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Abstract—The world’s push toward an environmentally sus-
tainable society is highly dependent on the semiconductor indus-
try. Despite existing carbon modeling efforts to quantify carbon
footprint of computing systems, optimizing carbon footprint in
large design spaces—while also considering trade-offs in power,
performance, and area—is especially challenging. To address
this need, we present CORDOBA, a carbon-aware optimization
framework that optimizes carbon efficiency. We quantify carbon
efficiency using the total Carbon Delay Product metric (tCDP): the
product of total carbon and application execution time. We justify
why tCDP is an effective metric for quantifying carbon efficiency.
We use CORDOBA to explore the large design space for carbon-
efficient specialized hardware, and identify distinct carbon-
efficient optimal designs across operational use (eliminating up to
98% of the design space) despite uncertainty in carbon footprint
parameters. We quantify opportunities to improve tCDP for real
system case studies: (a) optimizing hardware provisioning from
8 to 4 cores in real system CPUs improves tCDP by 1.25x; and
(b) leveraging advanced three-dimensional (3D) integration tech-
niques (3D stacking of separately-fabricated logic and memory
chips) improves tCDP by 6.9x versus conventional systems.

I. INTRODUCTION

The carbon footprint of the Information and Communication
Technology (ICT) sector in 2020 already accounted for 2.1-
3.9% of global carbon emissions (quantified in units of carbon
dioxide equivalent: COqe) [1], [16]. It is expected to grow
due to an ever-increasing demand for computing hardware.
For example, between 2010 and 2018, the global datacenter
compute instances increased by 550% [32]. With the explosive
growth of Artificial Intelligence (AI), the design of next-
generation computing infrastructures requires more compute,
memory, and bandwidth [53].

Computer architects and designers have an opportunity
to improve computing’s carbon footprint, by exploring
carbon-aware design choices across process technologies,
logic/memory devices, architectures, integration and packag-
ing, and more. For decades, designers have conventionally
targeted energy-efficient computing systems, where energy
efficiency can be quantified by metrics such as energy-delay
product (EDP) [12], [19]. In this paper, we explore techniques
for designing carbon-efficient computing systems.

For quantifying the total carbon footprint of a computing
system (tC, in units of COge), over its entire lifetime, it is
essential to consider both operational carbon: emissions from
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Fig. 1. Summary of our CORDOBA framework for optimizing carbon
efficiency of computing systems. We distinguish between carbon accounting
efforts and carbon optimization efforts in carbon-aware design. Carbon
accounting focuses on quantifying carbon emissions due to hardware man-
ufacturing and use. Carbon optimization — the focus of this work — leverages
carbon accounting, in conjunction with optimization techniques, to determine
optimal trade-offs in power, performance, area, and total carbon footprint.

day-to-day operational use, and embodied carbon: emissions
due to hardware manufacturing [22], [27], [S0]. While oper-
ational carbon is directly proportional to a system’s energy
consumption during operation, quantifying embodied carbon
requires knowledge of parameters such as material sourcing,
energy used in fabrication, and other factors that we describe
in detail in this paper [7], [9], [22], [39].

Despite the importance of improving carbon efficiency,
reducing carbon footprint in large design spaces—while also
considering trade-offs in power, performance, and area—is
especially challenging. First, carbon footprint quantification
is imprecise, due to both (a) lack of transparency: designers
may not have access to detailed carbon emissions data from
manufacturing; and (b) inherent quantification uncertainties:
carbon emissions depend on parameters that can vary sig-
nificantly, such as variations in the carbon intensity (CI, in
units of COgze per kWh) of renewable/non-renewable energy
sources, which changes over time. Second, design guidelines
for carbon-aware optimization remain nascent. Hardware sys-
tem design communities are still learning which parameters are
the most important for improving carbon footprint, and how
these improvements affect energy efficiency, performance, and
area. Fortunately, useful tools for modeling tC of integrated
circuits (ICs), memory, and solid state drives are starting
to become available [22], [27]. To further improve carbon-
aware design, especially in the presence of inherent quantifi-
cation uncertainties, researchers can benefit from optimization
techniques that handle these uncertainties directly, instead of
waiting for carbon accounting accuracy to improve.
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We distinguish between carbon accounting and carbon op-
timization in carbon-aware design. Carbon accounting focuses
on quantifying carbon emissions due to hardware manufac-
turing and use. Such efforts involve companies who are best
positioned to report and minimize the environmental impact
of their supply chains (e.g., imec’s SSTS [25]). On the other
hand, carbon optimization — the focus of this work (see
Figure 1) — aims to develop methodologies, techniques, and
metrics to optimize carbon efficiency, by combining existing
carbon quantification efforts with mathematical optimization
techniques. This distinction between carbon accounting and
carbon optimization is analogous to the complementary roles
of process design kits (PDKs) and electronic design automa-
tion (EDA) tools in IC design. PDKs enable accurate modeling
of electronic device performance (such as transistors) in com-
puting systems. Their role is analogous to carbon accounting
and quantification. EDA tools leverage PDKs to optimize
the overall performance of computing systems. Their role is
analogous to carbon optimization. Both are essential, and can
be developed in parallel.

In this paper, we present CORDOBA - a carbon effi-
ciency optimization framework for computer system design.
CORDOBA focuses on carbon optimization, while leveraging
carbon accounting tools to understand trade-offs in power,
performance, area, and total carbon footprint. Since carbon
accounting might never be fully accurate, CORDOBA includes
techniques for optimizing carbon efficiency in the presence of
uncertainty in carbon accounting. Our key contributions are:

@ Justification that tCDP is an effective metric for quanti-
fying carbon efficiency of computing systems ($III).

® CORDOBA, an end-to-end cross-stack carbon-efficient
optimization framework. CORDOBA builds on existing carbon
accounting efforts (e.g. ACT [22], GreenChip [27]) and en-
ables carbon-efficient optimization (§1V-A) despite uncertainty
in quantifying tC (§IV-B).

@ Techniques to optimize tCDP of specialized hardware
accelerators, considering trade-offs in power, performance,
area, and total carbon. Our results show that we can eliminate
98% of accelerators in the design space as being sub-optimal
for any value of operational lifetime (§VI-B). We show how to
select carbon-efficient designs even when there is uncertainty
in embodied and operational carbon quantification (§VI-C).

@ Case studies for improving tCDP of real computing
systems. We show: (a) hardware over-provisioning is a key
parameter for carbon-efficient design; for a multi-core CPU in
production Virtual Reality (VR) headsets, optimizing number
of cores (from 8 to 4) improves tCDP by 1.25x (§VI-D).
(b) Leveraging 3D stacking of separately-fabricated logic and
memory chips improves tCDP by 1.1x to 6.9x (§VI-E).

II. RELATED WORK

Existing efforts have characterized the rising environmental
impact of various computing systems [10], [16], [18], [21],
[26], [35], [36], [39]. Designing hardware for emerging ap-
plications now requires environmental sustainability to be a
core consideration [24], [37]. Toward tackling computing’s

carbon footprint challenge, a variety of carbon modeling tools
and methodologies have been proposed to quantify computing
systems’ carbon footprint [7], [22], [27], [38]. These mod-
els enable embodied and operational carbon accounting and
consider sustainability as a first-order design metric. Across
the proposed solutions, sustainability-aware carbon optimiza-
tion results in distinct designs compared to optimizing for
power, performance, and area alone. For example, one study
shows that targeting energy efficiency alone may result in
large amounts of dark silicon, which diminishes the holistic
sustainability of computing systems [9].

Prior work, GreenChip [27], presents a predictive tool
for quantifying embodied and operational carbon footprint
of systems. It integrates with architecture simulators, and
enables designers to evaluate trade-offs in the environmental
impact of competing system architectures, depending on their
hardware usage and utilization, using indifference point anal-
ysis. Another architectural carbon modeling tool, ACT [22],
leverages fabrication data and industry data to predict carbon
footprint of systems beyond the 28 nm technology node. To
overcome uncertainties in carbon data, FOCAL [13], proposes
a first-order model that leverages proxies for embodied and
operational carbon to provide early-stage insights for building
environmentally-sustainable processors. Given the complex
dependence of carbon footprint on parameters across the
computing stack, designers will likely require multiple of these
tools in tandem to enable effective carbon-aware optimization
in high-dimensional design spaces.

Furthermore, a variety of metrics have been proposed to
quantify carbon efficiency [14], [22], [50]. However, additional
efforts are required to determine which metrics should be used
for which scenarios. This is the focus of Section III.

