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The role of contrast in category learning
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Abstract

Word meanings are contrastive. When we are told that some-
thing is a square, we are also told that it is not a triangle. How-
ever, words may be learned in different contrasts. One person
might learn about squares in contrast with circles. Does this
mean that the two have different representations of “square?”
To answer this question, participants learned to label novel
shapes with novel labels in a category learning task. Critically,
we manipulated the contrast participants received during learn-
ing: an A-shape is specifically not a B or an A-shape is specifi-
cally not a D. Afterwards, we tested participants’ knowledge
of the learned categories using explicit categorization tasks
and similarity judgments. Contrast during learning mattered.
Shapes from contrasted categories were categorized more ac-
curately, were less confusable and rated as less similar.

Keywords: categorization; contrast; word learning; similarity

Introduction

Many word meanings are partly defined by what they aren’t.
A weekend is not a weekday. A suburb is an area that is
neither urban nor rural. Vegetarians are people who don’t eat
meat. In these cases, contrast doesn’t merely complement
meaning—it actively constructs it. /

Language users are attuned to this idea of definition-by-
contrast. For example, when asked to generate semantic as-
sociates for words, participants often produce members of a
contrastive category, like “cat” for “dog” (G. L. Murphy &
Andrew, 1993). Likewise, when asked to list items that one
usually finds in a kitchen, people—not surprisingly-list typical
items like a stove and a refrigerator. But when asked to list
what is not found in a kitchen, people also produce similar re-
sponses, listing items like “toilet” and “bed”—items typical of
categories that are in direct contrast with “kitchen” (Greene,
2016). A kitchen isn’t solely defined by what it contains, but
in opposition to similar spaces.

In structuralist theories of semantics, words don’t exist in
isolation. Instead, meaning is derived through the relation-
ship to other words and concepts in a network (De Saussure,
1916). Under this framework, words are organized into inter-
connected fields or domains, where meaning emerges through
opposition (M. L. Murphy, 2003).

Given that words can be defined in relation to what al-
ready exists, learners expect new words to be different. A
new concept could be representative (Tenenbaum & Grif-
fiths, 2001) of the opposite category (e.g., the best dog is the
least cat-like dog) or maximally dissimilar (Austerweil, Liew,
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Conaway, & Kurtz, 2024) from an existing one (e.g., the best
dog is the most dog-like dog). This tendency extends to how
learners represent and understand categories: when partici-
pants learn categories that contrast on specific dimensions,
their representations become idealized, exaggerating the dif-
ferences along contrasted dimensions (Davis & Love, 2010).
Contrast doesn’t just refine existing categories but fundamen-
tally guides the creation of new concepts.

Direct contrast between concepts may be more effective
than learning them in isolation. Building on the distinction
between blocked and interleaved learning, Kattner, Cox, and
Green (2016) systematically compared multiple learning ap-
proaches to understand how each approach affects category
representations. Participants were trained on four novel cate-
gories using one of four tasks: blocked learning, interleaved
learning, identification training (answering yes/no if a stim-
ulus matched a category label), and triplet training (match-
ing one of three labels to a stimulus). Interestingly, the most
effective approach directly leveraged contrast. Of the four
tasks, identification training, which explicitly required par-
ticipants to judge what categories didn’t include, transferred
most successfully to a novel discrimination task. By drawing
attention to the relationships between categories, identifica-
tion training led to more robust outcomes.

Definition-by-contrast is further complicated by the inter-
nal structure of categories themselves. Categories are not uni-
form: some members are more typical or representative than
others (Rosch & Mervis, 1975). These prototypical members
share more features with other category members and fewer
features with members of contrasting categories. As a result
of this graded structure, more central members show robust
processing advantages: they are categorized more quickly
(Thorpe, Fize, & Marlot, 1996), recognized more accurately
(G. L. Murphy & Brownell, 1985) and serve as cognitive ref-
erence point for the category as a whole (Rosch & Mervis,
1975).

