_)\211 . (79)

Substituting the choice of ¢ from equation (79) in (77), we conclude

59 [P((O = 22) )™ real]] € 4) = P(n~ Sy € A)
e re

— 0 My 13 -1/6 Ms 2 -1/8
_O<max<<>\1_/\2> n s m n .
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