III. METRICS FOR CARBON-AWARE OPTIMIZATION

The “total Carbon Delay Product” (tCDP) of a computing
system is the product of its total carbon footprint (over its
lifetime), and the time to execute a desired computing task (de-
lay). In this section, we justify why tCDP is an effective metric
to target for designing carbon-efficient computing systems.
We also describe the pitfalls of targeting alternative metrics,
including total carbon alone (not considering execution time),
and Computational Carbon Intensity (CCI), where CCI is the
carbon emissions per computing task (in units of COqe per
computing task) [50]. CCI of a computing system is its total
carbon footprint divided by the number of times it executes
a target computing task in its lifetime (CCI = tC/Nyg). In
this section, we consider the computing task to be inference,
though our analysis applies to other computing tasks as well.

A. Foundations in Energy-Efficient Design: the EDP Metric

There are parallels between energy-efficient design and
carbon-efficient design. We digress momentarily to note that
there are multiple interpretations of the phrase “energy effi-
ciency”, and the physical units used to quantify it. In some
cases, energy efficiency is quantified solely in terms of the
energy required to execute a computing task, no matter how
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TABLE I
IC “A” ENABLES 1,000 INFERENCES PER SECOND (INF/S) WITH LOWEST
POWER CONSUMPTION, DESPITE HAVING THE WORST PERFORMANCE.
IC “D” ENABLES THE HIGHEST INFERENCE THROUGHPUT FOR A FIXED
ENERGY BUDGET, SINCE IT HAS THE BEST (LOWEST) EDP.

Candidate IC

-

[ 8" [ ~C° [ “D” [ “E" | °F
[1]: given clock frequency (GHz) 002 T 020 ] 040 ] 080 | 1.6 [ 32
[2]: given energy per cycle (nJ) 19 T 2 [ 25 1 4 [ 10 [ 5
[3]: given clock cycles per inf 100 million

T4 = [1J/[3] | inf throughput (infls) 02 3 7 8 6 32
[5] = 1000/[4] :ilf‘;‘:‘l%‘gg“iilﬂs 5000 | 500 | 250 125 | 625 | 31.25
6T=T1]12] | power of each IC (W) 0.038 | 04 1 32 16 160
[7] = [5][6] ;’(V::':il ;"r‘;fél 0&?;1 190 | 200 | 250 | 400 | 1000 | 5000
8] = [2]-[3] energy per inference (J/inf) 0.19 0.2 0.25 0.4 1 5

_ # 1Cs in parallel
[9] = 9.5/(8] given E budget: 9.5 J 50 475 38 23.75 9.5 1.9
_ inference throughput for

(01 = 19141 | 21 5Ce in paralic] (infrey 0 | 95 | 152 152 | 608
[11] = [81/[4] EDP (J/Hz) 0.950 | 0.100 | 0.063 0.063 | 0.156

much execution time is required. The units of energy efficiency
are then Joules per task. As an example, consider two ICs
“A” and “B” (Table I). IC “A” requires ~5% less energy than
IC “B”, but is 10x slower. Under this definition, IC “A” is
considered more energy-efficient than IC “B”, despite its 10x
longer execution time. Alternatively, energy efficiency is often
quantified by the product of energy and execution time (EDP)
in units of Joules per Hz [19], i.e., the energy required to
enable task execution at a high rate. Designs are penalized for
having long execution time. As such, IC “B” is more energy-
efficient than IC “A”, since it enables 10x faster execution
time with only ~5% more energy.

Yet another metric for quantifying energy efficiency is E-D?
in units of Joules per Hertz? (or J-s?). ED? has historically
been effective in cases where the desired figure of merit
is independent of the supply voltage (Vpp) [29]. One such
scenario is evaluating designs used for Dynamic Voltage and
Frequency Scaling (DVFS), in which it is convenient to have
a metric whose value does not change when the system is
operating in the low Vpp + low fc g mode, or in the high
Vpp + high fcrx mode (fcrk is clock frequency). It can
be shown that ED? is Vpp-independent under the antiquated
assumptions that MOSFET on-current follows the ideal square
law MOSFET model [42], [45], that MOSFET threshold
voltage (Vr) is O V, and that energy is proportional only to
Cioad - Vbp2 (Cloaq 18 the capacitive load of digital logic gates,
as in Dennard Scaling [12]) with no contributions from leakage
power. However, these assumptions no longer hold for today’s
short-channel MOSFETs. Thus, ED? is no longer useful as a
Vpp-independent metric to quantify energy efficiency.

Contrasting definitions of energy efficiency each have their
place, and there are certainly application scenarios in which
each is a suitable metric. In this paper, we quantify energy
efficiency in Joules per Hz, which we justify in this section.
Correspondingly, we quantify carbon efficiency in units of
COse per Hz and describe why it is an effective metric.

For energy-efficient design, energy is the resource we are
consuming to improve computing performance. For carbon-
efficient design, total carbon is the resource we are “consum-
ing” (COse emissions) to improve computing performance.

Metrics that designers often target for energy-aware design
are energy consumption (Eg: the energy required to execute
a computing task), and EDP: the product of energy and exe-
cution time [19]. Since energy and carbon are both resources,
E.sk and CCI are corresponding metrics for energy-aware
design versus carbon-aware design (where E = Ny, - Ei,g and
tC = Nisk - CCI). Similarly, EDP and tCDP are corresponding
metrics, with EDP quantified in Joules per Hz, and tCDP
quantified in COze per Hz. Given these parallels, we first sum-
marize the consequences of optimizing Ey,y versus optimizing
EDP for energy-aware computing. We then build upon this
discussion to describe the consequences of optimizing CCI
versus optimizing tCDP for carbon-aware computing.

For energy-aware computing,
a well-known pitfall of opti-
mizing solely for Ey is that
the resulting “optimal” design
tends to run slowly (long execu-
tion time), which is undesirable. A wpr S
As a simple, yet illustrative ex- . r
ample, consider the six differ-
ent designs of ICs in Figure 2
(the same ICs as in Table I),
each with different average en-
ergy per clock cycle (y-axis)
and clock frequency (x-axis). The scenario is as follows. A
designer is deciding which IC to use to design a parallel
computing system that meets an overall application constraint:
performing 1,000 inferences per second while minimizing
total power consumption. For the sake of a concrete example,
assume that each inference requires 100 million clock cycles,
and that multiple ICs can be used to perform inferences in
parallel to increase the overall throughput (inferences per
second). Table I (above the bold line) shows the number of
inferences per second enabled by each IC, and the resulting
number of ICs needed to meet the throughput requirement.

While IC “A” optimizes the target objective, its execution
time is by far the slowest (it has the slowest clock frequency).
Notably, the optimization dictates that leveraging 5,000 in-
stances of IC “A” is preferable to leveraging 500 instances of
IC “B” (to compensate for the slow execution time of IC “A”),
just to reduce power by 5%. A designer would likely intervene
with this optimization result, and instead choose a design
with higher performance, with relatively small cost in energy
consumption (e.g., IC “B”, “C”, or “D”). Of course, manual
intervention based on intuition is undesirable, especially in
large design spaces. Here, it can be avoided by introducing
a measure of performance into the objective function, i.e.,
targeting a different metric. Thus, while E,« may be a useful
metric for providing general guidance, optimizing for it blindly
leads to poor design decisions.

Optimizing for EDP avoids this pitfall. It enables designers
to automatically select values for underlying design parameters
that have competing impacts on energy consumption and delay.
As classic examples, decreasing circuit supply voltage (Vpp),
increasing transistor threshold voltage (Vr), and decreasing

e
e

energy per
clock cycle (nJ)

0.1 1
clock frequency (GHz)

Fig. 2. Trade-offs in energy ver-
sus clock frequency for six candi-
date ICs (“A” through “F”) target-
ing energy-efficient computing.
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TABLE 11
IC “E” ENABLES THE HIGHEST INFERENCE THROUGHPUT FOR A FIXED
CARBON BUDGET, SINCE IT HAS THE BEST (LOWEST) TCDP. IC “A” HAS
THE LOWEST TOTAL CARBON (AND CCI) BUT RUNS VERY SLOWLY.