The competition between typicality and contrast creates an
interesting explanatory tension. While typicality effects sug-
gest that category representations are organized around a cen-
tral conceptual core, contrast effects suggest that categories
are defined by boundaries. Given this asymmetry, contrast
could disproportionately affect boundary members, sharpen-
ing distinctions where categories are most confusable; learn-
ing that A is not B,” might be most useful for atypical A
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exemplars that share features with B. Alternatively, contrast
could accentuate diagnostic features, strengthening the dis-
tinctiveness of typical members; learning ’A is not B’ could
reinforce the characteristics of both categories.

The function of contrast may depend on category struc-
ture, the relevant dimension, and task demands. Percep-
tual discrimination between similar stimuli increases along
categorization-relevant dimensions and is particularly pro-
nounced at category boundaries(Goldstone, 1994). But while
some dimensions primarily show assimilation, or increased
similarity effects, others primarily show contrast effects, de-
pending on the extremeness of the stimuli being compared
(Barker & Imhoff, 2021). /

The current experiment explores how contrast shapes cat-
egory representations. Participants were taught four novel
shape categories paired with four novel labels (for clarity, we
will refer to them ‘A’, ‘B’, ‘C’ and ‘D’) arranged in a cir-
cular stimuli space that varies on a single continuous dimen-
sion. Though adjacent categories in this space are theoreti-
cally equally perceptually similar (As are as similar to Bs as
they are to Ds), participants were assigned to different learn-
ing conditions, manipulating which category was contrasted
with the target. For example, on a training trial, a person as-
signed to the AB/CD contrast saw the A label paired with an
A shape (the correct response) and a B shape (the incorrect
response). A person assigned to the AD/BC contrast would
see an A label paired with the same A shape, but would see a
D shape as the incorrect option. So for AB/CD participants,
an A is not just an A, but also explicitly not a B. For AD/BC
participants, an A is explicitly not a D.

After learning, participants completed three tasks to assess
their acquisition and representation of the new categories:
matching the shape to its name (Label-Choice), similarity
judgments, and matching a name to a shape (Shape-Choice).
Drawing on findings that contrast supports category distinc-
tion and generalization, we expect that category pairs will be
perceived differently based on their training history. Specifi-
cally, categories that were directly contrasted during learning
(e.g., learning that A is not B) should be rated as less simi-
lar than pairs that were never contrasted (e.g., never learning
about A and C together). Furthermore, we expect contrast to
interact with typicality. If contrast sharpens category bound-
aries, we should observe a stronger benefit from contrast for
boundary exemplars than for typical ones—potentially clos-
ing the typicality gap in categorization performance (Rosch
& Mervis, 1975). Alternatively, if contrast augments within-
category similarities, we could see enhanced typicality ef-
fects, where typical members are even more easily distin-
guished from those in contrasted categories.

Methods

Participants

We recruited 223 participants through the UW-Madison
SONA participant pool, who received course credit for their
time.
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Stimuli

We used the “Validated Circular Shape” (VCS) space devel-
oped by Li, Liang, Lee, and Barense (2020). The VCS is
intended to mirror the color wheel, such that angular distance
along a 2D circle reflects visual similarity. This creates a con-
tinuous space of ostensibly perceptually equidistant shapes.
As a result, a given shape is equally similar to the shape the
same number of degrees away in either direction on the circle.
Although the shape space was previously validated through
human similarity ratings (Li et al., 2020), as we shall see,
there is reason to think the space is not in fact perceptually
balanced, which required us to conduct an additional norm-
ing study.

190 180} 170

Figure 1: The category space in all conditions (1, 2, 3 and 4).
Given the target A category, if B serves as the “contrast,” then
D is the “neighbor” and C is the “orthogonal” category.

We divided the VCS space into four categories of eight
shapes each (Figure 1). Within each category, shapes were
divided into inner members (highlighted), which are more
central and so more typical members of the category, and
outer members. The outer members were located closer to
category boundaries and thus were more similar to the ad-
jacent categories than the inner shapes. The use of normed
stimuli aimed to ensure that differences in participants’ cate-
gory representations were not due to differences in perceptual
distance between categories, however Zettersten, Suffill, and
Lupyan (2020) found that the visual discriminability of these
shapes was moderated by nameability. To mitigate this and
ensure generalizability, participants were randomly assigned
to one of four conditions that corresponded to different cate-
gory configurations in the space. Conditions were created by
shifting the categories 20 degrees clockwise. Each category
was given one of four novel labels: foma, ridu, loti or fimo.
Label assignment was counterbalanced across participants.



Procedure

The experiment was divided into four tasks (Figure 2): initial
learning, label-choice, similarity-judgments, and generaliza-
tion.

Learning During learning, participants were shown two
shapes from different categories and a category label. They
were instructed to select the correct shape for the label using
the ‘z’ or ‘/” keys, for the left and right shape respectively.
After each trial, participants received auditory feedback.

Though participants were trained on all four categories,
they were randomly assigned to one of two conditions manip-
ulating the pairs of categories shown together, or contrasted,
on a given learning trial (Figure ??): AB/CD (A is contrasted
with B and C is contrasted with D) or AD/BC (A is con-
trasted with D and B is contrasted with C). The specific con-
trast established during learning creates distinct relationships
between the categories, allowing us to examine how contrast
affects accuracy, generalization and perceived similarity. For
a participant in the AB/CD condition, if Category A was the
target shape, Category B would be the contrasted category
(adjacent to A and directly paired with A during learning).
Category D would be the neighboring category (adjacent to A
but never directly contrasted with it), and Category C would
be the orthogonal category (opposite to A).

Crucially, only inner category members (i.e., the more typ-
ical shapes) were presented in learning trials. This enabled
us to test how well participants generalized to the outer (less
typical) shapes, and how typicality might interact with con-
trast.

Label-Choice After learning, participants proceeded to the
Label-Choice task where they were asked to match a shape
to the appropriate label. Participants did not receive feedback
during this task. Participants completed 32 trials: one for
each shape.

Similarity Judgment Following the Label-Choice task,
participants completed similarity judgments. They were in-
structed to select which of three shapes in a row was most
similar to a target shape displayed above them. Each row con-
tained one shape from the contrasted, orthogonal, and neigh-
boring categories, relative to the target shape, with their posi-
tions randomized across trials. All similarity judgments used
only inner (typical) category members.

To control for the effect of perceptual distance, the con-
trast and neighbor shapes were the same number of degrees
away from the target. For example, in the AB/CD contrast
condition, if the target was from Category A at 50 degrees,
both the neighboring category shape (from Category D) and
the contrasted category shape (from Category B) would be
positioned 90 degrees away from the target. The orthogonal
category shape was always positioned 180 degrees away from
the target.

Shape-Choice The structure of the last task was the same
as learning. However, this task differed in two critical ways:

75

participants received no feedback, and shape pairs were no
longer restricted to contrasted categories or typical exem-
plars. Instead, trials included all possible shapes (both in-
ner/typical and outer/atypical members) and all possible cat-
egory pairings (contrasted, neighboring, and orthogonal com-
binations). Including combinations not seen during learning
allowed us to assess how well participants generalize their
experience learning contrasted categories to the rest of the
space.

Results

Data are available here. Analyses were performed using R
(R Core Team, 2013) and graphs were created using ggplot2
(Wickham, 2011).

Learning Overall accuracy was high (M = 0.90,SD =
0.29), reaching 96 % (SD = 0.19) by the final 25% of trials,
indicating participants successfully learned the categories. 3
participants were excluded for missing data. 18 participants
with mean accuracies below 0.75 were excluded for failure to
learn.

Label-Choice In the Label-Choice task, participants
needed to match a shape to the correct label. Participants
were mostly accurate (M = 0.76,SD = 0.43), even for outer
shapes (M = 0.69,SD = 0.46), which they hadn’t seen during
training. Accuracy during this task was correlated with par-
ticipants’ learning; better learners were more accurate over-
all, p(201) = 0.30, p < .001, and better able to generalize to
less typical category members, p(201) = 0.27, p < .001.