[ Candidate IC
“C =

A [ B ] I I il
[1]: given clock frequency (GHz) 0.020 0.200 0.400 0.800 1.6 32
2]: given energy per cycle (nJ) 1.9 ‘ 2 ‘ 25 ‘ 4 ‘ 10 ‘ 50
3]: given clock cycles per inf 100 million

4] = [3)/[1] time per inf (s) 5 [ 05 ] 0325 J 0.125 [ 0.0625 [ 0.03125
5]: given Cluse (2C0O2¢/kKWh) 330

6] given Cl 4 per IC (gC0z¢) 3000

7]: given i in seconds (s) 1.05x10

C1]: given constraint | tg 0.100

C2]: given constraint 9.5

C3] = [C2]/3.6%x10° 2.639x10~°

C4] = [511C3] (Chudeer 1N tyervice T.003x 10

10] = [9V/[C1] # infs per lifetime 1.05x 10

117 = [2]-[3] E per inf (J/inf) 0.19 0.2 0.25 0.4 1 5
[12] = [111/3.6x10°¢ E per inf (x 10~8 kWh) 528 5.56 6.94 11.1 27.8 139
[13] = [5]-[12] CCloperaiion(X 10~ gCO¢finf) 2.01 2.11 2.64 422 1.06 5.8
[14] = [6)/[10] CCllumbodied (2CO2 €/ind) 285% 107

[15] = [13]+[14] CCI (x 107 gCO2e/inf) 4.86 4.96 5.49 7.08 13.4 55.6
[16] = [C4)/[15] #1Cs in parallel given tChudget 21 21 19 15 8 2
[17] = [16]/[4] throughput per tservice 4.1 40.4 73.0 113.4 119.7 57.7
(18] = [10]-[13]+[6] C 5108 5219 5774 | 7438 | 14096 | 58480
[19] = [18]-[4] tCDP ‘ 25541.2 | 2609.6 | 14435 | 929.8 881.0 1827.5

transistor widths all tend to improve energy consumption at
the cost of degrading delay [12]. Thus, optimizing purely for
energy consumption typically results in low Vpp, high Vr, and
minimum width transistors, at the cost of undesirably slow de-
lay. Instead, optimizing for EDP automatically selects (without
manual intervention) values for Vpp, Vr, and transistor widths
that correspond to optimal trade-offs in energy and delay.

While EDP has somewhat unintuitive units of Joule seconds
(or more intuitively: Joules per Hertz), optimizing for EDP
corresponds mathematically to solving practical real-world
scenarios. Consider again the same six IC designs in Figure 2.
The updated scenario is as follows. Given a fixed energy
budget (e.g., 9.5 J), choose the IC that maximizes throughput
(inferences per second). Table I (bottom) shows IC “D” has
the best (lowest) EDP, which corresponds mathematically to
it being the optimal choice for this scenario. l.e., the relative
EDP of IC “D” versus other ICs exactly quantifies its relative
improvement in inference throughput.

B. From Energy Efficiency to Carbon Efficiency: EDP to tCDP

We follow a similar approach to assess the effectiveness
of CCI and tCDP for carbon-aware design, but with one key
distinction: effective metrics for carbon-efficient design should
inform designers how trade-offs in energy and delay impact
embodied carbon as well. For the same six ICs, consider a
parallel scenario as in §III-A, but with COqe as the resource
instead of energy. Convert the fixed energy budget of 9.5 J to a
corresponding fixed carbon budget of 1.003x 10~ gCOxe (for
Clyse = 380 gCO2e/kWh of energy consumption).

There is also an embodied carbon associated with fab-
ricating each IC, which penalizes computing systems that
instantiate more ICs. To determine this amortization factor,
we define a “service time interval” (e.g., servicing requests
to perform inference come in every 100 ms), where the fixed
carbon budget (1.003 x 10~3 gCOxe) is allocated at each time
interval to maximize the inference throughput and calculate
hardware lifetime. Table II shows that design “E” is the best
choice for this scenario: its inference throughput is the highest
in each service period for the fixed carbon budget. If instead
we optimize tC (instead of tCDP), we would choose IC “A”,

(a) 103 (5]
__ ] tcDP-optimal IC g “D”: EDP-optimal
[ON =2.n1
g 10
8‘: o g “E”; {CDP-optimal
O PR oo 2
Q e kS|
4 iso-tCDP contour line preferred o relati_ve EDP
1 03 : _corner 1 00 <@~ relative tCDP

0.1 1 0.1 1
clock frequency (GHz) clock frequency (GHz)

Fig. 3. Optimizing tCDP. (a) tC versus clock frequency. (b) tCDP-optimal
versus EDP-optimal ICs.

the slowest design, just as in §III-A when optimizing E
instead of EDP. Table II also shows exactly how to compute
the inference throughput for each IC (following the equations
in the left-most column). The key take-away is that relative
inference throughput enabled by each IC is precisely quantified
by its relative tCDP, i.e., throughput o tCDP~'. This is why
multiplying throughput and tCDP is a constant (the product of
row 17 and row 19 in Table II). Figure 3 shows the relative
clock frequency, EDP, and tCDP of each IC. Compared to
the EDP-optimal design (IC “D”), the tCDP-optimal design
(IC “E”) is less-energy efficient (higher EDP), but incurs less
embodied carbon.

Analogous to EDP (which has units of Joules per Hz),
tCDP has units of COge per Hz. Whereas optimizing EDP
balances energy and delay (energy efficiency), optimizing
tCDP balances energy efficiency and embodied carbon (carbon
efficiency). In §VII, we return to a broader discussion on
the implications of key design knobs that affect trade-offs in
energy efficiency and embodied carbon, such as technology
node scaling and hardware lifetime.

C. Target Metrics for Carbon-Aware Optimization

In this subsection, we highlight the subtle distinction be-
tween metrics of carbon efficiency (tCDP), and metrics to
target for carbon-aware optimization of computing systems.
Specifically, we recognize that optimizing tCDP may not
always be the objective function in all application scenarios.
To illustrate this point, we again draw parallels to metrics of
energy efficiency (EDP) and energy-aware optimization. Even
though EDP is an effective measure of energy efficiency, it is
not always the optimization target.

Common scenarios for energy-aware optimization include:
(a) minimizing energy given a performance constraint. For ex-
ample, a specific application has a maximum latency constraint
that eliminates any of the ICs “A” through “F” with a clock
frequency less than 250 MHz. Thus, ICs “A” and “B” are
eliminated. Even though IC “D” is the EDP-optimal design,
it is not selected since its clock frequency far exceeds the
application performance constraint. Instead, IC “C” is chosen
since it meets the performance constraint with lower energy,
even though its energy efficiency is worse (i.e., it requires
higher energy per Hz). (b) Minimizing energy consumed to
execute a given task, regardless of execution time. For exam-
ple, for a performance-agnostic wearable device (e.g., a heart-
rate monitor), where the primary objective is to maximize
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Fig. 4. CORDOBA, our design optimization framework for carbon efficiency across multiple layers of the computing stack. DSE is “Design Space Exploration”.

battery life (minimize energy disregarding speed). Application
requirements are satisfied whether the IC requires 1 ms or
100 ms to complete a computing task (e.g., computing heart
rate from sensor data). Importantly, in both these cases, a de-
signer is sacrificing (degrading) energy efficiency based on the
application requirement. In scenario (a), EDP is degraded to
meet a performance constraint with lower energy consumption.
In scenario (b), EDP is degraded to improve overall energy
consumption. The subtle distinction that we reiterate, is that
even though EDP quantifies energy efficiency, it is not always
the optimization target.

Similarly, even though tCDP is an effective metric to
quantify carbon efficiency, there are application scenarios
where a designer may be forced to degrade tCDP to meet
an application target. Our framework in §IV-A is designed to
account for these scenarios. In any case, a key takeaway is
that target metrics for carbon-aware design should be derived
precisely from application scenarios. The choice of target
metrics should not be driven by preconceived notions of how
much to value carbon versus delay, i.e., deciding beforehand
whether to optimize CCI, tCDP, or tCD?P. For example, a
designer might be under the impression that they value delay
slightly more than carbon, and as a result, choose to optimize
tCD?P instead of tCDP. A scenario that would potentially
motivate the use of tCD?P is analogous to the use of ED?P
for DVFS-based designs, in which a designer may value a
Vpp-independent figure of merit. However, tCD?P being Vpp-
independent corresponds to MOSFETs following the ideal
square law, energy impacted only by Cjoag - V3p, and tC im-
pacted only by operational carbon, i.e., embodied carbon being
0. Since this is no longer a realistic scenario, tCD?P is not an
effective metric to target for Vpp-independent carbon-aware
optimization of DVFS systems, even if a designer might think
that they value delay more than carbon. In contrast, we showed
in §III-B that optimizing tCDP corresponds mathematically to
optimizing real-world scenarios. The next section describes
how to optimize tCDP at a system level.