More interesting is what happened when participants made
errors (Figure 3). We conducted a linear regression to under-
stand which incorrect category label (contrast, neighbor, or
orthogonal) participants selected when they didn’t choose the
target one. Unsurprisingly, orthogonal category labels, repre-
senting shapes furthest from the target in the stimuli space,
were selected significantly less frequently than the con-
trastive category baseline (b = —0.30,SE = 0.03,7(585) =
—11.81,p < .001). More importantly, neighboring category
labels were selected significantly more frequently than con-
trastive ones (b = 0.15,SE = 0.03,#(585) = 5.91,p < .001),
despite both categories being the same angular distance from
the target shape. Consistent with our predictions, contrasted
categories became less confusable as a result of their explicit
pairing during learning.

Similarity Judgments In the Similarity Judgment task,
participants indicated which of three shapes (representing the
contrast, neighbor, and orthogonal categories) was most simi-
lar to the top shape. As expected, a linear regression revealed
that the orthogonal category was chosen as “most similar”
significantly less frequently than either the neighbor or con-
trast categories (b = —0.44,SE = 0.03,#(600) = —14.18,p <
.001), which were selected at similar rates (b = 0.04,SE =
0.03,7(600) = 1.32, p = .188).

However, closer analysis revealed a strongly bimodal dis-
tribution (Figure 4): approximately half of the participants
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Shape-Choice

Label-Choice

Similarity Judgment

Figure 2: The four experimental tasks: Shape-Choice (Learning and Generalization), Label-Choice, and Similarity Judgments.
In the Shape-Choice tasks, participants needed to match the correct shape to the label. In the Label-Choice task, participants
needed to pick the right label for the given shape. Finally, in the Similarity Judgment task, participants selected which shape

was most similar to the top one.
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Figure 3: Distribution of participant errors in the Label-
Choice task by category relationship

consistently chose the contrastive category (M = 0.46,SD =
0.38), while the others consistently selected the neighbor
(M = 0.50,5SD = 0.38). Further inspection showed that these
preferences were strongly predicted by participants’ assigned
stimulus condition (1, 2, 3 or 4) and contrast (AB/CD or
AD/BC), suggesting the shape space was not perceptually
well-equated as intended. To address this, we collected base-
line similarity data from a separate group of 91 MTurk par-
ticipants who completed the similarity judgment task without
any category training. We then used these baseline similar-
ities as a covariate to control for the inherent perceptual bi-
ases when analyzing the likelihood of contrast versus neigh-
bor choices.

For the analyses that follow, we exclude the predictably
rare “orthogonal” responses and include just the trials on
which participants chose the “neighbor” or “contrast,” to bet-
ter understand what guided these choices. We ran a lin-
ear mixed-effects model predicting participants’ shape selec-
tion with fixed effects for baseline probability, contrast type
(AB/CD vs. AD/BC), nameability, stimulus type (neighbor
vs. contrast), and their interactions. We also included ran-
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dom slopes for stimulus type by participant.

The direction of contrast (AB/CD or AD/BC) had the
largest effect on participants’ similarity judgments. For the
AD/BC training condition, participants were significantly
more likely to choose neighbor stimuli, while for the AB/CD
training condition, participants showed a strong preference
for contrast stimuli (B = 0.29,7 = 26.06). This suggests
that, regardless of contrast, participants had a preference for
grouping portions of the circle together, such that right/left
groupings were preferable to top/bottom ones. That is, A’s
were always chosen as more similar to Bs than Ds (and C’s to
Ds than Bs).

We also found that baseline similarity was a predictor of
which supposedly perceptually equidistant shape participants
chose (B = —0.018,t = —14.68). If indeed angular distance
corresponded to perceptual distance as you traverse the space
in either direction, there should have been no systematic base-
line preference between shapes equidistant from the target.
This finding suggests that the VCS stimuli are not as well-
normed as described in Li et al. (2020).

Contrast and baseline similarity further interacted with
whether the shape was the contrast or neighbor (f =
—0.011,# = —8.93). Though baseline similarity had a
stronger influence on AB/CD contrast participants’ choices
overall, this effect was more pronounced for contrast shapes
than for neighbor ones. Conversely, for participants who re-
ceived an AD/BC contrast, baseline similarity was weaker in
general and most pronounced for neighbor stimuli, suggest-
ing that the impact of contrast depends on prior similarity.
More specifically, when combined with participants’ general
lateral similarity preferences, learned contrast was most ef-
fective when it supported an existing perceptual contrast, di-
viding the space horizontally.

Shape-Choice This task mirrored learning—participants
needed to match the name to the correct shape—but included
all contrasts (AB, BC, AD, AC, etc.) and all shapes, both
inner (more typical) and outer (less typical).

Mirroring the Label-Choice task, overall accuracy was
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Figure 4: Distribution of participant choices as “most similar”
in the Similarity Judgment task by category relationship

high (M = 0.90,SD = 0.30) and correlated with learning,
p(201) = 0.47,p < .001. To examine the effect of category
relationship on accuracy, we fit a generalized linear mixed-
effects model with relationship type as a fixed effect and ran-
dom intercepts for participants. Unsurprisingly, participants
were best at trials between shapes from orthogonal categories
(M =0.92,5D = 0.26), which by nature compared shapes fur-
ther away in the category space than neighbor and contrast
trials (f = 0.24,z =6.42, p < .001).

Focusing on just adjacent (contrast and neighbor) tri-
als, there were significant main effects of relationship type,
stimuli location, and angular distance (Figure 5). Partici-
pants were less accurate on neighbor trials compared to con-
trast trials (B = —0.18,z = —4.70, p < .001), suggesting that
training enhanced discrimination for directly contrasted cat-
egories. Similarly, participants were less accurate at tri-
als that contained less typical outer shapes (f = —0.19,z =
—7.94, p < .001), replicating classic typicality findings. We
also found an interaction between trial type and typicality
(B =0.04,z =2.61,p = .009): while participants generally
performed worse on neighbor trials and with atypical shapes,
the negative effect of neighbor trials was reduced when in-
volving atypical shapes. In other words, the accuracy advan-
tage for contrast trials (which participants had been trained
on) was more pronounced with typical shapes and diminished
with atypical ones. The benefits of contrastive training may
be reduced when learners are asked to generalize to unseen
exemplars.

Discussion

How much of knowing something is also knowing what it’s
not? In this experiment, we investigated how explicit con-
trast provided during learning influences category represen-
tations. Participants were trained on four novel shape cate-
gories, learned in contrast with each other (e.g., “an A is not
a B” or “an A is not a D”). Afterwards, we evaluated par-
ticipants’ category representations using both categorization
accuracy (in the Shape-choice and Label-Choice tasks) and
explicit similarity judgments to examine how contrast shapes
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Figure 5: Participant accuracy in Shape-Choice Task by cate-
gory relationship and stimuli typicality

category boundaries, affects typicality gradients, and influ-
ences generalization to novel examples.

As predicted, contrast during learning mattered. Across
two tasks, participants showed better discrimination between
categories that had been directly contrasted during training
compared to those that were never contrasted. In the Label-
Choice task, participants were less likely to confuse the label
for a target shape with the label for the contrastive category,
suggesting that contrast enhanced between-category distinc-
tiveness. This result is particularly striking given that the la-
bels for the contrastive shapes consistently co-occurred dur-
ing learning; the label for A was always seen with B shapes,
and vice versa. While previous work (Zettersten et al., 2020)
has demonstrated that object co-occurrence and overlapping
visual contexts, increased confusability—object associations
came at the cost of successful word learning—we find the
opposite. Rather than making categories more confusable
through association, contrastive co-occurrence appeared to
facilitate their discrimination.

The Shape-Choice task showed a similar pattern of re-
sults; participants were more accurate on contrast-typical tri-
als than neighbor-typical trials, despite both trial types dis-
playing stimuli that appeared equally often during training.
This suggests an advantage when matching labels to refer-
ents in familiar contrastive contexts, reinforcing the finding
that contrast during learning improves discriminability.