IV. CARBON-AWARE OPTIMIZATION FRAMEWORK

Here, we detail the mathematical formulation and design
parameters of CORDOBA’s carbon-efficient design optimiza-
tion (§IV-A), and show how designers can optimize for carbon

efficiency despite uncertainty in total carbon by using a
Lagrange multiplier (details in §IV-B).

Our framework takes input parameters across multiple lay-
ers of the computing stack, including materials (used in IC
fabrication), process technology node, die area, integration
techniques, and application workloads, as shown in Figure 4.
Fabrication-level inputs are based on detailed foundry charac-
terization data [18], circuit- and system-level parameters are
based on hardware configurations set by the designer, and
application data are based on software profiling (refer to §V).
CORDOBA’s inputs are fed into an architecture simulator,
into an architectural carbon modeling tool, and into carbon-
aware optimization. This enables carbon-aware design space
exploration while accounting for uncertainty in operational and
embodied carbon data. The outputs of CORDOBA are the
Pareto-optimal designs of total carbon versus delay, including
the carbon-efficient tCDP optimal design and uncertainty
trade-offs (results are in §VI-B and §VI-C).

A. Optimizing Carbon Efficiency

We formulate the design optimization of carbon-efficient
systems considering total carbon as shown in equation IV.1. z
is the vector of parameters defining the computing system (see
Table III), including area, process technology node, energy
source, and fabrication facility specifications. Parameters a;,
g, and p; are area, quality of service (QoS), and power
optimization constraints, respectively.

minixmize (Coperational(x) + Cembodied(x)) : D(l’)

subject to  Area;(z) < aj, z =1,...,1 av.1)
QoS;(z) > gy, ji=1,...,
Power;(z) < py, l=1,...,L

We define a task T as a set of kernels K required to
run a target application. Each task can comprise a single
kernel, or multiple kernels running in parallel, depending on
the number of kernel calls per task (Nt ). For example, an
Extended Reality (XR) gaming task can include eye-tracking,
motion-tracking, and UnityEngine gaming kernels. A zero
value of Ntk indicates that a kernel K is not part of task T.
Equations IV.2-1V.6 allow designers to optimize for multiple
kernels and tasks while meeting design constraints. Note that,
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TABLE III
PARAMETERS IN OUR CARBON-AWARE OPTIMIZATION FRAMEWORK, CORDOBA.

Parameter | Description [ Units [ Example Range (§VI-D)
K Kernels or workloads software (e.g., a program written in Python or C++) from software profiling | IOT Tracking, UnityEngine, etc.
N Number of kernel calls per task 1 or more multiple calls per kernel
T Task is a set of workloads or an application defined by number of kernel calls from software profiling M-1
D Task execution time seconds 40 s
T Hardware target system from hardware design VR headset CPU
E Operational energy consumption J per task 332 J per task
Pleak Hardware leakage power W -
Payn Hardware dynamic power w -
Piotal Total power = Pjeax + Payn w 83 W
HW resources Number of CPU cores, GPU, on-chip SRAM, and DRAM in system count 4-8 CPU cores
Clyse Use-phase carbon intensity g COze per kWh 380 g CO2e/kWh
Cliap Carbon intensity of the energy source used by chip fabrication facility g CO2e per kWh 820 g CO2e/kWh
EPA Energy Per die Area consumed by the fabrication facility during manufacturing kWh per cm? 2.15 kWh/cm?
MPA Materials Per die Area is carbon footprint of procured materials used in fabrication g CO2e per mm? 500 g COze/cm?
GPA Gases Per die Area are direct gases emitted at fabrication facility during manufacturing g COge per cm? 300 g COzelcm?
Y Yield (e.g., estimated using yield models such as Murphy Yield [34]) 0-1 0.98
A Die area of components in system x cm? 225 cm?
Coperational Operational carbon g COze 3.154 g CO2e per hour of use
Cembodied, @, Embodied carbon per component m (e.g. m can be a CPU core), in system g CO2e per component 895.89 g CO2ze per gold core
tife Overall hardware lifetime 1-10 years 5 years
Doge Time when the system is not in use throughout the system’s lifetime hours 22 hours per day for 5 years
Operational time Active execution time of the system, i.e. when system is consuming energy hours 2 hours per day for 5 years
Cembodied Embodied carbon of a system dependent on operational time = tjijre — Dofr g COqze per system 5375.33 g COze

1 is a vector where every element is equal to 1 (e.g., 1TE is
the sum of all elements in vector E). Table III describes each
parameter.

DTl NTl K1 NTI,Kk DKI
D=| : | = : : : av.2)
DTt NTtﬁKl NTt,Kk DK;‘»
lTD Cembodied, x1 T 0
Cembodied = ﬁ : : (Iv.3)
fife off Cembodied, T 1
Er, N1, x, N1, Kk | | Paynk, Dk, Dr,
E=]|: | = : : : + Pieak
Er, Nr, K, Nr, k), | | Paynk, Dk, Dr,
(IV.4)
Cembodied, T — (leab - EPA + MPA + GPA) - — (IVS)
Coperational = Clye 1"E (IV6)

Task delay. (Dr) is the product of Nt x and kernel execution
time (Dg) (equation IV.2). We compute total task delay by
taking the sum of all elements in the task delay vector D.
Designers can also compute D using alternative time-based
performance metrics, e.g. reciprocal of SPEC scores [47] or
reciprocal of frames-per-second (i.e. F%,S). Note that, delay
should correspond to the overall execution time of the entire
system, e.g., if the performance of a workload is limited by
the delays of multiple hardware.
Total life cycle carbon. tC = Coperational + Cembodied-
Embodied carbon. Embodied carbon footprint of an IC
(equation I'V.5) depends on the fabrication facility and process
technology node [22], [39] (among other dependencies in
Table III). To compute tC, we multiply the vector Cembodied, =
(equation IV.3) with a vector whose elements are either 1 or 0;
“1” indicates a component is included as part of a computing
system (and “0” otherwise), e.g., there is a 1/0 element for
each CPU core, GPU, DRAM, and on-chip SRAM that can
be included in system x. This formulation enables hardware

provisioning as a design parameter (§VI-D), where designers
can compare different system configurations of their hardware
to optimize tCDP.

Operational time. We amortize embodied carbon over
operational time, which is not necessarily the same as the
system’s total lifetime in years (equation IV.3). Operational
time is the execution time of the system including light
background processes and idle time, i.e. whenever the system
is consuming energy (including energy due to off-state leakage
power), versus total lifetime which accounts for use time
whether the system is consuming energy or not. Operational
time ensures that embodied carbon is correctly accounted for
when the system is not in active use.

Operational carbon. Energy consumption depends on
Nt x, dynamic and leakage power, and delay (equation 1V.4);
these power and delay parameters are extracted using elec-
tronic design automation (EDA) tools. Note that, idle time
translates to additional energy consumption (thus, operational
carbon) due to off-state leakage power. Coperational (€qua-
tion IV.6) is the total energy (sum of elements in the task
energy vector E) multiplied by the “use-phase carbon inten-
sity” (Clyse). Clyse is dependent on the energy source, e.g.,
renewable versus non-renewable sources, and the power grid.

B. Optimizing Carbon Efficiency Despite Uncertain tC

Optimizing tCDP can be especially challenging when there
is uncertainty in quantifying total carbon footprint. Practical
challenges include: transparency (designers not having full
access to carbon footprint data from manufacturing) and
varying energy sources (with varying carbon footprint) over a
system’s lifetime. For example, Cly, (Table III) may change
dramatically from year-to-year (as renewable energy sources
become more prevalent), or depending on the time of day (e.g.,
depending on the availability of renewable energy sources
such as solar). Thus, it is essential to develop techniques for
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designers to improve carbon efficiency—even without precise
quantification of total carbon footprint.

Here, we demonstrate that even when Clg. is unknown or
changing over time, a designer can still make informed design
decisions about optimizing carbon efficiency. Specifically,
given a set of hardware targets: X = {x1, z2, ..., 2, }, we show
how to identify hardware targets that are not tCDP-optimal for
any value of Cl, over time. Such hardware targets can thus
be eliminated from the set of candidate hardware targets, even
when Cl,, is unknown.