Beyond the benefit of contrast, we also observed a typi-
cality advantage: participants were more accurate at cate-
gorizing inner (typical) shapes on both explicit categoriza-
tion tasks, consistent with classic literature (Jolicoeur, Gluck,
& Kosslyn, 1984). However, the interaction between con-
trast and typicality in the Shape-Choice task revealed a more



nuanced picture. If contrast sharpens category boundaries,
we would expect greater benefits for atypical or ambiguous
shapes near these boundaries, where discrimination is most
challenging. Instead, we found the reverse: contrast sup-
ported the categorization of typical shapes. Though con-
trast didn’t preferentially reinforce category boundaries, it’s
unclear if this benefit for typical shapes was driven by the
alternative—emphasizing category similarities—or straight-
forward familiarity. Participants may have performed better
simply because they saw only typical examples in contrastive
frameworks during training.

This confound between a focus on shared features and fa-
miliarity leaves the mechanism that drives contrast an open
question. Two alternative (but potentially simultaneous) ac-
counts could explain how contrast benefits categorization.
First, by accentuating the differences between in-group and
out-group members, contrast might push categories apart on
the most relevant dimension (Davis & Love, 2010), effec-
tively sharpening category boundaries similar to Tenenbaum
and Griffiths’ (2001) idea of representativeness. Second, by
drawing attention to shared features within a category, con-
trast could create tighter, more cohesive categories through
compression. Individual exemplars could become more sim-
ilar to each other, highlighting central category features in
a manner similar to Austerweil et al.’s (2024) maximal dis-
similarity principle. While our results tentatively challenge
the boundary-sharpening (distance-based) account, the cur-
rent experiment was not specifically designed to distinguish
between these hypotheses.

In addition to improving categorization and generalization,
contrast during learning also impacted similarity judgments;
participants who saw two categories contrasted during learn-
ing rated them as less similar, compared to baseline partici-
pants who received no category training. Even though con-
trasted categories always occurred in the same contexts, they
were chosen as less similar to a category that was never seen
with the target, the neighbor.

The direction of contrast (AB/CD or AD/BC) was the pri-
mary driver of participants’ choices. Learners who received
an AB/CD contrast consistently rated shapes from the con-
trasted category as more similar, while those who received an
AD/BC contrast preferred neighbor shapes. This further in-
teracted with baseline similarity, which had a stronger influ-
ence on participants who received an AB/CD contrast com-
pared to those in the AD/BC condition. That is, contrastive
learning more strongly overrode learners’ pre-existing per-
ceptual biases for AD/BC participants. The effect of contrast
may depend significantly on prior similarity.

Why are some contrasts more effective than others? Def-
inition by contrast is not only about dissimilarity. While a
concept is technically not many things (a dog is not a cat, but
it’s also not a book or a mountain), only some of these con-
trasts are relevant. The most functional contrasts are between
concepts that frequently co-occur or serve similar functions.
The things that something “is not” may still be quite similar.
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When asked to list what is not found in a kitchen, partici-
pants don’t mention logically correct but contextually irrele-
vant items like airplanes or volcanoes. Instead, they generated
items like beds and toilets—objects that serve similar domes-
tic functions, and belong to the same superordinate category,
but are different on a specific dimension (Greene, 2016).

It’s possible that contrast works best when emphasizing
existing distinctions, instead of creating them from scratch.
Though shapes in category A were supposed to be equally
similar to both Bs and Ds, our results suggest this wasn’t ac-
tually the case. The asymmetry in participants’ responses be-
tween the AB/CD and AD/BC contrasts, plus the influence
of baseline similarity ratings, indicates that the VCS space
had inherent perceptual groupings. Specifically, categories
seemed more similar when grouped laterally rather than hori-
zontally. This means some category boundaries (like between
A and D) might have been more naturally salient than others
(like between A and B). If indeed A’s are more similar to Bs
than Ds, participants could’ve leverage the existing dissimi-
larity between As and Ds during contrastive learning. Con-
trast, augmented with a linguistic cue, may have reinforced
an existing perceptual boundary.

Though the VCS space did not function as intended, it
nonetheless revealed important insights about the role of con-
trast. Ultimately, in real-world category learning, objects
aren’t perceptually equidistant on a single continuous dimen-
sion. Natural categories have complex and overlapping struc-
tures that vary on multiple features—no single feature makes
a cat not a dog. Our finding that contrast interacts with simi-
larity may more accurately reflect actual categorization.