To justify this claim, let Cl,(t) be the value of Cl, versus
time over a hardware target’s operational lifetime. Similarly,
let P(t) be the operational power consumption versus time.
We assume that P(¢) is fixed and known for a given hardware
target (e.g., it can be accurately predicted using mature EDA
tools); a short discussion of the benefits and limitations of this
assumption is at the end of this section. Using these definitions,
equation IV.6 becomes:

tiife
Coperalional - / CIuse (t)P(t) dt (IV7)
0

Additionally, the objective function in equation 2.1 becomes:

Liife
Combodiea - D + ( / Cluse(t)P(t)dt) D (IV8)
0
However, if Cl(t) is unknown, then a designer cannot
evaluate (or optimize) this objective function. Instead, we
leverage mathematical techniques to eliminate designs that
cannot be tCDP-optimal, even when we cannot find the tCDP-
optimal design. Using a Lagrange multiplier is a common
technique used in ill-posed optimization problems when the
relative importance (weight) of two objective functions is
unknown [8]. It allows us to recast the objective function from
equation IV.1 as:

Cembodied - D+ - E- D, (IV.9)

where E is the known total operational energy consumption
over the entire lifetime, and [ is the Lagrange multiplier.
We argue that there exists some value of [ in the range
[0,00), such that the objective functions are exactly equal
(equations IV.1 and IV.9). Call this value 3’. Both Cl(t) and
E are always non-negative (i.e., computation always consumes
energy, which always increases carbon emissions), and thus,
B’ must be non-negative as well.

Next, we can optimize the objective in equation IV.9 for all
values of 3 in [0, 00), which must include §8’. For each value
of (3, the optimization can result in a different hardware target
being tCDP-optimal. We call this set of hardware targets X*:
the set of designs that are tCDP-optimal for some value of 3.
Note that, if we plot E-D versus Cempodied - D for all designs in
X, then the designs in X* define the Pareto-optimal curve for
E-D versus Cempodied-D- In other words, for all hardware targets
in X*, there is no other hardware target in X that has better
E - D and better Cempodied - D simultaneously (see Figure 12
for an example). Importantly, X* contains the tCDP-optimal
design (i.e., tCDP-optimal is on the Pareto-optimal curve of

TABLE IV
SUMMARY OF KERNELS IN EACH TASK. THE ”"ALL KERNELS” TASK
INCLUDES ALL FIFTEEN KERNELS.

3D-Agg; ET; JLP; HRN; UNet; E-FAN; DN;

SR (256x256); SR (512x512); SR (1024 x 1024)
RN-18; RN-50; RN-152; GN; MN2;
3D-Agg; ET; UNet; JLP; HRN;
3D-Agg; HRN; DN; SR (512x512); SR (1024 x1024)
RN-18; RN-50; RN-152; GN; MN2

XR (10 kernels)

AI (10 kernels)

XR (5 kernels)
AT (5 kernels)

E - D versus Cempodied + D). Thus, even if Cly(t) is unknown,
designers can eliminate all hardware targets in X that are not
in X*.

As an example, Figure 12 (§VI-E) shows E - D versus
Cembodied- D for a set of seven different hardware targets (details
in §VI-E); only two of these seven hardware targets are on
the Pareto-optimal curve (i.e., in X*). Thus, even without
knowing Cly(t), five of the seven hardware targets are
ensured not to be tCDP-optimal. Since precise quantification of
total carbon (including both operational carbon and embodied
carbon) may not always be fully accessible to designers,
practical design techniques (such as this) are essential to guide
designers toward carbon-efficient design decisions. While we
relied on various assumptions to formulate this result (e.g.,
our limitation that P(¢) is fixed and known), we encourage
designers to continue developing optimization techniques that
are robust to uncertainty in quantifying carbon emissions. For
example, designers can further leverage Lagrange multipliers
when parameters for embodied carbon are unknown at design
time, such as carbon intensity of fabrication (Clg,y,). Identifying
additional scenarios will aid in carbon-aware optimization that
is more robust to uncertainties.

V. EVALUATION METHODOLOGY

We evaluate CORDOBA’s carbon-aware optimization on a
variety of workloads and hardware platforms detailed below.

Workloads. We characterize five computing tasks com-
prising a variety of fifteen Al and XR kernels. The kernels
include ResNets (RN-18, RN-50, RN-152) [23], GoogleNet
(GN) [51], MobileNet-V2 (MN2) [43], eye tracking (ET) [4],
depth estimation (3D-Agg, HRN) [30], [49], emotion detection
(E-FAN) [52], hand tracking (JLP) [33], image denoising
(UNet, DN) [40], [55] and super-resolution (SR) [5]. The XR
and Al kernels have different activation memory requirements,
and accordingly different memory accesses. Kernels that suffer
from high activation memory requirements include depth esti-
mation, image denoising and super-resolution. For instance, as
super-resolution kernels scale up in resolution requirements,
such as SR (1024 x1024), their memory and bandwidth re-
quirements grow beyond the typical LPDDR4 DRAM 16 GB/s
peak bandwidth. Therefore, increasing the activation SRAM
memory from 2 MB to 32 MB, decreases the bandwidth
requirements by 89.6x within acceptable ranges [54].

In Table IV, we categorize the kernels into five tasks:
“All kernels”, “XR 10 kernels”, “Al 10 kernels”, “XR 5 ker-
nels”, and “Al 5 kernels”. The “All kernels” task includes run-
ning both activation memory heavy and non-activation heavy
tasks. The XR tasks are focused on optimizing accelerators

1295

Authorized licensed use limited to: Harvard University SEAS. Downloaded on September 27,2025 at 18:28:26 UTC from IEEE Xplore. Restrictions apply.



ML Accelerator Al & XR Kernel

(PyTorch Model)

ML Accelerator Compute Engine

| MAC Arrayl DsP

1
1
1
1
1
i
| Global SRAM
1

: H i
1

1

|

1

1

1

1

1

1

1

1

|

ML Accelerator
| Analytical Model
and Simulator

-

1
1
1
i
1
Shared !
1
1
1
[l

[ ML Accelerator NoG ]

Local buffers A
Activation
Weights memory capacity

SoC NoC

DRAM
LPDDR4

Latency, Energy,
Utilization, TOPS

Fig. 5. HW accelerator simulator based on [48].

targeting high activation memory kernels, while Al tasks are
focused on optimizing more general Al kernels that are less
memory bound.

Performance & power simulation for HW design.
Figure 5 shows the architecture accelerator simulator we
use, which is similar to the one described in refer-
ences [48] and [44]. To characterize each Al and XR kernel,
a PyTorch neural network model is input into the accelerator
simulator. The simulator outputs latency and energy consump-
tion for the AI/XR kernel running on a user-specified accelera-
tor architecture. We use equations IV.2-IV.6 to compute tCDP
for a range of accelerator architectures by varying the number
of Multiply-Accumulate units (MACs) and size of activation
memory. Furthermore, we model 3D integration techniques
(§VI-E) using a similar approach as reference [54], in which
we assume conservative latency for a 3D design (similar to
conventional designs), and leverage energy values reported
from place-and-route using a 7 nm PDK [54].

Carbon data. We leverage an architectural carbon model-
ing tool, ACT, based on industry environmental reports and
detailed fabrication facility characterization [22]. We update
ACT to include the most recent fabrication facility charac-
terization data [39] and incorporate additional models for die
placement and yield, such as the Murphy yield model (as an
example) for embodied carbon calculations [11], [34].

Carbon model and architecture simulator fidelity. In
CORDOBA, carbon estimation accuracy is bounded by two
major factors: (1) uncertainty in carbon footprint data, and (2)
Machine Learning (ML) accelerator simulator accuracy. The
first is a pressing challenge; unlike power and performance,
carbon cannot be measured by end-users. Therefore, it is
important to distinguish between carbon accounting versus op-
timization. We present methods to trade-off carbon efficiency
optimality against uncertainty in §VI-C. The ML accelerator
simulator is verified using cycle-accurate simulations and val-
idated against board-level implementation on a Xilinx Field-
Programmable Gate Array (FPGA) with a 2.98% performance
error [56]. The time required to run CORDOBA’s DSE is
on the order of hours (end-to-end) to analyze 121 distinct
accelerator configurations.

Production-level VR system HW. To profile production-
level VR applications in real-time, we use Android Debug
Bridge (adb) software to connect to a Meta Quest 2 SoC. The
Qualcomm Snapdragon XR2 SoC is manufactured in a 7 nm
process technology node and has an Octa-core CPU. Using
Simpleperf [46], a native CPU profiling tool, we collect the

Operational time:
{) <1 hour daily for 3 years & Low utilization or short refresh 24/7
# 12 hour daily for 3 years @ High utilization or long refresh 24/7

108, cop
limited
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= importan
2 7 Designing P
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g . Designing
5 @ "y datacenter HW
o
S
- Designing
mobile, XR &
same EDP desktop
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EDP (lower is better)

Fig. 6. Optimizing energy efficiency (quantified by EDP) and carbon
efficiency (quantified by tCDP) lead to distinct optimal designs, since the
relationship between embodied and operational carbon varies across comput-
ing domains. E.g., embodied carbon accounts for 95%, 72%, and 50% of
total carbon for microcontrollers (MCUs) and wearables [3], mobile [2], and
servers [21], respectively. Thus, carbon-efficient optimization must consider
total carbon, based on parameters such as operational time subject to power,
performance, and area constraints. In other words, the only case in which
optimizing EDP corresponds to optimizing tCDP (i.e., either optimization
selects the same design), is when the design is entirely dominated by
operational carbon.

frame rate (FPS), and the number of instructions and clock
cycles for each core configuration to compute Instructions Per
Cycle (IPC) for each application. To profile the Thread-Level
Parallelism (TLP) of the top 10 applications running on Meta
Quest 2, we use Perfetto UI [20], an open-source system-wide
profiling and application tracing software for Android.

VI. DESIGN SPACE EXPLORATION: OPTIMIZATION
RESULTS AND CASE STUDIES

In this section, we first quantify the trade-offs between
carbon efficiency and energy efficiency (§VI-A). Second, we
present an in-depth analysis of our design space exploration of
carbon-efficient hardware accelerators (§VI-B), across five Al
and XR tasks and a continuum of operational time. Third,
we analyse design trade-offs between the optimal carbon-
efficient accelerators and discuss how to tackle uncertainty in
carbon accounting at the optimization stage (§VI-C). Fourth,
we conduct real system case studies using CORDOBA to
quantify the dependence of tCDP on hardware provisioning
in VR headsets (§VI-D), and on 3D integration (§VI-E).

A. The Need for Carbon-Aware Optimization

In Figure 6, we highlight example design spaces for wear-
ables (yellow), mobile (blue) and datacenter (red) domains.
Here, we demonstrate that targeting energy efficiency as an
optimization metric (e.g., EDP) is insufficient for optimizing
carbon efficiency. As shown in Figure 6, carbon efficiency
(quantified by tCDP) and energy efficiency (quantified by
EDP) are not perfectly correlated as depicted across all do-
mains, including datacenters. For systems such as wearables
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Fig. 7. tCDP versus die area (a) shows that optimal tCDP designs (red points)
are not equivalent to designs with minimum area. EDP versus die area (b),
shows the EDP-optimal designs (black points) do not change as we design
for operational time; since EDP does not account for embodied carbon. Thus,
neither EDP nor area are sufficient indicators for carbon efficiency.

and mobile, there is weak correlation between a system’s
energy efficiency and carbon efficiency. Also, the tCDP-
optimal designs are not equivalent to the EDP-optimal designs.
This is because the total carbon of the designs is dominated
by embodied carbon, which is not accounted for in the EDP
metric. Furthermore, Figure 6 shows cases in which two EDP-
equivalent designs exhibit 100x difference in tCDP. Such
results demonstrate that energy efficiency is an insufficient
indicator for carbon efficiency.

When designing high performance and high power systems,
such as datacenter systems with high utilization or long refresh
cycles, tCDP is more strongly correlated with EDP (the
relationship between tCDP and EDP approaches a straight line
in Figure 6). This is because designs that consume substantial
amounts of energy tend to be operational carbon dominant.
This behavior is supported mathematically in equations IV.1
and IV.6; when Coperational(2) >> Cembodied (), then tCDP
~ Coperational(x) D(l‘) ~ CIuse(x) : E(.’)S) : D(.%‘) ~ CIuse(-r) :
EDP(z). Given that the rising prevalence of renewable energy
and computing systems’ carbon footprint is shifting toward be-
coming more embodied carbon dominant [21], we predict this
correlation between EDP and tCDP is likely to decrease, even
for high performance datacenter systems. Furthermore, it has
been shown that datacenters can incur >50% embodied carbon
footprint depending on utilization and refresh cycles [21], [27].
Accordingly, optimizing for carbon efficiency, using a metric
such as tCDP, is of growing importance across application
domains.

Figure 7(a) shows the relationship between tCDP and area,
demonstrating that they are largely uncorrelated, especially
with varying operational time. The tCDP-optimal designs (red
points) are not necessarily equivalent to designs with minimum
area. Naturally, larger die area incurs higher embodied carbon,
and thus, designs with large die area tend to have higher
tCDP, i.e., worse carbon efficiency. However, reducing die area
by too much can also lead to worse delay and operational
carbon, also degrading carbon efficiency. Figure 7(b) shows
the relationship between EDP and area. Notably, the EDP-
optimal design is unaffected by operational use, unlike the
tCDP-optimal design, which accounts for both operational and
embodied carbon across the system’s lifetime. Again, these

observations support the conclusion that neither EDP nor area
alone is a sufficient indicator of a system’s carbon efficiency.
It is essential to account for operational time to determine total
carbon and carbon efficiency.

B. Optimizing tCDP Across Workloads and Operational Time

Figure 8(a)-(e) presents the carbon efficiency results of
the hardware design space exploration for five different tasks
comprising a variety of Al and XR kernels (detailed in §V);
All kernels, XR (10 kernels), Al (10 kernels), XR (5 kernels),
and AI (5 kernels). The x-axis quantifies operational time in
terms of number of inferences. The y-axis quantifies carbon
efficiency as tCDP~! (higher values correspond to better
carbon efficiency). Using our framework, we tailor-design
121 hardware accelerators comprising various combinations
of Multiply-Accumulate (MAC) arrays and on-chip SRAM
capacity configurations.

Carbon efficiency versus operational time. A character-
istic of plotting tCDP versus operational time, is being able
to sweep all possible different ratios of embodied carbon and
operational carbon to total carbon. At short operational times,
embodied carbon is the dominant source of the system’s total
carbon. As operational time increases and the system does
more work (i.e., more inference), operational carbon increases
and dominates total carbon of the system.

The benefits of this formulation are two-fold. First, we
are able to narrow down the design space, eliminating a
large number of designs that are not tCDP-optimal for any
possible operational times of a task, over all possible ratios
of embodied carbon to total carbon. Therefore, designers can
identify that the tCDP-optimal design must be one of a small
number of potential deigns, even when there is uncertainty in
embodied or operational carbon footprint quantification. For
example, Figure 8(a) shows that only four accelerator designs
can be tCDP-optimal depending on the operational time: al,
a37, a38, and a48. This allows us to: (i) eliminate 96.7% of
the design space (as begin sub-optimal for any operational
time) for “All kernels” and “Al 10 kernels” (Figure 8(a)
and (c)); (i) eliminate 98.3% of the design space for “XR
10 kernels” and “XR 5 kernels” (Figure 8(b) and (d)); and
(iii) eliminate 97.5% of the design space for “Al 5 kernels”
(Figure 8(e)). The second benefit, which we investigate in
§VI-C, is that we can improve robustness to uncertainty in
carbon accounting by trading off optimality in tCDP (i.e., we
can degrade tCDP to improve robustness to uncertainty).

Optimal carbon-efficient accelerators differ architecturally
depending on activation memory requirements and operational
time. As an illustration, “XR 10 kernels” and “XR 5 kernels”
have high activation memory requirements (Figure 8(b) and
(d)), and thus, the tCDP-optimal accelerators a48 and a58
have higher activation memory (4-8 MB) compared to “Al
5 kernels” tCDP-optimal accelerators al, al2, and a23 with
1 MB SRAM (Figure 8(e)). In Figure 8(a) “All kernels”, the
tCDP-optimal accelerator al (designed for short operational
use) has relatively fewer MAC arrays and relatively smaller
SRAM capacity to minimize the dominant embodied carbon.
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Fig. 8. Carbon efficiency trends of our design space exploration of 121 distinct MAC units+on-chip SRAM accelerator configurations. We account for carbon
footprint uncertainties by designing for different tasks (All kernels, XR 10 kernels, Al 10 kernels, XR 5 kernels, Al 5 kernels) and across operational time
measured in number of inference. By designing and optimizing for tCDP across operational time, we eliminate up to 98% of the design space. Note that, this
analysis can also be adjusted to account for varying workloads over the system’s lifetime.