Future work can better account for this relationship be-
tween contrast and pre-existing perceptual organization. Con-
trolling for underlying forms of similarity will allow us to
better understand what contrast is doing, whether it’s sharp-
ening boundaries, tightening categories, or creating new dis-
tinctions between them.

Our results reveal a complex relationship between con-
trast and category learning. Though contrast made categories
less similar and more distinguishable in explicit categoriza-
tion tasks, what something is contrasted with—and its relative
similarity—seems to matter.

References

Austerweil, J. L., Liew, S. X., Conaway, N., & Kurtz, K. J.
(2024, July). Creating Something Different: Similarity,
Contrast, and Representativeness in Categorization. Com-
putational Brain & Behavior. doi: 10.1007/s42113-024
-00209-5

Barker, P., & Imhoff, R. (2021, November). The dynamic
interactive pattern of assimilation and contrast: Accounting
for standard extremity in comparative evaluations. Journal
of Experimental Social Psychology, 97, 104190. doi: 10
.1016/j.jesp.2021.104190

Davis, T., & Love, B. C. (2010). Memory for category in-
formation is idealized through contrast with competing op-



tions. Psychological Science, 21(2), 234-242.

De Saussure, F. (1916). Nature of the linguistic sign. Course
in general linguistics, 1, 65-70.

Goldstone, R. L. (1994). Influences of categorization on per-
ceptual discrimination. Journal of Experimental Psychol-
0gy: General, 123(2), 178-200. doi: 10.1037/0096-3445
123.2.178

Greene, M. R. (2016). Estimations of object frequency are
frequently overestimated. Cognition, 149, 6-10.

Jolicoeur, P., Gluck, M. A., & Kosslyn, S. M. (1984). Pictures
and names: Making the connection. Cognitive psychology,
16(2), 243-275.

Kattner, F., Cox, C. R., & Green, C. S. (2016, October).
Transfer in Rule-Based Category Learning Depends on the
Training Task. PLOS ONE, 11(10), e0165260. doi: 10
.1371/journal.pone.0165260

Li, A. Y., Liang, J. C., Lee, A. C. H., & Barense, M. D.
(2020, May). The validated circular shape space: Quanti-
fying the visual similarity of shape. Journal of Experimen-
tal Psychology: General, 149(5), 949-966. doi: 10.1037/
xge0000693

Murphy, G. L., & Andrew, J. M. (1993). The conceptual
basis of antonymy and synonymy in adjectives. Journal of
memory and language, 32(3), 301-319.

Murphy, G. L., & Brownell, H. H. (1985, January). Category
differentiation in object recognition: typicality constraints
on the basic category advantage. Journal of Experimen-
tal Psychology. Learning, Memory, and Cognition, 11(1),
70-84. doi: 10.1037//0278-7393.11.1.70

Murphy, M. L. (2003). Semantic relations and the lexicon:
Antonymy, synonymy and other paradigms. Cambridge
University Press. (Google-Books-ID: 7pAlpz87jbEC)

Rosch, E., & Mervis, C. B. (1975). Family resemblances:
Studies in the internal structure of categories. Cognitive
Psychology, 7(4), 573-605. doi: https://doi.org/10.1016/
0010-0285(75)90024-9

Team, R. C. (2013). R: A language and environment
for statistical computing. Vienna, Austria: R Founda-
tion for Statistical Computing. Retrieved from http://
www.R-project.org

Tenenbaum, J. B., & Griffiths, T. L. (2001, August). Gen-
eralization, similarity, and Bayesian inference. Behav-
ioral and Brain Sciences, 24(4), 629—640. doi: 10.1017/
S0140525X01000061

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of pro-
cessing in the human visual system. nature, 381(6582),
520-522.

Wickham, H. (2011). ggplot2. Wiley interdisciplinary re-
views: computational statistics, 3(2), 180—185.

Zettersten, M., Suffill, E., & Lupyan, G. (2020). Nameability
predicts subjective and objective measures of visual simi-
larity. Proceedings of the 42nd Annual Conference of the
Cognitive Science Society.

79


http://www.R-project.org
http://www.R-project.org

	Introduction
	Methods
	Participants
	Stimuli
	Procedure
	Results
	Discussion

	References