As operational time increases, the tCDP-optimal accelerators
a38 and a48 are more carbon-efficient, with 8-16 MAC units
and 8-16 MB SRAM activation memory.

Carbon efficiency of general versus specialized designs.
Figure 8(f) shows carbon efficiency trends of the five tasks at
specified operational times, from 10% to 10'° inferences. The
x-axis represents the five Al and XR tasks that our system
hardware is tailor-designed for. The bars represent the tCDP of
the optimal hardware accelerator configurations. At the same
hardware operational time and utilization, when embodied
carbon is the dominant source of total carbon, specializing
system hardware for workloads of similar characteristics leads
to hardware with better carbon efficiency. As an example,
for an operational time of 10° inferences, optimizing for the
specialized “Al 5 kernels” is up to 8.3 x more carbon-efficient
than optimizing for the more general “All kernels” task.
Similarly, when operational carbon dominates at operational
time of 101° inferences, optimizing for the specialized “XR 5
kernels” is up to 8.4x more carbon-efficient than optimizing
for the more general “All kernels” task. The takeaway is that
specialized designs are more carbon-efficient than general
designs. This applies at all operational times, regardless
of whether embodied carbon or operational carbon domi-
nates total carbon. This highlights that specializing hardware
for workloads with similar characteristics can lead to more
carbon-efficient systems.

Average versus optimal carbon efficiency. The oppor-
tunities for carbon efficiency improvement are significant.
Red diamonds in Figure 8(f) indicate the average carbon
efficiency of all designs at an operational time for each task.
At 10% inferences, tCDP of the most carbon-efficient hardware
accelerator configuration al is 8x and 10.5x higher than the
average tCDP of accelerators for “Al 10 kernels” and “Al 5
kernels”, respectively. The minimum tCDP benefit between
the optimal and the average carbon-efficient design across all
tasks and operational times is 2.3x (corresponding to “Al 5
kernels” at 10'° inferences).

C. Trading off Carbon Efficiency Against Uncertainty

In addition to carbon footprint quantification, user behavior
and system usage can be major sources of uncertainty for
designers when trying to determine the workload specifications
and system lifetime a priori (i.e., before the hardware is
actually being used). We have already demonstrated that
designers can narrow down the design space to a small number
of designs across operational time, by eliminating most of
the designs as being tCDP sub-optimal (§VI-B). To choose
between the remaining designs for a specific task, designers
can trade-off tCDP optimality and uncertainty in determining
operational time, using information shown in Figure 9.

Figure 9 shows tCDP normalized to the tCDP-optimal
design at each operational time, i.e., a value of 1.0 (on
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Fig. 9. Carbon efficiency (y-axis) normalized to the optimal design versus operational time (x-axis). To improve robustness against variations and uncertainty
in estimating hardware usage, designers can trade-off tCDP optimality at a given operational time with another design that has a better average tCDP across
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Fig. 10. Carbon efficiency of VR Tasks on Meta Quest 2 VR headset versus
CPU core count (stars indicate optimal configuration). Optimal hardware
provisioning improves tCDP by up to 1.25x.

the y-axis) represents optimal carbon efficiency. For “All
kernels”, al is the tCDP-optimal design at low operational
times, e.g., for frequently replaced consumer devices when
embodied carbon dominates system’s total carbon. However, in
cases where hardware longevity is desired, operational carbon
dominates total carbon, and al is up to 12.5x worse than
the tCDP-optimal accelerator (a48) at longer operational time
(10'! inferences). To improve robustness against uncertainty
in predicting user behavior or hardware usage, designers can
trade-off tCDP optimality at a given operational time with
another design. For example, a designer can instead choose
the a38 accelerator for “All kernels”, which has better average
tCDP across operational time.

The “XR 10 kernels” subplot in Figure 9 shows that the a48
accelerator (16 MACs, 8 MB SRAM) is tCDP-optimal across
all ratios of embodied carbon to total carbon. Therefore, it may
not be worth manufacturing accelerator a58 (32 MACs, 4 MB
SRAM) even if the designer is optimizing for an operational
carbon dominant use case, to improve robustness against
uncertainties and variations as much as possible. Additionally,
out of the total nine distinct tCDP-optimal accelerator designs
identified in our design space exploration for all tasks and
operational times, there are four accelerator designs—a38 (8
MACs, 16 MB SRAM) for “All kernels”, a48 (16 MACs, 8
MB SRAM) for “XR 10 kernels” and “XR 5 kernels”, a23 (4
MACs, 1 MB SRAM) for “Al 10 kernels”, and al2 (2 MACs, 1
MB SRAM) for “Al 5 kernels”. These accelerators have better
average tCDP across variations in operational time. This type
of analysis highlights the importance of investigating the trade-
offs between tCDP-optimal designs across operational time,
and the trade-offs of tCDP optimality against uncertainty.

TABLE V
VR SOC PARAMETERS BEFORE AND AFTER CARBON-EFFICIENT
OPTIMIZATION FOR M-1 APPLICATION, WITH NUMBER OF CORES AND
AREA HAVING HIGH IMPACT ON CARBON EFFICIENCY.

Parameter [ Before Optimization [ After Optimization | Tmprovement
Piotal 83 W 83 W -
E 33217 33217 -
A 2.25 cm? 1.35 cm? 1.67x
Coperational 3.15 g COze per hour 3.15 g COze per hour -
CPU cores | 4 gold + 4 silver cores | 2 gold + 2 silver cores | reduced 4 cores
Cembodied 5375.33 g COze 2687.67 g COze 2%
total 12273 g COze 9696 g COze 1.27x
1.0 normalized FPS 0.98 normalized FPS 0.98
EDP 1 1.02 0.98x
tCDP 1 0.8 1.25%

D. Hardware Over-Provisioning to Improve tCDP

In this section, we apply CORDOBA’s carbon efficiency
framework to explore emerging applications and technologies.
Here, we quantify the impact of hardware over-provisioning
on the carbon efficiency of a VR headset System-on-Chip
(SoC). We identify hardware provisioning as a key design
parameter for carbon-efficient computing. We analyze the top
100 tasks running on 8-core CPUs inside deployed production-
level Meta Quest 2 VR headset devices. We group the tasks
into four categories: general gaming (G), social gaming (SG),
browser and virtual desktop (B), and media (M). The top
10 tasks account for over 85% of overall computation time,
and we quantify the benefits of optimal hardware provisioning
(refer §V) for four of those top-10 tasks (labeled G-2, M-1,
B-1, and SG-1).

We quantify the degree of thread-level parallelism (TLP) to
indicate the level of hardware over-provisioning on the 8-core
CPU of Snapdragon XR2 SoC in Quest 2. TLP is computed
as the number of cores activated concurrently divided by the
total task execution time [6], [15], [17]. For the four VR tasks,
TLP ranges from 3.52 to 4.15, indicating there are over three
unused cores on average. Thus, we can remove unused cores
to improve total carbon (lowering die area) without significant
performance degradation, improving tCDP.

Figure 10 shows that reducing number of cores from 8§ to 4
improves tCDP by 1.25x for the M-1 task (media category),
with parameter values before and after optimization quantified
in Table V. Note that, B-1 (browser) and SG-1 (social gaming)
tasks suffer degraded tCDP for the 4-core configuration, due to
relatively higher TLP and frame-rate requirements. However,
even for the “All Tasks” category, reducing cores from 8 to
5 improves tCDP by 1.08 x. Thus, designers should carefully
optimize hardware provisioning (based on application require-
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ments) to develop carbon-efficient systems.

For reference, equations VI.10-VI.12 illustrate how we
optimize hardware provisioning using CORDOBA in §IV-A.
“MT” is a Motion Tracking kernel, “A” is an Audio kernel,
and the “4-c” subscript indicates computing tCDP for the 4-
core configuration. We use similar equations to compute tCDP
for 5-core, 6-core, 7-core, and 8-core configurations, which
correspond to the results in Figure 10.

Dwmr, 4-¢

Ditt, 4 = [Nymrmr Nu-1,4] (VIL.10)
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PaynmT - DMT, 4

Em.1, 4c = [NM-l,MT NM-I,A} +
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E. Example tCDP Benefits of 3D Integration

We explore advanced packaging techniques, such as 3D
stacking, and optimize tCDP despite uncertain carbon footprint
data. State-of-the-art technologies are now using 3D integra-
tion techniques to increase connectivity between processor
and memory, which can address system-level bottlenecks such
as the “memory wall” (excessive time and energy overheads

Super Resolution (512 X 512)

Accelerator
configurations:
® Baseline_1K_1M

_ e 3D_1K_2M
eliminated ® 3D 1K 4M
[ ] designs ° 3D:1 K:8M
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3D_2K_16M

Energy - Delay
o
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Fig. 12. E - D versus Cembodied - D for the various accelerator configurations
running SR (512x512) (same data as in Figure 11(b)). The Pareto-optimal
curve indicates the only configurations that can be tCDP-optimal for any
possible value of Cluse(t), as described in §IV-B.

for transferring data back-and-forth between processors and
memory [41]). Here, we evaluate the carbon efficiency of 3D
stacking: connecting separately-fabricated dice in 3D (using
hybrid bumps to connect through silicon vias (TSVs) of
vertically-adjacent dice, as described in [54]). Figure 11(a)
shows the baseline accelerator memory architecture compared
to a variety of 3D-stacked configurations. The 3D-stacked
configurations include various combinations of computing re-
sources (1,000 MAC units or 2,000 MAC units), and activation
memory (in MegaBytes: 2 MB, 4 MB, 8 MB, or 16 MB). The
activation memory per memory die is 2 MB for configurations
with 1,000 (1K) MACs, and 4 MB for configurations with
2,000 (2K) MACs.

To demonstrate the tCDP benefits of 3D stacking, we
analyze the accelerators running a super-resolution kernel
(SR), as an example. This SR kernel is used on XR systems
to improve low-resolution image quality [5], and “inference”
refers to the SR kernel running on a single image. We quantify
tCDP in two cases: for an “embodied carbon dominant” case,
and an “operational carbon dominant” case. Both cases run
the same task (SR 512x512), but operate for different opera-
tional times. The embodied carbon dominant case has shorter
operational time (fewer inferences) such that the embodied
carbon accounts for 80% of total carbon (average across
all seven configurations), and operational carbon accounts
for the remaining 20%. In contrast, the operational carbon
dominant has longer operational time, such that embodied
carbon accounts for 8% of total carbon, and operational carbon
accounts the remaining 92% (on average).

Figure 11(b) shows: for the embodied carbon dominant
case (left side), configuration “3D_2K_4M” improves tCDP by
1.08 x versus the baseline, and for the operational carbon dom-
inant case (right side), configuration “3D_2K_8M” improves
tCDP by 6.9 versus the baseline. In both cases, 3D stacking
improves tCDP. When operational carbon exceeds embodied
carbon, the energy efficiency benefits of 3D stacking (more
computing resources, higher processor to memory bandwidth)
provide significantly larger tCDP benefit. The tCDP benefit
is relatively smaller for the embodied carbon case, which is
dominated by the physical manufacturing of the compute and
memory components; our analysis currently accounts for the
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TABLE VI
DESIGN KNOBS TO TRADE-OFF ENERGY AND DELAY FOR ENERGY
EFFICIENCY VERSUS DESIGN KNOBS TO TRADE-OFF ENERGY EFFICIENCY
AND EMBODIED CARBON FOR TOTAL CARBON EFFICIENT DESIGNS.

Design knob H Effect on E ‘ Effect on D ‘ Effect on Cepyp

Vpbp | 4 TX negligible
Trade off { Vr g ) v 11X negligible
and delay | FET widt
Trade-off (oc Area) l 24 T4 %4
energy | Lifetime | v v X
effitieney | Tech. node | LV 1V TX

area overhead of including TSVs on each die, and can be
extended to incorporate future packaging models that account
for embodied carbon of physically connecting multiple dice.

Finally, Figure 12 illustrates the relationship between E - D
versus Cembodied * D for the same data in Figure 11(b), where
E corresponds to normalized total energy consumption, in
this case of fixed-work analysis E is “Energy per inference”
(which is the same for both the embodied carbon dominant and
operational carbon dominant cases). As described in §IV-B,
any configuration that is not on the Pareto-optimal curve
cannot be tCDP-optimal for any values of Cly(¢). Thus,
even when Cl(¢) is unknown or changing over time, five of
the seven configurations can be eliminated: Baseline_1K_1M,
3D_1K_2M, 3D_1K_4M, 3D_1K_8M, and 3D_2K_16M. In-
stead, either of 3D _2K_4M and 3D _2K_8M will be tCDP-
optimal depending on Cl(t); indeed, 3D_2K_4M is tCDP-
optimal for the embodied carbon dominant case in Fig-
ure 11(b), and 3D_2K_8M is tCDP-optimal for the operational
carbon dominant case. Note that, the change in lifetime (be-
tween the embodied carbon dominant and operational carbon
dominant cases) has the same effect as a change in Clyg(¢)
for this particular analysis—both have the effect of changing
the scaling factor from E t0 Coperational (as in equation IV.6).
Thus, we can leverage the Lagrange multiplier technique, and
demonstrate the ability to make informed design decisions
even when there is uncertainty in quantifying tC.

VII. DISCUSSION ON BROADER IMPLICATIONS OF TCDP

In this section, we discuss the design knobs conventionally
used to trade-off energy and delay for energy efficiency, and
the additional design knobs needed to trade-off energy effi-
ciency and embodied carbon for carbon efficiency. For energy-
efficient computing, energy and delay are inherently linked
through underlying design parameters, including Vpp, V1, and
transistor widths (described in §III). As shown in Table VI,
adjusting each of these “design knobs” results in fundamental
trade-offs in energy and delay. Thus, EDP has been an effective
metric for driving energy-efficient computing, since optimizing
EDP dictates how to choose precise values for Vpp, Vr, and
transistor widths that optimally balance energy and delay.

There are also design knobs that improve both energy and
delay. For example, advancing to the next technology node,
i.e., transistor scaling. Even though continued scaling suffers
from diminishing returns, and comes with higher economical
cost, scaling has always improved energy efficiency (EDP).

For carbon-efficient computing, on the other hand, technol-
ogy node is a design knob that results in trade-offs between
energy efficiency and carbon footprint (Table VI). In other
words, leveraging state-of-the-art technology nodes does not
always result in the most carbon-efficient design, just as
minimizing Vpp does not always result in the most energy-
efficient design. This is because the embodied carbon footprint
of wafer fabrication is increasing as fabrication processes
are becoming more intensive, including more power-intensive
lithography (Extreme Ultra-Violet versus Deep Ultra-Violet),
increasing number of metal layers, and heterogeneous inte-
gration (e.g., complex systems including multiple chiplets on
interposers [28]). Thus, in many cases the embodied carbon
overhead of advancing to the next technology node outweighs
the corresponding energy efficiency benefit [9], [18], [22].

Another similar design knob is hardware lifetime. Decreased
hardware lifetime with frequent hardware upgrades improves
energy efficiency because of better optimized systems for new
workloads and/or higher energy efficiency of computer sys-
tems using more advanced semiconductor technology nodes.
For carbon-efficient computing, however, hardware lifetime
results in trade-offs between energy efficiency and carbon
footprint [22], [31]. Despite the energy efficiency benefits of
hardware refresh, it incurs higher embodied carbon due to
more hardware manufacturing. tCDP is an effective metric for
carbon-efficient design because it captures all these subtleties,
by accounting for embodied carbon (part of total carbon), the
ratio between operational and embodied carbon (total carbon
across lifetime), and energy efficiency.

VIII. CONCLUSION

We present CORDOBA, a carbon-aware design framework
to optimize parameters at multiple layers of the computing
stack (across manufacturing, design, and operational use) for
carbon-efficient computing system design. We justify tCDP
as an effective metric for carbon efficiency and provide
techniques for optimizing carbon-efficient systems in presence
of carbon modeling uncertainties. We conduct case studies
on real-world applications and systems and quantify carbon
efficiency improvements for hardware provisioning and 3D
integration, to guide designers in developing future carbon-
efficient computing systems. CORDOBA lays key foundations
for carbon-efficient optimization, which can be extended to
include additional models (e.g. yield, cost, and more) as
communities continue to adopt carbon-aware design.
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